Sample records for chalcogenides

  1. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  2. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation

    PubMed Central

    Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong

    2015-01-01

    One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template TexSey@Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures. PMID:26601137

  3. A new generation of alloyed/multimetal chalcogenide nanowires by chemical transformation.

    PubMed

    Yang, Yuan; Wang, Kai; Liang, Hai-Wei; Liu, Guo-Qiang; Feng, Mei; Xu, Liang; Liu, Jian-Wei; Wang, Jin-Long; Yu, Shu-Hong

    2015-11-01

    One-dimensional metal chalcogenide nanostructures are important candidates for many technological applications such as photovoltaic and thermoelectric devices. However, the design and synthesis of one-dimensional metal chalcogenide nanostructured materials with controllable components and properties remain a challenge. We report a general chemical transformation process for the synthesis of more than 45 kinds of one-dimensional alloyed/hybrid metal chalcogenide nanostructures inherited from mother template Te x Se y @Se core-shell nanowires with tunable compositions. As many as nine types of monometal chalcogenide alloy nanowires (including AgSeTe, HgSeTe, CuSeTe, BiSeTe, PbSeTe, CdSeTe, SbSeTe, NiSeTe, and CoSeTe) can be synthesized. Alloyed and hybrid nanowires integrated with two or more alloyed metal chalcogenide phases can also be prepared. The compositions of all of these metal chalcogenide nanowires are tunable within a wide range. This protocol provides a new general route for the controllable synthesis of a new generation of one-dimensional metal chalcogenide nanostructures.

  4. Solvent properties of hydrazine in the preparation of metal chalcogenide bulk materials and films.

    PubMed

    Yuan, Min; Mitzi, David B

    2009-08-21

    A combination of unique solvent properties of hydrazine enables the direct dissolution of a range of metal chalcogenides at ambient temperature, rendering this an extraordinarily simple and soft synthetic approach to prepare new metal chalcogenide-based materials. The extended metal chalcogenide parent framework is broken up during this process, and the resulting metal chalcogenide building units are re-organized into network structures (from 0D to 3D) based upon their interactions with the hydrazine/hydrazinium moieties. This Perspective will review recent crystal and materials chemistry developments within this family of compounds and will briefly discuss the utility of this approach in metal chalcogenide thin-film deposition.

  5. Nano-scaled top-down of bismuth chalcogenides based on electrochemical lithium intercalation

    NASA Astrophysics Data System (ADS)

    Chen, Jikun; Zhu, Yingjie; Chen, Nuofu; Liu, Xinling; Sun, Zhengliang; Huang, Zhenghong; Kang, Feiyu; Gao, Qiuming; Jiang, Jun; Chen, Lidong

    2011-12-01

    A two-step method has been used to fabricate nano-particles of layer-structured bismuth chalcogenide compounds, including Bi2Te3, Bi2Se3, and Bi2Se0.3Te2.7, through a nano-scaled top-down route. In the first step, lithium (Li) atoms are intercalated between the van der Waals bonded quintuple layers of bismuth chalcogenide compounds by controllable electrochemical process inside self-designed lithium ion batteries. And in the second step, the Li intercalated bismuth chalcogenides are subsequently exposed to ethanol, in which process the intercalated Li atoms would explode like atom-scaled bombs to exfoliate original microscaled powder into nano-scaled particles with size around 10 nm. The influence of lithium intercalation speed and amount to three types of bismuth chalcogenide compounds are compared and the optimized intercalation conditions are explored. As to maintain the phase purity of the final nano-particle product, the intercalation lithium amount should be well controlled in Se contained bismuth chalcogenide compounds. Besides, compared with binary bismuth chalcogenide compound, lower lithium intercalation speed should be applied in ternary bismuth chalcogenide compound.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Li-Na; Wang, H.C.; Shen, Y.

    Nanostructured lead chalcogenides (PbX, X = Te, Se, S) were prepared via a simple hydrothermal method. The powder samples were characterized by XRD, SEM, SAED and DRS. Phase composition and microstructure analysis indicate that these samples are pure lead chalcogenides phases and have similar morphologies. These lead chalcogenides display efficient absorption in the UV-visible light range. The photocatalytic properties of lead chalcogenides nanoparticles were evaluated by the photodegradation of Congo red under UV-visible light irradiation in air atmosphere. The Congo red solution can be efficiently degraded under visible light in the presence of lead chalcogenides nanoparticles. The photocatalytic activities ofmore » lead chalcogenides generally increase with increasing their band gaps and shows no appreciable loss after repeated cycles. Our results may be useful for developing new photocatalyst systems responsive to visible light among narrow band gap semiconductors.« less

  7. Optimization of Phase Change Memory with Thin Metal Inserted Layer on Material Properties

    NASA Astrophysics Data System (ADS)

    Harnsoongnoen, Sanchai; Sa-Ngiamsak, Chiranut; Siritaratiwat, Apirat

    This works reports, for the first time, the thorough study and optimisation of Phase Change Memory (PCM) structure with thin metal inserted chalcogenide via electrical resistivity (ρ) using finite element modeling. PCM is one of the best candidates for next generation non-volatile memory. It has received much attention recently due to its fast write speed, non-destructive readout, superb scalability, and great compatibility with current silicon-based mass fabrication. The setback of PCM is a high reset current typically higher than 1mA based on 180nm lithography. To reduce the reset current and to solve the over-programming failure, PCM with thin metal inserted chalcogenide (bottom chalcogenide/metal inserted/top chalcogenide) structure has been proposed. Nevertheless, reports on optimisation of the electrical resistivity using the finite element method for this new PCM structure have never been published. This work aims to minimize the reset current of this PCM structure by optimizing the level of the electrical resistivity of the PCM profile using the finite element approach. This work clearly shows that PCM characteristics are strongly affected by the electrical resistivity. The 2-D simulation results reveal clearly that the best thermal transfer of and self-joule-heating at the bottom chalcogenide layer can be achieved under conditions; ρ_bottom chalcogenide > ρ_metal inserted > ρ_top chalcogenide More specifically, the optimized electrical resistivity of PCMTMI is attained with ρ_top chalcogenide: ρ_metal inserted: ρ_bottom chalcogenide ratio of 1:6:16 when ρ_top chalcogenide is 10-3 Ωm. In conclusion, high energy efficiency can be obtained with the reset current as low as 0.3mA and with high speed operation of less than 30ns.

  8. Novel Chalcogenide Materials for X-ray and Gamma-ray Detection

    DTIC Science & Technology

    2016-05-01

    53 Novel Chalcogenide Materials for x-ray and y-ray Detection Distribution Statement A. Approved for public release; distribution is unlimited. 0...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Novel Chalcogenide Materials for x-ray and y-ray Detection Sb. GRANT NUMBER HDTRA 1-09-1-0044 Sc. PROGRAM...heavy atom chalcogenide family of semiconductors for room temperature gamma radiation detection . Its goal was to accelerate nuclear detector material

  9. High-Purity Glasses Based on Arsenic Chalcogenides

    DTIC Science & Technology

    2001-06-01

    Chemical interaction of chalcogenides and some impurities (CS 2, TeO2 ) with the quartz glass at high temperature leads to the thin layers formation...UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO1 1523 TITLE: High-Purity Glasses Based on Arsenic Chalcogenides...Materials Vol. 3, No. 2, June 2001, p. 341 - 349 HIGH-PURITY GLASSES BASED ON ARSENIC CHALCOGENIDES M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S

  10. Magnetic chalcogenides in 3 and lower dimensions

    NASA Astrophysics Data System (ADS)

    Furdyna, J. K.; Dong, S.-N.; Lee, S.; Liu, X.; Dobrowolska, M.

    2018-06-01

    In this article we review magnetic phenomena that occur in the chalcogenide family involving transition metals. Magnetic properties displayed by bulk 3D chalcogenides compounds and alloys produced by equilibrium growth methods are discussed. 2D magnetic chalcogenide systems such as epitaxial films and more complex multilayers, whose formation is made possible by epitaxial methods and/or by van der Waals epitaxy, are presented in detail. We present a brief overview of magnetic effects emerging as the dimensionality of chalcogenide materialss is reduced to 1D (nanowires and related structures) and to zero-D (quantum dots formed by both top-down and bottom-up methods).

  11. Solution-processing of chalcogenide materials for device applications

    NASA Astrophysics Data System (ADS)

    Zha, Yunlai

    Chalcogenide glasses are well-known for their desirable optical properties, which have enabled many infrared applications in the fields of photonics, medicine, environmental sensing and security. Conventional deposition methods such as thermal evaporation, chemical vapor deposition, sputtering or pulse laser deposition are efficient for fabricating structures on flat surfaces. However, they have limitations in deposition on curved surfaces, deposition of thick layers and component integration. In these cases, solution-based methods, which involve the dissolution of chalcogenide glasses and processing as a liquid, become a better choice for their flexibility. After proper treatment, the associated structures can have similar optical, chemical and physical properties to the bulk. This thesis presents an in-depth study of solution-processing chalcogenide glasses, starting from the "solution state" to the "film state" and the "structure state". Firstly, chalcogenide dissolution is studied to reveal the mechanisms at molecular level and build a foundation for material processing. Dissolution processes for various chalcogenide solvent pairs are reviewed and compared. Secondly, thermal processing, in the context of high temperature annealing, is explained along with the chemical and physical properties of the annealed films. Another focus is on nanopore formation in propylamine-processed arsenic sulfide films. Pore density changes with respect to annealing temperatures and durations are characterized. Base on a proposed vacancy coalescence theory, we have identified new dissolution strategies and achieved the breakthrough of pore-free film deposition. Thirdly, several solution methods developed along with the associated photonic structures are demonstrated. The first example is "spin-coating and lamination", which produces thick (over 10 mum) chalcogenide structures. Both homogeneous thick chalcogenide structures and heterogeneous layers of different chalcogenide glasses or metals can be fabricated. Second, "micro-molding in capillaries" (MIMIC) and "micro-transfer molding" (muTM) methods are introduced for fabricating waveguides on flat and curved surfaces. The flexibility of the solution process allows waveguides to be patterned, for the first time, on a curved surface. Third, "micro channel filling" is demonstrated to produce the lowest loss among solution-processed chalcogenide waveguides. These results contribute to the advancement of chalcogenide processing technologies and help move closer towards the ultimate goal of fabricating reliable IR sensors.

  12. Synthesis of 2D Metal Chalcogenide Thin Films through the Process Involving Solution-Phase Deposition.

    PubMed

    Giri, Anupam; Park, Gyeongbae; Yang, Heeseung; Pal, Monalisa; Kwak, Junghyeok; Jeong, Unyong

    2018-04-24

    2D metal chalcogenide thin films have recently attracted considerable attention owing to their unique physicochemical properties and great potential in a variety of applications. Synthesis of large-area 2D metal chalcogenide thin films in controllable ways remains a key challenge in this research field. Recently, the solution-based synthesis of 2D metal chalcogenide thin films has emerged as an alternative approach to vacuum-based synthesis because it is relatively simple and easy to scale up for high-throughput production. In addition, solution-based thin films open new opportunities that cannot be achieved from vacuum-based thin films. Here, a comprehensive summary regarding the basic structures and properties of different types of 2D metal chalcogenides, the mechanistic details of the chemical reactions in the synthesis of the metal chalcogenide thin films, recent successes in the synthesis by different reaction approaches, and the applications and potential uses is provided. In the last perspective section, the technical challenges to be overcome and the future research directions in the solution-based synthesis of 2D metal chalcogenides are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua D.; Orme, Christine A.

    2017-04-25

    Disclosed here is a method for hydrocarbon conversion, comprising contacting at least one graphene-supported assembly with at least one hydrocarbon feedstock, wherein the graphene-supported assembly comprises (i) a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds and (ii) at least one metal chalcogenide compound disposed on the graphene sheets, wherein the chalcogen of the metal chalcogenide compound is selected from S, Se and Te, and wherein the metal chalcogenide compound accounts for at least 20 wt. % of the graphene-supported assembly.

  14. Chalcogenide phase-change thin films used as grayscale photolithography materials.

    PubMed

    Wang, Rui; Wei, Jingsong; Fan, Yongtao

    2014-03-10

    Chalcogenide phase-change thin films are used in many fields, such as optical information storage and solid-state memory. In this work, we present another application of chalcogenide phase-change thin films, i.e., as grayscale photolithgraphy materials. The grayscale patterns can be directly inscribed on the chalcogenide phase-change thin films by a single process through direct laser writing method. In grayscale photolithography, the laser pulse can induce the formation of bump structure, and the bump height and size can be precisely controlled by changing laser energy. Bumps with different height and size present different optical reflection and transmission spectra, leading to the different gray levels. For example, the continuous-tone grayscale images of lifelike bird and cat are successfully inscribed onto Sb(2)Te(3) chalcogenide phase-change thin films using a home-built laser direct writer, where the expression and appearance of the lifelike bird and cat are fully presented. This work provides a way to fabricate complicated grayscale patterns using laser-induced bump structures onto chalcogenide phase-change thin films, different from current techniques such as photolithography, electron beam lithography, and focused ion beam lithography. The ability to form grayscale patterns of chalcogenide phase-change thin films reveals many potential applications in high-resolution optical images for micro/nano image storage, microartworks, and grayscale photomasks.

  15. Te Monolayer-Driven Spontaneous van der Waals Epitaxy of Two-dimensional Pnictogen Chalcogenide Film on Sapphire.

    PubMed

    Hwang, Jae-Yeol; Kim, Young-Min; Lee, Kyu Hyoung; Ohta, Hiromichi; Kim, Sung Wng

    2017-10-11

    Demands on high-quality layer structured two-dimensional (2D) thin films such as pnictogen chalcogenides and transition metal dichalcogenides are growing due to the findings of exotic physical properties and potentials for device applications. However, the difficulties in controlling epitaxial growth and the unclear understanding of van der Waals epitaxy (vdWE) for a 2D chalcogenide film on a three-dimensional (3D) substrate have been major obstacles for the further advances of 2D materials. Here, we exploit the spontaneous vdWE of a high-quality 2D chalcogenide (Bi 0.5 Sb 1.5 Te 3 ) film by the chalcogen-driven surface reconstruction of a conventional 3D sapphire substrate. It is verified that the in situ formation of a pseudomorphic Te atomic monolayer on the surface of sapphire, which results in a dangling bond-free surface, allows the spontaneous vdWE of 2D chalcogenide film. Since this route uses the natural surface reconstruction of sapphire with chalcogen under vacuum condition, it can be scalable and easily utilized for the developments of various 2D chalcogenide vdWE films through conventional thin-film fabrication technologies.

  16. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber.

    PubMed

    Fu, L; Rochette, M; Ta'eed, V; Moss, D; Eggleton, B

    2005-09-19

    We investigate the feasibility of all-optical regeneration based on self-phase modulation in single mode As2Se3 chalcogenide fiber. By combining the chalcogenide fiber with a bandpass filter, we achieve a near step-like power transfer function with no pulse distortion. The device is shown to operate with 5.8 ps duration pulses, thus demonstrating the feasibility of this device operating with high bit-rate data signals. These results are achieved with pulse peak powers <10 W in a fully passive device, including only 2.8 m of chalcogenide fiber. We obtain an excellent agreement between theory and experiment and show that both the high nonlinearity of the chalcogenide glass along with its high normal dispersion near 1550 nm enables a significant device length reduction in comparison with silica-based devices, without compromise on the performance. We find that even for only a few meters of fiber, the large normal dispersion of the chalcogenide glass inhibits spectral oscillations that would appear with self-phase modulation alone. We measure the two photon absorption attenuation coefficient and find that it advantageously affects the device transfer function.

  17. Improved laser damage threshold for chalcogenide glasses through surface microstructuring

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Sanghera, Jasbinder; Busse, Lynda; Shaw, Brandon; Aggarwal, Ishwar

    2011-03-01

    We demonstrate improved laser damage threshold of chalcogenide glasses with microstructured surfaces as compared to chalcogenide glasses provided with traditional antireflection coatings. The surface microstructuring is used to reduce Fresnel losses over large bandwidths in As2S3 glasses and fibers. The treated surfaces show almost a factor of two of improvement in the laser damage threshold when compared with untreated surfaces.

  18. Low-loss, submicron chalcogenide integrated photonics with chlorine plasma etching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiles, Jeff; Malinowski, Marcin; Rao, Ashutosh

    A chlorine plasma etching-based method for the fabrication of high-performance chalcogenide-based integrated photonics on silicon substrates is presented. By optimizing the etching conditions, chlorine plasma is employed to produce extremely low-roughness etched sidewalls on waveguides with minimal penalty to propagation loss. Using this fabrication method, microring resonators with record-high intrinsic Q-factors as high as 450 000 and a corresponding propagation loss as low as 0.42 dB/cm are demonstrated in submicron chalcogenide waveguides. Furthermore, the developed chlorine plasma etching process is utilized to demonstrate fiber-to-waveguide grating couplers in chalcogenide photonics with high power coupling efficiency of 37% for transverse-electric polarized modes.

  19. Chalcogenide Nanoionic-based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2013-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap therebetween. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  20. Chalcogenide Nanoionic-Based Radio Frequency Switch

    NASA Technical Reports Server (NTRS)

    Nessel, James (Inventor); Lee, Richard (Inventor)

    2011-01-01

    A nonvolatile nanoionic switch is disclosed. A thin layer of chalcogenide glass engages a substrate and a metal selected from the group of silver and copper photo-dissolved in the chalcogenide glass. A first oxidizable electrode and a second inert electrode engage the chalcogenide glass and are spaced apart from each other forming a gap there between. A direct current voltage source is applied with positive polarity applied to the oxidizable electrode and negative polarity applied to the inert electrode which electrodeposits silver or copper across the gap closing the switch. Reversing the polarity of the switch dissolves the electrodeposited metal and returns it to the oxidizable electrode. A capacitor arrangement may be formed with the same structure and process.

  1. Space processing of chalcogenide glasses

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. A.

    1975-01-01

    Chalcogenide glasses are discussed as good infrared transmitters, possessing the strength, corrosion resistance, and scale-up potential necessary for large 10.6-micron windows. The disadvantage of earth-produced chalcogenide glasses is shown to be an infrared absorption coefficient which is unacceptably high relative to alkali halides. This coefficient is traced to optical nonhomogeneities resulting from environmental and container contamination. Space processing is considered as a means of improving the infrared transmission quality of chalcogenides and of eliminating the following problems: optical inhomogeneities caused by thermal currents and density fluctuation in the l-g earth environment; contamination from the earth-melting crucible by oxygen and other elements deleterious to infrared transmission; and, heterogeneous nucleation at the earth-melting crucible-glass interface.

  2. Recent Advances in Layered Metal Chalcogenides as Superconductors and Thermoelectric Materials: Fe-Based and Bi-Based Chalcogenides.

    PubMed

    Mizuguchi, Yoshikazu

    2016-04-01

    Recent advances in layered (Fe-based and Bi-based) chalcogenides as superconductors or functional materials are reviewed. The Fe-chalcogenide (FeCh) family are the simplest Fe-based high-Tc superconductors. The superconductivity in the FeCh family is sensitive to external or chemical pressure, and high Tc is attained when the local structure (anion height) is optimized. The Bi-chalcogenide (BiCh2) family are a new group of layered superconductors with a wide variety of stacking structures. Their physical properties are also sensitive to external or chemical pressure. Recently, we revealed that the emergence of superconductivity and the Tc in this family correlate with the in-plane chemical pressure. Since the flexibility of crystal structure and electronic states are an advantage of the BiCh2 family for designing functionalities, I briefly review recent developments in this family as not only superconductors but also other functional materials. © 2016 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Chalcogenide Glass Lasers on Silicon Substrate Integrated Photonics

    DTIC Science & Technology

    2016-07-08

    AFRL-AFOSR-UK-TR-2016-0013 Chalcogenide glass lasers on silicon substrate integrated photonics Clara Dimas MASDAR INSTITUTE OF SCIENCE & TECHNOLOGY...PROJECT NUMBER 5e.  TASK NUMBER 5f.  WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) MASDAR INSTITUTE OF SCIENCE & TECHNOLOGY - MIST...communication by reducing coupling losses, chip size, energy requirements and manufacturing cost. Chalcogenide glass (ChG) light sources doped with rare earth

  4. Infrared emitting and photoconducting colloidal silver chalcogenide nanocrystal quantum dots from a silylamide-promoted synthesis.

    PubMed

    Yarema, Maksym; Pichler, Stefan; Sytnyk, Mykhailo; Seyrkammer, Robert; Lechner, Rainer T; Fritz-Popovski, Gerhard; Jarzab, Dorota; Szendrei, Krisztina; Resel, Roland; Korovyanko, Oleksandra; Loi, Maria Antonietta; Paris, Oskar; Hesser, Günter; Heiss, Wolfgang

    2011-05-24

    Here, we present a hot injection synthesis of colloidal Ag chalcogenide nanocrystals (Ag(2)Se, Ag(2)Te, and Ag(2)S) that resulted in exceptionally small nanocrystal sizes in the range between 2 and 4 nm. Ag chalcogenide nanocrystals exhibit band gap energies within the near-infrared spectral region, making these materials promising as environmentally benign alternatives to established infrared active nanocrystals containing toxic metals such as Hg, Cd, and Pb. We present Ag(2)Se nanocrystals in detail, giving size-tunable luminescence with quantum yields above 1.7%. The luminescence, with a decay time on the order of 130 ns, was shown to improve due to the growth of a monolayer thick ZnSe shell. Photoconductivity with a quantum efficiency of 27% was achieved by blending the Ag(2)Se nanocrystals with a soluble fullerene derivative. The co-injection of lithium silylamide was found to be crucial to the synthesis of Ag chalcogenide nanocrystals, which drastically increased their nucleation rate even at relatively low growth temperatures. Because the same observation was made for the nucleation of Cd chalcogenide nanocrystals, we conclude that the addition of lithium silylamide might generally promote wet-chemical synthesis of metal chalcogenide nanocrystals, including in as-yet unexplored materials.

  5. Raman and CT scan mapping of chalcogenide glass diffusion generated gradient index profiles

    NASA Astrophysics Data System (ADS)

    Lindberg, G. P.; Berg, R. H.; Deegan, J.; Benson, R.; Salvaggio, P. S.; Gross, N.; Weinstein, B. A.; Gibson, D.; Bayya, S.; Sanghera, J.; Nguyen, V.; Kotov, M.

    2016-05-01

    Metrology of a gradient index (GRIN) material is non-trivial, especially in the realm of infrared and large refractive index. Traditional methods rely on index matching fluids which are not available for indexes as high as those found in the chalcogenide glasses (2.4-3.2). By diffusing chalcogenide glasses of similar composition one can blend the properties in a continuous way. In an effort to measure this we will present data from both x-ray computed tomography scans (CT scans) and Raman mapping scans of the diffusion profiles. Proof of concept measurements on undiffused bonded sheets of chalcogenide glasses were presented previously. The profiles measured will be of axially stacked sheets of chalcogenide glasses diffused to create a linear GRIN profile and nested tubes of chalcogenide glasses diffused to create a radial parabolic GRIN profile. We will show that the x-ray absorption in the CT scan and the intensity of select Raman peaks spatially measured through the material are indicators of the concentration of the diffusion ions and correlate to the spatial change in refractive index. We will also present finite element modeling (FEM) results and compare them to post precision glass molded (PGM) elements that have undergone CT and Raman mapping.

  6. Electro-Optics Millimeter/Microwave Technology in Japan. Report of DoD Technology Team.

    DTIC Science & Technology

    1985-05-01

    Fiber Technology Hitachi is developing Ge-Se chalcogenide glass infrared optical fibers. Mate- rial development and evaluation has been carried out...chalcogenide glass fibers. The analysis indi- cates that the addition of Sb to Ge-Se chalcogenide glass should yield fibers with a very small absorption...representative of other commercial cables. Fiber is drawn using Vapor Axial Deposition (VAD) with pre-form glass ingots. Multiple fibers are combined

  7. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Larsen, D. C.; Ali, M. I.

    1977-01-01

    The manner in which the weightless, containerless nature of in-space processing can be successfully utilized to improve the quality of infrared transmitting chalcogenide glasses is determined. The technique of space processing chalcogenide glass was developed, and the process and equipment necessary to do so was defined. Earthbound processing experiments with As2S3 and G28Sb12Se60 glasses were experimented with. Incorporated into these experiments is the use of an acoustic levitation device.

  8. Index change of chalcogenide materials from precision glass molding processes

    NASA Astrophysics Data System (ADS)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  9. Pressure and temperature induced elastic properties of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Sapkale, R., E-mail: sapkale.raju@rediffmail.com; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com

    2016-05-06

    The pressure and temperature dependent mechanical properties as Young modulus, Thermal expansion coefficient of rare earth REX (RE = La, Pr, Eu; X = O, S, Se, and Te) chalcogenides are studied. The rare earth chalcogenides showed a structural phase transition (B1–B2). Pressure dependence of Young modulus discerns an increase in pressure inferring the hardening or stiffening of the lattice as a consequence of bond compression and bond strengthening. Suppressed Young modulus as functions of temperature infers the weakening of the lattice results in bond weakening in REX. Thermal expansion coefficient demonstrates that REX (RE = La, Pr, Eu; Xmore » = O, S, Se, and Te) chalcogenides is mechanically stiffened, and thermally softened on applied pressure and temperature.« less

  10. Measurement of chalcogenide glass optical dispersion using a mid-infrared prism coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Hong; Anheier, Norman C.; Musgraves, Jonathan D.

    2011-05-01

    Physical properties of chalcogenide glass, including broadband infrared transparency, high refractive index, low glass transition temperature, and nonlinear properties, make them attractive candidates for advanced mid-infrared (3 to 12 {micro}m) optical designs. Efforts focused at developing new chalcogenide glass formulations and processing methods require rapid quantitative evaluation of their optical contents to guide the materials research. However, characterization of important optical parameters such as optical dispersion remains a slow and costly process, generally with limited accuracy. The recent development of a prism coupler at the Pacific Northwest National Laboratory (PNNL) now enables rapid, high precision measurement of refractive indices atmore » discrete wavelengths from the visible to the mid-infrared. Optical dispersion data of several chalcogenide glass families were collected using this method. Variations in the optical dispersion were correlated to glass composition and compared against measurements using other methods. While this work has been focused on facilitating chalcogenide glass synthesis, mid-infrared prism coupler analysis has broader applications to other mid-infrared optical material development efforts, including oxide glasses and crystalline materials.« less

  11. Low-Temperature Growth of Two-Dimensional Layered Chalcogenide Crystals on Liquid.

    PubMed

    Zhou, Yubing; Deng, Bing; Zhou, Yu; Ren, Xibiao; Yin, Jianbo; Jin, Chuanhong; Liu, Zhongfan; Peng, Hailin

    2016-03-09

    The growth of high-quality two-dimensional (2D) layered chalcogenide crystals is highly important for practical applications in future electronics, optoelectronics, and photonics. Current route for the synthesis of 2D chalcogenide crystals by vapor deposition method mainly involves an energy intensive high-temperature growth process on solid substrates, often suffering from inhomogeneous nucleation density and grain size distribution. Here, we first demonstrate a facile vapor-phase synthesis of large-area high-quality 2D layered chalcogenide crystals on liquid metal surface with relatively low surface energy at a growth temperature as low as ∼100 °C. Uniform and large-domain-sized 2D crystals of GaSe and GaxIn1-xSe were grown on liquid metal surface even supported on a polyimide film. As-grown 2D GaSe crystals have been fabricated to flexible photodetectors, showing high photoresponse and excellent flexibility. Our strategy of energy-sustainable low-temperature growth on liquid metal surface may open a route to the synthesis of high-quality 2D crystals of Ga-, In-, Bi-, Hg-, Pb-, or Sn-based chalcogenides and halides.

  12. Thermal response of chalcogenide microsphere resonators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Aryanfar, I; Lim, K S

    2012-05-31

    A chalcogenide microsphere resonator (CMR) used for temperature sensing is proposed and demonstrated. The CMR is fabricated using a simple technique of heating chalcogenide glass and allowing the molten glass to form a microsphere on the waist of a tapered silica fibre. The thermal responses of the CMR is investigated and compared to that of a single-mode-fibre (SMF) based microsphere resonator. It is observed that the CMR sensitivity to ambient temperature changes is 8 times higher than that of the SMF-based microsphere resonator. Heating the chalcogenide microsphere with a laser beam periodically turned on and off shows periodic shifts inmore » the transmission spectrum of the resonator. By injecting an intensity-modulated cw signal through the resonator a thermal relaxation time of 55 ms is estimated.« less

  13. Viscoelastic properties of chalcogenide glasses and the simulation of their molding processes

    NASA Astrophysics Data System (ADS)

    Liu, Weiguo; Shen, Ping; Jin, Na

    In order to simulate the precision molding process, the viscoelastic properties of chalcogenide glasses under high temperatures were investigated. Thermomechanical analysis were performed to measure and analysis the thermomechanical properties of chalcogenide glasses. The creep responses of the glasses at different temperatures were obtained. Finite element analysis was applied for the simulation of the molding processes. The simulation results were in consistence with previously reported experiment results. Stress concentration and evolution during the molding processes was also described with the simulation results.

  14. Iron chalcogenide superconductors at high magnetic fields

    PubMed Central

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  15. Method to synthesize metal chalcogenide monolayer nanomaterials

    DOEpatents

    Hernandez-Sanchez, Bernadette A.; Boyle, Timothy J.

    2016-12-13

    Metal chalcogenide monolayer nanomaterials can be synthesized from metal alkoxide precursors by solution precipitation or solvothermal processing. The synthesis routes are more scalable, less complex and easier to implement than other synthesis routes.

  16. Method of producing stable metal oxides and chalcogenides and power source

    DOEpatents

    Doddapaneni, N.; Ingersoll, D.

    1996-10-22

    A method is described for making chemically and electrochemically stable oxides or other chalcogenides for use as cathodes for power source applications, and of making batteries comprising such materials. 6 figs.

  17. High surface area graphene-supported metal chalcogenide assembly

    DOEpatents

    Worsley, Marcus A.; Kuntz, Joshua; Orme, Christine A.

    2016-04-19

    A composition comprising at least one graphene-supported assembly, which comprises a three-dimensional network of graphene sheets crosslinked by covalent carbon bonds, and at least one metal chalcogenide compound disposed on said graphene sheets, wherein the chalcogen of said metal chalcogenide compound is selected from S, Se and Te. Also disclosed are methods for making and using the graphene-supported assembly, including graphene-supported MoS.sub.2. Monoliths with high surface area and conductivity can be achieved. Lower operating temperatures in some applications can be achieved. Pore size and volume can be tuned.

  18. Inorganic Thin-film Sensor Membranes with PLD-prepared Chalcogenide Glasses: Challenges and Implementation

    PubMed Central

    Kloock, Joachim P.; Mourzina, Youlia G.; Ermolenko, Yuri; Doll, Theodor; Schubert, Jürgen; Schöning, Michael J.

    2004-01-01

    Chalcogenide glasses offer an excellent “challenge” for their use and implementation in sensor arrays due to their good sensor-specific advantages in comparison to their crystalline counterparts. This paper will give an introduction on the preparation of chalcogenide glasses in the thin-film state. First, single microsensors have been prepared with the methods of semiconductor technology. In a next step, three microsensors are implemented onto one single silicon substrate to an “one chip” sensor array. Different ionselective chalcogenide glass membranes (PbSAgIAs2S3, CdSAgIAs2S3, CuAgAsSeTe and TlAgAsIS) were prepared by means of the pulsed laser deposition (PLD) process. The different sensor membranes and structures have been physically characterized by means of Rutherford backscattering spectrometry, scanning electron microscopy and video microscopy. The electrochemical behavior has been investigated by potentiometric measurements.

  19. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides.

    PubMed

    Jood, Priyanka; Ohta, Michihiro

    2015-03-16

    Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS₂-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS₂ sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor.

  20. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  1. Stoichiometric control of lead chalcogenide nanocrystal solids to enhance their electronic and optoelectronic device performance.

    PubMed

    Oh, Soong Ju; Berry, Nathaniel E; Choi, Ji-Hyuk; Gaulding, E Ashley; Paik, Taejong; Hong, Sung-Hoon; Murray, Christopher B; Kagan, Cherie R

    2013-03-26

    We investigate the effects of stoichiometric imbalance on the electronic properties of lead chalcogenide nanocrystal films by introducing excess lead (Pb) or selenium (Se) through thermal evaporation. Hall-effect and capacitance-voltage measurements show that the carrier type, concentration, and Fermi level in nanocrystal solids may be precisely controlled through their stoichiometry. By manipulating only the stoichiometry of the nanocrystal solids, we engineer the characteristics of electronic and optoelectronic devices. Lead chalcogenide nanocrystal field-effect transistors (FETs) are fabricated at room temperature to form ambipolar, unipolar n-type, and unipolar p-type semiconducting channels as-prepared and with excess Pb and Se, respectively. Introducing excess Pb forms nanocrystal FETs with electron mobilities of 10 cm(2)/(V s), which is an order of magnitude higher than previously reported in lead chalcogenide nanocrystal devices. Adding excess Se to semiconductor nanocrystal solids in PbSe Schottky solar cells enhances the power conversion efficiency.

  2. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit.

    PubMed

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; Zhou, Bo; Wu, Sanfeng; Dumcenco, Dumitru; Yan, Kai; Zhang, Yi; Mo, Sung-Kwan; Dudin, Pavel; Kandyba, Victor; Yablonskikh, Mikhail; Barinov, Alexei; Shen, Zhixun; Zhang, Shoucheng; Huang, Yingsheng; Xu, Xiaodong; Hussain, Zahid; Hwang, Harold Y; Cui, Yi; Chen, Yulin

    2016-08-10

    Layered transition metal chalcogenides with large spin orbit coupling have recently sparked much interest due to their potential applications for electronic, optoelectronic, spintronics, and valleytronics. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS2 remains controversial. Here, using angle-resolved photoemission spectroscopy with submicron spatial resolution (micro-ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS2, WS2, and WSe2, as well as the thickness dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.

  3. Evolution of the Valley Position in Bulk Transition-Metal Chalcogenides and Their Monolayer Limit

    DOE PAGES

    Yuan, Hongtao; Liu, Zhongkai; Xu, Gang; ...

    2016-07-12

    Valley physics based on layered transition metal chalcogenides have recently sparked much interest due to their potential spintronics and valleytronics applications. However, most current understanding of the electronic structure near band valleys in momentum space is based on either theoretical investigations or optical measurements, leaving the detailed band structure elusive. For example, the exact position of the conduction band valley of bulk MoS 2 remains controversial. Here, using angle-resolved photoemission spectroscopy with sub-micron spatial resolution (micro- ARPES), we systematically imaged the conduction/valence band structure evolution across representative chalcogenides MoS 2, WS 2 and WSe 2, as well as the thicknessmore » dependent electronic structure from bulk to the monolayer limit. These results establish a solid basis to understand the underlying valley physics of these materials, and also provide a link between chalcogenide electronic band structure and their physical properties for potential valleytronics applications.« less

  4. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE PAGES

    Lu, Haipeng; Brutchey, Richard L.

    2017-01-23

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  5. Hierarchical Architecturing for Layered Thermoelectric Sulfides and Chalcogenides

    PubMed Central

    Jood, Priyanka; Ohta, Michihiro

    2015-01-01

    Sulfides are promising candidates for environment-friendly and cost-effective thermoelectric materials. In this article, we review the recent progress in all-length-scale hierarchical architecturing for sulfides and chalcogenides, highlighting the key strategies used to enhance their thermoelectric performance. We primarily focus on TiS2-based layered sulfides, misfit layered sulfides, homologous chalcogenides, accordion-like layered Sn chalcogenides, and thermoelectric minerals. CS2 sulfurization is an appropriate method for preparing sulfide thermoelectric materials. At the atomic scale, the intercalation of guest atoms/layers into host crystal layers, crystal-structural evolution enabled by the homologous series, and low-energy atomic vibration effectively scatter phonons, resulting in a reduced lattice thermal conductivity. At the nanoscale, stacking faults further reduce the lattice thermal conductivity. At the microscale, the highly oriented microtexture allows high carrier mobility in the in-plane direction, leading to a high thermoelectric power factor. PMID:28787992

  6. Tunable Room-Temperature Synthesis of Coinage Metal Chalcogenide Nanocrystals from N -Heterocyclic Carbene Synthons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lu, Haipeng; Brutchey, Richard L.

    Here we present a new toolset of precursors for semiconductor nanocrystal synthesis, N-heterocyclic carbene (NHC)-metal halide complexes, which enables a tunable molecular platform for the preparation of coinage metal chalcogenide quantum dots (QDs). Phase-pure and highly monodisperse coinage metal chalcogenide (Ag 2E, Cu 2-xE; E = S, Se) QDs are readily synthesized from the direct reaction of an NHC-MBr synthon (where M = Ag, Cu) with alkylsilyl chalcogenide reagents at room temperature. We demonstrate that the size of the resulting QDs is well tailored by the electron-donating ability of the L-type NHC ligands, which are further confirmed to be themore » only organic capping ligands on the QD surface, imparting excellent colloidal stability. Local superstructures of the NHC-capped Ag 2S QDs are observed by TEM, further demonstrating their potential for synthesizing monodisperse ensembles and mediating self-assembly.« less

  7. Synthesis, crystal structure and electrical properties of the tetrahedral quaternary chalcogenides CuM{sub 2}InTe{sub 4} (M=Zn, Cd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolas, George S., E-mail: gnolas@usf.edu; Hassan, M. Shafiq; Dong, Yongkwan

    Quaternary chalcogenides form a large class of materials that continue to be of interest for energy-related applications. Certain compositions have recently been identified as possessing good thermoelectric properties however these materials typically have the kesterite structure type with limited variation in composition. In this study we report on the structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} which crystallize in the modified zinc-blende crystal structure, and compare their properties with that of CuZn{sub 2}InSe{sub 4}. These p-type semiconductors have direct band gaps of about 1 eV resulting in relatively high Seebeck coefficientmore » and resistivity values. This work expands on the research into quaternary chalcogenides with new compositions and structure types in order to further the fundamental investigation of multinary chalcogenides for potential thermoelectrics applications. - Graphical abstract: The structural, optical and electrical properties of the quaternary chalcogenides CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. The unique crystal structure allows for relatively good electrical transports and therefore potential for thermoelectric applications. - Highlights: • The physical properties of CuZn{sub 2}InTe{sub 4} and CuCd{sub 2}InTe{sub 4} are reported for the first time. • These materials have potential for thermoelectric applications. • Their direct band gaps also suggest potential for photovoltaics applications.« less

  8. The third-order optical nonlinearities of Ge-Ga-Sb(In)-S chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Haitao, E-mail: guoht_001@opt.ac.cn; Chen, Hongyan; Hou, Chaoqi

    2011-05-15

    Research highlights: {yields} It is firstly demonstrated that the nonlinear refractive index n{sub 2} is dependent on the covalency of bonds in chalcogenide glass. {yields} Homopolar metallic bonds in chalcogenide glass have positive contribution to large nonlinear refractive index n{sub 2} also. {yields} The 80GeS{sub 2}.20Sb{sub 2}S{sub 3} glass would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths. -- Abstract: The third-order optical nonlinearities of 80GeS{sub 2}.(20 - x)Ga{sub 2}S{sub 3}.xY{sub 2}S{sub 3} (x = 0, 5, 10, 15, 20 and Y = Sb or In) chalcogenide glasses were investigatedmore » utilizing the Z-scan method at the wavelength of 800 nm and their linear optical properties and structure were also studied. By analyzing the compositional dependences and possible influencing factors including the linear refractive index, the concentration of lone electron pairs, the optical bandgap and the amount of weak covalent/homopolar bonds, it indicates that the electronic contribution in weak heteropolar covalent and homopolar metallic bonds is responsible for large nonlinear refractive index n{sub 2} in the chalcogenide glasses. These chalcogenide glasses have characteristics of environmentally friendship, wide transparency in the visible region, high nonlinear refractive index n{sub 2} and low nonlinear absorption coefficient {beta}, and would be expected to be used in the all-optical switches working at 1330 nm and 1550 nm telecommunication wavelengths.« less

  9. 76 FR 2088 - Notice of Intent To Grant Exclusive Patent License; IRFlex Corporation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... No. 78,344.//U.S. Patent No. 6,928,227: Amplification with Chalcogenide Glass Fiber, Navy Case No. 82...,797: Manufacturing Process for Chalcogenide Glasses, Navy Case No. 96,838.// U.S. Patent Application...

  10. Low-Temperature Synthesis of New Ternary Chalcogenide Compounds of Copper, Gold, and Mercury Using Alkali Metal Polychalcogenide Fluxes

    NASA Astrophysics Data System (ADS)

    Park, Younbong

    In last two decades great efforts have been exerted to find new materials with interesting optical, electrical, and catalytic properties. Metal chalcogenides have been studied extensively because of their interesting physical properties and rich structural chemistry, among the potential materials. Prior to this work, most known metal chalcogenides had been synthesized at high temperature (T > 500^circC). Intermediate temperature synthesis in solid state chemistry was seldom pursued because of the extremely slow diffusion rates between reactants. This intermediate temperature regime could be a new synthesis condition if one looks for new materials with unusual structural features and properties. Metastable or kinetically stable compounds can be stabilized in this intermediate temperature regime, in contrast to the thermodynamically stable high temperature compounds. Molten salts, especially alkali metal polychalcogenide fluxes, can provide a route for exploring new chalcogenide materials at intermediate temperatures. These fluxes are very reactive and melt as low as 145^circC (mp of K_2S_4). Using these fluxes as reaction media, we have encountered many novel chalcogenide compounds with unusual structures and interesting electrical properties (semiconductors to metallic conductors). Low-dimensional polychalcogenide compounds of alpha-ACuQ_4 (A = K, Cs; Q = S, Se), beta -KCuS_4, KAuQ_5 (Q = S, Se), K_3AuSe_ {13}, Na_3AuSe _8, and CsAuSe_3 exhibit the beautiful structural diversity and bonding flexibility of the polychalcogenide ligands. In addition, many novel chalcogenide compounds of Cu, Hg, and Au with low-dimensional structures. The preparation of novel mixed -valence Cu compounds, K_2Cu _5Te_5, Cs _3Cu_8Te_ {10}, Na_3Cu _4Se_4, K _3Cu_8S_4 Te_2, and KCu_4 S_2Te, which show interesting metallic properties, especially underscores the enormous potential of the molten salt method for the synthesis of new chalcogenide materials with interesting physical properties. The materials prepared in this study can be classified as a new class of chalcogenide compounds due to their unique structures. In this dissertation the synthesis, characterization with emphasis on structures, charge transport properties, and magnetic susceptibilities of the materials will be illustrated.

