Science.gov

Sample records for chain reaction-denaturing gradient

  1. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/polymerase chain reaction--denaturing gradient gel electrophoresis (PCR-DGGE)-based approach.

    PubMed

    Stephen, J R; Chang, Y J; Gan, Y D; Peacock, A; Pfiffner, S M; Barcelona, M J; White, D C; Macnaughton, S J

    1999-06-01

    The impact of pollution on soil microbial communities and subsequent bioremediation can be measured quantitatively in situ using direct, non-culture-dependent techniques. Such techniques have advantages over culture-based methods, which often account for less than 1% of the extant microbial community. In 1988, a JP-4 fuel spill contaminated the glacio-fluvial aquifer at Wurtsmith Air Force Base, Michigan, USA. In this study, lipid biomarker characterization of the bacterial and eukaryotic communities was combined with polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of the eubacterial community to evaluate correlation between contaminant (JP-4 fuel) concentration and community structure shifts. Vadose, capillary fringe and saturated zone samples were taken from cores within and up- and down-gradient from the contaminant plume. Lipid biomarker analysis indicated that samples from within the plume contained increased biomass, with large proportions of typically gram-negative bacteria. Outside the plume, lipid profiles indicated low-biomass microbial communities compared with those within the initial spill site. 16S rDNA sequences derived from DGGE profiles from within the initial spill site suggested dominance of the eubacterial community by a limited number of phylogenetically diverse organisms. Used in tandem with pollutant quantification, these molecular techniques should facilitate significant improvements over current assessment procedures for the determination of remediation end-points.

  2. Appropriate chicken sample size for identifying the composition of broiler intestinal microbiota affected by dietary antibiotics, using the polymerase chain reaction-denaturing gradient gel electrophoresis technique.

    PubMed

    Zhou, H; Gong, J; Brisbin, J T; Yu, H; Sanei, B; Sabour, P; Sharif, S

    2007-12-01

    The bacterial microbiota in the broiler gastrointestinal tract are crucial for chicken health and growth. Their composition can vary among individual birds. To evaluate the composition of chicken microbiota in response to environmental disruption accurately, 4 different pools made up of 2, 5, 10, and 15 individuals were used to determine how many individuals in each pool were required to assess the degree of variation when using the PCR-denaturing gradient gel electrophoresis (DGGE) profiling technique. The correlation coefficients among 3 replicates within each pool group indicated that the optimal sample size for comparing PCR-DGGE bacterial profiles and downstream applications (such as identifying treatment effects) was 5 birds per pool for cecal microbiota. Subsequently, digesta from 5 birds was pooled to investigate the effects on the microbiota composition of the 2 most commonly used dietary antibiotics (virginiamycin and bacitracin methylene disalicylate) at 2 different doses by using PCR-DGGE, DNA sequencing, and quantitative PCR techniques. Thirteen DGGE DNA bands were identified, representing bacterial groups that had been affected by the antibiotics. Nine of them were validated. The effect of dietary antibiotics on the microbiota composition appeared to be dose and age dependent. These findings provide a working model for elucidating the mechanisms of antibiotic effects on the chicken intestinal microbiota and for developing alternatives to dietary antibiotics. PMID:18029800

  3. Tracking the composition and dominant components of the microbial community via polymerase chain reaction-denaturing gradient gel electrophoresis and fluorescence in situ hybridization during vermiconversion for liquid-state excess sludge stabilization.

    PubMed

    Xu, Ting; Xing, Meiyan; Yang, Jian; Lv, Baoyi; Duan, Ting; Nie, Jing

    2014-09-01

    To quantitatively explore the microbial community modified by earthworms, a vermifilter (VF, with earthworms) and a conventional biofilter (BF, without earthworms) were continuously operated to stabilize excess sludge. The results demonstrated a positive role imposed by earthworms on compositions and dominant components of microbial community in the VF. For one thing, the phyla Actinobacteria and Acidobacteria were only detected in the VF, which might explain for the higher Shannon index of bacteria in the VF (H = 2.58) than that in the BF (H = 1.99). For another, the total proportion of dominant bacteria in the VF increased by 23% compared to the BF. Moreover, quantification analysis explicitly noted that the dominant bacteria in VF were β-proteobacteria (27 ± 2%) and γ-proteobacteria (24 ± 1%) while that in BF was Bacteroidetes (21 ± 1%). In conclusion, stimulated by earthworms, a unique microbial community developed in the VF, thus improving the stabilization of excess sludge. PMID:24971951

  4. Separation of cardiac myosin heavy chains by gradient SDS-PAGE.

    PubMed

    Esser, K A; Boluyt, M O; White, T P

    1988-09-01

    Separation of alpha- and beta-myosin heavy chains (MHCs) in cardiac ventricles of rats by gradient sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was accomplished and compared with the separation of myosin isozymes obtained with pyrophosphate gels. Whole muscle homogenates were electrophoresed on a 4-9% linear gradient SDS polyacrylamide gel for 3-4 h. MHC bands were identified by the migration distance relative to a MHC standard and immunoblot results with a monoclonal antibody to MHC. The MHC bands were further identified as alpha and beta based on the electrophoretic mobility of ventricular homogenates from hypothyroid and hyperthyroid rats and ventricular and slow soleus skeletal muscle homogenates from control rats. The beta-MHC migrated faster than alpha-MHC, and laser densitometry revealed separate peaks when both MHCs were present. With homogenates containing MHC ranging from 0 to 100% alpha, the separation of MHCs with gradient SDS-PAGE correlated highly (r = 0.97) with separation of myosin isozymes by pyrophosphate gel electrophoresis. The SDS-PAGE technique reported herein is a quick, valid, and direct method for the identification and quantification of ventricular MHCs.

  5. Application of denaturing gradient gel electrophoresis (DGGE) analysis to evaluate acetic acid bacteria in traditional balsamic vinegar.

    PubMed

    De Vero, Luciana; Gala, Elisabetta; Gullo, Maria; Solieri, Lisa; Landi, Sara; Giudici, Paolo

    2006-12-01

    Acetic acid bacteria (AAB) are fastidious micro-organisms to isolate and cultivate despite of the great number of growth media available. Moreover, conventional techniques used to study AAB populations are time consuming and not completely reliable. In this study, we tested the usefulness of the polymerase chain reaction-denaturing gradient gel electophoresis (PCR-DGGE) as a rapid and cost effective method for the screening of AAB in traditional balsamic vinegar (TBV). DGGE analysis was applied to 19 AAB strains isolated by agar plating from three different samples of TBV. DGGE was also used for the analysis of PCR products obtained from DNA extracted directly from the TBV samples. A tentative species identification was achieved comparing the PCR-DGGE patterns of the isolated strains and the TBV samples to those of 15 AAB reference strains. The results support that DGGE is functional to monitor vinegar's AAB population. PMID:16943087

  6. Transfer and accumulation of metals in a soil-diet-wood mouse food chain along a metal pollution gradient.

    PubMed

    Rogival, Damien; Scheirs, Jan; Blust, Ronny

    2007-01-01

    We studied the accumulation and transfer of As, Cd, Cu, Pb and Zn in the compartments of a soil-diet-wood mouse (Apodemus sylvaticus) food chain at five sites located along a metal pollution gradient. We observed a clear gradient in metal exposure at increasing distance from the smelter in all compartments of the food chain for the non-essential metals. The gradient was less clear or absent for the essential metals in acorn and mice target tissues. Regression analysis showed overall strong relationships within the soil-diet and diet-wood mouse compartments for the non-essential metals, while relationships for the essential metals were weak or absent. Total metal in soil appeared as a better predictor for the diet metal content than the available metal fraction. Our results suggest a more important transfer of non-essential elements through the food chain than essential elements, which is probably a consequence of homeostatic control of the latter group. PMID:16782248

  7. Molecular dynamics studies on the influences of a gradient electric field on the water chain in a peptide nanotube.

    PubMed

    Li, Hui; Fan, Jianfen F; Li, Rui; Yu, Yi; Yan, Xiliang L

    2014-08-01

    The structure and transportation characteristics of the water chain inside a 8×cyclo-(WL)4 peptide nanotube (PNT) were simulated under a gradient electric (GE) field. The gradient was defined by the ratio of a constant (Ea) and the z-directional length (Lz) of the simulation box. Ea varies from 0.0 to 0.9 V nm(-1). As the gradient increases, the probabilities of finding two water molecules in an α-plane zone and three in a midplane region increase. To accommodate more water molecules, the axial array of channel water molecules becomes more compact. Meanwhile, the H-bonded network between the channel water is greatly intensified when Ea increases from 0.3 to 0.9 V nm(-1). Nevertheless, the proportion of strong H-bonds does not increase significantly following the formation of a more compact axial array of water molecules. When Ea reaches 0.9 V nm(-1), the water molecule in an α-plane zone may be dragged by its neighboring water molecules into the midplane region, resulting in a significant deviation from the channel axis. With the augment of the gradient, the dipoles of channel water are gradually oriented along the tube axis in the sequence from gap 1 to 7, namely along the direction of the electric field. Nevertheless, even when E a reaches 0.9 V nm(-1), the dipole orientation of the channel water is not complete, and dipole flips still occur in gap 7. Under a GE field, the rightward and leftward hopping rates of channel water are no longer equal to each other, i.e., channel water performs an asymmetric transportation.

  8. Application of denaturing gradient gel electrophoresis for analysing the gut microflora of Lumbricus rubellus Hoffmeister under different feeding conditions.

    PubMed

    Knapp, B A; Seeber, J; Podmirseg, S M; Meyer, E; Insam, H

    2008-06-01

    The earthworm, Lumbricus rubellus, plays an essential role in soil ecosystems as it affects organic matter decomposition and nutrient cycling. By ingesting a mixture of organic and mineral material, a variety of bacteria and fungi are carried to the intestinal tract of the earthworm. To get a better understanding of the interactions between L. rubellus and the microorganisms ingested, this study tried to reveal if the diet affects the composition of the gut microflora of L. rubellus or if its intestinal tract hosts an indigenous, species-specific microbiota. A feeding experiment with L. rubellus was set up; individuals were collected in the field, transferred to a climate chamber and fed with food sources of different quality (dwarf shrub litter, grass litter or horse dung) for six weeks. DNA was extracted from the guts of the earthworms, as well as from the food sources and the surrounding soil, and further analysed by a molecular fingerprinting method, PCR-DGGE (Polymerase Chain Reaction -- Denaturing Gradient Gel Electrophoresis). We were able to demonstrate that the gut microbiota was strongly influenced by the food source ingested and was considerably different to that of the surrounding soil. Sequencing of dominant bands of the bacterial DGGE fingerprints revealed a strong occurrence of y-Proteobacteria in all gut samples, independent of the food source. A specific microflora in the intestinal tract of L. rubellus, robust against diet changes, could not be found. PMID:18439343

  9. Profiling of a microbial community under confined conditions in a fed-batch garbage decomposer by denaturing gradient gel electrophoresis.

    PubMed

    Horisawa, Sakae; Sakuma, Yoh; Nakamura, Yasunori; Doi, Shuichi

    2008-05-01

    In order to determine the conditions for the maximum performance of a fed-batch composting (FBC) reactor, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the microbial communities established under the confined conditions of moisture content and environmental temperature. To evaluate the effects of microbial community structures on the performance of FBC reactors, degradation experiments using small-scale reactors and model waste were conducted under confined environmental conditions. A high degradation rate was observed under a wide range of MC conditions (30-60%) and at higher than usual temperatures (30-50 degrees C). The microbial communities that formed in the experimental FBC reactors were analyzed by DGGE of PCR-amplified 16S rRNA genes. The DGGE banding patterns at the same level as the degradation rates were similar even if the environmental conditions were different. Sequence analysis of the DGGE bands revealed the primary microbes which act in the reactor.

  10. Microbial Community Structure of Korean Cabbage Kimchi and Ingredients with Denaturing Gradient Gel Electrophoresis.

    PubMed

    Hong, Sung Wook; Choi, Yun-Jeong; Lee, Hae-Won; Yang, Ji-Hee; Lee, Mi-Ai

    2016-06-28

    Kimchi is a traditional Korean fermented vegetable food, the production of which involves brining of Korean cabbage, blending with various other ingredients (red pepper powder, garlic, ginger, salt-pickled seafood, etc.), and fermentation. Recently, kimchi has also become popular in the Western world because of its unique taste and beneficial properties such as antioxidant and antimutagenic activities, which are derived from the various raw materials and secondary metabolites of the fermentative microorganisms used during production. Despite these useful activities, analysis of the microbial community present in kimchi has received relatively little attention. The objective of this study was to evaluate the bacterial community structure from the raw materials, additives, and final kimchi product using the culture-independent method. Specifically, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) was used to analyze the 16S rRNA partial sequences of the microflora. One primer set for bacteria, 341F(GC)-518R, reliably produced amplicons from kimchi and its raw materials, and these bands were clearly separated on a 35-65% denaturing gradient gel. Overall, 117 16S rRNA fragments were identified by PCR-DGGE analysis. Pediococcus pentosaceus, Leuconostoc citreum, Leuconostoc gelidum, and Leuconostoc mesenteroides were the dominant bacteria in kimchi. The other strains identified were Tetragenococcus, Pseudomonas, Weissella, and uncultured bacterium. Comprehensive analysis of these microorganisms could provide a more detailed understanding of the biologically active components of kimchi and help improve its quality. PCR-DGGE analysis can be successfully applied to a fermented food to detect unculturable or other species. PMID:26907755

  11. Evaluation of PCR-DGGE as a method to recapitulate host phylogeny by fecal microbial community fingerprint

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Recent studies indicate that host animal could be the primary factor determining the composition of the gastrointestinal microbiome. If host phenotype dictates microbiome composition, then composition should recapitulate host phylogeny. Polymerase chain reaction-denaturing gradient gel ...

  12. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    PubMed

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods.

  13. Application of PCR-denaturing-gradient gel electrophoresis (DGGE) method to examine microbial community structure in asparagus fields with growth inhibition due to continuous cropping.

    PubMed

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE.

  14. Application of PCR-Denaturing-Gradient Gel Electrophoresis (DGGE) Method to Examine Microbial Community Structure in Asparagus Fields with Growth Inhibition due to Continuous Cropping

    PubMed Central

    Urashima, Yasufumi; Sonoda, Takahiro; Fujita, Yuko; Uragami, Atsuko

    2012-01-01

    Growth inhibition due to continuous cropping of asparagus is a major problem; the yield of asparagus in replanted fields is low compared to that in new fields, and missing plants occur among young seedlings. Although soil-borne disease and allelochemicals are considered to be involved in this effect, this is still controversial. We aimed to develop a technique for the biological field diagnosis of growth inhibition due to continuous cropping. Therefore, in this study, fungal community structure and Fusarium community structure in continuously cropped fields of asparagus were analyzed by polymerase chain reaction/denaturing-gradient gel electrophoresis (PCR-DGGE). Soil samples were collected from the Aizu region of Fukushima Prefecture, Japan. Soil samples were taken from both continuously cropped fields of asparagus with growth inhibition and healthy neighboring fields of asparagus. The soil samples were collected from the fields of 5 sets in 2008 and 4 sets in 2009. We were able to distinguish between pathogenic and non-pathogenic Fusarium by using Alfie1 and Alfie2GC as the second PCR primers and PCR-DGGE. Fungal community structure was not greatly involved in the growth inhibition of asparagus due to continuous cropping. By contrast, the band ratios of Fusarium oxysporum f. sp. asparagi in growth-inhibited fields were higher than those in neighboring healthy fields. In addition, there was a positive correlation between the band ratios of Fusarium oxysporum f. sp. asparagi and the ratios of missing asparagus plants. We showed the potential of biological field diagnosis of growth inhibition due to continuous cropping of asparagus using PCR-DGGE. PMID:22200640

  15. Effect of short chain fructooligosaccharides (scFOS) on immunological status and gut microbiota of gilthead sea bream (Sparus aurata) reared at two temperatures.

    PubMed

    Guerreiro, Inês; Serra, Cláudia R; Enes, Paula; Couto, Ana; Salvador, Andreia; Costas, Benjamín; Oliva-Teles, Aires

    2016-02-01

    The effects of dietary short chain fructooligosaccharides (scFOS) incorporation on hematology, fish immune status, gut microbiota composition, digestive enzymes activities, and gut morphology, was evaluated in gilthead sea bream (Sparus aurata) juveniles reared at 18 °C and 25 °C. For that purpose, fish with 32 g were fed diets including 0, 0.1, 0.25 and 0.5% scFOS during 8 weeks. Overall, scFOS had only minor effects on gilthead sea bream immune status. Lymphocytes decreased in fish fed the 0.1% scFOS diet. Fish fed the 0.5% scFOS diet presented increased nitric oxide (NO) production, while total immunoglobulins (Ig) dropped in those fish, but only in the ones reared at 25 °C. Red blood cells, hemoglobin, bactericidal activity and NO were higher at 25 °C, whereas total white blood cells, circulating thrombocytes, monocytes and neutrophils were higher at 18 °C. In fish fed scFOS, lymphocytes were higher at 18 °C. Total Ig were also higher at 18 °C but only in fish fed 0.1% and 0.5% scFOS diets. No differences in gut bacterial profiles were detected by PCR-DGGE (polymerase chain reaction denaturing gradient gel electrophoresis) between dietary treatments. However, group's similarity was higher at 25 °C. Digestive enzymes activities were higher at 25 °C but were unaffected by prebiotics incorporation. Gut morphology was also unaffected by dietary prebiotic incorporation. Overall, gut microbiota composition, digestive enzymes activities and immunity parameters were affected by rearing temperature whereas dietary scFOS incorporation had only minor effects on these parameters. In conclusion, at the tested levels scFOS does not seem worthy of including it in gilthead sea bream juveniles diets. PMID:26721230

  16. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids docosapentaenoic (DPA, 22:5n-6) and docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    NASA Astrophysics Data System (ADS)

    Broadhurst, C. Leigh; Schmidt, Walter F.; Kim, Moon S.; Nguyen, Julie K.; Qin, Jianwei; Chao, Kuanglin; Bauchan, Gary L.; Shelton, Daniel R.

    2016-05-01

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolute necessity of the LC-PUFA docosahexaenoic acid (DHA; 22:6n-3) in these fast signal processing tissues. A lipid of the same chain length with just one less diene group, docosapentaenoic acid (DPA; 22:5n-6) is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman spectroscopy (GTRS) applies the temperature gradients utilized in differential scanning calorimetry to Raman spectroscopy, providing a straightforward technique to identify molecular rearrangements that occur near and at phase transitions. Herein we apply GTRS to DPA, and DHA from -100 to 20°C. 20 Mb three-dimensional data arrays with 1°C increments and first/second derivatives allows complete assignment of solid, liquid and transition state vibrational modes, including low intensity/frequency vibrations that cannot be readily analyzed with conventional Raman. DPA and DHA show significant spectral changes with premelting (-33 and -60°C, respectively) and melting (-27 and -44°C, respectively). The CH2-(HC=CH)-CH2 moieties are not identical in the second half of the DHA and DPA structures. The DHA molecule contains major CH2 twisting (1265 cm-1) with no noticeable CH2 bending, consistent with a flat helical structure with small pitch. Further modeling of neuronal membrane phospholipids must take into account this structure for DHA, which would be configured parallel to the hydrophilic head group line.

  17. Gradient networks

    NASA Astrophysics Data System (ADS)

    Toroczkai, Zoltán; Kozma, Balázs; Bassler, Kevin E.; Hengartner, N. W.; Korniss, G.

    2008-04-01

    Gradient networks are defined (Toroczkai and Bassler 2004 Nature 428 716) as directed graphs formed by local gradients of a scalar field distributed on the nodes of a substrate network G. We present the derivation for some of the general properties of gradient graphs and give an exact expression for the in-degree distribution R(l) of the gradient network when the substrate is a binomial (Erd{\\;\\kern -0.10em \\raise -0.35ex \\{{^{^{\\prime\\prime}}}}\\kern -0.57em \\o} s-Rényi) random graph, G_{N,p} , and the scalars are independent identically distributed (i.i.d.) random variables. We show that in the limit N \\to \\infty, p \\to 0, z = pN = \\mbox{const} \\gg 1, R(l)\\propto l^{-1} for l < l_c = z , i.e., gradient networks become scale-free graphs up to a cut-off degree. This paper presents the detailed derivation of the results announced in Toroczkai and Bassler (2004 Nature 428 716).

  18. Phase Behavior of Gradient Copolymer Solution

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Gallow, Keith; Loo, Yueh-Lin; Ganesan, Venkat

    2012-02-01

    We study the behavior of amphiphilic linear gradient copolymer chains under poor solvent conditions. Using Bond Fluctuation model and parallel tempering algorithm, we explore qualitative behavior of this class of polymers with varying gradient strength; which is the largest difference in the instantaneous composition along the polymer chain. Under poor solvent conditions, the chains collapse to form micelles. We find a linear dependence of hydrophilic to hydrophobic transition temperature on gradient strength. Systematic analysis of these clusters reveals a strong dependence of micelle properties on gradient strength. Also, we discuss our results with reference to recent experiments on synthesis and cloud point depression in gradient copolymers confirming gradient strength as key parameter in tuning micelle properties.

  19. On gradient field theories: gradient magnetostatics and gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2014-09-01

    In this work, the fundamentals of gradient field theories are presented and reviewed. In particular, the theories of gradient magnetostatics and gradient elasticity are investigated and compared. For gradient magnetostatics, non-singular expressions for the magnetic vector gauge potential, the Biot-Savart law, the Lorentz force and the mutual interaction energy of two electric current loops are derived and discussed. For gradient elasticity, non-singular forms of all dislocation key formulas (Burgers equation, Mura equation, Peach-Koehler stress equation, Peach-Koehler force equation, and mutual interaction energy of two dislocation loops) are presented. In addition, similarities between an electric current loop and a dislocation loop are pointed out. The obtained fields for both gradient theories are non-singular due to a straightforward and self-consistent regularization.

  20. Continuous gradient temperature Raman spectroscopy of the long chain polyunsaturated fatty acids Docosapentaenoic (DPA, 22:5n-6) and Docosahexaenoic (DHA; 22:6n-3) from -100 to 20° C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The structural, cognitive and visual development of the human brain and retina strictly require long-chain polyunsaturated fatty acids (LC-PUFA). Excluding water, the mammalian brain is about 60% lipid. One of the great unanswered questions with respect to biological science in general is the absolu...

  1. Falling chains

    NASA Astrophysics Data System (ADS)

    Wong, Chun Wa; Yasui, Kosuke

    2006-06-01

    The one-dimensional fall of a folded chain with one end suspended from a rigid support and a chain falling from a resting heap on a table is studied. Because their Lagrangians contain no explicit time dependence, the falling chains are conservative systems. Their equations of motion are shown to contain a term that enforces energy conservation when masses are transferred between subchains. We show that Cayley's 1857 energy nonconserving solution for a chain falling from a resting heap is incorrect because it neglects the energy gained when a link leaves a subchain. The maximum chain tension measured by Calkin and March for the falling folded chain is given a simple if rough interpretation. Other aspects of the falling folded chain are briefly discussed.

  2. Spin chains with electrons in Penning traps

    SciTech Connect

    Ciaramicoli, G.; Marzoli, I.; Tombesi, P.

    2007-03-15

    We demonstrate that spin chains are experimentally feasible using electrons confined in micro-Penning traps, supplemented with local magnetic field gradients. The resulting Heisenberg-like system is characterized by coupling strengths showing a dipolar decay. These spin chains can be used as a channel for short-distance quantum communication. Our scheme offers high accuracy in reproducing an effective spin chain with relatively large transmission rate.

  3. Orthogonal gradient networks via post polymerization reaction

    NASA Astrophysics Data System (ADS)

    Chinnayan Kannan, Pandiyarajan; Genzer, Jan

    2015-03-01

    We report a novel synthetic route to generate orthogonal gradient networks through post polymerization reaction using pentaflurophenylmethacrylate (PFPMAc) active ester chemistry. These chemoselective monomers were successfully copolymerized with 5 mole% of the photo (methacryloyloxybenzophenone) and thermal (styrenesulfonylazide) crosslinkers. Subsequently, the copolymers were modified by a series of amines having various alkyl chain lengths. The conversion of post polymerization reaction was monitored using Fourier Transform Infrared Spectroscopy (FT-IR) and noticed that almost all pentaflurophenyl moieties are substituted by amines within in an hour without affecting the crosslinkers. In addition, the incorporation of photo and thermal crosslinkers in the polymer enabled us to achieve stable and covalently surface-bound polymer gradient networks (PGN) in an orthogonal manner, i.e. complete control over the crosslink density of the network in two opposite directions (i.e. heat vs photo). The network properties such as wettability, swelling and tensile modulus of the gradient coatings are studied and revealed in the paper.

  4. Fluctuation Effects on Phase Behavior of Gradient Copolymer Systems

    NASA Astrophysics Data System (ADS)

    Pandav, Gunja; Ganesan, Venkat

    2013-03-01

    We consider the effect of sequence polydispersity on fluctuation induced shift in order-disorder transition (ODT) temperature for symmetric systems of gradient copolymers. Using single chain in mean field simulations, a systematic change in scaling prediction for shift in ODT with Ginzburg parameter is reported. We demonstrate that gradient strength and overall blockiness of sequences has a significant impact on shift in ODT temperature. The weak gradient copolymers having high compositional polydispersity mimic random copolymers whereas, strong gradient copolymers possess inherent blockiness and are close to diblock copolymers. The blockiness parameter has a minimal impact on shift in ODT in strong gradient copolymers. Also, ternary blends of homopolymer/gradient copolymer are investigated to capture effect of compositional polydispersity on phase diagram and formation of microemulsion structures.

  5. Laser textured surface gradients

    NASA Astrophysics Data System (ADS)

    Ta, Van Duong; Dunn, Andrew; Wasley, Thomas J.; Li, Ji; Kay, Robert W.; Stringer, Jonathan; Smith, Patrick J.; Esenturk, Emre; Connaughton, Colm; Shephard, Jonathan D.

    2016-05-01

    This work demonstrates a novel technique for fabricating surfaces with roughness and wettability gradients and their subsequent applications for chemical sensors. Surface roughness gradients on brass sheets are obtained directly by nanosecond laser texturing. When these structured surfaces are exposed to air, their wettability decreases with time (up to 20 days) achieving both spatial and temporal wettability gradients. The surfaces are responsive to organic solvents. Contact angles of a series of dilute isopropanol solutions decay exponentially with concentration. In particular, a fall of 132° in contact angle is observed on a surface gradient, one order of magnitude higher than the 14° observed for the unprocessed surface, when the isopropanol concentration increased from 0 to 15.6 wt%. As the wettability changes gradually over the surface, contact angle also changes correspondingly. This effect offers multi-sensitivity at different zones on the surface and is useful for accurate measurement of chemical concentration.

  6. HIGH GRADIENT INDUCTION ACCELERATOR

    SciTech Connect

    Caporaso, G J; Sampayan, S; Chen, Y; Blackfield, D; Harris, J; Hawkins, S; Holmes, C; Krogh, M; Nelson, S; Nunnally, W; Paul, A; Poole, B; Rhodes, M; Sanders, D; Selenes, K; Sullivan, J; Wang, L; Watson, J

    2007-06-21

    A new type of compact induction accelerator is under development at the Lawrence Livermore National Laboratory that promises to increase the average accelerating gradient by at least an order of magnitude over that of existing induction machines. The machine is based on the use of high gradient vacuum insulators, advanced dielectric materials and switches and is stimulated by the desire for compact flash x-ray radiography sources. Research describing an extreme variant of this technology aimed at proton therapy for cancer will be described. Progress in applying this technology to several applications will be reviewed.

  7. Gradient Refractive Index Lenses.

    ERIC Educational Resources Information Center

    Morton, N.

    1984-01-01

    Describes the nature of gradient refractive index (GRIN) lenses, focusing on refraction in these materials, focal length of a thin Wood lens, and on manufacturing of such lenses. Indicates that GRIN lenses of small cross section are in limited production with applications suggested for optical communication and photocopying fields. (JN)

  8. Arterial Stiffness Gradient

    PubMed Central

    Fortier, Catherine; Agharazii, Mohsen

    2016-01-01

    Background Aortic stiffness is a strong predictor of cardiovascular mortality in various clinical conditions. The aim of this review is to focus on the arterial stiffness gradient, to discuss the integrated role of medium-sized muscular conduit arteries in the regulation of pulsatile pressure and organ perfusion and to provide a rationale for integrating their mechanical properties into risk prediction. Summary The physiological arterial stiffness gradient results from a higher degree of vascular stiffness as the distance from the heart increases, creating multiple reflective sites and attenuating the pulsatile nature of the forward pressure wave along the arterial tree down to the microcirculation. The stiffness gradient hypothesis simultaneously explains its physiological beneficial effects from both cardiac and peripheral microcirculatory points of view. The loss or reversal of stiffness gradient leads to the transmission of a highly pulsatile pressure wave into the microcirculation. This suggests that a higher degree of stiffness of medium-sized conduit arteries may play a role in protecting the microcirculation from a highly pulsatile forward pressure wave. Using the ratio of carotid-femoral pulse wave velocity (PWV) to carotid-radial PWV, referred to as PWV ratio, a recent study in a dialysis cohort has shown that the PWV ratio is a better predictor of mortality than the classical carotid-femoral PWV. Key Messages Theoretically, the use of the PWV ratio seems more logical for risk determination than aortic stiffness as it provides a better estimation of the loss of stiffness gradient, which is the unifying hypothesis that explains the impact of aortic stiffness both on the myocardium and on peripheral organs. PMID:27195235

  9. Chain Gang

    NASA Technical Reports Server (NTRS)

    2006-01-01

    6 August 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a chain of clustered and battered craters. These were formed by secondary impact. That is, somewhere to the south (beyond the bottom of this image), a large impact crater formed. When this occurred, material ejected from the crater was thrown tens to hundreds of kilometers away. This material then impacted the martian surface, forming clusters and chains of smaller craters.

    Location near: 15.8oN, 35.6oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Northern Spring

  10. Stress-gradient plasticity

    PubMed Central

    Chakravarthy, Srinath S.; Curtin, W. A.

    2011-01-01

    A new model, stress-gradient plasticity, is presented that provides unique mechanistic insight into size-dependent phenomena in plasticity. This dislocation-based model predicts strengthening of materials when a gradient in stress acts over dislocation source–obstacle configurations. The model has a physical length scale, the spacing of dislocation obstacles, and is validated by several levels of discrete-dislocation simulations. When incorporated into a continuum viscoplastic model, predictions for bending and torsion in polycrystalline metals show excellent agreement with experiments in the initial strengthening and subsequent hardening as a function of both sample-size dependence and grain size, when the operative obstacle spacing is proportional to the grain size. PMID:21911403

  11. Gradient echo MRI

    PubMed Central

    Copenhaver, B R.; Shin, J; Warach, S; Butman, J A.; Saver, J L.; Kidwell, C S.

    2009-01-01

    Background: Recent studies have demonstrated that gradient echo (GRE) MRI sequences are as accurate as CT for the detection of intracerebral hemorrhage (ICH) in the context of acute stroke. However, many physicians who currently read acute stroke imaging studies may be unfamiliar with interpretation of GRE images. Methods: An NIH Web-based training program was developed including a pretest, tutorial, and posttest. Physicians involved in the care of acute stroke patients were encouraged to participate. The tutorial covered acute, chronic, and mimic hemorrhages as they appear on CT, diffusion-weighted imaging, and GRE sequences. Ability of users to identify ICH presence, type, and age on GRE was compared from the pretest to posttest timepoint. Results: A total of 104 users completed the tutorial. Specialties represented included general radiology (42%), general neurology (16%), neuroradiology (15%), stroke neurology (14%), emergency medicine (1%), and other (12%). Median overall score improved pretest to posttest from 66.7% to 83.3%, p < 0.001. Improvement by category was as follows: acute ICH, 66.7%–100%, p < 0.001; chronic ICH, 33.3%–66.7%, p < 0.001; ICH negatives/mimics, 100%–100%, p = 0.787. Sensitivity for identification of acute hemorrhage improved from 68.2% to 96.4%. Conclusions: Physicians involved in acute stroke care achieved significant improvement in gradient echo (GRE) hemorrhage interpretation after completing the NIH GRE MRI tutorial. This indicates that a Web-based tutorial may be a viable option for the widespread education of physicians to achieve an acceptable level of diagnostic accuracy at reading GRE MRI, thus enabling confident acute stroke treatment decisions. GLOSSARY AHA/ASA = American Heart Association/American Stroke Association; CME = continuing medical education; DWI = diffusion-weighted imaging; GRE = gradient echo; ICH = intracerebral hemorrhage; tPA = tissue plasminogen activator. PMID:19414724

  12. Gradient equivalent crystal theory.

    PubMed

    Zypman, F R; Ferrante, J

    2006-07-01

    This paper presents an extension of the formalism of equivalent crystal theory (ECT) by introducing an electron density gradient term so that the total model density becomes a more accurate representation of the real local density. Specifically, we allow for the electron density around a lattice site to have directionality, in addition to an average value, as assumed in ECT. We propose that an atom senses its neighbouring density as a weighted sum-the weights given by the its own electronic probability. As a benchmark, the method is used to compute vacancy migration energy curves of iron. These energies are in good agreement with previously published results. PMID:21690822

  13. Energy in density gradient

    SciTech Connect

    Vranjes, J.; Kono, M.

    2015-01-15

    Inhomogeneous plasmas and fluids contain energy stored in inhomogeneity and they naturally tend to relax into lower energy states by developing instabilities or by diffusion. But the actual amount of energy in such inhomogeneities has remained unknown. In the present work, the amount of energy stored in a density gradient is calculated for several specific density profiles in a cylindrical configuration. This is of practical importance for drift wave instability in various plasmas, and, in particular, in its application in models dealing with the heating of solar corona because the instability is accompanied with stochastic heating, so the energy contained in inhomogeneity is effectively transformed into heat. It is shown that even for a rather moderate increase of the density at the axis in magnetic structures in the corona by a factor 1.5 or 3, the amount of excess energy per unit volume stored in such a density gradient becomes several orders of magnitude greater than the amount of total energy losses per unit volume (per second) in quiet regions in the corona. Consequently, within the life-time of a magnetic structure such energy losses can easily be compensated by the stochastic drift wave heating.

  14. Interphases of chain molecules: Monolayers and lipid bilayer membranes

    PubMed Central

    Dill, Ken A.; Flory, Paul J.

    1980-01-01

    Using the lattice model for a liquid, we treat the packing of short-chain molecules in interphases such as bilayer membranes. The constant density in the interphase imposes intermolecular constraints on the configurations of the flexible chains. The statistical theory here presented predicts a diffuse distribution of chain ends near the bilayer midplane; no adjustable parameters are required. Inasmuch as some of the chains terminate relatively near the polar interface, the number of chains reaching deeper planar layers is diminished. Consequently, configurational freedom increases with depth. This is the source of the well-known disorder gradient. PMID:16592834

  15. Non Linear Conjugate Gradient

    2006-11-17

    Software that simulates and inverts electromagnetic field data for subsurface electrical properties (electrical conductivity) of geological media. The software treats data produced by a time harmonic source field excitation arising from the following antenna geometery: loops and grounded bipoles, as well as point electric and magnetic dioples. The inversion process is carried out using a non-linear conjugate gradient optimization scheme, which minimizes the misfit between field data and model data using a least squares criteria.more » The software is an upgrade from the code NLCGCS_MP ver 1.0. The upgrade includes the following components: Incorporation of new 1 D field sourcing routines to more accurately simulate the 3D electromagnetic field for arbitrary geologic& media, treatment for generalized finite length transmitting antenna geometry (antennas with vertical and horizontal component directions). In addition, the software has been upgraded to treat transverse anisotropy in electrical conductivity.« less

  16. Tumbling dynamics of isolated polymer chains in strong shear flows and the effects of chain resolution

    NASA Astrophysics Data System (ADS)

    Larson, Ronald; Saha Dalal, Indranil; Albaugh, Alex; Hoda, Nazish

    2012-02-01

    Using Brownian dynamics simulations, without hydrodynamic and excluded volume interactions, on polymer chain models encompassing a wide range of resolutions, we present a detailed investigation on the behavior of isolated chains in shear flow. We find a highly non-monotonic behavior for all models, with chain compression occurring at ultra-high shear rates that is consistent with the recent simulation studies. However, results obtained using highly refined models, with resolutions lower than a Kuhn step, reveal that this transition is an artifact of the level of chain discretization. Also, our results clearly indicate that, at high shear rates, the chain thickness in the shear-gradient direction is independent of the chain length, which differ from previously reported scaling law. We show that the chain thickness is fixed by the distance a sub-section of the chain can diffuse in the shear-gradient direction before convection stretches it out and suppresses further diffusion. Simple physical arguments are then used to derive the correct scaling laws for the coil width and the tumbling time at high shear rates. We believe that our findings presented here will provide the foundation for a better understanding of this basic problem in polymer dynamics.

  17. Generalized conjugate gradient squared

    SciTech Connect

    Fokkema, D.R.; Sleijpen, G.L.G.

    1994-12-31

    In order to solve non-symmetric linear systems of equations, the Conjugate Gradient Squared (CGS) is a well-known and widely used iterative method. In practice the method converges fast, often twice as fast as the Bi-Conjugate Gradient method. This is what you may expect, since CGS uses the square of the BiCG polynomial. However, CGS may suffer from its erratic convergence behavior. The method may diverge or the approximate solution may be inaccurate. BiCGSTAB uses the BiCG polynomial and a product of linear factors in an attempt to smoothen the convergence. In many cases, this has proven to be very effective. Unfortunately, the convergence of BiCGSTAB may stall when a linear factor (nearly) degenerates. BiCGstab({ell}) is designed to overcome this degeneration of linear factors. It generalizes BiCGSTAB and uses both the BiCG polynomial and a product of higher order factors. Still, CGS may converge faster than BiCGSTAB or BiCGstab({ell}). So instead of using a product of linear or higher order factors, it may be worthwhile to look for other polynomials. Since the BiCG polynomial is based on a three term recursion, a natural choice would be a polynomial based on another three term recursion. Possibly, a suitable choice of recursion coefficients would result in method that converges faster or as fast as CGS, but less erratic. It turns out that an algorithm for such a method can easily be formulated. One particular choice for the recursion coefficients leads to CGS. Therefore one could call this algorithm generalized CGS. Another choice for the recursion coefficients leads to BiCGSTAB. It is therefore possible to mix linear factors and some polynomial based on a three term recursion. This way one may get the best of both worlds. The authors will report on their findings.

  18. Gradient boosting machines, a tutorial

    PubMed Central

    Natekin, Alexey; Knoll, Alois

    2013-01-01

    Gradient boosting machines are a family of powerful machine-learning techniques that have shown considerable success in a wide range of practical applications. They are highly customizable to the particular needs of the application, like being learned with respect to different loss functions. This article gives a tutorial introduction into the methodology of gradient boosting methods with a strong focus on machine learning aspects of modeling. A theoretical information is complemented with descriptive examples and illustrations which cover all the stages of the gradient boosting model design. Considerations on handling the model complexity are discussed. Three practical examples of gradient boosting applications are presented and comprehensively analyzed. PMID:24409142

  19. Density Gradients in Chemistry Teaching

    ERIC Educational Resources Information Center

    Miller, P. J.

    1972-01-01

    Outlines experiments in which a density gradient might be used to advantage. A density gradient consists of a column of liquid, the composition and density of which varies along its length. The procedure can be used in analysis of solutions and mixtures and in density measures of solids. (Author/TS)

  20. Empirical equation estimates geothermal gradients

    SciTech Connect

    Kutasov, I.M. )

    1995-01-02

    An empirical equation can estimate geothermal (natural) temperature profiles in new exploration areas. These gradients are useful for cement slurry and mud design and for improving electrical and temperature log interpretation. Downhole circulating temperature logs and surface outlet temperatures are used for predicting the geothermal gradients.

  1. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R

    2006-08-16

    Multilayer High-Gradient Insulators are vacuum insulating structures composed of thin, alternating layers of dielectric and metal. They are currently being developed for application to high-current accelerators and related pulsed power systems. This paper describes some of the High-Gradient Insulator research currently being conducted at Lawrence Livermore National Laboratory.

  2. Gradient elution in capillary electrochromatography

    SciTech Connect

    Anex, D.; Rakestraw, D.J.; Yan, Chao; Dadoo, R.; Zare, R.N.

    1997-08-01

    In analogy to pressure-driven gradient techniques in high-performance liquid chromatography, a system has been developed for delivering electroosmotically-driven solvent gradients for capillary electrochromatography (CEC). Dynamic gradients with sub-mL/min flow rates are generated by merging two electroosmotic flows that are regulated by computer-controlled voltages. These flows are delivered by two fused-silica capillary arms attached to a T-connector, where they mix and then flow into a capillary column that has been electrokinetically packed with 3-mm reversed-phase particles. The inlet of one capillary arm is placed in a solution reservoir containing one mobile phase and the inlet of the other is placed in a second reservoir containing a second mobile phase. Two independent computer-controlled programmable high-voltage power supplies (0-50 kV)--one providing an increasing ramp and the other providing a decreasing ramp--are used to apply variable high-voltage potentials to the mobile phase reservoirs to regulate the electroosmotic flow in each arm. The ratio of the electroosmotic flow rates between the two arms is changed with time according to the computer-controlled voltages to deliver the required gradient profile to the separation column. Experiments were performed to confirm the composition of the mobile phase during a gradient run and to determine the change of the composition in response to the programmed voltage profile. To demonstrate the performance of electroosmotically-driven gradient elution in CEC, a mixture of 16 polycyclic aromatic hydrocarbons (PAHs) was separated in less than 90 minutes. This gradient technique is expected to be well-suited for generating not only solvent gradients in CEC, but also other types of gradients such as pH- and ionic-strength gradients in capillary electrokinetic separations and analyses.

  3. Gradient zone boundary control in salt gradient solar ponds

    DOEpatents

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  4. Combining Step Gradients and Linear Gradients in Density.

    PubMed

    Kumar, Ashok A; Walz, Jenna A; Gonidec, Mathieu; Mace, Charles R; Whitesides, George M

    2015-06-16

    Combining aqueous multiphase systems (AMPS) and magnetic levitation (MagLev) provides a method to produce hybrid gradients in apparent density. AMPS—solutions of different polymers, salts, or surfactants that spontaneously separate into immiscible but predominantly aqueous phases—offer thermodynamically stable steps in density that can be tuned by the concentration of solutes. MagLev—the levitation of diamagnetic objects in a paramagnetic fluid within a magnetic field gradient—can be arranged to provide a near-linear gradient in effective density where the height of a levitating object above the surface of the magnet corresponds to its density; the strength of the gradient in effective density can be tuned by the choice of paramagnetic salt and its concentrations and by the strength and gradient in the magnetic field. Including paramagnetic salts (e.g., MnSO4 or MnCl2) in AMPS, and placing them in a magnetic field gradient, enables their use as media for MagLev. The potential to create large steps in density with AMPS allows separations of objects across a range of densities. The gradients produced by MagLev provide resolution over a continuous range of densities. By combining these approaches, mixtures of objects with large differences in density can be separated and analyzed simultaneously. Using MagLev to add an effective gradient in density also enables tuning the range of densities captured at an interface of an AMPS by simply changing the position of the container in the magnetic field. Further, by creating AMPS in which phases have different concentrations of paramagnetic ions, the phases can provide different resolutions in density. These results suggest that combining steps in density with gradients in density can enable new classes of separations based on density. PMID:25978093

  5. High field gradient particle accelerator

    DOEpatents

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  6. High field gradient particle accelerator

    DOEpatents

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  7. Generalized gradient and contour program

    USGS Publications Warehouse

    Hellman, Marshall Strong

    1972-01-01

    This program computes estimates of gradients, prepares contour maps, and plots various sets of data provided by the user on the CalComp plotters. The gradients represent the maximum rates of change of a real variable Z=f(X,Y) with respect to the twodimensional rectangle on which the function is defined. The contours are lines of equal Z values. The program also plots special line data sets provided by the user.

  8. Low-gradient aortic stenosis.

    PubMed

    Clavel, Marie-Annick; Magne, Julien; Pibarot, Philippe

    2016-09-01

    An important proportion of patients with aortic stenosis (AS) have a 'low-gradient' AS, i.e. a small aortic valve area (AVA <1.0 cm(2)) consistent with severe AS but a low mean transvalvular gradient (<40 mmHg) consistent with non-severe AS. The management of this subset of patients is particularly challenging because the AVA-gradient discrepancy raises uncertainty about the actual stenosis severity and thus about the indication for aortic valve replacement (AVR) if the patient has symptoms and/or left ventricular (LV) systolic dysfunction. The most frequent cause of low-gradient (LG) AS is the presence of a low LV outflow state, which may occur with reduced left ventricular ejection fraction (LVEF), i.e. classical low-flow, low-gradient (LF-LG), or preserved LVEF, i.e. paradoxical LF-LG. Furthermore, a substantial proportion of patients with AS may have a normal-flow, low-gradient (NF-LG) AS: i.e. a small AVA-low-gradient combination but with a normal flow. One of the most important clinical challenges in these three categories of patients with LG AS (classical LF-LG, paradoxical LF-LG, and NF-LG) is to differentiate a true-severe AS that generally benefits from AVR vs. a pseudo-severe AS that should be managed conservatively. A low-dose dobutamine stress echocardiography may be used for this purpose in patients with classical LF-LG AS, whereas aortic valve calcium scoring by multi-detector computed tomography is the preferred modality in those with paradoxical LF-LG or NF-LG AS. Although patients with LF-LG severe AS have worse outcomes than those with high-gradient AS following AVR, they nonetheless display an important survival benefit with this intervention. Some studies suggest that transcatheter AVR may be superior to surgical AVR in patients with LF-LG AS.

  9. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks. PMID:26087504

  10. Optimization in Quaternion Dynamic Systems: Gradient, Hessian, and Learning Algorithms.

    PubMed

    Xu, Dongpo; Xia, Yili; Mandic, Danilo P

    2016-02-01

    The optimization of real scalar functions of quaternion variables, such as the mean square error or array output power, underpins many practical applications. Solutions typically require the calculation of the gradient and Hessian. However, real functions of quaternion variables are essentially nonanalytic, which are prohibitive to the development of quaternion-valued learning systems. To address this issue, we propose new definitions of quaternion gradient and Hessian, based on the novel generalized Hamilton-real (GHR) calculus, thus making a possible efficient derivation of general optimization algorithms directly in the quaternion field, rather than using the isomorphism with the real domain, as is current practice. In addition, unlike the existing quaternion gradients, the GHR calculus allows for the product and chain rule, and for a one-to-one correspondence of the novel quaternion gradient and Hessian with their real counterparts. Properties of the quaternion gradient and Hessian relevant to numerical applications are also introduced, opening a new avenue of research in quaternion optimization and greatly simplified the derivations of learning algorithms. The proposed GHR calculus is shown to yield the same generic algorithm forms as the corresponding real- and complex-valued algorithms. Advantages of the proposed framework are illuminated over illustrative simulations in quaternion signal processing and neural networks.

  11. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... migration of the salinity gradient displacing the maximim sedimentation zone. This migration may...

  12. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... estuary. The downstream migration of the salinity gradient can occur, displacing the maximum sedimentation... migration of the salinity gradient displacing the maximim sedimentation zone. This migration may...

  13. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  14. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  15. Rapid Gradient-Echo Imaging

    PubMed Central

    Hargreaves, Brian

    2012-01-01

    Gradient echo sequences are widely used in magnetic resonance imaging (MRI) for numerous applications ranging from angiography to perfusion to functional MRI. Compared with spin-echo techniques, the very short repetition times of gradient-echo methods enable very rapid 2D and 3D imaging, but also lead to complicated “steady states.” Signal and contrast behavior can be described graphically and mathematically, and depends strongly on the type of spoiling: fully balanced (no spoiling), gradient spoiling, or RF-spoiling. These spoiling options trade off between high signal and pure T1 contrast while the flip angle also affects image contrast in all cases, both of which can be demonstrated theoretically and in image examples. As with spin-echo sequences, magnetization preparation can be added to gradient-echo sequences to alter image contrast. Gradient echo sequences are widely used for numerous applications such as 3D perfusion imaging, functional MRI, cardiac imaging and MR angiography. PMID:23097185

  16. Gradient Domain Guided Image Filtering.

    PubMed

    Kou, Fei; Chen, Weihai; Wen, Changyun; Li, Zhengguo

    2015-11-01

    Guided image filter (GIF) is a well-known local filter for its edge-preserving property and low computational complexity. Unfortunately, the GIF may suffer from halo artifacts, because the local linear model used in the GIF cannot represent the image well near some edges. In this paper, a gradient domain GIF is proposed by incorporating an explicit first-order edge-aware constraint. The edge-aware constraint makes edges be preserved better. To illustrate the efficiency of the proposed filter, the proposed gradient domain GIF is applied for single-image detail enhancement, tone mapping of high dynamic range images and image saliency detection. Both theoretical analysis and experimental results prove that the proposed gradient domain GIF can produce better resultant images, especially near the edges, where halos appear in the original GIF. PMID:26285153

  17. Templating Surfaces with Gradient Assemblies

    SciTech Connect

    Genzer,J.

    2005-01-01

    One of the most versatile and widely used methods of forming surfaces with position-dependent wettability is that conceived by Chaudhury and Whitesides more than a decade ago. In this paper we review several projects that utilize this gradient-forming methodology for: controlled of deposition of self-assembled monolayers on surfaces, generating arrays of nanoparticles with number density gradients, probing the mushroom-to-brush transition in surface-anchored polymers, and controlling the speed of moving liquid droplets on surfaces.

  18. Oxidation in a temperature gradient

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.

    2001-01-01

    The effects of a temperature gradient and heat flux on point defect diffusion in protective oxide scales were examined. Irreversible thermodynamics were used to expand Fick's first law of diffusion to include a heat flux term--a Soret effect. Oxidation kinetics were developed for the oxidation of cobalt and for nickel doped with chromium. Research in progress is described to verify the effects of a heat flux by oxidizing pure cobalt in a temperature gradient above 800 C, and comparing the kinetics to isothermal oxidation. The tests are being carried out in the new high temperature gaseous corrosion and corrosion/erosion facility at the Albany Research Center.

  19. Multilayer High-Gradient Insulators

    SciTech Connect

    Harris, J R; Anaya, R M; Blackfield, D; Chen, Y -; Falabella, S; Hawkins, S; Holmes, C; Paul, A C; Sampayan, S; Sanders, D M; Watson, J A; Caporaso, G J; Krogh, M

    2006-11-15

    High voltage systems operated in vacuum require insulating materials to maintain spacing between conductors held at different potentials, and may be used to maintain a nonconductive vacuum boundary. Traditional vacuum insulators generally consist of a single material, but insulating structures composed of alternating layers of dielectric and metal can also be built. These ''High-Gradient Insulators'' have been experimentally shown to withstand higher voltage gradients than comparable conventional insulators. As a result, they have application to a wide range of high-voltage vacuum systems where compact size is important. This paper describes ongoing research on these structures, as well as the current theoretical understanding driving this work.

  20. Effect of Gradient Sequencing on Copolymer Order-Disorder Transitions: Phase Behavior of Styrene/n-Butyl Acrylate Block and Gradient Copolymers

    SciTech Connect

    Mok, Michelle M; Ellison, Christopher J; Torkelson, John M

    2012-11-14

    We investigate the effect of gradient sequence distribution in copolymers on order-disorder transitions, using rheometry and small-angle X-ray scattering to compare the phase behavior of styrene/n-butyl acrylate (S/nBA) block and gradient copolymers. Relative to block sequencing, gradient sequencing increases the molecular weight necessary to induce phase segregation by over 3-fold, directly consistent with previous predictions from theory. Results also suggest the existence of both upper and lower order-disorder transitions in a higher molecular weight S/nBA gradient copolymer, made accessible by the shift in order-disorder temperatures from gradient sequencing. The combination of transitions is speculated to be inaccessible in S/nBA block copolymer systems due to their overlap at even modest molecular weights and also their location on the phase diagram relative to the polystyrene glass transition temperature. Finally, we discuss the potential impacts of polydispersity and chain-to-chain monomer sequence variation on gradient copolymer phase segregation.