  11. Metal–metal chalcogenide molecular precursors to binary, ternary, and quaternary metal chalcogenide thin films for electronic devices

    DOE PAGES

    Zhang, Ruihong; Cho, Seonghyuk; Lim, Daw Gen; ...

    2016-03-15

    We found that bulk metals and metal chalcogenides dissolve in primary amine–dithiol solvent mixtures at ambient conditions. Thin-films of CuS, SnS, ZnS, Cu 2Sn(Sx,Se 1-x) 3, and Cu 2ZnSn(SxSe 1-x) 4 (0 ≤ x ≤ 1) were deposited using the as-dissolved solutions. Furthermore, Cu 2ZnSn(SxSe 1-x) 4 solar cells with efficiencies of 6.84% and 7.02% under AM1.5 illumination were fabricated from two example solution precursors, respectively.

  12. Fabrication and characterization of on-chip optical nonlinear chalcogenide nanofiber devices.

    PubMed

    Zhang, Qiming; Li, Ming; Hao, Qiang; Deng, Dinghuan; Zhou, Hui; Zeng, Heping; Zhan, Li; Wu, Xiang; Liu, Liying; Xu, Lei

    2010-11-15

    Chalcogenide (As(2)S(3)) nanofibers as narrow as 200 nm in diameter are drawn by the fiber pulling method, are successfully embedded in SU8 polymer, and form on-chip waveguides and high-Q microknot resonators (Q = 3.9 × 10(4)) with smooth cleaved end faces. Resonance tuning of resonators is realized by localized laser irradiation. Strong supercontinuum generation with a bandwidth of 500 nm is achieved in a 7-cm-long on-chip chalcogenide waveguide. Our result provides a method for the development of compact, high-optical-quality, and robust photonic devices.

  13. The dynamics of photoinduced defect creation in amorphous chalcogenides: The origin of the stretched exponential function

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R. J.; Shimakawa, K.; Department of Electrical and Electronic Engineering, Gifu University, Gifu 501-1193

    The article discusses the dynamics of photoinduced defect creations (PDC) in amorphous chalcogenides, which is described by the stretched exponential function (SEF), while the well known photodarkening (PD) and photoinduced volume expansion (PVE) are governed only by the exponential function. It is shown that the exponential distribution of the thermal activation barrier produces the SEF in PDC, suggesting that thermal energy, as well as photon energy, is incorporated in PDC mechanisms. The differences in dynamics among three major photoinduced effects (PD, PVE, and PDC) in amorphous chalcogenides are now well understood.

  14. GeS2–In2S3–CsI Chalcogenide Glasses Doped with Rare Earth Ions for Near- and Mid-IR Luminescence

    PubMed Central

    Li, Legang; Bian, Junyi; Jiao, Qing; Liu, Zijun; Dai, Shixun; Lin, Changgui

    2016-01-01

    Chalcogenide glass has been considered as a promising host for the potential laser gain and amplifier media operating in near- and mid-IR spectral region. In this work, the IR luminescence spectra of rare earth ions (Tm3+, Er3+, and Dy3+) doped 65GeS2–25In2S3–10CsI chalcogenide glasses were measured under the excitation of an 808 nm laser diode. To the best of our knowledge, it firstly provides the luminescence spectra of a full near- and mid-IR spectral range from 1 to 4 μm in rare earth ions doped chalcogenide glasses. The results of absorption spectra, luminescence spectra, and fluorescence decay curves were obtained in these samples with singly-, co- and triply-doping behaviors of Tm3+, Er3+, and Dy3+ ions. In order to search possible efficient IR emissions, the luminescence behavior was investigated specifically with the variation of doping behaviors and dopant ions, especially in the samples co- and triply-doped active ions. The results suggest that favorable near- and mid-IR luminescence of rare earth ions can be further modified in chalcogenide glasses through an elaborated design of doping behavior and optically active ions. PMID:27869231

  15. Cation-Exchanged Zeolitic Chalcogenides for CO2 Adsorption.

    PubMed

    Yang, Huajun; Luo, Min; Chen, Xitong; Zhao, Xiang; Lin, Jian; Hu, Dandan; Li, Dongsheng; Bu, Xianhui; Feng, Pingyun; Wu, Tao

    2017-12-18

    We report here the intrinsic advantages of a special family of porous chalcogenides for CO 2 adsorption in terms of high selectivity of CO 2 /N 2 , large uptake capacity, and robust structure due to their first-ever unique integration of the chalcogen-soft surface, high porosity, all-inorganic crystalline framework, and the tunable charge-to-volume ratio of exchangeable cations. Although tuning the CO 2 adsorption properties via the type of exchangeable cations has been well-studied in oxides and MOFs, little is known about the effects of inorganic exchangeable cations in porous chalcogenides, in part because ion exchange in chalcogenides can be very sluggish and incomplete due to their soft character. We have demonstrated that, through a methodological change to progressively tune the host-guest interactions, both facile and nearly complete ion exchange can be accomplished. Herein, a series of cation-exchanged zeolitic chalcogenides (denoted as M@RWY) were studied for the first time for CO 2 adsorption. Samples were prepared through a sequential ion-exchange strategy, and Cs + -, Rb + -, and K + -exchanged samples demonstrated excellent CO 2 adsorption performance. Particularly, K@RWY has the superior CO 2 /N 2 selectivity with the N 2 adsorption even undetected at either 298 or 273 K. It also has the large uptake of 6.3 mmol/g (141 cm 3 /g) at 273 K and 1 atm with an isosteric heat of 35-41 kJ mol -1 , the best among known porous chalcogenides. Moreover, it permits a facile regeneration and exhibits an excellent recyclability, as shown by the multicycling adsorption experiments. Notably, K@RWY also demonstrates a strong tolerance toward water.

  16. Internal gain in Er-doped As₂S₃ chalcogenide planar waveguides.

    PubMed

    Yan, Kunlun; Vu, Khu; Madden, Steve

    2015-03-01

    Low-loss erbium-doped As₂S₃ planar waveguides are fabricated by cothermal evaporation and plasma etching. Internal gain in the telecommunications band is demonstrated for the first time in any chalcogenide glass and additionally in a thin film planar waveguide amplifier configuration.

  17. 2D Metal Chalcogenides Incorporated into Carbon and their Assembly for Energy Storage Applications.

    PubMed

    Deng, Zongnan; Jiang, Hao; Li, Chunzhong

    2018-05-01

    2D metal chalcogenides have become a popular focus in the energy storage field because of their unique properties caused by their single-atom thicknesses. However, their high surface energy and van der Waals attraction easily cause serious stacking and restacking, leading to the generation of more inaccessible active sites with rapid capacity fading. The hybridization of 2D metal chalcogenides with highly conductive materials, particularly, incorporating ultrasmall and few-layered metal chalcogenides into carbon frameworks, can not only maximize the exposure of active sites but also effectively avoid their stacking and aggregation during the electrochemical reaction process. Therefore, a satisfactory specific capacity will be achieved with a long cycle life. In this Concept, the representative progress on such intriguing nanohybrids and their applications in energy storage devices are mainly summarized. Finally, an outlook of the future development and challenges of such nanohybrids for achieving an excellent energy storage capability is also provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    PubMed Central

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-01-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2). PMID:26931353

  19. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J.; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-03-01

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

  20. Ultrafast Microwave Nano-manufacturing of Fullerene-Like Metal Chalcogenides.

    PubMed

    Liu, Zhen; Zhang, Lin; Wang, Ruigang; Poyraz, Selcuk; Cook, Jonathan; Bozack, Michael J; Das, Siddhartha; Zhang, Xinyu; Hu, Liangbing

    2016-03-02

    Metal Chalcogenides (MCs) have emerged as an extremely important class of nanomaterials with applications ranging from lubrication to energy storage devices. Here we report our discovery of a universal, ultrafast (60 seconds), energy-efficient, and facile technique of synthesizing MC nanoparticles and nanostructures, using microwave-assisted heating. A suitable combination of chemicals was selected for reactions on Polypyrrole nanofibers (PPy-NF) in presence of microwave irradiation. The PPy-NF serves as the conducting medium to absorb microwave energy to heat the chemicals that provide the metal and the chalcogenide constituents separately. The MCs are formed as nanoparticles that eventually undergo a size-dependent, multi-stage aggregation process to yield different kinds of MC nanostructures. Most importantly, this is a single-step metal chalcogenide formation process that is much faster and much more energy-efficient than all the other existing methods and can be universally employed to produce different kinds of MCs (e.g., MoS2, and WS2).

  1. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the poremore » surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.« less

  2. Multitopic ligand directed assembly of low-dimensional metal-chalcogenide organic frameworks.

    PubMed

    Liu, Yi; Ye, Kaiqi; Wang, Yue; Zhang, Qichun; Bu, Xianhui; Feng, Pingyun

    2017-01-31

    Despite tremendous progress in metal-organic frameworks, only limited success has been achieved with metal-chalcogenide organic frameworks. Metal-chalcogenide organic frameworks are desirable because they offer a promising route towards tunable semiconducting porous frameworks. Here, four novel semiconducting chalcogenide-organic hybrid compounds have been synthesized through a solvothermal method. Multitopic organic molecules, i.e., 1,2-di-(4-pyridyl)ethylene (L 1 ), 1,3,5-tris(4-pyridyl-trans-ethenyl)benzene (L 2 ) and tetrakis(4-pyridyloxymethylene)methane (L 3 ), have been used as linkers to assemble Zn(SAr) 2 or Zn 2 (SAr) 4 units to generate different patterns of spatial organizations. Single-crystal structural analyses indicate that compounds NTU-2, NTU-3 and NTU-4 possess two-dimensional layer structures, while compound NTU-1 adopts a one-dimensional coordination framework (NTU-n, where n is the number related to a specific structure). The diffuse-reflectance spectra demonstrate that these four compounds possess indirect bandgaps and their tunable bandgaps are correlated with their compositions and crystal structures.

  3. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    NASA Astrophysics Data System (ADS)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  4. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.

    PubMed

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-06-07

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity.

  5. Dimensionality effects in chalcogenide-based devices

    NASA Astrophysics Data System (ADS)

    Kostylev, S. A.

    2013-06-01

    The multiplicity of fundamental bulk effects with small characteristic dimensions and short times and diversity of their combinations attracts a lot of researcher and industrialist attention in nanoelectronics and photonics to chalcogenide materials. Experimental data presented on dimensional effects of electrical chalcogenide switching (threshold voltage and threshold current dependence on device area and the film thickness), and in phase-change memory (switching, programming and read parameters), are analyzed from the point of view of choice of low dimensional materials with S-NDC and participation of electrical instabilities - high current density filaments. New ways of improving parameters of phase-change devices are proposed together with new criteria of material choice.

  6. Mid-infrared supercontinuum generation spanning from 1.9 to 5.7 μm in a chalcogenide fiber taper with ultra-high NA

    NASA Astrophysics Data System (ADS)

    Wang, Yingying; Dai, Shixun; Peng, Xuefeng; Zhang, Peiqing; Wang, Xunsi; You, Chenyang

    2018-01-01

    We report a broadband supercontinuum generation in a chalcogenide fiber taper with an ultra-high numerical aperture. The chalcogenide step-index fiber consisting of As2Se3 core and As2S3 cladding was fabricated by using the isolated stacked extrusion method. The fiber taper with a core diameter of 1.75 μm was prepared by employing a homemade tapering setup. By pumping the fiber taper with a femtosecond laser pulses at 3.3 μm, a broadband supercontinuum generation spanning from 1.9 to 5.7 μm was achieved.

  7. Atomic layer deposition of quaternary chalcogenides

    DOEpatents

    Thimsen, Elijah J; Riha, Shannon C; Martinson, Alex B.F.; Elam, Jeffrey W; Pellin, Michael J

    2014-06-03

    Methods and systems are provided for synthesis and deposition of chalcogenides (including Cu.sub.2ZnSnS.sub.4). Binary compounds, such as metal sulfides, can be deposited by alternating exposures of the substrate to a metal cation precursor and a chalcogen anion precursor with purge steps between.

  8. Space processing of chalcogenide glass

    NASA Technical Reports Server (NTRS)

    Firestone, R. F.; Schramm, S. W.

    1978-01-01

    A program was conducted to develop the technique of space processing for chalcogenide glass, and to define the process and equipment necessary. In the course of this program, successful long term levitation of objects in a 1-g environment was achieved. Glass beads 4 mm diameter were containerless melted and fused together.

  9. Homogeneity and internal defects detect of infrared Se-based chalcogenide glass

    NASA Astrophysics Data System (ADS)

    Li, Zupana; Wu, Ligang; Lin, Changgui; Song, Bao'an; Wang, Xunsi; Shen, Xiang; Dai, Shixunb

    2011-10-01

    Ge-Sb-Se chalcogenide glasses is a kind of excellent infrared optical material, which has been enviromental friendly and widely used in infrared thermal imaging systems. However, due to the opaque feature of Se-based glasses in visible spectral region, it's difficult to measure their homogeneity and internal defect as the common oxide ones. In this study, a measurement was proposed to observe the homogeneity and internal defect of these glasses based on near-IR imaging technique and an effective measurement system was also constructed. The testing result indicated the method can gives the information of homogeneity and internal defect of infrared Se-based chalcogenide glass clearly and intuitionally.

  10. Chalcogenide based rib waveguide for compact on-chip supercontinuum sources in mid-infrared domain

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    We have designed and analysed a rib waveguide structure in recently reported Ga-Sb-S based highly nonlinear chalcogenide glass for nonlinear applications. The proposed waveguide structure possesses a very high nonlinear coefficient and can be used to generate broadband supercontinuum in mid-infrared domain. The reported design of the chalcogenide waveguide offers two zero dispersion values at 1800 nm and 2900 nm. Such rib waveguide structure is suitable to generate efficient supercontinuum generation ranging from 500 - 7400 μm. The reported waveguide can be used for the realization of the compact on-chip supercontinuum sources which are highly applicable in optical imaging, optical coherence tomography, food quality control, security and sensing.

  11. Chalcogenide molded freeform optics for mid-infrared lasers

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Yi, Allen

    2017-05-01

    High-precision chalcogenide molded micro-lenses were produced to collimate mid-infrared Quantum Cascade Lasers (QCLs). Molded cylindrical micro-lens prototypes with aspheric contour (acylindrical), high numerical aperture (NA 0.8) and small focal length (f<2 mm) were fabricated to collimate the QCL fast-axis beam. Another innovative freeform micro-lens has an input acylindrical surface to collimate the fast axis and an orthogonal output acylindrical surface to collimate the slow axis. The thickness of the freeform lens is such that the output fast- and slow-axis beams are circular. This paper presents results on the chalcogenide molded freeform micro-lens designed to collimate and circularize QCL at 4.6 microns.

  12. Theoretical prediction of the structural properties of uranium chalcogenides under high pressure

    NASA Astrophysics Data System (ADS)

    Kapoor, Shilpa; Yaduvanshi, Namrata; Singh, Sadhna

    2018-05-01

    Uranium chalcogenides crystallize in rock salt structure at normal condition and transform to Cesium Chloride structure at high pressure. We have investigated the transition pressure and volume drop of USe and UTe using three body potential model (TBIP). Present model includes long range Columbic, three body interaction forces and short range overlap forces operative up to next nearest neighbors. We have reported the phase transition pressure, relative volume collapses, the thermo physical properties such as molecular force constant (f), infrared absorption frequency (v0), Debye temperature (θD) and Gruneisen parameter (γ) of present chalcogenides and found that our results in general good agreement with experimental and other theoretical data.

  13. Fabrication of Achromatic Infrared Wave Plate by Direct Imprinting Process on Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-07-01

    An achromatic infrared wave plate was fabricated by forming a subwavelength grating on the chalcogenide glass using direct imprint lithography. A low toxic chalcogenide glass (Sb-Ge-Sn-S system) substrate was imprinted with a grating of 1.63-µm depth, a fill factor of 0.7, and 3-µm period using glassy carbon as a mold at 253 °C and 3.8 MPa. Phase retardation of the element reached around 30° at 8.5-10.5 µm wavelengths, and the transmittance exceeded that of a flat substrate over 8 µm wavelength. Fabrication of the mid-infrared wave plate is thereby less expensive than that of conventional crystalline wave plates.

  14. Electroactive Nanoporous Metal Oxides and Chalcogenides by Chemical Design

    PubMed Central

    2017-01-01

    The archetypal silica- and aluminosilicate-based zeolite-type materials are renowned for wide-ranging applications in heterogeneous catalysis, gas-separation and ion-exchange. Their compositional space can be expanded to include nanoporous metal chalcogenides, exemplified by germanium and tin sulfides and selenides. By comparison with the properties of bulk metal dichalcogenides and their 2D derivatives, these open-framework analogues may be viewed as three-dimensional semiconductors filled with nanometer voids. Applications exist in a range of molecule size and shape discriminating devices. However, what is the electronic structure of nanoporous metal chalcogenides? Herein, materials modeling is used to describe the properties of a homologous series of nanoporous metal chalcogenides denoted np-MX2, where M = Si, Ge, Sn, Pb, and X = O, S, Se, Te, with Sodalite, LTA and aluminum chromium phosphate-1 structure types. Depending on the choice of metal and anion their properties can be tuned from insulators to semiconductors to metals with additional modification achieved through doping, solid solutions, and inclusion (with fullerene, quantum dots, and hole transport materials). These systems form the basis of a new branch of semiconductor nanochemistry in three dimensions. PMID:28572706

  15. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    NASA Astrophysics Data System (ADS)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  16. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    DOE PAGES

    Yi, M.; Liu, Z. -K.; Zhang, Y.; ...

    2015-07-23

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe 0.56Se 0.44, monolayer FeSe grown on SrTiO 3 and K 0.76Fe 1.72Se 2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds frommore » a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. As a result, these observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors.« less

  17. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides

    PubMed Central

    Yi, M.; Liu, Z-K; Zhang, Y.; Yu, R.; Zhu, J.-X.; Lee, J.J.; Moore, R.G.; Schmitt, F.T.; Li, W.; Riggs, S.C.; Chu, J.-H.; Lv, B.; Hu, J.; Hashimoto, M.; Mo, S.-K.; Hussain, Z.; Mao, Z.Q.; Chu, C.W.; Fisher, I.R.; Si, Q.; Shen, Z.-X.; Lu, D.H.

    2015-01-01

    Establishing the appropriate theoretical framework for unconventional superconductivity in the iron-based materials requires correct understanding of both the electron correlation strength and the role of Fermi surfaces. This fundamental issue becomes especially relevant with the discovery of the iron chalcogenide superconductors. Here, we use angle-resolved photoemission spectroscopy to measure three representative iron chalcogenides, FeTe0.56Se0.44, monolayer FeSe grown on SrTiO3 and K0.76Fe1.72Se2. We show that these superconductors are all strongly correlated, with an orbital-selective strong renormalization in the dxy bands despite having drastically different Fermi surface topologies. Furthermore, raising temperature brings all three compounds from a metallic state to a phase where the dxy orbital loses all spectral weight while other orbitals remain itinerant. These observations establish that iron chalcogenides display universal orbital-selective strong correlations that are insensitive to the Fermi surface topology, and are close to an orbital-selective Mott phase, hence placing strong constraints for theoretical understanding of iron-based superconductors. PMID:26204461

  18. Threshold switching in SiGeAsTeN chalcogenide glass prepared by As ion implantation into sputtered SiGeTeN film

    NASA Astrophysics Data System (ADS)

    Liu, Guangyu; Wu, Liangcai; Song, Zhitang; Liu, Yan; Li, Tao; Zhang, Sifan; Song, Sannian; Feng, Songlin

    2017-12-01

    A memory cell composed of a selector device and a storage device is the basic unit of phase change memory. The threshold switching effect, main principle of selectors, is a universal phenomenon in chalcogenide glasses. In this work, we put forward a safe and controllable method to prepare a SiGeAsTeN chalcogenide film by implanting As ions into sputtered SiGeTeN films. For the SiGeAsTeN material, the phase structure maintains the amorphous state, even at high temperature, indicating that no phase transition occurs for this chalcogenide-based material. The electrical test results show that the SiGeAsTeN-based devices exhibit good threshold switching characteristics and the switching voltage decreases with the increasing As content. The decrease in valence alternation pairs, reducing trap state density, may be the physical mechanism for lower switch-on voltage, which makes the SiGeAsTeN material more applicable in selector devices through component optimization.

  19. Forced Ion Migration for Chalcogenide Phase Change Memory Device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A (Inventor)

    2013-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge2Se3/SnTe, and Ge2Se3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  20. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2011-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more that two data states.

  1. Forced ion migration for chalcogenide phase change memory device

    NASA Technical Reports Server (NTRS)

    Campbell, Kristy A. (Inventor)

    2012-01-01

    Non-volatile memory devices with two stacked layers of chalcogenide materials comprising the active memory device have been investigated for their potential as phase-change memories. The devices tested included GeTe/SnTe, Ge.sub.2Se.sub.3/SnTe, and Ge.sub.2Se.sub.3/SnSe stacks. All devices exhibited resistance switching behavior. The polarity of the applied voltage with respect to the SnTe or SnSe layer was critical to the memory switching properties, due to the electric field induced movement of either Sn or Te into the Ge-chalcogenide layer. One embodiment of the invention is a device comprising a stack of chalcogenide-containing layers which exhibit phase-change switching only after a reverse polarity voltage potential is applied across the stack causing ion movement into an adjacent layer and thus "activating" the device to act as a phase-change random access memory device or a reconfigurable electronics device when the applied voltage potential is returned to the normal polarity. Another embodiment of the invention is a device that is capable of exhibiting more than two data states.

  2. Electronic structure of ruthenium-doped iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.

    2014-12-01

    The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.

  3. Rib waveguide in Ga-Sb-S chalcogenide glass for on-chip mid-IR supercontinuum sources: Design and analysis

    NASA Astrophysics Data System (ADS)

    Saini, Than Singh; Tiwari, Umesh Kumar; Sinha, Ravindra Kumar

    2017-08-01

    Recently, highly nonlinear Ga-Sb-S chalcogenide glasses have been reported for promising mid-infrared applications such as thermal imaging, nonlinear optics, and infrared lasers. However, the nonlinear optical fiber and waveguide geometries in Ga-Sb-S chalcogenide glasses have not been reported to date. In this paper, we numerically investigate the design of the dual zero dispersion engineered rib waveguide in Ga8Sb32S60 chalcogenide glass by employing MgF2 glass as a lower and upper cladding material. The waveguide structure possesses nonlinearity as high as 24 100 W-1 Km-1 and 14 000 W-1 Km-1 at 2050 and 2800 nm, respectively. The reported waveguide is able to generate a mid-infrared supercontinuum spectrum spanning from 1000 to 7800 nm when it pumped with 97 femtosecond laser pulses of a peak power of 1 kW at 2050 nm. We have also showed that the supercontinuum spectrum can be extended to the spectral range of 1000-9700 nm using pumping with 497 fs pulses of a peak power of 6.4 kW at 2800 nm. To the best of our knowledge, the proposed rib waveguide structure in Ga8Sb32S60 chalcogenide glass has been reported first time for nonlinear applications. Such a dispersion engineered rib waveguide structure has potential applications for the low-cost, power efficient, and compact on-chip mid-infrared supercontinuum sources and other nonlinear photonic devices.

  4. Chalcogenide nanocrystal assembly: Controlling heterogeneity and modulating heterointerfaces

    NASA Astrophysics Data System (ADS)

    Davis, Jessica

    This dissertation work is focused on developing methods to facilitate charge transport in heterostructured materials that comprise a nanoscale component. Multicomponent semiconductor materials were prepared by (1) spin coating of discrete nanomaterials onto porous silicon (pSi) or (2) self-assembly. Spin-coating of colloidal quantum dot (QD) PbS solutions was employed to create prototype PbS QD based radiation detection devices using porous silicon (pSi) as an n-type support and charge transport material. These devices were initially tested as a photodetector to ascertain the possibility of their use in high energy radiation detection. Short chain thiolate ligands (4-fluorothiophenolate) and anion passivation at the particle interface were evaluated to augment interparticle transport. However, the samples showed minimum interaction with the light source possibly due to poor infiltration into the pSi. The second project was also driven by the potential synergistic properties that can be achieved in multicomponent metal chalcogenide nanostructures, potentially useful in optoelectronic devices. Working with well-established methods for single component metal chalcogenide (MQ) particle gels this dissertation research sought to develop practical methods for co-gelation of different component particles with complimentary functionalities. By monitoring the kinetics of aggregation using time resolved dynamic light scattering and NMR spectroscopy the kinetics of aggregation of the two most common crystal structures for CdQ nanocrystals was studied and it was determined that the hexagonal (wurtzite) crystal structure aggregated faster than the cubic (zinc blende) crystal structure. For gel coupling of nanoparticles with differing Q (Q=S, Se and Te), once we accounted for the crystal structure effects, it was determined that the relative redox characteristics of Q govern the reaction rate. The oxidative sol-gel assembly routes were also employed to fabricate metal chalcogenide NC gels with different NC components with control over the degree of mixing. In order to control the degree of mixing, the factors that underscore sol-gel oxidative assembly were elucidated and the aggregation and gelation kinetics of metal chalcogenide QDs were monitored through time-resolved dynamic light scattering (TR-DLS), and nuclear magnetic resonance spectroscopy (NMR). Through these kinetic studies of the surface speciation of metal chalcogenides, control over heterogeneity in dual component CdSe-ZnS system, was achieved through adjustment of the capping ligand, the native crystal structure and the chalcogenide, thereby changing the relative rates of assembly for each component independently.

  5. Effect of filling factor on photonic bandgap of chalcogenide photonic crystal

    NASA Astrophysics Data System (ADS)

    Singh, Rajpal; Suthar, B.; Bhargava, A.

    2018-05-01

    In the present work, the photonic band structure of 1-D chalcogenide photonic crystal of As2S3/air multilayered structure is calculated using the plane wave expansion method. The study is extended to investigate the effect of filling factor on the photonic bandgap. The increase of bandgap is explained in the study.

  6. Ammonothermal Growth of Chalcogenide Single Crystal Materials

    DTIC Science & Technology

    1997-11-05

    chalcogenide with an acidic mineraiizer 15 in presence of liquid ammonia solvent at high pressures and at temperatures in the range of about 300 to 550°C...demonstrates growth of binary CaS single crystals in a medium consisting of CaS powder and NH4I acid mineraiizer in ammonia solvent in a fused quartz

  7. Suppression of stimulated Brillouin scattering in all-solid chalcogenide-tellurite photonic bandgap fiber.

    PubMed

    Cheng, Tonglei; Liao, Meisong; Gao, Weiqing; Duan, Zhongchao; Suzuki, Takenobu; Ohishi, Yasutake

    2012-12-17

    A new way to suppress stimulated Brillouin scattering by using an all-solid chalcogenide-tellurite photonic bandgap fiber is presented in the paper. The compositions of the chalcogenide and the tellurite glass are As(2)Se(3) and TeO(2)-ZnO-Li(2)O-Bi(2)O(3). The light and the acoustic wave are confined in the fiber by photonic bandgap and acoustic bandgap mechanism, respectively. When the pump wavelength is within the photonic bandgap and the acoustic wave generated by the pump light is outside the acoustic bandgap, the interaction between the optical and the acoustic modes is very weak, thus stimulated Brillouin scattering is suppressed in the photonic bandgap fiber.

  8. Short and medium range structures of 80GeSe2–20Ga2Se3 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Petracovschi, Elena; Calvez, Laurent; Cormier, Laurent; Le Coq, David; Du, Jincheng

    2018-05-01

    The short and medium range structures of 80GeSe2–20Ga2Se3 (or Ge23.5Ga11.8Se64.7) chalcogenide glasses have been studied by combining ab initio molecular dynamics (AIMD) simulations and experimental neutron diffraction studies. The structure factor and total correlation function were calculated from glass structures generated from AIMD simulations and compared with neutron diffraction experiments showing reasonable agreement. The atomic structures of ternary chalcogenide glasses were analyzed in detail, and it was found that gallium atoms are four-fold coordinated by selenium (Se) and form [GaSe4] tetrahedra. Germanium atoms on average also have four-fold coordination, among which Se is 3.5 with the remaining being Ge–Ge homo-nuclear bonds. Ga and Ge tetrahedra link together mainly through corner-sharing and some edge-sharing of Se. No homo-nuclear bonds were observed among Ga atoms or between Ge and Ga. In addition, Se–Se homo-nuclear bonds and Se chains with various lengths were observed. A small fraction of Se atom triclusters that bond to three cations of Ge and Ga were also observed, confirming earlier proposals from 77Se solid state nuclear magnetic resonance studies. Furthermore, the electronic structures of ternary chalcogenide glasses were studied in terms of atomic charge and electronic density of states in order to gain insights into the chemical bonding and electronic properties, as well as to provide an explanation of the observed atomic structures in these ternary chalcogenide glasses.

  9. Electronic origins of the magnetic phase transitions in zinc-blende Mn chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, S.; Zunger, A.

    1993-09-01

    Precise first-principles spin-polarized total-energy and band-structure calculations have been performed for the zinc-blende Mn chalcogenides with the use of the local-spin-density (LSD) approach. We find that the LSD is capable of identifying the correct magnetic-ground-state structure, but it overestimates the ordering temperature [ital T][sub [ital N

  10. N4H9Cu7S4: a hydrazinium-based salt with a layered Cu7S4- framework.

    PubMed

    Mitzi, David B

    2007-02-05

    Crystals of a hydrazinium-based copper(I) sulfide salt, N4H9Cu7S4 (1), have been isolated by an ambient temperature solution-based process. In contrast to previously reported hydrazinium salts of main-group metal chalcogenides, which consist of isolated metal chalcogenide anions, and ACu7S4 (A = NH4+, Rb+, Tl+, K+), which contains a more three-dimensional Cu7S4- framework with partial Cu-site occupancy, the structure of 1 [P21, a = 6.8621(4) A, b = 7.9851(4) A, c = 10.0983(5) A, beta = 99.360(1) degrees , Z = 2] is composed of extended two-dimensional Cu7S4- slabs with full Cu-site occupancy. The Cu7S4- slabs are separated by a mixture of hydrazinium and hydrazine moieties. Thermal decomposition of 1 into copper(I) sulfide proceeds at a significantly lower temperature than that observed for analogous hydrazinium salts of previously considered metal chalcogenides, completing the transition at temperatures as low as 120 degrees C. Solutions of 1 may be used in the solution deposition of a range of Cu-containing chalcogenide films.

  11. Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors

    PubMed Central

    Zheng, Wenshan; Xie, Tian; Zhou, Yu; Chen, Y.L.; Jiang, Wei; Zhao, Shuli; Wu, Jinxiong; Jing, Yumei; Wu, Yue; Chen, Guanchu; Guo, Yunfan; Yin, Jianbo; Huang, Shaoyun; Xu, H.Q.; Liu, Zhongfan; Peng, Hailin

    2015-01-01

    Patterning of high-quality two-dimensional chalcogenide crystals with unique planar structures and various fascinating electronic properties offers great potential for batch fabrication and integration of electronic and optoelectronic devices. However, it remains a challenge that requires accurate control of the crystallization, thickness, position, orientation and layout. Here we develop a method that combines microintaglio printing with van der Waals epitaxy to efficiently pattern various single-crystal two-dimensional chalcogenides onto transparent insulating mica substrates. Using this approach, we have patterned large-area arrays of two-dimensional single-crystal Bi2Se3 topological insulator with a record high Hall mobility of ∼1,750 cm2 V−1 s−1 at room temperature. Furthermore, our patterned two-dimensional In2Se3 crystal arrays have been integrated and packaged to flexible photodetectors, yielding an ultrahigh external photoresponsivity of ∼1,650 A W−1 at 633 nm. The facile patterning, integration and packaging of high-quality two-dimensional chalcogenide crystals hold promise for innovations of next-generation photodetector arrays, wearable electronics and integrated optoelectronic circuits. PMID:25898022

  12. Enhanced superconductivity in surface-electron-doped iron pnictide Ba(Fe 1.94Co 0.06) 2As 2

    DOE PAGES

    Kyung, W. S.; Huh, S. S.; Koh, Y. Y.; ...

    2016-08-15

    The transition critical temperature (TC ) in a FeSe monolayer on SrTiO 3 is enhanced up to 100 K. High TC is also found in bulk iron chalcogenides with similar electronic structure to that of monolayer FeSe, which suggests that higher TC may be achieved through electron doping, pushing the Fermi surface (FS) topology towards leaving only electron pockets. Such observation, however, has been limited to chalcogenides and is in contrast with the iron pnictides for which the maximum TC is achieved with both hole and electron pockets forming considerable FS nesting instability. Here, we report angle-resolved photoemission (ARPES) characterizationmore » revealing a monotonic increase of TC from 24 to 41.5 K upon surface doping on optimally doped Ba(Fe 1-xCo x) 2As 2 . The doping changes the overall FS topology towards that of chalcogenides through a rigid downward band shift. Our findings suggest that higher electron doping and concomitant changes in FS topology are favorable conditions for the superconductivity, not only for iron chalcogenides but also for iron pnictides.« less

  13. Ferroelectricity in Ruddlesden-Popper Chalcogenide Perovskites for Photovoltaic Application: The Role of Tolerance Factor.

    PubMed

    Zhang, Yajun; Shimada, Takahiro; Kitamura, Takayuki; Wang, Jie

    2017-12-07

    Chalcogenide perovskites with optimal band gap and desirable light absorption are promising for photovoltaic devices, whereas the absence of ferroelectricity limits their potential in applications. On the basis of first-principles calculations, we reveal the underlying mechanism of the paraelectric nature of Ba 3 Zr 2 S 7 observed in experiments and demonstrate a general rule for the appearance of ferroelectricity in chalcogenide perovskites with Ruddlesden-Popper (RP) A 3 B 2 X 7 structures. Group theoretical analysis shows that the tolerance factor is the primary factor that dominates the ferroelectricity. Both Ba 3 Zr 2 S 7 and Ba 3 Hf 2 S 7 with large tolerance factor are paraelectric because of the suppression of in-phase rotation that is indispensable to hybrid improper ferroelectricity. In contrast, Ca 3 Zr 2 S 7 , Ca 3 Hf 2 S 7 , Ca 3 Zr 2 Se 7 , and Ca 3 Hf 2 S 7 with small tolerance factor exhibit in-phase rotation and can be stable in the ferroelectric Cmc2 1 ground state with nontrivial polarization. These findings not only provide useful guidance to engineering ferroelectricity in RP chalcogenide perovskites but also suggest potential ferroelectric semiconductors for photovoltaic applications.

  14. Misfit-layered Bi1.85 Sr2 Co1.85 O7.7-δ for the hydrogen evolution reaction: beyond van der Waals heterostructures.

    PubMed

    Chua, Chun Kiang; Sofer, Zdeněk; Jankovský, Ondřej; Pumera, Martin

    2015-03-16

    Recent research on stable 2D nanomaterials has led to the discovery of new materials for energy-conversion and energy-storage applications. A class of layered heterostructures known as misfit-layered chalcogenides consists of well-defined atomic layers and has previously been applied as thermoelectric materials for use as high-temperature thermoelectric batteries. The performance of such misfit-layered chalcogenides in electrochemical applications, specifically the hydrogen evolution reaction, is currently unexplored. Herein, a misfit-layered chalcogenide consisting of CoO2 layers interleaved with an SrO-BiO-BiO-SrO rock-salt block and having the formula Bi1.85 Sr2 Co1.85 O7.7-δ is synthesized and examined for its structural and electrochemical properties. The hydrogen-evolution performance of misfit-layered Bi1.85 Sr2 Co1.85 O7.7-δ , which has an overpotential of 589 mV and a Tafel slope of 51 mV per decade, demonstrates the promising potential of misfit-layered chalcogenides as electrocatalysts instead of classical carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material.

    PubMed

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; Ho, Kai-Ming

    2017-12-04

    Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3 X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3 X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3 Te 4 can be a good candidate as a rare-earth-free permanent magnet and Fe 3 S 4 can be a magnetic nodal-line topological material.

  16. Direct imprinting on chalcogenide glass and fabrication of infrared wire-grid polarizer

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2013-05-01

    Infrared wire-grid polarizers were fabricated consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9-μm wavelength range, and an extinction ratio greater than 20 dB in the 4-11-μm wavelength range. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  17. Chalcogenide Sensitized Carbon Based TiO2 Nanomaterial For Solar Driven Applications

    NASA Astrophysics Data System (ADS)

    Pathak, Pawan

    The demand for renewable energy is growing because fossils fuels are depleting at a rapid pace. Solar energy an abundant green energy resource. Utilizing this resource in a smart manner can resolve energy-crisis related issues. Sun light can be efficiently harvested using semiconductor based materials by utilizing photo-generated charges for numerous beneficial applications. The main goal of this thesis is to synthesize different nanostructures of TiO2, develop a novel method of coupling and synthesizing chalcogenide nanocrystals with TiO2 and to study the charge transportation effects of the various carbon allotropes in the chalcogenide nanocrystal sensitized TiO2 nanostructure. We have fabricated different nanostructures of TiO2 as solar energy harvesting materials. Effects of the different phases of TiO2 have also been studied. The anatase phase of TiO2 is more photoactive than the rutile phase of TiO2, and the higher dimension of the TiO2 can increase the surface area of the material which can produce higher photocurrent. Since TiO2 only absorbs in the UV range; to increase the absorbance TiO2 should be coupled to visible light absorbing materials. This dissertation presents a simple approach to synthesize and couple chalcogenide nanocrystals with TiO2 nanostructure to form a heterostructured composite. An atmospheric pressure based, single precursor, one-pot approach has been developed and tested to assemble chalcogenide nanocrystal on the TiO2 surface. Surface characterization using microscopy, X-ray diffraction, and elemental analysis indicates the formation of nanocrystals along the nanotube walls and inter-tubular spacing. Optical measurements indicate that the chalcogenide nanocrystals absorb in the visible region and demonstrate an increase in photocurrent in comparison to bare TiO2 nanostructure. The CdS synthesized TiO2 nanostructure produced the highest photocurrent as measured in the three electrode system. We have also assembled the PbS nanocrystal sensitized photoanode using the one pot method. Finally, the charge transportation effect of carbon allotropes has been studied. For this we assembled TiO2 conductive carbon chalcogenide nanocomposite system. Surface and elemental characterization using electron microscopy, EDX (energy dispersive x-ray) and x-ray diffraction pattern, provide the insights into the assembly of the nanostructure. Optical absorbance, Photo chronometry, Linear sweep voltammetry, and electrochemical impedance analysis have been used to provide opto-electronic performance of the material. We have studied the loading effect of various carbon allotropes, [fullerene (C 60), reduced graphene oxide (RGO), carbon nanotubes (CNTs), and graphene quantum dots (GQDs)], loading effect of chalcogenide, and effect of nitrogen doping on the carbon allotropes to optimize the performance of the heterostructure. This dissertation is expected to impact the materials synthesis strategies and assemble the nanostructures used in composite electrode driven applications in the area of photo electrochemistry, PV, solar-fuels, and other associated topics of energy storage and sensing.

  18. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung

    Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less

  19. Fe-Cluster Compounds of Chalcogenides: Candidates for Rare-Earth-Free Permanent Magnet and Magnetic Nodal-Line Topological Material

    DOE PAGES

    Zhao, Xin; Wang, Cai-Zhuang; Kim, Minsung; ...

    2017-11-13

    Here, Fe-cluster-based crystal structures are predicted for chalcogenides Fe 3X 4 (X = S, Se, Te) using an adaptive genetic algorithm. Topologically different from the well-studied layered structures of iron chalcogenides, the newly predicted structures consist of Fe clusters that are either separated by the chalcogen atoms or connected via sharing of the vertex Fe atoms. Additionally, using first-principles calculations, we demonstrate that these structures have competitive or even lower formation energies than the experimentally synthesized Fe 3X 4 compounds and exhibit interesting magnetic and electronic properties. In particular, we show that Fe 3X 4 can be a good candidatemore » as a rare-earth-free permanent magnet and Fe 3X 4 can be a magnetic nodal-line topological material.« less

  20. Structural investigation of Bi doped InSe chalcogenide thin films using Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Sharma, Shaveta; Sharma, Rita; Kumar, Praveen; Chander, Ravi; Thangaraj, R.; Mian, M.

    2015-05-01

    The infrared transparency of the chalcogenide glasses have been investigated presently for the CO/CO2 laser power in various medical diagnostic applications. The addition of Bi improves the chemical durability and broadens the IR transparency region of various chalcogenide glassy systems. In the present work, we have studied the effect of Bi addition on the structural properties of In-Se thin films by using the RAMAN spectroscopy. The melt quenched bulk ingot of BixIn25-xSe75 (1≤ x≤ 7) alloys were used for the vacuum thermal evaporation of films in a vacuum better than 10-5 mbar. RAMAN bands at 1575, 1354 and 525 cm-1 has been observed, while with the increase in the Bi concentration vibrational band disappear at 525 cm-1 in sample x=7.

  1. Pinning down high-performance Cu-chalcogenides as thin-film solar cell absorbers: A successive screening approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yubo; Zhang, Wenqing, E-mail: wqzhang@mail.sic.ac.cn, E-mail: pzhang3@buffalo.edu; State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050

    2016-05-21

    Photovoltaic performances of Cu-chalcogenides solar cells are strongly correlated with the absorber fundamental properties such as optimal bandgap, desired band alignment with window material, and high photon absorption ability. According to these criteria, we carry out a successive screening for 90 Cu-chalcogenides using efficient theoretical approaches. Besides the well-recognized CuInSe{sub 2} and Cu{sub 2}ZnSnSe{sub 4} materials, several novel candidates are identified to have optimal bandgaps of around 1.0–1.5 eV, spike-like band alignments with CdS window layer, sharp photon absorption edges, and high absorption coefficients. These new systems have great potential to be superior absorbers for photovolatic applications if their carrriermore » transport and defect properties are properly optimized.« less

  2. Chalcogenide Glass for Active and Passive Mid-IR Applications

    DTIC Science & Technology

    2010-09-01

    Reactive gas conversion • Chemical vapour deposition What is a Chalcogenide? – From Greek sulphur-loving for elements that frequently bond to sulphur...Predominately As or Se based (toxic!) ORC Research Focussed On – Gallium Lanthanum Sulphides (non-toxic) – Germanium Sulphides (non-toxic) – Capability to...770 2 hours Primary Screening 2 - 3 days Time Scale: one week Pioneering Technology: High Throughput Physical Vapour Deposition Material Discovery

  3. Dielectric and structural characterisation of chalcogenide glasses via terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Ravagli, A.; Naftaly, M.; Craig, C.; Weatherby, E.; Hewak, D. W.

    2017-07-01

    Terahertz time-domain spectroscopy (THz TDS) was used to investigate a series of chalcogenide glasses. In particular, the dielectric properties at terahertz frequencies were determined and correlated with the glass composition. The experimental results showed a strong relationship between the dielectric properties and the polarizability of the glasses studied. A new explanation based on the coordination number of the metallic cations was proposed to understand these observations.

  4. Inverse opal photonic crystal of chalcogenide glass by solution processing.

    PubMed

    Kohoutek, Tomas; Orava, Jiri; Sawada, Tsutomu; Fudouzi, Hiroshi

    2011-01-15

    Chalcogenide opal and inverse opal photonic crystals were successfully fabricated by low-cost and low-temperature solution-based process, which is well developed in polymer films processing. Highly ordered silica colloidal crystal films were successfully infilled with nano-colloidal solution of the high refractive index As(30)S(70) chalcogenide glass by using spin-coating method. The silica/As-S opal film was etched in HF acid to dissolve the silica opal template and fabricate the inverse opal As-S photonic crystal. Both, the infilled silica/As-S opal film (Δn ~ 0.84 near λ=770 nm) and the inverse opal As-S photonic structure (Δn ~ 1.26 near λ=660 nm) had significantly enhanced reflectivity values and wider photonic bandgaps in comparison with the silica opal film template (Δn ~ 0.434 near λ=600 nm). The key aspects of opal film preparation by spin-coating of nano-colloidal chalcogenide glass solution are discussed. The solution fabricated "inorganic polymer" opal and the inverse opal structures exceed photonic properties of silica or any organic polymer opal film. The fabricated photonic structures are proposed for designing novel flexible colloidal crystal laser devices, photonic waveguides and chemical sensors. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. High-performance and scalable metal-chalcogenide semiconductors and devices via chalco-gel routes

    PubMed Central

    Jo, Jeong-Wan; Kim, Hee-Joong; Kwon, Hyuck-In; Kim, Jaekyun; Ahn, Sangdoo; Kim, Yong-Hoon; Lee, Hyung-ik

    2018-01-01

    We report a general strategy for obtaining high-quality, large-area metal-chalcogenide semiconductor films from precursors combining chelated metal salts with chalcoureas or chalcoamides. Using conventional organic solvents, such precursors enable the expeditious formation of chalco-gels, which are easily transformed into the corresponding high-performance metal-chalcogenide thin films with large, uniform areas. Diverse metal chalcogenides and their alloys (MQx: M = Zn, Cd, In, Sb, Pb; Q = S, Se, Te) are successfully synthesized at relatively low processing temperatures (<400°C). The versatility of this scalable route is demonstrated by the fabrication of large-area thin-film transistors (TFTs), optoelectronic devices, and integrated circuits on a 4-inch Si wafer and 2.5-inch borosilicate glass substrates in ambient air using CdS, CdSe, and In2Se3 active layers. The CdSe TFTs exhibit a maximum field-effect mobility greater than 300 cm2 V−1 s−1 with an on/off current ratio of >107 and good operational stability (threshold voltage shift < 0.5 V at a positive gate bias stress of 10 ks). In addition, metal chalcogenide–based phototransistors with a photodetectivity of >1013 Jones and seven-stage ring oscillators operating at a speed of ~2.6 MHz (propagation delay of < 27 ns per stage) are demonstrated. PMID:29662951

  6. Mid-infrared chalcogenide fiber devices for medical applications

    NASA Astrophysics Data System (ADS)

    Chenard, Francois; Alvarez, Oseas; Buff, Andrew

    2018-02-01

    High-purity chalcogenide glasses and fiber draw processes enable the production of state-of-the-art mid-infrared fibers for 1.5 to 10 micron transmission. Multimode and single-mode mid-infrared fibers are produced with low-loss (<0.2 dB/m), high tensile strength (>25 kpsi), and high power laser handling capability (>11.8 MW/cm2). Chalcogenide fibers support the development of cutting-edge devices for mid-infrared medical applications. Connectorized cables transmit laser power to a sample or mid-infrared radiation to a detector. Broadband antireflection microstructures are thermally stamped on the chalcogenide fiber tip to reduce the surface reflection from 17% to <5%. Also custom fiber-optic probe bundles are made with multiple fiber legs (source, sample, signal) for reflection and backscatter spectroscopy measurement. For example, a 7 x 1 fiber probe bundle is presented. Additionally imaging fiber bundle is made to perform remote thermal and spectral imaging. Square preforms are drawn, stacked, squared and fused multiple times to produce a 64 x 64 imaging fiber bundle with fiber pixel size of 34 microns and the numerical aperture of 0.3. The 2- meter long imaging fiber bundle is small (2.2 mm x 2.2 mm), flexible (bend radius >10 mm) and transmits over the spectral range of 1.5 to 6.5 micron.

  7. Electrospray Deposition of Uniform Thickness Ge23Sb7S70 and As40S60 Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao-Tai; Li, Cheng; Borodinov, Nikolay; Han, Zhaohong; Monmeyran, Corentin; Patel, Neil; Du, Qingyang; Malinowski, Marcin; Fathpour, Sasan; Lumdee, Chatdanai; Xu, Chi; Kik, Pieter G; Deng, Weiwei; Hu, Juejun; Agarwal, Anuradha; Luzinov, Igor; Richardson, Kathleen

    2016-08-19

    Solution-based electrospray film deposition, which is compatible with continuous, roll-to-roll processing, is applied to chalcogenide glasses. Two chalcogenide compositions are demonstrated: Ge23Sb7S70 and As40S60, which have both been studied extensively for planar mid-infrared (mid-IR) microphotonic devices. In this approach, uniform thickness films are fabricated through the use of computer numerical controlled (CNC) motion. Chalcogenide glass (ChG) is written over the substrate by a single nozzle along a serpentine path. Films were subjected to a series of heat treatments between 100 °C and 200 °C under vacuum to drive off residual solvent and densify the films. Based on transmission Fourier transform infrared (FTIR) spectroscopy and surface roughness measurements, both compositions were found to be suitable for the fabrication of planar devices operating in the mid-IR region. Residual solvent removal was found to be much quicker for the As40S60 film as compared to Ge23Sb7S70. Based on the advantages of electrospray, direct printing of a gradient refractive index (GRIN) mid-IR transparent coating is envisioned, given the difference in refractive index of the two compositions in this study.

  8. Interfacial scanning tunneling spectroscopy (STS) of chalcogenide/metal hybrid nanostructure

    NASA Astrophysics Data System (ADS)

    Saad, Mahmoud M.; Abdallah, Tamer; Easawi, Khalid; Negm, Sohair; Talaat, Hassan

    2015-05-01

    The electronic structure at the interface of chalcogenide/metal hybrid nanostructure (CdSe-Au tipped) had been studied by UHV scanning tunneling spectroscopy (STS) technique at room temperature. This nanostructure was synthesized by a phase transfer chemical method. The optical absorption of this hybrid nanostructure was recorded, and the application of the effective mass approximation (EMA) model gave dimensions that were confirmed by the direct measurements using the scanning tunneling microscopy (STM) as well as the high-resolution transmission electron microscope (HRTEM). The energy band gap obtained by STS agrees with the values obtained from the optical absorption. Moreover, the STS at the interface of CdSe-Au tipped hybrid nanostructure between CdSe of size about 4.1 ± 0.19 nm and Au tip of size about 3.5 ± 0.29 nm shows a band bending about 0.18 ± 0.03 eV in CdSe down in the direction of the interface. Such a result gives a direct observation of the electron accumulation at the interface of CdSe-Au tipped hybrid nanostructure, consistent with its energy band diagram. The presence of the electron accumulation at the interface of chalcogenides with metals has an important implication for hybrid nanoelectronic devices and the newly developed plasmon/chalcogenide photovoltaic solar energy conversion.

  9. Electrochemistry of 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene ligands: free phosphines, metal complexes, and chalcogenides.

    PubMed

    Mandell, Chelsea L; Kleinbach, Shannon S; Dougherty, William G; Kassel, W Scott; Nataro, Chip

    2010-10-18

    The oxidative electrochemistries of a series of chiral bisphosphinoferrocene ligands, 1,1'-bis(2,4-dialkylphosphetanyl)ferrocene (FerroTANE) and 1,1'-bis(2,5-dialkylphospholanyl)ferrocene (FerroLANE), were examined. The reversibility of the oxidation is sensitive to the steric bulk of the alkyl groups. New transition metal compounds and phosphine chalcogenides of these ligands were prepared and characterized. X-ray crystal structures of 10 of these compounds are reported. The percent buried volume (%V(bur)) is a recently developed measurement based on crystallographic data that examines the steric bulk of N-heterocyclic carbene and phosphine ligands. The %V(bur) for the FerroTANE and FerroLANE structures with methyl or ethyl substituents suggests these ligands are similar in steric properties to 1,1'-bis(diphenylphosphino)ferrocene (dppf). In addition the %V(bur) has been found to correlate well with the Tolman cone angle for phosphine chalcogenides. The oxidative electrochemistries of the transition metal complexes occur at more positive potentials than the free ligands. While a similar positive shift is seen for the oxidative electrochemistries of the phosphine chalcogenides, the oxidation of the phosphine selenides does not occur at the iron center, but rather oxidation occurs at the selenium atoms.

  10. Raman lasing in As₂S₃ high-Q whispering gallery mode resonators.

    PubMed

    Vanier, Francis; Rochette, Martin; Godbout, Nicolas; Peter, Yves-Alain

    2013-12-01

    We report the first observation of a nonlinear process in a chalcogenide microresonator. Raman scattering and stimulated Raman scattering leading to laser oscillation is observed in microspheres made of As₂S₃. The coupled pump power threshold is as low as 13 μW using a pump wavelength of 1550 nm. The quality factor of the chalcogenide microresonator is also the highest ever reported with Q>7×10(7).

  11. Minority carrier device comprising a passivating layer including a Group 13 element and a chalcogenide component

    NASA Technical Reports Server (NTRS)

    Barron, Andrew R. (Inventor); Hepp, Aloysius F. (Inventor); Jenkins, Phillip P. (Inventor); MacInnes, Andrew N. (Inventor)

    1999-01-01

    A minority carrier device includes at least one junction of at least two dissimilar materials, at least one of which is a semiconductor, and a passivating layer on at least one surface of the device. The passivating layer includes a Group 13 element and a chalcogenide component. Embodiments of the minority carrier device include, for example, laser diodes, light emitting diodes, heterojunction bipolar transistors, and solar cells.

  12. Development of chipscale chalcogenide glass based infrared chemical sensors

    NASA Astrophysics Data System (ADS)

    Hu, Juejun; Musgraves, J. David; Carlie, Nathan; Zdyrko, Bogdan; Luzinov, Igor; Agarwal, Anu; Richardson, Kathleen; Kimerling, Lionel

    2011-01-01

    In this paper, we review the design, processing, and characterization of novel planar infrared chemical sensors. Chalcogenide glasses are identified as the material of choice for sensing given their wide infrared transparency as well as almost unlimited capacity for composition alloying and property tailoring. Three generations of on-chip spectroscopic chemical sensor devices we have developed: waveguide evanescent sensors, micro-disk cavity-enhanced sensors and micro-cavity photothermal sensors are discussed.

  13. Assessment of band gaps for alkaline-earth chalcogenides using improved Tran Blaha-modified Becke Johnson potential

    NASA Astrophysics Data System (ADS)

    Yedukondalu, N.; Kunduru, Lavanya; Roshan, S. C. Rakesh; Sainath, M.

    2018-04-01

    Assessment of band gaps for nine alkaline-earth chalcogenides namely MX (M = Ca, Sr, Ba and X = S, Se Te) compounds are reported using Tran Blaha-modified Becke Johnson (TB-mBJ) potential and its new parameterization. From the computed electronic band structures at the equilibrium lattice constants, these materials are found to be indirect band gap semiconductors at ambient conditions. The calculated band gaps are improved using TB-mBJ and its new parameterization when compared to local density approximation (LDA) and Becke Johnson potentials. We also observe that TB-mBJ new parameterization for semiconductors below 7 eV reproduces the experimental trends very well for the small band gap semiconducting alkaline-earth chalcogenides. The calculated band profiles look similar for MX compounds (electronic band structures are provided for BaS for representation purpose) using LDA and new parameterization of TB-mBJ potentials.

  14. Hot-carrier trap-limited transport in switching chalcogenides

    NASA Astrophysics Data System (ADS)

    Piccinini, Enrico; Cappelli, Andrea; Buscemi, Fabrizio; Brunetti, Rossella; Ielmini, Daniele; Rudan, Massimo; Jacoboni, Carlo

    2012-10-01

    Chalcogenide materials have received great attention in the last decade owing to their application in new memory systems. Recently, phase-change memories have, in fact, reached the early stages of production. In spite of the industrial exploitation of such materials, the physical processes governing the switching mechanism are still debated. In this paper, we work out a complete and consistent model for transport in amorphous chalcogenide materials based on trap-limited conduction accompanied by carrier heating. A previous model is here extended to include position-dependent carrier concentration and field, consistently linked by the Poisson equation. The results of the new model reproduce the experimental electrical characteristics and their dependences on the device length and temperature. Furthermore, the model provides a sound physical interpretation of the switching phenomenon and is able to give an estimate of the threshold condition in terms of the material parameters, a piece of information of great technological interest.

  15. Mid-infrared rogue wave generation in chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Liu, Lai; Nagasaka, Kenshiro; Suzuki, Takenobu; Ohishi, Yasutake

    2017-02-01

    The supercontinuum generation and rogue wave generation in a step-index chalcogenide fiber are numerically investigated by solving the generalized nonlinear Schrödinger equation. Two noise models have been used to model the noise of the pump laser pulses to investigate the consistency of the noise modeling in rogue wave generation. First noise model is 0.1% amplitude noise which has been used in the report of rogue wave generation. Second noise model is the widely used one-photon-per-mode-noise and phase diffusion-noise. The results show that these two commonly used noise models have a good consistency in the simulations of rogue wave generation. The results also show that if the pump laser pulses carry more noise, the chance of a rogue wave with a high peak power becomes higher. This is harmful to the SC generation by using picosecond lasers in the chalcogenide fibers.

  16. Infrared imaging spectrometry by the use of bundled chalcogenide glass fibers and a PtSi CCD camera

    NASA Astrophysics Data System (ADS)

    Saito, Mitsunori; Kikuchi, Katsuhiro; Tanaka, Chinari; Sone, Hiroshi; Morimoto, Shozo; Yamashita, Toshiharu T.; Nishii, Junji

    1999-10-01

    A coherent fiber bundle for infrared image transmission was prepared by arranging 8400 chalcogenide (AsS) glass fibers. The fiber bundle, 1 m in length, is transmissive in the infrared spectral region of 1 - 6 micrometer. A remote spectroscopic imaging system was constructed with the fiber bundle and an infrared PtSi CCD camera. The system was used for the real-time observation (frame time: 1/60 s) of gas distribution. Infrared light from a SiC heater was delivered to a gas cell through a chalcogenide fiber, and transmitted light was observed through the fiber bundle. A band-pass filter was used for the selection of gas species. A He-Ne laser of 3.4 micrometer wavelength was also used for the observation of hydrocarbon gases. Gases bursting from a nozzle were observed successfully by a remote imaging system.

  17. Infrared Polarizer Fabrication by Imprinting on Sb-Ge-Sn-S Chalcogenide Glass

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-01-01

    We fabricated infrared wire-grid polarizers consisting of a 500-nm pitch Al grating on a low toxic chalcogenide glass (Sb-Ge-Sn-S system) using the direct imprinting of subwavelength grating followed by a deposition of Al metal by thermal evaporation. To fabricate the subwavelength grating on a chalcogenide glass more easily, the sharp grating was formed on the mold surface. The fabricated polarizer with Al thickness of 130 nm exhibited a polarization function with a transverse magnetic transmittance greater than 60% in the 5-9 µm wavelength range, and an extinction ratio greater than 20 dB in 3.5-11 µm wavelength range. The extinction ratio of the element with Al wires of 180-nm thickness reached 27 dB at 5.4-µm wavelength. The polarizer can be fabricated at lower costs and simpler fabrication processes compared to conventional infrared polarizers.

  18. Laser-induced dewetting of silver-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Douaud, Alexandre; Messaddeq, Sandra Helena; Boily, Olivier; Messaddeq, Younès

    2018-07-01

    We report the observation of laser-induced dewetting responsible for the formation of periodic relief structures in silver-based chalcogenide thin-films. By varying the concentration of silver in the Agx(As20S80)100-x system (with x = 0, 4, 9 and 36), different surface relief structures are formed. The evolution of the surface changes as a function of laser parameters (power density, duration of exposure, and polarisation) as well as film thickness and silver concentration has been investigated. The scanning electron microscopy and atomic force microscopy images of irradiated spots show periodic ripples aligned perpendicularly to the electric field of incident light. Our results show that addition of silver into sulphur-rich chalcogenide thin-films improves the dewetting when compared to pure As20S80 thin-films. The changes in surface morphology were attributable to photo-induced chemical modifications and a laser-driven molecular rearrangement.

  19. Chalcogenide and pnictide nanocrystals from the silylative deoxygenation of metal oxides

    DOE PAGES

    Lin, Chia-Cheng; Tan, Shannon J.; Vela, Javier

    2017-09-11

    Transition metal chalcogenide and pnictide nanocrystals are of interest for optoelectronic and catalytic applications. In this paper, we present a generalized route to the synthesis of these materials from the silylative deoxygenation of metal oxides with trimethylsilyl reagents. Specific nanophases produced in this way include Ni 3S 2, Ni 5Se 5, Ni 2P, Co 9S 8, Co 3Se 4, CoP, Co 2P, and heterobimetallic (Ni/Co) 9S 8. The resulting chalcogenide nanocrystals are hollow, likely due to differential rates of ion diffusion during the interfacial phase transformation reaction (Kirkendall-type effect). In contrast, the phosphide nanocrystals are solid, likely because they formmore » at higher reaction temperatures. Finally, in all cases, simultaneous partial decomposition of the deoxygenating silyl reagent produces a coating of amorphous silica around the newly formed nanocrystals, which could impact their stability and recyclability.« less

  20. Error free all optical wavelength conversion in highly nonlinear As-Se chalcogenide glass fiber.

    PubMed

    Ta'eed, Vahid G; Fu, Libin; Pelusi, Mark; Rochette, Martin; Littler, Ian C; Moss, David J; Eggleton, Benjamin J

    2006-10-30

    We present the first demonstration of all optical wavelength conversion in chalcogenide glass fiber including system penalty measurements at 10 Gb/s. Our device is based on As2Se3 chalcogenide glass fiber which has the highest Kerr nonlinearity (n(2)) of any fiber to date for which either advanced all optical signal processing functions or system penalty measurements have been demonstrated. We achieve wavelength conversion via cross phase modulation over a 10 nm wavelength range near 1550 nm with 7 ps pulses at 2.1 W peak pump power in 1 meter of fiber, achieving only 1.4 dB excess system penalty. Analysis and comparison of the fundamental fiber parameters, including nonlinear coefficient, two-photon absorption coefficient and dispersion parameter with other nonlinear glasses shows that As(2)Se(3) based devices show considerable promise for radically integrated nonlinear signal processing devices.

  1. Chalcogenide Glasses. Part 3. Chalcogenide Glass-Forming Systems.

    DTIC Science & Technology

    1986-02-01

    34.L •. - . . . . . . . . ....... * .- . -.. . .. .. 8. Ti - As - S 31 9. As - Sb - S and As - Sb - Se 37 10. As - Halogen - (S, Se or Te) 40 11. As...Glass Forming Region and Tg in Ge-Sb-Se System 54[Ref. 40 ] 30 Glass Forming Region in Ge-Bi-S System [Ref.78] 55 31 Glass Forming Region in Ge-Bi-Se...poise), indicating the presence of tellurium chains. * p.° ~ -7 .. . *. 2. . * . . -~ ?’ ~ ~ - .. -~. r; - - - -•.~ ~ ~ ~ ~ * . 40 However, it rapidly

  2. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    DOEpatents

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  3. Novel Chalcogenide Materials for x ray and Gamma ray Detection

    DTIC Science & Technology

    2016-05-01

    REPORT OF PROJECT: Novel chalcogenide materials for x - ray and - ray detection HDTRA1-09-1-0044 Mercouri Kanatzidis , PI Northwestern University...investigated semiconductor for hard radiation detection. The μτ products for electrons however are lower than those of CZT, the leading material for X - ray ...Formation of native defects in the gamma- ray detector material, Cs2Hg6S7 Semiconductor devices detecting hard radiation such as x - rays and

  4. Shaping of Looped Miniaturized Chalcogenide Fiber Sensing Heads for Mid-Infrared Sensing

    PubMed Central

    Houizot, Patrick; Anne, Marie-Laure; Boussard-Plédel, Catherine; Loréal, Olivier; Tariel, Hugues; Lucas, Jacques; Bureau, Bruno

    2014-01-01

    Chalcogenide glass fibers are promising photonic tools to develop Fiber Evanescent Wave Spectroscopy (FEWS) optical sensors working in the mid-infrared region. Numerous pioneering works have already been carried out showing their efficiency, especially for bio-medical applications. Nevertheless, this technology remains confined to academic studies at the laboratory scale because chalcogenide glass fibers are difficult to shape to produce reliable, sensitive and compact sensors. In this paper, a new method for designing and fabricating a compact and robust sensing head with a selenide glass fiber is described. Compact looped sensing heads with diameter equal to 2 mm were thus shaped. This represents an outstanding achievement considering the brittleness of such uncoated fibers. FEWS experiments were implemented using alcoholic solutions as target samples showing that the sensitivity is higher than with the routinely used classical fiber. It is also shown that the best compromise in term of sensitivity is to fabricate a sensing head including two full loops. From a mechanical point of view, the breaking loads of the loop shaped head are also much higher than with classical fiber. Finally, this achievement paves the way for the use of mid-infrared technology during in situ and even in vivo medical operations. Indeed, is is now possible to slide a chalcogenide glass fiber in the operating channel of a standard 2.8 mm diameter catheter. PMID:25264953

  5. Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Gleason, Benn; Sisken, Laura; Smith, Charmayne; Richardson, Kathleen

    2016-05-01

    Seventeen infrared-transmitting GeAsSe chalcogenide glasses were fabricated to determine the role of chemistry and structure on mid-wave infrared (MWIR) optical properties. The refractive index and thermoptic coefficients of samples were measured at λ = 4.515 μm using an IR-modified Metricon prism coupler, located at University of Central Florida. Thermo-optic coefficient (dn/dT) values were shown to range from approximately -40 ppm/°C to +65 ppm/°C, and refractive index was shown to vary between approximately 2.5000 and 2.8000. Trends in refractive index and dn/dT were found to be related to the atomic structures present within the glassy network, as opposed to the atomic percentage of any individual constituent. A linear correlation was found between the quantity (n-3•dn/dT) and the coefficient of thermal expansion (CTE) of the glass, suggesting the ability to compositionally design chalcogenide glass compositions with zero dn/dT, regardless of refractive index or dispersion performance. The tunability of these novel glasses offer increased thermal and mechanical stability as compared to the current commercial zero dn/dT options such as AMTIR-5 from Amorphous Materials Inc. For IR imaging systems designed to achieve passive athermalization, utilizing chalcogenide glasses with their tunable ranges of dn/dT (including zero) can be key to addressing system size, weight, and power (SWaP) limitations.

  6. Long-chain amine-templated synthesis of gallium sulfide and gallium selenide nanotubes

    NASA Astrophysics Data System (ADS)

    Seral-Ascaso, A.; Metel, S.; Pokle, A.; Backes, C.; Zhang, C. J.; Nerl, H. C.; Rode, K.; Berner, N. C.; Downing, C.; McEvoy, N.; Muñoz, E.; Harvey, A.; Gholamvand, Z.; Duesberg, G. S.; Coleman, J. N.; Nicolosi, V.

    2016-06-01

    We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization.We describe the soft chemistry synthesis of amine-templated gallium chalcogenide nanotubes through the reaction of gallium(iii) acetylacetonate and the chalcogen (sulfur, selenium) using a mixture of long-chain amines (hexadecylamine and dodecylamine) as a solvent. Beyond their role as solvent, the amines also act as a template, directing the growth of discrete units with a one-dimensional multilayer tubular nanostructure. These new materials, which broaden the family of amine-stabilized gallium chalcogenides, can be tentatively classified as direct large band gap semiconductors. Their preliminary performance as active material for electrodes in lithium ion batteries has also been tested, demonstrating great potential in energy storage field even without optimization. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr01663d

  7. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  8. Environmental testing and laser transmission results for ruggedized high power IR fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Frederic; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-03-01

    We present successful results of high mid-IR laser power transmission as well as MIL-SPEC environmental testing (thermal cycling and vibration testing) of ruggedized, IR-transmitting chalcogenide glass fiber cables. The cables tested included chalcogenide fiber cables with endfaces imprinted with anti-reflective "moth eye" surfaces, whereby the reflection loss is reduced from about 17% per end to less than 3%. The cables with these moth eye surfaces also show excellent laser damage resistance.

  9. Precursor directed synthesis--"molecular" mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures.

    PubMed

    Seisenbaeva, Gulaim A; Kessler, Vadim G

    2014-06-21

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.

  10. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting

    NASA Astrophysics Data System (ADS)

    Li, Kexue; Liu, Lei; Yu, Peter Y.; Chen, Xiaobo; Shen, D. Z.

    2016-05-01

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  11. Vortex pinning properties in Fe-chalcogenides

    NASA Astrophysics Data System (ADS)

    Leo, A.; Grimaldi, G.; Guarino, A.; Avitabile, F.; Nigro, A.; Galluzzi, A.; Mancusi, D.; Polichetti, M.; Pace, S.; Buchkov, K.; Nazarova, E.; Kawale, S.; Bellingeri, E.; Ferdeghini, C.

    2015-12-01

    Among the families of iron-based superconductors, the 11-family is one of the most attractive for high field applications at low temperatures. Optimization of the fabrication processes for bulk, crystalline and/or thin film samples is the first step in producing wires and/or tapes for practical high power conductors. Here we present the results of a comparative study of pinning properties in iron-chalcogenides, investigating the flux pinning mechanisms in optimized Fe(Se{}1-xTe x ) and FeSe samples by current-voltage characterization, magneto-resistance and magnetization measurements. In particular, from Arrhenius plots in magnetic fields up to 9 T, the activation energy is derived as a function of the magnetic field, {U}0(H), whereas the activation energy as a function of temperature, U(T), is derived from relaxation magnetization curves. The high pinning energies, high upper critical field versus temperature slopes near critical temperatures, and highly isotropic pinning properties make iron-chalcogenide superconductors a technological material which could be a real competitor to cuprate high temperature superconductors for high field applications.

  12. The electronic band structures of gadolinium chalcogenides: a first-principles prediction for neutron detecting.

    PubMed

    Li, Kexue; Liu, Lei; Yu, Peter Y; Chen, Xiaobo; Shen, D Z

    2016-05-11

    By converting the energy of nuclear radiation to excited electrons and holes, semiconductor detectors have provided a highly efficient way for detecting them, such as photons or charged particles. However, for detecting the radiated neutrons, those conventional semiconductors hardly behave well, as few of them possess enough capability for capturing these neutral particles. While the element Gd has the highest nuclear cross section, here for searching proper neutron-detecting semiconductors, we investigate theoretically the Gd chalcogenides whose electronic band structures have never been characterized clearly. Among them, we identify that γ-phase Gd2Se3 should be the best candidate for neutron detecting since it possesses not only the right bandgap of 1.76 eV for devices working under room temperature but also the desired indirect gap nature for charge carriers surviving longer. We propose further that semiconductor neutron detectors with single-neutron sensitivity can be realized with such a Gd-chalcogenide on the condition that their crystals can be grown with good quality.

  13. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  14. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  15. Thermal, electronic and ductile properties of lead-chalcogenides under pressure.

    PubMed

    Gupta, Dinesh C; Bhat, Idris Hamid

    2013-09-01

    Fully relativistic pseudo-potential ab-initio calculations have been performed to investigate the high pressure phase transition, elastic and electronic properties of lead-chalcogenides including the less known lead polonium. The calculated ground state parameters, for the rock-salt structure show good agreement with the experimental data. PbS, PbSe, PbTe and PbPo undergo a first-order phase transition from rock-salt to CsCl structure at 19.4, 15.5, 11.5 and 7.3 GPa, respectively. The elastic properties have also been calculated. The calculations successfully predicted the location of the band gap at L-point of Brillouin zone and the band gap for each material at ambient pressure. It is observed that unlike other lead-chalcogenides, PbPo is semi-metal at ambient pressure. The pressure variation of the energy gap indicates that these materials metalize under pressure. The electronic structures of these materials have been computed in parent as well as in high pressure B2 phase.

  16. Recent Advances in Metal Chalcogenides (MX; X = S, Se) Nanostructures for Electrochemical Supercapacitor Applications: A Brief Review

    PubMed Central

    Theerthagiri, Jayaraman; Durai, Govindarajan; Rana, Abu ul Hassan Sarwar; Sangeetha, Kirubanandam; Kuppusami, Parasuraman; Kim, Hyun-Seok

    2018-01-01

    Supercapacitors (SCs) have received a great deal of attention and play an important role for future self-powered devices, mainly owing to their higher power density. Among all types of electrical energy storage devices, electrochemical supercapacitors are considered to be the most promising because of their superior performance characteristics, including short charging time, high power density, safety, easy fabrication procedures, and long operational life. An SC consists of two foremost components, namely electrode materials, and electrolyte. The selection of appropriate electrode materials with rational nanostructured designs has resulted in improved electrochemical properties for high performance and has reduced the cost of SCs. In this review, we mainly spotlight the non-metallic oxide, especially metal chalcogenides (MX; X = S, Se) based nanostructured electrode materials for electrochemical SCs. Different non-metallic oxide materials are highlighted in various categories, such as transition metal sulfides and selenides materials. Finally, the designing strategy and future improvements on metal chalcogenide materials for the application of electrochemical SCs are also discussed. PMID:29671823

  17. Direct Electrospray Printing of Gradient Refractive Index Chalcogenide Glass Films.

    PubMed

    Novak, Spencer; Lin, Pao Tai; Li, Cheng; Lumdee, Chatdanai; Hu, Juejun; Agarwal, Anuradha; Kik, Pieter G; Deng, Weiwei; Richardson, Kathleen

    2017-08-16

    A spatially varying effective refractive index gradient using chalcogenide glass layers is printed on a silicon wafer using an optimized electrospray (ES) deposition process. Using solution-derived glass precursors, IR-transparent Ge 23 Sb 7 S 70 and As 40 S 60 glass films of programmed thickness are fabricated to yield a bilayer structure, resulting in an effective gradient refractive index (GRIN) film. Optical and compositional analysis tools confirm the optical and physical nature of the gradient in the resulting high-optical-quality films, demonstrating the power of direct printing of multimaterial structures compatible with planar photonic fabrication protocols. The potential application of such tailorable materials and structures as they relate to the enhancement of sensitivity in chalcogenide glass based planar chemical sensor device design is presented. This method, applicable to a broad cross section of glass compositions, shows promise in directly depositing GRIN films with tunable refractive index profiles for bulk and planar optical components and devices.

  18. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    DOE PAGES

    Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia

    2016-11-15

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less

  19. Precursor directed synthesis - ``molecular'' mechanisms in the Soft Chemistry approaches and their use for template-free synthesis of metal, metal oxide and metal chalcogenide nanoparticles and nanostructures

    NASA Astrophysics Data System (ADS)

    Seisenbaeva, Gulaim A.; Kessler, Vadim G.

    2014-05-01

    This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials.This review provides an insight into the common reaction mechanisms in Soft Chemistry processes involved in nucleation, growth and aggregation of metal, metal oxide and chalcogenide nanoparticles starting from metal-organic precursors such as metal alkoxides, beta-diketonates, carboxylates and their chalcogene analogues and demonstrates how mastering the precursor chemistry permits us to control the chemical and phase composition, crystallinity, morphology, porosity and surface characteristics of produced nanomaterials. To Professor David Avnir on his 65th birthday.

  20. Digital Transfer Growth of Patterned 2D Metal Chalcogenides by Confined Nanoparticle Evaporation

    DOE PAGES

    Mahjouri-Samani, Masoud; Tian, Mengkun; Wang, Kai; ...

    2014-10-19

    Developing methods for the facile synthesis of two-dimensional (2D) metal chalcogenides and other layered materials is crucial for emerging applications in functional devices. Controlling the stoichiometry, number of the layers, crystallite size, growth location, and areal uniformity is challenging in conventional vapor phase synthesis. Here, we demonstrate a new route to control these parameters in the growth of metal chalcogenide (GaSe) and dichalcogenide (MoSe 2) 2D crystals by precisely defining the mass and location of the source materials in a confined transfer growth system. A uniform and precise amount of stoichiometric nanoparticles are first synthesized and deposited onto a substratemore » by pulsed laser deposition (PLD) at room temperature. This source substrate is then covered with a receiver substrate to form a confined vapor transport growth (VTG) system. By simply heating the source substrate in an inert background gas, a natural temperature gradient is formed that evaporates the confined nanoparticles to grow large, crystalline 2D nanosheets on the cooler receiver substrate, the temperature of which is controlled by the background gas pressure. Large monolayer crystalline domains (~ 100 m lateral sizes) of GaSe and MoSe 2 are demonstrated, as well as continuous monolayer films through the deposition of additional precursor materials. This novel PLD-VTG synthesis and processing method offers a unique approach for the controlled growth of large-area, metal chalcogenides with a controlled number of layers in patterned growth locations for optoelectronics and energy related applications.« less

  1. Green, stable and earth abundant ionic PV absorbers based on chalcogenide perovskite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Hao

    Searching for inexpensive, environment-friendly, and air-stable absorber materials for thin film solar cells has become a key thrust of PV research. Supported by this one-year award, the UB-RPI team aims to develop a novel class of semiconductors — chalcogenide perovskites. Sharing some similarities to the widely researched halide perovskites, and unlike most conventional semiconductors, the chalcogenide perovskites are strongly ionic. Such characteristics is expected to provide intrinsic defect properties favorable for charge transport in PV absorbers. In this one-year project, we confirmed structural stability of the BaZrS3 material through high pressure Raman studies. We find no evidence that the perovskitemore » structure of BaZrS3 undergoes any phase changes under hydrostatic pressure to at least 8.9 GPa. Our results indicate the robust structural stability of BaZrS3, and suggest cation alloying as a viable approach for band-gap engineering for photovoltaic and other applications. We also achieved reduced band gap to 1.45 eV by Ti-alloying of BaZrS3, which is close to the optimal value for a single junction solar cell. We further synthesized BaZrS3 thin films with desired crystal structure and band gap. The optical absorption is high as expected. The carrier mobility is moderate. The high processing temperature limits its ability for device integration. We are working on deposition of chalcogenide perovskite thin films using molecular beam epitaxy.« less

  2. Solution based approach for the fabrication of photonic devices in chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prince,, E-mail: princevish2@gmail.com; Raman, Swati; Dwivedi, Prabhat K.

    2015-06-24

    In this report, we describe the solution preparation conditions of various chalcogenide glasses. The dissolution mechanism of (As{sub 2}S{sub 3}){sub 60}Ge{sub 40}, (As{sub 2}S{sub 3}){sub 60}Se{sub 40} in ethanolamine is studied. Dynamic light scattering (DLS)measurements confirms that the particles in suspension are <10 nm in all the solutions.Prepared solutions are shown to possess similar molecular structure to the parent bulk glasses. Optical properties of the prepared solution are also discussed.

  3. Rare earth chalcogenide stoichiometry determination. [of thermoelectric properties

    NASA Technical Reports Server (NTRS)

    Lockwood, R. A.

    1983-01-01

    Rare earth chalcogenides, and particularly lanthanum sulfide, are currently explored as candidate materials for thermoelectric applications. Since the electrical properties of LaS(x) are largely determined by its stoichiometry, a simple and accurate method has been developed for determining the value of x. The procedure involves dissolving a weighted sample in acid and measuring the amount of hydrogen evolved by the lanthanum that is in excess of the 1.500 ratio of S/La. The analytical error in the determination of x in LaS(x) is about 0.001.

  4. Positronics of radiation-induced effects in chalcogenide glassy semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shpotyuk, O.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Shpotyuk, M.

    2015-03-15

    Using As{sub 2}S{sub 3} and AsS{sub 2} glasses as an example, the principal possibility of using positron annihilation spectroscopy methods for studying the evolution of the free volume of hollow nanoobjects in chalcogenide glassy semiconductors exposed to radiation is shown. The results obtained by measurements of the positron annihilation lifetime and Doppler broadening of the annihilation line in reverse chronological order are in full agreement with the optical spectroscopy data in the region of the fundamental absorption edge, being adequately described within coordination defect-formation and physical-aging models.

  5. Electron transport in some transition metal di-chalcogenides: MoS2 and WS2

    NASA Astrophysics Data System (ADS)

    Ferry, D. K.

    2017-08-01

    The transition metal di-chalcogenides are promising single monolayer materials that hold promise for applications in several fields, including nanoelectronics. Here, I study the transport of electrons in two of these materials, MoS2 and WS2. While the low-field behavior shows very low mobility, due mostly to impurity scattering, the high-field behavior shows a relatively high saturated velocity and a high breakdown field. Complications arise due to the relative narrowness of the conduction band, and the effect of this on the transport is discussed.

  6. Mechanical stiffening and thermal softening of rare earth chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shriya, S.; Varshney, Dinesh; Singh, Namita, E-mail: namita.singh.2050@gmail.com

    2014-04-24

    The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})

  7. Bulk dimensional nanocomposites for thermoelectric applications

    DOEpatents

    Nolas, George S

    2014-06-24

    Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

  8. Infrared sensor for water pollution and monitoring

    NASA Astrophysics Data System (ADS)

    Baudet, E.; Gutierrez-Arrovo, A.; Bailleul, M.; Rinnert, E.; Nemec, P.; Charrier, J.; Bodiou, L.; Colas, F.; Compère, C.; Boussard, C.; Bureau, B.; Michel, K.; Nazabal, V.

    2017-05-01

    Development of Mid-infrared sensors for the detection of biochemical molecules is a challenge of great importance. Mid-infrared range (4000 - 400 cm-1) contains the absorption bands related to the vibrations of organic molecules (nitrates, hydrocarbons, pesticides, etc.). Chalcogenide glasses are an important class of amorphous materials appropriate for sensing applications. Indeed, they are mainly studied and used for their wide transparency in the infrared range (up to 15 μm for selenide glasses) and high refractive index (between 2 and 3). The aim of this study is to synthesize and characterize chalcogenide thin films for developing mid-IR optical waveguides. Therefore, two (GeSe2)100-x(Sb2Se3)x chalcogenide glasses, where x=10 and 50 were chosen for their good mid-IR transparency, high stability against crystallization and their refractive index contrast suitable for mid-IR waveguiding. Chalcogenide glasses were prepared using the conventional melting and quenching method and then used for RF magnetron sputtering deposition. Sputtered thin films were characterized in order to determine dispersion of refractive index in UV-Vis-NIR-MIR. Obtained results were used for the simulation of the optical design in mid-infrared (λ = 7.7 μm). Selenide ridge waveguide were prepared by RIE-ICP dry etching process. Single-mode propagation at 7.7 μm was observed. Optical losses of 0.7 +/- 0.3 and 2.5 +/- 0.1 dB.cm-1 were measured in near-infrared (λ = 1.55 μm) and midinfrared (λ = 7.7 μm), respectively. Achieved results are promising for the fabrication of an integrated optical sensor operating in the mid-infrared.

  9. Exposed-core chalcogenide microstructured optical fibers for chemical sensing

    NASA Astrophysics Data System (ADS)

    Troles, Johann; Toupin, Perrine; Brilland, Laurent; Boussard-Plédel, Catherine; Bureau, Bruno; Cui, Shuo; Mechin, David; Adam, Jean-Luc

    2013-05-01

    Chemical bonds of most of the molecules vibrate at a frequency corresponding to the near or mid infrared field. It is thus of a great interest to develop sensitive and portable devices for the detection of specific chemicals and biomolecules for various applications in health, the environment, national security and so on. Optical fibers define practical sensing tools. Chalcogenide glasses are known for their transparency in the infrared optical range and their ability to be drawn as fibers. They are consequently good candidates to be used in biological/chemical sensing. For that matter, in the past decade, chalcogenide glass fibers have been successfully implemented in evanescent wave spectroscopy experiments, for the detection of bio-chemical species in various fields of applications including microbiology and medicine, water pollution and CO2 detection. Different types of fiber can be used: single index fibers or microstructured fibers. Besides, in recent years a new configuration of microstructured fibers has been developed: microstructured exposed-core fibers. This design consists of an optical fiber with a suspended micron-scale core that is partially exposed to the external environment. This configuration has been chosen to elaborate, using the molding method, a chalcogenide fiber for chemical species detection. The sensitivity of this fiber to detect molecules such as propan-2-ol and acetone has been compared with those of single index fibers. Although evanescent wave absorption is inversely proportional to the fiber diameter, the result shows that an exposed-core fiber is much more sensitive than a single index fiber having a twice smaller external diameter.

  10. The intercalation chemistry of layered iron chalcogenide superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the rolemore » of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.« less

  11. Vibrational properties and bonding nature of Sb2Se3 and their implications for chalcogenide materials† †Electronic supplementary information (ESI) available: Additional computational data and discussion. See DOI: 10.1039/c5sc00825e Click here for additional data file.