  1. Variable metric conjugate gradient methods

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1994-07-01

    1.1 Motivation. In this paper we present a framework that includes many well known iterative methods for the solution of nonsymmetric linear systems of equations, Ax = b. Section 2 begins with a brief review of the conjugate gradient method. Next, we describe a broader class of methods, known as projection methods, to which the conjugate gradient (CG) method and most conjugate gradient-like methods belong. The concept of a method having either a fixed or a variable metric is introduced. Methods that have a metric are referred to as either fixed or variable metric methods. Some relationships between projection methods and fixed (variable) metric methods are discussed. The main emphasis of the remainder of this paper is on variable metric methods. In Section 3 we show how the biconjugate gradient (BCG), and the quasi-minimal residual (QMR) methods fit into this framework as variable metric methods. By modifying the underlying Lanczos biorthogonalization process used in the implementation of BCG and QMR, we obtain other variable metric methods. These, we refer to as generalizations of BCG and QMR.

  2. Orderings for conjugate gradient preconditionings

    NASA Technical Reports Server (NTRS)

    Ortega, James M.

    1991-01-01

    The effect of orderings on the rate of convergence of the conjugate gradient method with SSOR or incomplete Cholesky preconditioning is examined. Some results also are presented that help to explain why red/black ordering gives an inferior rate of convergence.

  3. Algorithm for image retrieval based on edge gradient orientation statistical code.

    PubMed

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  4. Corrosion in a temperature gradient

    SciTech Connect

    Covino, Bernard S., Jr.; Holcomb, Gordon R.; Cramer, Stephen D.; Bullard, Sophie J.; Ziomek-Moroz, Margaret; White, M.L.

    2003-01-01

    High temperature corrosion limits the operation of equipment used in the Power Generation Industry. Some of the more destructive corrosive attack occurs on the surfaces of heat exchangers, boilers, and turbines where the alloys are subjected to large temperature gradients that cause a high heat flux through the accumulated ash, the corrosion product, and the alloy. Most current and past corrosion research has, however, been conducted under isothermal conditions. Research on the thermal-gradient-affected corrosion of various metals and alloys is currently being studied at the Albany Research Center’s SECERF (Severe Environment Corrosion and Erosion Research Facility) laboratory. The purpose of this research is to verify theoretical models of heat flux effects on corrosion and to quantify the differences between isothermal and thermal gradient corrosion effects. The effect of a temperature gradient and the resulting heat flux on corrosion of alloys with protective oxide scales is being examined by studying point defect diffusion and corrosion rates. Fick’s first law of diffusion was expanded, using irreversible thermodynamics, to include a heat flux term – a Soret effect. Oxide growth rates are being measured for the high temperature corrosion of cobalt at a metal surface temperature of 900ºC. Corrosion rates are also being determined for the high temperature corrosion of carbon steel boiler tubes in a simulated waste combustion environment consisting of O2, CO2, N2, and water vapor. Tests are being conducted both isothermally and in the presence of a temperature gradient to verify the effects of a heat flux and to compare to isothermal oxidation.

  5. Crater chains on Mercury

    NASA Astrophysics Data System (ADS)

    Shevchenko, V.; Skobeleva, T.

    After discovery of disruption comet Shoemaker-Levy 9 into fragment train before it's collision with Jupiter there was proposed that linear crater chains on the large satellites of Jupiter and on the Moon are impact scars of past tidally disrupted comets.It's known that radar images have revealed the possible presence of water ice deposits in polar regions of Mercury. Impacts by a few large comets seem to provide the best explanation for both the amount and cleanliness of the ice deposits on Mercury because they have a larger volatile content that others external sources, for example, asteroid. A number of crater chains on the surface of Mercury are most likely the impact tracks of "fragment trains" of comets tidally disrupted by Sun or by Mercury and are not secondary craters. Mariner 10 image set (the three Mariner 10 flybys in 1974-1975) was used to recognize the crater chains these did not associate with secondary crater ejecta from observed impact structures. As example, it can be shown such crater chain located near crater Imhotep and crater Ibsen (The Kuiper Quadrangle of Mercury). Resolution of the Mariner 10 image is about 0.54 km/pixel. The crater chain is about 50 km long. It was found a similar crater chain inside large crater Sophocles (The Tolstoj Quadrangle of Mercury). The image resolution is about 1.46 km/pixel. The chain about 50 km long is located in northen part of the crater. Image resolution limits possibility to examine the form of craters strongly. It seems the craters in chains have roughly flat floor and smooth form. Most chain craters are approximately circular. It was examined many images from the Mariner 10 set and there were identified a total 15 crater chains and were unable to link any of these directly to any specific large crater associated with ejecta deposits. Chain craters are remarkably aligned. All distinguished crater chains are superposed on preexisting formations. A total of 127 craters were identified in the 15 recognized

  6. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  7. Computational strain gradient crystal plasticity

    NASA Astrophysics Data System (ADS)

    Niordson, Christian F.; Kysar, Jeffrey W.

    2014-01-01

    A numerical method for viscous strain gradient crystal plasticity theory is presented, which incorporates both energetic and dissipative gradient effects. The underlying minimum principles are discussed as well as convergence properties of the proposed finite element procedure. Three problems of plane crystal plasticity are studied: pure shear of a single crystal between rigid platens as well as plastic deformation around cylindrical voids in hexagonal close packed and face centered cubic crystals. Effective in-plane constitutive slip parameters for plane strain deformation of specifically oriented face centered cubic crystals are developed in terms of the crystallographic slip parameters. The effect on geometrically necessary dislocation structures introduced by plastic deformation is investigated as a function of the ratio of void radius to plasticity length scale.

  8. High gradient directional solidification furnace

    NASA Technical Reports Server (NTRS)

    Aldrich, B. R.; Whitt, W. D. (Inventor)

    1985-01-01

    A high gradient directional solidification furnace is disclosed which includes eight thermal zones throughout the length of the furnace. In the hot end of the furnace, furnace elements provide desired temperatures. These elements include Nichrome wire received in a grooved tube which is encapsulated y an outer alumina core. A booster heater is provided in the hot end of the furnace which includes toroidal tungsten/rhenium wire which has a capacity to put heat quickly into the furnace. An adiabatic zone is provided by an insulation barrier to separate the hot end of the furnace from the cold end. The old end of the furnace is defined by additional heating elements. A heat transfer plate provides a means by which heat may be extracted from the furnace and conducted away through liquid cooled jackets. By varying the input of heat via the booster heater and output of heat via the heat transfer plate, a desired thermal gradient profile may be provided.

  9. Chain entanglements. I. Theory

    NASA Astrophysics Data System (ADS)

    Fixman, Marshall

    1988-09-01

    A model of concentrated polymer solution dynamics is described. The forces in a linear generalized Langevin equation for the motion of a probe chain are derived on the assumption that all relaxation of the forces is due to motion of the surrounding matrix. Vicinal chain displacements are classified as viscoelastic deformation, reptation, and minor residual fluctuations. The latter provide a torsional relaxation of the primitive path that minimizes the significance of transverse forces on the probe chain. All displacements of vicinal segments are assumed proportional to the forces that they exert on the probe chain. In response to an external force, the displacement of the probe chain relative to a laboratory frame is increased by viscoelastic deformation of the matrix, but reptative diffusion relative to the deforming matrix is slowed down. The net effect on translational diffusion is negligible if the probe and vicinal chains have the same chain length N, but the friction constant for reptative motion is increased by a factor N1-xs. xs=1/2 if Gaussian conformational statistics applies during the disengagement process, while xs =0.6 if excluded volume statistics applies. The translational friction constant is βp ˜N2, as in reptation theory, but the viscosity is η˜N4-xs . The persistence of entanglements during the translational diffusion of the probe chain across many radii of gyration is rationalized pictorially in terms of correlated reptative motion of the probe and vicinal chains.

  10. Chain Reaction Polymerization.

    ERIC Educational Resources Information Center

    McGrath, James E.

    1981-01-01

    The salient features and importance of chain-reaction polymerization are discussed, including such topics as the thermodynamics of polymerization, free-radical polymerization kinetics, radical polymerization processes, copolymers, and free-radical chain, anionic, cationic, coordination, and ring-opening polymerizations. (JN)

  11. Critical Chain Exercises

    ERIC Educational Resources Information Center

    Doyle, John Kevin

    2010-01-01

    Critical Chains project management focuses on holding buffers at the project level vs. task level, and managing buffers as a project resource. A number of studies have shown that Critical Chain project management can significantly improve organizational schedule fidelity (i.e., improve the proportion of projects delivered on time) and reduce…

  12. An education gradient in health, a health gradient in education, or a confounded gradient in both?

    PubMed

    Lynch, Jamie L; von Hippel, Paul T

    2016-04-01

    There is a positive gradient associating educational attainment with health, yet the explanation for this gradient is not clear. Does higher education improve health (causation)? Do the healthy become highly educated (selection)? Or do good health and high educational attainment both result from advantages established early in the life course (confounding)? This study evaluates these competing explanations by tracking changes in educational attainment and Self-rated Health (SRH) from age 15 to age 31 in the National Longitudinal Study of Youth, 1997 cohort. Ordinal logistic regression confirms that high-SRH adolescents are more likely to become highly educated. This is partly because adolescent SRH is associated with early advantages including adolescents' academic performance, college plans, and family background (confounding); however, net of these confounders adolescent SRH still predicts adult educational attainment (selection). Fixed-effects longitudinal regression shows that educational attainment has little causal effect on SRH at age 31. Completion of a high school diploma or associate's degree has no effect on SRH, while completion of a bachelor's or graduate degree have effects that, though significant, are quite small (less than 0.1 points on a 5-point scale). While it is possible that educational attainment would have greater effect on health at older ages, at age 31 what we see is a health gradient in education, shaped primarily by selection and confounding rather than by a causal effect of education on health.

  13. Derivative Free Gradient Projection Algorithms for Rotation

    ERIC Educational Resources Information Center

    Jennrich, Robert I.

    2004-01-01

    A simple modification substantially simplifies the use of the gradient projection (GP) rotation algorithms of Jennrich (2001, 2002). These algorithms require subroutines to compute the value and gradient of any specific rotation criterion of interest. The gradient can be difficult to derive and program. It is shown that using numerical gradients…

  14. Autonomous pump against concentration gradient

    PubMed Central

    Xu, Zhi-cheng; Zheng, Dong-qin; Ai, Bao-quan; Zhong, Wei-rong

    2016-01-01

    Using non-equilibrium molecular dynamics and Monte Carlo methods, we have studied the molecular transport in asymmetric nanochannels. The efficiency of the molecular pump depends on the angle and apertures of the asymmetric channel, the environmental temperature and average concentration of the particles. The pumping effect can be explained as the competition between the molecular force field and the thermal disturbance. Our results provide a green approach for pumping fluid particles against the concentration gradient through asymmetric nanoscale thin films without any external forces. It indicates that pumping vacuum can be a spontaneous process. PMID:26996204

  15. Temperature Gradient in Hall Thrusters

    SciTech Connect

    D. Staack; Y. Raitses; N.J. Fisch

    2003-11-24

    Plasma potentials and electron temperatures were deduced from emissive and cold floating probe measurements in a 2 kW Hall thruster, operated in the discharge voltage range of 200-400 V. An almost linear dependence of the electron temperature on the plasma potential was observed in the acceleration region of the thruster both inside and outside the thruster. This result calls into question whether secondary electron emission from the ceramic channel walls plays a significant role in electron energy balance. The proportionality factor between the axial electron temperature gradient and the electric field is significantly smaller than might be expected by models employing Ohmic heating of electrons.

  16. Shape reconstruction from gradient data

    SciTech Connect

    Ettl, Svenja; Kaminski, Juergen; Knauer, Markus C.; Haeusler, Gerd

    2008-04-20

    We present a generalized method for reconstructing the shape of an object from measured gradient data. A certain class of optical sensors does not measure the shape of an object but rather its local slope. These sensors display several advantages, including high information efficiency, sensitivity, and robustness. For many applications, however, it is necessary to acquire the shape, which must be calculated from the slopes by numerical integration. Existing integration techniques show drawbacks that render them unusable in many cases. Our method is based on an approximation employing radial basis functions. It can be applied to irregularly sampled, noisy, and incomplete data, and it reconstructs surfaces both locally and globally with high accuracy.

  17. Generalized Gradient Approximation Made Simple

    SciTech Connect

    Perdew, J.P.; Burke, K.; Ernzerhof, M.

    1996-10-01

    Generalized gradient approximations (GGA{close_quote}s) for the exchange-correlation energy improve upon the local spin density (LSD) description of atoms, molecules, and solids. We present a simple derivation of a simple GGA, in which all parameters (other than those in LSD) are fundamental constants. Only general features of the detailed construction underlying the Perdew-Wang 1991 (PW91) GGA are invoked. Improvements over PW91 include an accurate description of the linear response of the uniform electron gas, correct behavior under uniform scaling, and a smoother potential. {copyright} {ital 1996 The American Physical Society.}

  18. Gradient-Modulated PETRA MRI

    PubMed Central

    Kobayashi, Naoharu; Goerke, Ute; Wang, Luning; Ellermann, Jutta; Metzger, Gregory J.; Garwood, Michael

    2015-01-01

    Image blurring due to off-resonance and fast T2* signal decay is a common issue in radial ultrashort echo time MRI sequences. One solution is to use a higher readout bandwidth, but this may be impractical for some techniques like pointwise encoding time reduction with radial acquisition (PETRA), which is a hybrid method of zero echo time and single point imaging techniques. Specifically, PETRA has severe specific absorption rate (SAR) and radiofrequency (RF) pulse peak power limitations when using higher bandwidths in human measurements. In this study, we introduce gradient modulation (GM) to PETRA to reduce image blurring artifacts while keeping SAR and RF peak power low. Tolerance of GM-PETRA to image blurring was evaluated in simulations and experiments by comparing with the conventional PETRA technique. We performed inner ear imaging of a healthy subject at 7T. GM-PETRA showed significantly less image blurring due to off-resonance and fast T2* signal decay compared to PETRA. In in vivo imaging, GM-PETRA nicely captured complex structures of the inner ear such as the cochlea and semicircular canals. Gradient modulation can improve the PETRA image quality and mitigate SAR and RF peak power limitations without special hardware modification in clinical scanners. PMID:26771005

  19. Extraordinary strain hardening by gradient structure.

    PubMed

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T

    2014-05-20

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures.

  20. Atomic Chain Electronics

    NASA Technical Reports Server (NTRS)

    Yamada, Toshishige; Saini, Subhash (Technical Monitor)

    1998-01-01

    Adatom chains, precise structures artificially created on an atomically regulated surface, are the smallest possible candidates for future nanoelectronics. Since all the devices are created by combining adatom chains precisely prepared with atomic precision, device characteristics are predictable, and free from deviations due to accidental structural defects. In this atomic dimension, however, an analogy to the current semiconductor devices may not work. For example, Si structures are not always semiconducting. Adatom states do not always localize at the substrate surface when adatoms form chemical bonds to the substrate atoms. Transport properties are often determined for the entire system of the chain and electrodes, and not for chains only. These fundamental issues are discussed, which will be useful for future device considerations.

  1. Longitudinal gradients along a reservoir cascade

    USGS Publications Warehouse

    Miranda, L.E.; Habrat, M.D.; Miyazono, S.

    2008-01-01

    Reservoirs have traditionally been regarded as spatially independent entities rather than as longitudinal segments of a river system that are connected upstream and downstream to the river and other reservoirs. This view has frustrated advancement in reservoir science by impeding adequate organization of available information and by hindering interchanges with allied disciplines that often consider impounded rivers at the basin scale. We analyzed reservoir morphology, water quality, and fish assemblage data collected in 24 reservoirs of the Tennessee River; we wanted to describe longitudinal changes occurring at the scale of the entire reservoir series (i.e., cascade) and to test the hypothesis that fish communities and environmental factors display predictable gradients like those recognized for unimpounded rivers. We used a data set collected over a 7-year period; over 3 million fish representing 94 species were included in the data set. Characteristics such as reservoir mean depth, relative size of the limnetic zone, water retention time, oxygen stratification, thermal stratification, substrate size, and water level fluctuations increased in upstream reservoirs. Conversely, reservoir area, extent of riverine and littoral zones, access to floodplains and associated wetlands, habitat diversity, and nutrient and sediment inputs increased in downstream reservoirs. Upstream reservoirs included few, largely lacustrine, ubiquitous fish taxa that were characteristic of the lentic upper reaches of the basin. Fish species richness increased in a downstream direction from 12 to 67 species/ reservoir as riverine species became more common. Considering impoundments at a basin scale by viewing them as sections in a river or links in a chain may generate insight that is not always available when the impoundments are viewed as isolated entities. Basin-scale variables are rarely controllable but constrain the expression of processes at smaller scales and can facilitate the

  2. New mooring chain designs

    SciTech Connect

    Canada, L.; Vicinay, J.; Sanz, A.; Lopez, E.

    1996-12-31

    The present work introduces the readers to the developments the high technology offshore chain industry has carried out in recent years, in an effort to offer products that meet the needs of petroleum exploration and production. In this manner the industry can continue to regard chain as a fundamental element in its moorings system, whether for projects with a 25 year life, or projects at depths of over 1,000 meters, or in such severe environments as those faced in the Sub-Arctic. Data are presented on Studless Chain and VGW or Variable Geometry and Weight chain. These will allow engineers designers to forget the needs for chains to be circumscribed to rigid guidelines of geometry or dimensions. Instead they can design mooring systems specific for the particular situations they face. No longer shall chain have to meet geometric standardization derived from the middle of the 19th century while meeting the requirements of the 2nd half of the 20th century.

  3. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays. PMID:26671507

  4. Combinational concentration gradient confinement through stagnation flow.

    PubMed

    Alicia, Toh G G; Yang, Chun; Wang, Zhiping; Nguyen, Nam-Trung

    2016-01-21

    Concentration gradient generation in microfluidics is typically constrained by two conflicting mass transport requirements: short characteristic times (τ) for precise temporal control of concentration gradients but at the expense of high flow rates and hence, high flow shear stresses (σ). To decouple the limitations from these parameters, here we propose the use of stagnation flows to confine concentration gradients within large velocity gradients that surround the stagnation point. We developed a modified cross-slot (MCS) device capable of feeding binary and combinational concentration sources in stagnation flows. We show that across the velocity well, source-sink pairs can form permanent concentration gradients. As source-sink concentration pairs are continuously supplied to the MCS, a permanently stable concentration gradient can be generated. Tuning the flow rates directly controls the velocity gradients, and hence the stagnation point location, allowing the confined concentration gradient to be focused. In addition, the flow rate ratio within the MCS rapidly controls (τ ∼ 50 ms) the location of the stagnation point and the confined combinational concentration gradients at low flow shear (0.2 Pa < σ < 2.9 Pa). The MCS device described in this study establishes the method for using stagnation flows to rapidly generate and position low shear combinational concentration gradients for shear sensitive biological assays.

  5. Strength gradient enhances fatigue resistance of steels

    NASA Astrophysics Data System (ADS)

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-02-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility.

  6. Strength gradient enhances fatigue resistance of steels

    PubMed Central

    Ma, Zhiwei; Liu, Jiabin; Wang, Gang; Wang, Hongtao; Wei, Yujie; Gao, Huajian

    2016-01-01

    Steels are heavily used in infrastructure and the transportation industry, and enhancing their fatigue resistance is a major challenge in materials engineering. In this study, by introducing a gradient microstructure into 304 austenitic steel, which is one of the most widely used types of stainless steel, we show that a strength gradient substantially enhances the fatigue life of the material. Pre-notched samples with negative strength gradients in front of the notch’s tip endure many more fatigue cycles than do samples with positive strength gradients during the crack initiation stage, and samples with either type of gradient perform better than do gradient-free samples with the same average yield strength. However, as a crack grows, samples with positive strength gradients exhibit better resistance to fatigue crack propagation than do samples with negative gradients or no gradient. This study demonstrates a simple and promising strategy for using gradient structures to enhance the fatigue resistance of materials and complements related studies of strength and ductility. PMID:26907708

  7. New generalized gradient approximation functionals

    NASA Astrophysics Data System (ADS)

    Boese, A. Daniel; Doltsinis, Nikos L.; Handy, Nicholas C.; Sprik, Michiel

    2000-01-01

    New generalized gradient approximation (GGA) functionals are reported, using the expansion form of A. D. Becke, J. Chem. Phys. 107, 8554 (1997), with 15 linear parameters. Our original such GGA functional, called HCTH, was determined through a least squares refinement to data of 93 systems. Here, the data are extended to 120 systems and 147 systems, introducing electron and proton affinities, and weakly bound dimers to give the new functionals HCTH/120 and HCTH/147. HCTH/120 has already been shown to give high quality predictions for weakly bound systems. The functionals are applied in a comparative study of the addition reaction of water to formaldehyde and sulfur trioxide, respectively. Furthermore, the performance of the HCTH/120 functional in Car-Parrinello molecular dynamics simulations of liquid water is encouraging.

  8. Wnt Secretion and Gradient Formation

    PubMed Central

    Solis, Gonzalo P.; Lüchtenborg, Anne-Marie; Katanaev, Vladimir L.

    2013-01-01

    Concentration gradients formed by the lipid-modified morphogens of the Wnt family are known for their pivotal roles during embryogenesis and adult tissue homeostasis. Wnt morphogens are also implicated in a variety of human diseases, especially cancer. Therefore, the signaling cascades triggered by Wnts have received considerable attention during recent decades. However, how Wnts are secreted and how concentration gradients are formed remains poorly understood. The use of model organisms such as Drosophila melanogaster has provided important advances in this area. For instance, we have previously shown that the lipid raft-associated reggie/flotillin proteins influence Wnt secretion and spreading in Drosophila. Our work supports the notion that producing cells secrete Wnt molecules in at least two pools: a poorly diffusible one and a reggie/flotillin-dependent highly diffusible pool which allows morphogen spreading over long distances away from its source of production. Here we revise the current views of Wnt secretion and spreading, and propose two models for the role of the reggie/flotillin proteins in these processes: (i) reggies/flotillins regulate the basolateral endocytosis of the poorly diffusible, membrane-bound Wnt pool, which is then sorted and secreted to apical compartments for long-range diffusion, and (ii) lipid rafts organized by reggies/flotillins serve as “dating points” where extracellular Wnt transiently interacts with lipoprotein receptors to allow its capture and further spreading via lipoprotein particles. We further discuss these processes in the context of human breast cancer. A better understanding of these phenomena may be relevant for identification of novel drug targets and therapeutic strategies. PMID:23455472

  9. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation. PMID:27271915

  10. Biomimetic Gradient Polymers with Enhanced Damping Capacities.

    PubMed

    Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian

    2016-04-01

    Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures. PMID:26776353

  11. Mathematics of Experimentally Generated Chemoattractant Gradients.

    PubMed

    Postma, Marten; van Haastert, Peter J M

    2016-01-01

    Many eukaryotic cells move in the direction of a chemical gradient. Several assays have been developed to measure this chemotactic response, but no complete mathematical models of the spatial and temporal gradients are available to describe the fundamental principles of chemotaxis. Here we provide analytical solutions for the gradients formed by release of chemoattractant from a point source by passive diffusion or forced flow (micropipettes) and gradients formed by laminar diffusion in a Zigmond chamber. The results show that gradients delivered with a micropipette are formed nearly instantaneously, are very steep close to the pipette, and have a steepness that is strongly dependent on the distance from the pipette. In contrast, gradients in a Zigmond chamber are formed more slowly, are nearly independent of the distance from the source, and resemble the temporal and spatial properties of the natural cAMP wave that Dictyostelium cells experience during cell aggregation.

  12. Ant colony optimization and stochastic gradient descent.

    PubMed

    Meuleau, Nicolas; Dorigo, Marco

    2002-01-01

    In this article, we study the relationship between the two techniques known as ant colony optimization (ACO) and stochastic gradient descent. More precisely, we show that some empirical ACO algorithms approximate stochastic gradient descent in the space of pheromones, and we propose an implementation of stochastic gradient descent that belongs to the family of ACO algorithms. We then use this insight to explore the mutual contributions of the two techniques. PMID:12171633

  13. Second order gradient ascent pulse engineering.

    PubMed

    de Fouquieres, P; Schirmer, S G; Glaser, S J; Kuprov, Ilya

    2011-10-01

    We report some improvements to the gradient ascent pulse engineering (GRAPE) algorithm for optimal control of spin ensembles and other quantum systems. These include more accurate gradients, convergence acceleration using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm as well as faster control derivative calculation algorithms. In all test systems, the wall clock time and the convergence rates show a considerable improvement over the approximate gradient ascent.

  14. Phasic Triplet Markov Chains.

    PubMed

    El Yazid Boudaren, Mohamed; Monfrini, Emmanuel; Pieczynski, Wojciech; Aïssani, Amar

    2014-11-01

    Hidden Markov chains have been shown to be inadequate for data modeling under some complex conditions. In this work, we address the problem of statistical modeling of phenomena involving two heterogeneous system states. Such phenomena may arise in biology or communications, among other fields. Namely, we consider that a sequence of meaningful words is to be searched within a whole observation that also contains arbitrary one-by-one symbols. Moreover, a word may be interrupted at some site to be carried on later. Applying plain hidden Markov chains to such data, while ignoring their specificity, yields unsatisfactory results. The Phasic triplet Markov chain, proposed in this paper, overcomes this difficulty by means of an auxiliary underlying process in accordance with the triplet Markov chains theory. Related Bayesian restoration techniques and parameters estimation procedures according to the new model are then described. Finally, to assess the performance of the proposed model against the conventional hidden Markov chain model, experiments are conducted on synthetic and real data. PMID:26353069

  15. Nanofiber Scaffold Gradients for Interfacial Tissue Engineering

    PubMed Central

    Ramalingam, Murugan; Young, Marian F.; Thomas, Vinoy; Sun, Limin; Chow, Laurence C.; Tison, Christopher K.; Chatterjee, Kaushik; Miles, William C.; Simon, Carl G.

    2012-01-01

    We have designed a 2-spinnerette device that can directly electrospin nanofiber scaffolds containing a gradient in composition that can be used to engineer interfacial tissues such as ligament and tendon. Two types of nanofibers are simultaneously electrospun in an overlapping pattern to create a nonwoven mat of nanofibers containing a composition gradient. The approach is an advance over previous methods due to its versatility - gradients can be formed from any materials that can be electrospun. A dye was used to characterize the 2-spinnerette approach and applicability to tissue engineering was demonstrated by fabricating nanofibers with gradients in amorphous calcium phosphate nanoparticles (nACP). Adhesion and proliferation of osteogenic cells (MC3T3-E1 murine pre-osteoblasts) on gradients was enhanced on the regions of the gradients that contained higher nACP content yielding a graded osteoblast response. Since increases in soluble calcium and phosphate ions stimulate osteoblast function, we measured their release and observed significant release from nanofibers containing nACP. The nanofiber-nACP gradients fabricated herein can be applied to generate tissues with osteoblast gradients such as ligaments or tendons. In conclusion, these results introduce a versatile approach for fabricating nanofiber gradients that can have application for engineering graded tissues. PMID:22286209

  16. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.; Watson, R.D.

    1995-12-31

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and X-ray diffraction analyses of the materials formed through innovative VPS processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  17. Origin of Temperature Gradient in Nonequilibrium Steady States in Weakly Coupled Quantum Spin Systems

    NASA Astrophysics Data System (ADS)

    Ishida, Toyohiko; Sugita, Ayumu

    2016-07-01

    We study nonequilibrium steady states (NESSs) in quantum spin-1/2 chains in contact with two heat baths at different temperatures. We consider the weak-coupling limit both for spin-spin coupling in the system and for system-bath coupling. This setting allows us to treat NESSs with a nonzero temperature gradient analytically. We develop a perturbation theory for this weak-coupling situation and show a simple condition for the existence of nonzero temperature gradient. This condition is independent of the integrability of the system.

  18. Spatial Data Supply Chains

    NASA Astrophysics Data System (ADS)

    Varadharajulu, P.; Azeem Saqiq, M.; Yu, F.; McMeekin, D. A.; West, G.; Arnold, L.; Moncrieff, S.

    2015-06-01

    This paper describes current research into the supply of spatial data to the end user in as close to real time as possible via the World Wide Web. The Spatial Data Infrastructure paradigm has been discussed since the early 1990s. The concept has evolved significantly since then but has almost always examined data from the perspective of the supplier. It has been a supplier driven focus rather than a user driven focus. The current research being conducted is making a paradigm shift and looking at the supply of spatial data as a supply chain, similar to a manufacturing supply chain in which users play a significant part. A comprehensive consultation process took place within Australia and New Zealand incorporating a large number of stakeholders. Three research projects that have arisen from this consultation process are examining Spatial Data Supply Chains within Australia and New Zealand and are discussed within this paper.

  19. Chain inflation revisited

    SciTech Connect

    Chialva, Diego; Danielsson, Ulf H E-mail: ulf.danielsson@fysast.uu.se

    2008-10-15

    This paper represents an in-depth treatment of the chain inflation scenario. We fully determine the evolution of the universe in the model, the conditions necessary in order to have a successful inflationary period, and the matching with the observational results regarding the cosmological perturbations. We study in great detail, and in general, the dynamics of the background, as well as the mechanism of generation of the perturbations. We also find an explicit formula for the spectrum of adiabatic perturbations. Our results prove that chain inflation is a viable model for solving the horizon, entropy and flatness problems of standard cosmology and for generating the right amount of adiabatic cosmological perturbations. The results are radically different from those found in previous works on the subject. Finally, we argue that there is a natural way to embed chain inflation into flux compactified string theory. We discuss the details of the implementation and how to fit observations.

  20. Supply-Chain Optimization Template

    NASA Technical Reports Server (NTRS)

    Quiett, William F.; Sealing, Scott L.

    2009-01-01

    The Supply-Chain Optimization Template (SCOT) is an instructional guide for identifying, evaluating, and optimizing (including re-engineering) aerospace- oriented supply chains. The SCOT was derived from the Supply Chain Council s Supply-Chain Operations Reference (SCC SCOR) Model, which is more generic and more oriented toward achieving a competitive advantage in business.

  1. An Inexpensive Digital Gradient Controller for HPLC.

    ERIC Educational Resources Information Center

    Brady, James E.; Carr, Peter W.

    1983-01-01

    Use of gradient elution techniques in high performance liquid chromatography (HPLC) is often essential for direct separation of complex mixtures. Since most commercial controllers have features that are of marginal value for instructional purposes, a low-cost controller capable of illustrating essential features of gradient elution was developed.…

  2. Moving thermal gradients in gas chromatography.

    PubMed

    Tolley, H Dennis; Tolley, Samuel E; Wang, Anzi; Lee, Milton L

    2014-12-29

    This paper examines the separation effects of a moving thermal gradient on a chromatographic column in gas chromatography. This movement of the gradient has a focusing effect on the analyte bands, limiting band broadening in the column. Here we examine the relationship between the slope of this gradient, the velocity of the gradient and the resulting band width. Additionally we examine how transport of analytes along the column at their analyte specific constant temperatures, determined by the gradient slope and velocity, affects resolution. This examination is based primarily on a theoretical model of partitioning and transport of analyte under low concentration conditions. Preliminary predictions indicate that analytes reach near constant temperatures, relative positions and resolutions in less than 100cm of column transport. Use of longer columns produces very little improvement in resolution for any fixed slope. Properties of the thermal gradient determine a fixed solute band width for each analyte. These widths are nearly reached within the first 40-70cm, after which little broadening or narrowing of the bands occur. The focusing effect of the thermal gradient corrects for broad injections, reduces effects of irregular stationary phase coatings and can be used with short columns for fast analysis. Thermal gradient gas chromatographic instrumentation was constructed and used to illustrate some characteristics predicted from the theoretical results.

  3. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  4. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  5. 40 CFR 230.25 - Salinity gradients.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...)(1) GUIDELINES FOR SPECIFICATION OF DISPOSAL SITES FOR DREDGED OR FILL MATERIAL Potential Impacts on... gradients form where salt water from the ocean meets and mixes with fresh water from land. (b) Possible loss... fresh or salt water may change existing salinity gradients. For example, partial blocking of...

  6. Microinstabilities in weak density gradient tokamak systems

    SciTech Connect

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  7. Supply chain quality.

    PubMed

    Feary, Simon

    2009-01-01

    As the development of complex manufacturing models and virtual companies become more prevalent in today's growing global markets, it is increasingly important to support the relationships between manufacturer and supplier. Utilising these relationships will ensure that supply chains operate more effectively and reduce costs, risks and time-to-market time frames, whilst maintaining product quality. PMID:20058652

  8. Supply chain management.

    PubMed

    Palevich, R F

    1999-02-01

    This article describes how Do It Best Corp. has used technology to improve its supply chain management. Among other topics it discusses the company's use of electronic data interchange, the Internet, electronic forecasting, and warehouse management systems to gain substantial savings and increase its competitiveness. PMID:10345634

  9. Breaking the Chains

    ERIC Educational Resources Information Center

    Stanistreet, Paul

    2007-01-01

    In 1792 more than 350,000 people in Britain signed a petition calling for an end to the slave trade. It was, writes historian Adam Hochschild in his book "Bury the Chains," "the first time in history that a large number of people became outraged, and stayed outraged for many years, over someone else's rights". In 1807--after 15 years of…

  10. Polymerase chain reaction system

    DOEpatents

    Benett, William J.; Richards, James B.; Stratton, Paul L.; Hadley, Dean R.; Milanovich, Fred P.; Belgrader, Phil; Meyer, Peter L.

    2004-03-02

    A portable polymerase chain reaction DNA amplification and detection system includes one or more chamber modules. Each module supports a duplex assay of a biological sample. Each module has two parallel interrogation ports with a linear optical system. The system is capable of being handheld.

  11. INTERACTING QUANTUM SPIN CHAINS

    SciTech Connect

    ZHELUDEV,A.

    2001-09-09

    A brief review of recent advances in neutron scattering studies of low-dimensional quantum magnets is followed by a particular example. The separation of single-particle and continuum states in the weakly-coupled S = l/2 chains system BaCu{sub 2}Si{sub 2}O{sub 7} is described in some detail.

  12. Heavy Chain Diseases

    MedlinePlus

    ... cells often prevents proper absorption of nutrients from food (malabsorption), resulting in severe diarrhea and weight loss. A rare form that affects the respiratory tract also exists. Blood tests are done when alpha heavy chain disease is suspected. Serum protein electrophoresis, measurement of ...

  13. Nodal-chain metals

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  14. Atwood's Heavy Chain

    ERIC Educational Resources Information Center

    Beeken, Paul

    2011-01-01

    While perusing various websites in search of a more challenging lab for my students, I came across a number of ideas where replacing the string in an Atwood's machine with a simple ball chain like the kind found in lamp pulls created an interesting system to investigate. The replacement of the string produced a nice nonuniform acceleration, but…

  15. [Ligase chain reaction (LCR)].

    PubMed

    Yamanishi, K; Yasuno, H

    1993-06-01

    Ligase chain reaction (LCR) is a ligation-mediated amplification technique of a target DNA sequence using oligonucleotides and thermostable ligase. LCR is useful for the detection of known DNA sequences and point mutations in a limited amount of DNA. We introduce the principle, development, and protocol of this simple and convenient technique for DNA analysis.

  16. Exploration Supply Chain Simulation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    The Exploration Supply Chain Simulation project was chartered by the NASA Exploration Systems Mission Directorate to develop a software tool, with proper data, to quantitatively analyze supply chains for future program planning. This tool is a discrete-event simulation that uses the basic supply chain concepts of planning, sourcing, making, delivering, and returning. This supply chain perspective is combined with other discrete or continuous simulation factors. Discrete resource events (such as launch or delivery reviews) are represented as organizational functional units. Continuous resources (such as civil service or contractor program functions) are defined as enabling functional units. Concepts of fixed and variable costs are included in the model to allow the discrete events to interact with cost calculations. The definition file is intrinsic to the model, but a blank start can be initiated at any time. The current definition file is an Orion Ares I crew launch vehicle. Parameters stretch from Kennedy Space Center across and into other program entities (Michaud Assembly Facility, Aliant Techsystems, Stennis Space Center, Johnson Space Center, etc.) though these will only gain detail as the file continues to evolve. The Orion Ares I file definition in the tool continues to evolve, and analysis from this tool is expected in 2008. This is the first application of such business-driven modeling to a NASA/government-- aerospace contractor endeavor.

  17. Density Gradient Stabilization of Electron Temperature Gradient Driven Turbulence in a Spherical Tokamak

    SciTech Connect

    Ren, Y; Mazzucato, E; Guttenfelder, W; Bell, R E; Domier, C W; LeBlanc, B P; Lee, K C; Luhmann Jr, N C; Smith, D R

    2011-03-21

    In this letter we report the first clear experimental observation of density gradient stabilization of electron temperature gradient driven turbulence in a fusion plasma. It is observed that longer wavelength modes, k⊥ρs ≤10, are most stabilized by density gradient, and the stabilization is accompanied by about a factor of two decrease in the plasma effective thermal diffusivity.

  18. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  19. Dual fuel gradients in uranium silicide plates

    SciTech Connect

    Pace, B.W.

    1997-08-01

    Babcock & Wilcox has been able to achieve dual gradient plates with good repeatability in small lots of U{sub 3}Si{sub 2} plates. Improvements in homogeneity and other processing parameters and techniques have allowed the development of contoured fuel within the cladding. The most difficult obstacles to overcome have been the ability to evaluate the bidirectional fuel loadings in comparison to the perfect loading model and the different methods of instilling the gradients in the early compact stage. The overriding conclusion is that to control the contour of the fuel, a known relationship between the compact, the frames and final core gradient must exist. Therefore, further development in the creation and control of dual gradients in fuel plates will involve arriving at a plausible gradient requirement and building the correct model between the compact configuration and the final contoured loading requirements.

  20. Adhesion and friction properties of polymer brushes on rough surfaces: a gradient approach.

    PubMed

    Ramakrishna, Shivaprakash N; Espinosa-Marzal, Rosa M; Naik, Vikrant V; Nalam, Prathima C; Spencer, Nicholas D

    2013-12-10

    The effect of nanoscale surface roughness on the lubrication properties of a polymer brush in a good solvent has been investigated. Friction and adhesion forces were measured by means of polyethylene colloidal-probe AFM across a 12 nm silica particle gradient before and after the adsorption of a poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) polymer brush. The adsorption and conformation of the polymer chains were studied with multiple transmission and reflection infrared (MTR-IR) spectroscopy. The results show that prior to the adsorption of PLL-g-PEG on the gradient surface, the friction is high at the smooth end of the gradient while it decreases toward the rough end. Moreover, there is a direct correlation between friction and adhesion. Upon adsorption of the brushes, adhesion vanishes. In this case, a higher frictional force between the PEG-coated particle gradient substrate and the polyethylene sphere is observed at the rough end of the gradient in comparison to the smooth end. In spite of the increased adsorbed mass of PLL-g-PEG at the rough end of the gradient, theory and simulations show that the high curvature of the nanoparticles leads to a less swollen PEG brush in comparison to PEG brushes adsorbed on a planar surface, resulting in a lower repulsion, which can explain the observed increase in friction with particle density.

  1. Flexible chains of ferromagnetic nanoparticles.

    PubMed

    Townsend, James; Burtovyy, Ruslan; Galabura, Yuriy; Luzinov, Igor

    2014-07-22

    We report the fabrication of flexible chains of ferromagnetic Ni nanoparticles that possess the ability to adapt other than the typically observed rigid (nearly) straight configurations in the absence of an external magnetic field. The dynamic mobility of the ferromagnetic chains originates from a layer of densely grafted polyethylene glycol macromolecules enveloping each nanoparticle in the chain. While ferromagnetic chains of unmodified Ni nanoparticles behave as stiff nickel nanorods, the chains made of the grafted nanoparticles demonstrate extreme flexibility. Upon changing the direction of the field, and inevitably going through a zero-field point, the shorter chains undergo chain-globule-chain transformation. The longer chains can bend to a high degree, attaining "snake-like" configurations.

  2. The impact of gradient strength on in vivo diffusion MRI estimates of axon diameter.

    PubMed

    Huang, Susie Y; Nummenmaa, Aapo; Witzel, Thomas; Duval, Tanguy; Cohen-Adad, Julien; Wald, Lawrence L; McNab, Jennifer A

    2015-02-01

    Diffusion magnetic resonance imaging (MRI) methods for axon diameter mapping benefit from higher maximum gradient strengths than are currently available on commercial human scanners. Using a dedicated high-gradient 3T human MRI scanner with a maximum gradient strength of 300 mT/m, we systematically studied the effect of gradient strength on in vivo axon diameter and density estimates in the human corpus callosum. Pulsed gradient spin echo experiments were performed in a single scan session lasting approximately 2h on each of three human subjects. The data were then divided into subsets with maximum gradient strengths of 77, 145, 212, and 293 mT/m and diffusion times encompassing short (16 and 25 ms) and long (60 and 94 ms) diffusion time regimes. A three-compartment model of intra-axonal diffusion, extra-axonal diffusion, and free diffusion in cerebrospinal fluid was fitted to the data using a Markov chain Monte Carlo approach. For the acquisition parameters, model, and fitting routine used in our study, it was found that higher maximum gradient strengths decreased the mean axon diameter estimates by two to three fold and decreased the uncertainty in axon diameter estimates by more than half across the corpus callosum. The exclusive use of longer diffusion times resulted in axon diameter estimates that were up to two times larger than those obtained with shorter diffusion times. Axon diameter and density maps appeared less noisy and showed improved contrast between different regions of the corpus callosum with higher maximum gradient strength. Known differences in axon diameter and density between the genu, body, and splenium of the corpus callosum were preserved and became more reproducible at higher maximum gradient strengths. Our results suggest that an optimal q-space sampling scheme for estimating in vivo axon diameters should incorporate the highest possible gradient strength. The improvement in axon diameter and density estimates that we demonstrate from

  3. Satellite gravity gradient grids for geophysics

    PubMed Central

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth’s mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets. PMID:26864314

  4. BIOMIMETIC GRADIENT HYDROGELS FOR TISSUE ENGINEERING

    PubMed Central

    Sant, Shilpa; Hancock, Matthew J.; Donnelly, Joseph P.; Iyer, Dharini; Khademhosseini, Ali

    2011-01-01

    During tissue morphogenesis and homeostasis, cells experience various signals in their environments, including gradients of physical and chemical cues. Spatial and temporal gradients regulate various cell behaviours such as proliferation, migration, and differentiation during development, inflammation, wound healing, and cancer. One of the goals of functional tissue engineering is to create microenvironments that mimic the cellular and tissue complexity found in vivo by incorporating physical, chemical, temporal, and spatial gradients within engineered three-dimensional (3D) scaffolds. Hydrogels are ideal materials for 3D tissue scaffolds that mimic the extracellular matrix (ECM). Various techniques from material science, microscale engineering, and microfluidics are used to synthesise biomimetic hydrogels with encapsulated cells and tailored microenvironments. In particular, a host of methods exist to incorporate micrometer to centimetre scale chemical and physical gradients within hydrogels to mimic the cellular cues found in vivo. In this review, we draw on specific biological examples to motivate hydrogel gradients as tools for studying cell–material interactions. We provide a brief overview of techniques to generate gradient hydrogels and showcase their use to study particular cell behaviours in two-dimensional (2D) and 3D environments. We conclude by summarizing the current and future trends in gradient hydrogels and cell–material interactions in context with the long-term goals of tissue engineering. PMID:21874065

  5. Satellite gravity gradient grids for geophysics.

    PubMed

    Bouman, Johannes; Ebbing, Jörg; Fuchs, Martin; Sebera, Josef; Lieb, Verena; Szwillus, Wolfgang; Haagmans, Roger; Novak, Pavel

    2016-01-01

    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite aimed at determining the Earth's mean gravity field. GOCE delivered gravity gradients containing directional information, which are complicated to use because of their error characteristics and because they are given in a rotating instrument frame indirectly related to the Earth. We compute gravity gradients in grids at 225 km and 255 km altitude above the reference ellipsoid corresponding to the GOCE nominal and lower orbit phases respectively, and find that the grids may contain additional high-frequency content compared with GOCE-based global models. We discuss the gradient sensitivity for crustal depth slices using a 3D lithospheric model of the North-East Atlantic region, which shows that the depth sensitivity differs from gradient to gradient. In addition, the relative signal power for the individual gradient component changes comparing the 225 km and 255 km grids, implying that using all components at different heights reduces parameter uncertainties in geophysical modelling. Furthermore, since gravity gradients contain complementary information to gravity, we foresee the use of the grids in a wide range of applications from lithospheric modelling to studies on dynamic topography, and glacial isostatic adjustment, to bedrock geometry determination under ice sheets.

  6. Extraordinary strain hardening by gradient structure

    PubMed Central

    Wu, XiaoLei; Jiang, Ping; Chen, Liu; Yuan, Fuping; Zhu, Yuntian T.

    2014-01-01

    Gradient structures have evolved over millions of years through natural selection and optimization in many biological systems such as bones and plant stems, where the structures change gradually from the surface to interior. The advantage of gradient structures is their maximization of physical and mechanical performance while minimizing material cost. Here we report that the gradient structure in engineering materials such as metals renders a unique extra strain hardening, which leads to high ductility. The grain-size gradient under uniaxial tension induces a macroscopic strain gradient and converts the applied uniaxial stress to multiaxial stresses due to the evolution of incompatible deformation along the gradient depth. Thereby the accumulation and interaction of dislocations are promoted, resulting in an extra strain hardening and an obvious strain hardening rate up-turn. Such extraordinary strain hardening, which is inherent to gradient structures and does not exist in homogeneous materials, provides a hitherto unknown strategy to develop strong and ductile materials by architecting heterogeneous nanostructures. PMID:24799688

  7. Flow field thermal gradient gas chromatography.

    PubMed

    Boeker, Peter; Leppert, Jan

    2015-09-01

    Negative temperature gradients along the gas chromatographic separation column can maximize the separation capabilities for gas chromatography by peak focusing and also lead to lower elution temperatures. Unfortunately, so far a smooth thermal gradient over a several meters long separation column could only be realized by costly and complicated manual setups. Here we describe a simple, yet flexible method for the generation of negative thermal gradients using standard and easily exchangeable separation columns. The measurements made with a first prototype reveal promising new properties of the optimized separation process. The negative thermal gradient and the superposition of temperature programming result in a quasi-parallel separation of components each moving simultaneously near their lowered specific equilibrium temperatures through the column. Therefore, this gradient separation process is better suited for thermally labile molecules such as explosives and natural or aroma components. High-temperature GC methods also benefit from reduced elution temperatures. Even for short columns very high peak capacities can be obtained. In addition, the gradient separation is particularly beneficial for very fast separations below 1 min overall retention time. Very fast measurements of explosives prove the benefits of using negative thermal gradients. The new concept can greatly reduce the cycle time of high-resolution gas chromatography and can be integrated into hyphenated or comprehensive gas chromatography setups.

  8. Gradient composite materials for artificial intervertebral discs.

    PubMed

    Migacz, Katarzyna; Chłopek, Jan; Morawska-Chochół, Anna; Ambroziak, Maciej

    2014-01-01

    Composites with the gradient of Young's modulus constitute a new group of biomimetic materials which affect the proper distribution of stresses between the implant and the bone. The aim of this article was to examine the mechanical properties of gradient materials based on carbon fibre-polysulfone composite, and to compare them to the properties of a natural intervertebral disc. Gradient properties were provided by different orientation or volume fraction of carbon fibres in particular layers of composites. The results obtained during in vitro tests displayed a good durability of the gradient materials put under long-term static load. However, the configuration based on a change in the volume fraction of the fibres seems more advantageous than the one based on a change of the fibres' orientation. The materials under study were designed to replace the intervertebral disc. The effect of Young's modulus of the material layers on the stress distribution between the tissue and the implant was analyzed and the biomimetic character of the gradient composites was stated. Unlike gradient materials, the pure polysulfone and the non-gradient composite resulted in the stress concentration in the region of nucleus pulposus, which is highly disadvantageous and does not occur in the stress distribution of natural intervertebral discs.

  9. Detection by denaturing gradient gel electrophoresis of a new polymorphism in the apolipoprotein B gene.

    PubMed

    Navajas, M; Laurent, A M; Moreel, J F; Ragab, A; Cambou, J P; Cuny, G; Cambien, F; Roizès, G

    1990-11-01

    The apolipoprotein B gene is subject to mutations that may be important in coronary heart diseases. We have used polymerase chain reaction and denaturing gradient gel electrophoresis to characterize a single nucleotide substitution in the apolipoprotein B gene. This mutation affects amino acid 4311 of the protein and converts asparagine to serine. It was found in 24% of the 81 unrelated individuals analyzed. Moreover, another mutation was detected by sequencing in a single individual.

  10. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials.

  11. Infiltration of chitin by protein coacervates defines the squid beak mechanical gradient.

    PubMed

    Tan, YerPeng; Hoon, Shawn; Guerette, Paul A; Wei, Wei; Ghadban, Ali; Hao, Cai; Miserez, Ali; Waite, J Herbert

    2015-07-01

    The beak of the jumbo squid Dosidicus gigas is a fascinating example of how seamlessly nature builds with mechanically mismatched materials. A 200-fold stiffness gradient begins in the hydrated chitin of the soft beak base and gradually increases to maximum stiffness in the dehydrated distal rostrum. Here, we combined RNA-Seq and proteomics to show that the beak contains two protein families. One family consists of chitin-binding proteins (DgCBPs) that physically join chitin chains, whereas the other family comprises highly modular histidine-rich proteins (DgHBPs). We propose that DgHBPs play multiple key roles during beak bioprocessing, first by forming concentrated coacervate solutions that diffuse into the DgCBP-chitin scaffold, and second by inducing crosslinking via an abundant GHG sequence motif. These processes generate spatially controlled desolvation, resulting in the impressive biomechanical gradient. Our findings provide novel molecular-scale strategies for designing functional gradient materials. PMID:26053298

  12. Perioperative supply chain management.

    PubMed

    Feistritzer, N R; Keck, B R

    2000-09-01

    Faced with declining revenues and increasing operating expenses, hospitals are evaluating numerous mechanisms designed to reduce costs while simultaneously maintaining quality care. Many facilities have targeted initial cost reduction efforts in the reduction of labor expenses. Once labor expenses have been "right sized," facilities have continued to focus on service delivery improvements by the optimization of the "supply chain" process. This report presents a case study of the efforts of Vanderbilt University Medical Center in the redesign of its supply chain management process in the department of Perioperative Services. Utilizing a multidisciplinary project management structure, 3 work teams were established to complete the redesign process. To date, the project has reduced costs by $2.3 million and enhanced quality patient care by enhancing the delivery of appropriate clinical supplies during the perioperative experience.

  13. Microfluidic gradient PCR (MG-PCR): a new method for microfluidic DNA amplification.

    PubMed

    Zhang, Chunsun; Xing, Da

    2010-02-01

    This study develops a new microfluidic DNA amplification strategy for executing parallel DNA amplification in the microfluidic gradient polymerase chain reaction (MG-PCR) device. The developed temperature gradient microfluidic system is generated by using an innovative fin design. The device mainly consists of modular thermally conductive copper flake which is attached onto a finned aluminum heat sink with a small fan. In our microfluidic temperature gradient prototype, a non-linear temperature gradient is produced along the gradient direction. On the copper flake of length 45 mm, width 40 mm and thickness 4 mm, the temperature gradient easily spans the range from 97 to 52 degrees Celsius. By making full use of the hot (90-97 degrees Celsius) and cold (60-70 degrees Celsius) regions on the temperature gradient device, the parallel, two-temperature MG-PCR amplification is feasible. As a demonstration, the MG-PCR from three parallel reactions of 112-bp Escherichia coli DNA fragment is performed in a continuous-flow format, in which the flow of the PCR reagent in the closed loop is induced by the buoyancy-driven nature convection. Although the prototype is not optimized, the MG-PCR amplification can be completed in less than 45 min. However, the MG-PCR thermocycler presented herein can be further scaled-down, and thus the amplification times and reagent consumption can be further reduced. In addition, the currently developed temperature gradient technology can be applied onto other continuous-flow MG-PCR systems or used for other analytical purposes such as parallel and combination measurements, and fluorescent melting curve analysis.

  14. Continuous gradient temperature Raman spectroscopy of n-6 DPA and DHA from -100 C to 20°C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    One of the great unanswered questions with respect to biological science in general is the absolute necessity of DHA in fast signal processing tissues. N-6 DPA, with just one less diene, group, is fairly abundant in terrestrial food chains yet cannot substitute for DHA. Gradient Temperature Raman sp...

  15. Gradient-based MCMC samplers for dynamic causal modelling

    PubMed Central

    Sengupta, Biswa; Friston, Karl J.; Penny, Will D.

    2016-01-01

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton’s equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)—a class of biophysically motivated DCMs—we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349

  16. Gradient-based MCMC samplers for dynamic causal modelling.

    PubMed

    Sengupta, Biswa; Friston, Karl J; Penny, Will D

    2016-01-15

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability.

  17. Gradient-based MCMC samplers for dynamic causal modelling.

    PubMed

    Sengupta, Biswa; Friston, Karl J; Penny, Will D

    2016-01-15

    In this technical note, we derive two MCMC (Markov chain Monte Carlo) samplers for dynamic causal models (DCMs). Specifically, we use (a) Hamiltonian MCMC (HMC-E) where sampling is simulated using Hamilton's equation of motion and (b) Langevin Monte Carlo algorithm (LMC-R and LMC-E) that simulates the Langevin diffusion of samples using gradients either on a Euclidean (E) or on a Riemannian (R) manifold. While LMC-R requires minimal tuning, the implementation of HMC-E is heavily dependent on its tuning parameters. These parameters are therefore optimised by learning a Gaussian process model of the time-normalised sample correlation matrix. This allows one to formulate an objective function that balances tuning parameter exploration and exploitation, furnishing an intervention-free inference scheme. Using neural mass models (NMMs)-a class of biophysically motivated DCMs-we find that HMC-E is statistically more efficient than LMC-R (with a Riemannian metric); yet both gradient-based samplers are far superior to the random walk Metropolis algorithm, which proves inadequate to steer away from dynamical instability. PMID:26213349

  18. Engineered Ionizable Side Chains.

    PubMed

    Cymes, Gisela D; Grosman, Claudio

    2015-01-01

    One of the great challenges of mechanistic ion-channel biology is to obtain structural information from well-defined functional states. In the case of neurotransmitter-gated ion channels, the open-channel conformation is particularly elusive owing to its transient nature and brief mean lifetime. In this Chapter, we show how the analysis of single-channel currents recorded from mutants engineered to contain single ionizable side chains in the transmembrane region can provide specific information about the open-channel conformation without any interference from the closed or desensitized conformations. The method takes advantage of the fact that the alternate binding and unbinding of protons to and from an ionizable side chain causes the charge of the protein to fluctuate by 1 unit. We show that, in mutant muscle acetylcholine nicotinic receptors (AChRs), this fluctuating charge affects the rate of ion conduction in such a way that individual proton-transfer events can be identified in a most straightforward manner. From the extent to which the single-channel current amplitude is reduced every time a proton binds, we can learn about the proximity of the engineered side chain to the lumen of the pore. And from the kinetics of proton binding and unbinding, we can calculate the side-chain's affinity for protons (pK a), and hence, we can learn about the electrostatic properties of the microenvironment around the introduced ionizable group. The application of this method to systematically mutated AChRs allowed us to identify unambiguously the stripes of the M1, M2 and M3 transmembrane α-helices that face the pore's lumen in the open-channel conformation in the context of a native membrane. PMID:26381938

  19. Callisto Crater Chain Mosaic

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This mosaic of three images shows an area within the Valhalla region on Jupiter's moon, Callisto. North is to the top of the mosaic and the Sun illuminates the surface from the left. The smallest details that can be discerned in this picture are knobs and small impact craters about 160 meters (175 yards) across. The mosaic covers an area approximately 45 kilometers (28 miles) across. It shows part of a prominent crater chain located on the northern part of the Valhalla ring structure.

    Crater chains can form from the impact of material ejected from large impacts (forming secondary chains) or by the impact of a fragmented projectile, perhaps similar to the Shoemaker-Levy 9 cometary impacts into Jupiter in July 1994. It is believed this crater chain was formed by the impact of a fragmented projectile. The images which form this mosaic were obtained by the solid state imaging system aboard NASA's Galileo spacecraft on Nov. 4, 1996 (Universal Time).

    Launched in October 1989, Galileo entered orbit around Jupiter on December 7, 1995. The spacecraft's mission is to conduct detailed studies of the giant planet, its largest moons and the Jovian magnetic environment. The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web Galileo mission home page at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at http:// www.jpl.nasa.gov/galileo/sepo.

  20. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain. PMID:17580654

  1. The innovation value chain.

    PubMed

    Hansen, Morten T; Birkinshaw, Julian

    2007-06-01

    The challenges of coming up with fresh ideas and realizing profits from them are different for every company. One firm may excel at finding good ideas but may have weak systems for bringing them to market. Another organization may have a terrific process for funding and rolling out new products and services but a shortage of concepts to develop. In this article, Hansen and Birkinshaw caution executives against using the latest and greatest innovation approaches and tools without understanding the unique deficiencies in their companies' innovation systems. They offer a framework for evaluating innovation performance: the innovation value chain. It comprises the three main phases of innovation (idea generation, conversion, and diffusion) as well as the critical activities performed during those phases (looking for ideas inside your unit; looking for them in other units; looking for them externally; selecting ideas; funding them; and promoting and spreading ideas companywide). Using this framework, managers get an end-to-end view of their innovation efforts. They can pinpoint their weakest links and tailor innovation best practices appropriately to strengthen those links. Companies typically succumb to one of three broad "weakest-link" scenarios. They are idea poor, conversion poor, or diffusion poor. The article looks at the ways smart companies - including Intuit, P&G, Sara Lee, Shell, and Siemens- modify the best innovation practices and apply them to address those organizations' individual needs and flaws. The authors warn that adopting the chain-based view of innovation requires new measures of what can be delivered by each link in the chain. The approach also entails new roles for employees "external scouts" and "internal evangelists," for example. Indeed, in their search for new hires, companies should seek out those candidates who can help address particular weaknesses in the innovation value chain.

  2. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management.

  3. Streamlining the supply chain.

    PubMed

    Neumann, Lydon

    2003-07-01

    Effective management of the supply chain requires attention to: Product management--formulary development and maintenance, compliance, clinical involvement, standardization, and demand-matching. Sourcing and contracting--vendor consolidation, GPO portfolio management, price leveling, content management, and direct contracting Purchasing and payment-cycle--automatic placement, web enablement, centralization, evaluated receipts settlement, and invoice matching Inventory and distribution management--"unofficial" and "official" locations, vendor-managed inventory, automatic replenishment, and freight management. PMID:12866156

  4. Sound beam manipulation based on temperature gradients

    NASA Astrophysics Data System (ADS)

    Qian, Feng; Quan, Li; Liu, Xiaozhou; Gong, Xiufen

    2015-10-01

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  5. Sound beam manipulation based on temperature gradients

    SciTech Connect

    Qian, Feng; Quan, Li; Liu, Xiaozhou Gong, Xiufen

    2015-10-28

    Previous research with temperature gradients has shown the feasibility of controlling airborne sound propagation. Here, we present a temperature gradients based airborne sound manipulation schemes: a cylindrical acoustic omnidirectional absorber (AOA). The proposed AOA has high absorption performance which can almost completely absorb the incident wave. Geometric acoustics is used to obtain the refractive index distributions with different radii, which is then utilized to deduce the desired temperature gradients. Since resonant units are not applied in the scheme, its working bandwidth is expected to be broadband. The scheme is temperature-tuned and easy to realize, which is of potential interest to fields such as noise control or acoustic cloaking.

  6. Colour and stellar population gradients in galaxies

    NASA Astrophysics Data System (ADS)

    Tortora, C.; Napolitano, N. R.; Cardone, V. F.; Capaccioli, M.; Jetzer, P.; Molinaro, R.

    We discuss the colour, age and metallicity gradients in a wide sample of local SDSS early- and late-type galaxies. From the fitting of stellar population models we find that metallicity is the main driver of colour gradients and the age in the central regions is a dominant parameter which rules the scatter in both metallicity and age gradients. We find a consistency with independent observations and a set of simulations. From the comparison with simulations and theoretical considerations we are able to depict a general picture of a formation scenario.

  7. Formation of chain structures in systems of charged grains interacting via isotropic pair potentials

    SciTech Connect

    Vaulina, O. S.; Lisina, I. I.; Koss, K. G.

    2013-05-15

    Conditions for the formation of chain structures of charged grains confined in the gravitational field by external electric fields are studied analytically and numerically. The relationships between the parameters of the pair interaction potential, the number of grains, and the electric field gradient in the trap are found. A criterion for the violation of stable equilibrium in a quasi-one-dimensional chain of grains and the formation of a new configuration in the system is proposed.

  8. Coreless Concept for High Gradient Induction Cell

    SciTech Connect

    Krasnykh, Anatoly; /SLAC

    2008-01-07

    An induction linac cell for a high gradient is discussed. The proposed solid state coreless approach for the induction linac topology (SLIM{reg_sign}) is based on nanosecond mode operation. This mode may have an acceleration gradient comparable with gradients of rf- accelerator structures. The discussed induction system has the high electric efficiency. The key elements are a solid state semiconductor switch and a high electric density dielectric with a thin section length. The energy in the induction system is storied in the magnetic field. The nanosecond current break-up produces the high voltage. The induced voltage is used for acceleration. This manner of an operation allows the use of low voltage elements in the booster part and achieves a high accelerating gradient. The proposed topology was tested in POP (proof of principle) experiments.

  9. Velocity gradients and microturbulence in Cepheids

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1972-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere were reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  10. Artificial photosynthesis: Light-activated calcium gradients

    NASA Astrophysics Data System (ADS)

    Thompson, David H.

    2002-12-01

    Photosynthetic organisms use light to create chemical gradients across bilayer membranes that drive energetically unfavourable reactions. Synthetic systems that accomplish the same feat may find uses in a variety of biological and non-biological applications.

  11. SW New Mexico BHT geothermal gradient calculations

    SciTech Connect

    Shari Kelley

    2015-07-24

    This file contains a compilation of BHT data from oil wells in southwestern New Mexico. Surface temperature is calculated using the collar elevation. An estimate of geothermal gradient is calculated using the estimated surface temperature and the uncorrected BHT data.

  12. Continuous spray forming of functionally gradient materials

    SciTech Connect

    McKechnie, T.N.; Richardson, E.H.

    1995-12-01

    Researchers at Plasma Processes Inc. have produced a Functional Gradient Material (FGM) through advanced vacuum plasma spray processing for high heat flux applications. Outlined in this paper are the manufacturing methods used to develop a four component functional gradient material of copper, tungsten, boron, and boron nitride. The FGM was formed with continuous gradients and integral cooling channels eliminating bondlines and providing direct heat transfer from the high temperature exposed surface to a cooling medium. Metallurgical and x-ray diffraction analyses of the materials formed through innovative VPS (vacuum plasma spray) processing are also presented. Applications for this functional gradient structural material range from fusion reactor plasma facing components to missile nose cones to boilers.

  13. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented. PMID:23611335

  14. Requirements of supply chain management in differentiating European pork chains.

    PubMed

    Trienekens, Jacques; Wognum, Nel

    2013-11-01

    This paper summarizes results obtained by research into pork chain management in the EU Integrated Project Q-Porkchains. Changing demands for intrinsic and extrinsic quality attributes of pork products impact the way supply chain management should be organized from the farmer down to the consumer. The paper shows the importance of Quality Management Systems for integrating supply chains and enhancing consumer confidence. The paper also presents innovations in information system integration for aligning information exchange in the supply chain and logistics concepts based on innovative measurement technologies at the slaughterhouse stage. In the final section research challenges towards sustainable pork supply chains satisfying current consumer demands are presented.

  15. Salinity gradient power: utilizing vapor pressure differences.

    PubMed

    Olsson, M; Wick, G L; Isaacs, J D

    1979-10-26

    By utilizing the vapor pressure difference between high-salinity and lowsalinity wvater, one can obtain power from the gradients of salinity. This scheme eliminates the major problems associated with conversion methods in which membranes are used. The method we tested gave higher conversion efficiencies than membrane methods. Furthermore, hardware and techniques being developed for ocean thermal energy conversion may be applied to this approach to salinity gradient energy conversion. PMID:17809370

  16. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1999-07-01

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams. {copyright} {ital 1999 American Institute of Physics.}

  17. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The authors recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. They summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. They take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  18. Ultimate gradient in solid-state accelerators

    SciTech Connect

    Whittum, David H.

    1999-07-12

    We recall the motivation for research in high-gradient acceleration and the problems posed by a compact collider. We summarize the phenomena known to appear in operation of a solid-state structure with large fields, and research relevant to the question of the ultimate gradient. We take note of new concepts, and examine one in detail, a miniature particle accelerator based on an active millimeter-wave circuit and parallel particle beams.

  19. Intratumoral oxygen gradients mediate sarcoma cell invasion.

    PubMed

    Lewis, Daniel M; Park, Kyung Min; Tang, Vitor; Xu, Yu; Pak, Koreana; Eisinger-Mathason, T S Karin; Simon, M Celeste; Gerecht, Sharon

    2016-08-16

    Hypoxia is a critical factor in the progression and metastasis of many cancers, including soft tissue sarcomas. Frequently, oxygen (O2) gradients develop in tumors as they grow beyond their vascular supply, leading to heterogeneous areas of O2 depletion. Here, we report the impact of hypoxic O2 gradients on sarcoma cell invasion and migration. O2 gradient measurements showed that large sarcoma mouse tumors (>300 mm(3)) contain a severely hypoxic core [≤0.1% partial pressure of O2 (pO2)] whereas smaller tumors possessed hypoxic gradients throughout the tumor mass (0.1-6% pO2). To analyze tumor invasion, we used O2-controllable hydrogels to recreate the physiopathological O2 levels in vitro. Small tumor grafts encapsulated in the hydrogels revealed increased invasion that was both faster and extended over a longer distance in the hypoxic hydrogels compared with nonhypoxic hydrogels. To model the effect of the O2 gradient accurately, we examined individual sarcoma cells embedded in the O2-controllable hydrogel. We observed that hypoxic gradients guide sarcoma cell motility and matrix remodeling through hypoxia-inducible factor-1α (HIF-1α) activation. We further found that in the hypoxic gradient, individual cells migrate more quickly, across longer distances, and in the direction of increasing O2 tension. Treatment with minoxidil, an inhibitor of hypoxia-induced sarcoma metastasis, abrogated cell migration and matrix remodeling in the hypoxic gradient. Overall, we show that O2 acts as a 3D physicotactic agent during sarcoma tumor invasion and propose the O2-controllable hydrogels as a predictive system to study early stages of the metastatic process and therapeutic targets. PMID:27486245

  20. Applying Thermal Gradients To Control Vibrations

    NASA Technical Reports Server (NTRS)

    Edberg, Donald L.

    1989-01-01

    Thermal actuators used to stabilize large structures. New damping concept calls for application of suitably timed and shaped thermal-gradient waveforms to generate expansions and contractions counteracting vibrations. Responding to processed signal from accelerometer, thermoelectric heat pumps apply thermal gradients producing expansions and contractions in upper and lower caps of cantilever beam. These expansions and contractions partly counteract vibrations sensed by accelerometer, thus contributing to damping.

  1. Pressure gradient influence in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200 gradient.

  2. Magnetoelectrets prepared by using temperature gradient method

    NASA Astrophysics Data System (ADS)

    Ojha, Pragya; Qureshi, M. S.; Malik, M. M.

    2015-05-01

    A novel Temperature Gradient method for preparation of magnetoelectret is proposed. Non uniform magnetic field and temperature gradient are expected to be the main cause for the formation of magnetoelectrets (MEs). Being bad conductors of heat, during their formation, there is a possibility for the existence of a temperature gradient along the dielectric electrode interface. In this condition, the motion of, molecules and charge carriers are dependent on Temperature Gradient in a preferred direction. To increase this temperature gradient on both sides of the sample novel method for the preparation of MEs is developed for the first time. For this method the special sample holders are designed in our laboratory. MEs are prepared in such a way that one surface is cooled and the other is heated, during the process. With the help of XRD analysis using Type-E orientation pattern and surface charge studies on magnetoelectrets, the two main causes Non uniform magnetic field and temperature gradient for the formation of magnetoelectrets (MEs), are authenticated experimentally.

  3. Natural gradient learning algorithms for RBF networks.

    PubMed

    Zhao, Junsheng; Wei, Haikun; Zhang, Chi; Li, Weiling; Guo, Weili; Zhang, Kanjian

    2015-02-01

    Radial basis function (RBF) networks are one of the most widely used models for function approximation and classification. There are many strange behaviors in the learning process of RBF networks, such as slow learning speed and the existence of the plateaus. The natural gradient learning method can overcome these disadvantages effectively. It can accelerate the dynamics of learning and avoid plateaus. In this letter, we assume that the probability density function (pdf) of the input and the activation function are gaussian. First, we introduce natural gradient learning to the RBF networks and give the explicit forms of the Fisher information matrix and its inverse. Second, since it is difficult to calculate the Fisher information matrix and its inverse when the numbers of the hidden units and the dimensions of the input are large, we introduce the adaptive method to the natural gradient learning algorithms. Finally, we give an explicit form of the adaptive natural gradient learning algorithm and compare it to the conventional gradient descent method. Simulations show that the proposed adaptive natural gradient method, which can avoid the plateaus effectively, has a good performance when RBF networks are used for nonlinear functions approximation. PMID:25380332

  4. Radiology's value chain.

    PubMed

    Enzmann, Dieter R

    2012-04-01

    A diagnostic radiology value chain is constructed to define its main components, all of which are vulnerable to change, because digitization has caused disaggregation of the chain. Some components afford opportunities to improve productivity, some add value, while some face outsourcing to lower labor cost and to information technology substitutes, raising commoditization risks. Digital image information, because it can be competitive at smaller economies of scale, allows faster, differential rates of technological innovation of components, initiating a centralization-to-decentralization technology trend. Digitization, having triggered disaggregation of radiology's professional service model, may soon usher in an information business model. This means moving from a mind-set of "reading images" to an orientation of creating and organizing information for greater accuracy, faster speed, and lower cost in medical decision making. Information businesses view value chain investments differently than do small professional services. In the former model, producing a better business product will extend image interpretation beyond a radiologist's personal fund of knowledge to encompass expanding external imaging databases. A follow-on expansion with integration of image and molecular information into a report will offer new value in medical decision making. Improved interpretation plus new integration will enrich and diversify radiology's key service products, the report and consultation. A more robust, information-rich report derived from a "systems" and "computational" radiology approach will be facilitated by a transition from a professional service to an information business. Under health care reform, radiology will transition its emphasis from volume to greater value. Radiology's future brightens with the adoption of a philosophy of offering information rather than "reads" for decision making. Staunchly defending the status quo via turf wars is unlikely to constitute a

  5. Musical Markov Chains

    NASA Astrophysics Data System (ADS)

    Volchenkov, Dima; Dawin, Jean René

    A system for using dice to compose music randomly is known as the musical dice game. The discrete time MIDI models of 804 pieces of classical music written by 29 composers have been encoded into the transition matrices and studied by Markov chains. Contrary to human languages, entropy dominates over redundancy, in the musical dice games based on the compositions of classical music. The maximum complexity is achieved on the blocks consisting of just a few notes (8 notes, for the musical dice games generated over Bach's compositions). First passage times to notes can be used to resolve tonality and feature a composer.

  6. Monte Carlo without chains

    SciTech Connect

    Chorin, Alexandre J.

    2007-12-12

    A sampling method for spin systems is presented. The spin lattice is written as the union of a nested sequence of sublattices, all but the last with conditionally independent spins, which are sampled in succession using their marginals. The marginals are computed concurrently by a fast algorithm; errors in the evaluation of the marginals are offset by weights. There are no Markov chains and each sample is independent of the previous ones; the cost of a sample is proportional to the number of spins (but the number of samples needed for good statistics may grow with array size). The examples include the Edwards-Anderson spin glass in three dimensions.

  7. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles. PMID:27269182

  8. Algorithm for Image Retrieval Based on Edge Gradient Orientation Statistical Code

    PubMed Central

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results. PMID:24892074

  9. Controlling the Motion of Ferrofluid Droplets Using Surface Tension Gradients and Magnetoviscous Pinning.

    PubMed

    Ody, T; Panth, M; Sommers, A D; Eid, K F

    2016-07-12

    This work demonstrates the controlled motion and stopping of individual ferrofluid droplets due to a surface tension gradient and a uniform magnetic field. The surface tension gradients are created by patterning hydrophilic aluminum regions, shaped as wedges, on a hydrophobic copper surface. This pattern facilitates the spontaneous motion of water-based ferrofluid droplets down the length of the wedge toward the more hydrophilic aluminum end due to a net capillarity force created by the underlying surface wettability gradient. We observed that applying a magnetic field parallel to the surface tension gradient direction has little or no effect on the droplet's motion, while a moderate perpendicular magnetic field can stop the motion altogether effectively "pinning" the droplet. In the absence of the surface tension gradient, droplets elongate in the presence of a parallel field but do not travel. This control of the motion of individual droplets might lend itself to some biomedical and lab-on-a-chip applications. The directional dependence of the magnetoviscosity observed in this work is believed to be the consequence of the formation of nanoparticle chains in the fluid due to the existence of a minority of relatively larger magnetic particles.

  10. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics.

    PubMed

    Mougin, K; Ham, A S; Lawrence, M B; Fernandez, E J; Hillier, A C

    2005-05-24

    Surface gradients can be used to perform a wide range of functions and represent a novel experimental platform for combinatorial discovery and analysis. In this work, a gradient in the coverage of a surface-immobilized poly(ethylene glycol) (PEG) layer is constructed to interrogate cell adhesion on a solid surface. Variation of surface coverage is achieved by controlled transport of a reactive PEG precursor from a point source through a hydrated gel. Immobilization of PEG is achieved by covalent attachment of the PEG molecule via direct coupling chemistry to a cystamine self-assembled monolayer on gold. This represents a simple method for creating spatial gradients in surface chemistry that does not require special instrumentation or microfabrication procedures. The structure and spatial distribution of the PEG gradient are evaluated via ellipsometry and atomic force microscopy. A cell adhesion assay using bovine arteriole endothelium cells is used to study the influence of PEG thickness and chain density on biocompatibility. The kinetics of cell adhesion are quantified as a function of the thickness of the PEG layer. Results depict a surface in which the variation in layer thickness along the PEG gradient strongly modifies the biological response.

  11. Improving the accuracy of pulsed field gradient NMR diffusion experiments: Correction for gradient non-uniformity

    NASA Astrophysics Data System (ADS)

    Connell, Mark A.; Bowyer, Paul J.; Adam Bone, P.; Davis, Adrian L.; Swanson, Alistair G.; Nilsson, Mathias; Morris, Gareth A.

    2009-05-01

    Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coefficients. However, a significant source of systematic error exists in the spatial variation of the applied pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate from the expected exponential dependence on gradient squared. This has two undesirable effects: the apparent diffusion coefficient will deviate from the true value to an extent determined by the choice of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain a significant systematic contribution. In particular, the apparent diffusion coefficient determined by exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse widths used and on the range of gradient amplitudes chosen. These problems can be partially compensated for if experimental attenuation data are fitted to a function corrected for the measured spatial dependence of the gradient and signal strength. This study describes a general alternative to existing methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradient echoes in the presence of a weak read gradient. These data are then used to construct a predicted signal decay function for the whole sample, which is parameterised as the exponential of a power series. Results are presented which compare diffusion coefficients obtained using the new calibration method with previous literature values.

  12. Quantification of susceptibility change at high-concentrated SPIO-labeled target by characteristic phase gradient recognition.

    PubMed

    Zhu, Haitao; Nie, Binbin; Liu, Hua; Guo, Hua; Demachi, Kazuyuki; Sekino, Masaki; Shan, Baoci

    2016-05-01

    Phase map cross-correlation detection and quantification may produce highlighted signal at superparamagnetic iron oxide nanoparticles, and distinguish them from other hypointensities. The method may quantify susceptibility change by performing least squares analysis between a theoretically generated magnetic field template and an experimentally scanned phase image. Because characteristic phase recognition requires the removal of phase wrap and phase background, additional steps of phase unwrapping and filtering may increase the chance of computing error and enlarge the inconsistence among algorithms. To solve problem, phase gradient cross-correlation and quantification method is developed by recognizing characteristic phase gradient pattern instead of phase image because phase gradient operation inherently includes unwrapping and filtering functions. However, few studies have mentioned the detectable limit of currently used phase gradient calculation algorithms. The limit may lead to an underestimation of large magnetic susceptibility change caused by high-concentrated iron accumulation. In this study, mathematical derivation points out the value of maximum detectable phase gradient calculated by differential chain algorithm in both spatial and Fourier domain. To break through the limit, a modified quantification method is proposed by using unwrapped forward differentiation for phase gradient generation. The method enlarges the detectable range of phase gradient measurement and avoids the underestimation of magnetic susceptibility. Simulation and phantom experiments were used to quantitatively compare different methods. In vivo application performs MRI scanning on nude mice implanted by iron-labeled human cancer cells. Results validate the limit of detectable phase gradient and the consequent susceptibility underestimation. Results also demonstrate the advantage of unwrapped forward differentiation compared with differential chain algorithms for susceptibility

  13. Polyketide chain length control by chain length factor.

    PubMed

    Tang, Yi; Tsai, Shiou-Chuan; Khosla, Chaitan

    2003-10-22

    Bacterial aromatic polyketides are pharmacologically important natural products. A critical parameter that dictates product structure is the carbon chain length of the polyketide backbone. Systematic manipulation of polyketide chain length represents a major unmet challenge in natural product biosynthesis. Polyketide chain elongation is catalyzed by a heterodimeric ketosynthase. In contrast to homodimeric ketosynthases found in fatty acid synthases, the active site cysteine is absent from the one subunit of this heterodimer. The precise role of this catalytically silent subunit has been debated over the past decade. We demonstrate here that this subunit is the primary determinant of polyketide chain length, thereby validating its designation as chain length factor. Using structure-based mutagenesis, we identified key residues in the chain length factor that could be manipulated to convert an octaketide synthase into a decaketide synthase and vice versa. These results should lead to novel strategies for the engineered biosynthesis of hitherto unidentified polyketide scaffolds.

  14. Measurement of phase gradients in the EEG.

    PubMed

    Alexander, D M; Trengove, C; Wright, J J; Boord, P R; Gordon, E

    2006-09-30

    Previous research has shown that spatio-temporal waves in the EEG are generally of long spatial wavelength and form smooth patterns of phase gradients at particular time-samples. This paper describes a method to measure smooth phase gradients of long spatial wavelength in the EEG. The method depends on the global pattern of phase at a given frequency and time and is therefore robust to variations, over time, in phase-lag between particular sites. Phases were estimated in the EEG signal using wavelet or short time-series Fourier methods. During an auditory oddball task, phases across the scalp tend to fall within a limited circular range, a range that is not indicative of phase-synchrony nor waves with multiple periods. At times the phases tended to maintain a spatially and temporally ordered relationship. The relative phases were analysed using three phase gradient basis functions, providing a measure of the amount of variance explained, across the electrodes, by smooth changes in relative phase from a single minimum or single maximum. The data from 586 adult subjects were analysed and it was found that the probability of phase gradient events varies with time and frequency in the stimulus-locked average, and with task demands. The temporal extent of spatio-temporal waves was measured by detecting smoothly changing patterns of phase latencies across the scalp. The specific spatial pattern and timing of phase gradients correspond closely to the latency distributions of certain ERPs. PMID:16574240

  15. Constrained length minimum inductance gradient coil design.

    PubMed

    Chronik, B A; Rutt, B K

    1998-02-01

    A gradient coil design algorithm capable of controlling the position of the homogeneous region of interest (ROI) with respect to the current-carrying wires is required for many advanced imaging and spectroscopy applications. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is presented. This constrained current minimum inductance method is derived in the context of previous target field methods. Complete details are shown and all equations required for implementation of the algorithm are given. The method has been implemented on computer and applied to the design of both a 1:1 aspect ratio (length:diameter) central ROI and a 2:1 aspect ratio edge ROI gradient coil. The 1:1 design demonstrates that a general analytic method can be used to easily obtain very short gradient coil designs for use with specialized magnet systems. The edge gradient design demonstrates that designs that allow imaging of the neck region with a head sized gradient coil can be obtained, as well as other applications requiring edge-of-cylinder regions of uniformity.

  16. Income Inequality and Socioeconomic Gradients in Mortality

    PubMed Central

    Wilkinson, Richard G.; Pickett, Kate E.

    2008-01-01

    Objectives. We investigated whether the processes underlying the association between income inequality and population health are related to those responsible for the socioeconomic gradient in health and whether health disparities are smaller when income differences are narrower. Methods. We used multilevel models in a regression analysis of 10 age- and cause-specific US county mortality rates on county median household incomes and on state income inequality. We assessed whether mortality rates more closely related to county income were also more closely related to state income inequality. We also compared mortality gradients in more- and less-equal states. Results. Mortality rates more strongly associated with county income were more strongly associated with state income inequality: across all mortality rates, r= −0.81; P=.004. The effect of state income inequality on the socioeconomic gradient in health varied by cause of death, but greater equality usually benefited both wealthier and poorer counties. Conclusions. Although mortality rates with steep socioeconomic gradients were more sensitive to income distribution than were rates with flatter gradients, narrower income differences benefit people in both wealthy and poor areas and may, paradoxically, do little to reduce health disparities. PMID:17901426

  17. Polarisation effects in gradient nano-optics

    SciTech Connect

    Erokhin, N S; Shvartsburg, A B; Zueva, Yu M

    2013-09-30

    The spectra of reflection of s- and p-polarised waves from gradient nanocoatings at arbitrary angles of incidence are found within the framework of two exactly solvable models of such coatings. To use the detected spectra in the visible and IR ranges, for different frequencies and coating thicknesses we present the wave reflection coefficients as functions of dimensionless frequencies related to the refractive index gradient of the coating material. It is shown that reflection from the gradient coatings in question is an order of magnitude weaker than reflection from uniform coatings, other parameters of radiation and the reflection system being equal. We report a new exactly solvable model illustrating the specific effect of gradient film optics – the possibility of non-reflective propagation of an s-wave through such a film (an analogue of the Brewster effect). The prospects are shown for the use of gradient nanostructures with different refractive index profiles to fabricate broadband non-reflective coatings. (nanogradient dielectric coatings and metamaterials)

  18. Gradient algorithm applied to laboratory quantum control

    SciTech Connect

    Roslund, Jonathan; Rabitz, Herschel

    2009-05-15

    The exploration of a quantum control landscape, which is the physical observable as a function of the control variables, is fundamental for understanding the ability to perform observable optimization in the laboratory. For high control variable dimensions, trajectory-based methods provide a means for performing such systematic explorations by exploiting the measured gradient of the observable with respect to the control variables. This paper presents a practical, robust, easily implemented statistical method for obtaining the gradient on a general quantum control landscape in the presence of noise. In order to demonstrate the method's utility, the experimentally measured gradient is utilized as input in steepest-ascent trajectories on the landscapes of three model quantum control problems: spectrally filtered and integrated second harmonic generation as well as excitation of atomic rubidium. The gradient algorithm achieves efficiency gains of up to approximately three times that of the standard genetic algorithm and, as such, is a promising tool for meeting quantum control optimization goals as well as landscape analyses. The landscape trajectories directed by the gradient should aid in the continued investigation and understanding of controlled quantum phenomena.

  19. Importance of Ionospheric Gradients for error Correction

    NASA Astrophysics Data System (ADS)

    Ravula, Ramprasad

    Importance of Ionospheric Gradients for error Correction R. Ram Prasad1, P.Nagasekhar2 1Sai Spurthi Institute of Technology-JNTU Hyderabad,2Sai Spurthi Institute of Technology-JNTU Hyderabad Email ID:rams.ravula@gmail.com In India, Indian Space Research Organization (ISRO) has established with an objective to develop space technology and its application to various national tasks. To cater to the needs of civil aviation applications, GPS Aided Geo Augmented Navigation (GAGAN) system is being jointly implemented along with Airports Authority of India (AAI) over the Indian region. The most predominant parameter affecting the navigation accuracy of GAGAN is ionospheric delay which is a function of total number of electrons present in one square meter cylindrical cross sectional area in the line of site direction between the satellite and the user on the earth i.e. Total Electron Content (TEC).The irregular distribution of electron densities i.e. rate of TEC variation, causes Ionospheric gradients such as spatial gradients (Expressed in TECu/km) and temporal gradients (Expressed in TECu /minute). Among the satellite signals arriving to the earth in multiple directions, the signals which suffer from severe ionospheric gradients can be estimated i.e. Rate of TEC Index (ROTI) and Rate of TEC (ROT). These aspects which contribute to errors can be treated for improving GAGAN positional accuracy.

  20. Swarm magnetic gradients for lithospheric modelling (SLIM)

    NASA Astrophysics Data System (ADS)

    Bouman, Johannes; Ebbing, Jörg; Kotsiaros, Stavros; Brönner, Marco; Haagmans, Roger; Fuchs, Martin; Holzrichter, Nils; Olsen, Nils; Baykiev, Eldar

    2016-04-01

    We present first results of a feasibility study to use magnetic gradient information derived from Swarm data for crustal field modelling. The study is part of ESA's Support To Science Element (STSE) Swarm+ Innovations. In a first step, magnetic gradients have been derived from the observations taken by the three Swarm satellites, with emphasis on the two side-by-side flying spacecraft. Next, these gradients are used to compute magnetic gradient grids at 450 km altitude (the present mean altitude of the lower Swarm satellites) for one example region, North-West Europe. The suggested area comprise both exposed basement geology in southern Sweden and Norway with crustal scale magnetic anomalies and the Sorgenfrei-Tornquist Zone, a well-studied large scale tectonic fault system. With sensitivity analysis we studied the added benefit of the information from the gradient grids for lithospheric magnetic field modelling. A wealth of aeromagnetic data and additional constraining information for the example area allows us to validate our modelling results in great detail.

  1. Doping of Semiconducting Atomic Chains

    NASA Technical Reports Server (NTRS)

    Toshishige, Yamada; Kutler, Paul (Technical Monitor)

    1997-01-01

    Due to the rapid progress in atom manipulation technology, atomic chain electronics would not be a dream, where foreign atoms are placed on a substrate to form a chain, and its electronic properties are designed by controlling the lattice constant d. It has been shown theoretically that a Si atomic chain is metallic regardless of d and that a Mg atomic chain is semiconducting or insulating with a band gap modified with d. For electronic applications, it is essential to establish a method to dope a semiconducting chain, which is to control the Fermi energy position without altering the original band structure. If we replace some of the chain atoms with dopant atoms randomly, the electrons will see random potential along the chain and will be localized strongly in space (Anderson localization). However, if we replace periodically, although the electrons can spread over the chain, there will generally appear new bands and band gaps reflecting the new periodicity of dopant atoms. This will change the original band structure significantly. In order to overcome this dilemma, we may place a dopant atom beside the chain at every N lattice periods (N > 1). Because of the periodic arrangement of dopant atoms, we can avoid the unwanted Anderson localization. Moreover, since the dopant atoms do not constitute the chain, the overlap interaction between them is minimized, and the band structure modification can be made smallest. Some tight-binding results will be discussed to demonstrate the present idea.

  2. Polymerase chain reaction

    SciTech Connect

    Arnhelm, N. ); Levenson, C.H. )

    1990-10-01

    This paper discusses the polymerase chain reaction (PCR) an in-vitro method of amplifying DNA sequences. Beginning with DNA of any origin- bacterial, viral, plant, or animal- PCR can increase the amount of a DNA sequence hundreds of millions to billions of times. The procedure can amplify a targeted sequence even when it makes up less than one part in a million of the total initial sample. PCR is an enzymatic process that is carried out in discrete cycles of amplification, each of which can double the amount of target DNA in the sample. Thus, n cycles can produce 2{sup n} times as much target as was present to begin with. This paper discusses how PCR has had an impact on molecular biology, human genetics, infectious and genetic disease diagnosis, forensic science, and evolutionary biology.

  3. NNSA TRITIUM SUPPLY CHAIN

    SciTech Connect

    Wyrick, Steven; Cordaro, Joseph; Founds, Nanette; Chambellan, Curtis

    2013-08-21

    Savannah River Site plays a critical role in the Tritium Production Supply Chain for the National Nuclear Security Administration (NNSA). The entire process includes: • Production of Tritium Producing Burnable Absorber Rods (TPBARs) at the Westinghouse WesDyne Nuclear Fuels Plant in Columbia, South Carolina • Production of unobligated Low Enriched Uranium (LEU) at the United States Enrichment Corporation (USEC) in Portsmouth, Ohio • Irradiation of TPBARs with the LEU at the Tennessee Valley Authority (TVA) Watts Bar Reactor • Extraction of tritium from the irradiated TPBARs at the Tritium Extraction Facility (TEF) at Savannah River Site • Processing the tritium at the Savannah River Site, which includes removal of nonhydrogen species and separation of the hydrogen isotopes of protium, deuterium and tritium.

  4. Dynamics of gradient formation by intracellular shuttling

    NASA Astrophysics Data System (ADS)

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-01

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  5. Using Spatial Gradients to Model Localization Phenomena

    SciTech Connect

    D.J.Bammann; D.Mosher; D.A.Hughes; N.R.Moody; P.R.Dawson

    1999-07-01

    We present the final report on a Laboratory-Directed Research and Development project, Using Spatial Gradients to Model Localization Phenomena, performed during the fiscal years 1996 through 1998. The project focused on including spatial gradients in the temporal evolution equations of the state variables that describe hardening in metal plasticity models. The motivation was to investigate the numerical aspects associated with post-bifurcation mesh dependent finite element solutions in problems involving damage or crack propagation as well as problems in which strain Localizations occur. The addition of the spatial gradients introduces a mathematical length scale that eliminates the mesh dependency of the solution. In addition, new experimental techniques were developed to identify the physical mechanism associated with the numerical length scale.

  6. Motion Driven by Strain Gradient Fields

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Chen, Shaohua

    2015-09-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces.

  7. How receptor diffusion influences gradient sensing

    PubMed Central

    Nguyen, H.; Dayan, P.; Goodhill, G. J.

    2015-01-01

    Chemotaxis, or directed motion in chemical gradients, is critical for various biological processes. Many eukaryotic cells perform spatial sensing, i.e. they detect gradients by comparing spatial differences in binding occupancy of chemosensory receptors across their membrane. In many theoretical models of spatial sensing, it is assumed, for the sake of simplicity, that the receptors concerned do not move. However, in reality, receptors undergo diverse modes of diffusion, and can traverse considerable distances in the time it takes such cells to turn in an external gradient. This sets a physical limit on the accuracy of spatial sensing, which we explore using a model in which receptors diffuse freely over the membrane. We find that the Fisher information carried in binding and unbinding events decreases monotonically with the diffusion constant of the receptors. PMID:25551145

  8. Conjugate gradient algorithms using multiple recursions

    SciTech Connect

    Barth, T.; Manteuffel, T.

    1996-12-31

    Much is already known about when a conjugate gradient method can be implemented with short recursions for the direction vectors. The work done in 1984 by Faber and Manteuffel gave necessary and sufficient conditions on the iteration matrix A, in order for a conjugate gradient method to be implemented with a single recursion of a certain form. However, this form does not take into account all possible recursions. This became evident when Jagels and Reichel used an algorithm of Gragg for unitary matrices to demonstrate that the class of matrices for which a practical conjugate gradient algorithm exists can be extended to include unitary and shifted unitary matrices. The implementation uses short double recursions for the direction vectors. This motivates the study of multiple recursion algorithms.

  9. Dynamics of gradient formation by intracellular shuttling

    SciTech Connect

    Berezhkovskii, Alexander M.; Shvartsman, Stanislav Y.

    2015-08-21

    A number of important cellular functions rely on the formation of intracellular protein concentration gradients. Experimental studies discovered a number of mechanisms for the formation of such gradients. One of the mechanisms relies on the intracellular shuttling of a protein that interconverts between the two states with different diffusivities, under the action of two enzymes, one of which is localized to the plasma membrane, whereas the second is uniformly distributed in the cytoplasm. Recent work reported an analytical solution for the steady state gradient in this mechanism, obtained in the framework of a one-dimensional reaction-diffusion model. Here, we study the dynamics in this model and derive analytical expressions for the Laplace transforms of the time-dependent concentration profiles in terms of elementary transcendental functions. Inverting these transforms numerically, one can obtain time-dependent concentration profiles of the two forms of the protein.

  10. Time Rate Gradient Effects and Negative Mass

    NASA Astrophysics Data System (ADS)

    Miksch, Edmond

    2008-03-01

    The Harvard tower Experiment and tests with accurate atomic clocks show that a clock at a high elevation indicates more elapsed time than a clock at a low elevation, both clocks properly measuring time at their locations. This fact mandates that Newton's first law of motion be rewritten to cite impulse balance rather than force balance. Time rate gradient effects explain how the weight of a precisely vertical and precisely uniform electric field or a precisely vertical and precisely uniform magnetic field is supported in a precisely unidirectional gravitational field. Time rate gradient effects also explain how the weight of a unidirectional gravitational field is reacted. It is confirmed that the mass density of the gravitational field is negative. http://www.TimeRateGradient.com; http://www.Negative-Mass.com; http://www.EinsteinsElevator.com

  11. Gradients of signalling in the developing limb.

    PubMed

    Towers, Matthew; Wolpert, Lewis; Tickle, Cheryll

    2012-04-01

    The developing limb is one of the first systems where it was proposed that a signalling gradient is involved in pattern formation. This gradient for specifying positional information across the antero-posterior axis is based on Sonic hedgehog signalling from the polarizing region. Recent evidence suggests that Sonic hedgehog signalling also specifies positional information across the antero-posterior axis by a timing mechanism acting in parallel with graded signalling. The progress zone model for specifying proximo-distal pattern, involving timing to provide cells with positional information, continues to be challenged, and there is further evidence that graded signalling by retinoic acid specifies the proximal part of the limb. Other recent papers present the first evidence that gradients of signalling by Wnt5a and FGFs govern cell behaviour involved in outgrowth and morphogenesis of the developing limb.

  12. Motion Driven by Strain Gradient Fields

    PubMed Central

    Wang, Chao; Chen, Shaohua

    2015-01-01

    A new driving mechanism for direction-controlled motion of nano-scale objects is proposed, based on a model of stretching a graphene strip linked to a rigid base with linear springs of identical stiffness. We find that the potential energy difference induced by the strain gradient field in the graphene strip substrate can generate sufficient force to overcome the static and kinetic friction forces between the nano-flake and the strip substrate, resulting in the nanoscale flake motion in the direction of gradient reduction. The dynamics of the nano-flake can be manipulated by tuning the stiffness of linear springs, stretching velocity and the flake size. This fundamental law of directional motion induced by strain gradient could be very useful for promising designs of nanoscale manipulation, transportation and smart surfaces. PMID:26323603

  13. Relativistic klystrons for high-gradient accelerators

    SciTech Connect

    Westenskow, G.A.; Aalberts, D.P.; Boyd, J.K.; Deis, G.A.; Houck, T.L.; Orzechowski, T.J.; Ryne, R.D.; Yu, S.S. ); Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Loew, G.A.; Miller, R.H.; Ruth, R.D.; Vlieks, A.E.; Wang, J.W. ); Haimson, J.; Mecklen

    1990-09-05

    Experimental work is being performed by collaborators at LLNL, SLAC, and LBL to investigate relativistic klystrons as a possible rf power source for future high-gradient accelerators. We have learned how to overcome or previously reported problem of high power rf pulse shortening and have achieved peak rf power levels of 330 MW using an 11.4-GHz high-gain tube with multiple output structures. In these experiments the rf pulse is of the same duration as the beam current pulse. In addition, experiments have been performed on two short sections of a high-gradient accelerator using the rf power from a relativistic klystron. An average accelerating gradient of 84 MV/m has been achieved with 80-MW of rf power.

  14. Substrate Curvature Gradient Drives Rapid Droplet Motion

    NASA Astrophysics Data System (ADS)

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-01

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42 m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100 m/s on tapered surfaces.

  15. Substrate curvature gradient drives rapid droplet motion.

    PubMed

    Lv, Cunjing; Chen, Chao; Chuang, Yin-Chuan; Tseng, Fan-Gang; Yin, Yajun; Grey, Francois; Zheng, Quanshui

    2014-07-11

    Making small liquid droplets move spontaneously on solid surfaces is a key challenge in lab-on-chip and heat exchanger technologies. Here, we report that a substrate curvature gradient can accelerate micro- and nanodroplets to high speeds on both hydrophilic and hydrophobic substrates. Experiments for microscale water droplets on tapered surfaces show a maximum speed of 0.42  m/s, 2 orders of magnitude higher than with a wettability gradient. We show that the total free energy and driving force exerted on a droplet are determined by the substrate curvature and substrate curvature gradient, respectively. Using molecular dynamics simulations, we predict nanoscale droplets moving spontaneously at over 100  m/s on tapered surfaces. PMID:25062213

  16. Ceramic transactions: Functionally gradient materials. Volume 34

    SciTech Connect

    Holt, J.B.; Koizumi, Mitsue; Hirai, Toshio; Munir, Z.A.

    1993-01-01

    A functionally gradient material (FGM) is a composite that smoothly transitions from one material at one surface to another material at the opposite surface. Metals and ceramics are usually the materials that are combined in a controlled manner to optimize a specific property. The First International Symposium on Functionally Gradient Materials was held in Sendai, Japan, in August 1990. Contained in the present volume are the Proceedings of the Second International Symposium on Functionally Gradient Materials, presented at the Third International Ceramic Science and Technology Congress, held in San Francisco, CA, November 1-4, 1992. The papers presented here are divided into eight sections: the concept of FGM; mathematical modeling; methods of fabrication; material evaluation; applications; joining processes in FGM; process characterization; and design considerations. Separate abstracts are provided for each of the 54 papers.

  17. Stereo transparency and the disparity gradient limit

    NASA Technical Reports Server (NTRS)

    McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Several studies (Vision Research 15 (1975) 583; Perception 9 (1980) 671) have shown that binocular fusion is limited by the disparity gradient (disparity/distance) separating image points, rather than by their absolute disparity values. Points separated by a gradient >1 appear diplopic. These results are sometimes interpreted as a constraint on human stereo matching, rather than a constraint on fusion. Here we have used psychophysical measurements on stereo transparency to show that human stereo matching is not constrained by a gradient of 1. We created transparent surfaces composed of many pairs of dots, in which each member of a pair was assigned a disparity equal and opposite to the disparity of the other member. For example, each pair could be composed of one dot with a crossed disparity of 6' and the other with uncrossed disparity of 6', vertically separated by a parametrically varied distance. When the vertical separation between the paired dots was small, the disparity gradient for each pair was very steep. Nevertheless, these opponent-disparity dot pairs produced a striking appearance of two transparent surfaces for disparity gradients ranging between 0.5 and 3. The apparent depth separating the two transparent planes was correctly matched to an equivalent disparity defined by two opaque surfaces. A test target presented between the two transparent planes was easily detected, indicating robust segregation of the disparities associated with the paired dots into two transparent surfaces with few mismatches in the target plane. Our simulations using the Tsai-Victor model show that the response profiles produced by scaled disparity-energy mechanisms can account for many of our results on the transparency generated by steep gradients.

  18. Advances in single chain technology.

    PubMed

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-01

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses. PMID:26505056

  19. Advances in single chain technology.

    PubMed

    Gonzalez-Burgos, Marina; Latorre-Sanchez, Alejandro; Pomposo, José A

    2015-10-01

    The recent ability to manipulate and visualize single atoms at atomic level has given rise to modern bottom-up nanotechnology. Similar exquisite degree of control at the individual polymeric chain level for producing functional soft nanoentities is expected to become a reality in the next few years through the full development of so-called "single chain technology". Ultra-small unimolecular soft nano-objects endowed with useful, autonomous and smart functions are the expected, long-term valuable output of single chain technology. This review covers the recent advances in single chain technology for the construction of soft nano-objects via chain compaction, with an emphasis in dynamic, letter-shaped and compositionally unsymmetrical single rings, complex multi-ring systems, single chain nanoparticles, tadpoles, dumbbells and hairpins, as well as the potential end-use applications of individual soft nano-objects endowed with useful functions in catalysis, sensing, drug delivery and other uses.

  20. High pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, Christian G.; Sakaji, Richard H.

    1985-01-01

    A gradient mixer which effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum "band-broadening".

  1. Partial separation of fullerenes by gradient sublimation

    SciTech Connect

    Yeretzian, C.; Wiley, J.B.; Holczer, K.; Su, T.; Nguyen, S.; Kaner, R.B.; Whetten, R.L. )

    1993-09-30

    An experimental technique is investigated to separate/enrich fullerenes of metallofullerenes, exploiting differences in sublimation temperatures without the use of solvents. Fullerenes are sublimed out of the soot and deposited on a quartz rod along a temperature gradient (gradient sublimation). In a position-sensitive experiment the composition of the deposit on the rod is monitored by laser-desorption mass spectrometry. Strongly enriched regions containing specific fullerene molecules (i.e., C[sub 84] or LaC[sub 82]) are observed. Furthermore, C[sub 74], which could not be extracted from the soot by organic solvents, sublimes out of the soot. 26 refs., 6 figs.

  2. Acceleration gradient of a plasma wakefield accelerator

    SciTech Connect

    Uhm, Han S.

    2008-02-25

    The phase velocity of the wakefield waves is identical to the electron beam velocity. A theoretical analysis indicates that the acceleration gradient of the wakefield accelerator normalized by the wave breaking amplitude is K{sub 0}({xi})/K{sub 1}({xi}), where K{sub 0}({xi}) and K{sub 1}({xi}) are the modified Bessel functions of the second kind of order zero and one, respectively and {xi} is the beam parameter representing the beam intensity. It is also shown that the beam density must be considerably higher than the diffuse plasma density for the large radial velocity of plasma electrons that are required for a high acceleration gradient.

  3. Design of spherical symmetric gradient index lenses

    NASA Astrophysics Data System (ADS)

    Miñano, Juan C.; Grabovičkić, Dejan; Benítez, Pablo; González, Juan C.; Santamaría, Asunción

    2012-10-01

    Spherical symmetric refractive index distributions also known as Gradient Index lenses such as the Maxwell-Fish-Eye (MFE), the Luneburg or the Eaton lenses have always played an important role in Optics. The recent development of the technique called Transformation Optics has renewed the interest in these gradient index lenses. For instance, Perfect Imaging within the Wave Optics framework has recently been proved using the MFE distribution. We review here the design problem of these lenses, classify them in two groups (Luneburg moveable-limits and fixed-limits type), and establish a new design techniques for each type of problem.