    PubMed Central

    Deringer, Volker L.; Stoffel, Ralf P.; Wuttig, Matthias

    2015-01-01

    Antimony selenide (antimonselite, Sb2Se3) is a versatile functional material with emerging applications in solar cells. It also provides an intriguing prototype to study different modes of bonding in solid chalcogenides, all within one crystal structure. In this study, we unravel the complex bonding nature of crystalline Sb2Se3 by using an orbital-based descriptor (the crystal orbital Hamilton population, COHP) and by analysing phonon properties and interatomic force constants. We find particularly interesting behaviour for the medium-range Sb···Se contacts, which still contribute significant stabilisation but are much softer than the “traditional” covalent bonds. These results have implications for the assembly of Sb2Se3 nanostructures, and bond-projected force constants appear as a useful microscopic descriptor for investigating a larger number of chalcogenide functional materials in the future. PMID:29449929

  12. Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianbing; Chernomordik, Boris D.; Crisp, Ryan W.

    2015-07-28

    We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd2+ cation is exchanged for the Pb2+ cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd2+, we also find suitable conditions for the exchange of Zn2+ cations for Pb2+ cations. The cation exchange is anisotropic starting at one edgemore » of the nanocrystals and proceeds along the <111> direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.« less

  13. Measurement of ultrafast optical Kerr effect of Ge-Sb-Se chalcogenide slab waveguides by the beam self-trapping technique

    NASA Astrophysics Data System (ADS)

    Kuriakose, Tintu; Baudet, Emeline; Halenkovič, Tomáš; Elsawy, Mahmoud M. R.; Němec, Petr; Nazabal, Virginie; Renversez, Gilles; Chauvet, Mathieu

    2017-11-01

    We present a reliable and original experimental technique based on the analysis of beam self-trapping to measure ultrafast optical nonlinearities in planar waveguides. The technique is applied to the characterization of Ge-Sb-Se chalcogenide films that allow Kerr induced self-focusing and soliton formation. Linear and nonlinear optical constants of three different chalcogenide waveguides are studied at 1200 and 1550 nm in femtosecond regime. Waveguide propagation loss and two photon absorption coefficients are determined by transmission analysis. Beam broadening and narrowing results are compared with simulations of the nonlinear Schrödinger equation solved by BPM method to deduce the Kerr n2 coefficients. Kerr optical nonlinearities obtained by our original technique compare favorably with the values obtained by Z-scan technique. Nonlinear refractive index as high as (69 ± 11) × 10-18m2 / W is measured in Ge12.5Sb25Se62.5 at 1200 nm with low nonlinear absorption and low propagation losses which reveals the great characteristics of our waveguides for ultrafast all optical switching and integrated photonic devices.

  14. Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.

    PubMed

    Zhang, Jianbing; Chernomordik, Boris D; Crisp, Ryan W; Kroupa, Daniel M; Luther, Joseph M; Miller, Elisa M; Gao, Jianbo; Beard, Matthew C

    2015-07-28

    We developed a strategy for producing quasi-spherical nanocrystals of anisotropic heterostructures of Cd/Pb chalcogenides. The nanostructures are fabricated via a controlled cation exchange reaction where the Cd(2+) cation is exchanged for the Pb(2+) cation. The cation exchange reaction is thermally activated and can be controlled by adjusting the reaction temperature or time. We characterized the particles using TEM, XPS, PL, and absorption spectroscopy. With complete exchange, high quality Pb-chalcogenide quantum dots are produced. In addition to Cd(2+), we also find suitable conditions for the exchange of Zn(2+) cations for Pb(2+) cations. The cation exchange is anisotropic starting at one edge of the nanocrystals and proceeds along the ⟨111⟩ direction producing a sharp interface at a (111) crystallographic plane. Instead of spherical core/shell structures, we produced and studied quasi-spherical CdS/PbS and CdSe/PbSe Janus-type heterostructures. Nontrivial PL behavior was observed from the CdS(e)/PbS(e) heterostructures as the Pb:Cd ratio is increased.

  15. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    NASA Astrophysics Data System (ADS)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  16. Chalcogenide-based van der Waals epitaxy: Interface conductivity of tellurium on Si(111)

    NASA Astrophysics Data System (ADS)

    Lüpke, Felix; Just, Sven; Bihlmayer, Gustav; Lanius, Martin; Luysberg, Martina; Doležal, Jiří; Neumann, Elmar; Cherepanov, Vasily; Ošt'ádal, Ivan; Mussler, Gregor; Grützmacher, Detlev; Voigtländer, Bert

    2017-07-01

    We present a combined experimental and theoretical analysis of a Te rich interface layer which represents a template for chalcogenide-based van der Waals epitaxy on Si(111). On a clean Si(111)-(1 ×1 ) surface, we find Te to form a Te/Si(111)-(1 ×1 ) reconstruction to saturate the substrate bonds. A problem arising is that such an interface layer can potentially be highly conductive, undermining the applicability of the on-top grown films in electric devices. We perform here a detailed structural analysis of the pristine Te termination and present direct measurements of its electrical conductivity by in situ distance-dependent four-probe measurements. The experimental results are analyzed with respect to density functional theory calculations and the implications of the interface termination with respect to the electrical conductivity of chalcogenide-based topological insulator thin films are discussed. In detail, we find a Te/Si(111)-(1 ×1 ) interface conductivity of σ2D Te=2.6 (5 ) ×10-7S /□ , which is small compared to the typical conductivity of topological surface states.

  17. Pressure tuning the lattice and optical response of silver sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhao, E-mail: zhaozhao@stanford.edu; Wei, Hua; Mao, Wendy L.

    2016-06-27

    Binary transition metal chalcogenides have attracted increasing attention for their unique structural and electronic properties. High pressure is a powerful tool for tuning the lattice and electronic structure of transition metal chalcogenides away from their pristine states. In this work, we systematically studied the in situ structural and optical behavior of silver sulfide (Ag{sub 2}S) under pressure by synchrotron X-ray diffraction and infrared spectroscopy measurements in a diamond anvil cell. Upon compression, Ag{sub 2}S undergoes structural symmetrization accompanied by a series of structural transitions while the crystallographic inequivalence of the two Ag sites is maintained. Electronically, pressure effectively tunes themore » ambient semiconducting Ag{sub 2}S into a metal at ∼22 GPa. Drude model analysis shows that the optical conductivity evolves significantly, reaching the highest value of 100 Ω{sup −1} cm{sup −1} at ∼40 GPa. Our results highlight the structural and electronic tunability of silver chalcogenides as a function of pressure and suggest the potential of Ag{sub 2}S as a platform for developing optical and opto-electronic applications.« less

  18. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    NASA Astrophysics Data System (ADS)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  19. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors

    DOE PAGES

    Liu, Z. K.; Yi, M.; Zhang, Y.; ...

    2015-12-22

    The level of electronic correlation has been one of the key questions in understanding the nature of superconductivity. Among the iron-based superconductors, the iron chalcogenide family exhibits the strongest electron correlations. To gauge the correlation strength, we performed a systematic angle-resolved photoemission spectroscopy study on the iron chalcogenide series Fe 1+ySe xTe 1-x (0 < x < 0.59), a model system with the simplest structure. Our measurement reveals an incoherent-to-coherent crossover in the electronic structure as the selenium ratio increases and the system evolves from a weakly localized to a more itinerant state. Furthermore, we found that the effective massmore » of bands dominated by the d xy orbital character significantly decreases with increasing selenium ratio, as compared to the d xz/d yz orbital-dominated bands. The orbital-dependent change in the correlation level agrees with theoretical calculations on the band structure renormalization, and may help to understand the onset of superconductivity in Fe 1+ySe xTe 1-x.« less

  20. Ternary tin-based chalcogenide nanoplates as a promising anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tang, Qiming; Su, Heng; Cui, Yanhui; Baker, Andrew P.; Liu, Yanchen; Lu, Juan; Song, Xiaona; Zhang, Huayu; Wu, Junwei; Yu, Haijun; Qu, Deyang

    2018-03-01

    As an advanced anode material for lithium-ion batteries, tin-chalcogenides receive substantial attention due to their high lithium-ion storage capacity. Here, tin chalcogenide (SnSe0.5S0.5) nanoplates are synthesized using a facile and quick polyol-method, followed by heating at different temperatures. Results show that the as-prepared of SnSe0.5S0.5 heated at temperature of 180 °C exhibits the best electrochemical performance with an outstanding discharge specific capacity of 1144 mA h g-1 at 0.1 A g-1 after 100 cycles and 682 mA h g-1 at 0.5 A g-1 after 200 cycles with a high coulombic efficiency (CE) of 98.7%. Even at a high current density of 5 A g-1, this anode material delivers a specific capacity of 473 mA h g-1. The high electrochemical performance of SnSe0.5S0.5 is shown by in-situ XRD analysis to originate from an enhanced Li+ intercalation and an alloy conversion process.

  1. Characterization and modeling of microstructured chalcogenide fibers for efficient mid-infrared wavelength conversion.

    PubMed

    Xing, Sida; Grassani, Davide; Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie

    2016-05-02

    We experimentally demonstrate wavelength conversion in the 2 µm region by four-wave mixing in an AsSe and a GeAsSe chalcogenide photonic crystal fibers. A maximum conversion efficiency of -25.4 dB is measured for 112 mW of coupled continuous wave pump in a 27 cm long fiber. We estimate the dispersion parameters and the nonlinear refractive indexes of the chalcogenide PCFs, establishing a good agreement with the values expected from simulations. The different fiber geometries and glass compositions are compared in terms of performance, showing that GeAsSe is a more suited candidate for nonlinear optics at 2 µm. Building from the fitted parameters we then propose a new tapered GeAsSe PCF geometry to tailor the waveguide dispersion and lower the zero dispersion wavelength (ZDW) closer to the 2 µm pump wavelength. Numerical simulations shows that the new design allows both an increased conversion efficiency and bandwidth, and the generation of idler waves further in the mid-IR regions, by tuning the pump wavelength in the vicinity of the fiber ZDW.

  2. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu3P complex of cadmium chloride. Nuclear magnetic resonance spectroscopy supports complete cleavage of the X-type carboxylate ligands. Combined with measurements of the Se:Cd:Cl ratio using Rutherford backscattering spectrometry, these studies support a structural model of nanocrystals where chloride ligands terminate the crystal lattice by balancing the charges of excess Cd2+ ions. The adsorption of dative phosphine ligands leads to nanocrystals who's solubility is afforded by reversibly bound and readily exchanged L-type ligands, e.g. primary amines and phosphines. The other halides (Br and I) can also be used to prepare Bu 3P-bound, halide-terminated CdSe nanocrystals, however these nanocrystals are not soluble after exchange. The change in binding affinity of Bu 3P over the halide series is briefly discussed. Next, we report a series of L-type ligand exchanges using Bu3P-bound, chloride-terminated CdSe nanocrystals with several Lewis bases, including aromatic, cyclic, and non-cyclic sulfides, and ethers; primary, secondary, and tertiary amines and phosphines; tertiary phosphine chalcogenides; primary alcohols, isocyanides, and isothiocyanides. Using 31P nuclear magnetic resonance spectroscopy, we establish a relative binding affinity for these ligands that reflects electronic considerations but is dominated primarily by steric interactions, as determined by comparing binding affinity to Tolmann cone angles. We also used chloride-terminated CdSe nanocrystals to explore the reactivity of ionic salts at nanocrystal surfaces. These salts, particularly [Bu3P-H]+[Cl]-, bind nanocrystals surfaces as L-type ligands, making them soluble in polar solvents such as acetonitrile. This information should provide insight for rational ligand design for future applications involving metal chalcogenide nanocrystals. The strongest ligand, primary n-alkylamine, rapidly displace the Bu3P from halide-terminated CdSe nanocrystals, leading to amine-bound nanocrystals with higher dative ligand coverages and greatly increased photoluminescence quantum yields. The importance of ligand coverage to both the UV-visible absorption and photoluminescence spectra are discussed. (Abstract shortened by UMI.).

  3. Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy.

    PubMed

    Hudson, Darren D; Dekker, Stephen A; Mägi, Eric C; Judge, Alexander C; Jackson, Stuart D; Li, Enbang; Sanghera, J S; Shaw, L B; Aggarwal, I D; Eggleton, Benjamin J

    2011-04-01

    An octave spanning spectrum is generated in an As₂S₃ taper via 77 pJ pulses from an ultrafast fiber laser. Using a previously developed tapering method, we construct a 1.3 μm taper that has a zero-dispersion wavelength around 1.4 μm. The low two-photon absorption of sulfide-based chalcogenide fiber allows for higher input powers than previous efforts in selenium-based chalcogenide tapered fibers. This higher power handling capability combined with input pulse chirp compensation allows an octave spanning spectrum to be generated directly from the taper using the unamplified laser output.

  4. Photonic-chip-based all-optical ultra-wideband pulse generation via XPM and birefringence in a chalcogenide waveguide.

    PubMed

    Tan, Kang; Marpaung, David; Pant, Ravi; Gao, Feng; Li, Enbang; Wang, Jian; Choi, Duk-Yong; Madden, Steve; Luther-Davies, Barry; Sun, Junqiang; Eggleton, Benjamin J

    2013-01-28

    We report a photonic-chip-based scheme for all-optical ultra-wideband (UWB) pulse generation using a novel all-optical differentiator that exploits cross-phase modulation and birefringence in an As₂S₃ chalcogenide rib waveguide. Polarity-switchable UWB monocycles and doublets were simultaneously obtained with single optical carrier operation. Moreover, transmission over 40-km fiber of the generated UWB doublets is demonstrated with good dispersion tolerance. These results indicate that the proposed approach has potential applications in multi-shape, multi-modulation and long-distance UWB-over-fiber communication systems.

  5. Multifunctional materials and composites

    DOEpatents

    Seo, Dong-Kyun; Jeon, Ki-Wan

    2017-08-22

    Forming multifunctional materials and composites thereof includes contacting a first material having a plurality of oxygen-containing functional groups with a chalcogenide compound, and initiating a chemical reaction between the first material and the chalcogenide compound, thereby replacing oxygen in some of the oxygen-containing functional groups with chalcogen from the chalcogen-containing compound to yield a second material having chalcogen-containing functional groups and oxygen-containing functional groups. The first material is a carbonaceous material or a macromolecular material. A product including the second material is collected and may be processed further to yield a modified product or a composite.

  6. Photochemical Water Splitting by Bismuth Chalcogenide Topological Insulators.

    PubMed

    Rajamathi, Catherine R; Gupta, Uttam; Pal, Koushik; Kumar, Nitesh; Yang, Hao; Sun, Yan; Shekhar, Chandra; Yan, Binghai; Parkin, Stuart; Waghmare, Umesh V; Felser, Claudia; Rao, C N R

    2017-09-06

    As one of the major areas of interest in catalysis revolves around 2D materials based on molybdenum sulfide, we have examined the catalytic properties of bismuth selenides and tellurides, which are among the first chalcogenides to be proven as topological insulators (TIs). We find significant photochemical H 2 evolution activity with these TIs as catalysts. H 2 evolution increases drastically in nanosheets of Bi 2 Te 3 compared to single crystals. First-principles calculations show that due to the topology, surface states participate and promote the hydrogen evolution. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Mid-infrared supercontinuum in a Ge11:5As24Se64:5 chalcogenide waveguide

    NASA Astrophysics Data System (ADS)

    Sakunasinha, Panarit; Suwanarat, Suksan; Chiangga, Surasak

    2015-07-01

    We present results of numerical simulations of a supercontinuum generation (SCG) in a Ge11:5As24Se64:5 chalcogenide rectangular waveguide with air as an upper cladding and the lower cladding is magnesium fluoride. A broadband infrared 1.3-3.0 μm SCG could be achieved by pumping with femtosecond pulses in the two zero dispersion wavelengths. The effect of chirp on SCG spectrum has been also investigated. The simulation shows a significant SCG spectral flatness in the mid-infrared range with positive frequency chirp input pulses.

  8. Investigations into the Structure and Dynamics of Chalcogenide Glasses using High-Resolution Nuclear Magnetic Resonance Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kaseman, Derrick Charles

    Chalcogenide glasses constitute an important class of materials that are sulfides, selenides or tellurides of group IV and/or V elements, namely Ge, As, P and Si with minor concentrations of other elements such as Ga, Sb, In. Because of their infrared transparency that can be tuned by changing chemistry and can be actively altered by exposure to band gap irradiation, chalcogenide glasses find use in passive and active optical devices for applications in the areas of photonics, remote sensing and memory technology. Therefore, it is important to establish predictive models of structure-property relationships for these materials for optimization of their physical properties for various applications. Structural elucidation of chalcogenide glasses is experimentally challenging and in order to make predictive structural models, structural units at both short and intermediate -range length scales must be identified and quantified. Nuclear Magnetic Resonance (NMR) spectroscopy is an element-specific structural probe that is uniquely suited for this task, but resolution and sensitivity issues have severely limited the applications of such techniques in the past. The recent development of multi-dimensional solid-state NMR techniques, such as Phase Adjusted Spinning Sidebands (PASS) and Magic Angle Turning (MAT) can potentially alleviate such issues. In this study novel two-dimensional, high-resolution 77Se and 125Te MATPASS NMR spectroscopic techniques are utilized to elucidate quantitatively the compositional evolution of the short- and intermediate- range atomic structure in three binary chalcogenide glass-forming systems, namely: GexSe100-x, AsxSe100-x , and AsxTe100-x. The spectroscopic results provide unambiguous site speciation and quantification for short- and intermediate-range structural motifs present in these glasses. In turn, for all systems, robust structural models and the corresponding structure-property relationships are successfully established as a function of composition. The results indicate that the physical properties are intimately tied to the topology and chemical order present in each system. Finally, a dynamic version of the two-dimensional 31P PASS NMR spectroscopy is used to study the molecular motion in a supercooled chalcogenide liquid of composition P5Se3. The results clearly display the presence of isotropic rotational reorientation of the constituent molecules at timescales significantly decoupled from that of the structural relaxation near and above Tg. This behavior is atypical of conventional molecular glasses in organic systems in which rotational and translational dynamics remain coupled near Tg. When taken together with previous reports on the dynamics of other globular inorganic molecules, the results support the existence of a "plastic glass" phase where the molecules perform rapid rotation without significant translation.

  9. Towards mid-infrared supercontinuum generation: Ge-Sb-Se mid-infrared step-index small-core optical fiber

    NASA Astrophysics Data System (ADS)

    Butterworth, J. H.; Jayasuriya, D.; Li, Q. Q.; Furniss, D.; Moneim, N. A.; Barney, E.; Sujecki, S.; Benson, T. M.; Sanghera, J. S.; Seddon, A. B.

    2014-02-01

    In the 21st century, cancer has become a common and feared illness. Early detection is crucial for delivering the most effective treatment of patients, yet current diagnostic tests depend upon the skill of a consultant clinician and histologist for recognition of the cancerous cells. Therefore it is necessary to develop a medical diagnostic system which can analyze and image tissue instantly, removing the margin of human error and with the additional benefit of being minimally invasive. The molecular fingerprint of biological tissue lies within the mid-infrared (IR) region of the electromagnetic spectrum, 3-25μm wavelength. This can be used to determine a tissue spectral map and provide information about the absence or existence of disease, potentially in real-time and in vivo. However, current mid-IR broadband sources are not bright enough to achieve this. One alternative is to develop broadband, mid-IR, supercontinuum generation (SCG). Chalcogenide glass optical fibers have the potential to provide such mid-IR SC light. A popular chalcogenide glass fiber type is based on Ge-As-Se. For biomedical applications it is prudent to avoid the use of arsenic, on account of its toxicity. This paper investigates replacing arsenic with antimony, towards Ge-Sb-Se smallcore optical fibers for SCG. Physical properties of candidate glass pairs are investigated for glass stability via differential thermal analysis etc. and fiber optical loss measurements of associated fibers are assessed. These results are compared to analogous arsenic-containing chalcogenide glasses and optical fibers, and conclusions are drawn focusing on whether there is potential for antimony chalcogenide glass to be used for SCG for mid-infrared medical diagnostics.

  10. Synthesis and structures of metal chalcogenide precursors

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.

    1990-01-01

    The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.

  11. Phase sensitive amplification in integrated waveguides (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Schroeder, Jochen B.; Zhang, Youngbin; Husko, Chad A.; LeFrancois, Simon; Eggleton, Benjamin J.

    2017-02-01

    Phase sensitive amplification (PSA) is an attractive technology for integrated all-optical signal processing, due to it's potential for noiseless amplification, phase regeneration and generation of squeezed light. In this talk I will review our results on implementing four-wave-mixing based PSA inside integrated photonic devices. In particular I will discuss PSA in chalcogenide ridge waveguides and silicon slow-light photonic crystals. We achieve PSA in both pump- and signal-degenerate schemes with maximum extinction ratios of 11 (silicon) and 18 (chalcogenide) dB. I will further discuss the influence of two-photon absorption and free carrier effects on the performance of silicon-based PSAs.

  12. Chalcogenide glasses and glass-ceramics: Transparent materials in the infrared for dual applications

    NASA Astrophysics Data System (ADS)

    Calvez, Laurent

    2017-05-01

    In this paper are described the different research activities that led to the awarding of the Lamb prize by the French Academy of Sciences in order to promote research work on the national defense of France. This research concerns the development of infrared materials for night vision and the development of thermal imagers useful for defense, but also for civilian applications. The contribution has been particularly innovative in different sectors: broadening of chalcogenide glasses window of transparency, IR glass-ceramics with high thermomechanical properties, and the design of a new way of synthesis of these materials by a mechanical process.

  13. Mixed anion materials and compounds for novel proton conducting membranes

    DOEpatents

    Poling, Steven Andrew; Nelson, Carly R.; Martin, Steve W.

    2006-09-05

    The present invention provides new amorphous or partially crystalline mixed anion chalcogenide compounds for use in proton exchange membranes which are able to operate over a wide variety of temperature ranges, including in the intermediate temperature range of about 100 .degree. C. to 300.degree. C., and new uses for crystalline mixed anion chalcogenide compounds in such proton exchange membranes. In one embodiment, the proton conductivity of the compounds is between about 10.sup.-8 S/cm and 10.sup.-1 S/cm within a temperature range of between about -60 and 300.degree. C. and a relative humidity of less than about 12%..

  14. Dielectric relaxation studies in Se{sub 90}Cd{sub 8}Sb{sub 2} glassy alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Nitesh; Rao, Vandita; Dwivedi, D. K.

    2016-05-06

    Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconducting alloy was prepared by melt quench technique. The prepared glassy alloy has been characterized by techniques such as scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX).Dielectric properties of Se{sub 90}Cd{sub 8}Sb{sub 2} chalcogenide semiconductor have been studied using impedance spectroscopic technique in the frequency range 5×10{sup 2}Hz - 1×10{sup 5}Hz and in temperature range 303-318K. It is found that dielectric constant ε′ and dielectric loss factor ε″ are dependent on frequency and temperature.

  15. Thermoelectric properties of rare earth chalcogenides

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Raag, V.; Wood, C.

    1985-01-01

    The rare earth chalcogenides are important thermoelectric materials due to their high melting points, self-doping capabilities, and low thermal conductivities. Lanthanum sulfides and lanthanum tellurides have been synthesized in quartz ampules, hot-pressed into samples, and measured. The n-type Seebeck coefficients, electrical resistivities, and power factors generally all increased as the temperature increased from 200 to 1000 C. The figure-of-merit for nonstoichiometric lanthanum telluride was 0.001/deg C at 1000 C, considerably higher than for silicon-germanium. Thermoelectric measurements were made for LaTe(2) and YbS(1.4), and p-type behavior was observed for these compounds from 300 to 1100 C.

  16. An ab initio study of the electronic structure of indium and gallium chalcogenide bilayers

    NASA Astrophysics Data System (ADS)

    Ayadi, T.; Debbichi, L.; Said, M.; Lebègue, S.

    2017-09-01

    Using first principle calculations, we have studied the structural and electronic properties of two dimensional bilayers of indium and gallium chalcogenides. With density functional theory corrected for van der Waals interactions, the different modes of stacking were investigated in a systematic way, and several of them were found to compete in energy. Then, their band structures were obtained with the GW approximation and found to correspond to indirect bandgap semiconductors with a small dependency on the mode of stacking. Finally, by analysing the electron density, it appeared that GaSe-InS is a promising system for electron-hole separation.

  17. Broadband beam steering using chalcogenide-based Risley prisms

    NASA Astrophysics Data System (ADS)

    Florea, Catalin; Sanghera, Jasbinder; Aggarwal, Ishwar

    2011-03-01

    In this paper, we propose using chalcogenide glasses for improved, large-angle, beam steering of infrared radiation, with minimal spectral dispersion and improved thermal performance over wavelength intervals covering the 2 to 12-μm range. For example, we evaluate that full-angle dispersion in the 2 to 5 μm region for LiF/As2S3 combination should be three times smaller than in the case of LiF/ZnS combination. We also evaluate that using the ZnSe/As2Se3 combination will provide twice as small thermal walk-off than a similar ZnS/Ge system in the 8 to 12-μm region.

  18. EFFECTS OF LASER RADIATION ON MATTER: Photoinduced absorption in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ponomar', V. V.

    1990-08-01

    A dependence of the absorption coefficient on the optical radiation intensity in the range 10 - 5 - 1 W/cm2 was observed for chalcogenide glasses at a photon energy less than the band gap of the material. The absorption coefficient depended on the irradiation time. In the case of arsenic sulfide in the range 1.6-1.7 eV an absorption peak was observed at intensities of the order of 10 - 3 W/cm2. In this part of the spectrum the absorption probably involved metastable As-As, S-Se, and Se-Se "defect" bonds and was similar to the photoinduced degradation of hydrogenated amorphous silicon.

  19. Structural and electronic properties of high pressure phases of lead chalcogenides

    NASA Astrophysics Data System (ADS)

    Petersen, John; Scolfaro, Luisa; Myers, Thomas

    2012-10-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity. Variation in synthesis conditions gives rise to a need for analysis of structural and thermoelectric properties of these materials at different pressures. In addition to the NaCl structure at ambient conditions, lead chalcogenides have a dynamic orthorhombic (Pnma) intermediate phase and a higher pressure yet stable CsCl phase. By altering the lattice constant, we simulate the application of external pressure; this has notable effects on ground state total energy, band gap, and structural phase. Using the General Gradient Approximation (GGA) in Density Functional Theory (DFT), we calculate the phase transition pressures by finding the differences in enthalpy from total energy calculations. For each phase, elastic constants, bulk modulus, shear modulus, Young's modulus, and hardness are calculated, using two different approaches. In addition to structural properties, we analyze the band structure and density of states at varying pressures, paying special note to thermoelectric implications.

  20. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters

    DOE PAGES

    Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.; ...

    2015-04-21

    Here, metal, metal oxide, and metal chalcogenide materials have a wide variety of applications. For example, many metal clusters and nanoparticles are used as catalysts for reactions varying from the oxidation of carbon monoxide to the reduction of protons to hydrogen gas. Noble metal nanoparticles have unique optical properties such as a surface plasmon resonance for large nanoparticles that yield applications in sensing and photonics. In addition, a number of transition metal clusters are magnetic. Metal oxide clusters and surfaces are commonly used as catalysts for reactions such as water splitting. Both metal oxide and metal chalcogenide materials can bemore » semiconducting, which leads to applications in sensors, electronics, and solar cells. Many researchers have been interested in studying nanoparticles and/or small clusters of these materials. Some of the system sizes under investigation have been experimentally synthesized, which enables direct theory–experiment comparison. Other clusters that have been examined theoretically are of interest as models of larger systems or surfaces. Often, the size-dependence of their properties such as their HOMO–LUMO gap, magnetic properties, optical properties, etc., is of interest.« less

  1. Hydrogen treatment as a detergent of electronic trap states in lead chalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Voros, Marton; Brawand, Nicholas; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations, irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial for charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Our findings suggest that post-synthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films. Work supported by the Center for Advanced Solar Photophysics, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (NB) and U.S. DOE under Contract No. DE-AC02-06CH11357 (MV).

  2. Dual emissions from MnS clusters confined in the sodalite nanocage of a chalcogenide-based semiconductor zeolite.

    PubMed

    Hu, Dandan; Zhang, Yingying; Lin, Jian; Hou, Yike; Li, Dongsheng; Wu, Tao

    2017-03-21

    A new host-guest hybrid system with MnS clusters confined in a chalcogenide-based semiconductor zeolite was for the first time constructed and its photoluminescence (PL) properties were also investigated. The existence of MnS clusters in the nanopores of the semiconductor zeolite was revealed by UV-Vis absorption spectroscopy, steady-state fluorescence analysis, Raman as well as Fourier transform infrared (FTIR) spectroscopy. The aggregation state of the entrapped MnS clusters at different measurement temperatures was probed by electron paramagnetic resonance (EPR) spectroscopy. Of significant importance is the fact that the entrapped MnS clusters displayed dual emissions at 518 nm (2.39 eV) and 746 nm (1.66 eV), respectively, and the long-wavelength emission has never been observed in other MnS-confined host-guest systems. These two emission peaks displayed tunable PL intensity affected by the loading level and measurement temperature. This can be explained by the different morphologies of MnS clusters with different aggregation states at the corresponding loading level or measurement temperature. The current study opens a new avenue to construct inorganic chalcogenide cluster involved host-guest systems with a semiconductor zeolite as the host matrix.

  3. Bismuth chalcogenide compounds Bi 2 × 3 (X=O, S, Se): Applications in electrochemical energy storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ni, Jiangfeng; Bi, Xuanxuan; Jiang, Yu

    2017-04-01

    Bismuth chalcogenides Bi2×3 (X=O, S, Se) represent a unique type of materials in diverse polymorphs and configurations. Multiple intrinsic features of Bi2×3 such as narrow bandgap, ion conductivity, and environmental friendliness, have render them attractive materials for a wide array of energy applications. In particular, their rich structural voids and the alloying capability of Bi enable the chalcogenides to be alternative electrodes for energy storage such as hydrogen (H), lithium (Li), sodium (Na) storage and supercapacitors. However, the low conductivity and poor electrochemical cycling are two key challenges for the practical utilization of Bi2×3 electrodes. Great efforts have been devotedmore » to mitigate these challenges and remarkable progresses have been achieved, mainly taking profit of nanotechnology and material compositing engineering. In this short review, we summarize state-of-the-art research advances in the rational design of diverse Bi2×3 electrodes and their electrochemical energy storage performance for H, Li, and Na and supercapacitors. We also highlight the key technical issues at present and provide insights for the future development of bismuth based materials in electrochemical energy storage devices.« less

  4. Phosphorene for energy and catalytic application—filling the gap between graphene and 2D metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Jain, Rishabh; Narayan, Rekha; Padmajan Sasikala, Suchithra; Lee, Kyung Eun; Jung, Hong Ju; Ouk Kim, Sang

    2017-12-01

    Phosphorene, a newly emerging graphene analogous 2D elemental material of phosphorous atoms, is unique on the grounds of its natural direct band gap opening, highly anisotropic and extraordinary physical properties. This review highlights the current status of phosphorene research in energy and catalytic applications. The initial part illustrates the typical physical properties of phosphorene, which successfully bridge the prolonged gap between graphene and 2D metal chalcogenides. Various synthetic methods available for black phosphorus (BP) and the exfoliation/growth techniques for single to few-layer phosphorene are also overviewed. The latter part of this review details the working mechanisms and performances of phosphorene/BP in batteries, supercapacitors, photocatalysis, and electrocatalysis. Special attention has been paid to the research efforts to overcome the inherent shortcomings faced by phosphorene based devices. The relevant device performances are compared with graphene and 2D metal chalcogenides based counterparts. Furthermore, the underlying mechanism behind the unstable nature of phosphorene under ambient condition is discussed along with the various approaches to avoid ambient degradation. Finally, comments are offered for the future prospective explorations and outlook as well as challenges lying in the road ahead for phosphorene research.

  5. Structural and electronic properties of copper-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Guzman, David M.; Strachan, Alejandro

    2017-10-01

    Using ab initio molecular dynamics based on density functional theory, we study the atomic and electronic structure, and transport properties of copper-doped germanium-based chalcogenide glasses. These mixed ionic-electronic conductor materials exhibit resistance or threshold switching under external electric field depending on slight variations of chemical composition. Understanding the origin of the transport character is essential for the functionalization of glassy chalcogenides for nanoelectronics applications. To this end, we generated atomic structures for GeX3 and GeX6 (X = S, Se, Te) at different copper concentrations and characterized the atomic origin of electronic states responsible for transport and the tendency of copper clustering as a function of metal concentration. Our results show that copper dissolution energies explain the tendency of copper to agglomerate in telluride glasses, consistent with filamentary conduction. In contrast, copper is less prone to cluster in sulfides and selenides leading to hysteresisless threshold switching where the nature of transport is dominated by electronic midgap defects derived from polar chalcogen bonds and copper atoms. Simulated I -V curves show that at least 35% by weight of copper is required to achieve the current demands of threshold-based devices for memory applications.

  6. Processing soft materials for integrated photonic and macroelectronic components and devices

    NASA Astrophysics Data System (ADS)

    Tsay, Candice Ruth

    Incorporating soft materials into micro-fabrication processes opens up new functionalities for fabricated devices, but requires unique processing routes. This thesis presents our development of integrated photonic and macroelectronic structures through processing innovations that unite disparate inorganic/organic, and soft/rigid materials systems. For the integrated photonic system, we focus our efforts on chalcogenide glasses, dielectric materials that exhibit a variety of optical properties that make them desirable for near- and mid-infrared communications and sensing applications. However, processing limitations for these relatively fragile materials have made the direct integration of waveguides with sources or detectors challenging. Here we demonstrate the viability of several additive methods for patterning chalcogenide glass waveguides from solution. In particular, we focus on two complementary soft lithography methods. The first, micro-molding in capillaries (MIMIC), is shown to fabricate multi-mode As2S 3 waveguides which are directly integrated with quantum cascade lasers (QCLs). In a second method, we demonstrate the ability of micro-transfer molding (muTM), to produce arrays of single mode rib waveguides over large areas while maintaining low surface and edge roughness. These methods form a suite of processes that can be applied to chalcogenide solutions to create a diverse array of mid-IR photonic structures ranging from less than 5 to 10's of mum in cross-sectional dimension. Optical characterization, including measurement of waveguide loss by cut-back, is carried out in the mid-IR using QCLs. In addition, materials characterization of the chalcogenide glass structures is carried out to determine loss mechanisms and optimize processing. While we use soft polymeric materials as molds to pattern chalcogenide glasses, we also employ them as substrate material for stretchable electronic systems, which comprise a new class of flexible macroelectronics. These devices must undergo elastic deformation to large strain (>10%), for applications in which electronics are conformally shaped around surfaces of arbitrary shape, like many biological surfaces. We develop strategies for processing stretchable metallic electrodes and study the mechanism of their stretchability via careful observation of thin film micro-structures. Our macroelectronic work culminates in fabrication of stretchable microelectrode arrays that interface with brain tissue, laying the groundwork for future development of advanced bio-electronic interfaces.

  7. Controlling the Photophysical Properties of Semiconductor Quantum Dot Arrays by Strategically Altering Their Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Marshall, Ashley R.

    Semiconductor quantum dots (QDs) are interesting materials that, after less than 40 years of research, are used in commercial products. QDs are now found in displays, such as Samsung televisions and the Kindle Fire, and have applications in lighting, bio-imaging, quantum computing, and photovoltaics. They offer a large range of desirable properties: a controllable band gap, solution processability, controlled energy levels, and are currently the best materials for multiple exciton generation. The tunable optoelectronic properties of QDs can be controlled using size, shape, composition, and surface treatments--as shown here. Due to the quasi-spherical shape of QDs the surface to volume ratio is high, i.e. many of the constituent atoms are found on the QD surface. This makes QDs highly sensitive to surface chemistry modifications. This thesis encompasses the effects of surface treatments for QDs of two semiconducting materials: lead chalcogenides and CsPbI3. Our group developed a new synthetic technique for lead chalcogenide QDs via the cation exchange of cadmium chalcogenides. An in-depth chemical analysis is paired with optical and electrical studies and we find that metal halide residue contributes to the oxidative stability and decreased trap state density in cation-exchanged PbS QDs. We exploit these properties to make air-stable QD photovoltaic devices from both PbS and PbSe QD materials. Beyond the effects of residual atoms left from the synthetic technique, I investigated how to controllably add atoms onto the surface of QDs. I found that by introducing metal halides as a post-treatment in an electronically coupled array I am able to control the performance parameters in QD photovoltaic devices. These treatments fully infiltrate the assembled film, even under short exposure times and allow me to add controlled quantities of surface atoms to study their effects on film properties and photovoltaic device performance. Finally, I sought to apply the knowledge of the lead chalcogenide QD surfaces to produce QD photovoltaics from a new material: CsPbI3. I fabricated the first perovskite QD photovoltaic devices and using similar treatment methods as the lead chalcogenide QD arrays, I am able to influence the photophysical properties of CsPbI3 QD arrays.

  8. Opal photonic crystals infiltrated with chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Astratov, V. N.; Adawi, A. M.; Skolnick, M. S.

    Composite opal structures for nonlinear applications are obtained by infiltration with chalcogenide glasses As{sub 2}S{sub 3} and AsSe by precipitation from solution. Analysis of spatially resolved optical spectra reveals that the glass aggregates into submillimeter areas inside the opal. These areas exhibit large shifts in the optical stop bands by up to 80 nm, and by comparison with modelling are shown to have uniform glass filling factors of opal pores up to 40%. Characterization of the domain structure of the opals prior to infiltration by large area angle-resolved spectroscopy is an important step in the analysis of the properties ofmore » the infiltrated regions. {copyright} 2001 American Institute of Physics.« less

  9. Inhomogeneous and homogeneous linewidths in Er 3+-doped chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Bigot, L.; Jurdyc, A.-M.; Jacquier, B.; Adam, J.-L.

    2003-10-01

    The erbium 4I 13/2- 4I 15/2 transition around 1.5 μm is of prim interest for telecommunications and depends on the erbium ions surrounding. In glasses, the broadening of a transition comes from two contributions: inhomogeneous (due to the disorder) and homogeneous (due to the electron phonon interaction) broadening. Resonant Fluorescence Line Narrowing (RFLN) is a useful tool to separate this two parameters. We will show in this paper that the 4I 13/2- 4I 15/2 transition in chalcogenide glass (GeGaSSb) presents a strong homogeneous character and a smaller inhomogeneous contribution compared to aluminosilicate and fluoride glasses. Consequences on gain saturation will also be discussed.

  10. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  11. CW all optical self switching in nonlinear chalcogenide nano plasmonic directional coupler

    NASA Astrophysics Data System (ADS)

    Motamed-Jahromi, Leila; Hatami, Mohsen

    2018-04-01

    In this paper we obtain the coupling coefficient of plasmonic directional coupler (PDC) made up of two parallel monolayer waveguides filled with high nonlinear chalcogenide material for TM mode in continues wave (CW) regime. In addition, we assume each waveguides acts as a perturbation to other waveguide. Four nonlinear-coupled equations are derived. Transfer distances are numerically calculated and used for deriving length of all optical switch. The length of designed switch is in the range of 10-1000 μm, and the switching power is in the range of 1-100 W/m. Obtained values are suitable for designing all optical elements in the integrated optical circuits.

  12. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  13. Application of electrochemical method to microfabricated region in single-crystal device of FeSe1- x Te x superconductors

    NASA Astrophysics Data System (ADS)

    Okada, Kazuhiro; Takagi, Tomohiro; Kobayashi, Masahiro; Ohnuma, Haruka; Noji, Takashi; Koike, Yoji; Ayukawa, Shin-ya; Kitano, Haruhisa

    2018-04-01

    The application of an electrochemical method to the iron-based chalcogenide superconductors has great potentials in enhancing their properties such as the superconducting transition temperature. Unfortunately, this method has been limited to polycrystalline powders or thin film samples with a large surface area. Here, we demonstrate that the electrochemical method can be usefully applied to single-crystal devices of FeSe1- x Te x superconductors by combining it with the focused ion beam (FIB) microfabrication techniques. Our results open a new route to developing the high-quality superconducting devices fabricated using layered iron-based chalcogenides, whose properties are electrochemically controlled.

  14. Silver photo-diffusion and photo-induced macroscopic surface deformation of Ge{sub 33}S{sub 67}/Ag/Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakaguchi, Y., E-mail: y-sakaguchi@cross.or.jp; Asaoka, H.; Uozumi, Y.

    2016-08-07

    Ge-chalcogenide films show various photo-induced changes, and silver photo-diffusion is one of them which attracts lots of interest. In this paper, we report how silver and Ge-chalcogenide layers in Ge{sub 33}S{sub 67}/Ag/Si substrate stacks change under light exposure in the depth by measuring time-resolved neutron reflectivity. It was found from the measurement that Ag ions diffuse all over the matrix Ge{sub 33}S{sub 67} layer once Ag dissolves into the layer. We also found that the surface was macroscopically deformed by the extended light exposure. Its structural origin was investigated by a scanning electron microscopy.

  15. Mid-infrared supercontinuum generation in multimode step index chalcogenide fiber

    NASA Astrophysics Data System (ADS)

    Ben Khalifa, Ameni; Ben Salem, Amine; Cherif, Rim; Zghal, Mourad

    2016-09-01

    In this paper, we propose a design of a high numerical aperture multimode hybrid step-index fiber for mid-infrared (mid- IR) supercontinuum generation (SCG) where two chalcogenide glass compositions As40Se60 and Ge10As23.4Se66.6 for the core and the cladding are selected, respectively. Aiming to get accurate modeling of the SCG by the fundamental mode, we solve the multimode generalized nonlinear Schrödinger equations and demonstrate nonlinear coupling and energy transfer between high order modes. The proposed study points out the impact of nonlinear mode coupling that should be taken into account in order to successfully predict the mid-infrared supercontinuum generation in highly nonlinear multimode fibers.

  16. Structure of rare-earth chalcogenide glasses by neutron and x-ray diffraction

    DOE PAGES

    Drewitt, James W. E.; Salmon, Philip S.; Zeidler, Anita; ...

    2017-04-28

    The method of neutron diffraction with isomorphic substitution was used to measure the structure of the rare-earth chalcogenide glasses (R 2X 3) 0.07(Ga 2X 3) 0.33(GeX 2) 0.60 with R = La or Ce and X = S or Se. X-ray diffraction was also used to measure the structure of the sulphide glass. The results are consistent with networks that are built from GeX 4 and GaX 4 tetrahedra, and give R-S and R-Se coordination numbers of 8.0(2) and 8.5(4), respectively. The minimum nearest-neighbour R-R distance associated with rare-earth clustering is discussed.