  4. Onset of synchronization in complex gradient networks.

    PubMed

    Wang, Xingang; Huang, Liang; Guan, Shuguang; Lai, Ying-Cheng; Lai, Choy Heng

    2008-09-01

    Recently, it has been found that the synchronizability of a scale-free network can be enhanced by introducing some proper gradient in the coupling. This result has been obtained by using eigenvalue-spectrum analysis under the assumption of identical node dynamics. Here we obtain an analytic formula for the onset of synchronization by incorporating the Kuramoto model on gradient scale-free networks. Our result provides quantitative support for the enhancement of synchronization in such networks, further justifying their ubiquity in natural and in technological systems. PMID:19045491

  5. Enhancing synchronization based on complex gradient networks.

    PubMed

    Wang, Xingang; Lai, Ying-Cheng; Lai, Choy Heng

    2007-05-01

    The ubiquity of scale-free networks in nature and technological applications and the finding that such networks may be more difficult to synchronize than homogeneous networks pose an interesting phenomenon for study in network science. We argue and demonstrate that, in the presence of some proper gradient fields, scale-free networks can be more synchronizable than homogeneous networks. The gradient structure can in fact arise naturally in any weighted and asymmetrical networks; based on this we propose a coupling scheme that permits effective synchronous dynamics on the network. The synchronization scheme is verified by eigenvalue analysis and by direct numerical simulations using networks of nonidentical chaotic oscillators. PMID:17677146

  6. 17 GHz High Gradient Accelerator Research

    SciTech Connect

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  7. The effect of density gradients on hydrometers

    NASA Astrophysics Data System (ADS)

    Heinonen, Martti; Sillanpää, Sampo

    2003-05-01

    Hydrometers are simple but effective instruments for measuring the density of liquids. In this work, we studied the effect of non-uniform density of liquid on a hydrometer reading. The effect induced by vertical temperature gradients was investigated theoretically and experimentally. A method for compensating for the effect mathematically was developed and tested with experimental data obtained with the MIKES hydrometer calibration system. In the tests, the method was found reliable. However, the reliability depends on the available information on the hydrometer dimensions and density gradients.

  8. Gradient Learning Algorithms for Ontology Computing

    PubMed Central

    Gao, Wei; Zhu, Linli

    2014-01-01

    The gradient learning model has been raising great attention in view of its promising perspectives for applications in statistics, data dimensionality reducing, and other specific fields. In this paper, we raise a new gradient learning model for ontology similarity measuring and ontology mapping in multidividing setting. The sample error in this setting is given by virtue of the hypothesis space and the trick of ontology dividing operator. Finally, two experiments presented on plant and humanoid robotics field verify the efficiency of the new computation model for ontology similarity measure and ontology mapping applications in multidividing setting. PMID:25530752

  9. High-pressure liquid chromatographic gradient mixer

    DOEpatents

    Daughton, C.G.; Sakaji, R.H.

    1982-09-08

    A gradient mixer effects the continuous mixing of any two miscible solvents without excessive decay or dispersion of the resultant isocratic effluent or of a linear or exponential gradient. The two solvents are fed under low or high pressure by means of two high performance liquid chromatographic pumps. The mixer comprises a series of ultra-low dead volume stainless steel tubes and low dead volume chambers. The two solvent streams impinge head-on at high fluxes. This initial nonhomogeneous mixture is then passed through a chamber packed with spirally-wound wires which cause turbulent mixing thereby homogenizing the mixture with minimum band-broadening.

  10. Relativistic klystron research for high gradient accelerators

    SciTech Connect

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.

    1988-06-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron--positron colliders, compact accelerators, and FEL sources. We have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our first klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 7 figs.

  11. Critique of the vertical gradient of gravity

    NASA Technical Reports Server (NTRS)

    Hammer, Sigmund

    1989-01-01

    Growing interest in high precision studies of the Earth's gravitational field warrant a critical review of precision requirements to yield useful results. Several problems are now under consideration. All of these problems involve, more or less, the precise value of the vertical gradients of gravity. The principle conclusion from this review is that the essential absence of Free Air Vertical Gravity Gradient control and actual values of gravimeter calibrations require serious attention. Large errors in high topography on official published gravity maps also cannot be ignored.

  12. Optical and Electric Gradients in Photosynthesis

    NASA Astrophysics Data System (ADS)

    Dobek, Andrzej

    2007-11-01

    Light-gradient photovoltage is detected in most of the photosynthetic systems. The effect depends on the intensity, duration and wavelength of short light pulse excitation and on the redox state of the illuminated photosynthetic membrane. In the region of small absorption the polarity of the photovoltage is negative, whereas in the high absorption regions it is positive. The sign depends moreover on the geometrical dimensions of the membrane and on the difference in the refractive indices between the membrane and the surrounding aqueous phase. Light-gradient photovoltage studies permit a quantitative determination of the membrane birefringence and refractive index anisotropy.

  13. Electron heat transport down steep temperature gradients

    SciTech Connect

    Matte, J.P.; Virmont, J.

    1982-12-27

    Electron heat transport is studied by numerically solving the Fokker-Planck equation, with a spherical harmonic representation of the distribution function. The first two terms (f/sub 0/, f/sub 1/) suffice, even in steep temperature gradients. Deviations from the Spitzer-Haerm law appear for lambda/L/sub T/ ((mean free path)/(temperature gradient length))> or approx. =0.01, as a result of non-Maxwellian f/sub 0/. For lambda/L/sub T/> or approx. =1, the heat flux is (1/3) of the free-streaming value. In intermediate cases, a harmonic law describes well the hottest part of the plasma.

  14. Gravity gradient determination with tethered systems

    NASA Technical Reports Server (NTRS)

    Kalaghan, P. M.; Colombo, G.

    1978-01-01

    A detailed investigation of the Earth's gravity field is needed for application to modern solid earth and oceanic investigations. The use of gravity gradiometers presents a technique to measure the intermediate wavelength components of the gravity field. One configuration of a gradiometer involves a tethered pair of masses orbiting the Earth and stabilized by vertical gravity gradient of the earth. A mesurement of the tension in such a system, called the DUMBBELL system is described. It allows the determination of the vertical gradient of the anomalous component of the Earth's gravtiy field. Preliminary analysis of the dynamics, mechanization, expected signal levels and noise environment indicates that the Dumbbell system is feasible.

  15. Chain-Chain Interaction between Surfactant Monolayers and long-chain Alkanes and Alcohols

    NASA Astrophysics Data System (ADS)

    Miranda, Paulo; Pflumio, V.; Saijo, H.; Shen, Y. R.

    1997-03-01

    Infrared-Visible Sum-frequency Vibrational Spectroscopy is used to study various self-assembled surfactant monolayers adsorbed at interfaces between fused quartz and liquid alkanes and alcohols. Information about chain conformation can be deduced from the polarization-dependent spectra. Changing the chain lengths of both alkanes and surfactants, we find that if both are sufficiently long, the amount of trans-gauche defects of the surfactant chains can be significantly reduced, via the chain-chain interaction. This, however, will not happen if the surfactant monolayer has too low a surface density. In the case of long-chain alcohols, the alcohol molecules form a hydrogen-bonding network at the interface. To minimize disruption of this network, the surfactant chains become highly disordered and folded into a compact conformation, to reduce their surface area exposed to the alcohol (hydrophobic effect). However, for a sufficiently long alcohol dissolved in a non-polar solvent, the hydrogen-bonding network is disrupted. The alcohol molecules appear to adsorb at the interface and straighten the surfactant chains via the chain-chain interaction. Work supported by DOE under contract No DE-AC03-76SF00098.

  16. Filtering requirements for gradient-based optical flow measurement.

    PubMed

    Christmas, W J

    2000-01-01

    The accuracy of gradient-based optical flow algorithms depends on the ability to measure intensity gradients accurately. We show how the temporal gradient can be compromised by temporal aliasing arising from motion and how appropriate post-sampling spatial filtering improves the situation. We also demonstrate a benefit of using higher-order gradient estimators.

  17. Human laminin B2 chain

    SciTech Connect

    Pikkarainen, T.; Kallunki, T.; Tryggvason, K.

    1988-05-15

    The complete amino acid sequence of the human laminin B2 chains has been determined by sequencing of cDNA clones. The six overlapping clones studied cover approximately 7.5 kilobases of which 5312 nucleotides were sequenced from the 5' end. The open reading frame codes for a 33-residue signal peptide and a 1576-residue B2 chain proper, which is 189 residues less than in the highly homologous B1 chain. Computer analysis revealed that the B2 chain consists of distinct domains that contain helical structures, cysteine-rich repeats, and globular regions, as does the B1 chain. However, domain ..cap alpha.. and domain ..beta.. of the B1 chain have no counterpart in B2, and the number of cysteine-rich repeats is 12, or 1 less than in the B1 chain. The degree of homology between the two chains is highest in the cysteine repeat-containing domains III and V where 40% of the residues match. However, in helical domains I/II only 16% of residues match. The results demonstrate that the B1 and B2 chains of laminin are highly homologous proteins that are probably the products of related genes.

  18. Translocation of a Polymer Chain across a Nanopore: A Brownian Dynamics Simulation Study

    NASA Technical Reports Server (NTRS)

    Tian, Pu; Smith, Grant D.

    2003-01-01

    We carried out Brownian dynamics simulation studies of the translocation of single polymer chains across a nanosized pore under the driving of an applied field (chemical potential gradient). The translocation process can be either dominated by the entropic barrier resulted from restricted motion of flexible polymer chains or by applied forces (or chemical gradient across the wall), we focused on the latter case in our studies. Calculation of radius of gyrations at the two opposite sides of the wall shows that the polymer chains are not in equilibrium during the translocation process. Despite this fact, our results show that the one-dimensional diffusion and the nucleation model provide an excellent description of the dependence of average translocation time on the chemical potential gradients, the polymer chain length and the solvent viscosity. In good agreement with experimental results and theoretical predictions, the translocation time distribution of our simple model shows strong non-Gaussian characteristics. It is observed that even for this simple tubelike pore geometry, more than one peak of translocation time distribution can be generated for proper pore diameter and applied field strengths. Both repulsive Weeks-Chandler-Anderson and attractive Lennard-Jones polymer-nanopore interaction were studied, attraction facilitates the translocation process by shortening the total translocation time and dramatically improve the capturing of polymer chain. The width of the translocation time distribution was found to decrease with increasing temperature, increasing field strength, and decreasing pore diameter.

  19. Chain Dynamics in Magnetorheological Suspensions

    NASA Technical Reports Server (NTRS)

    Gast, A. P.; Furst, E. M.

    1999-01-01

    Magnetorheological (MR) suspensions are composed of colloidal particles which acquire dipole moments when subjected to an external magnetic field. At sufficient field strengths and concentrations, the dipolar particles rapidly aggregate to form long chains. Subsequent lateral cross-linking of the dipolar chains is responsible for a rapid liquid-to-solid-like rheological transition. The unique, magnetically-activated rheological properties of MR suspensions make them ideal for interfacing mechanical systems to electronic controls. Additionally, the ability to experimentally probe colloidal suspensions interacting through tunable anisotropic potentials is of fundamental interest. Our current experimental work has focused on understanding the fluctuations of dipolar chains. It has been proposed by Halsey and Toor (HT) that the strong Landau-Peierls thermal fluctuations of dipolar chains could be responsible for long-range attractions between chains. Such interactions will govern the long-time relaxation of MR suspensions. We have synthesized monodisperse neutrally buoyant MR suspensions by density matching stabilized ferrofluid emulsion droplets with D2O. This allows us to probe the dynamics of the dipolar chains using light scattering without gravitational, interfacial, and polydispersity effects to resolve the short-wavelength dynamics of the dipolar chains. We used diffusing wave spectroscopy to measure these dynamics. The particle displacements at short times that show an independence to the field strength, but at long times exhibit a constrained, sub-diffusive motion that slows as the dipole strength is increased. The experiments are in good qualitative agreement with Brownian dynamics simulations of dipolar chains. Although there have been several important and detailed studies of the structure and interactions in MR suspensions, there has not been conclusive evidence that supports or contradicts the HT model prediction that long-range interactions exist between

  20. Chemotactic Signaling by Single-Chain Chemoreceptors

    PubMed Central

    Mowery, Patricia; Ames, Peter; Reiser, Rebecca H.; Parkinson, John S.

    2015-01-01

    Bacterial chemoreceptors of the methyl-accepting chemotaxis protein (MCP) family operate in commingled clusters that enable cells to detect and track environmental chemical gradients with high sensitivity and precision. MCP homodimers of different detection specificities form mixed trimers of dimers that facilitate inter-receptor communication in core signaling complexes, which in turn assemble into a large signaling network. The two subunits of each homodimeric receptor molecule occupy different locations in the core complexes. One subunit participates in trimer-stabilizing interactions at the trimer axis, the other lies on the periphery of the trimer, where it can interact with two cytoplasmic proteins: CheA, a signaling autokinase, and CheW, which couples CheA activity to receptor control. As a possible tool for independently manipulating receptor subunits in these two structural environments, we constructed and characterized fused genes for the E. coli serine chemoreceptor Tsr that encoded single-chain receptor molecules in which the C-terminus of the first Tsr subunit was covalently connected to the N-terminus of the second with a polypeptide linker. We showed with soft agar assays and with a FRET-based in vivo CheA kinase assay that single-chain Tsr~Tsr molecules could promote serine sensing and chemotaxis responses. The length of the connection between the joined subunits was critical. Linkers nine residues or shorter locked the receptor in a kinase-on state, most likely by distorting the native structure of the receptor HAMP domain. Linkers 22 or more residues in length permitted near-normal Tsr function. Few single-chain molecules were found as monomer-sized proteolytic fragments in cells, indicating that covalently joined receptor subunits were responsible for mediating the signaling responses we observed. However, cysteine-directed crosslinking, spoiling by dominant-negative Tsr subunits, and rearrangement of ligand-binding site lesions revealed subunit

  1. Color gradient background oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael

    2015-11-01

    Background oriented schlieren (BOS) imaging is a method of visualizing refractive disturbances through the comparison of digital images. By comparing images with and without a refractive disturbance visualizations can be achieved via a range of image processing methods. Traditionally, backgrounds consist of random distributions of high contrast speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern. Here a novel method of using color gradient backgrounds is explored as an alternative. The gradient background eliminates the need to perform an image correlation between the two digital images, as simple image subtraction can be used to identify the location, magnitude, and direction of the image distortions. This allows for quicker processing. Two-dimensional gradient backgrounds using multiple colors are shown. The gradient backgrounds are demonstrated to provide quantitative data limited only by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Additional results include the use of a computer screen as a background.

  2. High-gradient continuous-casting furnace

    NASA Technical Reports Server (NTRS)

    Scheuermann, C. M.; Flemings, M. C.; Neff, M. A.; Rickinson, B. A.; Young, K. P.

    1979-01-01

    High gradient allows rapid growth rates in directionally-solidified eutectic alloys. Furnace design permits cost reductions in directional solidification process through its increased solidification rates, which reduces melt/mold interaction. It produces structural engineering materials for any application requiring properties directionally-solidified eutectic materials.

  3. Multi-gradient drilling method and system

    DOEpatents

    Maurer, William C.; Medley, Jr., George H.; McDonald, William J.

    2003-01-01

    A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.

  4. Density Gradient Columns for Chemical Displays.

    ERIC Educational Resources Information Center

    Guenther, William B.

    1986-01-01

    Procedures for preparing density gradient columns for chemical displays are presented. They include displays illustrating acid-base reactions, metal ion equilibria, and liquid density. The lifetime of these metastable displays is surprising, some lasting for months in display cabinets. (JN)

  5. On the Vertical Gradient in CO2

    NASA Astrophysics Data System (ADS)

    Stine, A. R.; Fung, I. Y.

    2008-12-01

    Attempts to constrain surface fluxes of carbon from atmospheric measurements of carbon dioxide have primarily focused on surface boundary layer measurements, because information about surface fluxes is least diluted close to the locations where the fluxes occur. However, errors in model ventilation of air in the vertical can be misinterpreted as local surface fluxes. Satellites which measure column integrated CO2 are expected to represent a major advance in part because they observe the entire atmospheric column. Recent work has highlighted the fact that vertical gradients in carbon concentrations can give us information about where vertical mixing errors are likely to be misinterpreted as local surface fluxes, but passive tracer evidence suggests that models that capture vertical profiles on the ocean do poorly on the land (and vice versa), suggesting that the problem of correctly treating vertical mixing in inverse studies is more fundamental than picking the "best" model. We consider observations of the vertical gradient in CO2 from aircrafts and from a comparison of satellites that observe in the near infrared (which observe the column integrated CO2 field) and the thermal infrared (which observe the upper troposphere). We evaluate the feasibility of using these satellites for determining the vertical gradient in CO2. We examine how observations of the vertical gradient of CO2 allow us to differentiate the imprint of vertical mixing and the imprint in surface fluxes on the observed field of atmospheric CO2.

  6. Gradient nanofiber scaffolds for tissue engineering.

    PubMed

    Seidi, Azadeh; Sampathkumar, Kaarunya; Srivastava, Alok; Ramakrishna, Seeram; Ramalingam, Murugan

    2013-07-01

    Scaffolds are one of the key factors for the success of tissue engineering, in particular when dealing with anchorage-dependent cells. The concept of using scaffolds in tissue engineering lies in mimicking the physical, chemical and biological features of native extracellular matrix (ECM) in order to support cell function, which in turn regulates cellular microenvironment that directs cell growth and subsequent tissue formation. Nanofibers fabricated from both synthetic and natural polymers are being used as scaffolds in many tissue engineering applications. At the molecular level, native ECM is made up of a gradient of fibrous proteins and polysaccharides that are nanoscale structures. The gradient cues of ECM, directs critical cell behaviors such as alignment, motility and differentiation, particularly in the region between soft and hard tissues called interfacial tissue. Therefore, it is essential to develop gradient nanofiber scaffolds particularly for interfacial tissue engineering applications. Keeping these points in view, in this article, we review the recent developments of gradient nanofiber scaffolds, their design strategies, and their applications in tissue engineering. PMID:23901487

  7. Velocity gradients and microturbulence in Cepheids.

    NASA Technical Reports Server (NTRS)

    Karp, A. H.

    1973-01-01

    Variations of the microturbulent velocity with phase and height in the atmosphere have been reported in classical Cepheids. It is shown that these effects can be understood in terms of variations of the velocity gradient in the atmospheres of these stars.

  8. Joining of Tungsten Armor Using Functional Gradients

    SciTech Connect

    John Scott O'Dell

    2006-12-31

    The joining of low thermal expansion armor materials such as tungsten to high thermal expansion heat sink materials has been a major problem in plasma facing component (PFC) development. Conventional planar bonding techniques have been unable to withstand the high thermal induced stresses resulting from fabrication and high heat flux testing. During this investigation, innovative functional gradient joints produced using vacuum plasma spray forming techniques have been developed for joining tungsten armor to copper alloy heat sinks. A model was developed to select the optimum gradient architecture. Based on the modeling effort, a 2mm copper rich gradient was selected. Vacuum plasma pray parameters and procedures were then developed to produce the functional gradient joint. Using these techniques, dual cooling channel, medium scale mockups (32mm wide x 400mm length) were produced with vacuum plasma spray formed tungsten armor. The thickness of the tungsten armor was up to 5mm thick. No evidence of debonding at the interface between the heat sink and the vacuum plasma sprayed material was observed.

  9. Examining the Education Gradient in Chronic Illness

    ERIC Educational Resources Information Center

    Chatterji, Pinka; Joo, Heesoo; Lahiri, Kajal

    2015-01-01

    We examine the education gradient in diabetes, hypertension, and high cholesterol. We take into account diagnosed as well as undiagnosed cases and use methods accounting for the possibility of unmeasured factors that are correlated with education and drive both the likelihood of having illness and the propensity to be diagnosed. Data come from the…

  10. Ocean thermal gradient hydraulic power plant.

    PubMed

    Beck, E J

    1975-07-25

    Solar energy stored in the oceans may be used to generate power by exploiting ploiting thermal gradients. A proposed open-cycle system uses low-pressure steam to elevate vate water, which is then run through a hydraulic turbine to generate power. The device is analogous to an air lift pump. PMID:17813707

  11. Uranium Distribution along the Salinity Gradient

    NASA Astrophysics Data System (ADS)

    Yoon, C.; Yoon, H.; Seo, J.; Lee, J.; Chung, K.

    2006-12-01

    Uranium distribution has been examined in the estuarine waters of the Keum River, Korea. Water samples were collected along a salinity gradient, range from 0.2 to 31.5 psu. Dissolved uranium in the samples has been extracted by C-18 SPE cartridge after pre-treatment. Extraction of uranium by C-18 cartridge after complexation with APDC/DDDC shows about 90 % recovery. After concentration of sample onto C-18 cartridge, uranium complex has been sequentially extracted by 50 % and 100 % acetonitrile, respectively. Result shows good recovery efficiency at low pH (2.5 _ 3.0) during the pre-treatment of sample which was presumably related with destabilization of uranium-carbonate complex. In the estuary, uranium shows typical conservative behavior along the salinity gradient. The current result substantiates earlier reports that uranium is conservatively transported from the river to the ocean. Most of dissolved trace metals, except cadmium, decreased with increasing salinity in the estuary. Dissolved organic carbon also decreased along the salinity gradient. Copper was rapidly removed during the mixing with seawaters as a result of organic matter flocculation. Dissolved molybdenum, vanadium and uranium distribution in the estuary showed similarities that those concentration increase along the salinity gradient.

  12. Magnetic Control of Concentration Gradient in Microgravity

    NASA Technical Reports Server (NTRS)

    Leslie, Fred; Ramachandran, Narayanan

    2005-01-01

    A report describes a technique for rapidly establishing a fluid-concentration gradient that can serve as an initial condition for an experiment on solutal instabilities associated with crystal growth in microgravity. The technique involves exploitation of the slight attractive or repulsive forces exerted on most fluids by a magnetic-field gradient. Although small, these forces can dominate in microgravity and therefore can be used to hold fluids in position in preparation for an experiment. The magnetic field is applied to a test cell, while a fluid mixture containing a concentration gradient is prepared by introducing an undiluted solution into a diluting solution in a mixing chamber. The test cell is then filled with the fluid mixture. Given the magnetic susceptibilities of the undiluted and diluting solutions, the magnetic-field gradient must be large enough that the magnetic force exceeds both (1) forces associated with the flow of the fluid mixture during filling of the test cell and (2) forces imposed by any residual gravitation and fluctuations thereof. Once the test cell has been filled with the fluid mixture, the magnetic field is switched off so that the experiment can proceed, starting from the proper initial conditions.

  13. Annular beam with segmented phase gradients

    NASA Astrophysics Data System (ADS)

    Cheng, Shubo; Wu, Liang; Tao, Shaohua

    2016-08-01

    An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owing to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.

  14. Escalation of polymerization in a thermal gradient

    PubMed Central

    Mast, Christof B.; Schink, Severin; Gerland, Ulrich; Braun, Dieter

    2013-01-01

    For the emergence of early life, the formation of biopolymers such as RNA is essential. However, the addition of nucleotide monomers to existing oligonucleotides requires millimolar concentrations. Even in such optimistic settings, no polymerization of RNA longer than about 20 bases could be demonstrated. How then could self-replicating ribozymes appear, for which recent experiments suggest a minimal length of 200 nt? Here, we demonstrate a mechanism to bridge this gap: the escalated polymerization of nucleotides by a spatially confined thermal gradient. The gradient accumulates monomers by thermophoresis and convection while retaining longer polymers exponentially better. Polymerization and accumulation become mutually self-enhancing and result in a hyperexponential escalation of polymer length. We describe this escalation theoretically under the conservative assumption of reversible polymerization. Taking into account the separately measured thermophoretic properties of RNA, we extrapolate the results for primordial RNA polymerization inside a temperature gradient in pores or fissures of rocks. With a dilute, nanomolar concentration of monomers the model predicts that a pore length of 5 cm and a temperature difference of 10 K suffice to polymerize 200-mers of RNA in micromolar concentrations. The probability to generate these long RNAs is raised by a factor of >10600 compared with polymerization in a physical equilibrium. We experimentally validate the theory with the reversible polymerization of DNA blocks in a laser-driven thermal trap. The results confirm that a thermal gradient can significantly enlarge the available sequence space for the emergence of catalytically active polymers. PMID:23630280

  15. Marine submicron aerosol gradients, sources and sinks

    NASA Astrophysics Data System (ADS)

    Ceburnis, Darius; Rinaldi, Matteo; Ovadnevaite, Jurgita; Martucci, Giovanni; Giulianelli, Lara; O'Dowd, Colin D.

    2016-10-01

    Aerosol principal sources and sinks over eastern North Atlantic waters were studied through the deployment of an aerosol chemistry gradient sampling system. The chemical gradients of primary and secondary aerosol components - specifically, sea salt (SS), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), nitrate, ammonium, oxalate, amines, methanesulfonic acid (MSA) and water-soluble organic nitrogen (WSON) - were examined in great detail. Sea salt fluxes were estimated by the boundary layer box model and ranged from 0.3 to 3.5 ng m-2 s-1 over the wind speed range of 5-12 m s-1 and compared well with the derived fluxes from existing sea salt source parameterisations. The observed seasonal pattern of sea salt gradients was mainly driven by wind stress in addition to the yet unquantified effect of marine OM modifying fractional contributions of SS and OM in sea spray. WIOM gradients were a complex combination of rising and waning biological activity, especially in the flux footprint area, and wind-driven primary sea spray production supporting the coupling of recently developed sea spray and marine OM parameterisations.

  16. Color gradient background-oriented schlieren imaging

    NASA Astrophysics Data System (ADS)

    Mier, Frank Austin; Hargather, Michael J.

    2016-06-01

    Background-oriented schlieren is a method of visualizing refractive disturbances by comparing digital images with and without a refractive disturbance distorting a background pattern. Traditionally, backgrounds consist of random distributions of high-contrast color transitions or speckle patterns. To image a refractive disturbance, a digital image correlation algorithm is used to identify the location and magnitude of apparent pixel shifts in the background pattern between the two images. Here, a novel method of using color gradient backgrounds is explored as an alternative that eliminates the need to perform a complex image correlation between the digital images. A simple image subtraction can be used instead to identify the location, magnitude, and direction of the image distortions. Gradient backgrounds are demonstrated to provide quantitative data only limited by the camera's pixel resolution, whereas speckle backgrounds limit resolution to the size of the random pattern features and image correlation window size. Quantitative measurement of density in a thermal boundary layer is presented. Two-dimensional gradient backgrounds using multiple colors are demonstrated to allow measurement of two-dimensional refractions. A computer screen is used as the background, which allows for rapid modification of the gradient to tune sensitivity for a particular application.

  17. HOT PRESSING WITH A TEMPERATURE GRADIENT

    DOEpatents

    Hausner, H.H.

    1958-05-20

    A method is described for producing powder metal compacts with a high length to width ratio, which are of substantially uniform density. The process consists in arranging a heating coil around the die and providing a temperature gradient along the length of the die with the highest temperature at the point of the compact farthest away from the ram or plunger.

  18. GPS, GNSS, and Ionospheric Density Gradients

    NASA Astrophysics Data System (ADS)

    Kintner, P. M.; O'Hanlon, B.; Humphreys, T. E.

    2009-12-01

    Ionospheric density and density gradients affect GNSS signals in two ways. They can introduce ranging errors or irregularities that form on the density gradients producing scintillation. Here we focus on the issue of ranging errors. There are two approaches to mitigating ranging errors produced by ionospheric density gradients which can be 20-30 m during major magnetic storms. The first approach is to use a reference receiver(s) to determine the ionospheric contribution to ranging errors. The ranging error is then transmitted to the user for correction within the mobile receiver. This approach is frequently referred to as differential GPS and, when multiple reference receivers are used, the system is referred to as an augmentation system. This approach is vulnerable to ionospheric gradients depending on the reference receiver spacing(s) and latency in applying the correction within the mobile receiver. The second approach is to transmit navigation signals at two frequencies and then use the relative delay between the two signals to both estimate the ranging error and calculate the correct range. Currently the dual frequency technique is used by US military receivers with an encryption key and some civilian receivers which must be stationary and average over times long compared to those required for navigation. However, the technology of space based radio navigation is changing. GPS will soon be a system with three frequencies and multiple codes. Furthermore Europe, Russia, and China are developing independent systems to complement and compete with GPS while India and Japan are developing local systems to enhance GPS performance in their regions. In this talk we address two questions. How do density gradients affect augmentation systems including the social consequences and will the new GPS/GNSS systems with multiple civilian frequencies be able to remove ionospheric errors. The answers are not at all clear.

  19. Gradient zone-boundary control in salt-gradient solar ponds

    DOEpatents

    Hull, J.R.

    1982-09-29

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizeable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  20. Building an efficient supply chain.

    PubMed

    Scalise, Dagmara

    2005-08-01

    Realizing at last that supply chain management can produce efficiencies and save costs, hospitals are beginning to adopt practices from other industries, such as the concept of extended supply chains, to improve product flow. They're also investing in enterprise planning resource software, radio frequency identification and other technologies, using quality data to drive standardization and streamlining processes.

  1. Verifying the Hanging Chain Model

    ERIC Educational Resources Information Center

    Karls, Michael A.

    2013-01-01

    The wave equation with variable tension is a classic partial differential equation that can be used to describe the horizontal displacements of a vertical hanging chain with one end fixed and the other end free to move. Using a web camera and TRACKER software to record displacement data from a vibrating hanging chain, we verify a modified version…

  2. Longitudinal spin current induced by a temperature gradient in a ferromagnetic insulator

    NASA Astrophysics Data System (ADS)

    Etesami, S. R.; Chotorlishvili, L.; Sukhov, A.; Berakdar, J.

    2014-07-01

    Based on the solution of the stochastic Landau-Lifshitz-Gilbert equation discretized for a ferromagnetic chain subject to a uniform temperature gradient, we present a detailed numerical study of the spin dynamics with a particular focus on finite-size effects. We calculate and analyze the net longitudinal spin current for various temperature gradients, chain lengths, and external static magnetic fields. In addition, we model an interface formed by a nonuniformly magnetized finite-size ferromagnetic insulator and a normal metal and inspect the effects of enhanced Gilbert damping on the formation of the space-dependent spin current within the chain. One aim of this study is the inspection of the spin-Seebeck effect beyond the linear response regime. We find that within our model the microscopic mechanism of the spin-Seebeck current is the magnon accumulation effect quantified in terms of the exchange spin torque. According to our results, this effect drives the spin-Seebeck current even in the absence of a deviation between the magnon and phonon temperature profiles. The influence of the dipole-dipole interaction and domain formation on the spin current is exposed and discussed. Our theoretical findings are in line with the recently observed experimental results by Agrawal et al. [Phys. Rev. Lett. 109, 107204 (2012), 10.1103/PhysRevLett.109.107204].

  3. Shadowgraph Study of Gradient Driven Fluctuations

    NASA Technical Reports Server (NTRS)

    Cannell, David; Nikolaenko, Gennady; Giglio, Marzio; Vailati, Alberto; Croccolo, Fabrizio; Meyer, William

    2002-01-01

    A fluid or fluid mixture, subjected to a vertical temperature and/or concentration gradient in a gravitational field, exhibits greatly enhanced light scattering at small angles. This effect is caused by coupling between the vertical velocity fluctuations due to thermal energy and the vertically varying refractive index. Physically, small upward or downward moving regions will be displaced into fluid having a refractive index different from that of the moving region, thus giving rise to the enhanced scattering. The scattered intensity is predicted to vary with scattering wave vector q, as q(sup -4), for sufficiently large q, but the divergence is quenched by gravity at small q. In the absence of gravity, the long wavelength fluctuations responsible for the enhanced scattering are predicted to grow until limited by the sample dimensions. It is thus of interest to measure the mean-squared amplitude of such fluctuations in the microgravity environment for comparison with existing theory and ground based measurements. The relevant wave vectors are extremely small, making traditional low-angle light scattering difficult or impossible because of stray elastically scattered light generated by optical surfaces. An alternative technique is offered by the shadowgraph method, which is normally used to visualize fluid flows, but which can also serve as a quantitative tool to measure fluctuations. A somewhat novel shadowgraph apparatus and the necessary data analysis methods will be described. The apparatus uses a spatially coherent, but temporally incoherent, light source consisting of a super-luminescent diode coupled to a single-mode optical fiber in order to achieve extremely high spatial resolution, while avoiding effects caused by interference of light reflected from the various optical surfaces that are present when using laser sources. Results obtained for a critical mixture of aniline and cyclohexane subjected to a vertical temperature gradient will be presented. The

  4. Developing sustainable food supply chains.

    PubMed

    Smith, B Gail

    2008-02-27

    This paper reviews the opportunities available for food businesses to encourage consumers to eat healthier and more nutritious diets, to invest in more sustainable manufacturing and distribution systems and to develop procurement systems based on more sustainable forms of agriculture. The important factors in developing more sustainable supply chains are identified as the type of supply chain involved and the individual business attitude to extending responsibility for product quality into social and environmental performance within their own supply chains. Interpersonal trust and working to standards are both important to build more sustainable local and many conserved food supply chains, but inadequate to transform mainstream agriculture and raw material supplies to the manufactured and commodity food markets. Cooperation among food manufacturers, retailers, NGOs, governmental and farmers' organizations is vital in order to raise standards for some supply chains and to enable farmers to adopt more sustainable agricultural practices. PMID:17766237

  5. The roles of productivity and ecosystem size in determining food chain length in tropical terrestrial ecosystems.

    PubMed

    Young, Hillary S; McCauley, Douglas J; Dunbar, Robert B; Hutson, Michael S; Ter-Kuile, Ana Miller; Dirzo, Rodolfo

    2013-03-01

    Many different drivers, including productivity, ecosystem size, and disturbance, have been considered to explain natural variation in the length of food chains. Much remains unknown about the role of these various drivers in determining food chain length, and particularly about the mechanisms by which they may operate in terrestrial ecosystems, which have quite different ecological constraints than aquatic environments, where most food chain length studies have been thus far conducted. In this study, we tested the relative importance of ecosystem size and productivity in influencing food chain length in a terrestrial setting. We determined that (1) there is no effect of ecosystem size or productive space on food chain length; (2) rather, food chain length increases strongly and linearly with productivity; and (3) the observed changes in food chain length are likely achieved through a combination of changes in predator size, predator behavior, and consumer diversity along gradients in productivity. These results lend new insight into the mechanisms by which productivity can drive changes in food chain length, point to potential for systematic differences in the drivers of food web structure between terrestrial and aquatic systems, and challenge us to consider how ecological context may control the drivers that shape food chain length.

  6. Neurofilament light chain

    PubMed Central

    Lu, Ching-Hua; Macdonald-Wallis, Corrie; Gray, Elizabeth; Pearce, Neil; Petzold, Axel; Norgren, Niklas; Giovannoni, Gavin; Fratta, Pietro; Sidle, Katie; Fish, Mark; Orrell, Richard; Howard, Robin; Talbot, Kevin; Greensmith, Linda; Kuhle, Jens

    2015-01-01

    Objective: To test blood and CSF neurofilament light chain (NfL) levels in relation to disease progression and survival in amyotrophic lateral sclerosis (ALS). Methods: Using an electrochemiluminescence immunoassay, NfL levels were measured in samples from 2 cohorts of patients with sporadic ALS and healthy controls, recruited in London (ALS/control, plasma: n = 103/42) and Oxford (ALS/control, serum: n = 64/36; paired CSF: n = 38/20). NfL levels in patients were measured at regular intervals for up to 3 years. Change in ALS Functional Rating Scale–Revised score was used to assess disease progression. Survival was evaluated using Cox regression and Kaplan–Meier analysis. Results: CSF, serum, and plasma NfL discriminated patients with ALS from healthy controls with high sensitivity (97%, 89%, 90%, respectively) and specificity (95%, 75%, 71%, respectively). CSF NfL was highly correlated with serum levels (r = 0.78, p < 0.0001). Blood NfL levels were approximately 4 times as high in patients with ALS compared with controls in both cohorts, and maintained a relatively constant expression during follow-up. Blood NfL levels at recruitment were strong, independent predictors of survival. The highest tertile of blood NfL at baseline had a mortality hazard ratio of 3.91 (95% confidence interval 1.98–7.94, p < 0.001). Conclusion: Blood-derived NfL level is an easily accessible biomarker with prognostic value in ALS. The individually relatively stable levels longitudinally offer potential for NfL as a pharmacodynamic biomarker in future therapeutic trials. Classification of evidence: This report provides Class III evidence that the NfL electrochemiluminescence immunoassay accurately distinguishes patients with sporadic ALS from healthy controls. PMID:25934855

  7. Iterative method for predistortion of MRI gradient waveforms.

    PubMed

    Harkins, Kevin D; Does, Mark D; Grissom, William A

    2014-08-01

    The purpose of this work is to correct for transient gradient waveform errors in magnetic resonance imaging (MRI), whether from eddy currents, group delay, or gradient amplifier nonlinearities, which are known to affect image quality. An iterative method is proposed to minimize error between desired and measured gradient waveforms, whose success does not depend on accurate knowledge of the gradient system impulse response. The method was applied to half-pulse excitation for 2-D ultra-short echo time (UTE) imaging on a small animal MRI system and to spiral 2-D excitation on a human 7T MRI system. Predistorted gradient waveforms reduced temporal signal variation caused by excitation gradient trajectory errors in 2-D UTE, and improved the quality of excitation patterns produced by spiral excitation pulses. Iterative gradient predistortion is useful for minimizing transient gradient errors without requiring accurate characterization of the gradient system impulse response. PMID:24801945

  8. Evidence of counter-gradient growth in western pond turtles (Actinemys marmorata) across thermal gradients

    USGS Publications Warehouse

    Snover, Melissa; Adams, Michael J.; Ashton, Donald T.; Bettaso, Jamie B.; Welsh, Hartwell H.

    2015-01-01

    Given the importance of size and age at reproductive maturity to population dynamics, this information on counter-gradient growth will improve our ability to understand and predict the consequences of dam operations for downstream turtle populations.

  9. Electrochemical fabrication of surface chemical gradients in thiol self-assembled monolayers with tailored work-functions.

    PubMed

    Fioravanti, Giulia; Lugli, Francesca; Gentili, Denis; Mucciante, Vittoria; Leonardi, Francesca; Pasquali, Luca; Liscio, Andrea; Murgia, Mauro; Zerbetto, Francesco; Cavallini, Massimiliano

    2014-10-01

    The studies on surface chemical gradients are constantly gaining interest both for fundamental studies and for technological implications in materials science, nanofluidics, dewetting, and biological systems. Here we report on a new approach that is very simple and very efficient, to fabricate surface chemical gradients of alkanethiols, which combines electrochemical desorption/partial readsorption, with the withdrawal of the surface from the solution. The gradient is then stabilized by adding a complementary thiol terminated with a hydroxyl group with a chain length comparable to desorbed thiols. This procedure allows us to fabricate a chemical gradient of the wetting properties and the substrate work-function along a few centimeters with a gradient slope higher than 5°/cm. Samples were characterized by cyclic voltammetry during desorption, static contact angle, XPS analysis, and Kelvin probe. Computer simulations based on the Dissipative Particle Dynamics methods were carried out considering a water droplet on a mixed SAM surface. The results help to rationalize the composition of the chemical gradient at different position on the Au surface.

  10. Gradient parameter and axial and field rays in the gradient-index crystalline lens model

    NASA Astrophysics Data System (ADS)

    Pérez, M. V.; Bao, C.; Flores-Arias, M. T.; Rama, M. A.; Gómez-Reino, C.

    2003-09-01

    Gradient-index models of the human lens have received wide attention in optometry and vision sciences for considering how changes in the refractive index profile with age and accommodation may affect refractive power. This paper uses the continuous asymmetric bi-elliptical model to determine gradient parameter and axial and field rays of the human lens in order to study the paraxial propagation of light through the crystalline lens of the eye.

  11. Detection of Rifampin Resistance in Mycobacterium tuberculosis by Double Gradient-Denaturing Gradient Gel Electrophoresis

    PubMed Central

    Scarpellini, Paolo; Braglia, Sergio; Carrera, Paola; Cedri, Maura; Cichero, Paola; Colombo, Alessia; Crucianelli, Rosella; Gori, Andrea; Ferrari, Maurizio; Lazzarin, Adriano

    1999-01-01

    We applied double gradient-denaturing gradient gel electrophoresis (DG-DGGE) for the rapid detection of rifampin (RMP) resistance from rpoB PCR products of Mycobacterium tuberculosis isolates and clinical samples. The results of this method were fully concordant with those of DNA sequencing and susceptibility testing analyses. DG-DGGE is a valid alternative to the other methods of detecting mutations for predicting RMP resistance. PMID:10508043

  12. Designing polyethylenes of complex chain architectures via Pd-diimine-catalyzed "living" ethylene polymerization.

    PubMed

    Ye, Zhibin; Xu, Lixin; Dong, Zhongmin; Xiang, Peng

    2013-07-18

    Polymer chain architecture is a critically important chain parameter governing intrinsically the properties and applications of polymers. The rapid developments in "living"/controlled polymerization techniques, particularly the controlled radical polymerization techniques, in the past two decades have enabled the precision synthesis of novel polymers having a great variety of complex yet well-defined chain architectures from various monomer stocks. For polyolefins synthesized via catalytic coordination polymerization, the design of complex chain architectures, however, has only started recently because of the relatively limited advancements in the catalytic "living" olefin polymerization technique. In this regard, the versatile Pd-diimine catalysts have provided some unprecedented opportunities, due to their outstanding features, in rendering successfully a novel class of polyethylenes of various new complex chain architectures through the "living" ethylene polymerization protocol. The complex chain architectures designed to date have included hyperbranched, hybrid hyperbranched-linear, block, gradient and block-gradient, star, telechelic, graft and comb, and surface-tethered polymer brushes. This Feature Article attempts to summarize the recent developments achieved in the area, with an emphasis on the synthetic strategies for the architectural design. These developments demonstrate the great potential for further advancements of this new exciting research area.

  13. Temperature gradients drive mechanical energy gradients in the flight muscle of Manduca sexta.

    PubMed

    George, N T; Sponberg, S; Daniel, T L

    2012-02-01

    A temperature gradient throughout the dominant flight muscle (dorsolongitudinal muscle, DLM(1)) of the hawkmoth Manduca sexta, together with temperature-dependent muscle contractile rates, demonstrates that significant spatial variation in power production is possible within a single muscle. Using in situ work-loop analyses under varying muscle temperatures and phases of activation, we show that regional differences in muscle temperature will induce a spatial gradient in the mechanical power output throughout the DLM(1). Indeed, we note that this power gradient spans from positive to negative values across the predicted temperature range. Warm ventral subunits produce positive power at their in vivo operating temperatures, and therefore act as motors. Concurrently, as muscle temperature decreases dorsally, the subunits produce approximately zero mechanical power output, acting as an elastic energy storage source, and negative power output, behaving as a damper. Adjusting the phase of activation further influences the temperature sensitivity of power output, significantly affecting the mechanical power output gradient that is expressed. Additionally, the separate subregions of the DLM(1) did not appear to employ significant physiological compensation for the temperature-induced differences in power output. Thus, although the components of a muscle are commonly thought to operate uniformly, a significant within-muscle temperature gradient has the potential to induce a mechanical power gradient, whereby subunits within a muscle operate with separate and distinct functional roles.

  14. Magnon localization and Bloch oscillations in finite Heisenberg spin chains in an inhomogeneous magnetic field.

    PubMed

    Kosevich, Yuriy A; Gann, Vladimir V

    2013-06-19

    We study the localization of magnon states in finite defect-free Heisenberg spin-1/2 ferromagnetic chains placed in an inhomogeneous magnetic field with a constant spatial gradient. Continuous transformation from the extended magnon states to the localized Wannier-Zeeman states in a finite spin chain placed in an inhomogeneous field is described both analytically and numerically. We describe for the first time the non-monotonic dependence of the energy levels of magnons, both long and short wavelength, on the magnetic field gradient, which is a consequence of magnon localization in a finite spin chain. We show that, in contrast to the destruction of the magnon band and the establishment of the Wannier-Stark ladder in a vanishingly small field gradient in an infinite chain, the localization of magnon states at the chain ends preserves the memory of the magnon band. Essentially, the localization at the lower- or higher-field chain end resembles the localization of the positive- or negative-effective-mass band quasiparticles. We also show how the beat dynamics of coherent superposition of extended spin waves in a finite chain in a homogeneous or weakly inhomogeneous field transforms into magnon Bloch oscillations of the superposition of localized Wannier-Zeeman states in a strongly inhomogeneous field. We provide a semiclassical description of the magnon Bloch oscillations and show that the correspondence between the quantum and semiclassical descriptions is most accurate for Bloch oscillations of the magnon coherent states, which are built from a coherent superposition of a large number of the nearest-neighbour Wannier-Zeeman states.

  15. Effects of predation risk across a latitudinal temperature gradient.

    PubMed

    Matassa, Catherine M; Trussell, Geoffrey C

    2015-03-01

    The nonconsumptive effects (NCEs) of predators on prey behavior and physiology can influence the structure and function of ecological communities. However, the strength of NCEs should depend on the physiological and environmental contexts in which prey must choose between food and safety. For ectotherms, temperature effects on metabolism and foraging rates may shape these choices, thereby altering NCE strength. We examined NCEs in a rocky intertidal food chain across a latitudinal sea surface temperature gradient within the Gulf of Maine. The NCEs of green crabs (Carcinus maenas) on the foraging, growth, and growth efficiency of prey snails (Nucella lapillus) were consistent across a broad (~8.5 °C) temperature range, even though snails that were transplanted south consumed twice as many mussels (Mytilus edulis) and grew twice as much as snails that were transplanted north. The positive effects of warmer temperatures in the south allowed snails under high risk to perform similarly to or better than snails under low risk at cooler temperatures. Our results suggest that for prey populations residing at temperatures below their thermal optimum, the positive effects of future warming may offset the negative effects of predation risk. Such effects may be favorable to prey populations facing increased predation rates due to warmer temperatures associated with climate change. Attention to the direct and indirect effects of temperature on species interactions should improve our ability to predict the effects of climate change on ecological communities. PMID:25433694

  16. Cosmic ray intensity gradients in the solar system

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1975-01-01

    Recent progress in the determination of cosmic-ray intensity gradients is reviewed. Direct satellite measurements of the integral gradient are described together with various types of indirect measurements, including measurements of the Ar-37/Ar-39 ratio in samples from the Lost City meteorite, studies of anisotropies in neutron-monitor counting rates, and analysis of the sidereal diurnal anisotropy observed at a single point on earth. Nucleonic radial gradients and electron gradients measured by satellites in differential energy windows are discussed, and theoretical studies of the physical processes involved in these gradients are summarized. Observations of intensity gradients in heliographic latitude are reported.

  17. Ecological gradients within a Pennsylvanian mire forest

    USGS Publications Warehouse

    DiMichele, W.A.; Falcon-Lang, H. J.; Nelson, W.J.; Elrick, S.D.; Ames, P.R.

    2007-01-01

    Pennsylvanian coals represent remains of the earliest peat-forming rain forests, but there is no current consensus on forest ecology. Localized studies of fossil forests suggest intermixture of taxa (heterogeneity), while, in contrast, coal ball and palynological analyses imply the existence of pronounced ecological gradients. Here, we report the discovery of a spectacular fossil forest preserved over ???1000 ha on top of the Pennsylvanian (Desmoinesian) Herrin (No. 6) Coal of Illinois, United States. The forest was abruptly drowned when fault movement dropped a segment of coastal mire below sea level. In the largest study of its kind to date, forest composition is statistically analyzed within a well-constrained paleogeographic context. Findings resolve apparent conflicts in models of Pennsylvanian mire ecology by confirming the existence of forest heterogeneity at the local scale, while additionally demonstrating the emergence of ecological gradients at landscape scale. ?? 2007 The Geological Society of America.

  18. Bioactive Molecule Prediction Using Extreme Gradient Boosting.

    PubMed

    Babajide Mustapha, Ismail; Saeed, Faisal

    2016-01-01

    Following the explosive growth in chemical and biological data, the shift from traditional methods of drug discovery to computer-aided means has made data mining and machine learning methods integral parts of today's drug discovery process. In this paper, extreme gradient boosting (Xgboost), which is an ensemble of Classification and Regression Tree (CART) and a variant of the Gradient Boosting Machine, was investigated for the prediction of biological activity based on quantitative description of the compound's molecular structure. Seven datasets, well known in the literature were used in this paper and experimental results show that Xgboost can outperform machine learning algorithms like Random Forest (RF), Support Vector Machines (LSVM), Radial Basis Function Neural Network (RBFN) and Naïve Bayes (NB) for the prediction of biological activities. In addition to its ability to detect minority activity classes in highly imbalanced datasets, it showed remarkable performance on both high and low diversity datasets. PMID:27483216

  19. The latitudinal biodiversity gradient through deep time.

    PubMed

    Mannion, Philip D; Upchurch, Paul; Benson, Roger B J; Goswami, Anjali

    2014-01-01

    Today, biodiversity decreases from equatorial to polar regions. This is a fundamental pattern governing the distribution of extant organisms, the understanding of which is critical to predicting climatically driven biodiversity loss. However, its causes remain unresolved. The fossil record offers a unique perspective on the evolution of this latitudinal biodiversity gradient (LBG), providing a dynamic system in which to explore spatiotemporal diversity fluctuations. Deep-time studies indicate that a tropical peak and poleward decline in species diversity has not been a persistent pattern throughout the Phanerozoic, but is restricted to intervals of the Palaeozoic and the past 30 million years. A tropical peak might characterise cold icehouse climatic regimes, whereas warmer greenhouse regimes display temperate diversity peaks or flattened gradients. PMID:24139126

  20. Disentangling signaling gradients generated by equivalent sources.

    PubMed

    Rappaport, Noa; Barkai, Naama

    2012-03-01

    Yeast cells approach a mating partner by polarizing along a gradient of mating pheromones that are secreted by cells of the opposite mating type. The Bar1 protease is secreted by a-cells and, paradoxically, degrades the α-factor pheromones which are produced by cells of the opposite mating type and trigger mating in a-cells. This degradation may assist in the recovery from pheromone signaling but has also been shown to play a positive role in mating. Previous studies suggested that widely diffusing protease can bias the pheromone gradient towards the closest secreting cell. Here, we show that restricting the Bar1 protease to the secreting cell itself, preventing its wide diffusion, facilitates discrimination between equivalent mating partners. This may be mostly relevant during spore germination, where most mating events occur in nature.

  1. Program predicts reservoir temperature and geothermal gradient

    SciTech Connect

    Kutasov, I.M.

    1992-06-01

    This paper reports that a Fortran computer program has been developed to determine static formation temperatures (SFT) and geothermal gradient (GG). A minimum of input data (only two shut-in temperature logs) is required to obtain the values of SFT and GG. Modeling of primary oil production and designing enhanced oil recovery (EOR) projects requires knowing the undisturbed (static) reservoir temperature. Furthermore, the bottom hole circulating temperature (BHCT) is an important factor affecting a cement's thickening time, rheological properties, compressive strength, development, and set time. To estimate the values of BHCT, the geothermal gradient should be determined with accuracy. Recently we obtained an approximate analytical solution which describes the shut-in temperature behavior.

  2. Opinion formation models on a gradient.

    PubMed

    Gastner, Michael T; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales proportional g(-1/4), not proportional g(-4/7) as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  3. Voltammetry under a Controlled Temperature Gradient

    PubMed Central

    Krejci, Jan; Sajdlova, Zuzana; Krejci, Jan; Marvanek, Tomas

    2010-01-01

    Electrochemical measurements are generally done under isothermal conditions. Here we report on the application of a controlled temperature gradient between the working electrode surface and the solution. Using electrochemical sensors prepared on ceramic materials with extremely high specific heat conductivity, the temperature gradient between the electrode and solution was applied here as a second driving force. This application of the Soret phenomenon increases the mass transfer in the Nernst layer and enables more accurate control of the electrode response enhancement by a combination of diffusion and thermal diffusion. We have thus studied the effect of Soret phenomenon by cyclic voltammetry measurements in ferro/ferricyanide. The time dependence of sensor response disappears when applying the Soret phenomenon, and the complicated shape of the cyclic voltammogram is replaced by a simple exponential curve. We have derived the Cotrell-Soret equation describing the steady-state response with an applied temperature difference. PMID:22163578

  4. A mesh gradient technique for numerical optimization

    NASA Technical Reports Server (NTRS)

    Willis, E. A., Jr.

    1973-01-01

    A class of successive-improvement optimization methods in which directions of descent are defined in the state space along each trial trajectory are considered. The given problem is first decomposed into two discrete levels by imposing mesh points. Level 1 consists of running optimal subarcs between each successive pair of mesh points. For normal systems, these optimal two-point boundary value problems can be solved by following a routine prescription if the mesh spacing is sufficiently close. A spacing criterion is given. Under appropriate conditions, the criterion value depends only on the coordinates of the mesh points, and its gradient with respect to those coordinates may be defined by interpreting the adjoint variables as partial derivatives of the criterion value function. In level 2, the gradient data is used to generate improvement steps or search directions in the state space which satisfy the boundary values and constraints of the given problem.

  5. Spectral Simulations Incorporating Gradient Coherence Selection

    NASA Astrophysics Data System (ADS)

    Young, Karl; Matson, Gerald B.; Govindaraju, Varanavasi; Maudsley, Andrew A.

    1999-09-01

    Computer-aided methods can considerably simplify the use of the product operator formalism for theoretical analysis of NMR phenomena, which otherwise becomes unwieldy for anything but simple spin systems and pulse sequences. In this report, two previously available programming approaches using symbolic algebra (J. Shriver, Concepts Magn. Reson. 4, 1-33, 1992) and numerical simulation using object-oriented programming (S. A. Smith, T. O. Levante, B. H. Meier, and R. R. Ernst, J. Magn. Reson. A 106, 75-105, 1994) have been extended to include the use of gradient operators for simulation of spatially localized NMR spectroscopy and gradient coherence selection. These methods are demonstrated using an analysis of the response of an AX3 spin system to the STEAM pulse sequence and verified with experimental measurements on lactate.

  6. A direct MP2 gradient method

    NASA Astrophysics Data System (ADS)

    Frisch, Michael J.; Head-Gordon, Martin; Pople, John A.

    1990-02-01

    We present a direct method for evaluating the gradient of the second-order Møller-Plesset (MP2) energy without storing any quartic quantities, such as two-electron repulsion integrals (ERIs), double substitution amplitudes or the two-particle density matrix. For an N-basis-function calculation, N3 memory is required, and the ERIs and their first derivatives are computed up to O (number of occupied orbitals) times, plus additional ERI evaluations to obtain the Hartree-Fock (HF) orbitals and solve the coupled perturbed HF equation. Larger amounts of memory are used to reduce the O evaluations in the MP2 step. The floating point operation count is still proportional to ON4, as in conventional MP2 gradient codes since ERI evaluation is just an N4 step. Illustrative calculations are reported to assess the performance of the algorithm.

  7. Gradient Optimization for SC CW Accelerators

    SciTech Connect

    Schneider, William; Kneisel, Peter; Rode, Claus

    2003-05-01

    The proposed rare isotope accelerator (RIA) design consists of a normally conducting radio frequency quadruple (RFQ) section, a superconducting (SC) drift tube cavity section, a SC elliptical multi-cell cavity section and two charge strippers with associated charge state selection and beam matching optics. The SC elliptical section uses two or three multi-cell beta cavity types installed into cryomodules to span the energy region of about 84.5 MeV/nucleon up to 400 MeV/nucleon. This paper focuses on the gradient optimization of these SC elliptical cavities that provide a significant portion of the total acceleration to the beam. The choice of gradient coupled with the cavity quality factor has a strong affect on the overall cost of the accelerator. The paper describes the optimization of the capital and operating cost associated with the RIA elliptical cavity cryomodules.

  8. Electron profile stiffness and critical gradient studies

    NASA Astrophysics Data System (ADS)

    DeBoo, J. C.; Petty, C. C.; White, A. E.; Burrell, K. H.; Doyle, E. J.; Hillesheim, J. C.; Holland, C.; McKee, G. R.; Rhodes, T. L.; Schmitz, L.; Smith, S. P.; Wang, G.; Zeng, L.

    2012-08-01

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in ∇Te. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/LC ˜ 3 m-1 was identified at ρ =0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -∇Te, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/LT above the threshold.

  9. Wetting Phenomena on (Gradient) Wrinkle Substrates.

    PubMed

    Hiltl, Stephanie; Böker, Alexander

    2016-09-01

    We characterize the wetting behavior of nanostructured wrinkle and gradient wrinkle substrates. Different contact angles on both sides of a water droplet after deposition on a gradient sample induce the self-propelled motion of the liquid toward smaller wrinkle dimensions. The droplet motion is self-limited by the contact angles balancing out. Because of the correlation between droplet motion and contact angles, we investigate the wetting behavior of wrinkle substrates with constant dimensions (wavelengths of 400-1200 nm). Contact angles of water droplets on those substrates increase with increasing dimensions of the underlying substrate. The results are independent of the two measurement directions, parallel and perpendicular to the longitudinal axis of the nanostructure. The presented findings may be considered for designing microfluidic or related devices and initiate ideas for the development of further wrinkle applications. PMID:27517879

  10. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, N.L.

    1983-11-10

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  11. Opinion Formation Models on a Gradient

    PubMed Central

    Gastner, Michael T.; Markou, Nikolitsa; Pruessner, Gunnar; Draief, Moez

    2014-01-01

    Statistical physicists have become interested in models of collective social behavior such as opinion formation, where individuals change their inherently preferred opinion if their friends disagree. Real preferences often depend on regional cultural differences, which we model here as a spatial gradient g in the initial opinion. The gradient does not only add reality to the model. It can also reveal that opinion clusters in two dimensions are typically in the standard (i.e., independent) percolation universality class, thus settling a recent controversy about a non-consensus model. However, using analytical and numerical tools, we also present a model where the width of the transition between opinions scales , not as in independent percolation, and the cluster size distribution is consistent with first-order percolation. PMID:25474528

  12. Sequential pattern formation governed by signaling gradients

    NASA Astrophysics Data System (ADS)

    Jörg, David J.; Oates, Andrew C.; Jülicher, Frank

    2016-10-01

    Rhythmic and sequential segmentation of the embryonic body plan is a vital developmental patterning process in all vertebrate species. However, a theoretical framework capturing the emergence of dynamic patterns of gene expression from the interplay of cell oscillations with tissue elongation and shortening and with signaling gradients, is still missing. Here we show that a set of coupled genetic oscillators in an elongating tissue that is regulated by diffusing and advected signaling molecules can account for segmentation as a self-organized patterning process. This system can form a finite number of segments and the dynamics of segmentation and the total number of segments formed depend strongly on kinetic parameters describing tissue elongation and signaling molecules. The model accounts for existing experimental perturbations to signaling gradients, and makes testable predictions about novel perturbations. The variety of different patterns formed in our model can account for the variability of segmentation between different animal species.

  13. Electron profile stiffness and critical gradient studies

    SciTech Connect

    DeBoo, J. C.; Petty, C. C.; Burrell, K. H.; Smith, S. P.; White, A. E.; Doyle, E. J.; Hillesheim, J. C.; Rhodes, T. L.; Schmitz, L.; Wang, G.; Zeng, L.; Holland, C.; McKee, G. R.

    2012-08-15

    Electron profile stiffness was studied in DIII-D L-mode discharges by systematically varying the heat flux in a narrow region with electron cyclotron heating and measuring the local change produced in {nabla}T{sub e}. Electron stiffness was found to slowly increase with toroidal rotation velocity. A critical inverse temperature gradient scale length 1/L{sub C} {approx} 3 m{sup -1} was identified at {rho}=0.6 and found to be independent of rotation. Both the heat pulse diffusivity and the power balance diffusivity, the latter determined by integrating the measured dependence of the heat pulse diffusivity on -{nabla}T{sub e}, were fit reasonably well by a model containing a critical inverse temperature gradient scale length and varying linearly with 1/L{sub T} above the threshold.

  14. Automated apparatus for producing gradient gels

    DOEpatents

    Anderson, Norman L.

    1986-01-01

    Apparatus for producing a gradient gel which serves as a standard medium for a two-dimensional analysis of proteins, the gel having a density gradient along its height formed by a variation in gel composition, with the apparatus including first and second pumping means each including a plurality of pumps on a common shaft and driven by a stepping motor capable of providing small incremental changes in pump outputs for the gel ingredients, the motors being controlled, by digital signals from a digital computer, a hollow form or cassette for receiving the gel composition, means for transferring the gel composition including a filler tube extending near the bottom of the cassette, adjustable horizontal and vertical arms for automatically removing and relocating the filler tube in the next cassette, and a digital computer programmed to automatically control the stepping motors, arm movements, and associated sensing operations involving the filling operation.

  15. Food Chain Security and Vulnerability

    NASA Astrophysics Data System (ADS)

    Brunet, Sébastien; Delvenne, Pierre; Claisse, Frédéric

    In our contemporary societies, the food chain could be defined as a macro-technical system, which depends on a wide variety of actors and risks analysis methods. In this contribution, risks related to the food chain are defined in terms of "modern risks" (Beck 1992). The whole national economic sector of food production/distribution is vulnerable to a local accident, which can affect the functioning of food chain, the export programs and even the political system. Such a complex socio-technical environment is undoubtedly vulnerable to intentional act such as terrorism.

  16. Exploration of very high gradient cavities

    SciTech Connect

    Eremeev, Grigory

    2011-07-01

    Several of the 9-cell ILC cavities processed at Jlab within ongoing ILC R&D program have shown interesting behavior at high fields, such as mode mixing and sudden field emission turn-on during quench. Equipped with thermometry and oscillating superleak transducer (OST) system for quench detection, we couple our RF measurements with local dissipation measurements. In this contribution we report on our findings with high gradient SRF cavities.

  17. Quantized Concentration Gradient in Picoliter Scale

    NASA Astrophysics Data System (ADS)

    Hong, Jong Wook

    2010-10-01

    Generation of concentration gradient is of paramount importance in the success of reactions for cell biology, molecular biology, biochemistry, drug-discovery, chemotaxis, cell culture, biomaterials synthesis, and tissue engineering. In conventional method of conducting reactions, the concentration gradients is achieved by using pipettes, test tubes, 96-well assay plates, and robotic systems. Conventional methods require milliliter or microliter volumes of samples for typical experiments with multiple and sequential reactions. It is a challenge to carry out experiments with precious samples that have strict limitations with the amount of samples or the price to pay for the amount. In order to overcome this challenge faced by the conventional methods, fluidic devices with micrometer scale channels have been developed. These devices, however, cause restrictions on changing the concentration due to the fixed gradient set based on fixed fluidic channels.ootnotetextJambovane, S.; Duin, E. C.; Kim, S-K.; Hong, J. W., Determination of Kinetic Parameters, KM and kcat, with a Single Experiment on a Chip. textitAnalytical Chemistry, 81, (9), 3239-3245, 2009.^,ootnotetextJambovane, S.; Hong, J. W., Lorenz-like Chatotic System on a Chip In The 14th International Conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS), The Netherlands, October, 2010. Here, we present a unique microfluidic system that can generate quantized concentration gradient by using series of droplets generated by a mechanical valve based injection method.ootnotetextJambovane, S.; Rho, H.; Hong, J., Fluidic Circuit based Predictive Model of Microdroplet Generation through Mechanical Cutting. In ASME International Mechanical Engineering Congress & Exposition, Lake Buena Vista, Florida, USA, October, 2009.^,ootnotetextLee, W.; Jambovane, S.; Kim, D.; Hong, J., Predictive Model on Micro Droplet Generation through Mechanical Cutting. Microfluidics and Nanofluidics, 7, (3), 431-438, 2009

  18. DC CHARACTERIZATION OF HIGH GRADIENT MULTILAYER INSULATORS

    SciTech Connect

    Watson, J A; Caporaso, G J; Sampayan, S E; Sanders, D M; Krogh, M L

    2005-05-26

    We have developed a novel insulator concept that involves the use of alternating layers of conductors and insulators with periods less than 1 mm. We have demonstrated that these structures perform 2 to 5 times better than conventional insulators in long pulse, short pulse, and alternating polarity applications. We present new testing results showing exceptional behavior at DC, with gradients in excess of 110kV/cm in vacuum.

  19. Discontinuity of cortical gradients reflects sensory impairment

    PubMed Central

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-01-01

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations—patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion—enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  20. Predicting global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, Edward; Oliver, Kevin; Hirschi, Joel

    2015-04-01

    Numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000m) on decadal and longer timescales, explaining at least 94% of overturning variance for timescales of 128 to 2048 years and accurately predicting the relative magnitude of the response for different frequencies. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, over 77% of the observed variability at 4000m is predicted on timescales of 32 years and longer. The scaling law is also successful in the Indo-Pacific, thus demonstrating its generality. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of at least 0.79 are obtained with upper Atlantic MOC variance on all timescales greater than 25 years. These results demonstrate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be predicted from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  1. Applications of gradient index metamaterials in waveguides.

    PubMed

    Fu, Yangyang; Xu, Yadong; Chen, Huanyang

    2015-01-01

    In this letter, we find that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides. Through manipulating the conversion between propagating wave and surface wave, we can design some interesting applications in waveguides, such as controlling transmission effect, realizing bending waveguide and achieving waveguide splitting effect. These devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra. Numerical simulations are performed to verify our findings. PMID:26656558

  2. Reconstructing global overturning from meridional density gradients

    NASA Astrophysics Data System (ADS)

    Butler, E. D.; Oliver, K. I. C.; Hirschi, J. J.-M.; Mecking, J. V.

    2016-04-01

    Despite the complexity of the global ocean system, numerous attempts have been made to scale the strength of the meridional overturning circulation (MOC), principally in the North Atlantic, with large-scale, basin-wide hydrographic properties. In particular, various approaches to scaling the MOC with meridional density gradients have been proposed, but the success of these has only been demonstrated under limited conditions. Here we present a scaling relationship linking overturning to twice vertically-integrated meridional density gradients via the hydrostatic equation and a "rotated" form of the geostrophic equation. This provides a meridional overturning streamfunction as a function of depth for each basin. Using a series of periodically forced experiments in a global, coarse resolution configuration of the general circulation model NEMO, we explore the timescales over which this scaling is temporally valid. We find that the scaling holds well in the upper Atlantic cell (at 1000 m) for multi-decadal (and longer) timescales, accurately reconstructing the relative magnitude of the response for different frequencies and explaining over 85 % of overturning variance on timescales of 64-2048 years. Despite the highly nonlinear response of the Antarctic cell in the abyssal Atlantic, between 76 and 94 % of the observed variability at 4000 m is reconstructed on timescales of 32 years (and longer). The scaling law is also applied in the Indo-Pacific. This analysis is extended to a higher resolution, stochastically forced simulation for which correlations of between 0.79 and 0.99 are obtained with upper Atlantic MOC variability on timescales >25 years. These results indicate that meridional density gradients and overturning are linked via meridional pressure gradients, and that both the strength and structure of the MOC can be reconstructed from hydrography on multi-decadal and longer timescales provided that the link is made in this way.

  3. M-step preconditioned conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Adams, L.

    1983-01-01

    Preconditioned conjugate gradient methods for solving sparse symmetric and positive finite systems of linear equations are described. Necessary and sufficient conditions are given for when these preconditioners can be used and an analysis of their effectiveness is given. Efficient computer implementations of these methods are discussed and results on the CYBER 203 and the Finite Element Machine under construction at NASA Langley Research Center are included.

  4. Discontinuity of cortical gradients reflects sensory impairment.

    PubMed

    Saadon-Grosman, Noam; Tal, Zohar; Itshayek, Eyal; Amedi, Amir; Arzy, Shahar

    2015-12-29

    Topographic maps and their continuity constitute a fundamental principle of brain organization. In the somatosensory system, whole-body sensory impairment may be reflected either in cortical signal reduction or disorganization of the somatotopic map, such as disturbed continuity. Here we investigated the role of continuity in pathological states. We studied whole-body cortical representations in response to continuous sensory stimulation under functional MRI (fMRI) in two unique patient populations-patients with cervical sensory Brown-Séquard syndrome (injury to one side of the spinal cord) and patients before and after surgical repair of cervical disk protrusion-enabling us to compare whole-body representations in the same study subjects. We quantified the spatial gradient of cortical activation and evaluated the divergence from a continuous pattern. Gradient continuity was found to be disturbed at the primary somatosensory cortex (S1) and the supplementary motor area (SMA), in both patient populations: contralateral to the disturbed body side in the Brown-Séquard group and before repair in the surgical group, which was further improved after intervention. Results corresponding to the nondisturbed body side and after surgical repair were comparable with control subjects. No difference was found in the fMRI signal power between the different conditions in the two groups, as well as with respect to control subjects. These results suggest that decreased sensation in our patients is related to gradient discontinuity rather than signal reduction. Gradient continuity may be crucial for somatotopic and other topographical organization, and its disruption may characterize pathological processing. PMID:26655739

  5. Advanced concepts for high-gradient acceleration

    SciTech Connect

    Whittum, D.H.

    1998-08-01

    The promise of high-gradient accelerator research is a future for physics beyond the 5-TeV energy scale. Looking beyond what can be engineered today, the authors examine basic research directions for colliders of the future, from mm-waves to lasers, and from solid-state to plasmas, with attention to material damage, beam-dynamics, a workable collision scheme, and energetics.

  6. Applications of gradient index metamaterials in waveguides

    PubMed Central

    Fu, Yangyang; Xu, Yadong; Chen, Huanyang

    2015-01-01

    In this letter, we find that gradient index metamaterials (GIMs) could be utilized to manipulate wave propagation in waveguides. Through manipulating the conversion between propagating wave and surface wave, we can design some interesting applications in waveguides, such as controlling transmission effect, realizing bending waveguide and achieving waveguide splitting effect. These devices not only work for both transverse electric and magnetic polarized waves, but also function for a broadband of spectra. Numerical simulations are performed to verify our findings. PMID:26656558

  7. Broadband mode conversion via gradient index metamaterials.

    PubMed

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-04-21

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide.

  8. Dropwise condensation on a cold gradient substrate

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2012-11-01

    Distributions of drops that arise from dropwise condensation evolve by nucleation, growth, and coalescence of drops. An understanding of how surface-energy gradients applied to the substrate affect drop growth and coalescence is needed for design of effective surfaces for large-scale dropwise condensation. Transient dropwise condensation from a vapor phase onto a cold and chemically treated surface is reported. The surfaces were treated to deliver either a uniform contact-angle or a gradient of contact-angles by silanization. The time evolution of drop-size and number-density distributions is reported. For a typical condensation experiment, the drop distributions advance through two stages: an increase in drop density as a result of nucleation and a decrease in drop density as a result of larger scale coalescence events. Because the experiment is transient in nature, the shape of the distribution can be used to predict the number of drop generations and their stage of development. Preliminary results for gradient surfaces will be discussed and compared against observations of behavior on uniformly coated surfaces. NASA Space Technology Research Fellowship (NSTRF).

  9. High-thermal-gradient Superalloy Crystal Growth

    NASA Technical Reports Server (NTRS)

    Pearson, D. D.; Anton, D. L.; Giamei, A. F.

    1985-01-01

    Single, (001)-oriented crystals of PWA 1480 were processed in alumina/silica shell molds in a laboratory high gradient furnace. The furnace employs a graphite resistance heated element, a radiation baffle, and a water cooled radiation trap below the baffle. All crystals were grown in vacuum (10 torr) and all heat transfer was radiative. The element is constructed with a variable cross section that is tapered just above the baffle to maximize heat input and therefore thermal gradient. A maximum alloy temperature of 1600 C was used. A thermal gradient of 130 deg C/cm was recorded at 1370 C just above the solidus of the PWA 1480 alloys. Crystal bars with 14.4 and 17.5 mm diameters were grown in alumina/silica shell molds. Each crystal was started from a 1.6 mm pencil seed at a rate of 76 mm/hr and slowly accelerated to a rate of 200 mm/hr under computer control. Volume percent porosity and average pore size were measured as functions of distance in representative bars. Low cycle fatigue behavior and stress rupture properties were determined.

  10. Crosswind Shear Gradient Affect on Wake Vortices

    NASA Technical Reports Server (NTRS)

    Proctor, Fred H.; Ahmad, Nashat N.

    2011-01-01

    Parametric simulations with a Large Eddy Simulation (LES) model are used to explore the influence of crosswind shear on aircraft wake vortices. Previous studies based on field measurements, laboratory experiments, as well as LES, have shown that the vertical gradient of crosswind shear, i.e. the second vertical derivative of the environmental crosswind, can influence wake vortex transport. The presence of nonlinear vertical shear of the crosswind velocity can reduce the descent rate, causing a wake vortex pair to tilt and change in its lateral separation. The LES parametric studies confirm that the vertical gradient of crosswind shear does influence vortex trajectories. The parametric results also show that vortex decay from the effects of shear are complex since the crosswind shear, along with the vertical gradient of crosswind shear, can affect whether the lateral separation between wake vortices is increased or decreased. If the separation is decreased, the vortex linking time is decreased, and a more rapid decay of wake vortex circulation occurs. If the separation is increased, the time to link is increased, and at least one of the vortices of the vortex pair may have a longer life time than in the case without shear. In some cases, the wake vortices may never link.

  11. Integrated Image Reconstruction and Gradient Nonlinearity Correction

    PubMed Central

    Tao, Shengzhen; Trzasko, Joshua D.; Shu, Yunhong; Huston, John; Bernstein, Matt A.

    2014-01-01

    Purpose To describe a model-based reconstruction strategy for routine magnetic resonance imaging (MRI) that accounts for gradient nonlinearity (GNL) during rather than after transformation to the image domain, and demonstrate that this approach reduces the spatial resolution loss that occurs during strictly image-domain GNL-correction. Methods After reviewing conventional GNL-correction methods, we propose a generic signal model for GNL-affected MRI acquisitions, discuss how it incorporates into contemporary image reconstruction platforms, and describe efficient non-uniform fast Fourier transform (NUFFT)-based computational routines for these. The impact of GNL-correction on spatial resolution by the conventional and proposed approaches is investigated on phantom data acquired at varying offsets from gradient isocenter, as well as on fully-sampled and (retrospectively) undersampled in vivo acquisitions. Results Phantom results demonstrate that resolution loss that occurs during GNL-correction is significantly less for the proposed strategy than for the standard approach at distances >10 cm from isocenter with a 35 cm FOV gradient coil. The in vivo results suggest that the proposed strategy better preserves fine anatomical detail than retrospective GNL-correction while offering comparable geometric correction. Conclusion Accounting for GNL during image reconstruction allows geometric distortion to be corrected with less spatial resolution loss than is typically observed with the conventional image domain correction strategy. PMID:25298258

  12. Collective Chemotaxis through Noisy Multicellular Gradient Sensing

    NASA Astrophysics Data System (ADS)

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of less than 1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment and while the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to individual cells polarization to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments.

  13. Integrated calibration of magnetic gradient tensor system

    NASA Astrophysics Data System (ADS)

    Gang, Yin; Yingtang, Zhang; Hongbo, Fan; GuoQuan, Ren; Zhining, Li

    2015-01-01

    Measurement precision of a magnetic gradient tensor system is not only connected with the imperfect performance of magnetometers such as bias, scale factor, non-orthogonality and misalignment errors, but also connected with the external soft-iron and hard-iron magnetic distortion fields when the system is used as a strapdown device. So an integrated scalar calibration method is proposed in this paper. In the first step, a mathematical model for scalar calibration of a single three-axis magnetometer is established, and a least squares ellipsoid fitting algorithm is proposed to estimate the detailed error parameters. For the misalignment errors existing at different magnetometers caused by the installation process and misalignment errors aroused by ellipsoid fitting estimation, a calibration method for combined misalignment errors is proposed in the second step to switch outputs of different magnetometers into the ideal reference orthogonal coordinate system. In order to verify effectiveness of the proposed method, simulation and experiment with a cross-magnetic gradient tensor system are performed, and the results show that the proposed method estimates error parameters and improves the measurement accuracy of magnetic gradient tensor greatly.

  14. Gradient moment nulling in fast spin echo.

    PubMed

    Hinks, R S; Constable, R T

    1994-12-01

    The fast spin echo sequence combines data from many echo signals in a Carr-Purcell-Meiboom-Gill echo train to form a single image. Much of the signal in the second and later echoes results from the coherent addition of stimulated echo signal components back to the spin echo signal. Because stimulated echoes experience no dephasing effects during the time that they are stored as Mz magnetization, they experience a different gradient first moment than does the spin echo. This leads to flow-related phase differences between different echo components and results in flow voids and ghosting, even when the first moment is nulled for the spin echo signal. A method of gradient moment nulling that correctly compensates both spin echo and stimulated echo components has been developed. The simplest solution involves nulling the first gradient moment at least at the RF pulses and preferably at both the RF pulses and the echoes. Phantom and volunteer studies demonstrate good suppression of flow-related artifacts.

  15. Collective Chemotaxis through Noisy Multicellular Gradient Sensing.

    PubMed

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of <1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment, and although the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to the polarization of individual cells to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments.

  16. Diffusion weighted vertical gradient and spin echo.

    PubMed

    Engström, Mathias; Bammer, Roland; Skare, Stefan

    2012-12-01

    In this work, diffusion weighting and parallel imaging is combined with a vertical gradient and spin echo data readout. This sequence was implemented and evaluated on healthy volunteers using a 1.5 and a 3 T whole-body MR system. As the vertical gradient and spin echo trajectory enables a higher k-space velocity in the phase-encoding direction than single-shot echo planar imaging, the geometrical distortions are reduced. When combined with parallel imaging such as generalized autocalibrating partially parallel acquisition, the geometric distortions are reduced even further, while also keeping the minimum echo time reasonably low. However, this combination of a diffusion preparation and multiple refocusing pulses during the vertical gradient and spin echo readout, generally violates the Carr-Purcell-Meiboom-Gill condition, which leads to interferences between echo pathways. To suppress the stimulated echo pathway, refocusing pulses with a sharper slice profiles and an odd/even crusher variation scheme were implemented and evaluated. Being a single-shot acquisition technique, the reconstructed images are robust to rigid-body head motion and spatially varying brain motion, both of which are common sources of artifacts in diffusion MRI.

  17. Collective Chemotaxis through Noisy Multicellular Gradient Sensing.

    PubMed

    Varennes, Julien; Han, Bumsoo; Mugler, Andrew

    2016-08-01

    Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of <1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment, and although the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to the polarization of individual cells to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments. PMID:27508447

  18. PLETHORA gradient formation mechanism separates auxin responses

    PubMed Central

    Siligato, Riccardo; Smetana, Ondřej; Díaz-Triviño, Sara; Salojärvi, Jarkko; Wachsman, Guy; Prasad, Kalika; Heidstra, Renze; Scheres, Ben

    2015-01-01

    During plant growth, dividing cells in meristems must coordinate transitions from division to expansion and differentiation, thus generating three distinct developmental zones: the meristem, elongation zone and differentiation zone1. Simultaneously, plants display tropisms, rapid adjustments of their direction of growth to adapt to environmental conditions. It is unclear how stable zonation is maintained during transient adjustments in growth direction. In Arabidopsis roots, many aspects of zonation are controlled by the phytohormone auxin and auxin-induced PLETHORA (PLT) transcription factors, both of which display a graded distribution with a maximum near the root tip2-12. In addition, auxin is also pivotal for tropic responses13,14. Here, using an iterative experimental and computational approach, we show how an interplay between auxin and PLTs controls zonation and gravitropism. We find that the PLT gradient is not a direct, proportionate readout of the auxin gradient. Rather, prolonged high auxin levels generate a narrow PLT transcription domain from which a gradient of PLT protein is subsequently generated through slow growth dilution and cell-to-cell movement. The resulting PLT levels define the location of developmental zones. In addition to slowly promoting PLT transcription, auxin also rapidly influences division, expansion and differentiation rates. We demonstrate how this specific regulatory design in which auxin cooperates with PLTs through different mechanisms and on different timescales enables both the fast tropic environmental responses and stable zonation dynamics necessary for coordinated cell differentiation. PMID:25156253

  19. Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient

    NASA Astrophysics Data System (ADS)

    Qin, Pengbo; Huang, Danian; Yuan, Yuan; Geng, Meixia; Liu, Jie

    2016-03-01

    Gravity data, which are critical in mineral, oil, and gas exploration, are obtained from the vertical component of the gravity field, while gravity gradient data are measured from changes in the gravity field in three directions. However, few studies have sought to improve exploration techniques by integrating gravity and gravity gradient data using inversion methods. In this study, we developed a new method to integrate gravity and gravity gradient data in a 3D density inversion using the non-linear conjugate gradient (NLCG) method and the minimum gradient support (MGS) functional to regularize the 3D inverse problem and to obtain a clear and accurate image of the anomalous body. The NLCG algorithm, which is suitable for solving large-scale nonlinear optimization problems and requires no memory storage, was compared to the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton algorithm and the results indicated that the convergence rate of NLCG is slower, but that the storage requirement and computation time is lower. To counteract the decay in kernel function, we introduced a depth weighting function for anomalous bodies at the same depth, with information about anomalous body depth obtained from well log and seismic exploration data. For anomalous bodies at different depths, we introduced a spatial gradient weighting function to incorporate additional information obtained in the inversion. We concluded that the spatial gradient weighting function enhanced the spatial resolution of the recovered model. Furthermore, our results showed that including multiple components for inversion increased the resolution of the recovered model. We validated our model by applying our inversion method to survey data from Vinton salt dome, Louisiana, USA. The results showed good agreement with known geologic information; thus confirming the accuracy of this approach.

  20. Reinforcement learning in supply chains.

    PubMed

    Valluri, Annapurna; North, Michael J; Macal, Charles M

    2009-10-01

    Effective management of supply chains creates value and can strategically position companies. In practice, human beings have been found to be both surprisingly successful and disappointingly inept at managing supply chains. The related fields of cognitive psychology and artificial intelligence have postulated a variety of potential mechanisms to explain this behavior. One of the leading candidates is reinforcement learning. This paper applies agent-based modeling to investigate the comparative behavioral consequences of three simple reinforcement learning algorithms in a multi-stage supply chain. For the first time, our findings show that the specific algorithm that is employed can have dramatic effects on the results obtained. Reinforcement learning is found to be valuable in multi-stage supply chains with several learning agents, as independent agents can learn to coordinate their behavior. However, learning in multi-stage supply chains using these postulated approaches from cognitive psychology and artificial intelligence take extremely long time periods to achieve stability which raises questions about their ability to explain behavior in real supply chains. The fact that it takes thousands of periods for agents to learn in this simple multi-agent setting provides new evidence that real world decision makers are unlikely to be using strict reinforcement learning in practice.

  1. Elastic properties of magnetosome chains

    NASA Astrophysics Data System (ADS)

    Kiani, Bahareh; Faivre, Damien; Klumpp, Stefan

    2015-04-01

    Magnetotactic bacteria swim and orient in the direction of a magnetic field thanks to the magnetosome chain, a cellular ‘compass needle’ that consists of a string of vesicle-enclosed magnetic nanoparticles aligned on a cytoskeletal filament. Here we investigate the mechanical properties of such a chain, in particular the bending stiffness. We determine the contribution of magnetic interactions to the bending stiffness and the persistence length of the chain. This contribution is comparable to, but typically smaller than the contribution of the semiflexible filament. For a chain of magnetic nanoparticles without a semiflexible filament, the linear configuration is typically metastable and the lowest energy structures are closed chains (flux closure rings) without a net magnetic moment that are thus not functional as a cellular compass. Our calculations show that the presence of the cytoskeletal filament stabilizes the chain against ring closure, either thermodynamically or kinetically, depending on the stiffness of the filament, confirming that such stabilization is one of the roles of this structure in these bacterial cells.

  2. Effects of magnetic field gradients on the aggregation dynamics of colloidal magnetic nanoparticles.

    PubMed

    Heinrich, D; Goñi, A R; Osán, T M; Cerioni, L M C; Smessaert, A; Klapp, S H L; Faraudo, J; Pusiol, D J; Thomsen, C

    2015-10-14

    We have used low-field (1)H nuclear-magnetic resonance (NMR) spectroscopy and molecular dynamics (MD) to investigate the aggregation dynamics of magnetic particles in ionic ferrofluids (IFFs) in the presence of magnetic field gradients. At the beginning of the experiments, the measured NMR spectra were broad and asymmetric, exhibiting two features attributed to different dynamical environments of water protons, depending on the local strength of the field gradients. Hence, the spatial redistribution of the magnetic particles in the ferrofluid caused by the presence of an external magnetic field in a time scale of minutes can be monitored in real time, following the changes in the features of the NMR spectra during a period of about an hour. As previously reported [Heinrich et al., Phys. Rev. Lett., 2011, 106, 208301], in the homogeneous magnetic field of a NMR spectrometer, the aggregation of the particles of the IFF proceeds in two stages. The first stage corresponds to the gradual aggregation of monomers prior to and during the formation of chain-like structures. The second stage proceeds after the chains have reached a critical average length, favoring lateral association of the strings into hexagonal zipped-chain superstructures or bundles. In this work, we focus on the influence of a strongly inhomogeneous magnetic field on the aforementioned aggregation dynamics. The main observation is that, as the sample is immersed in a certain magnetic field gradient and kept there for a time τinh, magnetophoresis rapidly converts the ferrofluid into an aggregation state which finds its correspondence to a state on the evolution curve of the pristine sample in a homogeneous field. From the degree of aggregation reached at the time τinh, the IFF sample just evolves thereafter in the homogeneous field of the NMR spectrometer in exactly the same way as the pristine sample. The final equilibrium state always consists of a colloidal suspension of zipped-chain bundles with

  3. Use of ethylene glycol to evaluate gradient performance in gradient-intensive diffusion MR sequences.

    PubMed

    Spees, William M; Song, Sheng-Kwei; Garbow, Joel R; Neil, Jeffrey J; Ackerman, Joseph J H

    2012-07-01

    Imaging a phantom of known dimensions is a widely used and simple method for calibrating MRI gradient strength. However, full-range characterization of gradient response is not achievable using this approach. Measurement of the apparent diffusion coefficient of a liquid with known diffusivity allows for calibration of gradient amplitudes across a wider dynamic range. An important caveat is that the temperature dependence of the liquid's diffusion characteristics must be known, and the temperature of the calibration phantom must be recorded. In this report, we demonstrate that the diffusion coefficient of ethylene glycol is well described by Arrhenius-type behavior across the typical range of ambient MRI magnet temperatures. Because of ethylene glycol's utility as an NMR chemical-shift thermometer, the same (1)H MR spectroscopy measurements that are used for gradient calibration also simultaneously "report" the sample temperature. The high viscosity of ethylene glycol makes it well-suited for assessing gradient performance in demanding diffusion-weighted imaging and spectroscopy sequences.

  4. Tuning Surface Microstructure and Gradient Property of Polymer by Photopolymerizable Polysiloxane-modified Nanogels

    PubMed Central

    Chen, Cong; Liu, JianCheng; Sun, Fang; Stansbury, Jeffrey W.

    2014-01-01

    This paper reports a series of photopolymerizable polysiloxane-modified nanogels for regulating surface microstructure and gradient property of polymers, which were synthesized by solution polymerization under different feed ratios of a methacrylate-modified polysiloxane, urethane dimethacrylate (UDMA) and isobornyl methacrylate (IBMA) in the presence of a thiol chain transfer agent. The nanogel structure and composition were characterized by proton nuclear magnetic resonance (1H-NMR), Fourier transform-infrared spectroscopy (FT-IR), transmission electron microscope (TEM), gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The dispersion of these nanogels in triethylene glycol dimethacrylate (TEGDMA) can reduce the onset and magnitude of shrinkage stress during polymerization without compromise to mechanical properties of the resulting polymers. Most importantly, as demonstrated by elemental analysis and X-ray photoelectron spectroscopy (XPS), the nanogels exhibit good self-floating ability in the monomer/polymer matrix and the increase of polysiloxane content in the nanogel can enhance the self-floating capability due to the lower surface tension and energy associated with the polysiloxane component. As a result, the polysiloxane-modified nanogels can spontaneously form a concentration gradient that can be locked in upon photopolymerization leading to a well-controlled heterogeneous polymer that presents a gradient change in thermal stability. With the increase of polysiloxane content, the thermal stability of the polymer was improved significantly. Furthermore, the enrichment of the nanogel on the surface resulting from the good self-floating ability can reduce the dispersion surface energy of gradient polymer film and generate a more hydrophobic surface with altered surface microstructure. These photopolymerizable polysiloxane-modified nanogels are demonstrated to have potential broad application in the preparation of gradient

  5. CHAINS-PC: Code System to Compute Atom Density of Members of a Single Decay Chain

    1992-07-01

    CHAINS computes the atom density of members of a single radioactive decay chain. The liinearity of the Bateman equations allows tracing of interconnecting chains by manually accumulating results from separate calculations of single chains. Re-entrant loops can be treated as extensins of a single chain. Looses froem the chain are also tallied.

  6. Thermocapillary migration of a small chain of bubbles

    NASA Technical Reports Server (NTRS)

    Wei, Huailiang; Subramanian, R. S.

    1993-01-01

    The quasistatic thermocapillary migration of a chain of two or three spherical bubbles in an unbounded fluid possessing a uniform temperature gradient is investigated in the limit of vanishing Reynolds and Peclet numbers. The line of bubble centers is permitted to be either parallel or perpendicular to the direction of the undisturbed temperature gradient. The governing equations are solved by a truncated-series, boundary-collocation technique. Results are presented which demonstrate the impact of the presence of other bubbles on a test bubble. In the three-bubble case, a simple pairwise-additive approximation is constructed from the reflections solution, and found to perform well except when the bubbles are close to each other. Also, features of the flow topology in the fluid are explored. Separated reverse flow wakes are found in the axisymmetric problem, and other interesting structures are noted for the case in which the line of centers is perpendicular to the applied temperature gradient. The observed flow structure is shown to be the result of superposition of simpler basic flows.

  7. Markov chain Monte Carlo method for tracking myocardial borders

    NASA Astrophysics Data System (ADS)

    Janiczek, Robert; Ray, N.; Acton, Scott T.; Roy, R. J.; French, Brent A.; Epstein, F. H.

    2005-03-01

    Cardiac magnetic resonance studies have led to a greater understanding of the pathophysiology of ischemic heart disease. Manual segmentation of myocardial borders, a major task in the data analysis of these studies, is a tedious and time consuming process subject to observer bias. Automated segmentation reduces the time needed to process studies and removes observer bias. We propose an automated segmentation algorithm that uses an active contour to capture the endo- and epicardial borders of the left ventricle in a mouse heart. The contour is initialized by computing the ellipse corresponding to the maximal gradient inverse of variation (GICOV) value. The GICOV is the mean divided by the normalized standard deviation of the image intensity gradient in the outward normal direction along the contour. The GICOV is maximal when the contour lies along strong, relatively constant gradients. The contour is then evolved until it maximizes the GICOV value subject to shape constraints. The problem is formulated in a Bayesian framework and is implemented using a Markov Chain Monte Carlo technique.

  8. Modulation of the electronic and magnetic properties of the silicene nanoribbons by a single C chain

    NASA Astrophysics Data System (ADS)

    Song, Y.-L.; Zhang, Y.; Zhang, J.-M.; Lu, D.-B.; Xu, K.-W.

    2011-01-01

    Under the generalized gradient approximation (GGA), the electronic and magnetic properties are studied for H-terminated zigzag edge Si nanoribbon (ZSiNR) decorated with a single C chain by using the first-principles projector augmented wave (PAW) potential within the density function theory (DFT) framework. The results show that either a perfect ZSiNR or a single C chain decorated ZSiNR, the ferromagnetic state is preferred over the antiferromagnetic state. But a single C chain decorated ZSiNR is more stable than the perfect one. Furthermore, the electronic and magnetic properties of a ZSiNR can be modulated in detail by a single C chain at different positions.

  9. Biogeochemistry of a temperate forest nitrogen gradient

    USGS Publications Warehouse

    Perakis, Steven S.; Sinkhorn, Emily R.

    2011-01-01

    Wide natural gradients of soil nitrogen (N) can be used to examine fundamental relationships between plant–soil–microbial N cycling and hydrologic N loss, and to test N-saturation theory as a general framework for understanding ecosystem N dynamics. We characterized plant production, N uptake and return in litterfall, soil gross and net N mineralization rates, and hydrologic N losses of nine Douglas-fir (Pseudotsuga menziesii) forests across a wide soil N gradient in the Oregon Coast Range (USA). Surface mineral soil N (0–10 cm) ranged nearly three-fold from 0.29% to 0.78% N, and in contrast to predictions of N-saturation theory, was linearly related to 10-fold variation in net N mineralization, from 8 to 82 kg N·ha−1·yr−1. Net N mineralization was unrelated to soil C:N, soil texture, precipitation, and temperature differences among sites. Net nitrification was negatively related to soil pH, and accounted for −1·yr−1. Aboveground net primary production per unit net N mineralization varied inversely with soil N, suggesting progressive saturation of plant N demands at high soil N. Hydrologic N losses were dominated by dissolved organic N at low-N sites, with increased nitrate loss causing a shift to dominance by nitrate at high-N sites, particularly where net nitrification exceeded plant N demands. With the exception of N mineralization patterns, our results broadly support the application of the N-saturation model developed from studies of anthropogenic N deposition to understand N cycling and saturation of plant and microbial sinks along natural soil N gradients. This convergence of behavior in unpolluted and polluted forest N cycles suggests that where future reductions in deposition to polluted sites do occur, symptoms of N saturation are most likely to persist where soil N content remains elevated.

  10. Gravity gradient preliminary investigations, part 2: Lunar tidal gravity gradients and stresses (exhibit C)

    NASA Technical Reports Server (NTRS)

    Houston, M. H.; Thompson, L. G. D.

    1971-01-01

    Preliminary analysis of the gravity gradients associated with gravity tides on the moon caused by the earth indicates that the relative changes in the gradients are very irregular, and large, and about 15 times greater than those experienced on earth. Thus gradients, in preference to gravity tides themselves, may well be an important key in correlating tide effects with lunar transient events and moonquakes, and also in determining triggering mechanisms for crustal movement and faulting. Preliminary analysis of lunar crustal stresses and strains caused by lunar gravity tides indicates that these factors may be more direct causative agents or triggering mechanisms. In particular, the cubic dilation undergoes relatively large changes and is about 11 times greater on the moon than on earth. Thus it should be correspondingly more important.

  11. Temperature Gradient Field Theory of Nucleation

    NASA Astrophysics Data System (ADS)

    Das, S.; Ain, W. Q.; Azhari, A.; Prasada Rao, A. K.

    2016-02-01

    According to the proposed theory, ceramic particles present in molten metal, lose heat at a slower rate than the metallic liquid during cooling. Such condition results in the formation of a spherical thermal gradient field (TGF) around each particle. Hence, the interstitials (low temperature) of such TGFs are the regions to reach the nucleation temperature first, owing to low energy barrier than the liquid-particle interface (higher temperature). Analytics also indicate that the nucleation rate is higher at the TGF interstitials, than at the liquid-particle interface. Such TGF network results in simultaneous nucleation throughout the system, resulting in grain refinement.

  12. Stereo vision with distance and gradient recognition

    NASA Astrophysics Data System (ADS)

    Kim, Soo-Hyun; Kang, Suk-Bum; Yang, Tae-Kyu

    2007-12-01

    Robot vision technology is needed for the stable walking, object recognition and the movement to the target spot. By some sensors which use infrared rays and ultrasonic, robot can overcome the urgent state or dangerous time. But stereo vision of three dimensional space would make robot have powerful artificial intelligence. In this paper we consider about the stereo vision for stable and correct movement of a biped robot. When a robot confront with an inclination plane or steps, particular algorithms are needed to go on without failure. This study developed the recognition algorithm of distance and gradient of environment by stereo matching process.

  13. NASA's B-57B Gust Gradient Program

    NASA Technical Reports Server (NTRS)

    Camp, D.; Campbell, W.; Frost, W.; Murrow, H.; Painter, W.

    1984-01-01

    The B-57B Gust Gradient Program is a joint effort of NASA Headquarters, Marshall Space Flight Center, Dryden Flight Research Facility, Langley Research Center, and Ames Research Center. The primary program goal is to measure spanwise variations of turbulent gusts across an airflow. To this end, the NASA B-57B aircraft was equipped with three component gust probes on each wing tip and on the nose. Early results of flights done in conjunction with the Joint Airport Weather Studies (JAWS) project are described.

  14. Higher-order force gradient symplectic algorithms

    NASA Astrophysics Data System (ADS)

    Chin, Siu A.; Kidwell, Donald W.

    2000-12-01

    We show that a recently discovered fourth order symplectic algorithm, which requires one evaluation of force gradient in addition to three evaluations of the force, when iterated to higher order, yielded algorithms that are far superior to similarly iterated higher order algorithms based on the standard Forest-Ruth algorithm. We gauge the accuracy of each algorithm by comparing the step-size independent error functions associated with energy conservation and the rotation of the Laplace-Runge-Lenz vector when solving a highly eccentric Kepler problem. For orders 6, 8, 10, and 12, the new algorithms are approximately a factor of 103, 104, 104, and 105 better.

  15. Broadband mode conversion via gradient index metamaterials

    PubMed Central

    Wang, HaiXiao; Xu, YaDong; Genevet, Patrice; Jiang, Jian-Hua; Chen, HuanYang

    2016-01-01

    We propose a design for broadband waveguide mode conversion based on gradient index metamaterials (GIMs). Numerical simulations demonstrate that the zeroth order of transverse magnetic mode or the first order of transverse electric mode (TM0/TE1) can be converted into the first order of transverse magnetic mode or the second order of transverse electric mode (TM1/TE2) for a broadband of frequencies. As an application, an asymmetric propagation is achieved by integrating zero index metamaterials inside the GIM waveguide. PMID:27098456

  16. 3D Electromagnetic inversion using conjugate gradients

    SciTech Connect

    Newman, G.A.; Alumbaugh, D.L.

    1997-06-01

    In large scale 3D EM inverse problems it may not be possible to directly invert a full least-squares system matrix involving model sensitivity elements. Thus iterative methods must be employed. For the inverse problem, we favor either a linear or non-linear (NL) CG scheme, depending on the application. In a NL CG scheme, the gradient of the objective function is required at each relaxation step along with a univariate line search needed to determine the optimum model update. Solution examples based on both approaches will be presented.

  17. Spin Gradient Demagnetization Cooling of Ultracold Atoms

    SciTech Connect

    Medley, Patrick; Weld, David M.; Miyake, Hirokazu; Pritchard, David E.; Ketterle, Wolfgang

    2011-05-13

    We demonstrate a new cooling method in which a time-varying magnetic field gradient is applied to an ultracold spin mixture. This enables preparation of isolated spin distributions at positive and negative effective spin temperatures of {+-}50 pK. The spin system can also be used to cool other degrees of freedom, and we have used this coupling to cool an apparently equilibrated Mott insulator of rubidium atoms to 350 pK. These are the lowest temperatures ever measured in any system. The entropy of the spin mixture is in the regime where magnetic ordering is expected.

  18. Laser pulse shaping for high gradient accelerators

    NASA Astrophysics Data System (ADS)

    Villa, F.; Anania, M. P.; Bellaveglia, M.; Bisesto, F.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Galletti, M.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Gatti, G.; Moreno, M.; Petrarca, M.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    In many high gradient accelerator schemes, i.e. with plasma or dielectric wakefield induced by particles, many electron pulses are required to drive the acceleration of one of them. Those electron bunches, that generally should have very short duration and low emittance, can be generated in photoinjectors driven by a train of laser pulses coming inside the same RF bucket. We present the system used to shape and characterize the laser pulses used in multibunch operations at Sparc_lab. Our system gives us control over the main parameter useful to produce a train of up to five high brightness bunches with tailored intensity and time distribution.

  19. Biomimetic Approaches to Control Soluble Concentration Gradients in Biomaterials

    PubMed Central

    Nguyen, Eric H.; Schwartz, Michael P.

    2013-01-01

    Soluble concentration gradients play a critical role in controlling tissue formation during embryonic development. The importance of soluble signaling in biology has motivated engineers to design systems that allow precise and quantitative manipulation of gradient formation in vitro. Engineering techniques have increasingly moved to the third dimension in order to provide more physiologically relevant models to study the biological role of gradient formation and to guide strategies for controlling new tissue formation for therapeutic applications. This review provides an overview of efforts to design biomimetic strategies for soluble gradient formation, with a focus on microfluidic techniques and biomaterials approaches for moving gradient generation to the third dimension. PMID:21265021

  20. Effect of Temperature Gradient on Thick Film Selective Emitter Emittance

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Good, Brian S.; Clark, Eric B.; Chen, Zheng

    1997-01-01

    A temperature gradient across a thick (greater than or equal to .1 mm) film selective emitter will produce a significant reduction in the spectral emittance from the no temperature gradient case. Thick film selective emitters of rare earth doped host materials such as yttrium-aluminum-garnet (YAG) are examples where temperature gradient effects are important. In this paper a model is developed for the spectral emittance assuming a linear temperature gradient across the film. Results of the model indicate that temperature gradients will result in reductions the order of 20% or more in the spectral emittance.

  1. Complex surface concentration gradients by stenciled "electro click chemistry".

    PubMed

    Hansen, Thomas S; Lind, Johan U; Daugaard, Anders E; Hvilsted, Søren; Andresen, Thomas L; Larsen, Niels B

    2010-10-19

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer. PMID:20860406

  2. Simultation of gradient and band propagation in the centrifuge.

    PubMed

    Sartory, W K; Halsall, H B; Breillatt, J P

    1976-07-01

    A technique is developed for simulating the behavior of both the gradient-forming solute and macromolecular bands in a centrifuge. The change with time of the density gradient due to diffusion and sedimentation of the gradient-forming solute is calculated by a finite difference method, making use of the results of earlier work on the theory of the equilibrium density gradient. Using a perturbation technique, the concentration profiles of dilute bands of macromolecules are then calculated as they sediment and diffuse through the varying supporting gradient. Results of the stimulaion techniques are compared with experiment.

  3. Complex surface concentration gradients by stenciled "electro click chemistry".

    PubMed

    Hansen, Thomas S; Lind, Johan U; Daugaard, Anders E; Hvilsted, Søren; Andresen, Thomas L; Larsen, Niels B

    2010-10-19

    Complex one- or two-dimensional concentration gradients of alkynated molecules are produced on azidized conducting polymer substrates by stenciled "electro click chemistry". The latter describes the local electrochemical generation of catalytically active Cu(I) required to complete a "click reaction" between alkynes and azides at room temperature. A stencil on the counter electrode defines the shape and multiplicity of the gradient(s) on the conducting polymer substrate, while the specific reaction conditions control gradient steepness and the maximum concentration deposited. Biologically active ligands including cell binding peptides are patterned in gradients by this method without losing their biological function or the conductivity of the polymer.