  17. Validity of the local approximation in iron pnictides and chalcogenides

    DOE PAGES

    Sémon, Patrick; Haule, Kristjan; Kotliar, Gabriel

    2017-05-08

    We introduce a methodology to treat different degrees of freedom at different levels of approximation. We use cluster DMFT (dynamical mean field theory) for the t 2g electrons and single site DMFT for the e g electrons to study the normal state of the iron pnictides and chalcogenides. Furthermore, in the regime of moderate mass renormalizations, the self-energy is very local, justifying the success of single site DMFT for these materials and for other Hunds metals. Here we solve the corresponding impurity model with CTQMC (continuous time quantum Monte Carlo) and find that the minus sign problem is not severemore » in regimes of moderate mass renormalization.« less

  18. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.

    We demonstrate that the differential conductance, dI/dV, measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two holelike Fermi surfaces, and a strongly anisotropic gap on the electronlike Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C-2 symmetry in the Fourier transformed differential conductance.

  19. Power-efficient production of photon pairs in a tapered chalcogenide microwire

    NASA Astrophysics Data System (ADS)

    Meyer-Scott, Evan; Dot, Audrey; Ahmad, Raja; Li, Lizhu; Rochette, Martin; Jennewein, Thomas

    2015-02-01

    Using tapered fibers of As2Se3 chalcogenide glass, we produce photon pairs at telecommunication wavelengths with low pump powers. We found maximum coincidences-to-accidentals ratios of 2.13 ± 0.07 for degenerate pumping with 3.2 μW average power, and 1.33 ± 0.03 for non-degenerate pumping with 1.0 μW and 1.5 μW average power of the two pumps. Our results show that the ultrahigh nonlinearity in these microwires could allow single-photon pumping to produce photon pairs, enabling the production of large entangled states, heralding of single photons after lossy transmission, and photonic quantum information processing with nonlinear optics.

  20. Infrared Wire-Grid Polarizer with Antireflection Structure by Imprinting on Both Sides

    NASA Astrophysics Data System (ADS)

    Yamada, Itsunari; Yamashita, Naoto; Tani, Kunihiko; Einishi, Toshihiko; Saito, Mitsunori; Fukumi, Kouhei; Nishii, Junji

    2012-08-01

    We fabricated infrared wire-grid polarizers with an antireflection (AR) grating structure by the simultaneous imprinting on both sides of a low-toxicity chalcogenide glass (Sb-Ge-Sn-S system). Silicon carbide and glassy carbon plates were used as molds for the direct glass imprinting. A wire-grid polarizer of 100-nm-thick was produced by depositing Al obliquely on the grating. Although the transmittance of the chalcogenide glass substrate was 62-66% in the 8.5-10.5 µm wavelength range, the transverse magnetic (TM) transmittance of the fabricated element became higher than 70% owing to the AR structure. The extinction ratio was larger than 20 dB at 11 µm wavelength.

  1. Dispersion of the refractive index of a samarium-doped Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atayeva, S. U., E-mail: seva-atayeva@mail.ru; Mekhtiyeva, S. I.; Isayev, A. I.

    2015-07-15

    The transmission spectrum of a Se{sup 95}Te{sup 5} chalcogenide glassy semiconductor doped with samarium (0.05, 0.1, 0.25, 0.5, and 1 at %) is studied; the Swanepoel method and the single-oscillator model are used to determine the oscillator energy E{sup 0}, dispersion energy E{sup d}, optical width of the band gap E{sup g}, and linear (n) and nonlinear (n{sup 2}) refractive indices. The changes in the values of these parameters as a result of doping are attributed to modification of the local structure and to a change in the concentration of defect states.

  2. Low temperature co-pyrolysis of hexabenzylditinsulfide and selenium. An alternate route to Sn(S{sub x}Se{sub 1{minus}x})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boudjouk, P.; Remington, M.P. Jr.; Seidler, D.J.

    1999-12-01

    Benzyl-substituted tin chalcogenides (Bn{sub 3}Sn){sub 2}S (1) and (Bn{sub 3}Sn){sub 2}Se (2) yield polycrystalline-phase pure SnS and SnSe in good ceramic yields when pyrolyzed with S and Se, respectively, at 275 C. Heating mixtures of (1) and elemental selenium produce solid solutions of the formula Sn(S{sub x}Se{sub 1{minus}x}). Combustion analysis showed less than 1% residual carbon in all ceramic products. This methodology allows the complete conversion of tin-to-tin chalcogenides and eliminates the need to synthesize organosulfur and organoselenium intermediates.

  3. Dielectric study of chalcogenide (Se80Te20)94Ge6 glass

    NASA Astrophysics Data System (ADS)

    Sharma, Neha; Patial, Balbir Singh; Thakur, Nagesh

    2018-04-01

    In the present study, dielectric characteristics specifically dielectric constant (ɛ'), dielectric loss (ɛ″) and AC conductivity (σAC) have been investigated for chalcogenide (Se80Te20)94Ge6 glass in the frequency range from 1Hz to 1MHz and within the temperature range from 300 K to 380 K. ɛ'(ω) and ɛ″(ω) are found to be frequency and temperature dependent. This behaviour is interpreted on the basis of Guintini's theory of dielectric dispersion. The investigated glass obeys the power law ωs (s<1) and decreases as temperature rises. The obtained results are discussed in terms of the correlation barrier hopping (CBH) model proposed by Elliot.

  4. Behavior of a supercooled chalcogenide liquid in the non-Newtonian regime under steady vs. oscillatory shear

    NASA Astrophysics Data System (ADS)

    Sen, S.; Zhu, W.; Aitken, B. G.

    2017-07-01

    The steady and oscillatory shear rate dependence of viscosity of a supercooled chalcogenide liquid of composition As10Se90 is measured at Newtonian viscosities ranging between 103 and 107 Pa s using capillary and parallel plate rheometry. The liquid displays strong violation of the Cox-Merz rule in the non-Newtonian regime where the viscosity under steady shear is nearly an order of magnitude lower than that under oscillatory shear. This behavior is argued to be related to the emergence of unusually large (6-8 nm) cooperatively rearranging regions with long relaxation times in the liquid that result from significant structural rearrangements under steady shear.

  5. Improvements on the optical properties of Ge-Sb-Se chalcogenide glasses with iodine incorporation

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Wang, Xunsi; Zhu, Qingde; Nie, Qiuhua; Zhu, Minming; Zhang, Peiquan; Dai, Shixun; Shen, Xiang; Xu, Tiefeng; Cheng, Ci; Liao, Fangxing; Liu, Zijun; Zhang, Xianghua

    2015-11-01

    Decreasing glass network defects and improving optical transmittance are essential work for material researchers. We studied the function of halogen iodine (I) acting as a glass network modifier in Ge-Sb-Se-based chalcogenide glass system. A systematic series of Ge20Sb5Se75-xIx (x = 0, 5, 10, 15, 20 at.%) infrared (IR) chalcohalide glasses were investigated to decrease the weak absorption tail (WAT) and improve the mid-IR transparency. The mechanisms of the halogen I affecting the physical, thermal, and optical properties of Se-based chalcogenide glasses were reported. The structural evolutions of these glasses were also revealed by Raman spectroscopy and camera imaging. The progressive substitution of I for Se increased the optical bandgap. The WAT and scatting loss significantly decreased corresponding to the progressive decrease in structural defects caused by dangling bands and structure defects in the original Ge20Sb5Se75 glass. The achieved maximum IR transparency of Ge-Sb-Se-I glasses can reach up to 80% with an effective transmission window between 0.94 μm and 17 μm, whereas the absorption coefficient decreased to 0.029 cm-1 at 10.16 μm. Thus, these materials are promising candidates for developing low-loss IR fibers.

  6. Surface modification of amorphous substrates by disulfide derivatives: A photo-assisted route to direct functionalization of chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Amalric, Julien; Marchand-Brynaert, Jacqueline

    2011-12-01

    A novel route for chalcogenide glass surface modification is disclosed. The formation of an organic monolayer from disulfide derivatives is studied on two different glasses of formula GexAsySez by water contact angle measurement, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy in attenuated total reflection mode (FTIR-ATR). The potential anchoring group is the disulfide functionality. Since thioctic acid derivatives absorb around 335 nm, an irradiation step is included, in order to favor S-S disruption. Three types of disulfide compounds are grafted onto small glass breaks for contact angle and XPS analyses. The results show effective changes of surface state. According to contact angle measurement, the deposited organic layer functionalized by a small polyethylene glycol chain leads to a more hydrophilic surface, long alkyl chain or a perfluorinated carbon chain leads to a more hydrophobic surface. XPS shows the presence at the surface of an organic layer with sulfur and ethylene oxide chains, or augmentation of organic carbons or fluorine and Csbnd F bonds. The photo-assisted grafting of the disulfides onto an ATR prism made of chalcogenide glass shows that this surface modification process does not affect infrared transparency, despite UV treatment, and accurate structural analysis can be performed.

  7. Hot-Chemistry Structural Phase Transformation in Single-Crystal Chalcogenides for Long-Life Lithium Ion Batteries.

    PubMed

    Hassan, Fathy M; Hu, Qianqian; Fu, Jing; Batmaz, Rasim; Li, Jingde; Yu, Aiping; Xiao, Xingcheng; Chen, Zhongwei

    2017-06-21

    Tuned chalcogenide single crystals rooted in sulfur-doped graphene were prepared by high-temperature solution chemistry. We present a facile route to synthesize a rod-on-sheet-like nanohybrid as an active anode material and demonstrate its superior performance in lithium ion batteries (LIBs). This nanohybrid contains a nanoassembly of one-dimensional (1D) single-crystalline, orthorhombic SnS onto two-dimensional (2D) sulfur-doped graphene. The 1D nanoscaled SnS with the rodlike single-crystalline structure possesses improved transport properties compared to its 2D hexagonal platelike SnS 2 . Furthermore, we blend this hybrid chalcogenide with biodegradable polymer composite using water as a solvent. Upon drying, the electrodes were subjected to heating in vacuum at 150 °C to induce polymer condensation via formation of carboxylate groups to produce a mechanically robust anode. The LIB using the as-developed anode material can deliver a high volumetric capacity of ∼2350 mA h cm -3 and exhibit superior cycle stability over 1500 cycles as well as a high capacity retention of 85% at a 1 C rate. The excellent battery performance combined with the simplistic, scalable, and green chemistry approach renders this anode material as a very promising candidate for LIB applications.

  8. Investigation of Optical Nonlinearities in Bi-Doped Se-Te Chalcogenide Thin Films

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2015-03-01

    The present paper reports the nonlinear optical properties of chalcogenide Se85- x Te15Bi x (0 ≤ x ≤ 5) thin films. The formulation proposed by Boling, Fournier, and Snitzer and Tichy and Ticha has been used to compute the nonlinear refractive index n 2. The two-photon absorption coefficient β 2, and first- and third-order susceptibilities [ χ (1) and χ (3)] are also reported. The nonlinear refractive index n 2 is well correlated with the linear refractive index n and Wemple-DiDomenico (WDD) parameters, in turn depending on the density ρ and molar volume V m of the system. The density of the system is calculated experimentally by using Archimedes' principle. The linear optical parameters, viz. n, WDD parameters, and optical bandgap E g, are measured experimentally using ellipsometric curves obtained by spectrophotometry. The composition-dependent behavior of n 2 is analyzed on the basis of various parameters, viz. density, bond distribution, cohesive energy (CE), and optical bandgap E g, of the system. The variation of n 2 and β 2 with changing bandgap E g is also reported. The values of n 2 and χ (3) of the investigated chalcogenides are compared with those of pure silica, oxide, and other Se-based glasses.

  9. Temperature and frequency response of conductivity in Ag2S doped chalcogenide glassy semiconductor

    NASA Astrophysics Data System (ADS)

    Ojha, Swarupa; Das, Anindya Sundar; Roy, Madhab; Bhattacharya, Sanjib

    2018-06-01

    The electric conductivity of chalcogenide glassy semiconductor xAg2S-(1-x)(0.5S-0.5Te) has been presented here as a function of temperature and frequency. Formation of different nanocrystallites has been confirmed from X-ray diffraction study. It is also noteworthy that average size of nanocrystallites decreases with the increase of dislocation density. Dc conductivity data have been interpreted using Mott's model and Greaves's model in low and high temperature regions respectively. Ac conductivity above the room temperature has been analyzed using Meyer-Neldel (MN) conduction rule. It is interestingly noted that Correlated Barrier Hopping (CBH) model is the most appropriate conduction mechanism for x = 0.35, where pairs of charge carrier are considered to hop over the potential barrier between the sites via thermal activation. To interpret experimental data for x = 0.45, modified non-overlapping small polaron tunnelling (NSPT) model is supposed to be appropriate model due to tunnelling through grain boundary. The conductivity spectra at various temperatures have been analyzed using Almond-West Formalism (power law model). Scaling of conductivity spectra reveals that electrical relaxation process of charge carriers (polaron) is temperature independent but depends upon the composition of the present chalcogenide glassy system.

  10. Materials Science and Device Physics of 2-Dimensional Semiconductors

    NASA Astrophysics Data System (ADS)

    Fang, Hui

    Materials and device innovations are the keys to future technology revolution. For MOSFET scaling in particular, semiconductors with ultra-thin thickness on insulator platform is currently of great interest, due to the potential of integrating excellent channel materials with the industrially mature Si processing. Meanwhile, ultra-thin thickness also induces strong quantum confinement which in turn affect most of the material properties of these 2-dimensional (2-D) semiconductors, providing unprecedented opportunities for emerging technologies. In this thesis, multiple novel 2-D material systems are explored. Chapter one introduces the present challenges faced by MOSFET scaling. Chapter two covers the integration of ultrathin III V membranes with Si. Free standing ultrathin III-V is studied to enable high performance III-V on Si MOSFETs with strain engineering and alloying. Chapter three studies the light absorption in 2-D membranes. Experimental results and theoretical analysis reveal that light absorption in the 2-D quantum membranes is quantized into a fundamental physical constant, where we call it the quantum unit of light absorption, irrelevant of most of the material dependent parameters. Chapter four starts to focus on another 2-D system, atomic thin layered chalcogenides. Single and few layered chalcogenides are first explored as channel materials, with focuses in engineering the contacts for high performance MOSFETs. Contact treatment by molecular doping methods reveals that many layered chalcogenides other than MoS2 exhibit good transport properties at single layer limit. Finally, Chapter five investigated 2-D van der Waals heterostructures built from different single layer chalcogenides. The investigation in a WSe2/MoS2 hetero-bilayer shows a large Stokes like shift between photoluminescence peak and lowest absorption peak, as well as strong photoluminescence intensity, consistent with spatially indirect transition in a type II band alignment in this van der Waals heterostructure. This result enables new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers and highlights the ability to build van der Waals semiconductor heterostructure lasers/LEDs.

  11. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    NASA Astrophysics Data System (ADS)

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  12. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives

    NASA Astrophysics Data System (ADS)

    Kriegel, Ilka; Scotognella, Francesco; Manna, Liberato

    2017-02-01

    Degenerately doped semiconductor nanocrystals (NCs) are of recent interest to the NC community due to their tunable localized surface plasmon resonances (LSPRs) in the near infrared (NIR). The high level of doping in such materials with carrier densities in the range of 1021cm-3 leads to degeneracy of the doping levels and intense plasmonic absorption in the NIR. The lower carrier density in degenerately doped semiconductor NCs compared to noble metals enables LSPR tuning over a wide spectral range, since even a minor change of the carrier density strongly affects the spectral position of the LSPR. Two classes of degenerate semiconductors are most relevant in this respect: impurity doped semiconductors, such as metal oxides, and vacancy doped semiconductors, such as copper chalcogenides. In the latter it is the density of copper vacancies that controls the carrier concentration, while in the former the introduction of impurity atoms adds carriers to the system. LSPR tuning in vacancy doped semiconductor NCs such as copper chalcogenides occurs by chemically controlling the copper vacancy density. This goes in hand with complex structural modifications of the copper chalcogenide crystal lattice. In contrast the LSPR of degenerately doped metal oxide NCs is modified by varying the doping concentration or by the choice of host and dopant atoms, but also through the addition of capacitive charge carriers to the conduction band of the metal oxide upon post-synthetic treatments, such as by electrochemical- or photodoping. The NIR LSPRs and the option of their spectral fine-tuning make accessible important new features, such as the controlled coupling of the LSPR to other physical signatures or the enhancement of optical signals in the NIR, sensing application by LSPR tracking, energy production from the NIR plasmon resonance or bio-medical applications in the biological window. In this review we highlight the recent advances in the synthesis of various different plasmonic semiconductor NCs with LSPRs covering the entire spectral range, from the mid- to the NIR. We focus on copper chalcogenide NCs and impurity doped metal oxide NCs as the most investigated alternatives to noble metals. We shed light on the structural changes upon LSPR tuning in vacancy doped copper chalcogenide NCs and deliver a picture for the fundamentally different mechanism of LSPR modification of impurity doped metal oxide NCs. We review on the peculiar optical properties of plasmonic degenerately doped NCs by highlighting the variety of different optical measurements and optical modeling approaches. These findings are merged in an exhaustive section on new and exciting applications based on the special characteristics that plasmonic semiconductor NCs bring along.

  13. Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}: Three new quaternary interlanthanide chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babo, Jean-Marie; Albrecht-Schmitt, Thomas E., E-mail: talbrec1@nd.edu

    2013-01-15

    Three new ordered quaternary interlanthanide chalcogenides, Ce{sub 2}AgYb{sub 5/3}Se{sub 6}, La{sub 2}CuErTe{sub 5}, and Ce{sub 2}CuTmTe{sub 5}, have been prepared by direct reaction of the elements in molten NaBr at 900 Degree-Sign C. Each compound forms a new structure-type. The Ce{sub 2}AgYb{sub 5/3}Se{sub 6} structure consists of {infinity}{sup 2}{l_brace} [AgYb{sub 5/6}Se{sub 6}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers are composed of {infinity}{sup 1}{l_brace} [Yb{sub 5/3}Se{sub 6}]{sup 7-}{r_brace} quadruplet ribbons of [YbSe{sub 6}]{sup 9-} octahedra and infinite {infinity}{sup 1}{l_brace} [AgSe{sub 6}]{sup 11-}{r_brace} double chains of [AgSe{sub 5}]{sup 9-}. The La{sub 2}CuErTe{sub 5} structure is made of one-dimensional {infinity}{supmore » 1}{l_brace} [CuErTe{sub 5}]{sup 6-}{r_brace} ribbons separated by La{sup 3+} cations. These ribbons are formed by cis-edge sharing {infinity}{sup 1}{l_brace} [CuTe{sub 2}]{sup 3-}{r_brace} tetrahedral chains and trans-edge sharing {infinity}{sup 1}{l_brace} [ErTe{sub 4}]{sup 5-}{r_brace} chains. While La{sub 2}CuErTe{sub 5} crystallizes in the orthorhombic space group Pnma, Ce{sub 2}CuTmTe{sub 5} crystallizes in the monoclinic space group C2/m. The latter crystal structure is assembled from {infinity}{sup 2}{l_brace} [CuTmTe{sub 5}]{sup 6-}{r_brace} layers intercalated by Ce{sup 3+} cations. These layers consist of single {infinity}{sup 1}{l_brace} [TmTe{sub 4}]{sup 5-}{r_brace} chains connected to each other through dimers or pseudo-double chains. - Graphical abstract: [CuTe{sub 4}]{sup 7-} tetrahedra sharing cis-edges to yield chains in the La{sub 2}CuErTe{sub 5}. Highlights: Black-Right-Pointing-Pointer New ordered interlanthanide tellurides. Black-Right-Pointing-Pointer New quaternary chalcogenides. Black-Right-Pointing-Pointer Low-dimensional lanthanide chalcogenide substructures. Black-Right-Pointing-Pointer Flux synthesis of new chalcogenides.« less

  14. Metal chalcogenide nanoparticle gel networks: Their formation mechanism and application for novel material generation and heavy metal water remediation via cation exchange reactions

    NASA Astrophysics Data System (ADS)

    Palhares, Leticia F.

    The dissertation research is focused on (1) uncovering the mechanism of metal chalcogenide nanoparticle gel formation; (2) extending the cation exchange reaction protocol to zinc sulfide gel networks, with the goal of accessing new aerogel chemistries and understanding the factors that drive the process; and (3) conducting a quantitative analysis of the ability of ZnS aerogels to remove heavy metal ions from aqueous solutions. The mechanism of metal chalcogenide nanoparticle gel formation was investigated using Raman spectroscopy and X-ray Photoelectron Spectroscopy to probe the chemical changes that occur during the gelation process. These techniques suggest that the bonding between the particles in the CdSe nanoparticle gels is due to the oxidation of surface selenide species, forming covalent Se--Se bonds. Treating the gel networks with a suitable reducing agent, such as a thiol, breaks the covalent bond and disperses the gel network. The addition of sodium borohydride, a "pure" reducing agent, also breaks down the gel network, strengthening the hypothesis that the reducing character of the thiols, not their ligation ability, is responsible for the gel network breakdown. UV-Vis spectroscopy, Transmission Electron Microscopy and Powder X-ray Diffraction were used to analyze the particles after successive gelation-dispersion cycles. The primary particle size decreases after repeated oxidation-reduction cycles, due to nanoparticle surface etching. This trend is observed for CdSe and CdS gel networks, allowing for the proposition that the oxidative-reductive mechanism responsible for the formation-dispersion of the gels is general, applying to other metal chalcogenide nanocrystals as well. The cation exchange reaction previously demonstrated for CdSe gels was extended to ZnS gel networks. The exchange occurs under mild reaction conditions (room temperature, methanol solvent) with exchanging ions of different size, charge and mobility (Ag+, Pb2+, Cd2+ , Cu2+). The overall reaction is kinetically controlled, since systems with similar solubility, and thus similar thermodynamic driving force (e.g. PbS and CdS) exchange at very different rates. A correlation exists between the speed of the reaction and the difference between the reduction potential of the incoming cation and that of Zn2+; the larger the difference, the faster the exchange. At the same time, the porosity of the aerogels and the surfactant-free surfaces hold great importance for the exchange reactions, allowing for exchange between cations of similar size and charge (i.e. Pb2+ for Zn2+), a phenomenon that was previously reported as impossible in ligand-capped metal chalcogenide nanoparticles. These observations allowed for a better understanding of the factors governing the cation exchange reaction in nanoscale metal chalcogenides. Quaternary ZnS-CuInS2 gels were obtained by cation exchange with Cu+ and In3+, but the pure CuInS2 phase was not obtained under the mild reaction conditions used, probably due to the very different mobility of the two exchanging cations. The kinetically fast cation exchange process and the propensity of the soft chalcogenide gel networks to bind heavy metal ions selectively, suggest that these materials could also be suitable for the removal of heavy metal ions from the environment. The dissertation research studied the capacity of ZnS aerogels to sequester heavy metal ions such as Pb2+ and Hg2+ from water. The materials are efficient in removing the heavy metal ions from aqueous solutions with a wide range of initial concentrations. For initial concentrations that mimic an environmental spill (i.e. 100 ppb Pb2+), the treatment with the aerogel affords a final concentration lower than the 15 ppm action level recommended by the EPA. Under thermodynamically forcing conditions, the water remediation capacity of the ZnS nanoparticle aerogels was determined to be 14.2 mmol Pb2+ / g ZnS aerogel, which is the highest value reported to date.

  15. Electronic-structure theory of plutonium chalcogenides

    NASA Astrophysics Data System (ADS)

    Shick, Alexander; Havela, Ladislav; Gouder, Thomas; Rebizant, Jean

    2009-03-01

    The correlated band theory methods, the around-mean-field LDA + U and dynamical LDA + HIA (Hubbard-I), are applied to investigate the electronic structure of Pu chalcogenides. The LDA + U calculations for PuX (X = S, Se, Te) provide non-magnetic ground state in agreement with the experimental data. Non-integer filling of 5 f-manifold (from approx. 5.6 in PuS to 5.7 PuTe). indicates a mixed valence ground state which combines f5 and f6 multiplets. Making use of the dynamical LDA+HIA method the photoelectron spectra are calculated in good agreement with experimental data. The three-peak feature near EF attributed to 5 f-manifold is well reproduced by LDA + HIA, and follows from mixed valence character of the ground state.

  16. Surface relief and refractive index gratings patterned in chalcogenide glasses and studied by off-axis digital holography.

    PubMed

    Cazac, V; Meshalkin, A; Achimova, E; Abashkin, V; Katkovnik, V; Shevkunov, I; Claus, D; Pedrini, G

    2018-01-20

    Surface relief gratings and refractive index gratings are formed by direct holographic recording in amorphous chalcogenide nanomultilayer structures As 2 S 3 -Se and thin films As 2 S 3 . The evolution of the grating parameters, such as the modulation of refractive index and relief depth in dependence of the holographic exposure, is investigated. Off-axis digital holographic microscopy is applied for the measurement of the photoinduced phase gratings. For the high-accuracy reconstruction of the wavefront (amplitude and phase) transmitted by the fabricated gratings, we used a computational technique based on the sparse modeling of phase and amplitude. Both topography and refractive index maps of recorded gratings are revealed. Their separated contribution in diffraction efficiency is estimated.

  17. Substituent-Modulated Assembly Formation: An Approach to Enhancing the Photostability of Photoelectric-Sensitive Chalcogenide-Based Ion-Pair Hybrids.

    PubMed

    Lin, Jian; Fu, Zhixing; Zhang, Jiaxu; Zhu, Yujia; Hu, Dandan; Li, Dongsheng; Wu, Tao

    2017-03-20

    A series of electronically active viologen dications (RV) with tunable substituent groups were utilized to hybridize with [Ge 4 S 10 ] 4- (T2 cluster) to form the hybrids of T2@RV. These hybrids exhibited variable supermolecular assembly formation, tunable optical absorption properties, and different photoelectric response under the influence of different RV dications. Raman testing and time-dependent photocurrent response indicated that the photosensitivity and photostability of T2@RV could be integrated while choosing suitable RV dications. Current research provides a general method to build a tunable hybrid system based on crystalline metal chalcogenide compounds through the replacement of photoinactive cationic organic templates with photoactive ones with different substituent groups.

  18. Rare earth chalcogenide Ce3Te4 as high efficiency high temperature thermoelectric material

    NASA Astrophysics Data System (ADS)

    Wang, Xiaochun; Yang, Ronggui; Zhang, Yong; Zhang, Peihong; Xue, Yu

    2011-05-01

    The electronic band structures of Ce3Te4 have been studied using the first-principles density-functional theory calculations. It is found that the density of states of Ce3Te4 has a very high delta-shaped peak appearing 0.21 eV above the Fermi level, which mainly comes from the f orbital electrons of the rare-earth element Ce. Using the simple theory proposed by Mahan and Sofo, [Proc. Natl. Acad. Sci. U.S.A. 93, 7436 (1996)], we obtain an ideal value of zT=13.5 for Ce3Te4 at T=1200 K, suggesting that the rare-earth chalcogenide Ce3Te4 could be a promising high efficiency high temperature thermoelectric material.

  19. Layered chalcogenide glass structures for IR lenses

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Sanghera, Jas; Nguyen, Vinh; Scribner, Dean; Maksimovic, Velimir; Gill, John; Yi, Allen; Deegan, John; Unger, Blair

    2014-07-01

    A technique for fabricating novel infrared (IR) lenses can enable a reduction in the size and weight of IR imaging optics through the use of layered glass structures. These structures can range from having a few thick glass layers, mimicking cemented doublets and triplets, to having many thin glass layers approximating graded index (GRIN) lenses. The effectiveness of these structures relies on having materials with diversity in refractive index (large Δn) and dispersion and similar thermo-viscous behavior (common glass transition temperature, ΔTg = 10°C). A library of 13 chalcogenide glasses with broad IR transmission (NIR through LWIR bands) was developed to satisfy these criteria. The lens fabrication methodology, including glass design and synthesis, sheet fabrication, preform making, lens molding and surface finishing are presented.

  20. Structural Flexibility and Alloying in Ultrathin Transition-Metal Chalcogenide Nanowires

    DOE PAGES

    Lin, Junhao; Zhang, Yuyang; Zhou, Wu; ...

    2016-01-18

    Metallic transition-metal chalcogenide (TMC) nanowires are an important building block for 2D electronics that may be fabricated within semiconducting transition-metal dichalcogenide (TMDC) monolayers. Tuning the geometric structure and electronic properties of such nanowires is a promising way to pattern diverse functional channels for wiring multiple units inside a 2D electronic circuit. Nevertheless, few experimental investigations have been reported exploring the structural and compositional tunability of these nanowires, due to difficulties in manipulating the structure and chemical composition of an individual nanowire. Here, using a combination of scanning transmission electron microscopy (STEM) and density functional theory (DFT), we report that TMCmore » nanowires have substantial intrinsic structural flexibility and their chemical composition can be manipulated.« less

  1. Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency.

    PubMed

    Reinhard, Patrick; Bissig, Benjamin; Pianezzi, Fabian; Hagendorfer, Harald; Sozzi, Giovanna; Menozzi, Roberto; Gretener, Christina; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N

    2015-05-13

    Concepts of localized contacts and junctions through surface passivation layers are already advantageously applied in Si wafer-based photovoltaic technologies. For Cu(In,Ga)Se2 thin film solar cells, such concepts are generally not applied, especially at the heterojunction, because of the lack of a simple method yielding features with the required size and distribution. Here, we show a novel, innovative surface nanopatterning approach to form homogeneously distributed nanostructures (<30 nm) on the faceted, rough surface of polycrystalline chalcogenide thin films. The method, based on selective dissolution of self-assembled and well-defined alkali condensates in water, opens up new research opportunities toward development of thin film solar cells with enhanced efficiency.

  2. Investigation of the dynamics of a nonlinear optical response in glassy chalcogenide semiconductors by the pump–probe method

    NASA Astrophysics Data System (ADS)

    Romanova, E. A.; Kuzyutkina, Yu S.; Shiryaev, V. S.; Guizard, S.

    2018-03-01

    An analysis of the results of measurements by using the pump–probe method with a femtosecond resolution in time and computer simulation of the charge carrier kinetics have revealed two types of a nonlinear optical response in samples of chalcogenide glasses belonging to the As – S – Se system, irradiated by 50-fs laser pulses with a wavelength of 0.79 μm. The difference in the nonlinear dynamics is due to the difference in the photoexcitation character, because laser radiation can be absorbed either through bound states in the band gap or without their participation, depending on the ratio of the pump photon energy to the bandgap energy.

  3. Synthesis of sub-micro-flakes CrSe2 on glass and (110) Si substrates by solvothermal method

    NASA Astrophysics Data System (ADS)

    Tang, Qingkai; Liu, Changyou; Zhang, Binbin; Jie, Wanqi

    2018-06-01

    Layered structure MX2 (M = transition metal, X = S, Se and Te) chalcogenides have rich physic properties and potential applications. While it is still a challenge to prepare the chalcogenides by solvothermal method. In this work, we reported a new solution method to prepare CrSe2 sub-micro-flakes on different substrates. The surface morphologies, structures and compositions of the precursor CrSe2(en)1/2 and CrSe2 were investigated by SEM, XRD, thermogravimetric, IR and Raman spectra. The CrSe2 flakes with the sizes of 5-15 μm were obtained on both glass and (110) Si crystalline substrates. The formation mechanism of CrSe2 sub-micro-flakes is suggested.

  4. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE PAGES

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.; ...

    2017-08-09

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  5. Orbital superconductivity, defects, and pinned nematic fluctuations in the doped iron chalcogenide FeSe 0.45 Te 0.55

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarkar, Saheli; Van Dyke, John; Sprau, Peter O.

    We demonstrate that the differential conductance, dI/dV , measured via spectroscopic imaging scanning tunneling microscopy in the doped iron chalcogenide FeSe0.45Te0.55, possesses a series of characteristic features that allow one to extract the orbital structure of the superconducting gaps. This yields nearly isotropic superconducting gaps on the two hole-like Fermi surfaces, and a strongly anisotropic gap on the electron-like Fermi surface. Moreover, we show that the pinning of nematic fluctuations by defects can give rise to a dumbbell-like spatial structure of the induced impurity bound states, and explains the related C 2-symmetry in the Fourier transformed differential conductance.

  6. Wild Band Edges: The Role of Bandgap Grading and Band-Edge Fluctuations in High-Efficiency Chalcogenide Devices: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana

    Band-edge effects -- including grading, electrostatic fluctuations, bandgap fluctuations, and band tails -- affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In,Ga)Se2 devices, recent increases in diffusion length imply changes to optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties and defect formation energies, is examined.

  7. Superconducting FeSe0.1Te0.9 thin films integrated on Si-based substrates

    NASA Astrophysics Data System (ADS)

    Huang, Jijie; Chen, Li; Li, Leigang; Qi, Zhimin; Sun, Xing; Zhang, Xinghang; Wang, Haiyan

    2018-05-01

    With the goal of integrating superconducting iron chalcogenides with Si-based electronics, superconducting FeSe0.1Te0.9 thin films were directly deposited on Si and SiOx/Si substrates without any buffer layer by a pulsed laser deposition (PLD) method. Microstructural characterization showed excellent film quality with mostly c-axis growth on both types of substrates. Superconducting properties (such as superconducting transition temperature T c and upper critical field H c2) were measured to be comparable to that of the films on single crystal oxide substrates. The work demonstrates the feasibility of integrating superconducting iron chalcogenide (FeSe0.1Te0.9) thin films with Si-based microelectronics.

  8. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review.

    PubMed

    Jacob, Jaya Mary; Lens, Piet N L; Balakrishnan, Raj Mohan

    2016-01-01

    Chalcogenide semiconductor quantum dots are emerging as promising nanomaterials due to their size tunable optoelectronic properties. The commercial synthesis and their subsequent integration for practical uses have, however, been contorted largely due to the toxicity and cost issues associated with the present chemical synthesis protocols. Accordingly, there is an immediate need to develop alternative environment-friendly synthesis procedures. Microbial factories hold immense potential to achieve this objective. Over the past few years, bacteria, fungi and yeasts have been experimented with as eco-friendly and cost-effective tools for the biosynthesis of semiconductor quantum dots. This review provides a detailed overview about the production of chalcogen-based semiconductor quantum particles using the inherent microbial machinery. © 2015 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  9. Polishing parameter optimization for end-surface of chalcogenide glass fiber connector

    NASA Astrophysics Data System (ADS)

    Guo, Fangxia; Dai, Shixun; Tang, Junzhou; Wang, Xunsi; Li, Xing; Xu, Yinsheng; Wu, Yuehao; Liu, Zijun

    2017-11-01

    We have investigated the optimization parameters for polishing end-surface of chalcogenide glass fiber connector in the paper. Six SiC abrasive particles of different sizes were used to polish the fiber in order of size from large to small. We analyzed the effects of polishing parameters such as particle sizes, grinding speeds and polishing durations on the quality of the fiber end surface and determined the optimized polishing parameters. We found that, high-quality fiber end surface can be achieved using only three different SiC abrasives. The surface roughness of the final ChG fiber end surface is about 48 nm without any scratches, spots and cracks. Such polishing processes could reduce the average insertion loss of the connector to about 3.4 dB.

  10. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    NASA Astrophysics Data System (ADS)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  11. Two-Dimensional Transition Metal Oxide and Chalcogenide-Based Photocatalysts

    NASA Astrophysics Data System (ADS)

    Haque, Farjana; Daeneke, Torben; Kalantar-zadeh, Kourosh; Ou, Jian Zhen

    2018-06-01

    Two-dimensional (2D) transition metal oxide and chalcogenide (TMO&C)-based photocatalysts have recently attracted significant attention for addressing the current worldwide challenges of energy shortage and environmental pollution. The ultrahigh surface area and unconventional physiochemical, electronic and optical properties of 2D TMO&Cs have been demonstrated to facilitate photocatalytic applications. This review provides a concise overview of properties, synthesis methods and applications of 2D TMO&C-based photocatalysts. Particular attention is paid on the emerging strategies to improve the abilities of light harvesting and photoinduced charge separation for enhancing photocatalytic performances, which include elemental doping, surface functionalization as well as heterojunctions with semiconducting and conductive materials. The future opportunities regarding the research pathways of 2D TMO&C-based photocatalysts are also presented. [Figure not available: see fulltext.

  12. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    NASA Astrophysics Data System (ADS)

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  13. High magnesium mobility in ternary spinel chalcogenides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less

  14. Optical and photoconductivity spectra of novel Ag₂In₂SiS₆ and Ag₂In₂GeS₆ chalcogenide crystals.

    PubMed

    Chmiel, M; Piasecki, M; Myronchuk, G; Lakshminarayana, G; Reshak, Ali H; Parasyuk, O G; Kogut, Yu; Kityk, I V

    2012-06-01

    Complex spectral studies of near-band gap and photoconductive spectra for novel Ag(2)In(2)SiS(6) and Ag(2)In(2)GeS(6) single crystals are presented. The spectral dependences of photoconductivity clearly show an existence of spectral maxima within the 450 nm-540 nm and 780 nm-920 nm. The fundamental absorption edge is analyzed by Urbach rule. The origin of the spectral photoconductivity spectral maxima is discussed. Temperature dependences of the spectra were done. The obtained spectral features allow to propose the titled crystals as photosensors. An analysis of the absorption and photoconductivity spectra is given within a framework of oversimplified spectroscopic model of complex chalcogenide crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Fabrication of ultrafast laser written low-loss waveguides in flexible As₂S₃ chalcogenide glass tape.

    PubMed

    Lapointe, Jerome; Ledemi, Yannick; Loranger, Sébastien; Iezzi, Victor Lambin; Soares de Lima Filho, Elton; Parent, Francois; Morency, Steeve; Messaddeq, Younes; Kashyap, Raman

    2016-01-15

    As2S3 glass has a unique combination of optical properties, such as wide transparency in the infrared region and a high nonlinear coefficient. Recently, intense research has been conducted to improve photonic devices using thin materials. In this Letter, highly uniform rectangular single-index and 2 dB/m loss step-index optical tapes have been drawn by the crucible technique. Low-loss (<0.15  dB/cm) single-mode waveguides in chalcogenide glass tapes have been fabricated using femtosecond laser writing. Optical backscatter reflectometry has been used to study the origin of the optical losses. A detailed study of the laser writing process in thin glass is also presented to facilitate a repeatable waveguide inscription recipe.

  16. High magnesium mobility in ternary spinel chalcogenides

    DOE PAGES

    Canepa, Pieremanuele; Bo, Shou-Hang; Sai Gautam, Gopalakrishnan; ...

    2017-11-24

    Magnesium batteries appear a viable alternative to overcome the safety and energy density limitations faced by current lithium-ion technology. Furthermore, the development of a competitive magnesium battery is plagued by the existing notion of poor magnesium mobility in solids. We demonstrate by using ab initio calculations, nuclear magnetic resonance, and impedance spectroscopy measurements that substantial magnesium ion mobility can indeed be achieved in close-packed frameworks (~ 0.01-0.1 mS cm -1 at 298 K), specifically in the magnesium scandium selenide spinel. Our theoretical predictions also indicate that high magnesium ion mobility is possible in other chalcogenide spinels, opening the door formore » the realization of other magnesium solid ionic conductors and the eventual development of an all-solid-state magnesium battery.« less

  17. Enhanced thermoelectric performance through grain boundary engineering in quaternary chalcogenide Cu2ZnSnSe4

    NASA Astrophysics Data System (ADS)

    Zhu, Yingcai; Liu, Yong; Tan, Xing; Ren, Guangkun; Yu, Meijuan; Hu, Tiandou; Marcelli, Augusto; Xu, Wei

    2018-04-01

    Quaternary chalcogenide Cu2ZnSnSe4 (CZTSe) is a promising wide band-gap p-type thermoelectric material. The structure and thermoelectric properties of lead substituted Cu2ZnSn1-xPbxSe4 are investigated. Lead primarily exists in the framework of PbSe as demonstrated by x-ray diffraction and calculation of x-ray absorption near-edge structure spectroscopy. The second phase distributes at the boundaries of CZTSe with thickness in several hundreds of nanometer. With appropriate grain boundary engineering, the enhancement of power factor and a decrease of thermal conductivity can be achieved simultaneously. As a result, a maximum figure of merit zT of 0.45 is obtained for the sample with x=0.02 at 723K.

  18. Propagation of evanescent waves in multimode chalcogenide fiber immersed in an aqueous acetone solution: theory and experiment

    NASA Astrophysics Data System (ADS)

    Korsakova, S. V.; Romanova, E. A.; Velmuzhov, A. P.; Kotereva, T. V.; Sukhanov, M. V.; Shiryaev, V. S.

    2017-04-01

    Chalcogenide fibers are considered as a base for creation of a fiber-optical platform for the mid-IR evanescent wave spectroscopy. In this work, transmittance of a multimode fiber made of Ge26As17Se25Te32 glass, immersed into an aqueous acetone solution was measured in the range of wavelengths 5 - 9 microns at various concentrations of the solution. A theoretical approach based on electromagnetic theory of optical fibers has been applied for analysis of evanescent modes propagation in the fiber. Attenuation coefficients calculated for each HE1m evanescent mode increase with the mode radial order m. This effect can be used for optimisation of the fiber-optic sensing elements for the mid-IR spectroscopy.

  19. Integrated photonics for infrared spectroscopic sensing

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Kita, Derek; Han, Zhaohong; Su, Peter; Agarwal, Anu; Yadav, Anupama; Richardson, Kathleen; Gu, Tian; Hu, Juejun

    2017-05-01

    Infrared (IR) spectroscopy is widely recognized as a gold standard technique for chemical analysis. Traditional IR spectroscopy relies on fragile bench-top instruments located in dedicated laboratory settings, and is thus not suitable for emerging field-deployed applications such as in-line industrial process control, environmental monitoring, and point-ofcare diagnosis. Recent strides in photonic integration technologies provide a promising route towards enabling miniaturized, rugged platforms for IR spectroscopic analysis. Chalcogenide glasses, the amorphous compounds containing S, Se or Te, have stand out as a promising material for infrared photonic integration given their broadband infrared transparency and compatibility with silicon photonic integration. In this paper, we discuss our recent work exploring integrated chalcogenide glass based photonic devices for IR spectroscopic chemical analysis, including on-chip cavityenhanced chemical sensing and monolithic integration of mid-IR waveguides with photodetectors.