  4. Data-driven backward chaining

    NASA Technical Reports Server (NTRS)

    Haley, Paul

    1991-01-01

    The C Language Integrated Production System (CLIPS) cannot effectively perform sound and complete logical inference in most real-world contexts. The problem facing CLIPS is its lack of goal generation. Without automatic goal generation and maintenance, forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such mimicry requires manual coding of additional rules which can assert an inadequate goal representation for every condition in every rule that can have corresponding facts derived by backward chaining. In general, for N rules with an average of M conditions per rule the number of goal generation rules required is on the order of N*M. This is clearly intractable from a program maintenance perspective. We describe the support in Eclipse for backward chaining which it automatically asserts as it checks rule conditions. Important characteristics of this extension are that it does not assert goals which cannot match any rule conditions, that 2 equivalent goals are never asserted, and that goals persist as long as, but no longer than, they remain relevant.

  5. Semiflexible chains in confined spaces

    NASA Astrophysics Data System (ADS)

    Morrison, Greg; Thirumalai, D.

    2009-01-01

    We develop an analytical method for studying the properties of a noninteracting wormlike chain (WLC) in confined geometries. The mean-field-like theory replaces the rigid constraints of confinement with average constraints, thus allowing us to develop a tractable method for treating a WLC wrapped on the surface of a sphere, and fully encapsulated within it. The efficacy of the theory is established by reproducing the exact correlation functions for a WLC confined to the surface of a sphere. In addition, the coefficients in the free energy are exactly calculated. We also describe the behavior of a surface-confined chain under external tension that is relevant for single molecule experiments on histone-DNA complexes. The force-extension curves display spatial oscillations, and the extension of the chain, whose maximum value is bounded by the sphere diameter, scales as f-1 at large forces, in contrast to the unconfined chain that approaches the contour length as f-1/2 . A WLC encapsulated in a sphere, that is relevant for the study of the viral encapsulation of DNA, can also be treated using the mean-field approach. The predictions of the theory for various correlation functions are in excellent agreement with Langevin simulations. We find that strongly confined chains are highly structured by examining the correlations using a local winding axis. The predicted pressure of the system is in excellent agreement with simulations but, as is known, is significantly lower than the pressures seen for DNA packaged in viral capsids.

  6. Shear Flow Induced Transition from Liquid-Crystalline to Polymer Behavior in Side-Chain Liquid Crystal Polymers

    SciTech Connect

    Noirez, L.; Lapp, A.

    1997-01-01

    We determine the structure and conformation of side-chain liquid-crystalline polymers subjected to shear flow in the vicinity of the smectic phase by neutron scattering on the velocity gradient plane. Below the nematic-smectic transition we observe a typical liquid-crystal behavior; the smectic layers slide, leading to a main-chain elongation parallel to the velocity direction. In contrast,a shear applied above the transition induces a tilted main-chain conformation which is typical for polymer behavior. {copyright} {ital 1996} {ital The American Physical Society}

  7. Controlled mobility of unmanned aircraft chains to optimize network capacity in realistic communication environments

    NASA Astrophysics Data System (ADS)

    Dixon, Cory

    This dissertation presents a decentralized gradient-based mobility control algorithm for the formation and maintenance of an optimal end-to-end communication chain using a team of unmanned aircraft acting as communication relays. With the use of unmanned aircraft (UA) as communication relays, a common mode of operation is to form a communication relay chain between a lead exploring node (which may be ground based or another UA) and a control station. In this type of operation the lead node is typically deployed to explore (sense) a remote region of interest that is beyond direct radio frequency (RF) communication range, or out of line-of-sight, to the control station. To provide non-line-of-sight service, and extend the communication range of the lead node, unmanned aircraft acting as communication relays are deployed in a convoy fashion behind the lead vehicle to form a cascaded relay chain. The focus of this work is the use of the mobility of a fixed number of relay aircraft to maximize the capacity of a directed communication chain from a source node to a destination node. Local objective functions are presented that use the signal-to-noise-and-interference ratio (SNIR) of neighbor communication links as inputs to maximize the end-to-end capacity of packet-based and repeater-type network chains. An adaptive gradient-based SNIR controller using the local objective function can show significant improvement in the capacity of the communication chain that is not possible with range-based controllers, or static deployment strategies, in RF environments containing unknown localized noise sources and terrain effects. Since the SNIR field is unknown, an online estimate of the SNIR field gradient is formed using methods of Stochastic Approximation from the orbital motion of the aircraft tracking a control point. Flight demonstrations using the Networked Unmanned Aircraft System Command, Control and Communications testbed were conducted to validate the controller

  8. Switch of states of a short chain in response to vibrations

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Cen; Huang, Jung-Ren; Tao, Chiao-Yu; Tsai, Jih-Chiang

    2014-11-01

    We study experimentally the dynamics of a short ball chain confined in a quasi-2D vertical channel under different vibrational strengths(VS). For a substantial range of VS, the chain maintains period-1 bouncing with the channel, but also undergoes transitions from a uniform response to various states of excitations as VS increases. In the transitional zone, we find that the unexcited and excited states exhibit bistability and switch spontaneously at fixed values of VS. This coexistence of different states explains the stocastic switch of ratcheting behaviors we reported previously in Phys. Rev. Lett. 112, 058001 (2014) where a spatial gradient of vibration is imposed.

  9. Nappe emplacement under lateral pressure gradient

    NASA Astrophysics Data System (ADS)

    Podladchikov, Yury; Schmalholz, Stefan

    2014-05-01

    New thin viscous approximation is under development specifically targeted to model spontaneous initiation and tens of kilometers horizontal displacement of tectonic nappes. Nappes are few kilometers thing and tens of kilometers long rock units trusted towards foreland often preserving internal lithological consistency and laying at near horizontal position at the end of the emplacement. Significant shear stresses and deviation of principal stresses from vertical is required to explain this very peculiar strain localization style from mechanical point of view. There is also a need for the explanation of their common appearances in most collisional settings. Both pure shear thin sheet and flexural models kinematically eliminate nappes formation. Spreading viscous sheet models, such as used to model glaciers, are also not applicable as the direction of motion is upward, against gravity. The reason for this discrepancy is the hydrostatic pressure approximation of the gravity-driven spreading models. Actually, the thin sheet approximation is not sensitive to the assumptions made on pressure profile. Lateral non-lithostatic pressure gradient-driven viscous sheet model is appropriate for modeling of nappes. In turn, significant non-lithostatic pressure must be supported by flexural rigidity of overlying and underlying units. Lateral gradients of this non-lithostatic pressure are responsible for the significant shear stress and, therefore, deviation of principal stress from vertical.

  10. Dropwise Condensation on a Radial Gradient Surface

    NASA Astrophysics Data System (ADS)

    Macner, Ashley; Daniel, Susan; Steen, Paul

    2013-11-01

    In transient dropwise condensation from steam onto a cool surface, distributions of drops evolve by nucleation, growth, and coalescence. This study examines how surface functionalization affects drop growth and coalescence. Surfaces are treated by silanization to deliver either a spatially uniform contact-angle (hydrophilic, neutral, and hydrophobic) or a radial gradient of contact-angles. The time evolution of number-density and associated drop-size distributions are reported. For a typical condensation experiment on a uniform angle surface, the number-density curves show two regimes: an initial increase in number-density as a result of nucleation and a subsequent decrease in number-density as a result of larger scale coalescence events. Without a removal mechanism, the fractional coverage, regardless of treatment, approaches unity. For the same angle-surface, the associated drop-size distributions progress through four different shapes along the growth curve. In contrast, for a radial gradient surface where removal by sweeping occurs, the number-density increases and then levels off to a value close to the maximum number-density that is well below unity coverage and only two shapes of distributions are observed. Implications for heat transfer will be discussed. This work was supported by a NASA Office of the Chief Technologist's Space Technology Research Fellowship.

  11. Cortical thickness gradients in structural hierarchies

    PubMed Central

    Wagstyl, Konrad; Ronan, Lisa; Goodyer, Ian M.; Fletcher, Paul C.

    2015-01-01

    MRI, enabling in vivo analysis of cortical morphology, offers a powerful tool in the assessment of brain development and pathology. One of the most ubiquitous measures used—the thickness of the cortex—shows abnormalities in a number of diseases and conditions, but the functional and biological correlates of such alterations are unclear. If the functional connotations of structural MRI measures are to be understood, we must strive to clarify the relationship between measures such as cortical thickness and their cytoarchitectural determinants. We therefore sought to determine whether patterns of cortical thickness mirror a key motif of the cortex, specifically its structural hierarchical organisation. We delineated three sensory hierarchies (visual, somatosensory and auditory) in two species—macaque and human—and explored whether cortical thickness was correlated with specific cytoarchitectural characteristics. Importantly, we controlled for cortical folding which impacts upon thickness and may obscure regional differences. Our results suggest that an easily measurable macroscopic brain parameter, namely, cortical thickness, is systematically related to cytoarchitecture and to the structural hierarchical organisation of the cortex. We argue that the measurement of cortical thickness gradients may become an important way to develop our understanding of brain structure–function relationships. The identification of alterations in such gradients may complement the observation of regionally localised cortical thickness changes in our understanding of normal development and neuropsychiatric illnesses. PMID:25725468

  12. Droplet microfluidics driven by gradients of confinement

    PubMed Central

    Dangla, Rémi; Kayi, S. Cagri; Baroud, Charles N.

    2013-01-01

    The miniaturization of droplet manipulation methods has led to drops being proposed as microreactors in many applications of biology and chemistry. In parallel, microfluidic methods have been applied to generate monodisperse emulsions for applications in the pharmaceuticals, cosmetics, and food industries. To date, microfluidic droplet production has been dominated by a few designs that use hydrodynamic forces, resulting from the flowing fluids, to break drops at a junction. Here we present a platform for droplet generation and manipulation that does not depend on the fluid flows. Instead, we use devices that incorporate height variations to subject the immiscible interfaces to gradients of confinement. The resulting curvature imbalance along the interface causes the detachment of monodisperse droplets, without the need for a flow of the external phase. Once detached, the drops are self-propelled due to the gradient of surface energy. We show that the size of the drops is determined by the device geometry; it is insensitive to the physical fluid properties and depends very weakly on the flow rate of the dispersed phase. This allows us to propose a geometric theoretical model that predicts the dependence of droplet size on the geometric parameters, which is in agreement with experimental measurements. The approach presented here can be applied in a wide range of standard applications, while simplifying the device operations. We demonstrate examples for single-droplet operations and high-throughput generation of emulsions, all of which are performed in simple and inexpensive devices. PMID:23284169

  13. Shape optimization of pressure gradient microphones

    NASA Technical Reports Server (NTRS)

    Norum, T. D.; Seiner, J. M.

    1977-01-01

    Recently developed finite element computer programs were utilized to investigate the influence of the shape of a body on its scattering field with the aim of determining the optimal shape for a Pressure Gradient Microphone (PGM). Circular cylinders of various aspect ratios were evaluated to choose the length to diameter ratio best suited for a dual element PGM application. Alterations of the basic cylindrical shape by rounding the edges and recessing at the centerline were also studied. It was found that for a + or - 1 db deviation from a linear pressure gradient response, a circular cylinder of aspect ratio near 0.5 was most suitable, yielding a useful upper frequency corresponding to ka = 1.8. The maximum increase in this upper frequency limit obtained through a number of shape alterations was only about 20 percent. An initial experimental evaluation of a single element cylindrical PGM of aspect ratio 0.18 utilizing a piezoresistive type sensor was also performed and is compared to the analytical results.

  14. Spatial temperature gradients guide axonal outgrowth.

    PubMed

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  15. Pressure gradient induced generation of microbubbles

    NASA Astrophysics Data System (ADS)

    Evangelio, Alvaro; Campo-Cortes, Francisco; Gordillo, Jose Manuel

    2015-11-01

    It is well known that the controlled production of monodisperse bubbles possesses uncountable applications in medicine, pharmacy and industry. Here we provide with a detailed physical description of the bubble formation processes taking place in a type of flow where the liquid pressure gradient can be straightforwardly controlled. In our experiments, a gas flow rate discharges through a cylindrical needle into a pressurized chamber. The pressure gradient created from the exit of the injection needle towards the entrance of a extraction duct promotes the stretching of the gas ligament downstream. In our analysis, which is supported by an exhaustive experimental study in which the liquid viscosity is varied by three orders of magnitude, different regimes can be distinguished depending mainly on the Reynolds number. Through our physical modeling, we provide closed expressions for both the bubbling frequencies and for the bubble diameters as well as the conditions under which a monodisperse generation is obtained in all regimes found. The excellent agreement between our expressions and the experimental data fully validates our physical modeling.

  16. Preparation and characterization of gradient polymer films

    SciTech Connect

    Smith, S.C.

    1987-01-01

    Gradient polymers are multicomponent polymers whose chemical constitution varies with depth in the sample. Although these polymers may possess unique mechanical, optical, and barrier properties they remain relatively unexplored. This work is a study of the preparation of gradient polymers by sequential exposure of films to a diffusing monomer followed by electron beam irradiation. Initial experiments involved immersion of poly(vinyl chloride) (PVC) films in styrene or n-butyl methacrylate (BMA) for various time periods followed by irradiation with 1 or 10 megarads of accelerated electrons. A significant amount of poly(n-butyl methacrylate) (PBMA) formed in PVC/BMA systems, but little polystyrene could be found in the PVC/styrene films. A second set of experiments involved immersion of PVC and polyethylene (PE) films in BMA for 20, 40, 60, and 720 minutes followed by irradiation with 10 megarads of electrons. These films were then characterized using optical microscopy, quantitative transmission Fourier transform infrared spectroscopy (FTIR), and a depth profiling procedure based on quantitative attenuated total reflection (ATR) FTIR. It was concluded that the mechanism of PBMA formation in the polyethylene films was a result of events immediately following irradiation. Atmospheric oxygen diffusing into irradiated films trapped free radicals at the film surfaces. This was followed by storage in an evacuated desiccator where unintentional exposure to BMA vapor took place. This BMA reacted with free radicals that remained within the film cores, polymerizing to PBMA.

  17. Dynamic separation of macromolecules under temperature gradient

    NASA Astrophysics Data System (ADS)

    Maeda, Yusuke; Buguin, Axel; Libchaber, Albert

    2011-03-01

    Thermophoresis is a motion of suspensions in a fluid that are subjected to a temperature gradient. Although its effect is widely studied in case of single solute in water, little is known about how the mixture of different solutes is affected. We heated water with an infrared laser by ΔTmax = 5C and ∇ T = 0.25C/um to induce thermophoresis of polyethylene glycol (PEG) and DNA. PEG is depleted from the hot region and results in a stationary gradient of its high volume fraction ϕ . Under this high concentration of PEG, DNA of small concentration is submitted to thermophoresis and osmotic pressure difference. The DNA shows regime of depletion, ring-like localization and accumulation as the volume fraction of PEG increases. As the osmotic force depends on the size of trapped solutes, DNA of different size accumulates at different regions. Depending whether the DNA size is below or above 5kbp a different scaling of position versus DNA size is observed. Thermal separation is a general phenomenon. It applies also to RNA and microbeads. YTM is supported by JSPS fellowship and M.Josee-H.Kravis fellowship from the Rockefeller University.

  18. Asymmetric Uncertainty Expression for High Gradient Aerodynamics

    NASA Technical Reports Server (NTRS)

    Pinier, Jeremy T

    2012-01-01

    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.

  19. Gradient navigation model for pedestrian dynamics

    NASA Astrophysics Data System (ADS)

    Dietrich, Felix; Köster, Gerta

    2014-06-01

    We present a microscopic ordinary differential equation (ODE)-based model for pedestrian dynamics: the gradient navigation model. The model uses a superposition of gradients of distance functions to directly change the direction of the velocity vector. The velocity is then integrated to obtain the location. The approach differs fundamentally from force-based models needing only three equations to derive the ODE system, as opposed to four in, e.g., the social force model. Also, as a result, pedestrians are no longer subject to inertia. Several other advantages ensue: Model-induced oscillations are avoided completely since no actual forces are present. The derivatives in the equations of motion are smooth and therefore allow the use of fast and accurate high-order numerical integrators. At the same time, the existence and uniqueness of the solution to the ODE system follow almost directly from the smoothness properties. In addition, we introduce a method to calibrate parameters by theoretical arguments based on empirically validated assumptions rather than by numerical tests. These parameters, combined with the accurate integration, yield simulation results with no collisions of pedestrians. Several empirically observed system phenomena emerge without the need to recalibrate the parameter set for each scenario: obstacle avoidance, lane formation, stop-and-go waves, and congestion at bottlenecks. The density evolution in the latter is shown to be quantitatively close to controlled experiments. Likewise, we observe a dependence of the crowd velocity on the local density that compares well with benchmark fundamental diagrams.

  20. Spatial temperature gradients guide axonal outgrowth

    NASA Astrophysics Data System (ADS)

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-Tae; Mohanty, Samarendra

    2016-07-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects.

  1. Spatial temperature gradients guide axonal outgrowth

    PubMed Central

    Black, Bryan; Vishwakarma, Vivek; Dhakal, Kamal; Bhattarai, Samik; Pradhan, Prabhakar; Jain, Ankur; Kim, Young-tae; Mohanty, Samarendra

    2016-01-01

    Formation of neural networks during development and regeneration after injury depends on accuracy of axonal pathfinding, which is primarily believed to be influenced by chemical cues. Recently, there is growing evidence that physical cues can play crucial role in axonal guidance. However, detailed mechanism involved in such guidance cues is lacking. By using weakly-focused near-infrared continuous wave (CW) laser microbeam in the path of an advancing axon, we discovered that the beam acts as a repulsive guidance cue. Here, we report that this highly-effective at-a-distance guidance is the result of a temperature field produced by the near-infrared laser light absorption. Since light absorption by extracellular medium increases when the laser wavelength was red shifted, the threshold laser power for reliable guidance was significantly lower in the near-infrared as compared to the visible spectrum. The spatial temperature gradient caused by the near-infrared laser beam at-a-distance was found to activate temperature-sensitive membrane receptors, resulting in an influx of calcium. The repulsive guidance effect was significantly reduced when extracellular calcium was depleted or in the presence of TRPV1-antagonist. Further, direct heating using micro-heater confirmed that the axonal guidance is caused by shallow temperature-gradient, eliminating the role of any non-photothermal effects. PMID:27460512

  2. Intergenerational and socioeconomic gradients of child obesity.

    PubMed

    Costa-Font, Joan; Gil, Joan

    2013-09-01

    Can the rise in obesity among children be attributed to the intergenerational transmission of parental influences? Does this trend affect the influence of parent's socioeconomic status on obesity? This paper documents evidence of an emerging social gradient of obesity in pre-school children resulting from a combination of both socio-economic status and less intensive childcare associated with maternal employment, when different forms of intergenerational transmission are controlled for. We also estimate and decompose income related inequalities in child obesity. We take advantage of a uniquely constructed dataset from Spain that contains records form 13,358 individuals for a time period (years 2003-2006) in which a significant spike in the growth of child obesity was observed. Our results suggest robust evidence of both socioeconomic and intergenerational gradients. Results are suggestive of a high income effect in child obesity, alongside evidence that income inequalities have doubled in just three years with a pure income effect accounting for as much as 72-66% of these income inequality estimates, even when intergenerational transmission is accounted for. Although, intergenerational transmission does not appear to be gender specific, when accounted for, mother's labour market participation only explains obesity among boys but not among girls. Hence, it appears income and parental influences are the central determinants of obesity among children.

  3. Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.

    PubMed

    Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi

    2016-07-01

    Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering.

  4. Cell orientation gradients on an inverse opal substrate.

    PubMed

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering. PMID:25942047

  5. Cell orientation gradients on an inverse opal substrate.

    PubMed

    Lu, Jie; Zou, Xin; Zhao, Ze; Mu, Zhongde; Zhao, Yuanjin; Gu, Zhongze

    2015-05-20

    The generation of cell gradients is critical for understanding many biological systems and realizing the unique functionality of many implanted biomaterials. However, most previous work can only control the gradient of cell density and this has no effect on the gradient of cell orientation, which has an important role in regulating the functions of many connecting tissues. Here, we report on a simple stretched inverse opal substrate for establishing desired cell orientation gradients. It was demonstrated that tendon fibroblasts on the stretched inverse opal gradient showed a corresponding alignment along with the elongation gradient of the substrate. This "random-to-aligned" cell gradient reproduces the insertion part of many connecting tissues, and thus, will have important applications in tissue engineering.

  6. Regularized Multitask Learning for Multidimensional Log-Density Gradient Estimation.

    PubMed

    Yamane, Ikko; Sasaki, Hiroaki; Sugiyama, Masashi

    2016-07-01

    Log-density gradient estimation is a fundamental statistical problem and possesses various practical applications such as clustering and measuring nongaussianity. A naive two-step approach of first estimating the density and then taking its log gradient is unreliable because an accurate density estimate does not necessarily lead to an accurate log-density gradient estimate. To cope with this problem, a method to directly estimate the log-density gradient without density estimation has been explored and demonstrated to work much better than the two-step method. The objective of this letter is to improve the performance of this direct method in multidimensional cases. Our idea is to regard the problem of log-density gradient estimation in each dimension as a task and apply regularized multitask learning to the direct log-density gradient estimator. We experimentally demonstrate the usefulness of the proposed multitask method in log-density gradient estimation and mode-seeking clustering. PMID:27171983

  7. Tunneling magnetoresistance of silicon chains

    NASA Astrophysics Data System (ADS)

    Matsuura, Yukihito

    2016-05-01

    The tunneling magnetoresistance (TMR) of a silicon chain sandwiched between nickel electrodes was examined by using first-principles density functional theory. The relative orientation of the magnetization in a parallel-alignment (PA) configuration of two nickel electrodes enhanced the current with a bias less than 0.4 V compared with that in an antiparallel-alignment configuration. Consequently, the silicon chain-nickel electrodes yielded good TMR characteristics. In addition, there was polarized spin current in the PA configuration. The spin polarization of sulfur atoms functioning as a linking bridge between the chain and nickel electrode played an important role in the magnetic effects of the electric current. Moreover, the hybridization of the sulfur 3p orbital and σ-conjugated silicon 3p orbital contributed to increasing the total current.

  8. Chain reconfiguration in active noise

    NASA Astrophysics Data System (ADS)

    Samanta, Nairhita; Chakrabarti, Rajarshi

    2016-05-01

    In a typical single molecule experiment, the dynamics of an unfolded protein is studied by determining the reconfiguration time using long-range Förster resonance energy transfer, where the reconfiguration time is the characteristic decay time of the position correlation between two residues of the protein. In this paper we theoretically calculate the reconfiguration time for a single flexible polymer in the presence of active noise. The study suggests that though the mean square displacement grows faster, the chain reconfiguration is always slower in the presence of long-lived active noise with exponential temporal correlation. Similar behavior is observed for a worm-like semi-flexible chain and a Zimm chain. However it is primarily the characteristic correlation time of the active noise and not the strength that controls the increase in the reconfiguration time. In brief, such active noise makes the polymer move faster but the correlation loss between the monomers becomes slow.

  9. Application of a food chain model to polychlorinated biphenyl contamination of the lobster and winter flounder food chains in New Bedford Harbor

    SciTech Connect

    Connolly, J.P. Manhattan Coll., Riverdale, NY )

    1991-04-01

    As part of a Remedial Investigation/Feasibility Study for the New Bedford Harbor Superfund site a model of polychlorinated biphenyls (PCBs) in the lobster and winter flounder food chains was developed. This model successfully reproduces tri-, tetra-, penta-, and hexachlorobiphenyl concentrations observed at all levels of the food chain and across the 2 order of magnitude concentration gradient in the system. The model indicated that PCB concentrations in the flounder and, to a lesser extent, in the lobster are derived from the sediment. Dietary uptake exceeds uptake across the gill for all four homologues and becomes the dominant route at the higher chlorinated homologues. The assimilation efficiency of ingested PCB apparently declines from relatively high values for tri-chlorobiphenyl to relatively low values for hexachlorobiphenyl. Differences in observed lobster and flounder PCB concentrations appear to be due to differences in the importance of the benthic component of the food chains of these animals and differences in whole body lipid content.

  10. Leading a supply chain turnaround.

    PubMed

    Slone, Reuben E

    2004-10-01

    Just five years ago, salespeople at Whirlpool were in the habit of referring to their supply chain organization as the "sales disablers." Now the company excels at getting products to the right place at the right time--while managing to keep inventories low. How did that happen? In this first-person account, Reuben Slone, Whirlpool's vice president of Global Supply Chain, describes how he and his colleagues devised the right supply chain strategy, sold it internally, and implemented it. Slone insisted that the right focal point for the strategy was the satisfaction of consumers at the end of the supply chain. Most supply chain initiatives do the opposite: They start with the realities of a company's manufacturing base and proceed from there. Through a series of interviews with trade customers large and small, his team identified 27 different capabilities that drove industry perceptions of Whirlpool's performance. Knowing it was infeasible to aim for world-class performance across all of them, Slone weighed the costs of excelling at each and found the combination of initiatives that would provide overall competitive advantage. A highly disciplined project management office and broad training in project management were key to keeping work on budget and on benefit. Slone set an intense pace--three "releases" of new capabilities every month--that the group maintains to this day. Lest this seem like a technology story, however, Slone insists it is just as much a "talent renaissance." People are proud today to be part of Whirlpool's supply chain organization, and its new generation of talent will give the company a competitive advantage for years to come. PMID:15559580

  11. Leading a supply chain turnaround.

    PubMed

    Slone, Reuben E

    2004-10-01

    Just five years ago, salespeople at Whirlpool were in the habit of referring to their supply chain organization as the "sales disablers." Now the company excels at getting products to the right place at the right time--while managing to keep inventories low. How did that happen? In this first-person account, Reuben Slone, Whirlpool's vice president of Global Supply Chain, describes how he and his colleagues devised the right supply chain strategy, sold it internally, and implemented it. Slone insisted that the right focal point for the strategy was the satisfaction of consumers at the end of the supply chain. Most supply chain initiatives do the opposite: They start with the realities of a company's manufacturing base and proceed from there. Through a series of interviews with trade customers large and small, his team identified 27 different capabilities that drove industry perceptions of Whirlpool's performance. Knowing it was infeasible to aim for world-class performance across all of them, Slone weighed the costs of excelling at each and found the combination of initiatives that would provide overall competitive advantage. A highly disciplined project management office and broad training in project management were key to keeping work on budget and on benefit. Slone set an intense pace--three "releases" of new capabilities every month--that the group maintains to this day. Lest this seem like a technology story, however, Slone insists it is just as much a "talent renaissance." People are proud today to be part of Whirlpool's supply chain organization, and its new generation of talent will give the company a competitive advantage for years to come.

  12. Differential evolution Markov chain with snooker updater and fewer chains

    SciTech Connect

    Vrugt, Jasper A; Ter Braak, Cajo J F

    2008-01-01

    Differential Evolution Markov Chain (DE-MC) is an adaptive MCMC algorithm, in which multiple chains are run in parallel. Standard DE-MC requires at least N=2d chains to be run in parallel, where d is the dimensionality of the posterior. This paper extends DE-MC with a snooker updater and shows by simulation and real examples that DE-MC can work for d up to 50--100 with fewer parallel chains (e.g. N=3) by exploiting information from their past by generating jumps from differences of pairs of past states. This approach extends the practical applicability of DE-MC and is shown to be about 5--26 times more efficient than the optimal Normal random walk Metropolis sampler for the 97.5% point of a variable from a 25--50 dimensional Student T{sub 3} distribution. In a nonlinear mixed effects model example the approach outperformed a block-updater geared to the specific features of the model.

  13. Proteasome activity and proteasome subunit transcripts in human spermatozoa separated by a discontinuous Percoll gradient.

    PubMed

    Rosales, O; Opazo, C; Diaz, E S; Villegas, J V; Sanchez, R; Morales, P

    2011-04-01

    Human semen is composed of a heterogeneous population of spermatozoa with varying degrees of structural and functional differentiation and normality, which result in subpopulations of different quality. Using a discontinuous Percoll gradient, we separated three subsets of spermatozoa (65/45%, 90/65% and 90% fractions) from normozoospermic semen samples from healthy donors and proceeded to characterise their morphology, viability, motility and proteasome activity. In addition, the presence of proteasome subunit transcripts was investigated using reverse transcription-polymerase chain reaction (RT-PCR). The results obtained showed significant differences in sperm motility, viability and morphology between the cells collected from each of the fractions. In particular, normal sperm morphology was 4.5 times higher in the 90% pellet in comparison with the 65/45% interface. In addition, there were significant differences in proteasomal activity between spermatozoa recovered from the 90% pellet and spermatozoa recovered from the 65/45% interface. Finally, there was a positive correlation between sperm proteasomal enzymatic activity and sperm motility and normal morphology after separation by a discontinuous Percoll gradient. The results of the RT-PCR revealed the presence of transcripts for the proteasome subunits β1, β2 and β5 in the human spermatozoa analysed. In conclusion, poor quality spermatozoa isolated from a Percoll gradient display an intrinsic proteasome activity deficiency, which may be associated with their low fertilising potential.

  14. Influence of petroleum deposit geometry on local gradient of electron acceptors and microbial catabolic potential.

    PubMed

    Singh, Gargi; Pruden, Amy; Widdowson, Mark A

    2012-06-01

    A field survey was conducted following the Deepwater Horizon blowout and it was noted that resulting coastal petroleum deposits possessed distinct geometries, ranging from small tar balls to expansive horizontal oil sheets. A subsequent laboratory study evaluated the effect of oil deposit geometry on localized gradients of electron acceptors and microbial community composition, factors that are critical to accurately estimating biodegradation rates. One-dimensional top-flow sand columns with 12-h simulated tidal cycles compared two contrasting geometries (isolated tar "balls" versus horizontal "sheets") relative to an oil-free control. Significant differences in the effluent dissolved oxygen and sulfate concentrations were noted among the columns, indicating presence of anaerobic zones in the oiled columns, particularly in the sheet condition. Furthermore, quantification of genetic markers of terminal electron acceptor and catabolic processes via quantitative polymerase chain reaction of dsrA (sulfate-reduction), mcrA (methanogenesis), and cat23 (oxygenation of aromatics) genes in column cores suggested more extensive anaerobic conditions induced by the sheet relative to the ball geometry. Denaturing gradient gel electrophoresis similarly revealed that distinct gradients of bacterial communities established in response to the different geometries. Thus, petroleum deposit geometry impacts local dominant electron acceptor conditions and may be a key factor for advancing attenuation models and prioritizing cleanup. PMID:22574781

  15. Macrophage response to methacrylate conversion using a gradient approach.

    PubMed

    Lin, Nancy J; Bailey, LeeAnn O; Becker, Matthew L; Washburn, Newell R; Henderson, Lori A

    2007-03-01

    Incomplete conversion, an ongoing challenge facing photopolymerized methacrylate-based polymers, affects leachables as well as the resulting polymer network. As novel polymers and composites are developed, methods to efficiently screen cell response to these materials and their properties, including conversion, are needed. In this study, an in vitro screening methodology was developed to assess cells cultured directly on cross-linked polymer networks. A gradient in methacrylate double bond conversion was used to increase the experimental throughput. A substrate of 2,2-bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl] propane (BisGMA) and triethylene glycol dimethacrylate (TEGDMA) was prepared with a conversion ranging from 43.0% to 61.2%. Substrates aged for 7 days had no significant differences in surface roughness or hydrophilicity as a function of conversion. Leachables were detectable for at least 7 days using UV absorption, but their global cytotoxicity was insignificant after 5 days of aging. Thus, RAW 264.7 macrophage-like cells were cultured on aged substrates to evaluate the cell response to conversion, with possible contributions from the polymer network and local leachables. Conversions of 45% and 50% decreased viability (via calcein/ethidium staining) and increased apoptosis (via annexin-V staining). No significant changes (p>0.05) in tumor necrosis factor-alpha and interleukin-1beta gene expression, as measured by quantitative, real-time reverse transcription-polymerase chain reaction, were seen as conversion increased. Thus, conversions greater than 50% are recommended for equimolar BisGMA/TEGDMA. The ability to distinguish cell response as a function of conversion is useful as an initial biological screening platform to optimize dental polymers.

  16. Precise low cost chain gears for heliostats

    NASA Astrophysics Data System (ADS)

    Liedke, Phillip; Lewandowski, Arkadiusz; Pfahl, Andreas; Hölle, Erwin

    2016-05-01

    This work investigates the potential of chain gears as precise and low cost driving systems for rim drive heliostats. After explaining chain gear basics the polygon effect and chain lengthening are investigated. The polygon effect could be measured by a heliostat with chain rim gear and the chain lengthening with an accordant test set up. Two gear stages are scope of this work: a rim gear and an intermediate gear. Dimensioning, pretensioning and designing for both stages are explained.

  17. Gradients of meteorological parameters in convective and nonconvective areas

    NASA Technical Reports Server (NTRS)

    Mccown, M. S.; Scoggins, J. R.

    1977-01-01

    Horizontal gradients of geopotential height, temperature, and wind speed were computed at the 850-, 700-, 500-, and 200-mb levels. Mixing ratio gradients also were computed, but only for the 850-, 700-, and 500-mb levels. Rawinsonde data was provided at 3- to 6-h intervals. Cumulative frequency distributions and statistical parameters showed that the variability and magnitude of the gradients decreased as the gradients were computed over progressively longer distances. Most frequency distributions were positively skewed, and the standard deviations of the gradient distributions were roughly half as large as the means. An examination of the differences of gradients observed in convective and nonconvective areas was made after convective areas were determined objectively using Manually Digitized Radar data. The gradients of height, wind speed, and mixing ratio at 850 mb were larger in convective than nonconvective areas. No general relationship held for the meteorological variables at other levels. Intensive examination of the gradients observed near squall lines revealed typical gradient patterns and trends in the magnitudes of the gradients associated with convective systems.

  18. Magnon dark modes and gradient memory

    PubMed Central

    Zhang, Xufeng; Zou, Chang-Ling; Zhu, Na; Marquardt, Florian; Jiang, Liang; Tang, Hong X.

    2015-01-01

    Extensive efforts have been expended in developing hybrid quantum systems to overcome the short coherence time of superconducting circuits by introducing the naturally long-lived spin degree of freedom. Among all the possible materials, single-crystal yttrium iron garnet has shown up recently as a promising candidate for hybrid systems, and various highly coherent interactions, including strong and even ultrastrong coupling, have been demonstrated. One distinct advantage in these systems is that spins form well-defined magnon modes, which allows flexible and precise tuning. Here we demonstrate that by dissipation engineering, a non-Markovian interaction dynamics between the magnon and the microwave cavity photon can be achieved. Such a process enables us to build a magnon gradient memory to store information in the magnon dark modes, which decouple from the microwave cavity and thus preserve a long lifetime. Our findings provide a promising approach for developing long-lifetime, multimode quantum memories. PMID:26568130

  19. Optimization using the gradient and simplex methods.

    PubMed

    Cerdà, Víctor; Cerdà, Juan Luis; Idris, Abubakr M

    2016-02-01

    Traditionally optimization of analytical methods has been conducted using a univariate method, varying each parameter one-by-one holding fixed the remaining. This means in many cases to reach only local minima and not get the real optimum. Among the various options for multivariate optimization, this paper highlights the gradient method, which involves the ability to perform the partial derivatives of a mathematical model, as well as the simplex method that does not require that condition. The advantages and disadvantages of those two multivariate optimization methods are discussed, indicating when they can be applied and the different forms that have been introduced. Different cases are described on the applications of these methods in analytical chemistry. PMID:26653495

  20. Radiation emitted by transverse-gradient undulators

    NASA Astrophysics Data System (ADS)

    Bernhard, Axel; Braun, Nils; Rodríguez, Verónica Afonso; Peiffer, Peter; Rossmanith, Robert; Widmann, Christina; Scheer, Michael

    2016-09-01

    Conventional undulators are used in synchrotron light sources to produce radiation with a narrow relative spectral width as compared to bending magnets or wigglers. The spectral width of the radiation produced by conventional undulators is determined by the number of undulator periods and by the energy spread and emittance of the electron beam. In more compact electron sources like for instance laser plasma accelerators the energy spread becomes the dominating factor. Due to this effect these electron sources cannot in general be used for high-gain free electron lasers (FELs). In order to overcome this limitation, modified undulator schemes, so-called transverse gradient undulators (TGUs), were proposed and a first superconducting TGU was built at Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany. In this paper simulations of the expected synchrotron radiation spectral distribution are presented. An experimental test with that device is under preparation at the laser wakefield accelerator at the JETI laser at the University of Jena, Germany.

  1. Strain gradient plasticity theory applied to machining

    NASA Astrophysics Data System (ADS)

    Royer, Raphaël; Laheurte, Raynald; Darnis, Philippe; Gérard, Alain; Cahuc, Olivier

    2011-05-01

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  2. Gradient-based inverse extreme ultraviolet lithography.

    PubMed

    Ma, Xu; Wang, Jie; Chen, Xuanbo; Li, Yanqiu; Arce, Gonzalo R

    2015-08-20

    Extreme ultraviolet (EUV) lithography is the most promising successor of current deep ultraviolet (DUV) lithography. The very short wavelength, reflective optics, and nontelecentric structure of EUV lithography systems bring in different imaging phenomena into the lithographic image synthesis problem. This paper develops a gradient-based inverse algorithm for EUV lithography systems to effectively improve the image fidelity by comprehensively compensating the optical proximity effect, flare, photoresist, and mask shadowing effects. A block-based method is applied to iteratively optimize the main features and subresolution assist features (SRAFs) of mask patterns, while simultaneously preserving the mask manufacturability. The mask shadowing effect may be compensated by a retargeting method based on a calibrated shadowing model. Illustrative simulations at 22 and 16 nm technology nodes are presented to validate the effectiveness of the proposed methods. PMID:26368764

  3. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Yoon W.; Kustom, Robert L.

    1999-01-01

    A cavity structure having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  4. Constant field gradient planar coupled cavity structure

    DOEpatents

    Kang, Y.W.; Kustom, R.L.

    1999-07-27

    A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.

  5. Diagnosing Plasma Gradients Using Spectral Line Shapes

    SciTech Connect

    Back, C A; Golovkin, I; Mancini, R; Missalla, T; Landen, O L; Lee, R W; Klein, L

    2000-11-13

    The development of a set of stable implosions using indirectly driven plastic microspheres with argon (0.1 atm) doped deuterium (50 atm) has provided a unique source for testing the plasma spectroscopy of the high energy density imploded core. The core reaches electron densities of > 10{sup 24} cm{sup -3} with temperatures of {approx} 1 keV and has been shown to be reproducible on a shot to shot basis. Moreover, it has been shown that not only the peak temperature and density are consistent, but that the temporal evolution of the mean temperature and density of the final phase of the implosion is also reproducible. These imploding cores provide a unique opportunity to test aspects of plasma spectroscopy that are difficult to study in other plasmas and to develop methods to test stable hydrodynamics. We present experimental results and discuss spectroscopic analysis algorithms to determine consistent temperature and density fits to determine gradients in the plasma.

  6. Observation of temperature-gradient-induced magnetization

    PubMed Central

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R.; Sato, K.; Vehstedt, E. K.; Uchida, K.; Bauer, G. E. W.; Saitoh, E.

    2016-01-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation. PMID:27457185

  7. Fano resonances from gradient-index metamaterials

    PubMed Central

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-01

    Fano resonances – resonant scattering features with a characteristic asymmetric profile – have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies. PMID:26813107

  8. Observation of temperature-gradient-induced magnetization

    NASA Astrophysics Data System (ADS)

    Hou, Dazhi; Qiu, Zhiyong; Iguchi, R.; Sato, K.; Vehstedt, E. K.; Uchida, K.; Bauer, G. E. W.; Saitoh, E.

    2016-07-01

    Applying magnetic fields has been the method of choice to magnetize non-magnetic materials, but they are difficult to focus. The magneto-electric effect and voltage-induced magnetization generate magnetization by applied electric fields, but only in special compounds or heterostructures. Here we demonstrate that a simple metal such as gold can be magnetized by a temperature gradient or magnetic resonance when in contact with a magnetic insulator by observing an anomalous Hall-like effect, which directly proves the breakdown of time-reversal symmetry. Such Hall measurements give experimental access to the spectral spin Hall conductance of the host metal, which is closely related to other spin caloritronics phenomena such as the spin Nernst effect and serves as a reference for theoretical calculation.

  9. Constant field gradient planar cavity structure

    SciTech Connect

    Kang, Yoon W.; Kustom, R.L.

    1997-12-01

    A cavity structure is described having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam.

  10. A fast, preconditioned conjugate gradient Toeplitz solver

    NASA Technical Reports Server (NTRS)

    Pan, Victor; Schrieber, Robert

    1989-01-01

    A simple factorization is given of an arbitrary hermitian, positive definite matrix in which the factors are well-conditioned, hermitian, and positive definite. In fact, given knowledge of the extreme eigenvalues of the original matrix A, an optimal improvement can be achieved, making the condition numbers of each of the two factors equal to the square root of the condition number of A. This technique is to applied to the solution of hermitian, positive definite Toeplitz systems. Large linear systems with hermitian, positive definite Toeplitz matrices arise in some signal processing applications. A stable fast algorithm is given for solving these systems that is based on the preconditioned conjugate gradient method. The algorithm exploits Toeplitz structure to reduce the cost of an iteration to O(n log n) by applying the fast Fourier Transform to compute matrix-vector products. Matrix factorization is used as a preconditioner.

  11. Gradient zone erosion in seawater solar ponds

    SciTech Connect

    Shi, J.; Hart, R.A.; Kleis, S.J.; Bannerot, R.B.

    1995-11-01

    An experimental program has been conducted to examine the feasibility of using seawater solar ponds in mariculture operations along the Texas gulf coast to protect fish crops from the potentially lethal, cold temperatures experienced in outdoor ponds. Seawater solar ponds in the form of floating thermal refuge areas are proposed as a method for reducing the loss of heat from small sections of a pond. Gradient zone erosion under various ambient and operating conditions is examined. Comparisons with previous laboratory studies show a much lower entrainment rate in the natural environment. A simple (linear) correlation of entrainment rate with wind speed was found, for conditions which are typical of those encountered in mariculture pond operations.

  12. Strain gradient plasticity theory applied to machining

    SciTech Connect

    Royer, Raphael; Laheurte, Raynald; Darnis, Philippe; Gerard, Alain; Cahuc, Olivier

    2011-05-04

    Machining is the most common manufacturing process. A good behaviour law is necessary in the simulation of machining processes (analytical and finite element modeling). Usually, commonly used behaviour laws such as Jonhson-Cook can bring unsatisfactory results especially for high strain and large deformation processes. Significant differences can appear between experimental and simulation results. The aim of this paper is to present the choices made regarding the behaviour law in this context. This study develops a large deformation strain-gradient theoretical framework with hypothesis linked to metal cutting processes. The theoretical framework has the potential of expressing moments at the tool tip as they were observed in experiments. It will be shown that the theory has the capability of interpreting the complex phenomena found in machining and more particularly in high speed machining.

  13. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  14. Fano resonances from gradient-index metamaterials.

    PubMed

    Xu, Yadong; Li, Sucheng; Hou, Bo; Chen, Huanyang

    2016-01-27

    Fano resonances - resonant scattering features with a characteristic asymmetric profile - have generated much interest, due to their extensive and valuable applications in chemical or biological sensors, new types of optical switches, lasers and nonlinear optics. They have been observed in a wide variety of resonant optical systems, including photonic crystals, metamaterials, metallic gratings and nanostructures. In this work, a waveguide structure is designed by employing gradient-index metamaterials, supporting strong Fano resonances with extremely sharp spectra. As the changes in the transmission spectrum originate from the interaction of guided modes from different channels, instead of resonance structures or metamolecules, the Fano resonances can be observed for both transverse electric and transverse magnetic polarizations. These findings are verified by fine agreement with analytical calculations and experimental results at microwave, as well as simulated results at near infrared frequencies.

  15. Nonlinear analysis of the gradient drift instability

    NASA Astrophysics Data System (ADS)

    González, Rafael; Vega, Matías de la

    An analytical study of the gradient drift instability in the equatorial electrojet of wavelengths in the order of one kilometer is presented. Different mechanisms, linear, non-local and turbulent, are found in the literature to explain the predominance of the 1 km wavelength in the electrojet. In the present work a simplified model is proposed in which the nonlinear evolution of three coupled modes is followed. By considering that one of the modes attains the stationary state, the evolution of the other two is obtained, and it is found that they follow equations of the Lotka-Volterra type. A stable stationary nonlinear solution for these equations is also found, and the conditions under which periodic solutions are possible are analyzed.

  16. High-gradient compact linear accelerator

    SciTech Connect

    Carder, B.M.

    1995-12-31

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  17. High-gradient compact linear accelerator

    DOEpatents

    Carder, Bruce M.

    1998-01-01

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter.

  18. High-gradient compact linear accelerator

    DOEpatents

    Carder, B.M.

    1998-05-26

    A high-gradient linear accelerator comprises a solid-state stack in a vacuum of five sets of disc-shaped Blumlein modules each having a center hole through which particles are sequentially accelerated. Each Blumlein module is a sandwich of two outer conductive plates that bracket an inner conductive plate positioned between two dielectric plates with different thicknesses and dielectric constants. A third dielectric core in the shape of a hollow cylinder forms a casing down the series of center holes, and it has a dielectric constant different that the two dielectric plates that sandwich the inner conductive plate. In operation, all the inner conductive plates are charged to the same DC potential relative to the outer conductive plates. Next, all the inner conductive plates are simultaneously shorted to the outer conductive plates at the outer diameters. The signal short will propagate to the inner diameters at two different rates in each Blumlein module. A faster wave propagates quicker to the third dielectric core across the dielectric plates with the closer spacing and lower dielectric constant. When the faster wave reaches the inner extents of the outer and inner conductive plates, it reflects back outward and reverses the field in that segment of the dielectric core. All the field segments in the dielectric core are then in unipolar agreement until the slower wave finally propagates to the third dielectric core across the dielectric plates with the wider spacing and higher dielectric constant. During such unipolar agreement, particles in the core are accelerated with gradients that exceed twenty megavolts per meter. 10 figs.

  19. Spatially resolved solid-state 1H NMR for evaluation of gradient-composition polymeric libraries.

    PubMed

    Leisen, Johannes; Gomez, Ismael J; Roper, John A; Meredith, J Carson; Beckham, Haskell W

    2012-07-01

    Polyurethane libraries consisting of films with composition gradients of aliphatic polyisocyanate and hydroxy-terminated polyacrylate resin were characterized using methods of (1)H NMR microimaging (i.e., magnetic resonance imaging, (MRI)) and solid-state NMR. Molecular mobilities and underlying structural information were extracted as a function of the relative content of each of the two components. Routine NMR microimaging using the spin-echo sequence only allows investigations of transverse relaxation of magnetization at echo times >2 ms. A single-exponential decay was found, which is likely due to free, noncross-linked polymer chains. The mobility of these chains decreases with increasing content of the aliphatic polyisocyanate. The concept of a 1D NMR profiler is introduced as a novel modality for library screening, which allows the convenient measurement of static solid-state NMR spectra as a function of spatial location along a library sample that is repositioned in the rf coil between experiments. With this setup the complete transverse relaxation function was measured using Bloch decays and spin echoes. For all positions within the gradient-composition film, relaxation data consisted of at least three components that were attributed to a rigid highly cross-linked resin, an intermediate cross-linked but mobile constituent, and the highly mobile free polymer chains (the latter is also detectable by MRI). Analysis of this overall relaxation function measured via Bloch decays and spin echoes revealed only minor changes in the mobilities of the individual fractions. Findings with respect to the most mobile components are consistent with the results obtained by NMR microimaging. The major effect is the significant increase in the rigid-component fraction with the addition of the hydroxy-terminated polyacrylate resin. PMID:22676634

  20. Supply chain challenges. building relationships.

    PubMed

    Beth, Scott; Burt, David N; Copacino, William; Gopal, Chris; Lee, Hau L; Lynch, Robert Porter; Morris, Sandra

    2003-07-01

    Supply chain management is all about software and systems, right? Put in the best technology, sit back, and watch as your processes run smoothly and the savings roll in? Apparently not. When HBR convened a panel of leading thinkers in the field of supply chain management, technology was not top of mind. People and relationships were the dominant issues of the day. The opportunities and problems created by globalization, for example, are requiring companies to establish relationships with new types of suppliers. The ever-present pressure for speed and cost containment is making it even more important to break down stubbornly high internal barriers and establish more effective cross-functional relationships. The costs of failure have never been higher. The leading supply chain performers are applying new technology, new innovations, and process thinking to far greater advantage than the laggards, reaping tremendous gains in all the variables that affect shareholder value: cost, customer service, asset productivity, and revenue generation. And the gap between the leaders and the losers is growing in almost every industry. This roundtable gathered many of the leading thinkers and doers in the field of supply chain management, including practitioners Scott Beth of Intuit, Sandra Morris of Intel, and Chris Gopal of Unisys. David Burt of the University of San Diego and Stanford's Hau Lee bring the latest research from academia. Accenture's William Copacino and the Warren Company's Robert Porter Lynch offer the consultant's perspectives. Together, they take a wide-ranging view of such topics as developing talent, the role of the chief executive, and the latest technologies, exploring both the tactical and the strategic in the current state of supply chain management.

  1. Use of double gradient denaturing gradient gel electrophoresis to detect (AT)n polymorphisms in the UDP-glucuronosyltransferase 1 gene promoter associated with Gilbert's syndrome.

    PubMed

    Gürtler, V; Parkin, J D; Mayall, B C

    1999-10-01

    Gilbert's syndrome, due to reduced hepatic bilirubin glucuronidation is associated with the presence of two extra nucleotides (TA) in the promoter region of the UDP-glucuronosyltransferase 1 (UGT1A1) gene. A rapid method was developed to detect this genetic polymorphism, using double gradient denaturing gradient gel electrophoresis (DG-DGGE). The promoter region of the UGT1A1 gene was amplified with a 40-mer GC-clamp attached to the 5'-end of the reverse primer. The polymerase chain reaction (PCR) product was then separated by DG-DGGE using denaturant concentrations of 15-25% and polyacrylamide concentrations of 6-12%. The (TA)6/(TA)6 homozygotes were clearly distinguished from both (TA)7/(TA)7 homozygotes and (TA)6/(TA)7 heterozygotes. The (TA)7 allele frequency was consistent with that previously reported and elevated bilirubin levels correlated with the presence of the (TA)7 allele. The DG-DGGE method described will make detection for this polymorphism fast, simple, nonradioactive and suitable for a clinical routine diagnostic laboratory, helping to establish the role of this polymorphism in individuals with jaundice due to multiple causes.

  2. "Measure Your Gradient": a new way to measure gradients in high performance liquid chromatography by mass spectrometric or absorbance detection.

    PubMed

    Magee, Megan H; Manulik, Joseph C; Barnes, Brian B; Abate-Pella, Daniel; Hewitt, Joshua T; Boswell, Paul G

    2014-11-21

    The gradient produced by an HPLC is never the same as the one it is programmed to produce, but non-idealities in the gradient can be taken into account if they are measured. Such measurements are routine, yet only one general approach has been described to make them: both HPLC solvents are replaced with water, solvent B is spiked with 0.1% acetone, and the gradient is measured by UV absorbance. Despite the widespread use of this procedure, we found a number of problems and complications with it, mostly stemming from the fact that it measures the gradient under abnormal conditions (e.g. both solvents are water). It is also generally not amenable to MS detection, leaving those with only an MS detector no way to accurately measure their gradients. We describe a new approach called "Measure Your Gradient" that potentially solves these problems. One runs a test mixture containing 20 standards on a standard stationary phase and enters their gradient retention times into open-source software available at www.measureyourgradient.org. The software uses the retention times to back-calculate the gradient that was truly produced by the HPLC. Here we present a preliminary investigation of the new approach. We found that gradients measured this way are comparable to those measured by a more accurate, albeit impractical, version of the conventional approach. The new procedure worked with different gradients, flow rates, column lengths, inner diameters, on two different HPLCs, and with six different batches of the standard stationary phase.

  3. Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules.

    PubMed

    Kolekar, Yogesh M; Nemade, Harshal N; Markad, Vijay L; Adav, Sunil S; Patole, Milind S; Kodam, Kisan M

    2012-01-01

    The present study deals with development of aerobic granules from textile wastewater sludge and challenged with different concentration of reactive blue 59 (RB59) to test their dye degradation potential. The granules efficiently degraded reactive blue 59 and also sustained higher dye loading of up to 5.0 g l(-1). The significant induction of enzymes azoreductase and cytochrome P-450 indicated their prominent role in the dye degradation while genotoxicity studies demonstrated that the biotransformed product of the dye as non-toxic. The microbial community of the textile dyes degrading aerobic sludge granules analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), revealed significantly diverse dye degrading microbial community belonging to alpha-, beta-, and gamma-proteobacteria.

  4. Bacterial and archaeal communities in Lake Nyos (Cameroon, Central Africa)

    PubMed Central

    Tiodjio, Rosine E.; Sakatoku, Akihiro; Nakamura, Akihiro; Tanaka, Daisuke; Fantong, Wilson Y.; Tchakam, Kamtchueng B.; Tanyileke, Gregory; Ohba, Takeshi; Hell, Victor J.; Kusakabe, Minoru; Nakamura, Shogo; Ueda, Akira

    2014-01-01

    The aim of this study was to assess the microbial diversity associated with Lake Nyos, a lake with an unusual chemistry in Cameroon. Water samples were collected during the dry season on March 2013. Bacterial and archaeal communities were profiled using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) approach of the 16S rRNA gene. The results indicate a stratification of both communities along the water column. Altogether, the physico-chemical data and microbial sequences suggest a close correspondence of the potential microbial functions to the physico-chemical pattern of the lake. We also obtained evidence of a rich microbial diversity likely to include several novel microorganisms of environmental importance in the large unexplored microbial reservoir of Lake Nyos. PMID:25141868

  5. Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils.

    PubMed

    Guo, Zhaohui; Megharaj, Mallavarapu; Beer, Michael; Ming, Hui; Mahmudur Rahman, Mohammad; Wu, Weihong; Naidu, Ravi

    2009-09-01

    The metals contamination in surface soils and their accumulation in wild plants from the abandoned Burra and Kapunda copper mines located in South Australia were assessed, and the predominant bacterial diversity in the contaminated surface soils from these two abandoned copper mine sites were evaluated through polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis. The results showed the average concentration of Cu in soils was 3821.59 mg/kg while wild plants accumulated up to 173.44 mg/kg. The concentration of Cu in shoots of spear grass (Stipa uitida) and berry saltbush (Afriplex semibaccata) was higher than that of roots. The concentration of total and extractable As, Cd, Cu and Pb in soils slightly correlated with of these elements in the corresponding wild plants. The toxicity of Cu in heavily contaminated soils impacted on the quantities of specific microbial populations and no significant change in the microbial diversity of highly contaminated soils.

  6. Size effects of potato waste on its treatment by microbial fuel cell.

    PubMed

    Du, Haixia; Li, Fusheng

    2016-01-01

    The performance of microbial fuel cell (MFC) in treating potato cubes with different sizes (the edge size of 3, 5 and 7 mm) was investigated. Current density was found lower as the size of potato cubes increased, even if the differences in their removal were less apparent. At the end of MFC operation for 81 days, both total and soluble chemical oxygen demand reached nearly identical values, irrespective of the potato sizes; and citrate and isobutyrate were two major organic acids remaining in the solutions. Bacterial community analysis using polymerase chain reaction, denaturing gradient gel electrophoresis and sequencing indicated that bacterial species on the anode and in the anodic solution were similar and did not change obviously with potato sizes, and that, in similarity with previous studies on potato-processing wastewater treatment, Proteobacteria and Firmicutes were two dominating phyla. Geobacter was found richer on the anode than in the anodic solutions. PMID:26583755

  7. Sequential sludge digestion after diverse pre-treatment conditions: sludge removal, methane production and microbial community changes.

    PubMed

    Park, Sang Kyu; Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon

    2014-06-01

    A lab-scale sequential sludge digestion process which consists of a mesophilic anaerobic digester (MAD) and a thermophilic aerobic digester (TAD) was developed. Thermal, thermal-alkaline and long-term alkaline pre-treatments were applied to the feed sludge to examine their effects on sludge removal and methane production. Especially after thermal-alkaline pre-treatment, high COD removal was maintained; methane production rate was also drastically increased by improving the hydrolysis step of sludge degradation. Polymerase chain reaction-denaturing gel gradient electrophoresis indicated that bacterial communities were represented by three phyla (Firmicutes, Proteobacteria, Actinobacteria) and that Clostridium straminisolvens was the major bacterial species in MAD. Quantitative real-time PCR results indicated that Methanosaeta concilli was the major archaeal species in MAD, and that Ureibacillus sp. was the most abundant bacterial species in TAD.

  8. Study of the diversity of microbial communities in a sequencing batch reactor oxic-settling-anaerobic process and its modified process.

    PubMed

    Sun, Lianpeng; Chen, Jianfan; Wei, Xiange; Guo, Wuzhen; Lin, Meishan; Yu, Xiaoyu

    2016-05-01

    To further reveal the mechanism of sludge reduction in the oxic-settling-anaerobic (OSA) process, the polymerase chain reaction - denaturing gradient gel electrophoresis protocol was used to study the possible difference in the microbial communities between a sequencing batch reactor (SBR)-OSA process and its modified process, by analyzing the change in the diversity of the microbial communities in each reactor of both systems. The results indicated that the structure of the microbial communities in aerobic reactors of the 2 processes was very different, but the predominant microbial populations in anaerobic reactors were similar. The predominant microbial population in the aerobic reactor of the SBR-OSA belonged to Burkholderia cepacia, class Betaproteobacteria, while those of the modified process belonged to the classes Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. These 3 types of microbes had a cryptic growth characteristic, which was the main cause of a greater sludge reduction efficiency achieved by the modified process. PMID:27021584

  9. A Cellular System for Spatial Signal Decoding in Chemical Gradients.

    PubMed

    Hegemann, Björn; Unger, Michael; Lee, Sung Sik; Stoffel-Studer, Ingrid; van den Heuvel, Jasmin; Pelet, Serge; Koeppl, Heinz; Peter, Matthias

    2015-11-23

    Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.

  10. Convection driven generation of long-range material gradients

    PubMed Central

    Du, Yanan; Hancock, Matthew J.; He, Jiankang; Villa-Uribe, Jose; Wang, Ben; Cropek, Donald M.; Khademhosseini, Ali

    2009-01-01

    Natural materials exhibit anisotropy with variations in soluble factors, cell distribution, and matrix properties. The ability to recreate the heterogeneity of the natural materials is a major challenge for investigating cell-material interactions and for developing biomimetic materials. Here we present a generic fluidic approach using convection and alternating flow to rapidly generate multi-centimeter gradients of biomolecules, polymers, beads and cells and cross-gradients of two species in a microchannel. Accompanying theoretical estimates and simulations of gradient growth provide design criteria over a range of material properties. A poly(ethyleneglycol) hydrogel gradient, a porous collagen gradient and a composite material with a hyaluronic acid/gelatin cross-gradient were generated with continuous variations in material properties and in their ability to regulate cellular response. This simple yet generic fluidic platform should prove useful for creating anisotropic biomimetic materials and high-throughput platforms for investigating cell-microenvironment interaction. PMID:20035990

  11. Design of a High Thermal Gradient Bridgman Furnace

    NASA Technical Reports Server (NTRS)

    LeCroy, J. E.; Popok, D. P.

    1994-01-01

    The Advanced Automated Directional Solidification Furnace (AADSF) is a Bridgman-Stockbarger microgravity processing facility, designed and manifested to first fly aboard the second United States Microgravity Payload (USMP-2) Space Shuttle mission. The AADSF was principally designed to produce high axial thermal gradients, and is particularly suitable for metals solidification experiments, including non-dilute alloys. To accommodate a wider range of experimental conditions, the AADSF is equipped with a reconfigurable gradient zone. The overall design of the AADSF and the relationship between gradient zone design and furnace performance are described. Parametric thermal analysis was performed and used to select gradient zone design features that fulfill the high thermal gradient requirements of the USMP-2 experiment. The thermal model and analytical procedure, and parametric results leading to the first flight gradient zone configuration, are presented. Performance for the USMP-2 flight experiment is also predicted, and analysis results are compared to test data.

  12. Thermoacoustic mixture separation with an axial temperature gradient

    SciTech Connect

    Geller, Drew W; Swift, Gregory A

    2008-01-01

    The theory of thermoacoustic mixture separation is extended to include the effect of a nonzero axial temperature gradient. The analysis yields a new term in the second-order mole flux that is proportional to the temperature gradient and to the square of the volumetric velocity and is independent of the phasing of the wave. Because of this new term, thermoacoustic separation stops at a critical temperature gradient and changes direction above that gradient. For a traveling wave, this gradient is somewhat higher than that predicted by a simple four-step model. An experiment tests the theory for temperature gradients from 0 to 416 K/m in 50-50 He-Ar mixtures.

  13. Numerical simulation of high-gradient magnetic filtration

    NASA Astrophysics Data System (ADS)

    Gusev, B. A.; Semenov, V. G.; Panchuk, V. V.

    2016-09-01

    We have reported on the results of a numerical simulation of high-gradient magnetic filtration of ultradisperse corrosion products from water coolants. These results have made it possible to establish optimal technical characteristics of high-gradient magnetic filters. The results have been used to develop test samples of high-gradient magnetic filters (HGMFs) with different magnetic systems to purify technological water media of atomic power plants from activated corrosion products.

  14. Comparison of genetic algorithms with conjugate gradient methods

    NASA Technical Reports Server (NTRS)

    Bosworth, J. L.; Foo, N. Y.; Zeigler, B. P.

    1972-01-01

    Genetic algorithms for mathematical function optimization are modeled on search strategies employed in natural adaptation. Comparisons of genetic algorithms with conjugate gradient methods, which were made on an IBM 1800 digital computer, show that genetic algorithms display superior performance over gradient methods for functions which are poorly behaved mathematically, for multimodal functions, and for functions obscured by additive random noise. Genetic methods offer performance comparable to gradient methods for many of the standard functions.

  15. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    SciTech Connect

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  16. Effective Gradients in Porous Media Due to Susceptibility Differences

    PubMed

    Hürlimann

    1998-04-01

    In porous media, magnetic susceptibility differences between the solid phase and the fluid filling the pore space lead to field inhomogeneities inside the pore space. In many cases, diffusion of the spins in the fluid phase through these internal inhomogeneities controls the transverse decay rate of the NMR signal. In disordered porous media such as sedimentary rocks, a detailed evaluation of this process is in practice not possible because the field inhomogeneities depend not only on the susceptibility difference but also on the details of the pore geometry. In this report, the major features of diffusion in internal gradients are analyzed with the concept of effective gradients. Effective gradients are related to the field inhomogeneities over the dephasing length, the typical length over which the spins diffuse before they dephase. For the CPMG sequence, the dependence of relaxation rate on echo spacing can be described to first order by a distribution of effective gradients. It is argued that for a given susceptibility difference, there is a maximum value for these effective gradients, gmax, that depends on only the diffusion coefficient, the Larmor frequency, and the susceptibility difference. This analysis is applied to the case of water-saturated sedimentary rocks. From a set of NMR measurements and a compilation of a large number of susceptibility measurements, we conclude that the effective gradients in carbonates are typically smaller than gradients of current NMR well logging tools, whereas in many sandstones, internal gradients can be comparable to or larger than tool gradients. Copyright 1998 Academic Press.

  17. Origin of stress gradients induced in capped, copper metallization

    SciTech Connect

    Murray, Conal E.

    2014-02-24

    Stress gradients generated near the top surface of Cu thin films by capping layers, as measured using a combination of conventional and glancing incidence x-ray diffraction, exhibit heterogeneous behavior that is directly related to plastic anisotropy within the Cu grains. A comparison of stress gradients measured from several x-ray reflections to their corresponding Schmid factors yields a consistent, critical resolved shear stress. The results experimentally verify that dislocation-mediated plasticity is responsible for the creation of stress gradients at the Cu film/cap interface. Depth-dependent measurements reveal that the observed gradients are localized to within 200 nm of this interface.

  18. A multiscale gradient-dependent plasticity model for size effects

    NASA Astrophysics Data System (ADS)

    Lyu, Hao; Taheri-Nassaj, Nasrin; Zbib, Hussein M.

    2016-06-01

    The mechanical behaviour of polycrystalline material is closely correlated to grain size. In this study, we investigate the size-dependent phenomenon in multi-phase steels using a continuum dislocation dynamic model coupled with viscoplastic self-consistent model. We developed a dislocation-based strain gradient plasticity model and a stress gradient plasticity model, as well as a combined model, resulting in a theory that can predict size effect over a wide range of length scales. Results show that strain gradient plasticity and stress gradient plasticity are complementary rather than competing theories. The stress gradient model is dominant at the initial strain stage, and is much more effective for predicting yield strength than the strain gradient model. For larger deformations, the strain gradient model is dominant and more effective for predicting size-dependent hardening. The numerical results are compared with experimental data and it is found that they have the same trend for the yield stress. Furthermore, the effect of dislocation density at different strain stages is investigated, and the findings show that the Hall-Petch relation holds for the initial strain stage and breaks down for higher strain levels. Finally, a power law to describe the size effect and the transition zone between the strain gradient and stress gradient dominated regions is developed.

  19. Isolation of Early and Late Endosomes by Density Gradient Centrifugation.

    PubMed

    de Araújo, Mariana E G; Lamberti, Giorgia; Huber, Lukas A

    2015-11-01

    Density gradient centrifugation is a common method for separating intracellular organelles. During centrifugation, organelles float or sediment until they reach their isopycnic position within the gradient. The density of an organelle depends on its content, size, shape, and the lipid:protein ratio. The degree of separation between different organelles will therefore be highly dependent on how different their isopycnic points are in a given buffer. Separation will also depend on the medium used to prepare the gradient, whether it is sucrose (the most common) or an alternative. Here we describe the use of both continuous and discontinuous (step) gradients to isolate endocytic organelles. PMID:26527762

  20. A review of chemical gradient systems for cell analysis.

    PubMed

    Somaweera, Himali; Ibraguimov, Akif; Pappas, Dimitri

    2016-02-11

    Microfluidic spatial and temporal gradient generators have played an important role in many biological assays such as in the analysis of wound healing, inflammation, and cancer metastasis. Chemical gradient systems can also be applied to other fields such as drug design, chemical synthesis, chemotaxis, etc. Microfluidic systems are particularly amenable to gradient formation, as the length scales used in chips enable fluid processes that cannot be conducted in bulk scale. In this review we discuss new microfluidic devices for gradient generation and applications of those systems in cell analysis.

  1. Bias in the Gradient Sensing Response of Chemotactic Cells

    PubMed Central

    Skupsky, Ron; McCann, Colin; Nossal, Ralph; Losert, Wolfgang

    2009-01-01

    We apply linear-stability theory and perform perturbation studies to better characterize, and to generate new experimental predictions from, a model of chemotactic gradient sensing in eukaryotic cells. The model uses reaction-diffusion equations to describe 3′ phosphoinositide signaling and its regulation at the plasma membrane. It demonstrates a range of possible gradient-sensing mechanisms and captures such characteristic behaviors as strong polarization in response to static gradients, adaptation to differing mean levels of stimulus, and plasticity in response to changing gradients. An analysis of the stability of polarized steady-state solutions indicates that the model is most sensitive to off-axis perturbations. This biased sensitivity is reflected in responses to localized external stimuli as well, and leads to a clear experimental prediction, namely, that a cell which is polarized in a background gradient will be most sensitive to transient point-source stimuli lying within a range of angles that are oblique with respect to the polarization axis. Stimuli at angles below this range will elicit responses whose directions overshoot the stimulus angle, while responses to stimuli applied at larger angles will undershoot the stimulus angle. We argue that such a bias is likely to be a general feature of gradient sensing in highly motile cells, particularly if they are optimized to respond to small gradients. Finally, an angular bias in gradient sensing might lead to preferred turn angles and zigzag movements of cells moving up chemotactic gradients, as has been noted under certain experimental conditions. PMID:17462672

  2. Aggregation-fragmentation model of robust concentration gradient formation

    NASA Astrophysics Data System (ADS)

    Saunders, Timothy E.

    2015-02-01

    Concentration gradients of signaling molecules are essential for patterning during development and they have been observed in both unicellular and multicellular systems. In subcellular systems, clustering of the signaling molecule has been observed. We develop a theoretical model of cluster-mediated concentration gradient formation based on the Becker-Döring equations of aggregation-fragmentation processes. We show that such a mechanism produces robust concentration gradients on realistic time and spatial scales so long as the process of clustering does not significantly stabilize the signaling molecule. Finally, we demonstrate that such a model is applicable to the pom1p subcellular gradient in fission yeast.

  3. Control of Hydrogen Photoproduction by the Proton Gradient Generated by Cyclic Electron Flow in Chlamydomonas reinhardtii[W

    PubMed Central

    Tolleter, Dimitri; Ghysels, Bart; Alric, Jean; Petroutsos, Dimitris; Tolstygina, Irina; Krawietz, Danuta; Happe, Thomas; Auroy, Pascaline; Adriano, Jean-Marc; Beyly, Audrey; Cuiné, Stéphan; Plet, Julie; Reiter, Ilja M.; Genty, Bernard; Cournac, Laurent; Hippler, Michael; Peltier, Gilles

    2011-01-01

    Hydrogen photoproduction by eukaryotic microalgae results from a connection between the photosynthetic electron transport chain and a plastidial hydrogenase. Algal H2 production is a transitory phenomenon under most natural conditions, often viewed as a safety valve protecting the photosynthetic electron transport chain from overreduction. From the colony screening of an insertion mutant library of the unicellular green alga Chlamydomonas reinhardtii based on the analysis of dark-light chlorophyll fluorescence transients, we isolated a mutant impaired in cyclic electron flow around photosystem I (CEF) due to a defect in the Proton Gradient Regulation Like1 (PGRL1) protein. Under aerobiosis, nonphotochemical quenching of fluorescence (NPQ) is strongly decreased in pgrl1. Under anaerobiosis, H2 photoproduction is strongly enhanced in the pgrl1 mutant, both during short-term and long-term measurements (in conditions of sulfur deprivation). Based on the light dependence of NPQ and hydrogen production, as well as on the enhanced hydrogen production observed in the wild-type strain in the presence of the uncoupling agent carbonyl cyanide p-trifluoromethoxyphenylhydrazone, we conclude that the proton gradient generated by CEF provokes a strong inhibition of electron supply to the hydrogenase in the wild-type strain, which is released in the pgrl1 mutant. Regulation of the trans-thylakoidal proton gradient by monitoring pgrl1 expression opens new perspectives toward reprogramming the cellular metabolism of microalgae for enhanced H2 production. PMID:21764992

  4. Constrained numerical gradients and composite gradients: Practical tools for geometry optimization and potential energy surface navigation.

    PubMed

    Stenrup, Michael; Lindh, Roland; Fdez Galván, Ignacio

    2015-08-15

    A method is proposed to easily reduce the number of energy evaluations required to compute numerical gradients when constraints are imposed on the system, especially in connection with rigid fragment optimization. The method is based on the separation of the coordinate space into a constrained and an unconstrained space, and the numerical differentiation is done exclusively in the unconstrained space. The decrease in the number of energy calculations can be very important if the system is significantly constrained. The performance of the method is tested on systems that can be considered as composed of several rigid groups or molecules, and the results show that the error with respect to conventional optimizations is of the order of the convergence criteria. Comparison with another method designed for rigid fragment optimization proves the present method to be competitive. The proposed method can also be applied to combine numerical and analytical gradients computed at different theory levels, allowing an unconstrained optimization with numerical differentiation restricted to the most significant degrees of freedom. This approach can be a practical alternative when analytical gradients are not available at the desired computational level and full numerical differentiation is not affordable.

  5. Soil Fertility Gradient in the Restinga Ecosystem

    NASA Astrophysics Data System (ADS)

    América Castelar da Cunha, Joana; Casagrande, José Carlos; Soares, Marcio Roberto; Martins Bonilha, Rodolfo

    2013-04-01

    The restinga ecosystem (coastal plain vegetation) can be termed as a set of plant communities that suffer strong influenced by fluvial and marine factors and is characterized as an ecosystem of great biological diversity, therefore, represents areas of great importance in the context of ecological preservation. The degradation processes from many forms of anthropogenic disturbances that has taken place since the colonization of the country, made studies on the characterization and dynamics of soil fertility of these areas even more important in relation to the maintenance of its biodiversity and conservation. The sites studied were the Cardoso Island and Comprida Island, and in these, we analyzed four physiognomies, restinga, low restinga, dune and antedune (from continent to ocean). Chemical analyses were performed and soil salinity in these areas in depths 0-5; 0-10; 0-20; 20-40; 40-60 cm. In all soils the cationic exchange capacity was intimately associated with the concentration of soil organic matter, which makes this parameter essential to the maintenance of soil fertility of these areas; in more superficial layers (0-20 cm) there was an increase of pH and base saturation and decline of organic matter, aluminum saturation and cationic exchange capacity in the nearby sea, physiognomies what determines the existence of fertility gradient towards the continent-coast; restinga forests showed a chemical standard that is heavily marked by sandy texture, high degree of leaching, nutrient poverty, low base saturation, high saturation by aluminum and acidity, opposite conditions to soils of the dunes and antedunes, with the exception of sandy texture; despite the existence of a chemical gradient of fertility among the physiognomies studied it is possible to determine the soil acts more strongly as a physical support than as provider of fertility; as for salinity, soil collected in Cardoso Island did not present salinity in any depth, a fact which can be explained due

  6. Selective and directional actuation of elastomer films using chained magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.

    2016-01-01

    We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j

  7. Convective polymerase chain reaction around micro immersion heater

    NASA Astrophysics Data System (ADS)

    Hennig, Martin; Braun, Dieter

    2005-10-01

    Polymerase chain reaction (PCR) is performed in the thermal convection created by a micro immersion heater. Instead of repetitive heating and cooling, the temperature gradient induces thermal convection which drives the reaction liquid between hot and cold parts of the chamber. The convection triggers DNA amplification as the DNA melts into two single strands in the hot region and replicates with the use of proteins into twice the amount in the cold region. The constant heater is simply dipped into the reaction solution. Compared to previous experiments, we demonstrate that convective PCR is possible in a robotically accessible open vessel. Our approach compares well with fast PCR cyclers and replicates DNA 500 000 fold within 20minutes. We reduce the necessary components for PCR to cheap, single-use components and therefore increasing the prospects of bringing PCR to point of care applications—even in third world countries.

  8. On the role of sharp chains in the transport theorem

    NASA Astrophysics Data System (ADS)

    Falach, L.; Segev, R.

    2016-03-01

    A generalized transport theorem for convecting irregular domains is presented in the setting of Federer's geometric measure theory. A prototypical r-dimensional domain is viewed as a flat r-chain of finite mass in an open set of an n-dimensional Euclidean space. The evolution of such a generalized domain in time is assumed to follow a continuous succession of Lipschitz embedding so that the spatial gradient may be nonexistent in a subset of the domain with zero measure. The induced curve is shown to be continuous with respect to the flat norm and differential with respect to the sharp norm on currents in Rn. A time-dependent property is naturally assigned to the evolving region via the action of an r-cochain on the current associated with the domain. Applying a representation theorem for cochains, the properties are shown to be locally represented by an r-form. Using these notions, a generalized transport theorem is presented.

  9. OBSERVATIONS OF WARM CARBON CHAIN CHEMISTRY IN NGC 3576

    SciTech Connect

    Saul, M.; Tothill, N. F. H.; Purcell, C. R. E-mail: n.tothill@uws.edu.au

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C{sub 5}H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC{sub 3}N (11-10), NH{sub 3} (1, 1), and C{sub 5}H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  10. Observations of Warm Carbon Chain Chemistry in NGC 3576

    NASA Astrophysics Data System (ADS)

    Saul, M.; Tothill, N. F. H.; Purcell, C. R.

    2015-01-01

    We report observations of warm carbon chain chemistry (WCCC) in NGC 3576, including high angular resolution imaging of an ionization source candidate and the first detection of C5H in a massive star-forming region. In order to investigate the environment associated with birthline emergence, we ask how observed chemical conditions relate to Class 0/1 core differentiation: a systemic shift in peak position between species correlates with giant molecular cloud core gradients in turbulence and age. Emission in several molecular lines including HC3N (11-10), NH3 (1, 1), and C5H supports the G291.3-0.7 ionization front—transitional pre-main-sequence core interaction regulating the WCCC environment.

  11. Gradient Flow Analysis on MILC HISQ Ensembles

    SciTech Connect

    Brown, Nathan; Bazavov, Alexei; Bernard, Claude; DeTar, Carleton; Foley, Justin; Gottlieb, Steven; Heller, Urs M.; Hetrick, J. E.; Komijani, Javad; Laiho, Jack; Levkova, Ludmila; Oktay, M. B.; Sugar, Robert; Toussaint, Doug; Van de Water, Ruth S.; Zhou, Ran

    2014-11-14

    We report on a preliminary scale determination with gradient-flow techniques on the $N_f = 2 + 1 + 1$ HISQ ensembles generated by the MILC collaboration. The ensembles include four lattice spacings, ranging from 0.15 to 0.06 fm, and both physical and unphysical values of the quark masses. The scales $\\sqrt{t_0}/a$ and $w_0/a$ are computed using Symanzik flow and the cloverleaf definition of $\\langle E \\rangle$ on each ensemble. Then both scales and the meson masses $aM_\\pi$ and $aM_K$ are adjusted for mistunings in the charm mass. Using a combination of continuum chiral perturbation theory and a Taylor series ansatz in the lattice spacing, the results are simultaneously extrapolated to the continuum and interpolated to physical quark masses. Our preliminary results are $\\sqrt{t_0} = 0.1422(7)$fm and $w_0 = 0.1732(10)$fm. We also find the continuum mass-dependence of $w_0$.

  12. Metallicity gradients in early-type galaxies

    NASA Technical Reports Server (NTRS)

    Schombert, James M.; Hanlan, Patricia C.; Barsony, Mary; Rakos, Karl D.

    1993-01-01

    A study of medium-to-bright early-type galaxies in six bandpasses from 3500 A to 2.2 microns is presented in order to quantify their colors and color gradients and relate these to metallicity and properties of the underlying stellar population. The Stromgren filter system chosen makes it possible to introduce a new calibration to the Mg(2) system from the present narrow-band v - y indices. A comparison is presented of narrow-band colors centered on particular spectral features vs a color dominated by the mean temperature of the giant branch (i.e., J - K) to test the effects of light vs heavy element abundances on knowledge of the total system metallicity, Z, and the effects of reddening. A good correlation is found between v - y and Mg(2); it provides a connection between one light element metallicity indicator (v - y centers on the CN blend) and another, Mg. The color-magnitude relations for all five optical and near-IR colors are shown. The strongest correlation exists for the metallicity colors, v - y and J - K.

  13. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses.

  14. Fear generalization gradients in visuospatial attention.

    PubMed

    Dowd, Emma Wu; Mitroff, Stephen R; LaBar, Kevin S

    2016-10-01

    Fear learning can be adaptively advantageous, but only if the learning is integrated with higher-order cognitive processes that impact goal-directed behaviors. Recent work has demonstrated generalization (i.e., transfer) of conditioned fear across perceptual dimensions and conceptual categories, but it is not clear how fear generalization influences other cognitive processes. The current study investigated how associative fear learning impacts higher-order visuospatial attention, specifically in terms of attentional bias toward generalized threats (i.e., the heightened assessment of potentially dangerous stimuli). We combined discriminative fear conditioning of color stimuli with a subsequent visual search task, in which targets and distractors were presented inside colored circles that varied in perceptual similarity to the fear-conditioned color. Skin conductance responses validated the fear-conditioning manipulation. Search response times indicated that attention was preferentially deployed not just to the specific fear-conditioned color, but also to similar colors that were never paired with the aversive shock. Furthermore, this attentional bias decreased continuously and symmetrically from the fear-conditioned value along the color spectrum, indicating a generalization gradient based on perceptual similarity. These results support functional accounts of fear learning that promote broad, defensive generalization of attentional bias toward threat. (PsycINFO Database Record

  15. Longitudinal photosynthetic gradient in crust lichens' thalli.

    PubMed

    Wu, Li; Zhang, Gaoke; Lan, Shubin; Zhang, Delu; Hu, Chunxiang

    2014-05-01

    In order to evaluate the self-shading protection for inner photobionts, the photosynthetic activities of three crust lichens were detected using Microscope-Imaging-PAM. The false color images showed that longitudinal photosynthetic gradient was found in both the green algal lichen Placidium sp. and the cyanolichen Peltula sp. In longitudinal direction, all the four chlorophyll fluorescence parameters Fv/Fm, Yield, qP, and rETR gradually decreased with depth in the thalli of both of these two lichens. In Placidium sp., qN values decreased with depth, whereas an opposite trend was found in Peltula sp. However, no such photosynthetic heterogeneity was found in the thalli of Collema sp. in longitudinal direction. Microscope observation showed that photobiont cells are compactly arranged in Placidium sp. and Peltula sp. while loosely distributed in Collema sp. It was considered that the longitudinal photosynthetic heterogeneity was ascribed to the result of gradual decrease of incidence caused by the compact arrangement of photobiont cells in the thalli. The results indicate a good protection from the self-shading for the inner photobionts against high radiation in crust lichens.

  16. Electron transfer across a thermal gradient.

    PubMed

    Craven, Galen T; Nitzan, Abraham

    2016-08-23

    Charge transfer is a fundamental process that underlies a multitude of phenomena in chemistry and biology. Recent advances in observing and manipulating charge and heat transport at the nanoscale, and recently developed techniques for monitoring temperature at high temporal and spatial resolution, imply the need for considering electron transfer across thermal gradients. Here, a theory is developed for the rate of electron transfer and the associated heat transport between donor-acceptor pairs located at sites of different temperatures. To this end, through application of a generalized multidimensional transition state theory, the traditional Arrhenius picture of activation energy as a single point on a free energy surface is replaced with a bithermal property that is derived from statistical weighting over all configurations where the reactant and product states are equienergetic. The flow of energy associated with the electron transfer process is also examined, leading to relations between the rate of heat exchange among the donor and acceptor sites as functions of the temperature difference and the electronic driving bias. In particular, we find that an open electron transfer channel contributes to enhanced heat transport between sites even when they are in electronic equilibrium. The presented results provide a unified theory for charge transport and the associated heat conduction between sites at different temperatures. PMID:27450086

  17. Gradient Descent Learning for Rotor Associative Memory

    NASA Astrophysics Data System (ADS)

    Kitahara, Michimasa; Kobayashi, Masaki

    Complex-valued Associative Memory (CAM) is an extended model of Hopfield Associative Memory (HAM). The fundamental elements, such as input-output signals and connection weights of the CAM are extended to complex numbers. The CAM can deal with multi-states information. Rotor Associative Memory (RAM) is an extended model of the CAM. Rotor neurons are essentially equivalent to complex-valued neurons. Connection weights of the RAM are expressed by two by two matrices. Only hebb rule has been proposed for the learning of the RAM. Its storage capacity is small, so advanced learning methods are necessary. In this paper, we propose gradient descent learning rule for the RAM (GDR RAM). It is based on that for the CAM (GDR CAM) proposed by Lee. We solved the learning rule and performed computer simulations to compare the GDR CAM and the GDR RAM. At last, it turned out that the storage capacity of the GDR RAM is approximately twice as much as that of the GDR CAM and the noise robustness of the GDR RAM is much better than that of the GDR CAM.

  18. Axial thermal gradients in microchip gas chromatography.

    PubMed

    Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L

    2014-12-29

    Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. PMID:25476685

  19. Environmental causes for plant biodiversity gradients.

    PubMed Central

    Davies, T Jonathan; Barraclough, Timothy G; Savolainen, Vincent; Chase, Mark W

    2004-01-01

    One of the most pervasive patterns observed in biodiversity studies is the tendency for species richness to decline towards the poles. One possible explanation is that high levels of environmental energy promote higher species richness nearer the equator. Energy input may set a limit to the number of species that can coexist in an area or alternatively may influence evolutionary rates. Within flowering plants (angiosperms), families exposed to a high energy load tend to be both more species rich and possess faster evolutionary rates, although there is no evidence that one drives the other. Specific environmental effects are likely to vary among lineages, reflecting the interaction between biological traits and environmental conditions in which they are found. One example of this is demonstrated by the high species richness of the iris family (Iridaceae) in the Cape of South Africa, a likely product of biological traits associated with reproductive isolation and the steep ecological and climatic gradients of the region. Within any set of conditions some lineages will tend to be favoured over others; however, the identity of these lineages will fluctuate with a changing environment, explaining the highly labile nature of diversification rates observed among major lineages of flowering plants. PMID:15519979

  20. Passive magnetic shielding in static gradient fields

    NASA Astrophysics Data System (ADS)

    Bidinosti, C. P.; Martin, J. W.

    2014-04-01

    The effect of passive magnetic shielding on dc magnetic field gradients imposed by both external and internal sources is studied for two idealized shield models: concentric spherical and infinitely-long cylindrical shells of linear material. It is found that higher-order multipoles of an externally applied magnetic field are always shielded progressively better for either geometry by a factor related to the order of the multipole. In regard to the design of internal coil systems, we determine reaction factors for the general multipole field and provide examples of how one can take advantage of the coupling of the coils to the innermost shell to optimize the uniformity of the field. Furthermore, we provide formulae relevant to active magnetic compensation systems which attempt to stabilize the interior fields by sensing and cancelling the exterior fields close to the outermost shell. Overall this work provides a comprehensive framework that is useful for the analysis and optimization of dc magnetic shields, serving as a theoretical and conceptual design guide as well as a starting point and benchmark for finite-element analysis.

  1. Using MR Elastography to Image Force Chains in a Quasi-Static Granular Assembly

    NASA Astrophysics Data System (ADS)

    Sanfratello, L.; Altobelli, S. A.; Behringer, R. P.; Fukushima, E.

    2008-03-01

    Questions about the internal structure of dense granular assemblies remain unanswered for lack of 3D experimental data. It is known from 2D observations and from the boundaries of 3D systems that non-uniform stresses are present on container boundaries as well as at the bottom of granular piles. These forces are seen in 2D to be distributed by force chains, where most of the stress is transmitted through a small number of chains with much of the assembly transmitting little or none of the force. However, force chains have yet to be fully visualized in 3D. We propose a variation of magnetic resonance elastography (MRE) to image 3D force chains within a densely packed granular assembly. MRE is an MRI technique whereby small periodic displacements within an elastic material can be measured. Multiple bipolar motion encoding gradients incorporated into a typical pulse sequence, and applied at the frequency of mechanical oscillations, are used to detect the displacements. We have verified our MRE technique using a gel (Perma-Gel). We now extend this method to image force chains within a 3D granular assembly of particles under stress, on top of which is superimposed a small-amplitude vibration. It is our hypothesis that significant coherent displacements will be found only along force chains while most particles will move randomly. Experimental results will be presented.

  2. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.

    PubMed

    Rezvantalab, Hossein; Zhu, Guorui; Larson, Ronald G

    2016-07-21

    We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing

  3. The effect of wall depletion and hydrodynamic interactions on stress-gradient-induced polymer migration.

    PubMed

    Rezvantalab, Hossein; Zhu, Guorui; Larson, Ronald G

    2016-07-21

    We generalize our recent continuum theory for the stress-gradient-induced migration of polymers [Zhu et al., J. Rheol., 2016, 60, 327-343] by incorporating the effect of solid boundaries on concentration variations. For a model flow in a channel with periodic slip wall velocity, which can in principle be produced by an electric field in the presence of a sinusoidal wall charge, we obtain theoretical results for the steady-state distribution of dilute solutions of polymer dumbbells using a systematic perturbation analysis in Weissenberg number Wi. We find that the presence of a thin wall depletion zone changes the lowest order solution from second to first in Wi and drastically affects the concentration field far from the depletion layer, due both to a coupling of the second derivative of the velocity field to the concentration gradient, and to convection of the polymer-depleted fluid in this layer into the bulk of the fluid. Additional effects induced by wall hydrodynamic interaction (HI) are assessed by incorporating polymer flux from the wall-HI migration theory of Ma and Graham into our continuum theory. We establish the range of validity of our theory by comparing the theoretical results with Brownian dynamics (BD) simulations: excellent agreement is achieved for relatively small molecules, while the theory breaks down when the Gradient number Gd is greater than 0.5, where Gd is the ratio of polymer coil size to the length scale over which the velocity gradient changes. The BD simulations are also extended to the case of long Hookean chains with numbers of springs per chain ranging from 1 to 32, where it is found that for fixed Gd and Wi, the results are nearly identical, showing that all important phenomena are captured by a simple dumbbell model, thus supporting the continuum theory which was derived for the case of dumbbells. In addition, the Stochastic Rotation Dynamics (SRD) method is employed to evaluate the role of HI on the migration pattern, producing

  4. Polymerization as a Model Chain Reaction

    ERIC Educational Resources Information Center

    Morton, Maurice

    1973-01-01

    Describes the features of the free radical, anionic, and cationic mechanisms of chain addition polymerization. Indicates that the nature of chain reactions can be best taught through the study of macromolecules. (CC)

  5. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead.

  6. Information flow in the pharmaceutical supply chain.

    PubMed

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  7. Information flow in the pharmaceutical supply chain

    PubMed Central

    Yousefi, Nazila; Alibabaei, Ahmad

    2015-01-01

    Managing the supply chain plays an important role in creating competitive advantages for companies. Adequate information flow in supply chain is one of the most important issues in SCM. Therefore, using certain Information Systems can have a significant role in managing and integrating data and information within the supply chain. Pharmaceutical supply chain is more complex than many other supply chains, in the sense that it can affect social and political perspectives. On the other hand, managing the pharmaceutical supply chain is difficult because of its complexity and also government regulations in this field. Although, Iran has progressed a lot in pharmaceutical manufacturing, still there are many unsolved issues in managing the information flow in the pharmaceutical supply chain. In this study, we reviewed the benefits of using different levels of an integrated information system in the supply chain and the possible challenges ahead. PMID:26664401

  8. Immobilized pH gradients (IPG) simulator--an additional step in pH gradient engineering: II. Nonlinear pH gradients.

    PubMed

    Righetti, P G; Tonani, C

    1991-12-01

    While in the companion paper (Tonani, C. & Righetti, P. G., Electrophoresis 1991, 12, 1011-1021) we gave the general outline of our new computer program, immobilized pH gradients (IPG) simulator, able to simulate and optimize linear pH gradients for isoelectric focusing in immobilized pH gradients, in the present report we extend the application of such a program to: (i) convex exponential gradients, (ii) logarithmic and (iii) polynomial gradients. Such gradients are meant to give equal space to protein spots in complex protein mixtures (e.g., cell lysates, biological fluids) and follow the statistical distribution of protein pI values along the pH axis. They will prove of fundamental importance in two-dimensional maps, both because they optimize the spreading of spots in the two-dimensional plane and because of the excellent reproducibility of immobilized pH gradients. The following concave exponential recipes are given: pH 3-8, pH 3-9, pH 3-10, pH 3-11, pH 4-7, pH 4-8, pH 4-9, pH 4-10, pH 4-11, pH 5-8, pH 5-9, and pH 5-10, as well as the most extended pH 2.5-11 interval. Two interesting logarithmic gradients are described: pH 3-6 and pH 3-7 and one sigmoidal (derived with a polynomial of 5th degree): pH 3-11.

  9. Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification

    NASA Astrophysics Data System (ADS)

    Gao, Pengfei; Liu, Tie; Dong, Meng; Yuan, Yi; Wang, Kai; Wang, Qiang

    2016-09-01

    We investigated how high magnetic field gradients affected the magnetostrictive performance of Tb0.27Dy0.73Fe1.95 during solidification. At high applied magnetic field gradients, the magnetostriction exhibited a gradient distribution throughout the alloy. Increasing the magnetic field gradient also increased the magnetostriction gradient. We attributed the graded magnetostrictive performance to the gradient distribution of (Tb, Dy)Fe2 phase in the alloy and its orientation.

  10. MARKOV CHAIN MONTE CARLO POSTERIOR SAMPLING WITH THE HAMILTONIAN METHOD

    SciTech Connect

    K. HANSON

    2001-02-01

    The Markov Chain Monte Carlo technique provides a means for drawing random samples from a target probability density function (pdf). MCMC allows one to assess the uncertainties in a Bayesian analysis described by a numerically calculated posterior distribution. This paper describes the Hamiltonian MCMC technique in which a momentum variable is introduced for each parameter of the target pdf. In analogy to a physical system, a Hamiltonian H is defined as a kinetic energy involving the momenta plus a potential energy {var_phi}, where {var_phi} is minus the logarithm of the target pdf. Hamiltonian dynamics allows one to move along trajectories of constant H, taking large jumps in the parameter space with relatively few evaluations of {var_phi} and its gradient. The Hamiltonian algorithm alternates between picking a new momentum vector and following such trajectories. The efficiency of the Hamiltonian method for multidimensional isotropic Gaussian pdfs is shown to remain constant at around 7% for up to several hundred dimensions. The Hamiltonian method handles correlations among the variables much better than the standard Metropolis algorithm. A new test, based on the gradient of {var_phi}, is proposed to measure the convergence of the MCMC sequence.

  11. Computer Subroutines for Analytic Rotation by Two Gradient Methods.

    ERIC Educational Resources Information Center

    van Thillo, Marielle

    Two computer subroutine packages for the analytic rotation of a factor matrix, A(p x m), are described. The first program uses the Flectcher (1970) gradient method, and the second uses the Polak-Ribiere (Polak, 1971) gradient method. The calculations in both programs involve the optimization of a function of free parameters. The result is a…

  12. SWAT application in low-gradient Coastal Plain landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-gradient coastal plain watersheds present unique challenges for watershed modeling. Broad low-gradient floodplains with considerable in-stream vegetation contribute to low-velocity streamflow. In addition, direct interaction between streamflow and surficial aquifers must also be considered. H...

  13. Gradient Limitations in Room Temperature and Superconducting Acceleration Structures

    SciTech Connect

    Solyak, N. A.

    2009-01-22

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx}10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R and D program.

  14. Gradient limitations in room temperature and superconducting acceleration structures

    SciTech Connect

    Solyak, N.A.; /Fermilab

    2008-10-01

    Accelerating gradient is a key parameter of the accelerating structure in large linac facilities, like future Linear Collider. In room temperature accelerating structures the gradient is limited mostly by breakdown phenomena, caused by high surface electric fields or pulse surface heating. High power processing is a necessary procedure to clean surface and improve the gradient. In the best tested X-band structures the achieved gradient is exceed 100 MV/m in of {approx}200 ns pulses for breakdown rate of {approx} 10{sup -7}. Gradient limit depends on number of factors and no one theory which can explain all sets of experimental results and predict gradient in new accelerating structure. In paper we briefly overview the recent experimental results of breakdown studies, progress in understanding of gradient limitations and scaling laws. Although superconducting rf technology has been adopted throughout the world for ILC, it has frequently been difficult to reach the predicted performance in these structures due to a number of factors: multipactoring, field emission, Q-slope, thermal breakdown. In paper we are discussing all these phenomena and the ways to increase accelerating gradient in SC cavity, which are a part of worldwide R&D program.

  15. Hand-Portable Gradient Capillary Liquid Chromatography Pumping System.

    PubMed

    Sharma, Sonika; Plistil, Alex; Barnett, Hal E; Tolley, H Dennis; Farnsworth, Paul B; Stearns, Stanley D; Lee, Milton L

    2015-10-20

    In this work, a novel splitless nanoflow gradient generator integrated with a stop-flow injector was developed and evaluated using an on-column UV-absorption detector. The gradient pumping system consisted of two nanoflow pumps controlled by micro stepper motors, a mixer connected to a serpentine tube, and a high-pressure valve. The gradient system weighed only 4 kg (9 lbs) and could generate up to 55 MPa (8000 psi) pressure. The system could operate using a 24 V DC battery and required 1.2 A for operation. The total volume capacity of the pump was 74 μL, and a sample volume of 60 nL could be injected. The system provided accurate nanoflow rates as low as 10 nL/min without employing a splitter, making it ideal for capillary column use. The gradient dwell volume was calculated to be 1.3 μL, which created a delay of approximately 4 min with a typical flow rate of 350 nL/min. Gradient performance was evaluated for gradient step accuracy, and excellent reproducibility was obtained in day-to-day experiments (RSD < 1.2%, n = 4). Linear gradient reproducibility was tested by separating a three-component pesticide mixture on a poly(ethylene glycol) diacrylate (PEGDA) monolithic column. The retention time reproducibility was very good in run-to-run experiments (RSD < 1.42%, n = 4). Finally, excellent separation of five phenols was demonstrated using the nanoflow gradient system.

  16. Gradient Well-Formedness across the Morpheme Boundary

    ERIC Educational Resources Information Center

    Goldberg, Ariel M.

    2010-01-01

    Recent theories of phonology hold that phonotactic well-formedness may be gradient, with some legal structures being more well-formed than others. Linguistic and psycholinguistic research has demonstrated that "within" morphemes, speakers encode both categorical (*n/Onset) and gradient (st/Onset greater than sin/Onset) phonotactic restrictions.…

  17. Non-singular dislocation loops in gradient elasticity

    NASA Astrophysics Data System (ADS)

    Lazar, Markus

    2012-04-01

    Using gradient elasticity, we give in this Letter the non-singular fields produced by arbitrary dislocation loops in isotropic media. We present the ‘modified’ Mura, Peach-Koehler and Burgers formulae in the framework of gradient elasticity theory.

  18. Substrate-Bound Protein Gradients to Study Haptotaxis

    PubMed Central

    Ricoult, Sébastien G.; Kennedy, Timothy E.; Juncker, David

    2015-01-01

    Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins – including many secreted cues – are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function. PMID:25870855

  19. Substrate-bound protein gradients to study haptotaxis.

    PubMed

    Ricoult, Sébastien G; Kennedy, Timothy E; Juncker, David

    2015-01-01

    Cells navigate in response to inhomogeneous distributions of extracellular guidance cues. The cellular and molecular mechanisms underlying migration in response to gradients of chemical cues have been investigated for over a century. Following the introduction of micropipettes and more recently microfluidics for gradient generation, much attention and effort was devoted to study cellular chemotaxis, which is defined as guidance by gradients of chemical cues in solution. Haptotaxis, directional migration in response to gradients of substrate-bound cues, has received comparatively less attention; however, it is increasingly clear that in vivo many physiologically relevant guidance proteins - including many secreted cues - are bound to cellular surfaces or incorporated into extracellular matrix and likely function via a haptotactic mechanism. Here, we review the history of haptotaxis. We examine the importance of the reference surface, the surface in contact with the cell that is not covered by the cue, which forms a gradient opposing the gradient of the protein cue and must be considered in experimental designs and interpretation of results. We review and compare microfluidics, contact printing, light patterning, and 3D fabrication to pattern substrate-bound protein gradients in vitro. The range of methods to create substrate-bound gradients discussed herein makes possible systematic analyses of haptotactic mechanisms. Furthermore, understanding the fundamental mechanisms underlying cell motility will inform bioengineering approaches to program cell navigation and recover lost function.

  20. The use of functionally gradient materials in medicine

    NASA Astrophysics Data System (ADS)

    Narayan, Roger J.; Hobbs, Linn W.; Jin, Chunming; Rabiei, Afsaneh

    2006-07-01

    Functionally gradient materials are characterized by uniform changes in composition, crystallinity, and/or grain structure, which may provide unique biological, chemical, or mechanical functionalities in next-generation medical devices. In this article, the development of functionally gradient Zr-Nb alloys, hydroxyapatite coatings, and diamondlike carbon-metal coatings for medical applications is reviewed.

  1. Directional phytoscreening: contaminant gradients in trees for plume delineation.

    PubMed

    Limmer, Matt A; Shetty, Mikhil K; Markus, Samantha; Kroeker, Ryan; Parker, Beth L; Martinez, Camilo; Burken, Joel G

    2013-08-20

    Tree sampling methods have been used in phytoscreening applications to delineate contaminated soil and groundwater, augmenting traditional investigative methods that are time-consuming, resource-intensive, invasive, and costly. In the past decade, contaminant concentrations in tree tissues have been shown to reflect the extent and intensity of subsurface contamination. This paper investigates a new phytoscreening tool: directional tree coring, a concept originating from field data that indicated azimuthal concentrations in tree trunks reflected the concentration gradients in the groundwater around the tree. To experimentally test this hypothesis, large diameter trees were subjected to subsurface contaminant concentration gradients in a greenhouse study. These trees were then analyzed for azimuthal concentration gradients in aboveground tree tissues, revealing contaminant centroids located on the side of the tree nearest the most contaminated groundwater. Tree coring at three field sites revealed sufficiently steep contaminant gradients in trees reflected nearby groundwater contaminant gradients. In practice, trees possessing steep contaminant gradients are indicators of steep subsurface contaminant gradients, providing compass-like information about the contaminant gradient, pointing investigators toward higher concentration regions of the plume.

  2. Generalizability of Scaling Gradients on Direct Behavior Ratings

    ERIC Educational Resources Information Center

    Chafouleas, Sandra M.; Christ, Theodore J.; Riley-Tillman, T. Chris

    2009-01-01

    Generalizability theory is used to examine the impact of scaling gradients on a single-item Direct Behavior Rating (DBR). A DBR refers to a type of rating scale used to efficiently record target behavior(s) following an observation occasion. Variance components associated with scale gradients are estimated using a random effects design for persons…

  3. The Advancement Value Chain: An Exploratory Model

    ERIC Educational Resources Information Center

    Leonard, Edward F., III

    2005-01-01

    Since the introduction of the value chain concept in 1985, several varying, yet virtually similar, value chains have been developed for the business enterprise. Shifting to higher education, can a value chain be found that links together the various activities of advancement so that an institution's leaders can actually look at the philanthropic…

  4. On a Result for Finite Markov Chains

    ERIC Educational Resources Information Center

    Kulathinal, Sangita; Ghosh, Lagnojita

    2006-01-01

    In an undergraduate course on stochastic processes, Markov chains are discussed in great detail. Textbooks on stochastic processes provide interesting properties of finite Markov chains. This note discusses one such property regarding the number of steps in which a state is reachable or accessible from another state in a finite Markov chain with M…

  5. Chains versus Independents: Newspaper and Market Characteristics.

    ERIC Educational Resources Information Center

    Hale, F. Dennis

    A study examined the marketing differences between large chain newspapers and small chain and independent newspapers by analyzing differences in characteristics of the newspapers, patterns of circulation, economic and social conditions of the market, and competition from other print media. The 200 newspapers studied--113 large chain and 87 small…

  6. Exact fractional revival in spin chains

    NASA Astrophysics Data System (ADS)

    Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei

    2016-09-01

    The occurrence of fractional revival in quantum spin chains is examined. Analytic models where this phenomenon can be exhibited in exact solutions are provided. It is explained that spin chains with fractional revival can be obtained by isospectral deformations of spin chains with perfect state transfer.