  20. Nonresonant Faraday rotation in glassy semiconductors

    NASA Astrophysics Data System (ADS)

    van den Keybus, P.; Grevendonk, W.

    1986-06-01

    Nonresonant interband Faraday rotation in amorphous semiconductors, as a function of photon energy, may be described by an equation derived for direct transitions in crystalline semiconductors. In this paper it is shown how this equation may be obtained for the former case also, assuming a parabolic density of states function N(E) and a correlation between valence- and conduction-band states. The analysis of experiments on chalcogenide glasses reveals a Faraday-rotation energy gap EFRg that is significantly larger than the optical gap Eoptg. The effect is attributed to transitions between extended states, so that it is meaningful to compare EFRg with the mobility gap Eμg. For oxide glasses both gaps are comparable but for chalcogenide glasses EFRg is too large by a few tenths of 1 eV.

  1. Mid-infrared supercontinuum generation in tapered As2S3 chalcogenide planar waveguide

    NASA Astrophysics Data System (ADS)

    Zhang, Xiang; Hu, Hongyu; Li, Wenbo; Dutta, Niloy K.

    2016-10-01

    We numerically demonstrate mid-infrared supercontinuum generation in a non-uniformly tapered chalcogenide planar waveguide. This planar rib waveguide of As2S3 glass on MgF2 is 2 cm long with increasing etch depth longitudinally to manage the total dispersion. This waveguide has zero dispersion at two wavelengths. The dispersion profile varies along the propagation distance, leading to continuous modification of the phase-matching condition for dispersive wave emission and enhancement of energy transfer efficiency between solitons and dispersive waves. Numerical simulations are conducted for secant input pulses at a wavelength of 1.55 μm with a width of 50 fs and peak power of 2 kW. Results show this proposed scheme significantly broadens the generated continuum, extending from ~1 to ~7 μm.

  2. Chalcogenide glass sensors for bio-molecule detection

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Coleman, Garrett J.; Cantoni, Christopher; Jiang, Shibin; Luo, Tao; Bureau, Bruno; Boussard-Pledel, Catherine; Troles, Johann; Yang, Zhiyong

    2017-02-01

    Chalcogenide glasses constitute the only class of materials that remain fully amorphous while exhibiting broad optical transparency over the full infrared region from 2-20 microns. As such, they can be shaped into complex optical elements while retaining a clear optical window that encompass the vibrational signals of virtually any molecules. Chalcogenide glasses are therefore ideal materials for designing biological and chemical sensors based on vibrational spectroscopy. In this paper we review the properties of these glasses and the corresponding design of optical elements for bio-chemical sensing. Amorphous chalcogenides offer a very wide compositional landscape that permit to tune their physical properties to match specific demands for the production of optical devices. This includes tailoring the infrared window over specific ranges of wavelength such as the long-wave infrared region to capture important vibrational signal including the "signature region" of micro-organisms or the bending mode of CO2 molecules. Additionally, compositional engineering enables tuning the viscosity-temperature dependence of the glass melt in order to control the rheological properties that are fundamental to the production of glass elements. Indeed, exquisite control of the viscosity is key to the fabrication process of many optical elements such as fiber drawing, lens molding, surface embossing or reflow of microresonators. Optimal control of these properties then enables the design and fabrication of optimized infrared sensors such as Fiber Evanescent Wave Spectroscopy (FEWS) sensors, Whispering Gallery Modes (WGM) micro-resonator sensors, nanostructured surfaces for integrated optics and surface-enhanced processes, or lens molding for focused collection of infrared signals. Many of these sensor designs can be adapted to collect and monitor the vibrational signal of live microorganisms to study their metabolism in controlled environmental conditions. Further materials engineering enable the design of opto-electrophoretic sensors that permit simultaneous capture and detection of hazardous bio-molecules such as bacteria, virus and proteins using a conducting glass that serves as both an electrode and an optical elements. Upon adequate spectral analysis such as Principal Component Analysis (PCA) or Partial Least Square (PLS) regression these devices enable highly selective identification of hazardous microorganism such as different strains of bacteria and food pathogens.

  3. Electronic, optical properties and chemical bonding in six novel 1111-like chalcogenide fluorides AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) from first principles calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannikov, V.V.; Shein, I.R.; Ivanovskii, A.L., E-mail: ivanovskii@ihim.uran.ru

    2012-12-15

    Employing first-principles band structure calculations, we have examined the electronic, optical properties and the peculiarities of the chemical bonding for six newly synthesized layered quaternary 1111-like chalcogenide fluorides SrAgSF, SrAgSeF, SrAgTeF, BaAgSF, BaAgSeF, and SrCuTeF, which are discussed in comparison with some isostructural 1111-like chalcogenide oxides. We found that all of the studied phases AMChF (A=Sr, Ba; M=Cu, Ag; and Ch=S, Se, Te) are semiconductors for which the fitted 'experimental' gaps lie in the interval from 2.23 eV (for SrAgSeF) to 3.07 eV (for SrCuTeF). The near-Fermi states of AMChF are formed exclusively by the valence orbitals of the atomsmore » from the blocks (MCh); thus, these phases belong to the layered materials with 'natural multiple quantum wells'. The bonding in these new AMChF phases is described as a high-anisotropic mixture of ionic and covalent contributions, where ionic M-Ch bonds together with covalent M-Ch and Ch-Ch bonds take place inside blocks (MCh), while inside blocks (AF) and between the adjacent blocks (MCh)/(AF) mainly ionic bonds emerge. - Graphical Abstract: Isoelectronic surface for SrAgSeF and atomic-resolved densities of states for SrAgTeF, and SrCuTeF. Highlights: Black-Right-Pointing-Pointer Very recently six new layered 1111-like chalcogenide fluorides AMChF were synthesized. Black-Right-Pointing-Pointer Electronic, optical properties for AMChF phases were examined from first principles. Black-Right-Pointing-Pointer All these materials are characterized as non-magnetic semiconductors. Black-Right-Pointing-Pointer Bonding is highly anisotropic and includes ionic and covalent contributions. Black-Right-Pointing-Pointer Introduction of magnetic ions in AMChF is proposed for search of novel magnetic materials.« less

  4. Photo-Darkening Kinetics and Structural Anisotropic Modifications in the Chalcogenide Glass Arsenic Trisulfide: a Study of Kinetic X-Ray Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jay Min

    1990-08-01

    The purpose of the study is to investigate the mechanisms involved with photo-induced atomic structural modifications in the chalcogenide glass As_2 S_3. This glass exhibits the reversible effects of photo-darkening followed by thermal bleaching. We observed the time behavior of photo-induced properties under the influence of linearly polarized band -gap light. In a macroscopic optical investigation, we monitor optical changes in the photo-darkening process, and in a local structural probe we study kinetic (or time -resolved dispersive) x-ray absorption spectroscopy. Our observations center on kinetic phenomena and structural modifications induced by polarized excitation of lone-pair orbitals in the chalcogenide glass. Experimental results include the following observations: (i) The polarity of the optically induced anisotropy is critically dependent on the intensity and the polarization of the band-gap irradiation beam. (ii) The near edge peak height in x-ray absorption spectra shows subtle but sensitive change during the photo-darkening process. (iii) Photon intensity dependent dichroic kinetics reflect a connection between the optically probed macroscopic property and the x-ray probed local anisotropic structure. Analysis of the x-ray absorption results includes a computer simulation of the polarized absorption spectra. These results suggest that specific structural units tend to orient themselves with respect to the photon polarization. A substantial part of the analysis involves a major effort in dealing with the x-ray kinetic data manipulation and the experimental difficulties caused by a synchrotron instability problem. Based on our observations, we propose a possible mechanism for the observed photo-structural modifications. Through a model of computer relaxed photo-darkening kinetics, we support the notion that a twisting of a specific intermediate range order structure is responsible for local directional variations and global network distortions. In the course of this study, we refine knowledge of intermediate range order structural configurations and the bistabilities related to these configurations. The importance of the lone-pair orbital interactions in the chalcogenide glassy network is underscored.

  5. Correlation of Tc and coefficient of T 2 resistivity term of Fe-based pnictide & chalcogenide superconductors

    NASA Astrophysics Data System (ADS)

    Castro, P. B.; Ferreira, J. L.; Silva Neto, M. B.; ElMassalami, M.

    2018-03-01

    Normal-state of many Fe-based pnictides and chalcogenides superconductors exhibit a quadratic-in-temperature, ρtot – ρo – ρ ph = AT 2, over wide ranges of temperature and pressure. Moreover, these systems exhibit a correlation between their T c and A, namely ln(Tc /θ)∝ A ‑1/2(θ is an energy scale parameter), even when a control parameter such as pressure is widely varied. This manifestation, as well as that of \\frac{1}{{T}c}{≤ft(-\\frac{d{H}c2}{dT}\\right)}{Tc}\\propto \\frac{A}{n} [Phys. Rev. B 89, 220509 (2014), n is charge density, H c2 is the upper critical field] suggests a common Landau Fermi Liquid scenario for both superconductivity and quadratic-in-T contribution.

  6. Low-phonon-frequency chalcogenide crystalline hosts for rare earth lasers operating beyond three microns

    DOEpatents

    Payne, Stephen A.; Page, Ralph H.; Schaffers, Kathleen I.; Nostrand, Michael C.; Krupke, William F.; Schunemann, Peter G.

    2000-01-01

    The invention comprises a RE-doped MA.sub.2 X.sub.4 crystalline gain medium, where M includes a divalent ion such as Mg, Ca, Sr, Ba, Pb, Eu, or Yb; A is selected from trivalent ions including Al, Ga, and In; X is one of the chalcogenide ions S, Se, and Te; and RE represents the trivalent rare earth ions. The MA.sub.2 X.sub.4 gain medium can be employed in a laser oscillator or a laser amplifier. Possible pump sources include diode lasers, as well as other laser pump sources. The laser wavelengths generated are greater than 3 microns, as becomes possible because of the low phonon frequency of this host medium. The invention may be used to seed optical devices such as optical parametric oscillators and other lasers.

  7. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    PubMed

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, David S.

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although amore » large T c value is unlikely.« less

  9. Peculiarities of electron density distribution in bismuth chalcogenides, iron pnictides, cuprates and related unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Orlov, V. G.; Sergeev, G. S.

    2018-05-01

    With the aim to reveal the origin of instabilities in the electron subsystem of unconventional superconductors, such as stripes or nematic symmetry breaking, electron band structure calculations were performed for a number of bismuth chalcogenides, bismuth oxide, iron pnictides, as well as for Bi2Sr2CaCu2O8, YBa2Cu3O7 and La2CuO4. It was found that bond critical points in the electron density distribution ρ(r) of all the studied compounds were characterized by positive sign of electron density Laplacian evidencing on depletion of electron charge from the area of bond critical points. A correlation was found between the Tc and the value of electron density Laplacian in the strongest bond critical points of superconductors and related substances.

  10. Enhanced Thermoelectric Properties of Cu 2ZnSnSe 4 with Ga-doping

    DOE PAGES

    Wei, Kaya; Beauchemin, Laura; Wang, Hsin; ...

    2015-08-10

    Gallium doped Cu 2ZnSnSe 4 quaternary chalcogenides with and without excess Cu were synthesized by elemental reaction and densified using hot pressing in order to investigate their high temperature thermoelectric properties. The resistivity, , and Seebeck coefficient, S, for these materials decrease with increased Ga-doping while both mobility and effective mass increase with Ga doping. The power factor (S 2/ρ) therefore increases with Ga-doping. The highest thermoelectric figure of merit (ZT = 0.39 at 700 K) was obtained for the composition that had the lowest thermal conductivity. Our results suggest an approach to achieving optimized thermoelectric properties and are partmore » of the continuing effort to explore different quaternary chalcogenide compositions and structure types, as this class of materials continues to be of interest for thermoelectrics applications.« less

  11. Structural and electronic properties of Cu2Q and CuQ (Q = O, S, Se, and Te) studied by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Zhao, Ting; Wang, Yu-An; Zhao, Zong-Yan; Liu, Qiang; Liu, Qing-Ju

    2018-01-01

    In order to explore the similarity, difference, and tendency of binary copper-based chalcogenides, the crystal structure, electronic structure, and optical properties of eight compounds of Cu2Q and CuQ (Q = O, S, Se, and Te) have been calculated by density functional theory with HSE06 method. According to the calculated results, the electronic structure and optical properties of Cu2Q and CuQ present certain similarities and tendencies, with the increase of atomic number of Q elements: the interactions between Cu-Q, Cu-Cu, and Q-Q are gradually enhancing; the value of band gap is gradually decreasing, due to the down-shifting of Cu-4p states; the covalent feature of Cu atoms is gradually strengthening, while their ionic feature is gradually weakening; the absorption coefficient in the visible-light region is also increasing. On the other hand, some differences can be found, owing to the different crystal structure and component, for example: CuO presents the characteristics of multi-band gap, which is very favorable to absorb infrared-light; the electron transfer in CuQ is stronger than that in Cu2Q; the absorption peaks and intensity are very strong in the ultraviolet-light region and infrared-light region. The findings in the present work will help to understand the underlying physical mechanism of binary copper-based chalcogenides, and available to design novel copper-based chalcogenides photo-electronics materials and devices.

  12. Co-sputtered amorphous Ge-Sb-Se thin films: optical properties and structure

    NASA Astrophysics Data System (ADS)

    Halenkovič, Tomáš; Němec, Petr; Gutwirth, Jan; Baudet, Emeline; Specht, Marion; Gueguen, Yann; Sangleboeuf, J.-C.; Nazabal, Virginie

    2017-05-01

    The unique properties of amorphous chalcogenides such as wide transparency in the infrared region, low phonon energy, photosensitivity and high linear and nonlinear refractive index, make them prospective materials for photonics devices. The important question is whether the chalcogenides are stable enough or how the photosensitivity could be exacerbated for demanded applications. Of this view, the Ge-Sb-Se system is undoubtedly an interesting glassy system given the antinomic behavior of germanium and antimony with respect to photosensitivity. The amorphous Ge-Sb-Se thin films were fabricated by a rf-magnetron co-sputtering technique employing the following cathodes: GeSe2, Sb2Se3 and Ge28Sb12Se60. Radio-frequency sputtering is widely used for film fabrication due to its relative simplicity, easy control, and often stoichiometric material transfer from target to substrate. The advantage of this technique is the ability to explore a wide range of chalcogenide film composition by means of adjusting the contribution of each target. This makes the technique considerably effective for the exploration of properties mentioned above. In the present work, the influence of the composition determined by energy-dispersive X-ray spectroscopy on the optical properties was studied. Optical bandgap energy Egopt was determined using variable angle spectroscopic ellipsometry. The morphology and topography of the selenide sputtered films was studied by scanning electron microscopy and atomic force microscopy. The films structure was determined using Raman scattering spectroscopy.

  13. Chalcogenide Perovskites for Solar Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Perera, Samanthe

    Methylammonium Lead halide perovskites have recently emerged as a promising candidate for realizing high efficient low cost photovoltaic modules. Charge transport properties of the solution processed halide perovskites are comparable to some of the existing absorbers used in the current PV industry which require sophisticated processing techniques. Due to this simple processing required to achieve high efficiencies, halide perovskites have become an active field of research. As a result, perovskite solar cells are rapidly reaching towards theoretical efficiency limit of close to 30%. It's believed that ionicity inherent to perovskite materials is one of the contributing factors for the excellent charge transport properties of perovskites. Despite the growing interest for solar energy harvesting purposes, these halide perovskites have serious limitations such as toxicity and instability that need to be addressed in order to commercialize the solar cells incorporating them. This dissertation focuses on a new class of ionic semiconductors, chalcogenide perovskites for solar energy harvesting purposes. Coming from the family perovskites they are expected to have same excellent charge transport properties inherent to perovskites due to the ionicity. Inspired by few theoretical studies on chalcogenide perovskites, BaZrS3 and its Ti alloys were synthesized by sulfurizing the oxide counterpart. Structural characterizations have confirmed the predicted distorted perovskite phase. Optical characterizations have verified the direct band gap suitable for thin film single junction solar cells. Anion alloying was demonstrated by synthesizing oxysulfides with widely tunable band gap suitable for applications such as solid state lighting and sensing.

  14. Line defects on As2Se3-Chalcogenide photonic crystals for the design of all-optical power splitters and digital logic gates

    NASA Astrophysics Data System (ADS)

    Saghaei, Hamed; Zahedi, Abdulhamid; Karimzadeh, Rouhollah; Parandin, Fariborz

    2017-10-01

    In this paper, a triangular two-dimensional photonic crystal (PhC) of As2Se3-chalcogenide rods in air is presented and its photonic band diagram is calculated by plane wave method. In this structure, an optical waveguide is obtained by creating a line defect (eliminating rods) in diagonal direction of PhC. Numerical simulations based on finite difference time domain method show that when self-collimated beams undergo total internal reflection at the PhC-air interface, a total reflection of 90° occurs for the output beams. We also demonstrate that by decreasing the radius of As2Se3-chalcogenide instead of eliminating a diagonal line, a two-channel optical splitter will be designed. In this case, incoming self-collimated beams can be divided into the reflected and transmitted beams with arbitrary power ratio by adjusting the value of their radii. Based on these results, we propose a four-channel optical splitter using four line defects. The power ratio among output channels can be controlled systematically by varying the radius of rods in the line defects. We also demonstrate that by launching two optical sources with the same intensity and 90° phase difference from both perpendicular faces of the PhC, two logic OR and XOR gates will be achieved at the output channels. These optical devices have some applications in photonic integrated circuits for controlling and steering (managing) the light as desired.

  15. Transition metal-doped zinc chalcogenides: Spectroscopy and laser demonstration of a new class of gain media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeLoach, L.D.; Page, R.H.; Wilke, G.D.

    The absorption and emission properties of transition metal (TM)-doped Zinc chalcogenides have been investigated to understand their potential application as room-temperature, mid-infrared tunable laser media. Crystals of ZnS, ZnSe, and ZnTe, individually doped with Cr{sup 2+}, Co{sup 2+}, Ni{sup 2+}, or Fe{sup 2+}, have been evaluated. The absorption and emission properties are presented and discussed in terms of the energy levels from which they arise. The absorption spectra of the crystals studied exhibit strong bands between 1.4 and 2.0 {micro}m which overlap with the output of strained-layer InGaAs diodes. The room-temperature emission spectra reveal wide-band emissions from 2--3 {micro}m formore » Cr and from 2.8--1.0 {micro}m for Co. Laser demonstrations of Cr:ZnS and Cr:ZnSe have been performed in a laser-pumped laser cavity with a Co:MgF{sub 2} pump laser. The output of both lasers were determined to peak at wavelengths near 2.35 {micro}m, and both lasers demonstrated a maximum slope efficiency of approximately 20%. Based on these initial results, the Cr{sup 2+} ion is predicted to be a highly favorable laser ion for the mid-IR when doped into the zinc chalcogenides; Co{sup 2+} may also serve usefully, but laser demonstrations yet remain to be performed.« less

  16. Ultrahigh refractive index chalcogenide based copolymers for infrared optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Anderson, Laura E.; Namnabat, Soha; Char, Kookheon; Glass, Richard; Norwood, Robert A.; Pyun, Jeffrey

    2016-09-01

    Current trends in technology development demand increased miniaturization and higher level integration of electronic and photonic components. Such needs arise in emerging imaging systems, optoelectronic devices, optical interconnects and photonic integrated circuits. Compact, integrated photonics requires high refractive index materials, which primarily comprise crystalline and amorphous semiconductors, as well as chalcogenide glasses, which can possess refractive indices higher than 4 and good infrared transparency. There is currently no high refractive index (n 2 or above) that has the low cost production and ease of processing available in optical polymers. Such polymers would potentially cover applications that are not convenient or possible with crystalline and vitreous semiconductors. Examples of such applications include micro lens arrays for image sensors, optical adhesives for bonding and antireflection coatings, and high contrast optical waveguides. While much of the focus has been in the telecommunications transparency regions, significant new opportunities exist for a polymer which is capable of transmitting efficiently in the MWIR region. While there are polymers that have been synthesized with refractive indices as high as 1.75, these polymers are generally conjugated and incorporate heteroatoms such as sulfur or metals, and generally have complex and expensive syntheses. Here we report on new chalcogenide based copolymers with very high refractive index (n 2) that also have good optical transmission properties in the near-, short- and mid-wave infrared up to 5µm. These polymers are rich in sulfur, have low hydrogen content and were made using inverse vulcanization.

  17. Mid-infrared performance of single mode chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Cook, Justin; Sincore, Alex; Tan, Felix; El Halawany, Ahmed; Riggins, Anthony; Shah, Lawrence; Abouraddy, Ayman F.; Richardson, Martin C.; Schepler, Kenneth L.

    2018-02-01

    Due to the intrinsic absorption edge in silica near 2.4 μm, more exotic materials are required to transmit laser power in the IR such as fluoride or chalcogenide glasses (ChGs). In particular, ChG fibers offer broad IR transmission with low losses < 1 dB/m. Here, we report on the performance of in-house drawn multi-material chalcogenide fibers at four different infrared wavelengths: 2053 nm, 2520 nm and 4550 nm. Polymer clad ChG fibers were drawn with 12.3 μm and 25 μm core diameters. Testing at 2053 nm was accomplished using a > 15 W, CW Tm:fiber laser. Power handling up to 10.2 W with single mode beam quality has been demonstrated, limited only by the available Tm:fiber output power. Anti-reflective coatings were successfully deposited on the ChG fiber facets, allowing up to 90.6% transmission with 12.2 MW/cm2 intensity on the facet. Single mode guidance at 4550 nm was also demonstrated using a quantum cascade laser (QCL). A custom optical system was constructed to efficiently couple the 0.8 NA QCL radiation into the 0.2 NA ChG fiber, allowing for a maximum of 78% overlap between the QCL radiation and fundamental mode of the fiber. With an AR-coated, 25 μm core diameter fiber, >50 mW transmission was demonstrated with > 87% transmission. Finally, we present results on fiber coupling from a free space Cr:ZnSe resonator at 2520 nm.

  18. Multinary diamond-like chalcogenides for promising thermoelectric application

    NASA Astrophysics Data System (ADS)

    Zhang, Dan; Bai, Hong-Chang; Li, Zhi-Liang; Wang, Jiang-Long; Fu, Guang-Sheng; Wang, Shu-Fang

    2018-04-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 51372064 and 61704044) and the Key Project of the Natural Science Foundation of Hebei Province, China (Grant No. E2017201227).

  19. Exploratory Solid-State Synthesis of Uranium Chalcogenides and Mixed Anion Uranium Chalcogenides

    NASA Astrophysics Data System (ADS)

    Ward, Matthew David

    Several uranium chalcogenides and mixed anion uranium chalcogenides have been synthesized by solid-state synthetic methods. Structural determinations were carried out via single-crystal X-ray diffraction. Some of these compounds have been further characterized by magnetic measurements, optical properties measurements, Raman spectroscopy, resistivity measurements, XANES and XPS. Eight compounds of the composition MU8Q17 were synthesized and characterized by single-crystal X-ray diffraction. All of these compounds crystallize in the CrU8S17 structure type. XANES measurements indicate that ScU8S17 contains Sc3+ and must be charge balanced with some amount of U 3+. Two compounds of the composition ATiU3Te9 crystallize as black rectangular plates. From single-crystal magnetic measurements, CsTiU 3Te9 is consistent with antiferromagnetic coupling between magnetic U atoms. The uranium chalcogenide compounds NiUS3 and Cr4US 8 were synthesized from reaction of the elements in various fluxes. NiUS3 crystallizes in the GdFeO3 structure type. Cr 4US8 crystallizes in the orthorhombic space group D - Pnma and its structure is related to that of Li4UF 8. The compounds Rh2U6S15, Cs 2Ti2U6Se15, and Cs2Cr 2U6Se15 crystallize as black prisms in the cubic space group O-Im3m. Magnetic measurements on Cs 2Cr2U6Se15 give a value for the Weiss temperature, θWeiss, of 57.59 K, indicative of ferromagnetic coupling. Black plates of CsScU(Se2)Se3 were synthesized from the reaction of the elements in a CsCl flux. CsScU(Se2)Se 3 crystallizes in the orthorhombic space group D- Cmcm . Magnetic susceptibility measurements on CsScU(Se2)Se 3 indicate three regions of magnetic response. The uranium double salt Cs5[U2(μ-S 2)2Cl8]I crystallizes as red plates. Cs 5[U2(μ-S2)2Cl 8]I displays optical anisotropy with band gap energies of 1.99 eV and 2.08 eV along the [001] and [100] polarizations. The uranium oxychalcogenides U7O2Se12 and Na2Ba2(UO2)S4 were synthesized by intentional oxygen contamination. The structure of U7O 2Se12 is related to the previously reported U7Q 12. Na2Ba2(UO2)S4 contains isolated uranyl polyhedra in which each uranium atom may be assigned an oxidation state of +6. The four uranium(IV) chlorophosphates, UCl4(POCl3), [U2Cl9][PCl4], UCl3(PO2Cl 2), and U2Cl8(POCl3) were synthesized in an effort to synthesize new novel uranyl sulfides. All are unstable, but UCl4(POCl3) is the thermodynamically favorable phase.

  20. Hydrophobic chalcogenide fibers for cell-based bio-optical sensors

    NASA Astrophysics Data System (ADS)

    Lucas, Pierre; Riley, Mark R.; Solis, Michelle A.; Juncker, Christophe; Collier, Jayne; Boesewetter, Dianne E.

    2005-03-01

    Chalcogenide fibers are shown to exhibit a hydrophobic surface behavior which results in detection enhancement for organic species in aqueous solutions. We use these fibers to monitor the infrared signature of human lung cells and detect the presence of toxic agents in the cell surrounding media. The signal is collected using a fiber evanescent wave spectroscopy set up with live human cells acting as a sensitizer for detection of minute quantities of toxicant. A monolayer of human alveolar epithelial cells form strong attachment at the surface of the fiber sensing zone and live in contact with the fiber while their IR spectra is collected remotely. Biochemical change in the living cells are detected during exposure to toxic agents. Variations in the spectroscopic features of the cells are observed in different spectral regions. Finally, the toxicity of Te2As3Se5 fibers is investigated.

  1. Synthesis of chalcogenide and pnictide crystals in salt melts using a steady-state temperature gradient

    NASA Astrophysics Data System (ADS)

    Chareev, D. A.; Volkova, O. S.; Geringer, N. V.; Koshelev, A. V.; Nekrasov, A. N.; Osadchii, V. O.; Osadchii, E. G.; Filimonova, O. N.

    2016-07-01

    Some examples of growing crystals of metals, alloys, chalcogenides, and pnictides in melts of halides of alkali metals and aluminum at a steady-state temperature gradient are described. Transport media are chosen to be salt melts of eutectic composition with the participation of LiCl, NaCl, KCl, RbCl, CsCl, AlCl3, AlBr3, KBr, and KI in a temperature range of 850-150°C. Some crystals have been synthesized only using a conducting contour. This technique of crystal growth is similar to the electrochemical method. In some cases, to exclude mutual influence, some elements have been isolated and forced to migrate to the crystal growth region through independent channels. As a result, crystals of desired quality have been obtained using no special equipment and with sizes sufficient for study under laboratory conditions.

  2. Influence of the selenium content on thermo-mechanical and optical properties of Ge-Ga-Sb-S chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Dai, Shixun; Wang, Rongping; Tao, Guangming; Zhang, Peiqing; Wang, Xunsi; Shen, Xiang

    2016-07-01

    A number of Ge17Ga4Sb10S69-xSex (x = 0, 15, 30, 45, 60, and 69) chalcogenide glasses have been synthesized by a melt-quenching method to investigate the effect of the Se content on thermo-mechanical and optical properties of these glasses. While it was found that the glass transition temperature (Tg) decreases from 261 to 174 °C with increasing Se contents, crystallization temperature (Tc) peak only be observed in glasses with Se content of x = 45. It was evident from the measurements of structural and physical properties that changes of the glass network bring an apparent impact on the glass properties. Also, the substitution of Se for S in Ge-Ga-Sb glasses can significantly improve the thermal stability against crystallization and broaden the infrared transmission region.

  3. Stabilized CdSe-CoPi composite photoanode for light-assisted water oxidation by transformation of a CdSe/cobalt metal thin film.

    PubMed

    Costi, Ronny; Young, Elizabeth R; Bulović, Vladimir; Nocera, Daniel G

    2013-04-10

    Integration of water splitting catalysts with visible-light-absorbing semiconductors would enable direct solar-energy-to-fuel conversion schemes such as those based on water splitting. A disadvantage of some common semiconductors that possess desirable optical bandgaps is their chemical instability under the conditions needed for oxygen evolution reaction (OER). In this study, we demonstrate the dual benefits gained from using a cobalt metal thin-film as the precursor for the preparation of cobalt-phosphate (CoPi) OER catalyst on cadmium chalcogenide photoanodes. The cobalt layer protects the underlying semiconductor from oxidation and degradation while forming the catalyst and simultaneously facilitates the advantageous incorporation of the cadmium chalcogenide layer into the CoPi layer during continued processing of the electrode. The resulting hybrid material forms a stable photoactive anode for light-assisted water splitting.

  4. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE PAGES

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff; ...

    2015-08-20

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  5. Pressure-induced metal-insulator transitions in chalcogenide NiS2-xSex

    NASA Astrophysics Data System (ADS)

    Hussain, Tayyaba; Oh, Myeong-jun; Nauman, Muhammad; Jo, Younjung; Han, Garam; Kim, Changyoung; Kang, Woun

    2018-05-01

    We report the temperature-dependent resistivity ρ(T) of chalcogenide NiS2-xSex (x = 0.1) using hydrostatic pressure as a control parameter in the temperature range of 4-300 K. The insulating behavior of ρ(T) survives at low temperatures in the pressure regime below 7.5 kbar, whereas a clear insulator-to-metallic transition is observed above 7.5 kbar. Two types of magnetic transitions, from the paramagnetic (PM) to the antiferromagnetic (AFM) state and from the AFM state to the weak ferromagnetic (WF) state, were evaluated and confirmed by magnetization measurement. According to the temperature-pressure phase diagram, the WF phase survives up to 7.5 kbar, and the transition temperature of the WF transition decreases as the pressure increases, whereas the metal-insulator transition temperature increases up to 9.4 kbar. We analyzed the metallic behavior and proposed Fermi-liquid behavior of NiS1.9Se0.1.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ailavajhala, Mahesh S.; Mitkova, Maria; Gonzalez-Velo, Yago

    We explore the radiation induced effects in thin films from the Ge-Se to Ge-Te systems accompanied with silver radiation induced diffusion within these films, emphasizing two distinctive compositional representatives from both systems containing a high concentration of chalcogen or high concentration of Ge. The studies are conducted on blanket chalcogenide films or on device structures containing also a silver source. Data about the electrical conductivity as a function of the radiation dose were collected and discussed based on material characterization analysis. Raman Spectroscopy, X-ray Diffraction Spectroscopy, and Energy Dispersive X-ray Spectroscopy provided us with data about the structure, structural changesmore » occurring as a result of radiation, molecular formations after Ag diffusion into the chalcogenide films, Ag lateral diffusion as a function of radiation and the level of oxidation of the studied films. Analysis of the electrical testing suggests application possibilities of the studied devices for radiation sensing for various conditions.« less

  7. The influence of Ge on optical and thermo- mechanical properties of S-Se chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Samudrala, Kavitha; Babu Devarasetty, Suresh

    2018-05-01

    S-Se-Ge glasses were prepared by melt quenching method to investigate the effect of Germanium on thermo-mechanical and optical properties of chalcogenide glasses. The glassy nature of the samples has been verified by x-ray diffraction and DSC studies that the samples are glassy in nature. The optical band gap of the samples was estimated by the absorption spectrum fitting method. The optical band gap increased from 1.61 ev for x = 0 sample to 1.90 ev for x = 40 sample and is explained in terms of cohesive energies. The basic thermo-mechanical parameters such as micro-hardness, Volume (Vh) and formation energy (Eh) of micro voids in the glassy network, as well as the modulus of Elasticity (E) have been calculated for prepared glasses.in present glasses. The variation in these parameters with Ge content correlated with heat of atomization of alloys.

  8. Mechanical model of giant photoexpansion in a chalcogenide glass and the role of photofluidity

    NASA Astrophysics Data System (ADS)

    Buisson, Manuel; Gueguen, Yann; Laniel, Romain; Cantoni, Christopher; Houizot, Patrick; Bureau, Bruno; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2017-07-01

    An analytical model is developed to describe the phenomenon of giant photoexpansion in chalcogenide glasses. The proposed micro-mechanical model is based on the description of photoexpansion as a new type of eigenstrain, i.e. a deformation analogous to thermal expansion induced without external forces. In this framework, it is the viscoelastic flow induced by photofluidity which enable the conversion of the self-equilibrated stress into giant photoexpansion. This simple approach yields good fits to experimental data and demonstrates, for the first time, that the photoinduced viscous flow actually enhances the giant photoexpansion or the giant photocontraction as it has been suggested in the literature. Moreover, it highlights that the shear relaxation time due to photofluidity controls the expansion kinetic. This model is the first step towards describing giant photoexpansion from the point of view of mechanics and it provides the framework for investigating this phenomenon via numerical simulations.

  9. Importance of non-parabolic band effects in the thermoelectric properties of semiconductors

    PubMed Central

    Chen, Xin; Parker, David; Singh, David J.

    2013-01-01

    We present an analysis of the thermoelectric properties of of n-type GeTe and SnTe in relation to the lead chalcogenides PbTe and PbSe. We find that the singly degenerate conduction bands of semiconducting GeTe and SnTe are highly non-ellipsoidal, even very close to the band edges. This leads to isoenergy surfaces with a strongly corrugated shape that is clearly evident at carrier concentrations well below 0.005 e per formula unit (7–9 × 1019 cm−3 depending on material). Analysis within Boltzmann theory suggests that this corrugation may be favorable for the thermoelectric transport. Our calculations also indicate that values of the power factor for these two materials may well exceed those of PbTe and PbSe. As a result these materials may exhibit n-type performance exceeding that of the lead chalcogenides. PMID:24196778

  10. Heterogeneous microring and Mach-Zehnder modulators based on lithium niobate and chalcogenide glasses on silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Ashutosh; Patil, Aniket; Chiles, Jeff

    In this study, thin films of lithium niobate are wafer bonded onto silicon substrates and rib-loaded with a chalcogenide glass, Ge 23Sb 7S 70, to demonstrate strongly confined single-mode submicron waveguides, microring modulators, and Mach-Zehnder modulators in the telecom C band. The 200 μm radii microring modulators present 1.2 dB/cm waveguide propagation loss, 1.2 × 10 5 quality factor, 0.4 GHz/V tuning rate, and 13 dB extinction ratio. The 6 mm long Mach-Zehnder modulators have a half-wave voltage-length product of 3.8 V.cm and an extinction ratio of 15 dB. The demonstrated work is a key step towards enabling wafer scalemore » dense on-chip integration of high performance lithium niobate electro-optical devices on silicon for short reach optical interconnects and higher order advanced modulation schemes.« less

  11. Solid-state acquisition of fingermark topology using dense columnar thin films.

    PubMed

    Lakhtakia, Akhlesh; Shaler, Robert C; Martín-Palma, Raúl J; Motyka, Michael A; Pulsifer, Drew P

    2011-05-01

    Various vacuum techniques are employed to develop fingermarks on evidentiary items. In this work, a vacuum was used to deposit columnar thin films (CTFs) on untreated, cyanoacrylate-fumed or dusted fingermarks on a limited selection of nonporous surfaces (microscope glass slides and evidence tape). CTF deposition was not attempted on fingermarks deposited on porous surfaces. The fingermarks were placed in a vacuum chamber with the fingermark side facing an evaporating source boat containing either chalcogenide glass or MgF(2). Thermal evaporation of chalcogenide glass or MgF(2) under a 1 μTorr vacuum for 30 min formed dense CTFs on fingermark ridges, capturing the topographical features. The results show that it is possible to capture fingermark topology using CTFs on selected untreated, vacuumed cyanoacrylate-fumed or black powder-dusted nonporous surfaces. Additionally, the results suggested this might be a mechanism to help elucidate the sequence of deposition. © 2011 American Academy of Forensic Sciences.

  12. Point-contact spectroscopy of the iron chalcogenide superconductors: interplay between multiband superconductivity and magnetism

    NASA Astrophysics Data System (ADS)

    Park, Wan Kyu; Hunt, C. R.; Arham, H. Z.; Lu, X.; Greene, L. H.; Xu, Z. J.; Wen, J. S.; Lin, Z. W.; Li, Q.; Gu, G.

    2010-03-01

    We report point-contact conductance measurements on the iron chalcogenide superconductors, Fe1+yTe1-xSex. The excess Fe atoms are known to occupy the interstitial sites in the Te-Se plane, affecting the superconductivity as well as the magnetism in this family. For a compound having nominal values of y=0 and x=0.45, a single superconducting transition is observed at 14.2 K. In the superconducting state, BTK-like double peak structures due to Andreev reflection are observed. However, the peak position of different point contacts falls to a wide voltage range, 1.5 -- 4 mV. Additional multiple humps are sometimes observed in a much higher bias voltage range, 8 -- 15 mV. Most strikingly, conductance enhancement persists well above Tc. We will present possible interpretations of these experimental observations in terms of multiband superconductivity and the interplay between superconductivity and magnetism.

  13. Chalcogenide glass-ceramic with self-organized heterojunctions: application to photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Zhang, Xianghua; Korolkov, Ilia; Fan, Bo; Cathelinaud, Michel; Ma, Hongli; Adam, Jean-Luc; Merdrignac, Odile; Calvez, Laurent; Lhermite, Hervé; Brizoual, Laurent Le; Pasquinelli, Marcel; Simon, Jean-Jacques

    2018-03-01

    In this work, we present for the first time the concept of chalcogenide glass-ceramic for photovoltaic applications with the GeSe2-Sb2Se3-CuI system. It has been demonstrated that thin films, deposited with the sputtering technique, are amorphous and can be crystallized with appropriate heat treatment. The thin film glass-ceramic behaves as a p-type semiconductor, even if it contains p-type Cu2GeSe3 and n-type Sb2Se3. The conductivity of Sb2Se3 has been greatly improved by appropriate iodine doping. The first photovoltaic solar cells based on the association of iodine-doped Sb2Se3 and the glass-ceramic thin films give a short-circuit current density JSC of 10 mA/cm2 and an open-circuit voltage VOC of 255 mV, with a power conversion efficiency of about 0.9%.

  14. Hybrid chalcogenide nanoparticles: 2D-WS2 nanocrystals inside nested WS2 fullerenes.

    PubMed

    Hoshyargar, Faegheh; Corrales, Tomas P; Branscheid, Robert; Kolb, Ute; Kappl, Michael; Panthöfer, Martin; Tremel, Wolfgang

    2013-10-28

    The MOCVD assisted formation of nested WS2 inorganic fullerenes (IF-WS2) was performed by enhancing surface diffusion with iodine, and fullerene growth was monitored by taking TEM snapshots of intermediate products. The internal structure of the core-shell nanoparticles was studied using scanning electron microscopy (SEM) after cross-cutting with a focused ion beam (FIB). Lamellar reaction intermediates were found occluded in the fullerene particles. In contrast to carbon fullerenes, layered metal chalcogenides prefer the formation of planar, plate-like structures where the dangling bonds at the edges are stabilized by excess S atoms. The effects of the reaction and annealing temperatures on the composition and morphology of the final product were investigated, and the strength of the WS2 shell was measured by intermittent contact-mode AFM. The encapsulated lamellar structures inside the hollow spheres may lead to enhanced tribological activities.

  15. Alkali layered compounds interfaces for energy conversion and energy storage

    NASA Technical Reports Server (NTRS)

    Papageorgopoulos, Chris A.

    1996-01-01

    During year one a new ultra-high vacuum, an Ar(+) ion sputterer, a low energy electron diffraction (LEED) system, an Auger electron spectrometer (AES), a work function measurement device with a Kelvin probe, and related accessories were used. The study found a focus in the adsorption of chalcogenides on Si and III-V compound semiconductors. In the second year, a scanning tunneling microscope was obtained along with a quadrapole mass spectrometer, power supplies, a computer, a chart recorder, etc. We started the systematic study on the adsorption of chalcogenides on the compound semiconductor surfaces. The third year saw the mounting of the scanning tunneling microscope (STM) on the existing UHV system. The investigation continued with the adsorption of Cs (alkali) on S-covered Si(100)2x1 surfaces. Then the adsorption of S on Cs-covered Si(100) surfaces was studied.

  16. Spectroscopic evidence for two-gap superconductivity in the quasi-1D chalcogenide Nb2Pd0.81S5

    NASA Astrophysics Data System (ADS)

    Park, Eunsung; Lee, Sangyun; Ronning, Filip; Thompson, Joe D.; Zhang, Qiu; Balicas, Luis; Lu, Xin; Park, Tuson

    2018-04-01

    Low-dimensional electronic systems with confined electronic wave functions have attracted interest due to their propensity toward novel quantum phases and their use in wide range of nanotechnologies. The newly discovered chalcogenide Nb2PdS5 possesses a quasi-one-dimensional electronic structure and becomes superconducting. Here, we report spectroscopic evidence for two-band superconductivity, where soft point-contact spectroscopic measurements in the superconducting (SC) state reveal Andreev reflection in the differential conductance G. Multiple peaks in G are observed at 1.8 K and explained by the two-band Blonder–Tinkham–Klapwijk model with two gaps Δ1  =  0.61 meV and Δ2  =  1.20 meV. The progressive evolution of G with temperature and magnetic field corroborates the multiple nature of the SC gaps.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vörös, Márton; Brawand, Nicholas P.; Galli, Giulia

    Lead chalcogenide (PbX) nanoparticles are promising materials for solar energy conversion. However, the presence of trap states in their electronic gap limits their usability, and developing a universal strategy to remove trap states is a persistent challenge. Using calculations based on density functional theory, we show that hydrogen acts as an amphoteric impurity on PbX nanoparticle surfaces; hydrogen atoms may passivate defects arising from ligand imbalance or off-stoichiometric surface terminations irrespective of whether they originate from cation or anion excess. In addition, we show, using constrained density functional theory calculations, that hydrogen treatment of defective nanoparticles is also beneficial formore » charge transport in films. We also find that hydrogen adsorption on stoichiometric nanoparticles leads to electronic doping, preferentially n-type. Lastly, our findings suggest that postsynthesis hydrogen treatment of lead chalcogenide nanoparticle films is a viable approach to reduce electronic trap states or to dope well-passivated films.« less

  18. Tapered chalcogenide-tellurite hybrid microstructured fiber for mid-infrared supercontinuum generation

    NASA Astrophysics Data System (ADS)

    Yang, Peilong; Zhang, Peiqing; Dai, Shixun; Wu, Yuehao; Wang, Xunsi; Tao, Guangming; Nie, Qiuhua

    2015-05-01

    Fibers exhibiting flattened and decreasing dispersion are important in nonlinear applications. Such fibers are difficult to design, particularly in soft glass. In this work, we develop a preliminary design of a highly nonlinear tapered hybrid microstructured optical fiber (TH-MOF) with chalcogenide glass core and tellurite glass microstructure cladding. We then numerically studied its dispersion, loss, and nonlinearity-related optical properties under fundamental mode systematically using the infinitesimal method. The designed TH-MOF exhibits low chromatic dispersion that is similar to a convex function with two zero-dispersion wavelengths and decreases with fiber length from 2 to 5 μm band. The potential use of the TH-MOF in nonlinear applications is demonstrated numerically by a supercontinuum spectrum of 20 dB bandwidth covering 1.96-4.76 μm generated in 2-cm-long TH-MOF using near 3.25-μm fs-laser pump.