  7. Extending the "Knowledge Advantage": Creating Learning Chains

    ERIC Educational Resources Information Center

    Maqsood, Tayyab; Walker, Derek; Finegan, Andrew

    2007-01-01

    Purpose: The purpose of this paper is to develop a synergy between the approaches of knowledge management in a learning organisation and supply chain management so that learning chains can be created in order to unleash innovation and creativity by managing knowledge in supply chains. Design/methodology/approach: Through extensive literature…

  8. Visualisation for System Learning in Supply Chains

    ERIC Educational Resources Information Center

    Lindskog, Magnus; Abrahamsson, Mats; Aronsson, Hakan

    2007-01-01

    Contemporary supply chains are vastly complex, and decisions made by actors have system-wide consequences that these might not be able to foresee. There are gaps between "best practice"-founded theory and actual practice in supply chains. To remedy this, we argue, the supply chain actors need to enhance systems knowledge. There is a need to…

  9. Learning to Integrate: Supply Chains Reconceptualised

    ERIC Educational Resources Information Center

    Sense, Andrew J.; Clements, Michael D. J.

    2007-01-01

    This paper introduces and explains a conception of supply chains from a situated learning perspective. This non-conventional supply chain perspective invites the reader to consider supply chain scenarios as "situated learning opportunities involving multiple communities of practice" interacting and participating together. It is argued that by…

  10. Tunnel current across linear homocatenated germanium chains

    SciTech Connect

    Matsuura, Yukihito

    2014-01-28

    The electronic transport properties of germanium oligomers catenating into linear chains (linear Ge chains) have been theoretically studied using first principle methods. The conduction mechanism of a Ge chain sandwiched between gold electrodes was analyzed based on the density of states and the eigenstates of the molecule in a two-probe environment. Like that of silicon chains (Si chains), the highest occupied molecular orbital of Ge chains contains the extended σ-conjugation of Ge 4p orbitals at energy levels close to the Fermi level; this is in contrast to the electronic properties of linear carbon chains. Furthermore, the conductance of a Ge chain is expected to decrease exponentially with molecular length L. The decay constant β, which is defined as e{sup −βL}, of a Ge chain is similar to that of a Si chain, whereas the conductance of the Ge chains is higher than that of Si chains even though the Ge–Ge bond length is longer than the Si–Si bond length.

  11. Role of Polarized G Protein Signaling in Tracking Pheromone Gradients.

    PubMed

    McClure, Allison W; Minakova, Maria; Dyer, Jayme M; Zyla, Trevin R; Elston, Timothy C; Lew, Daniel J

    2015-11-23

    Yeast cells track gradients of pheromones to locate mating partners. Intuition suggests that uniform distribution of pheromone receptors over the cell surface would yield optimal gradient sensing. However, yeast cells display polarized receptors. The benefit of such polarization was unknown. During gradient tracking, cell growth is directed by a patch of polarity regulators that wanders around the cortex. Patch movement is sensitive to pheromone dose, with wandering reduced on the up-gradient side of the cell, resulting in net growth in that direction. Mathematical modeling suggests that active receptors and associated G proteins lag behind the polarity patch and act as an effective drag on patch movement. In vivo, the polarity patch is trailed by a G protein-rich domain, and this polarized distribution of G proteins is required to constrain patch wandering. Our findings explain why G protein polarization is beneficial and illuminate a novel mechanism for gradient tracking. PMID:26609960

  12. On the Effect of Strain Gradient on Adiabatic Shear Banding

    NASA Astrophysics Data System (ADS)

    Tsagrakis, Ioannis; Aifantis, Elias C.

    2015-10-01

    Most of the work on adiabatic shear banding is based on the effect of temperature gradients on shear band nucleation and evolution. In contrast, the present work considers the coupling between temperature and strain gradients. The competition of thermal and strain gradient terms on the onset of instability and its dependence on specimen size is illustrated. It is shown that heat conduction promotes the instability initiation in the hardening part of the homogeneous stress-strain, while the strain gradient term favors the occurrence of this initiation in the softening regime. This behavior is size dependent, i.e., small specimens can support stable homogeneous deformations even in the softening regime. The spacing of adiabatic shear bands is also evaluated by considering the dominant instability mode during the primary stages of the localization process and it is found that it is an increasing function of the strain gradient coefficient.

  13. Effect of temperature gradient of EBI of image intensifier

    SciTech Connect

    Chen, Q.

    1994-12-31

    In this paper the authors give the experiments for the measurement of EBI of an image intensifier with the change of temperature gradient of it. At the same time, the authors give the curves of EBI versus the different temperature gradients. The paper shows the causes for EBI of an image intensifier with the change of temperature gradient. The paper concluded, from the calculations and experiments, that there is need for the waiting measurement time for us to minimize the measuremental difference of EBI caused by temperature gradient. It is also indicated that the paper provides some scientific basis for improving possibly detecting objective performance of low light level night vision system in field if they adopt the scheme for the effect of temperature gradient on EBI of an image intensifier.

  14. Temperature gradients and clear-air turbulence probabilities

    NASA Technical Reports Server (NTRS)

    Bender, M. A.; Panofsky, H. A.; Peslen, C. A.

    1976-01-01

    In order to forecast clear-air turbulence (CAT) in jet aircraft flights, a study was conducted in which the data from a special-purpose instrument aboard a Boeing 747 jet airliner were compared with satellite-derived radiance gradients, conventional temperature gradients from analyzed maps, and temperature gradients obtained from a total air temperature sensor on the plane. The advantage of making use of satellite-derived data is that they are available worldwide without the need for radiosonde observations, which are scarce in many parts of the world. Major conclusions are that CAT probabilities are significantly higher over mountains than flat terrain, and that satellite radiance gradients appear to discriminate between CAT and no CAT better than conventional temperature gradients over flat lands, whereas the reverse is true over mountains, the differences between the two techniques being not large over mountains.

  15. Subsurface temperatures and geothermal gradients on the North Slope, Alaska

    USGS Publications Warehouse

    Collett, Timothy S.; Bird, Kenneth J.; Magoon, Leslie B.

    1989-01-01

    Geothermal gradients as interpreted from a series of high-resolution stabilized well-bore-temperature surveys from 46 North Slope, Alaska, wells vary laterally and vertically throughout the near-surface sediment (0-2,000 m). The data from these surveys have been used in conjunction with depths of ice-bearing permafrost, as interpreted from 102 well logs, to project geothermal gradients within and below the ice-bearing permafrost sequence. The geothermal gradients calculated from the projected temperature profiles are similar to the geothermal gradients measured in the temperature surveys. Measured and projected geothermal gradients in the ice-bearing permafrost sequence range from 1.5??C/100m in the Prudhoe Bay area to 5.1??C/100m in the National Petroleum Reserve in Alaska (NPRA).

  16. Molecular mechanisms for generating transmembrane proton gradients.

    PubMed

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

  17. Efficient and robust gradient enhanced Kriging emulators.

    SciTech Connect

    Dalbey, Keith R.

    2013-08-01

    %E2%80%9CNaive%E2%80%9D or straight-forward Kriging implementations can often perform poorly in practice. The relevant features of the robustly accurate and efficient Kriging and Gradient Enhanced Kriging (GEK) implementations in the DAKOTA software package are detailed herein. The principal contribution is a novel, effective, and efficient approach to handle ill-conditioning of GEK's %E2%80%9Ccorrelation%E2%80%9D matrix, RN%CC%83, based on a pivoted Cholesky factorization of Kriging's (not GEK's) correlation matrix, R, which is a small sub-matrix within GEK's RN%CC%83 matrix. The approach discards sample points/equations that contribute the least %E2%80%9Cnew%E2%80%9D information to RN%CC%83. Since these points contain the least new information, they are the ones which when discarded are both the easiest to predict and provide maximum improvement of RN%CC%83's conditioning. Prior to this work, handling ill-conditioned correlation matrices was a major, perhaps the principal, unsolved challenge necessary for robust and efficient GEK emulators. Numerical results demonstrate that GEK predictions can be significantly more accurate when GEK is allowed to discard points by the presented method. Numerical results also indicate that GEK can be used to break the curse of dimensionality by exploiting inexpensive derivatives (such as those provided by automatic differentiation or adjoint techniques), smoothness in the response being modeled, and adaptive sampling. Development of a suitable adaptive sampling algorithm was beyond the scope of this work; instead adaptive sampling was approximated by omitting the cost of samples discarded by the presented pivoted Cholesky approach.

  18. Molecular mechanisms for generating transmembrane proton gradients.

    PubMed

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  19. Coarse-grained simulations of an active filament propelled by a self-generated solute gradient

    NASA Astrophysics Data System (ADS)

    Sarkar, Debarati; Thakur, Snigdha

    2016-03-01

    A self-propelling semiflexible filament exhibits a variety of dynamical states depending on the flexibility and activity of the filament. Here we investigate the dynamics of such an active filament using a bead-spring model with the explicit hydrodynamic interactions. The activity in the filament is incorporated by inserting chemically active dimers at regular intervals along the chain. The chemical reactions at the catalytic bead of the dimer produces a self-generated concentration gradient and gives sufficient fuel to exhibit self-propulsion for the filament. Depending upon the rigidity and the configuration, the polymeric filament exhibits three distinct types of spontaneous motion, namely, rotational, snaking, and translational motion. The self-propulsion velocity of the filament for various rigidity and sizes has been calculated, and the factors affecting the propulsion are identified.

  20. Expressions of the fundamental equation of gradient elution and a numerical solution of these equations under any gradient profile.

    PubMed

    Nikitas, P; Pappa-Louisi, A

    2005-09-01

    The original work carried out by Freiling and Drake in gradient liquid chromatography is rewritten in the current language of reversed-phase liquid chromatography. This allows for the rigorous derivation of the fundamental equation for gradient elution and the development of two alternative expressions of this equation, one of which is free from the constraint that the holdup time must be constant. In addition, the above derivation results in a very simple numerical solution of the various equations of gradient elution under any gradient profile. The theory was tested using eight catechol-related solutes in mobile phases modified with methanol, acetonitrile, or 2-propanol. It was found to be a satisfactory prediction of solute gradient retention behavior even if we used a simple linear description for the isocratic elution of these solutes. PMID:16131080

  1. Two Cases of Heavy Chain MGUS

    PubMed Central

    Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of “heavy chain MGUS” have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  2. Two Cases of Heavy Chain MGUS.

    PubMed

    Van Keer, Jan; Meijers, Björn; Delforge, Michel; Verhoef, Gregor; Poesen, Koen

    2016-01-01

    Heavy chain diseases are rare variants of B-cell lymphomas that produce one of three classes of immunoglobulin heavy chains, without corresponding light chains. We describe two patients with asymptomatic heavy chain monoclonal gammopathy. The first patient is a 51-year-old woman with alpha paraprotein on serum immunofixation. The second case is a 46-year-old woman with gamma paraprotein on urine immunofixation. Neither patient had corresponding monoclonal light chains. Workup for multiple myeloma and lymphoma was negative in both patients. These two cases illustrate that heavy chain monoclonal gammopathy can exist in the absence of clinically apparent malignancy. Only a few reports of "heavy chain MGUS" have been described before. In the absence of specialized guidelines, we suggest a similar follow-up as for MGUS, while taking into account the higher probability of progression to lymphoma than to myeloma. PMID:27213064

  3. Apparent Brecciation Gradient, Mount Desert Island, Maine

    NASA Astrophysics Data System (ADS)

    Hawkins, A. T.; Johnson, S. E.

    2004-05-01

    Mount Desert Island, Maine, comprises a shallow level, Siluro-Devonian igneous complex surrounded by a distinctive breccia zone ("shatter zone" of Gilman and Chapman, 1988). The zone is very well exposed on the southern and eastern shores of the island and provides a unique opportunity to examine subvolcanic processes. The breccia of the Shatter Zone shows wide variation in percent matrix and clast, and may represent a spatial and temporal gradient in breccia formation due to a single eruptive or other catastrophic volcanic event. The shatter zone was divided into five developmental stages based on the extent of brecciation: Bar Harbor Formation, Sols Cliffs breccia, Seeley Road breccia, Dubois breccia, and Great Head breccia. A digital camera was employed to capture scale images of representative outcrops using a 0.5 m square Plexiglas frame. Individual images were joined in Adobe Photoshop to create a composite image of each outcrop. The composite photo was then exported to Adobe Illustrator, which was used to outline the clasts and produce a digital map of the outcrop for analysis. The fractal dimension (Fd) of each clast was calculated using NIH Image and a Euclidean distance mapping method described by Bérubé and Jébrak (1999) to quantify the morphology of the fragments, or the complexity of the outline. The more complex the fragment outline, the higher the fractal dimension, indicating that the fragment is less "mature" or has had less exposure to erosional processes, such as the injection of an igneous matrix. Sols Cliffs breccia has an average Fd of 1.125, whereas Great Head breccia has an average Fd of 1.040, with the stages between having intermediate values. The more complex clasts of the Sols Cliffs breccia with a small amount (26.38%) of matrix material suggests that it is the first stage in a sequence of brecciation ending at the more mature, matrix-supported (71.37%) breccia of Great Head. The results of this study will be used to guide isotopic

  4. Bayesian seismic tomography by parallel interacting Markov chains

    NASA Astrophysics Data System (ADS)

    Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas

    2014-05-01

    The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the

  5. Simplified gradient generator for micro- and nano-liquid chromatography.

    PubMed

    Murata, Kaoru; Mano, Nariyasu; Asakawa, Naoki; Ishihama, Yasushi

    2006-08-01

    We have developed a simple device to generate gradient elution profiles using split tubing array (STAR) units for micro- and nano-HPLC. This gradient device consists of a delivery pump, a splitter, tubes in parallel, and a relatively large-volume mixing chamber. In the mixing chamber, an initially filled water-rich solvent is adjusted to an organic-rich solvent by delivery of appropriate components through the split paths, in which the flow rate and residence time are controlled by the sizes of the tubes employed. A program was developed to describe the output gradient profiles, and the predicted gradient profiles were highly consistent with the observed ones. A linear gradient generated by this STAR system was successfully applied to micro-HPLC systems for separation of digested peptides derived from serum albumin with sufficient reproducibility. Further miniaturization of STAR systems for nano-HPLC coupled with tandem mass spectrometry was accomplished to separate digested peptides from serum albumin with a reproducibility of retention times of better than 0.2%, and the obtained spectra from the well-separated chromatographic peaks allowed protein identification with high confidence by protein database searching. We believe that this simple and reproducible gradient system using an isocratic pump will be especially advantageous for nanoLC-MS, instead of flow-controlled gradient pumps.

  6. A flexoelectric theory with rotation gradient effects for elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Anqing, Li; Shenjie, Zhou; Lu, Qi; Xi, Chen

    2016-01-01

    In this paper, a general flexoelectric theory in the framework of couple stress theory is proposed for isotropic dielectrics, in which the rotation gradient and the polarization gradient are involved to represent the nonlocal mechanical and electrical effects, respectively. The present flexoelectric theory shows only the anti-symmetric part of rotation gradient can induce polarization, while the symmetric part of rotation gradient cannot induce polarization in isotropic dielectrics. The electrostatic stress is obtained naturally in the governing equations and boundary conditions in terms of the variational principle, which is composed of two parts: the Maxwell stress corresponding to the polarization and the remainder relating to the polarization gradient. The current theory is able to account for the effects of size, direct and inverse flexoelectricities, and electrostatic force. To illustrate this theory, a simple application of Bernoulli-Euler cantilever beam is discussed. The numerical results demonstrate neither the higher-order constant l 1 nor the higher-order constant l 2 associated with the symmetric and anti-symmetric parts of rotation gradient, respectively, can be ignored in the flexoelectric theory. In addition, the induced deflection increases as the increase of the flexoelectric coefficient. The polarization is no longer constant and the potential is no longer linear along the thickness direction of beam because of the influence of polarization gradient.

  7. Gradients of galactic cosmic rays and anomalous components

    NASA Technical Reports Server (NTRS)

    Mckibben, R. B.

    1988-01-01

    Measurements of radial and latitudinal gradients of galactic cosmic rays and anomalous components now cover radii from 0.3 to 40 AU from the sun and latitudes up to 30 deg above the ecliptic plane for particle energies from approx. 10 MeV/n up to relativistic energies. The most accurate measurements cover the period 1972 through 1987, which includes more than one full 11 year cycle of solar activity. Radial gradients for glactic cosmic rays of all energies and species are small (similar to less than 10 percent AU), and variable in time, reaching a minimum of near 0 percent AU out to 30 AU for some species at solar maximum. Gradients for anomalous components are larger, of order 15 percent AU, may show similar time variability, and are relatively independent of particle species and energy. For the period 1985 through 1986 the intensity decreased away from the ecliptic for all species and energies. For galactic cosmic rays, the measured gradients are approx. 0.5 percent/degree near 20 AU, while for anomalous components the gradients are larger, ranging from 3 to 6 percent/degree. Comparison with a similar measurement for anomalous helium in 1975 through 1976 suggests that the latitude gradients for anomalous components have changed sign between 1975 and 1985. For galactic cosmic rays, the available evidence suggests no change in sign of the latitudinal gradient for relativistic particles.

  8. Concomitant gradient terms in phase contrast MR: analysis and correction.

    PubMed

    Bernstein, M A; Zhou, X J; Polzin, J A; King, K F; Ganin, A; Pelc, N J; Glover, G H

    1998-02-01

    Whenever a linear gradient is activated, concomitant magnetic fields with non-linear spatial dependence result. This is a consequence of Maxwell's equations, i.e., within the imaging volume the magnetic field must have zero divergence, and has negligible curl. The concomitant, or Maxwell field has been described in the MRI literature for over 10 years. In this paper, we theoretically and experimentally show the existence of two additional lowest-order terms in the concomitant field, which we call cross-terms. The concomitant gradient cross-terms only arise when the longitudinal gradient Gz is simultaneously active with a transverse gradient (Gx or Gy). The effect of all of the concomitant gradient terms on phase contrast imaging is examined in detail. Several methods for reducing or eliminating phase errors arising from the concomitant magnetic field are described. The feasibility of a joint pulse sequence-reconstruction method, which requires no increase in minimum TE, is demonstrated. Since the lowest-order terms of the concomitant field are proportional to G2/B0, the importance of concomitant gradient terms is expected to increase given the current interest in systems with stronger gradients and/or weaker main magnetic fields.

  9. Cetacean records along a coastal-offshore gradient in the Vitória-Trindade Chain, western South Atlantic Ocean.

    PubMed

    Wedekin, L L; Rossi-Santos, M R; Baracho, C; Cypriano-Souza, A L; Simões-Lopes, P C

    2014-02-01

    Oceanic waters are difficult to assess, and there are many gaps in knowledge regarding cetacean occurrence. To fill some of these gaps, this article provides important cetacean records obtained in the winter of 2010 during a dedicated expedition to collect visual and acoustic information in the Vitória-Trindade seamounts. We observed 19 groups of cetaceans along a 1300-km search trajectory, with six species being identified: the humpback whale (Megaptera novaeangliae, N = 9 groups), the fin whale (Balaenoptera physalus, N = 1), the Antarctic minke whale (Balaenoptera bonaerensis, N = 1), the rough-toothed dolphin (Steno bredanensis, N = 1), the bottlenose dolphin (Tursiops truncatus, N = 2), and the killer whale (Orcinus orca, N = 1). Most humpback whale groups (N = 7; 78%) were observed in the Vitória-Trindade seamounts, especially the mounts close to the Abrolhos Bank. Only one lone humpback whale was observed near Trindade Island after a search effort encompassing more than 520 km. From a total of 28 acoustic stations, humpback whale songs were only detected near the seamounts close to the Abrolhos Bank, where most groups of this species were visually detected (including a competitive group and groups with calves). The presence of humpback whales at the Trindade Island and surroundings is most likely occasional, with few sightings and low density. Finally, we observed a significant number of humpback whales along the seamounts close to the Abrolhos Bank, which may function as a breeding habitat for this species. We also added important records regarding the occurrence of cetaceans in these mounts and in the Western South Atlantic, including the endangered fin whale. PMID:25055095

  10. Cetacean records along a coastal-offshore gradient in the Vitória-Trindade Chain, western South Atlantic Ocean.

    PubMed

    Wedekin, L L; Rossi-Santos, M R; Baracho, C; Cypriano-Souza, A L; Simões-Lopes, P C

    2014-02-01

    Oceanic waters are difficult to assess, and there are many gaps in knowledge regarding cetacean occurrence. To fill some of these gaps, this article provides important cetacean records obtained in the winter of 2010 during a dedicated expedition to collect visual and acoustic information in the Vitória-Trindade seamounts. We observed 19 groups of cetaceans along a 1300-km search trajectory, with six species being identified: the humpback whale (Megaptera novaeangliae, N = 9 groups), the fin whale (Balaenoptera physalus, N = 1), the Antarctic minke whale (Balaenoptera bonaerensis, N = 1), the rough-toothed dolphin (Steno bredanensis, N = 1), the bottlenose dolphin (Tursiops truncatus, N = 2), and the killer whale (Orcinus orca, N = 1). Most humpback whale groups (N = 7; 78%) were observed in the Vitória-Trindade seamounts, especially the mounts close to the Abrolhos Bank. Only one lone humpback whale was observed near Trindade Island after a search effort encompassing more than 520 km. From a total of 28 acoustic stations, humpback whale songs were only detected near the seamounts close to the Abrolhos Bank, where most groups of this species were visually detected (including a competitive group and groups with calves). The presence of humpback whales at the Trindade Island and surroundings is most likely occasional, with few sightings and low density. Finally, we observed a significant number of humpback whales along the seamounts close to the Abrolhos Bank, which may function as a breeding habitat for this species. We also added important records regarding the occurrence of cetaceans in these mounts and in the Western South Atlantic, including the endangered fin whale.

  11. Rapid cortical dynamics associated with auditory spatial attention gradients

    PubMed Central

    Mock, Jeffrey R.; Seay, Michael J.; Charney, Danielle R.; Holmes, John L.; Golob, Edward J.

    2015-01-01

    Behavioral and EEG studies suggest spatial attention is allocated as a gradient in which processing benefits decrease away from an attended location. Yet the spatiotemporal dynamics of cortical processes that contribute to attentional gradients are unclear. We measured EEG while participants (n = 35) performed an auditory spatial attention task that required a button press to sounds at one target location on either the left or right. Distractor sounds were randomly presented at four non-target locations evenly spaced up to 180° from the target location. Attentional gradients were quantified by regressing ERP amplitudes elicited by distractors against their spatial location relative to the target. Independent component analysis was applied to each subject's scalp channel data, allowing isolation of distinct cortical sources. Results from scalp ERPs showed a tri-phasic response with gradient slope peaks at ~300 ms (frontal, positive), ~430 ms (posterior, negative), and a plateau starting at ~550 ms (frontal, positive). Corresponding to the first slope peak, a positive gradient was found within a central component when attending to both target locations and for two lateral frontal components when contralateral to the target location. Similarly, a central posterior component had a negative gradient that corresponded to the second slope peak regardless of target location. A right posterior component had both an ipsilateral followed by a contralateral gradient. Lateral posterior clusters also had decreases in α and β oscillatory power with a negative slope and contralateral tuning. Only the left posterior component (120–200 ms) corresponded to absolute sound location. The findings indicate a rapid, temporally-organized sequence of gradients thought to reflect interplay between frontal and parietal regions. We conclude these gradients support a target-based saliency map exhibiting aspects of both right-hemisphere dominance and opponent process models. PMID:26082679

  12. Pulsed field gradient MAS-NMR studies of the mobility of carboplatin in cubic liquid-crystalline phases

    NASA Astrophysics Data System (ADS)

    Pampel, André; Michel, Dieter; Reszka, Regina

    2002-05-01

    A drug delivery system with cubic liquid-crystalline phase structure (cubic phase) containing the anti-cancer drug Carboplatin is studied. It is demonstrated that the combination of pulsed field gradient (PFG) NMR and MAS-NMR is a useful tool to study the biophysical properties of a cubic phase. The linewidth in 1H-NMR spectra is narrowed by MAS, which can be exploited to perform PFG diffusion NMR experiments under high-resolution conditions. Measurement of self-diffusion coefficients of all components of the cubic phase becomes possible. The influence of polyethylene glycol chains on the drug mobility is discussed. It is shown that polyethylene glycol chains interact with Carboplatin.

  13. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system.

    PubMed

    Anderson, Rika E; Beltrán, Mónica Torres; Hallam, Steven J; Baross, John A

    2013-02-01

    Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean.

  14. Wave forecasting and longshore sediment transport gradients along a transgressive barrier island: Chandeleur Islands, Louisiana

    NASA Astrophysics Data System (ADS)

    Georgiou, Ioannis Y.; Schindler, Jennifer K.

    2009-12-01

    Louisiana barrier islands, such as the chain surrounding the southeast region of the state, are experiencing rapid loss of land area, shoreline erosion, and landward migration due to transgression and in-place drowning, and the landfall of several major hurricanes in the last decade. Observations of migration rates and overall impacts to these barrier islands are poorly understood since they do not respond in a traditional way, such as barrier rollover. This paper aims to verify how wave energy and potential longshore sediment transport trends have influenced the recent evolution of the Chandeleur Islands, by direct comparison with recent observations of migration and erosion trends. The Chandeleur Islands are characterized by a bidirectional transport system, with material moving from the central arc to the flanks. The longshore sediment transport along the barrier islands was calculated after propagation and transformation of waves to breaking (generated using observed winds), and through the use of a common longshore sediment transport formula. Seasonal variations in wind climate produced changes in the transport trends and gradients that agree with migration and rotation patterns observed for this barrier island system. Results suggest that wind dominance produces seasonal oscillations that cause an imbalance in the resulting transport gradients that over time are responsible for higher rates of transport in the northward direction. These results and data from other works verify the evolutionary model previously suggested, and qualitatively confirm the recent observations in asymmetric shoreline erosion.

  15. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations

    PubMed Central

    Iwai, Kazuya; Minamisawa, Tamiko; Suga, Kanako; Yajima, Yasutomo; Shiba, Kiyotaka

    2016-01-01

    Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. PMID:27193612

  16. Isolation of human salivary extracellular vesicles by iodixanol density gradient ultracentrifugation and their characterizations.

    PubMed

    Iwai, Kazuya; Minamisawa, Tamiko; Suga, Kanako; Yajima, Yasutomo; Shiba, Kiyotaka

    2016-01-01

    Diagnostic methods that focus on the extracellular vesicles (EVs) present in saliva have been attracting great attention because of their non-invasiveness. EVs contain biomolecules such as proteins, messenger RNA (mRNA) and microRNA (miRNA), which originate from cells that release EVs, making them an ideal source for liquid biopsy. Although there have been many reports on density-based fractionation of EVs from blood and urine, the number of reports on EVs from saliva has been limited, most probably because of the difficulties in separating EVs from viscous saliva using density gradient centrifugation. This article establishes a protocol for the isolation of EVs from human saliva using density gradient centrifugation. The fractionated salivary EVs were characterized by atomic force microscopy, western blot and reverse transcription polymerase chain reaction. The results indicate that salivary EVs have a smaller diameter (47.8±12.3 nm) and higher density (1.11 g/ml) than EVs isolated from conditioned cell media (74.0±23.5 nm and 1.06 g/ml, respectively). Additionally, to improve the throughput of density-based fractionation of EVs, the original protocol was further modified by using a fixed angle rotor instead of a swinging rotor. It was also confirmed that several miRNAs were expressed strongly in the EV-marker-expressing fractions. PMID:27193612

  17. Matching molecular diversity and ecophysiology of benthic cyanobacteria and diatoms in communities along a salinity gradient.

    PubMed

    Nübel, U; Garcia-Pichel, F; Clavero, E; Muyzer, G

    2000-04-01

    The phylogenetic diversity of oxygenic phototrophic microorganisms in hypersaline microbial mats and their distribution along a salinity gradient were investigated and compared with the halotolerances of closely related cultivated strains. Segments of 16S rRNA genes from cyanobacteria and diatom plastids were retrieved from mat samples by DNA extraction and polymerase chain reaction (PCR), and subsequently analysed by denaturing gradient gel electrophoresis (DGGE). Sequence analyses of DNA from individual DGGE bands suggested that the majority of these organisms was related to cultivated strains at levels that had previously been demonstrated to correlate with characteristic salinity responses. Proportional abundances of amplified 16S rRNA gene segments from phylogenetic groupings of cyanobacteria and diatoms were estimated by image analysis of DGGE gels and were generally found to correspond to abundances of the respective morphotypes determined by microscopic analyses. The results indicated that diatoms accounted for low proportions of cells throughout, that the cyanobacterium Microcoleus chthonoplastes and close relatives dominated the communities up to a salinity of 11% and that, at a salinity of 14%, the most abundant cyanobacteria were related to highly halotolerant cultivated cyanobacteria, such as the recently established phylogenetic clusters of Euhalothece and Halospirulina. Although these organisms in cultures had previously demonstrated their ability to grow with close to optimal rates over a wide range of salinities, their occurrence in the field was restricted to the highest salinities investigated.

  18. Evolution of a Planar Wake in Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Mateer, George G.

    2016-01-01

    In the interest of improving the predictability of high-lift systems at maximum lift conditions, a series of fundamental experiments were conducted to study the effects of adverse pressure gradient on a wake flow. Mean and fluctuating velocities were measured with a two-component laser-Doppler velocimeter. Data were obtained for several cases of adverse pressure gradient, producing flows ranging from no reversed flow to massively reversed flow. While the turbulent Reynolds stresses increase with increasing size of the reversed flow region, the gradient of Reynolds stress does not. Computations using various turbulence models were unable to reproduce the reversed flow.

  19. Magnetic Field Gradient Waveform Monitoring for Magnetic Resonance

    NASA Astrophysics Data System (ADS)

    Han, Hui

    Linear magnetic field gradients have played a central role in Magnetic Resonance Imaging (MRI) since Fourier Transform MRI was proposed three decades ago. Their primary function is to encode spatial information into MR signals. Magnetic field gradients are also used to sensitize the image contrast to coherent and/or incoherent motion, to selectively enhance an MR signal, and to minimize image artifacts. Modern MR imaging techniques increasingly rely on the implementation of complex gradient waveforms for the manipulation of spin dynamics. However, gradient system infidelities caused by eddy currents, gradient amplifier imperfections and group delays, often result in image artifacts and other errors (e.g., phase and intensity errors). This remains a critical problem for a wide range of MRI techniques on modern commercial systems, but is of particular concern for advanced MRI pulse sequences. Measuring the real magnetic field gradients, i.e., characterizing eddy currents, is critical to addressing and remedying this problem. Gradient measurement and eddy current calibration are therefore a general topic of importance to the science of MRI. The Magnetic Field Gradient Monitor (MFGM) idea was proposed and developed specifically to meet these challenges. The MFGM method is the heart of this thesis. MFGM methods permit a variety of magnetic field gradient problems to be investigated and systematically remedied. Eddy current effects associated with MR compatible metallic pressure vessels were analyzed, simulated, measured and corrected. The appropriate correction of eddy currents may enable most MR/MRI applications with metallic pressure vessels. Quantitative imaging (1D/2D) with model pressure vessels was successfully achieved by combining image reconstruction with MFGM determined gradient waveform behaviour. Other categories of MR applications with metallic vessels, including diffusion measurement and spin echo SPI T2 mapping, cannot be realized solely by MFGM guided

  20. Moving-Gradient Furnace With Constant-Temperature Cold Zone

    NASA Technical Reports Server (NTRS)

    Gernert, Nelson J.; Shaubach, Robert M.

    1993-01-01

    Outer heat pipe helps in controlling temperature of cold zone of furnace. Part of heat-pipe furnace that includes cold zone surrounded by another heat pipe equipped with heater at one end and water cooling coil at other end. Temperature of heat pipe maintained at desired constant value by controlling water cooling. Serves as constant-temperature heat source or heat sink, as needed, for gradient of temperature as gradient region moved along furnace. Proposed moving-gradient heat-pipe furnace used in terrestrial or spaceborne experiments on directional solidification in growth of crystals.

  1. Hydrodynamics Beyond the Gradient Expansion: Resurgence and Resummation

    NASA Astrophysics Data System (ADS)

    Heller, Michal P.; Spaliński, Michał

    2015-08-01

    Consistent formulations of relativistic viscous hydrodynamics involve short-lived modes, leading to asymptotic rather than convergent gradient expansions. In this Letter we consider the Müller-Israel-Stewart theory applied to a longitudinally expanding quark-gluon plasma system and identify hydrodynamics as a universal attractor without invoking the gradient expansion. We give strong evidence for the existence of this attractor and then show that it can be recovered from the divergent gradient expansion by Borel summation. This requires careful accounting for the short-lived modes which leads to an intricate mathematical structure known from the theory of resurgence.

  2. Unidirectional acoustic probe based on the particle velocity gradient.

    PubMed

    Yu, Shiduo; Fernández Comesaña, Daniel; Carrillo Pousa, Graciano; Yang, Yixin; Xu, Lingji

    2016-06-01

    This paper presents the foundations of a unidirectional acoustic probe based on the particle velocity gradient. Highly directional characteristics play a key role in reducing the influence of undesired acoustic sources. These characteristics can be achieved by using multiple acoustic sensors in a spatial gradient arrangement. Two particle velocity sensors possessing the figure eight directivity pattern were used in a first-order gradient configuration to yield a unidirectional probe that can reject most excitations originating from both sides and the rear. The effects of key parameters are thoroughly discussed, and the proposed theory is validated in practice. PMID:27369169

  3. Left Ventricular Transmural Gradient in Mitochondrial Respiration Is Associated with Increased Sub-Endocardium Nitric Oxide and Reactive Oxygen Species Productions

    PubMed Central

    Kindo, Michel; Gerelli, Sébastien; Bouitbir, Jamal; Hoang Minh, Tam; Charles, Anne-Laure; Mazzucotelli, Jean-Philippe; Zoll, Joffrey; Piquard, François; Geny, Bernard

    2016-01-01

    Objective: Left ventricle (LV) transmural gradient in mitochondrial respiration has been recently reported. However, to date, the physiological mechanisms involved in the lower endocardium mitochondrial respiration chain capacity still remain to be determined. Since, nitric oxide (NO) synthase expression in the heart has spatial heterogeneity and might impair mitochondrial function, we investigated a potential association between LV transmural NO and mitochondrial function gradient. Methods: Maximal oxidative capacity (VMax) and relative contributions of the respiratory chain complexes II, III, IV (VSucc) and IV (VTMPD), mitochondrial content (citrate synthase activity), coupling, NO (electron paramagnetic resonance), and reactive oxygen species (ROS) production (H2O2 and dihydroethidium (DHE) staining) were determined in rat sub-endocardium (Endo) and sub-epicardium (Epi). Further, the effect of a direct NO donor (MAHMA NONOate) on maximal mitochondrial respiratory rates (Vmax) was determined. Results: Mitochondrial respiratory chain activities were reduced in the Endo compared with the Epi (−16.92%; P = 0.04 for Vmax and –18.73%; P = 0.02, for Vsucc, respectively). NO production was two-fold higher in the Endo compared with the Epi (P = 0.002) and interestingly, increasing NO concentration reduced Vmax. Mitochondrial H2O2 and LV ROS productions were significantly increased in Endo compared to Epi, citrate synthase activity and mitochondrial coupling being similar in the two layers. Conclusions: LV mitochondrial respiration transmural gradient is likely related to NO and possibly ROS increased production in the sub-endocardium. PMID:27582709

  4. Continuous chain bit with downhole cycling capability

    DOEpatents

    Ritter, Don F.; St. Clair, Jack A.; Togami, Henry K.

    1983-01-01

    A continuous chain bit for hard rock drilling is capable of downhole cycling. A drill head assembly moves axially relative to a support body while the chain on the head assembly is held in position so that the bodily movement of the chain cycles the chain to present new composite links for drilling. A pair of spring fingers on opposite sides of the chain hold the chain against movement. The chain is held in tension by a spring-biased tensioning bar. A head at the working end of the chain supports the working links. The chain is centered by a reversing pawl and piston actuated by the pressure of the drilling mud. Detent pins lock the head assembly with respect to the support body and are also operated by the drilling mud pressure. A restricted nozzle with a divergent outlet sprays drilling mud into the cavity to remove debris. Indication of the centered position of the chain is provided by noting a low pressure reading indicating proper alignment of drilling mud slots on the links with the corresponding feed branches.

  5. The triple-A supply chain.

    PubMed

    Lee, Hau L

    2004-10-01

    Building a strong supply chain is essential for business success. But when it comes to improving their supply chains, few companies take the right approach. Many businesses work to make their chains faster or more cost-effective, assuming that those steps are the keys to competitive advantage. To the contrary: Supply chains that focus on speed and costs tend to deteriorate over time. The author has spent 15 years studying more than 60 companies to gain insight into this and other supply chain dilemmas. His conclusion: Only companies that build supply chains that are agile, adaptable, and aligned get ahead of their rivals. All three components are essential; without any one of them, supply chains break down. Great companies create supply chains that respond to abrupt changes in markets. Agility is critical because in most industries, both demand and supply fluctuate rapidly and widely. Supply chains typically cope by playing speed against costs, but agile ones respond both quickly and cost-efficiently. Great companies also adapt their supply networks when markets or strategies change. The best supply chains allow managers to identify structural shifts early by recording the latest data, filtering out noise, and tracking key patterns. Finally, great companies align the interests of the partners in their supply chains with their own. That's important because every firm is concerned solely with its own interests. If its goals are out of alignment with those of other partners in the supply chain, performance will suffer. When companies hear about the triple-A supply chain, they assume that building one will require increased technology and investment. But most firms already have the infrastructure in place to create one. A fresh attitude alone can go a long way toward making it happen.

  6. Shifts in the community structure and activity of anaerobic ammonium oxidation bacteria along an estuarine salinity gradient

    NASA Astrophysics Data System (ADS)

    Zheng, Yanling; Jiang, Xiaofen; Hou, Lijun; Liu, Min; Lin, Xianbiao; Gao, Juan; Li, Xiaofei; Yin, Guoyu; Yu, Chendi; Wang, Rong

    2016-06-01

    Anaerobic ammonium oxidation (anammox) is a major microbial pathway for nitrogen (N) removal in estuarine and coastal environments. However, understanding of anammox bacterial dynamics and associations with anammox activity remains scarce along estuarine salinity gradient. In this study, the diversity, abundance, and activity of anammox bacteria, and their potential contributions to total N2 production in the sediments along the salinity gradient (0.1-33.8) of the Yangtze estuarine and coastal zone, were studied using 16S rRNA gene clone library, quantitative polymerase chain reaction assay, and isotope-tracing technique. Phylogenetic analysis showed a significant change in anammox bacterial community structure along the salinity gradient (P < 0.01), with the dominant genus shifting from Brocadia in the freshwater region to Scalindua in the open ocean. Anammox bacterial abundance ranged from 3.67 × 105 to 8.22 × 107 copies 16S rRNA gene g-1 and related significantly with salinity (P < 0.05). The anammox activity varied between 0.08 and 6.46 nmol N g-1 h-1 and related closely with anammox bacterial abundance (P < 0.01). Contributions of anammox activity to total N loss were highly variable along the salinity gradient, ranging from 5 to 77% and were significantly negatively correlated with salinity (P < 0.01). Sediment organic matter was also recognized as an important factor in controlling the relative role of anammox to total N2 production in the Yangtze estuarine and coastal zone. Overall, our data demonstrated a biogeographical distribution of anammox bacterial diversity, abundance, and activity along the estuarine salinity gradient and suggested that salinity is a major environmental control on anammox process in the estuarine and coastal ecosystems.

  7. On geoid heights derived from GEOS 3 altimeter data along the Hawaiian-Emperor seamount chain

    NASA Technical Reports Server (NTRS)

    Watts, A. B.

    1979-01-01

    The geoid heights derived from preliminary GEOS 3 satellite radar altimeter data over the Hawaiian-Emperor seamount chain are examined. Two objectives are pursued: (1) to evaluate the contribution of the topography of the seamount chain and its compensation to the marine geoid; and (2) to determine whether geoid heights derived from GEOS 3 altimeter data can be used to provide information on isostasy at geological features such as the Hawaiian-Emperor seamount chain which formed as relatively young loads on the oceanic lithosphere. Short-wavelength geoid highs of 5-12 m over the crest of the seamount chain and geoid lows over flanking regions are observed. The geological undulations can be explained by a simple model in which the seamount-chain load is supported by a strong rigid lithospheric plate. The elastic thickness estimates agree with values based on surface ship gravity and bathymetry observations, and provide further support to the hypothesis that the elastic thickness acquired at a surface load depends on the temperature gradient of the lithosphere at the time of loading.

  8. Atypical immunoglobulin light chain amyloidosis

    PubMed Central

    Wu, Xia; Feng, Jun; Cao, Xinxin; Zhang, Lu; Zhou, Daobin; Li, Jian

    2016-01-01

    Abstract Background: Primary immunoglobulin light chain amyloidosis (AL amyloidosis) is a plasma cell disorder which mainly affects heart, kidneys, liver, and peripheral nervous system. Cases of atypical AL amyloidosis presented as spontaneous vertebral compression fractures have been rarely reported, and data about the management and clinical outcomes of the patients are scarce. Methods: Herein, we present 3 new cases of AL amyloidosis with spontaneous vertebral compression fracture and review 13 cases retrieved from the literature. Results: Moreover, we observed overrepresentations of liver involvement and bone marrow involvement in AL amyloidosis with spontaneous vertebral compression fracture. Conclusion: We believe that better awareness of the rare clinical presentation as spontaneous vertebral compression fracture of AL amyloidosis can facilitate earlier diagnosis and earlier treatment. PMID:27603350

  9. Spin chains and string theory.

    PubMed

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  10. Pentagon chain in external fields

    NASA Astrophysics Data System (ADS)

    Kovács, György; Gulácsi, Zsolt

    2015-11-01

    We consider a pentagon chain described by a Hubbard type of model considered under periodic boundary conditions. The system (i) is placed in an external magnetic field perpendicular to the plane of the cells, and (ii) is in a site-selective manner under the action of an external electric potential. In these conditions, we show in an exact manner that the physical properties of the system can be qualitatively changed. The changes cause first strong modifications of the band structure of the system created by the one-particle part of the Hamiltonian, and second, produce marked changes of the phase diagram. We exemplify this by deducing ferromagnetic ground states in the presence of external fields in two different domains of the parameter space.

  11. Revealing various coupling of electron transfer and proton pumping in mitochondrial respiratory chain.

    PubMed

    Sun, Fei; Zhou, Qiangjun; Pang, Xiaoyun; Xu, Yingzhi; Rao, Zihe

    2013-08-01

    Cellular respiration is the process that releases energy from food and supplies energy for life processes. The mitochondrial respiratory chain is the final and most important step for cellular respiration and is located on the inner membrane of mitochondrion and comprises four large trans-membrane protein complexes (respiratory chain Complexes I, II, III and IV) as well as ubiquinone between Complexes I/II and III and cytochrome c between Complexes III and IV. The function of mitochondrial respiratory chain is biological oxidation by transferring electrons from NADH and succinate to oxygen and then generating proton gradient across the inner membrane. Such proton gradient is utilized by ATP synthase (ATPase, also called as Complex V) to produce energy molecules ATP. Structural studies of mitochondrial respiratory membrane protein complexes are important to understand the mechanism of electron transfer and the redox-coupled proton translocation across the inner membrane. Here, according to the time line, we reviewed the great achievements on structural studies of mitochondrial respiratory complexes in the past twenty years as well as the recent research progresses on the structures of mitochondrial respiratory supra-complexes.

  12. Gradient elution capillary electrochromatography and hyphenation with nuclear magnetic resonance.

    PubMed

    Gfrörer, P; Schewitz, J; Pusecker, K; Tseng, L H; Albert, K; Bayer, E

    1999-01-01

    Coupling of gradient capillary electrochromatography (gradient CEC) and capillary zone electrophoresis (CZE) with nuclear magnetic resonance spectroscopy (NMR) was performed using a recently developed capillary NMR interface. This technique was applied for the analysis of pharmaceuticals and food. An analgesic was investigated using isocratic and gradient continuous-flow CEC-NMR. Comparison of the results demonstrated the superiority of gradient CEC over isocratic CEC. Aspartame and caffeine, both ingredients of soft beverages, were separated and analyzed by continuous flow CZE-NMR. The order of elution could be reversed by altering the pH. This reversal led to an increased sample concentration in the NMR detection cell, thus allowing the acquisition of a totally correlated spectroscopy (TOCSY) two-dimensional (2-D) spectrum of the synthetic peptide aspartame. PMID:10065951

  13. Control of flexible structures by applied thermal gradients

    NASA Technical Reports Server (NTRS)

    Edberg, Donald L.

    1987-01-01

    Thermal, elastic, and feedback analyses are applied to the case of a beam with a distributed thermal actuator. The actuator is capable of producing a thermal gradient across the section of the beam. One candidate for such an actuator uses the Peltier effect, which appears in certain semiconductors. These devices act as heat pumps when a voltage is applied, causing a temperature gradient. It is shown that the thermal gradients can induce deflection in the beam. If the thermal gradients are applied in the proper sense to a vibrating beam, it is possible to increase the vibration damping exhibited by the structure. Experimental results are given for a cantilever beam, whose first vibrational mode damping ratio was increased from 0.81 to 7.4 percent with simple lead compensation.

  14. On the control of flexible structures by applied thermal gradients

    NASA Technical Reports Server (NTRS)

    Edberg, D. L.

    1987-01-01

    Thermal, elastic, and feedback analyses are applied to the case of a beam with a distributed thermal actuator. The actuator is capable of producing a thermal gradient across the section of the beam. One candidate for such an actuator uses the Peltier effect, which appears in certain semiconductors. These devices act as heat pumps when a voltage is applied, causing a temperature gradient. It is shown that the thermal gradients can induce deflection in the beam. If the thermal gradients are applied in the proper sense to a vibrating beam, it is possible to increase the vibration damping exhibited by the structure. Experimental results are given for a cantilever beam, whose first vibrational mode damping ratio was increased from 0.81 to 7.4 percent with a simple lead compensation.

  15. Extinction as a driver of avian latitudinal diversity gradients.

    PubMed

    Pulido-Santacruz, Paola; Weir, Jason T

    2016-04-01

    The role of historical factors in driving latitudinal diversity gradients is poorly understood. Here, we used an updated global phylogeny of terrestrial birds to test the role of three key historical factors-speciation, extinction, and dispersal rates-in generating latitudinal diversity gradients for eight major clades. We fit a model that allows speciation, extinction, and dispersal rates to differ, both with latitude and between the New and Old World. Our results consistently support extinction (all clades had lowest extinction where species richness was highest) as a key driver of species richness gradients across each of eight major clades. In contrast, speciation and dispersal rates showed no consistent latitudinal patterns across replicate bird clades, and thus are unlikely to represent general underlying drivers of latitudinal diversity gradients. PMID:26940812

  16. Geothermal gradient drilling, north-central Cascades of Oregon, 1979

    SciTech Connect

    Youngquist, W.

    1980-01-01

    A geothermal gradient drilling program was conducted on the western flank of the north-central Cascade Mountains in Oregon. Six wells were drilled during this program, although in effect seven were drilled, as two wells were drilled at site 3, the second well, however, actually going to a lesser depth than the first. Three of the wells (3, 4, and 5) were drilled in areas which topographically are subject to strong throughflows of ground water. None of these wells reached the regional water table, and all showed essentially isothermal geothermal gradients. The single well which was started essentially at the water table (well 6) shows a linear temperature rise with depth essentially from the top of the well bore. Well No. 2 shows an isothermal gradient down to the level of the regional water table and then shows a linear gradient of about 70/sup 0/C/km from the regional water table to total depth.

  17. Optimization of gradient coil technology for human magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Chronik, Blaine Alexander

    The general problem of identifying the optimal gradient coil design for any given application is addressed in this thesis. The problem is divided into stages. The first step is the development of an optimal mathematical solution for single designs conforming to some set of constraints. The second step is the systematic implementation of the mathematical algorithm to search for the optimal set of design constraints for an intended application, two examples of which are investigated. The final step is the consideration of gradient coil dependent physiological limits specific to the application of strong gradient fields in human subjects. A modified minimum inductance target field method that allows the placement of a set of constraints on the final current density is developed. This constrained current minimum inductance (CCMI) method is derived in the context of previous target field methods. The method has been fully implemented on computer and applied to the design of both central and edge uniformity gradient coils. A three axis gradient coil set that utilizes interleaved, multilayer axes to achieve maximum gradient strengths of over 2000mT/m in rise times of less than 50μs with an inner coil diameter of 5cm was designed. Water cooling was incorporated into the coil to assist in thermal management. The duty cycle for the most extreme cases of single shot EPI is limited by the thermal response and expressions for maximum rates of image collection are given for burst and continuous modes of operation. A three axis gradient coil set with an imaging region extending outside the physical edge of the coil was designed, constructed, and tested. The configuration is compatible with both neck and brain imaging in humans. The coil produces a cylindrical imaging region 16cm in diameter and 16cm in length. The coil axes produce gradient strengths between 80mT/m and 100mT/m at 250A peak current, with minimum rise times of approximately 400μs. Heating tests were performed

  18. Directional Bleb Formation in Spherical Cells under Temperature Gradient

    PubMed Central

    Oyama, Kotaro; Arai, Tomomi; Isaka, Akira; Sekiguchi, Taku; Itoh, Hideki; Seto, Yusuke; Miyazaki, Makito; Itabashi, Takeshi; Ohki, Takashi; Suzuki, Madoka; Ishiwata, Shin'ichi

    2015-01-01

    Living cells sense absolute temperature and temporal changes in temperature using biological thermosensors such as ion channels. Here, we reveal, to our knowledge, a novel mechanism of sensing spatial temperature gradients within single cells. Spherical mitotic cells form directional membrane extensions (polar blebs) under sharp temperature gradients (≥∼0.065°C μm−1; 1.3°C temperature difference within a cell), which are created by local heating with a focused 1455-nm laser beam under an optical microscope. On the other hand, multiple nondirectional blebs are formed under gradual temperature gradients or uniform heating. During heating, the distribution of actomyosin complexes becomes inhomogeneous due to a break in the symmetry of its contractile force, highlighting the role of the actomyosin complex as a sensor of local temperature gradients. PMID:26200871

  19. New head gradient coil design and construction techniques

    PubMed Central

    Handler, William B; Harris, Chad T; Scholl, Timothy J; Parker, Dennis L; Goodrich, K Craig; Dalrymple, Brian; Van Sass, Frank; Chronik, Blaine A

    2013-01-01

    Purpose To design and build a head insert gradient coil to use in conjunction with body gradients for superior imaging. Materials and Methods The use of the Boundary Element Method to solve for a gradient coil wire pattern on an arbitrary surface has allowed us to incorporate engineering changes into the electromagnetic design of a gradient coil directly. Improved wire pattern design has been combined with robust manufacturing techniques and novel cooling methods. Results The finished coil had an efficiency of 0.15 mT/m/A in all three axes and allowed the imaging region to extend across the entire head and upper part of the neck. Conclusion The ability to adapt your electromagnetic design to necessary changes from an engineering perspective leads to superior coil performance. PMID:24123485

  20. Face recognition with histograms of fractional differential gradients

    NASA Astrophysics Data System (ADS)

    Yu, Lei; Ma, Yan; Cao, Qi

    2014-05-01

    It has proved that fractional differentiation can enhance the edge information and nonlinearly preserve textural detailed information in an image. This paper investigates its ability for face recognition and presents a local descriptor called histograms of fractional differential gradients (HFDG) to extract facial visual features. HFDG encodes a face image into gradient patterns using multiorientation fractional differential masks, from which histograms of gradient directions are computed as the face representation. Experimental results on Yale, face recognition technology (FERET), Carnegie Mellon University pose, illumination, and expression (CMU PIE), and A. Martinez and R. Benavente (AR) databases validate the feasibility of the proposed method and show that HFDG outperforms local binary patterns (LBP), histograms of oriented gradients (HOG), enhanced local directional patterns (ELDP), and Gabor feature-based methods.