  19. Carrier Injection and Scattering in Atomically Thin Chalcogenides

    NASA Astrophysics Data System (ADS)

    Li, Song-Lin; Tsukagoshi, Kazuhito

    2015-12-01

    Atomically thin two-dimensional chalcogenides such as MoS2 monolayers are structurally ideal channel materials for the ultimate atomic electronics. However, a heavy thickness dependence of electrical performance is shown in these ultrathin materials, and the device performance normally degrades while exhibiting a low carrier mobility as compared with corresponding bulks, constituting a main hurdle for application in electronics. In this brief review, we summarize our recent work on electrode/channel contacts and carrier scattering mechanisms to address the origins of this adverse thickness dependence. Extrinsically, the Schottky barrier height increases at the electrode/channel contact area in thin channels owing to bandgap expansion caused by quantum confinement, which hinders carrier injection and degrades device performance. Intrinsically, thin channels tend to suffer from intensified Coulomb impurity scattering, resulting from the reduced interaction distance between interfacial impurities and channel carriers. Both factors are responsible for the adverse dependence of carrier mobility on channel thickness in two-dimensional semiconductors.

  20. Solution processing of chalcogenide materials using thiol-amine "alkahest" solvent systems.

    PubMed

    McCarthy, Carrie L; Brutchey, Richard L

    2017-05-02

    Macroelectronics is a major focus in electronics research and is driven by large area applications such as flat panel displays and thin film solar cells. Innovations for these technologies, such as flexible substrates and mass production, will require efficient and affordable semiconductor processing. Low-temperature solution processing offers mild deposition methods, inexpensive processing equipment, and the possibility of high-throughput processing. In recent years, the discovery that binary "alkahest" mixtures of ethylenediamine and short chain thiols possess the ability to dissolve bulk inorganic materials to yield molecular inks has lead to the wide study of such systems and the straightforward recovery of phase pure crystalline chalcogenide thin films upon solution processing and mild annealing of the inks. In this review, we recount the work that has been done toward elucidating the scope of this method for the solution processing of inorganic materials for use in applications such as photovoltaic devices, electrocatalysts, photodetectors, thermoelectrics, and nanocrystal ligand exchange. We also take stock of the wide range of bulk materials that can be used as soluble precursors, and discuss the work that has been done to reveal the nature of the dissolved species. This method has provided a vast toolbox of over 65 bulk precursors, which can be utilized to develop new routes to functional chalcogenide materials. Future studies in this area should work toward a better understanding of the mechanisms involved in the dissolution and recovery of bulk materials, as well as broadening the scope of soluble precursors and recoverable functional materials for innovative applications.

  1. Mid-IR fused fiber couplers

    NASA Astrophysics Data System (ADS)

    Stevens, G.; Woodbridge, T.

    2016-03-01

    We present results from our recent efforts on developing single-mode fused couplers in ZBLAN fibre. We have developed a custom fusion workstation for working with lower melting temperature fibres, such as ZBLAN and chalcogenide fibres. Our workstation uses a precisely controlled electrical heater designed to operate at temperatures between 100 - 250°C as our heat source. The heated region of the fibers was also placed in an inert atmosphere to avoid the formation of microcrystal inclusions during fusion. We firstly developed a process for pulling adiabatic tapers in 6/125 μm ZBLAN fibre. The tapers were measured actively during manufacture using a 2000 nm source. The process was automated so that the heater temperature and motor speed automatically adjusted to pull the taper at constant tension. This process was then further developed so that we could fuse and draw two parallel 6/125 μm ZBLAN fibres, forming a single-mode coupler. Low ratio couplers (1-10%) that could be used as power monitors were manufactured that had an excess loss of 0.76 dB. We have also manufactured 50/50 splitters and wavelength division multiplexers (WDMs). However, the excess loss of these devices was typically 2 - 3 dB. The increased losses were due to localised necking and surface defects forming as the tapers were pulled further to achieve a greater coupling ratio. Initial experiments with chalcogenide fibre have shown that our process can be readily adapted for chalcogenide fibres. A 5% coupler with 1.5 dB insertion loss was manufactured using commercial of the shelf (COTS) fibres.

  2. Dy{sup 3+}-doped Ga–Sb–S chalcogenide glasses for mid-infrared lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Mingjie; Yang, Anping, E-mail: apyang@jsnu.edu.cn; Peng, Yuefeng

    2015-10-15

    Highlights: • Novel Ga–Sb–S chalcogenide glasses doped with Dy{sup 3+} ions were synthesized. • The glasses show good thermal stability and excellent infrared transparency. • The glasses show low phonon energy and intense mid-infrared emissions. • The mid-infrared emissions have high quantum efficiency. • The mid-infrared emissions have large stimulated emission cross sections. - Abstract: Novel Ga–Sb–S chalcogenide glasses doped with different amount of Dy{sup 3+} ions were prepared. Their thermal stability, optical properties, and mid-infrared (MIR) emission properties were investigated. The glasses show good thermal stability, excellent infrared transparency, very low phonon energy (∼306 cm{sup −1}), and intense emissionsmore » centered at 2.95, 3.59, 4.17 and 4.40 μm. Three Judd–Ofelt intensity parameters (Ω{sub 2} = 8.51 × 10{sup −20} cm{sup 2}, Ω{sub 4} = 2.09 × 10{sup −20} cm{sup 2}, and Ω{sub 6} = 1.60 × 10{sup −20} cm{sup 2}) are obtained, and the related radiative transition properties are evaluated. The high quantum efficiencies and large stimulated emission cross sections of the MIR emissions (88.10% and 1.11 × 10{sup −20} cm{sup 2} for 2.95 μm emission, 75.90% and 0.38 × 10{sup −20} cm{sup 2} for 4.40 μm emission, respectively) in the Dy{sup 3+}-doped Ga–Sb–S glasses make them promising gain materials for the MIR lasers.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Abishek K.; Rudyk, Brent W.; Lin, Xinsong

    The quaternary rare-earth chalcogenides RE{sub 3}CuGaS{sub 7} and RE{sub 3}CuGaSe{sub 7} (RE=La–Nd) have been prepared by reactions of the elements at 1050 °C and 900 °C, respectively. They crystallize in the noncentrosymmetric La{sub 3}CuSiS{sub 7}-type structure (hexagonal, space group P6{sub 3}, Z=2) in which the a-parameter is largely controlled by the RE component (a=10.0–10.3 Å for the sulfides and 10.3–10.6 Å for the selenides) whereas the c-parameter is essentially fixed by the choice of Ga and chalcogen atoms within tetrahedral units (c=6.1 Å for the sulfides and 6.4 Å for the selenides). They extend the series RE{sub 3}MGaCh{sub 7}, previouslymore » known for divalent metal atoms (M=Mn–Ni), differing in that the Cu atoms in RE{sub 3}CuGaCh{sub 7} occupy trigonal planar sites instead of octahedral sites. Among quaternary chalcogenides RE{sub 3}MM′Ch{sub 7}, the combination of monovalent (M=Cu) and trivalent (M′=Ga) metals is unusual because it appears to violate the condition of charge balance satisfied by most La{sub 3}CuSiS{sub 7}-type compounds. The possibility of divalent Cu atoms was ruled out by bond valence sum analysis, magnetic measurements, and X-ray photoelectron spectroscopy. The electron deficiency in RE{sub 3}CuGaCh{sub 7} is accommodated through S-based holes at the top of the valence band, as shown by band structure calculations on La{sub 3}CuGaS{sub 7}. An optical band gap of about 2.0 eV was found for La{sub 3}CuGaSe{sub 7}. - Graphical abstract: The chalcogenides RE{sub 3}CuGaCh{sub 7} contain monovalent Cu in trigonal planes and trivalent Ga in tetrahedra; they are electron-deficient representatives of La{sub 3}CuSiS{sub 7}-type compounds, which normally satisfy charge balance. - Highlights: • Quaternary chalcogenides RE{sub 3}CuGaCh{sub 7} (RE=La–Nd; Ch=S, Se) were prepared. • Bond valence sums, magnetism, and XPS data give evidence for monovalent Cu. • Crystal structures reveal high anisotropy of Cu displacement. • Electron deficiency is accommodated by S-based holes in valence band.« less

  4. Electrochromic devices based on lithium insertion

    DOEpatents

    Richardson, Thomas J.

    2006-05-09

    Electrochromic devices having as an active electrode materials comprising Sb, Bi, Si, Ge, Sn, Te, N, P, As, Ga, In, Al, C, Pb, I and chalcogenides are disclosed. The addition of other metals, i.e. Ag and Cu to the active electrode further enhances performance.

  5. Infrared photonic bandgap materials and structures

    NASA Astrophysics Data System (ADS)

    Sundaram, S. K.; Keller, P. E.; Riley, B. J.; Martinez, J. E.; Johnson, B. R.; Allen, P. J.; Saraf, L. V.; Anheier, N. C., Jr.; Liau, F.

    2006-02-01

    Three-dimensional periodic dielectric structure can be described by band theory, analogous to electron waves in a crystal. Photonic band gap (PBG) structures were introduced in 1987. The PBG is an energy band in which optical modes, spontaneous emission, and zero-point fluctuations are all absent. It was first theoretically predicted that a three-dimensional photonic crystal could have a complete band gap. E. Yablonovitch built the first three-dimensional photonic crystal (Yablonovite) on microwave length scale, with a complete PBG. In nature, photonic crystals occur as semiprecious opal and the microscopic structures on the wings of some tropical butterflies, which are repeating structures (PBG structure/materials) that inhibit the propagation of some frequencies of light. Pacific Northwest National Laboratory (PNNL) has been developing tunable (between 3.5 and 16 μm) quantum cascade lasers (QCL), chalcogenides, and all other components for an integrated approach to chemical sensing. We have made significant progress in modeling and fabrication of infrared photonic band gap (PBG) materials and structures. We modeled several 2-D designs and defect configurations. Transmission spectra were computed by the Finite Difference Time Domain Method (with FullWAVE TM). The band gaps were computed by the Plane Wave Expansion Method (with BandSOLVE TM). The modeled designs and defects were compared and the best design was identified. On the experimental front, chalcogenide glasses were used as the starting materials. As IIS 3, a common chalcogenide, is an important infrared (IR) transparent material with a variety of potential applications such as IR sensors, waveguides, and photonic crystals. Wet-chemical lithography has been extended to PBG fabrication and challenges identified. An overview of results and challenges will be presented.

  6. Precision lens molding of asphero diffractive surfaces in chalcogenide materials

    NASA Astrophysics Data System (ADS)

    Nelson, J.; Scordato, M.; Schwertz, K.; Bagwell, J.

    2015-10-01

    Finished lens molding, and the similar process of precision lens molding, have long been practiced for high volume, accurate replication of optical surfaces on oxide glass. The physics surrounding these processes are well understood, and the processes are capable of producing high quality optics with great fidelity. However, several limitations exist due to properties inherent with oxide glasses. Tooling materials that can withstand the severe environmental conditions of oxide glass molding cannot easily be machined to produce complex geometries such as diffractive surfaces, lens arrays, and off axis features. Current machining technologies coupled with a limited selection of tool materials greatly limits the type of structures that can be molded into the finished optic. Tooling for chalcogenide glasses are not bound by these restrictions since the molding temperatures required are much lower than for oxide glasses. Innovations in tooling materials and manufacturing techniques have enabled the production of complex geometries to optical quality specifications and have demonstrated the viability of creating tools for molding diffractive surfaces, off axis features, datums, and arrays. Applications for optics having these features are found in automotive, defense, security, medical, and industrial domains. This paper will discuss results achieved in the study of various molding techniques for the formation of positive diffractive features on a concave spherical surface molded from As2Se3 chalcogenide glass. Examples and results of molding with tools having CTE match with the glass and non CTE match will be reviewed. The formation of stress within the glass during molding will be discussed, and methods of stress management will also be demonstrated and discussed. Results of process development methods and production of good diffractive surfaces will be shown.

  7. Hierarchical active factors to band gap and nonlinear optical response in Ag-containing quaternary-chalcogenide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jun-ben; Xinjiang Key Laboratory of Electronic Information Material and Devices, Xinjiang Technical Institute of Physics & Chemistry, Chinese Academy of Sciences, 40-1 South Beijing Road, Urumqi 830011; Mamat, Mamatrishat, E-mail: mmtrxt@xju.edu.cn

    In this research work, Ag-containing quaternary-chalcogenide compounds KAg{sub 2}TS{sub 4} (T=P, Sb) (I-II) and RbAg{sub 2}SbS{sub 4} (III) have been studied by means of Density Functional Theory as potential IR nonlinear optical materials. The origin of wide band gap, different optical anisotropy and large SHG response is explained via a combination of density of states, electronic density difference and bond population analysis. It is indicated that the different covalent interaction behavior of P-S and Sb-S bonds dominates the band gap and birefringence. Specifically, the Ag-containing chalcogenide compound KAg{sub 2}PS{sub 4} possesses wide band gap and SHG response comparable with thatmore » of AgGaS{sub 2}. By exploring the origin of the band gap and NLO response for compounds KAg{sub 2}TS{sub 4} (T=P, Sb), we found the determination factor to the properties is different, especially the roles of Ag-d orbitals and bonding behavior of P-S or Sb-S. Thus, the compounds KAg{sub 2}TS{sub 4} (T=P, Sb) and RbAg{sub 2}SbS{sub 4} can be used in infrared (IR) region. - Graphical abstract: Metal thiophosphates RbPbPS{sub 4} and KSbP{sub 2}S{sub 6} have a similar band gap with KAg{sub 2}PS{sub 4}. However, based on first principles calculated results it shown that KAg{sub 2}PS{sub 4} possesses wide band gap (3.02 eV) and relatively large SHG response. Display Omitted.« less

  8. Local structural order and relaxation effects in metal-chalcogenide glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saleh, Z.M.

    1990-01-01

    Nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) have been employed to study the local structural order and the relaxation mechanisms in metal-arsenic-chalcogenide glasses for metal concentrations within the glass forming region. The glass forming region in the Cu-As-S and Cu-As-se glassy systems extends approximately to 6 and 25 at. % copper, respectively. In the composition Cu[sub x](As[sub 2/5]Ch[sub 3/5])[sub 1[minus]x], where Ch = S or Se, there is evidence of dramatic changes in the local structure as copper is added to the system. One important change is the formation of As-As bonds which are absent in As[sub 2]Ch[submore » 3]. The [sup 75]As NQR measurements indicate that the density of these bonds increases with copper concentration x. These results are consistent with the predictions of a model proposed recently to explain the local structural order in glassy metal chalcogenides. While NQR data show that arsenic atoms are threefold coordinated, EXAFs measurements have shown that copper is fourfold coordinated within the glass forming ranges in both systems. The NMR measurements confirm this result and quantitatively determine the local environment around the copper nuclei. For the naturally occurring mineral luzonite (Cu[sub 3]AsS[sub 4]) copper is fourfold coordinated. The known structure of this mineral has been used as a guide to understanding the local structure in the glasses. Copper and arsenic nuclear relaxation measurements were used to study the dynamics of these systems. The temperature and frequency dependence of the spin-lattice and spin-spin relaxation times have been carefully measured to determine the relaxation mechanisms.« less

  9. Noncentrosymmetric rare-earth copper gallium chalcogenides RE3CuGaCh7 (RE=La-Nd; Ch=S, Se): An unexpected combination

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Rudyk, Brent W.; Lin, Xinsong; Singh, Harpreet; Sharma, Arzoo Z.; Wiebe, Christopher R.; Mar, Arthur

    2015-09-01

    The quaternary rare-earth chalcogenides RE3CuGaS7 and RE3CuGaSe7 (RE=La-Nd) have been prepared by reactions of the elements at 1050 °C and 900 °C, respectively. They crystallize in the noncentrosymmetric La3CuSiS7-type structure (hexagonal, space group P63, Z=2) in which the a-parameter is largely controlled by the RE component (a=10.0-10.3 Å for the sulfides and 10.3-10.6 Å for the selenides) whereas the c-parameter is essentially fixed by the choice of Ga and chalcogen atoms within tetrahedral units (c=6.1 Å for the sulfides and 6.4 Å for the selenides). They extend the series RE3MGaCh7, previously known for divalent metal atoms (M=Mn-Ni), differing in that the Cu atoms in RE3CuGaCh7 occupy trigonal planar sites instead of octahedral sites. Among quaternary chalcogenides RE3MM‧Ch7, the combination of monovalent (M=Cu) and trivalent (M‧=Ga) metals is unusual because it appears to violate the condition of charge balance satisfied by most La3CuSiS7-type compounds. The possibility of divalent Cu atoms was ruled out by bond valence sum analysis, magnetic measurements, and X-ray photoelectron spectroscopy. The electron deficiency in RE3CuGaCh7 is accommodated through S-based holes at the top of the valence band, as shown by band structure calculations on La3CuGaS7. An optical band gap of about 2.0 eV was found for La3CuGaSe7.

  10. Towards mid-infrared fiber-optic devices and systems for sensing, mapping and imaging

    NASA Astrophysics Data System (ADS)

    Jayasuriya, D.; Wilson, B.; Furniss, D.; Tang, Z.; Barney, E.; Benson, T. M.; Seddon, A. B.

    2016-03-01

    Novel chalcogenide glass-based fiber opens up the mid-infrared (MIR) range for real-time monitoring and control in medical diagnostics and chemical processing. Fibers with long wavelength cut-off are of interest here. Sulfide, selenide and telluride based chalcogenide glass are candidates, but there are differences in their glass forming region, thermal stability and in the short and long wavelength cut-off positions. In general sulfide and selenide glasses have greater glass stability, but shorter long-wavelength cut-off edge, compared to telluride glasses; selenide-telluride glasses are a good compromise. Low optical loss selenide-telluride based long wavelength fibers could play a substantial role in improving medical diagnostic systems, chemical sensing, and processing, and in security and agriculture. For biological tissue, the molecular finger print lies between ~3-15 μm wavelengths in the MIR region. Using MIR spectral mapping, information about diseased tissue may be obtained with improved accuracy and in vivo using bright broadband MIR super-continuum generation (SCG) fiber sources and low optical loss fiber for routing. The Ge-As-Se-Te chalcogenide glass system is a potential candidate for both MIR SCG and passive-routing fiber, with good thermal stability, wide intrinsic transparency from ~1.5 to 20 μm and low phonon energy. This paper investigates Ge-As-Se-Te glass system pairs for developing high numerical aperture (NA) small-core, step-index optical fiber for MIR SCG and low NA passive step-index optical fiber for an in vivo fiber probe. Control of fiber geometry of small-core optical fiber and methods of producing the glass material are also included in this paper.

  11. Surface oxidation of tin chalcogenide nanocrystals revealed by 119Sn-Mössbauer spectroscopy.

    PubMed

    de Kergommeaux, Antoine; Faure-Vincent, Jérôme; Pron, Adam; de Bettignies, Rémi; Malaman, Bernard; Reiss, Peter

    2012-07-18

    Narrow band gap tin(II) chalcogenide (SnS, SnSe, SnTe) nanocrystals are of high interest for optoelectronic applications such as thin film solar cells or photodetectors. However, charge transfer and charge transport processes strongly depend on nanocrystals' surface quality. Using (119)Sn-Mössbauer spectroscopy, which is the most sensitive tool for probing the Sn oxidation state, we show that SnS nanocrystals exhibit a Sn((IV))/Sn((II)) ratio of around 20:80 before and 40:60 after five minutes exposure to air. Regardless of the tin or sulfur precursors used, similar results are obtained using six different synthesis protocols. The Sn((IV)) content before air exposure arises from surface related SnS(2) and Sn(2)S(3) species as well as from surface Sn atoms bound to oleic acid ligands. The increase of the Sn((IV)) content upon air exposure results from surface oxidation. Full oxidation of the SnS nanocrystals without size change is achieved by annealing at 500 °C in air. With the goal to prevent surface oxidation, SnS nanocrystals are capped with a cadmium-phosphonate complex. A broad photoluminescence signal centered at 600 nm indicates successful capping, which however does not reduce the air sensitivity. Finally we demonstrate that SnSe nanocrystals exhibit a very similar behavior with a Sn((IV))/Sn((II)) ratio of 43:57 after air exposure. In the case of SnTe nanocrystals, the ratio of 55:45 is evidence of a more pronounced tendency for oxidation. These results demonstrate that prior to their use in optoelectronics further surface engineering of tin chalcogenide nanocrystals is required, which otherwise have to be stored and processed under inert atmosphere.

  12. Hot-embossing fabrication of chalcogenide glasses rib waveguide for mid-infrared molecular sensing

    NASA Astrophysics Data System (ADS)

    Yan, Ting-Yang; Shen, Xiang; Wang, Rong-Ping; Wang, Guo-Xiang; Dai, Shi-Xun; Xu, Tie-Feng; Nie, Qiu-Hua

    2017-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant No. 61377061), the Public Project of Zhejiang Province, China (Grant No. 2014C31146), and sponsored by K. C. Wong Magna Fund in Ningbo University, China.

  13. Pressure induced structural transitions in Lead Chalcogenides and its influence on thermoelectric properties

    NASA Astrophysics Data System (ADS)

    Petersen, John; Spinks, Michael; Borges, Pablo; Scolfaro, Luisa

    2012-03-01

    Lead chalcogenides, most notably PbTe and PbSe, have become an active area of research due to their thermoelectric (TE) properties. The high figure of merit (ZT) of these materials has brought much attention to them, due to their ability to convert waste heat into electricity, with a possible application being in engine exhaust. Here, we examine the effects of altering the lattice parameter on total ground state energy and the band gap using first principles calculations performed within Density Functional Theory and the Projector Augmented Wave approach and the Vienna Ab-initio Simulation Package (VASP-PAW) code. Both PbTe and PbSe, in NaCl, orthorhombic, and CsCl structures are considered. It is found that altering the lattice parameter, which is analogous to applying external pressure on the material experimentally, has notable effects on both ground state energy and the band gap. The implications of this behavior in the TE properties of these materials are analyzed.

  14. Electrical properties and transport mechanisms in phase change memory thin films of quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherchenkov, A. A.; Kozyukhin, S. A., E-mail: sergkoz@igic.ras.ru; Lazarenko, P. I.

    The temperature dependences of the resistivity and current–voltage (I–V) characteristics of phase change memory thin films based on quasi-binary-line GeTe–Sb{sub 2}Te{sub 3} chalcogenide semiconductors Ge{sub 2}Sb{sub 2}Te{sub 5}, GeSb{sub 2}Te{sub 5}, and GeSb{sub 4}Te{sub 7} are investigated. The effect of composition variation along the quasibinary line on the electrical properties and transport mechanisms of the thin films is studied. The existence of three ranges with different I–V characteristics is established. The position and concentration of energy levels controlling carrier transport are estimated. The results obtained show that the electrical properties of the thin films can significantly change during a shiftmore » along the quasi-binary line GeTe–Sb{sub 2}Te{sub 3}, which is important for targeted optimization of the phase change memory technology.« less

  15. Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals.

    PubMed

    Johnson, Justin C; Gerth, Kathrine A; Song, Qing; Murphy, James E; Nozik, Arthur J; Scholes, Gregory D

    2008-05-01

    The rates of fine structure relaxation in PbS, PbSe, and PbTe nanocrystals were measured on a femtosecond time scale as a function of temperature with no applied magnetic field by cross-polarized transient grating spectroscopy (CPTG) and circularly polarized pump-probe spectroscopy. The relaxation rates among exciton fine structure states follow trends with nanocrystal composition and size that are consistent with the expected influence of material dependent spin-orbit coupling, confinement enhanced electron-hole exchange interaction, and splitting between L valleys that are degenerate in the bulk. The size dependence of the fine structure relaxation rate is considerably different from what is observed for small CdSe nanocrystals, which appears to result from the unique material properties of the highly confined lead chalcogenide quantum dots. Modeling and qualitative considerations lead to conclusions about the fine structure of the lowest exciton absorption band, which has a potentially significant bearing on photophysical processes that make these materials attractive for practical purposes.

  16. Transition from CZTSe to CZTS via multicomponent CZTSSe: Potential low cost photovoltaic absorbers

    NASA Astrophysics Data System (ADS)

    Chawla, Parul; Jain, Shefali; Vashishtha, Parth; Ahamed, Mansoor; Sharma, Shailesh Narain

    2018-01-01

    A quintessential perspective for elaborating the pivotal role of quinary chalogenides such as CZTSSe plunges the thrust for exploration of non-vacuum approach for development of multicomponent chalcogenides utilizing organic surfactants and solvents for the nanocrystals ideal for photovoltaic applications. The piece of study envisages employment of TOPO-TOP as capping agents-cum-solvents for the very first time and have not been reported for CZTSSe-based materials till date. The work has been forwarded with the variation of anionic ratios in pristine counterparts of CZTSSe; i.e. CZTSe and CZTS in order to envision the potential of quinary chalcogenides wherein properties of two different materials coalesce to impart improved characteristics in CZTSSe. Varying Se:S ratios gradually during nanocrystals' synthesis by high-temperature colloidal route ensued precise control over the phase formation and morphology. With the employment of these capping agents, as-synthesized nanocrystals' are inherently Se-rich and high crystallinity restrains the need for selenization and high temperature annnealing respectively.

  17. Polaronic transport in Ag-based quaternary chalcogenides

    NASA Astrophysics Data System (ADS)

    Wei, Kaya; Khabibullin, Artem R.; Stedman, Troy; Woods, Lilia M.; Nolas, George S.

    2017-09-01

    Low temperature resistivity measurements on dense polycrystalline quaternary chalcogenides Ag2+xZn1-xSnSe4, with x = 0, 0.1, and 0.3, indicate polaronic type transport which we analyze employing a two-component Holstein model based on itinerant and localized polaron contributions. Electronic structure property calculations via density functional theory simulations on Ag2ZnSnSe4 for both energetically similar kesterite and stannite structure types were also performed in order to compare our results to those of the compositionally similar but well known Cu2ZnSnSe4. This theoretical comparison is crucial in understanding the bonding that results in polaronic type transport for Ag2ZnSnSe4, as well as the structural and electronic properties of both crystal structure types. In addition to possessing this unique electronic transport, the thermal conductivity of Ag2ZnSnSe4 is low and decreases with increasing silver content. This work reveals unique structure-property relationships in materials that continue to be of interest for thermoelectric and photovoltaic applications.

  18. Activity-dependent synaptic plasticity of a chalcogenide electronic synapse for neuromorphic systems.

    PubMed

    Li, Yi; Zhong, Yingpeng; Zhang, Jinjian; Xu, Lei; Wang, Qing; Sun, Huajun; Tong, Hao; Cheng, Xiaoming; Miao, Xiangshui

    2014-05-09

    Nanoscale inorganic electronic synapses or synaptic devices, which are capable of emulating the functions of biological synapses of brain neuronal systems, are regarded as the basic building blocks for beyond-Von Neumann computing architecture, combining information storage and processing. Here, we demonstrate a Ag/AgInSbTe/Ag structure for chalcogenide memristor-based electronic synapses. The memristive characteristics with reproducible gradual resistance tuning are utilised to mimic the activity-dependent synaptic plasticity that serves as the basis of memory and learning. Bidirectional long-term Hebbian plasticity modulation is implemented by the coactivity of pre- and postsynaptic spikes, and the sign and degree are affected by assorted factors including the temporal difference, spike rate and voltage. Moreover, synaptic saturation is observed to be an adjustment of Hebbian rules to stabilise the growth of synaptic weights. Our results may contribute to the development of highly functional plastic electronic synapses and the further construction of next-generation parallel neuromorphic computing architecture.

  19. Spectral staining of tumor tissue by fiber optic FTIR spectroscopy

    NASA Astrophysics Data System (ADS)

    Salzer, Reiner; Steiner, Gerald; Kano, Angelique; Richter, Tom; Bergmann, Ralf; Rodig, Heike; Johannsen, Bernd; Kobelke, Jens

    2003-07-01

    Infrared (IR) optical fiber have aroused great interest in recent years because of their potential in in-vivo spectroscopy. This potential includes the ability to be flexible, small and to guide IR light in a very large range of wavelengths. Two types - silver halide and chalcogenide - infrared transmitting fibers are investigated in the detection of a malignant tumor. As a test sample for all types of fibers we used a thin section of an entire rat brain with glioblastoma. The fibers were connected with a common infrared microscope. Maps across the whole tissue section with more than 200 spectra were recorded by moving the sample with an XY stage. Data evaluation was performed using fuzzy c-means cluster analysis (FCM). The silver halide fibers provided excellent results. The tumor was clearly discernible from healthy tissue. Chalcogenide fibers are not suitable to distinguish tumor from normal tissue because the fiber has a very low transmittance in the important fingerprint region.

  20. LOW-TEMPERATURE HEAT CAPACITIES AND THERMODYNAMIC FUNCTIONS OF SOME PLATINUM AND PALLADIUM GROUP CHALCOGENIDES. I. MONO-CHALCOGENIDES. Pts, PtTe, AND PdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenvold, F.; Thurmann-Moe, T.; Westrum, E.F. Jr.

    1961-11-01

    Heat capacities of platinum monosulfide, platinum monotelluride, and palladium monotelluride were measured in the range 5--350 deg K. They show the normal sigmoidal temperature dependence with no evidence of transivions or other anomalies. The derived heat-capacity equations were integrated. Values of heat capacitles, entropy, and enthalpy increments, and of the free-energy function are tabulated for selected temperatures. Av 298,15 deg K, the third-law entroples are 13,16 cal gfw/sup -1/ deg K/sup -1/ for PtS 19.41 cal gfw/sup -1/ deg K/sup - 1/ for PtTe, and 2l.42 cal gfw/sup -1/ deg K/sup -1/ for PdTe. The new dava on PvS weremore » correlaved wlvh exlstlng decomposlvlonpressure data vo evaluate DELTA Hf, DELTA Ff, and DELTA Sf 298.15 deg K. Entropies for other platlnum-metal monochalcogenides were estimated. (auth)« less

  1. The use of castor oil and ricinoleic acid in lead chalcogenide nanocrystal synthesis

    NASA Astrophysics Data System (ADS)

    Kyobe, Joseph W. M.; Mubofu, Egid B.; Makame, Yahya M. M.; Mlowe, Sixberth; Revaprasadu, Neerish

    2016-08-01

    A green solution-based thermolysis method for the synthesis of lead chalcogenide (PbE, E = S, Se, Te) nanocrystals in castor oil (CSTO) and its isolate ricinoleic acid (RA) is described. The blue shift observed from the optical spectra of CSTO and RA-capped PbE nanocrystals (NCs) confirmed the evidence of quantum confinement. The dimensions of PbE NCs obtained from NIR absorption spectra, transmission electron microscopy (TEM), and X-ray diffraction (XRD) studies were in good agreement. The particle sizes estimated were in the range of 20, 25, and 130 nm for castor oil-capped PbS, PbSe, and PbTe, respectively. Well-defined close to cubic-shaped particles were observed in the scanning electron microscopy (SEM) images of PbSe and PbTe nanocrystals. The high-resolution TEM and selective area electron diffraction (SAED) micrographs of the as-synthesized crystalline PbE NCs showed distinct lattice fringes with d-spacing distances corroborating with the standard values reported in literature.

  2. Photosensitivity study of GeS2 chalcogenide glass under femtosecond laser pulses irradiation

    NASA Astrophysics Data System (ADS)

    Ayiriveetil, Arunbabu; Sabapathy, Tamilarasan; Kar, Ajoy K.; Asokan, Sundarrajan

    2015-07-01

    The present study discusses the photosensitivity of GeS2 chalcogenide glass in response to irradiation with femtosecond pulses at 1047 nm. Bulk GeS2 glasses are prepared by conventional melt quenching technique and the amorphous nature of the glass is confirmed using X-ray diffraction. Ultrafast laser inscription technique is used to fabricate the straight channel waveguides in the glass. Single scan and multi scan waveguides are inscribed in GeS2 glasses of length 0.65 cm using a master oscillator power amplifier Yb doped fiber laser (IMRA μjewel D400) with different pulse energy and translation speed. Diameters of the inscribed waveguides are measured and its dependence on the inscription parameters such as translation speed and pulse energy is studied. Butt coupling method is used to characterize the loss measurement of the inscribed optical waveguides. The mode field image of the waveguides is captured using CCD camera and compared with the mode field image of a standard SMF-28 fibers.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyekyoung; Kim, Sungwoo; Luther, Joseph M.

    Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated withmore » the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.« less

  4. Ab initio Studies of Magnetism in the Iron Chalcogenides FeTe and FeSe

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Misawa, Takahiro; Miyake, Takashi; Imada, Masatoshi

    2015-09-01

    The iron chalcogenides FeTe and FeSe belong to the family of iron-based superconductors. We study the magnetism in these compounds in the normal state using the ab initio downfolding scheme developed for strongly correlated electron systems. In deriving ab initio low-energy effective models, we employ the constrained GW method to eliminate the double counting of electron correlations originating from the exchange correlations already taken into account in the density functional theory. By solving the derived ab initio effective models, we reveal that the elimination of the double counting is important in reproducing the bicollinear antiferromagnetic order in FeTe, as is observed in experiments. We also show that the elimination of the double counting induces a unique degeneracy of several magnetic orders in FeSe, which may explain the absence of the magnetic ordering. We discuss the relationship between the degeneracy and the recently found puzzling phenomena in FeSe as well as the magnetic ordering found under pressure.

  5. Transition-Metal Chalcogenide/Graphene Ensembles for Light-Induced Energy Applications.

    PubMed

    Kagkoura, Antonia; Skaltsas, Theodosis; Tagmatarchis, Nikos

    2017-09-21

    Recently, nanomaterials that harvest solar energy and convert it to other forms of energy are of great interest. In this context, transition metal chalcogenides (TMCs) have recently been in the spotlight due to their optoelectronic properties that render them potential candidates mainly in energy conversion applications. Integration of TMCs onto a strong electron-accepting material, such as graphene, yielding novel TMC/graphene ensembles is of high significance, since photoinduced charge-transfer phenomena, leading to intra-ensemble charge separation, may occur. In this review, we highlight the utility of TMC/graphene ensembles, with a specific focus on latest trends in applications, while their synthetic routes are also discussed. In fact, TMC/graphene ensembles are photocatalytically active and superior as compared to intact TMCs analogues, when examined toward photocatalytic H 2 evolution, dye degradation and redox transformations of organic compounds. Moreover, TMC/graphene ensembles have shown excellent prospect when employed in photovoltaics and biosensing applications. Finally, the future prospects of such materials are outlined. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Consequences of the superstrong nature of chalcogenide glass-forming liquids at select compositions

    NASA Astrophysics Data System (ADS)

    Gunasekera, Kapila; Bhosle, Siddhesh; Boolchand, Punit; Micoulaut, Matthieu

    2014-03-01

    Growth of homogeneous melts of stoichiometric compositions of chalcogenides is facilitated by underlying crystalline phases. Such is not the case for non-stoichiometric melt compositions in which, for example, variation of fragility (m) from complex specific heat measurements show global minimum at an extremely low value (m =14.8(0.5)) in the 21.5% Tg over days, we have observed a slowdown of melt-homogenization by the super-strong melt compositions, 21.5%

  7. Multi-layered chalcogenides with potential for magnetism and superconductivity

    DOE PAGES

    Li, Li; Parker, David S.; dela Cruz, Clarina R.; ...

    2016-10-24

    Layered thallium copper chalcogenides can form single, double, or triple layers of Cu– Ch separated by Tl sheets. Here we report on the preparation and properties of Tl-based materials of TlCu 2Se 2, TlCu 4S 3, TlCu 4Se 3 and TlCu 6S 4. Having no long-range magnetism for these materials is quite surprising considering the possibilities of inter- and intra-layer exchange interactions through Cu 3 d, and we measure by magnetic susceptibility and confirm by neutron diffraction. First principles density-functional theory calculations for both the single-layer TlCu 2Se 2 (isostructural to the ‘122’ iron-based superconductors) and the double-layer TlCu 4Semore » 3 suggest a lack of Fermi-level spectral weight that is needed to drive a magnetic or superconducting instability. Furthermore, for multiple structural layers with Fe, there is much greater likelihood for magnetism and superconductivity.« less

  8. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5.

    PubMed

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G

    2015-08-28

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization.

  9. Ultrafast time-resolved electron diffraction revealing the nonthermal dynamics of near-UV photoexcitation-induced amorphization in Ge2Sb2Te5

    PubMed Central

    Hada, Masaki; Oba, Wataru; Kuwahara, Masashi; Katayama, Ikufumi; Saiki, Toshiharu; Takeda, Jun; Nakamura, Kazutaka G.

    2015-01-01

    Because of their robust switching capability, chalcogenide glass materials have been used for a wide range of applications, including optical storages devices. These phase transitions are achieved by laser irradiation via thermal processes. Recent studies have suggested the potential of nonthermal phase transitions in the chalcogenide glass material Ge2Sb2Te5 triggered by ultrashort optical pulses; however, a detailed understanding of the amorphization and damage mechanisms governed by nonthermal processes is still lacking. Here we performed ultrafast time-resolved electron diffraction and single-shot optical pump-probe measurements followed by femtosecond near-ultraviolet pulse irradiation to study the structural dynamics of polycrystalline Ge2Sb2Te5. The experimental results present a nonthermal crystal-to-amorphous phase transition of Ge2Sb2Te5 initiated by the displacements of Ge atoms. Above the fluence threshold, we found that the permanent amorphization caused by multi-displacement effects is accompanied by a partial hexagonal crystallization. PMID:26314613

  10. Mid-infrared supercontinuum generation in As2S3-silica "nano-spike" step-index waveguide.

    PubMed

    Granzow, N; Schmidt, M A; Chang, W; Wang, L; Coulombier, Q; Troles, J; Toupin, P; Hartl, I; Lee, K F; Fermann, M E; Wondraczek, L; Russell, P St J

    2013-05-06

    Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide "nano-spike", designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 µm, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 µm for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy.

  11. Recent Progress In Infrared Chalcogenide Glass Fibers

    NASA Astrophysics Data System (ADS)

    Bornstein, A.; Croitoru, N.; Marom, E.

    1984-10-01

    Chalcogenide glasses containing elements like As, Ge, Sb and Se have been prepared. A new technique of preparing the raw material and subsequently drawing fibers has been devel-oped in order to avoid the forming of oxygen compounds. The fibers have been drawn by cru-cible and rod method from oxygen free raw material inside an Ar atmosphere glove box. The fibers drawn to date with air and glass cladding have a diameter of 50-500 pm and length of several meterd. Preliminary attenuation measurements indicate that the attentuation is better than 0.1 dB/cm and it is not affected even when the fiber is bent to 2 cm circular radius. The fibes were testes a CO laser beam and were not damaged at power densities below 10 kW/2cm2 CW &100 kw/cm using short pulses 75 n sec. The transmitted power density was 0.8 kW/cm2 which is an appropriate value to the needed for cutting and ablation of human tissues.

  12. Synthesis and optical characterization of ternary chalcogenide Cu3BiS3 thin film by spin coating

    NASA Astrophysics Data System (ADS)

    Rawal, Neha; Hadi, Mohammed Kamal; Modi, B. P.

    2017-05-01

    In this work, ternary Chalcogenide Cu3BiS3(CBS) thin films have been prepared and modified by using spin coating technique. Lucratively, spin coating technique is easy going and simple though it hasn't given an enclosure and extensive focus of researches for Cu3BiS3 thin films formation. The surface smoothness and the homogeneity of the obtained thin films have been optimized throughout varying the annealing temperature, concentration and rotation speed. It had been found that as prepared films the value of the energy band gap is 1.4 eV, the absorption coefficient 105 cm-1. Each values of the EBG (Energy Band Gap) and AC (Absorption coefficient) was found in quite agreement with the published work of CBS thin film formation by other methods as CBD, dip coating etc. It signifies that Cu3BiS3 films can be used as an absorber layer for thin film solar cell.

  13. Synchronous γ (Co60) photons and thermal processing induced insulator metal transition in amorphous chalcogenide As4Se3Te3 composition

    NASA Astrophysics Data System (ADS)

    El-Sayed, S. A.; Morsy, M. A.

    2018-05-01

    Amorphous chalcogenide composition AS4Se3Te3 is prepared by conventional quenching technique. The separate annealing or γ quanta irradiation not effect on the dc conductivity properties of the prepared composition. When the prepared samples are subjected to simultaneous annealing at temperature 413 K and γ quanta irradiation the dc conductivity increases. The dark dc conductivity increases by increasing the time of exposure to γ irradiation. At irradiation dose 1.47 × 104 Gy the dc conductivity starts to have metallic like conductivity character. These samples could be used as high temperature γ quanta dosimeter. By applying scaling theory on the samples irradiated with different dose of γ irradiation the critical exponents are determined and found to be < 2. The dark dc conductivity continuously decreases to 0 as temperature tends to zero. The steric value is low in the insulator side of conductivity, but high and almost saturated in the metallic side of conductivity.

  14. Hybrid metal–organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assembly

    DOE PAGES

    Yan, Hao; Hohman, J. Nathan; Li, Fei Hua; ...

    2016-12-26

    Controlling inorganic structure and dimensionality through structure-directing agents is a versatile approach for new materials synthesis that has been used extensively for metal–organic frameworks and coordination polymers. However, the lack of ‘solid’ inorganic cores requires charge transport through single-atom chains and/or organic groups, limiting their electronic properties. Here, we report that strongly interacting diamondoid structure-directing agents guide the growth of hybrid metal–organic chalcogenide nanowires with solid inorganic cores having three-atom cross-sections, representing the smallest possible nanowires. The strong van der Waals attraction between diamondoids overcomes steric repulsion leading to a cis configuration at the active growth front, enabling face-on additionmore » of precursors for nanowire elongation. These nanowires have band-like electronic properties, low effective carrier masses and three orders-of-magnitude conductivity modulation by hole doping. Furthermore, this discovery highlights a previously unexplored regime of structure-directing agents compared with traditional surfactant, block copolymer or metal–organic framework linkers.« less

  15. 1.4-7.2  μm broadband supercontinuum generation in an As-S chalcogenide tapered fiber pumped in the normal dispersion regime.

    PubMed

    Wang, Yingying; Dai, Shixun; Li, Guangtao; Xu, Dong; You, Chenyang; Han, Xin; Zhang, Peiqing; Wang, Xunsi; Xu, Peipeng

    2017-09-01

    We report a broadband supercontinuum (SC) generation in chalcogenide (ChG) step-index tapered fibers pumped in the normal dispersion regime. The fibers consisting of As 2 S 3 core and As 38 S 62 cladding glasses were fabricated using the isolated stacked extrusion method. A homemade tapering platform allows us to accurately control the core diameters and transition region lengths of the tapered fibers. An SC generation spanning from 1.4 to 7.2 μm was achieved by pumping a 12-cm-long tapered fiber with femtosecond laser pulses at 3.25 μm. To the best of our knowledge, this is the broadest SC generation obtained experimentally in tapered fibers when pumped in the normal dispersion regime so far. The effects of waist diameter and transition region length of the tapered fiber on the SC spectral behavior were also investigated.

  16. Atomistic origin of an ordered superstructure induced superconductivity in layered chalcogenides.

    PubMed

    Ang, R; Wang, Z C; Chen, C L; Tang, J; Liu, N; Liu, Y; Lu, W J; Sun, Y P; Mori, T; Ikuhara, Y

    2015-01-27

    Interplay among various collective electronic states such as charge density wave and superconductivity is of tremendous significance in low-dimensional electron systems. However, the atomistic and physical nature of the electronic structures underlying the interplay of exotic states, which is critical to clarifying its effect on remarkable properties of the electron systems, remains elusive, limiting our understanding of the superconducting mechanism. Here, we show evidence that an ordering of selenium and sulphur atoms surrounding tantalum within star-of-David clusters can boost superconductivity in a layered chalcogenide 1T-TaS2-xSex, which undergoes a superconducting transition in the nearly commensurate charge density wave phase. Advanced electron microscopy investigations reveal that such an ordered superstructure forms only in the x area, where the superconductivity manifests, and is destructible to the occurrence of the Mott metal-insulator transition. The present findings provide a novel dimension in understanding the relationship between lattice and electronic degrees of freedom.

  17. Pulsed laser deposition of chalcogenide sulfides from multi- and single-component targets: the non-stoichiometric material transfer

    NASA Astrophysics Data System (ADS)

    Schou, Jørgen; Gansukh, Mungunshagai; Ettlinger, Rebecca B.; Cazzaniga, Andrea; Grossberg, Maarja; Kauk-Kuusik, Marit; Canulescu, Stela

    2018-01-01

    The mass transfer from target to films is incongruent for chalcogenide sulfides in contrast to the expectations of pulsed laser deposition (PLD) as a stoichiometric film growth process. Films produced from a CZTS (Cu2ZnSnS4) multi-component target have no Cu below a fluence threshold of 0.2 J/cm2, and the Cu content is also very low at low fluence from a single-component target. Above this threshold, the Cu content in the films increases almost linearly up to a value above the stoichiometric value, while the ratio of the concentration of the other metals Zn to Sn (Zn/Sn) remains constant. Films of a similar material CTS (Cu2SnS3) have been produced by PLD from a CTS target and exhibits a similar trend in the same fluence region. The results are discussed on the basis of solid-state data and the existing data from the literature.

  18. Thallous chalcogenide (Tl 6I 4Se) for radiation detection at X-ray and γ-ray energies

    NASA Astrophysics Data System (ADS)

    Liu, Zhifu; Peters, John A.; Wessels, Bruce W.; Johnsen, Simon; Kanatzidis, Mercouri G.

    2011-12-01

    The optical and charge transport properties of the thallous chalcogenide compound Tl6I4Se were characterized. The semiconductor crystals are grown by the modified Bridgman method. We have measured the refractive index, and absorption coefficient of the compound ranging from 300 to 1500 nm by analysis of the UV-vis-near IR transmission and reflection spectra. The band gap is 1.8 eV. For the evaluation of detector performance, the mobility-lifetime products for both the electron and hole carriers were measured. Tl6I4Se has mobility-lifetime products of 7.1×10-3 and 5.9×10-4 cm2/V for electron and hole carriers, respectively, which are comparable to those of Cd0.9Zn0.1Te. The γ-ray spectrum for a Tl6I4Se detector was measured. Its response to the 122 keV of 57Co source is comparable to that of Cd0.9Zn0.1Te.

  19. Mid-infrared materials and devices on a Si platform for optical sensing

    PubMed Central

    Singh, Vivek; Lin, Pao Tai; Patel, Neil; Lin, Hongtao; Li, Lan; Zou, Yi; Deng, Fei; Ni, Chaoying; Hu, Juejun; Giammarco, James; Soliani, Anna Paola; Zdyrko, Bogdan; Luzinov, Igor; Novak, Spencer; Novak, Jackie; Wachtel, Peter; Danto, Sylvain; Musgraves, J David; Richardson, Kathleen; Kimerling, Lionel C; Agarwal, Anuradha M

    2014-01-01

    In this article, we review our recent work on mid-infrared (mid-IR) photonic materials and devices fabricated on silicon for on-chip sensing applications. Pedestal waveguides based on silicon are demonstrated as broadband mid-IR sensors. Our low-loss mid-IR directional couplers demonstrated in SiNx waveguides are useful in differential sensing applications. Photonic crystal cavities and microdisk resonators based on chalcogenide glasses for high sensitivity are also demonstrated as effective mid-IR sensors. Polymer-based functionalization layers, to enhance the sensitivity and selectivity of our sensor devices, are also presented. We discuss the design of mid-IR chalcogenide waveguides integrated with polycrystalline PbTe detectors on a monolithic silicon platform for optical sensing, wherein the use of a low-index spacer layer enables the evanescent coupling of mid-IR light from the waveguides to the detector. Finally, we show the successful fabrication processing of our first prototype mid-IR waveguide-integrated detectors. PMID:27877641

  20. Soviet Cybernetics Review, Volume 3, Number 11.

    ERIC Educational Resources Information Center

    Holland, Wade B.

    Soviet efforts in designing third-generation computers are discussed in two featured articles which describe (1) the development and production of integrated circuits, and their role in computers; and (2) the use of amorphous chalcogenide glass in lasers, infrared devices, and semiconductors. Other articles discuss production-oriented branch…

  1. Interfacial and Surface Science | Materials Science | NREL

    Science.gov Websites

    -flight SIMS (TOF-SIMS) provides surface spectroscopy of both inorganic and organic materials, and is Chamber This tool enables deposition of inorganic chalcogenides and for basic material and device studies lead halide perovskites and semiconductor quantum dots. Contact: Craig Perkins | Email | 303-384-6659

  2. Exfoliation and Stability Studies of Germanane and its Derivatives

    DTIC Science & Technology

    2014-11-01

    Soc. 2008, 130, 16201-06. 11. Kagan, C. R.; Mitzi , D. B.; Dimitrakopoulos, C. D. Organic-Inorganic Hybrid Materials as Semiconducting Channels in...Chalcogenides: StructuresThat May Lead to a New Type of Quantum Wells. J. Am. Chem. Soc. 2000, 122, 8789–8790. 13. Mitzi , D. B. Solution

  3. 77 FR 39682 - Application(s) for Duty-Free Entry of Scientific Instruments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... oxides, metal chalcogenides, DNA, quantum dots, and carbon nanomaterials to determine their size, shape... Number: 12-031. Applicant: Penn State College of Medicine, 500 University Dr., Hershey, PA 17033... to further advance the body of research of the College of Medicine and the greater scientific...

  4. Two-photon absorption in arsenic sulfide glasses

    NASA Astrophysics Data System (ADS)

    Chunaev, D. S.; Snopatin, G. E.; Plotnichenko, V. G.; Karasik, A. Ya.

    2016-10-01

    The two-photon absorption coefficient of 1047-{\\text{nm}} light in {\\text{As}}35{\\text{S}}65 chalcogenide glass has been measured. CW probe radiation has been used to observe the linear absorption in glass induced by two-photon excitation. The induced absorption lifetime was found to be ∼ 2 {\\text{ms}}.

  5. Chalcogenide glass microlenses by inkjet printing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Eric A.; Waldmann, Maike; Arnold, Craig B.

    We demonstrate micrometer scale mid-IR lenses for integrated optics, using solution-based inkjet printing techniques and subsequent processing. Arsenic sulfide spherical microlenses with diameters of 10-350 {mu}m and focal lengths of 10-700 {mu}m have been fabricated. The baking conditions can be used to tune the precise focal length.

  6. Discovery of New Mineral Butianite, Ni6SnS2, an Alteration Phase from Allende

    NASA Astrophysics Data System (ADS)

    Ma, C.

    2017-07-01

    Butianite (Ni6SnS2) is a new chalcogenide mineral from an Allende CAI, along with nuwaite (Ni6GeS2), formed from a late-stage sulfidation process, where Ni-Fe metals reacted with a low-temperature fluid enriched in S, Ge, Sn and Te.

  7. Current-induced depairing in the Bi2Te3/FeTe interfacial superconductor

    NASA Astrophysics Data System (ADS)

    Kunchur, M. N.; Dean, C. L.; Moghadam, N. Shayesteh; Knight, J. M.; He, Q. L.; Liu, H.; Wang, J.; Lortz, R.; Sou, I. K.; Gurevich, A.

    2015-09-01

    We investigated current induced depairing in the Bi2Te3 /FeTe topological insulator-chalcogenide interface superconductor. The measured depairing current density provides information on the magnetic penetration depth and superfluid density, which in turn shed light on the nature of the normal state that underlies the interfacial superconductivity.

  8. Quantum soldering of individual quantum dots.

    PubMed

    Roy, Xavier; Schenck, Christine L; Ahn, Seokhoon; Lalancette, Roger A; Venkataraman, Latha; Nuckolls, Colin; Steigerwald, Michael L

    2012-12-07

    Making contact to a quantum dot: Single quantum-dot electronic circuits are fabricated by wiring atomically precise metal chalcogenide clusters with conjugated molecular connectors. These wired clusters can couple electronically to nanoscale electrodes and be tuned to control the charge-transfer characteristics (see picture). Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernando, Amendra; Weerawardene, K. L. Dimuthu M.; Karimova, Natalia V.

    Here, metal, metal oxide, and metal chalcogenide materials have a wide variety of applications. For example, many metal clusters and nanoparticles are used as catalysts for reactions varying from the oxidation of carbon monoxide to the reduction of protons to hydrogen gas. Noble metal nanoparticles have unique optical properties such as a surface plasmon resonance for large nanoparticles that yield applications in sensing and photonics. In addition, a number of transition metal clusters are magnetic. Metal oxide clusters and surfaces are commonly used as catalysts for reactions such as water splitting. Both metal oxide and metal chalcogenide materials can bemore » semiconducting, which leads to applications in sensors, electronics, and solar cells. Many researchers have been interested in studying nanoparticles and/or small clusters of these materials. Some of the system sizes under investigation have been experimentally synthesized, which enables direct theory–experiment comparison. Other clusters that have been examined theoretically are of interest as models of larger systems or surfaces. Often, the size-dependence of their properties such as their HOMO–LUMO gap, magnetic properties, optical properties, etc., is of interest.« less

  10. Rapid microwave-assisted preparation of binary and ternary transition metal sulfide compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Butala, Megan M.; Perez, Minue A.; Arnon, Shiri

    Transition metal chalcogenides are of interest for energy applications, including energy generation in photoelectrochemical cells and as electrodes for next-generation electrochemical energy storage. Synthetic routes for such chalcogenides typically involve extended heating at elevated temperatures for multiple weeks. We demonstrate here the feasibility of rapidly preparing select sulfide compounds in a matter of minutes, rather than weeks, using microwave-assisted heating in domestic microwaves. We report the preparations of phase pure FeS2, CoS2, and solid solutions thereof from the elements with only 40 min of heating. Conventional furnace and rapid microwave preparations of CuTi2S4 both result in a majority of themore » targeted phase, even with the significantly shorter heating time of 40 min for microwave methods relative to 12 days using a conventional furnace. The preparations we describe for these compounds can be extended to related structures and chemistries and thus enable rapid screening of the properties and performance of various compositions of interest for electronic, optical, and electrochemical applications.« less

  11. Electronic structure of some complex thermoelectrics - role of dimensional confinement and nanostructuring

    NASA Astrophysics Data System (ADS)

    Mahanti, Subhendra D.; Hoang, Khang

    2016-12-01

    Thermoelectric materials are of great current interest for a number of energy-related applications such as waste heat recovery, terrestrial cooling, and thermoelectric power generation. There have been several significant recent advances in improving the thermoelectric figure of merit ZT; in some instances, ZT > 2 at high temperatures. Concepts like electron-crystal phonon-glass, dimensional confinement, nanostructuring, energy filtering, and intrinsic lattice anharmonicity have not only acted as guiding principles in synthesizing new materials but also for electronic structure engineering using theoretical calculations. In this review paper, we discuss these concepts and present a few examples of theoretical studies of electronic structure and transport properties illustrating how some of these ideas work. The four types of systems we discuss are quaternary chalcogenides LAST-m, nanoscale mixtures of half-Heusler and Heusler compounds, ternary chalcogenide compounds of type ABX2 where the electronic structure near the band gap depends sensitively on the ordering of A and B atoms, and naturally occurring bulk superlattices formed out of alternating ionic and semiconducting bilayers as in SrFAgTe.

  12. New Intermetallic Ternary Phosphide Chalcogenide AP2-xXx (A = Zr, Hf; X = S, Se) Superconductors with PbFCl-Type Crystal Structure

    NASA Astrophysics Data System (ADS)

    Kitô, Hijiri; Yanagi, Yousuke; Ishida, Shigeyuki; Oka, Kunihiko; Gotoh, Yoshito; Fujihisa, Hiroshi; Yoshida, Yoshiyuki; Iyo, Akira; Eisaki, Hiroshi

    2014-07-01

    We have synthesized a series of intermetallic ternary phosphide chalcogenide superconductors, AP2-xXx (A = Zr, Hf; X = S, Se), using the high-pressure synthesis technique. These materials have a PbFCl-type crystal structure (space group P4/nmm) when x is greater than 0.3. The superconducting transition temperature Tc changes systematically with x, yielding dome-like phase diagrams. The maximum Tc is achieved at approximately x = 0.7, at which point the Tc is 6.3 K for ZrP2-xSex (x = 0.75), 5.5 K for HfP2-xSex (x = 0.7), 5.0 K for ZrP2-xSx (x = 0.675), and 4.6 K for Hfp2-xSx (x = 0.5). They are typical type-II superconductors and the upper and lower critical fields are estimated to be 2.92 T at 0 K and 0.021 T at 2 K for ZrP2-xSex (x = 0.75), respectively.

  13. Volatile transport on Venus and implications for surface geochemistry and geology

    NASA Technical Reports Server (NTRS)

    Brackett, Robert A.; Fegley, Bruce; Arvidson, Raymond E.

    1995-01-01

    The high vapor pressure of volatile metal halides and chalcogenides (e.g., of Cu, Zn, Sn, Pb, As, Sb, Bi) at typical Venus surface temperatures, coupled with the altitude-dependent temperature gradient of approximately 8.5 K/km, is calculated to transport volatile metal vapors to the highlands of Venus, where condensation and accumulation will occur. The predicted geochemistry of volatile metals on Venus is supported by observations of CuCl in volcanic gases at Kilauea and Nyiragongo, and large enrichments of these and other volatile elements in terrestrial volcanic aerosols. A one-dimensional finite difference vapor transport model shows the diffusive migration of a thickness of 0.01 to greater than 10 microns/yr of moderately to highly volatile phases (e.g., metal halides and chalcogenides) from the hot lowlands (740 K) to the cold highlands (660 K) on Venus. The diffusive transport of volatile phases on Venus may explain the observed low emissivity of the Venusian highlands, hazes at 6-km altitude observed by two Pioneer Venus entry probes, and the Pioneer Venus entry probe anomalies at 12.5 km.

  14. Impact of sulfur content on structural and optical properties of Ge20Se80-xSx chalcogenide glasses thin films

    NASA Astrophysics Data System (ADS)

    Dongol, M.; Elhady, A. F.; Ebied, M. S.; Abuelwafa, A. A.

    2018-04-01

    Chalcogenide system Ge20Se80-xSx (x = 0, 15 and 30%) thin films were prepared by thermal evaporation technique. The amorphous state of the samples was confirmed according to XRD. The structural changes occurring upon replacement Se by S was investigated using Raman spectroscopy. The optical properties of the as-deposited Ge20Se80-xSx thin films have been studied by analysis the transmittance T(λ) measured at room temperature in the wavelength range 200-2500 nm using Swanepoel's method. Urbach energy (Ee) and optical band gap (Eg) were strongly affected by sulfur concentration in the sample. The refractive index evaluated through envelope method was extrapolated by Cauchy dispersion relationship over the whole spectral range. Moreover, the dispersion of refractive index was analyzed in terms of the single-oscillator Wemple-Di Domenico model. The third-order nonlinear susceptibility (χ(3)) and nonlinear refractive index (n2) were calculated and discussed for different Ge20Se80-xSx (x = 0, 15 and 30%).

  15. Phase change cellular automata modeling of GeTe, GaSb and SnSe stacked chalcogenide films

    NASA Astrophysics Data System (ADS)

    Mihai, C.; Velea, A.

    2018-06-01

    Data storage needs are increasing at a rapid pace across all economic sectors, so the need for new memory technologies with adequate capabilities is also high. Phase change memories (PCMs) are a leading contender in the emerging race for non-volatile memories due to their fast operation speed, high scalability, good reliability and low power consumption. However, in order to meet the present and future storage demands, PCM technologies must further increase the storage density. Here, we employ a probabilistic cellular automata approach to explore the multi-step threshold switching from the reset (off) to the set (on) state in chalcogenide stacked structures. Simulations have shown that in order to obtain multi-step switching with high contrast among different resistance states, the stacked structure needs to contain materials with a large difference among their crystallization temperatures and careful tuning of strata thicknesses. The crystallization dynamics can be controlled through the external energy pulses applied to the system, in such a way that a balance between nucleation and growth in phase change behavior can be achieved, optimized for PCMs.

  16. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  17. Emergent Electronic and Dielectric Properties of Interacting Nanoparticles at Finite Temperature

    DOE PAGES

    Greenwood, Arin R.; Voros, Marton; Giberti, Federico; ...

    2017-12-11

    Lead chalcogenide nanoparticle solids have been successfully integrated into certified solar cells and represent promising platforms for the design of novel photoabsorbers for photoelectrochemical cells. While much attention has been drawn to improving efficiency and device performance through altering the character of the individual nanoparticles, the role of interactions between nanoparticles is not yet well-understood. Using first-principles molecular dynamics and electronic structure calculations, we investigated the combined effect of temperature and interaction on functionalized lead chalcogenide nanoparticles (NPs). Here, we show that at finite temperature, interacting NPs are dynamical dipolar systems, with the average values of dipole moments and polarizabilitiesmore » substantially increased with respect to those of the isolated building blocks. In addition, we show that the interacting NPs exhibit slightly smaller fundamental gaps that decrease as a function of temperature and that the radiative lifetimes of both the isolated NPs and the solids are greatly reduced at finite temperature compared to T = 0. Lastly, we present a critical discussion of various results reported in the literature for the values of dipole moments of nanoparticles.« less

  18. A new design methodology of obtaining wide band high gain broadband parametric source for infrared wavelength applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maji, Partha Sona; Roy Chaudhuri, Partha

    In this article, we have presented a new design methodology of obtaining wide band parametric sources based on highly nonlinear chalcogenide material of As{sub 2}S{sub 3}. The dispersion profile of the photonic crystal fiber (PCF) has been engineered wisely by reducing the diameter of the second air-hole ring to have a favorable higher order dispersion parameter. The parametric gain dependence upon fiber length, pump power, and different pumping wavelengths has been investigated in detail. Based upon the nonlinear four wave mixing phenomenon, we are able to achieve a wideband parametric amplifier with peak gain of 29 dB with FWHM of ≈2000 nmmore » around the IR wavelength by proper tailoring of the dispersion profile of the PCF with a continuous wave Erbium (Er{sup 3+})-doped ZBLAN fiber laser emitting at 2.8 μm as the pump source with an average power of 5 W. The new design methodology will unleash a new dimension to the chalcogenide material based investigation for wavelength translation around IR wavelength band.« less

  19. Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids

    PubMed Central

    Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei

    2017-01-01

    At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of ‘design-and-build' 2D layered heterojunctions for large-scale exploration and applications. PMID:28146147

  20. Chalcogenide fiber-optic SPR chemical sensor with MoS2 monolayer, polymer clad, and polythiophene layer in NIR using selective ray launching

    NASA Astrophysics Data System (ADS)

    Sharma, Anuj K.; Kaur, Baljinder

    2018-07-01

    Surface plasmon resonance (SPR) based chalcogenide fiber-optic sensor with polymer clad and MoS2 monolayer is simulated and analyzed in near infrared (NIR) for detection of mixture of alcohols (ethanol and methanol) dissolved in water solution. The proposed fiber optic sensor is analyzed under angular interrogation method, which is based on selective ray (on-axis) launching of monochromatic light into the fiber core at varying angle followed by measuring the loss of power (in dB) after passing through the SPR probe region. The performance of the sensor is analyzed in terms of its figure of merit (FOM). The sensor's specificity towards alcohols along with considerably larger FOM is achieved by utilizing a polythiophene (PT) layer. The results indicate that longer NIR wavelength (λ) provides superior sensing performance. The sensor's performance is better for larger volume fraction of methanol in the water solution. The proposed fiber optic SPR sensor has the capability of providing much greater FOM compared with the previously-reported SPR sensors.

  1. London penetration depth and superfluid density of single-crystalline Fe1+y(Te1-xSex) and Fe1+y(Te1-xSx)

    NASA Astrophysics Data System (ADS)

    Kim, H.; Martin, C.; Gordon, R. T.; Tanatar, M. A.; Hu, J.; Qian, B.; Mao, Z. Q.; Hu, Rongwei; Petrovic, C.; Salovich, N.; Giannetta, R.; Prozorov, R.

    2010-05-01

    The in-plane London penetration depth, λ(T) , was measured in single crystals of the iron-chalcogenide superconductors Fe1.03(Te0.63Se0.37) and Fe1.06(Te0.88S0.14) by using a radio-frequency tunnel diode resonator. Similar to the iron-arsenides and in stark contrast to the iron-phosphides, iron-chalcogenides exhibit a nearly quadratic temperature variation of λ(T) at low temperatures. The absolute value of the penetration depth in the T→0 limit was determined for Fe1.03(Te0.63Se0.37) by using an Al coating technique, giving λ(0)≈560±20nm . The superfluid density ρs(T)=λ2(0)/λ2(T) was fitted with a self-consistent two-gap γ model. While two different gaps are needed to describe the full-range temperature variation in ρs(T) , a nonexponential low-temperature behavior requires pair-breaking scattering, and therefore an unconventional (e.g., s± or nodal) order parameter.

  2. To study the linear and nonlinear optical properties of Se-Te-Bi-Sn/PVP (polyvinylpyrrolidone) nanocomposites

    NASA Astrophysics Data System (ADS)

    Tyagi, Chetna; Yadav, Preeti; Sharma, Ambika

    2018-05-01

    The present work reveals the optical study of Se82Te15Bi1.0Sn2.0/polyvinylpyrrolidone (PVP) nanocomposites. Bulk glasses of chalcogenide was prepared by well-known melt quenching technique. Wet chemical technique is proposed for making the composite of Se82Te15Bi1.0Sn2.0 and PVP polymer as it is easy to handle and cost effective. The composites films were made on glass slide from the solution of Se-Te-Bi-Sn and PVP polymer using spin coating technique. The transmission as well as absorbance is recorded by using UV-Vis-NIR spectrophotometer in the spectral range 350-700 nm. The linear refractive index (n) of polymer nanocomposites are calculated by Swanepoel approach. The linear refractive index (n) PVP doped Se82Te15Bi1.0Sn2.0 chalcogenide is found to be 1.7. The optical band gap has been evaluated by means of Tauc extrapolation method. Tichy and Ticha model was utilized for the characterization of nonlinear refractive index (n2).

  3. Scalable planar fabrication processes for chalcogenide-based topological insulators

    NASA Astrophysics Data System (ADS)

    Sharma, Peter; Henry, M. David; Douglas, Erica; Wiwi, Michael; Lima Sharma, Ana; Lewis, Rupert; Sugar, Joshua; Salehi, Maryam; Koirala, Nikesh; Oh, Seongshik

    Surface currents in topological insulators are expected to have long spin diffusion lengths, which could lead to numerous applications. Experiments that show promising transport properties were conducted on exfoliated flakes from bulk material, thin films on substrates of limited dimensions, or bulk material, with limited yield. A planar thin film-based technology is needed to make topological insulator devices at scale and could also lead to new device designs. We address two problems related to fabricating chalcogenide-based topological insulator devices on 3'' wafers in the Sandia Microfabrication Facility using Bi2Te3 films. (2) Implantation damage and its subsequent mitigation through annealing is characterized. (2) The degradation in dielectric layers used to manipulate surface potential for elucidating topological surface state transport is characterized under different processing conditions. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract No. DE-AC04-94AL85000. Funded by the Office of Naval Research (N0001416IP00098-0).

  4. Fragility of chalcogenide glass in relation to characteristic temperature T0/Tg

    NASA Astrophysics Data System (ADS)

    Shaker, A. M.; Shanker Rao, T.; Lilly Shanker Rao, T.; Venkataraman, K.

    2018-03-01

    The present study reports the mutual relationship between the fragility index m and the characteristic temperature T0/Tg. The fragility of the chalcogenide amorphous glass of Ge10Se50Te40 is calculated by utilizing glass transition temperature (Tg) measured by DSC (Differential Scanning Calorimetry) at different heating rates (β) in the range 5 to 20 K/min. Vogel-Fulcher-Tammann (VFT) equation is fitted to the data of Tg. In addition to the VFT method, three other methods are also used to evaluate m. The fragility index m of the Ge10Se50Te40 system showed the trend of decrease with increasing heating rate but remained stable around 22 for the heating rate 10 K/min. The value of m for the glass is near the lower limit (m ≈ 16) this indicates the alloy is a strong glass forming material in accordance of Angell’s interpretation of fragility. The calculated values of characteristic temperature T0/Tg is very close to 1 which also indicates that clearly the system is most fragile.

  5. Effect of vacuum thermal annealing on a molybdenum bilayer back contact deposited by radio-frequency magnetron sputtering for chalcogenide- and kesterite-based solar cells

    NASA Astrophysics Data System (ADS)

    Liu, Xiaolei; Cui, Hongtao; Hao, Xiaojing; Huang, Shujuan; Conibeer, Gavin

    2017-12-01

    Molybdenum (Mo) thin films are still a dominant choice for the back contact layer of Cu(In,Ga)Se2 (CIGS) and Cu2ZnSnS4 (CZTS) solar cells. This paper presents a review of Mo back contacts for CIGS and CZTS solar cells, including the requirements for a good back contact, the reason for the choice of Mo, and post-treatment. Additionally, a Mo bilayer back contact was fabricated by varying the argon (Ar) pressure during sputtering to provide both low resistivity and good adhesion to the soda-lime glass substrate. The effects of vacuum thermal annealing on the electrical, morphological and structural properties of the Mo bilayer were also investigated. Vacuum thermal annealing was seen to densify the Mo bilayer, reduce the sheet resistance, and improve the bilayer's adhesion to the soda-lime glass. The Mo bilayer back contact with a low sheet resistance of 0.132 Ω/□ and strong adhesion was made for chalcogenide- and kesterite-based solar cells.

  6. Facet-Specific Ligand Interactions on Ternary AgSbS 2 Colloidal Quantum Dots

    DOE PAGES

    Choi, Hyekyoung; Kim, Sungwoo; Luther, Joseph M.; ...

    2017-11-07

    Silver dimetal chalcogenide (Ag-V-VI 2) ternary quantum dots (QDs) are emerging lead-free materials for optoelectronic devices due to their NIR band gaps, large absorption coefficients, and superior electronic properties. However, thin film-based devices of the ternary QDs still lag behind due to the lack of understanding of the surface chemistry, compared to that of lead chalcogenide QDs even with the same crystal structure. Here in this paper, the surface ligand interactions of AgSbS 2 QDs, synthesized with 1-dodecanethiol used as a stabilizer, are studied. For nonpolar (1 0 0) surfaces, it is suggested that the thiolate ligands are associated withmore » the crystal lattices, thus preventing surface oxidation by protecting sulfur after air-exposure, as confirmed through optical and surface chemical analysis. Otherwise, silver rich (1 1 1) surfaces are passivated by thiolate ligands, allowing ligand exchange processes for the conductive films. This in-depth investigation of the surface chemistry of ternary QDs will prompt the performance enhancement of their optoelectronic devices.« less

  7. Fabrication and characterization of chalcogenide polarization-maintaining fibers based on extrusion

    NASA Astrophysics Data System (ADS)

    Jiang, Ling; Wang, Xunsi; Guo, Fangxia; Wu, Bo; Zhao, Zheming; Mi, Nan; Li, Xing; Dai, Shixun; Liu, Zijun; Nie, Qiuhua; Wang, Rongping

    2017-12-01

    The fabrication and characterization of IR chalcogenide polarization-maintaining (PM) step-index optical fibers with elliptical-core and 1-in-line-core have been reported for the first time. An improved isolated co-extrusion method was used to fabricate these core-shaped PM fibers. The elliptical core had a horizontal radius of a = 3.66 μm, vertical radius of b = 1.83 μm and the 1-in-line core of a = 4.83 μm, b = 1.42 μm, respectively. Single-mode PM beam spots were observed for the elliptical-core and 1-in-line-core fibers in the near-field energy distributions. The highest values of birefringence of the elliptical-core and 1-in-line-core fibers are 2.09 × 10-4 at 2.7 μm and 3.272 × 10-4 at 2.8 μm, respectively. The extinction ratios of -3.7 dB and -2 dB were achieved in fibers of 0.5 m long with elliptical-core and 1-in-line-core, respectively.

  8. Electric charging influence in holograms of total internal reflection, recorded in a very thin chalcogenide film

    NASA Astrophysics Data System (ADS)

    Vlaeva, I.; Petkov, K.; Tasseva, J.; Todorov, R.; Yovcheva, T.; Sainov, S.

    2010-12-01

    We report the results of electric field influence on holographic recording in very thin chalcogenide glass films. The total internal reflection prism recording technique (Stetson's scheme) is applied for holographic recording. The main advantage of this scheme is the possibility of holographic recording in micro- and nanometer thick photosensitive materials. In the present work, 30 nm, 50 nm and 1.0 µm thick films are used. In the 1.0 µm thick film two slanted gratings are simultaneously recorded. In this recording geometry only one reconstructed beam is observed. The corona charging influence on the diffraction efficiency of the recorded gratings is investigated. A negative voltage of 5 kV is applied to the corona electrode (needle) prior to the holographic recording. The observed diffraction efficiency of charged samples is always higher in comparison with uncharged samples. The reconstructed beam intensity is monitored with a red (635 nm) semiconductor laser. The possible reason is an additional refractive index modulation due to the increase in polarization, caused by the electric charging.

  9. Copper chalcogenide clusters stabilized with ferrocene-based diphosphine ligands.

    PubMed

    Khadka, Chhatra B; Najafabadi, Bahareh Khalili; Hesari, Mahdi; Workentin, Mark S; Corrigan, John F

    2013-06-17

    The redox-active diphosphine ligand 1,1'-bis(diphenylphosphino)ferrocene (dppf) has been used to stabilize the copper(I) chalcogenide clusters [Cu12(μ4-S)6(μ-dppf)4] (1), [Cu8(μ4-Se)4(μ-dppf)3] (2), [Cu4(μ4-Te)(μ4-η(2)-Te2)(μ-dppf)2] (3), and [Cu12(μ5-Te)4(μ8-η(2)-Te2)2(μ-dppf)4] (4), prepared by the reaction of the copper(I) acetate coordination complex (dppf)CuOAc (5) with 0.5 equiv of E(SiMe3)2 (E = S, Se, Te). Single-crystal X-ray analyses of complexes 1-4 confirm the presence of {Cu(2x)E(x)} cores stabilized by dppf ligands on their surfaces, where the bidentate ligands adopt bridging coordination modes. The redox chemistry of cluster 1 was examined using cyclic voltammetry and compared to the electrochemistry of the free ligand dppf and the corresponding copper(I) acetate coordination complex 5. Cluster 1 shows the expected consecutive oxidations of the ferrocene moieties, Cu(I) centers, and phosphine of the dppf ligand.

  10. Non-Newtonian flow of an ultralow-melting chalcogenide liquid in strongly confined geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Siyuan; Jain, Chhavi; Wondraczek, Katrin

    2015-05-18

    The flow of high-viscosity liquids inside micrometer-size holes can be substantially different from the flow in the bulk, non-confined state of the same liquid. Such non-Newtonian behavior can be employed to generate structural anisotropy in the frozen-in liquid, i.e., in the glassy state. Here, we report on the observation of non-Newtonian flow of an ultralow melting chalcogenide glass inside a silica microcapillary, leading to a strong deviation of the shear viscosity from its value in the bulk material. In particular, we experimentally show that the viscosity is radius-dependent, which is a clear indication that the microscopic rearrangement of the glassmore » network needs to be considered if the lateral confinement falls below a certain limit. The experiments have been conducted using pressure-assisted melt filling, which provides access to the rheological properties of high-viscosity melt flow under previously inaccessible experimental conditions. The resulting flow-induced structural anisotropy can pave the way towards integration of anisotropic glasses inside hybrid photonic waveguides.« less

  11. Chalcogenide glass-on-graphene photonics

    NASA Astrophysics Data System (ADS)

    Lin, Hongtao; Song, Yi; Huang, Yizhong; Kita, Derek; Deckoff-Jones, Skylar; Wang, Kaiqi; Li, Lan; Li, Junying; Zheng, Hanyu; Luo, Zhengqian; Wang, Haozhe; Novak, Spencer; Yadav, Anupama; Huang, Chung-Che; Shiue, Ren-Jye; Englund, Dirk; Gu, Tian; Hewak, Daniel; Richardson, Kathleen; Kong, Jing; Hu, Juejun

    2017-12-01

    Two-dimensional (2D) materials are of tremendous interest to integrated photonics, given their singular optical characteristics spanning light emission, modulation, saturable absorption and nonlinear optics. To harness their optical properties, these atomically thin materials are usually attached onto prefabricated devices via a transfer process. Here, we present a new route for 2D material integration with planar photonics. Central to this approach is the use of chalcogenide glass, a multifunctional material that can be directly deposited and patterned on a wide variety of 2D materials and can simultaneously function as the light-guiding medium, a gate dielectric and a passivation layer for 2D materials. Besides achieving improved fabrication yield and throughput compared with the traditional transfer process, our technique also enables unconventional multilayer device geometries optimally designed for enhancing light-matter interactions in the 2D layers. Capitalizing on this facile integration method, we demonstrate a series of high-performance glass-on-graphene devices including ultra-broadband on-chip polarizers, energy-efficient thermo-optic switches, as well as graphene-based mid-infrared waveguide-integrated photodetectors and modulators.

  12. Intramolecular structural model for photoinduced plasticity in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Yannopoulos, S. N.

    2003-08-01

    Selected spectral features of Raman spectra of glassy As2S3 subjected to elongation stress and sub-band-gap light illumination are analyzed and compared with polarization-dependent information obtained from the bulk glass at room temperature and near the glass transition temperature. The data are suggestive of specific structural changes which involve the transformation of atomic arrangements from realgarlike As4S4 molecules, originally present in virgin (untreated) fibers, into planar orpimentlike clusters. Implications of these atomic rearrangements to the incipient photoinduced fluidity—the onset of plastic deformation—in As2S3 glass are discussed. Kinetics of photoinduced plastic changes is compared to that of Raman spectra changes, revealing a qualitative similar behavior. An approximate estimation of the relative contribution of intermolecular rearrangements and the intramolecular structural mechanism proposed in this paper has revealed that the latter is responsible for almost 30% of the photoinduced elongation of the fiber’s length at room temperature. The proposed mechanism can as well serve as rationale for understanding the photoinduced volume expansion observed in chalcogenide glasses.

  13. Fabrication tolerant chalcogenide mid-infrared multimode interference coupler design with applications for Bracewell nulling interferometry.

    PubMed

    Goldsmith, Harry-Dean Kenchington; Cvetojevic, Nick; Ireland, Michael; Madden, Stephen

    2017-02-20

    Understanding exoplanet formation and finding potentially habitable exoplanets is vital to an enhanced understanding of the universe. The use of nulling interferometry to strongly attenuate the central star's light provides the opportunity to see objects closer to the star than ever before. Given that exoplanets are usually warm, the 4 µm Mid-Infrared region is advantageous for such observations. The key performance parameters for a nulling interferometer are the extinction ratio it can attain and how well that is maintained across the operational bandwidth. Both parameters depend on the design and fabrication accuracy of the subcomponents and their wavelength dependence. Via detailed simulation it is shown in this paper that a planar chalcogenide photonic chip, consisting of three highly fabrication tolerant multimode interference couplers, can exceed an extinction ratio of 60 dB in double nulling operation and up to 40 dB for a single nulling operation across a wavelength window of 3.9 to 4.2 µm. This provides a beam combiner with sufficient performance, in theory, to image exoplanets.

  14. Morphology-Controlled Synthesis of Au/Cu₂FeSnS₄ Core-Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation.

    PubMed

    Ha, Enna; Lee, Lawrence Yoon Suk; Man, Ho-Wing; Tsang, Shik Chi Edman; Wong, Kwok-Yin

    2015-05-06

    Copper-based chalcogenides of earth-abundant elements have recently arisen as an alternate material for solar energy conversion. Cu2FeSnS4 (CITS), a quaternary chalcogenide that has received relatively little attention, has the potential to be developed into a low-cost and environmentlly friendly material for photovoltaics and photocatalysis. Herein, we report, for the first time, the synthesis, characterization, and growth mechanism of novel Au/CITS core-shell nanostructures with controllable morphology. Precise manipulations in the core-shell dimensions are demonstrated to yield two distinct heterostructures with spherical and multipod gold nanoparticle (NP) cores (Au(sp)/CITS and Au(mp)/CITS). In photocatalytic hydrogen generation with as-synthesized Au/CITS NPs, the presence of Au cores inside the CITS shell resulted in higher hydrogen generation rates, which can be attributed to the surface plasmon resonance (SPR) effect. The Au(sp)/CITS and Au(mp)/CITS core-shell NPs enhanced the photocatalytic hydrogen generation by about 125% and 240%, respectively, compared to bare CITS NPs.

  15. Arsenic sulfide layers for dielectric reflection mirrors prepared from solution

    NASA Astrophysics Data System (ADS)

    Matějec, Vlastimil; Pedlikova, Jitka; BartoÅ, Ivo; Podrazký, Ondřej

    2017-12-01

    Chalcogenide materials due to high refractive indices, transparency in the mid-IR spectral region, nonlinear refractive indices, etc, have been employed as fibers and films in different photonic devices such as light amplifiers, optical regenerators, broadband radiation sources. Chalcogenide films can be prepared by physical methods as well as by solution-based techniques in which solutions of chalcogenides in amines are used. This paper presents results on the solution-based fabrication and optical characterization of single arsenic sulfide layers and multilayer stacks containing As2S3 layers together with porous silica layers coated on planar and fiber-optic substrates. Input As2S3 solutions for the layer fabrications were prepared by dissolving As2S3 powder in n-propylamine in a concentration of 0.50 mol/l. These solutions were applied on glass slides by dip-coating method and obtained layers were thermally treated in vacuum at temperatures up to 180 °C. Similar procedure was used for As2S3 layers in multilayer stacks. Such stacks were fabricated by repeating the application of one porous silica layer prepared by the sol-gel method and one As2S3 layer onto glass slides or silica fibers (a diameter of 0.3 mm) by using the dip-coating method. It has been found that the curing process of the applied layers has to be carefully controlled in order to obtain stacks with three pairs of such layers. Single arsenic and porous silica layers were characterized by optical microscopy, and by measuring their transmission spectra in a range of 200-2500 nm. Thicknesses and refractive indices were estimated from the spectra. Transmission spectra of planar multilayer stacks were measured, too. Interference bands have been determined from optical measurements on the multilayer stacks with a minimum transmittance of about 50% which indicates the possibility of using such stacks as reflecting mirrors.

  16. Selenium as a Structural Surrogate of Sulfur: Template-Assisted Assembly of Five Types of Tungsten-Iron-Sulfur/Selenium Clusters and the Structural Fate of Chalcogenide Reactants

    PubMed Central

    Zheng, Bo; Chen, Xu-Dong; Zheng, Shao-Liang; Holm, R. H.

    2012-01-01

    Syntheses of five types of tungsten-iron-sulfur/selenium clusters–incomplete cubanes, single cubanes, edge-bridged double cubanes (EBDCs), PN-type clusters, and double-cuboidal clusters–have been devised based on the concept of template-assisted assembly. The template reactant is six-coordinate [(Tp*)WVIS3]1−, which in the assembly systems organizes FeII,III and sulfide/selenide into cuboidal [(Tp*)WFe2S3] or cubane [(Tp*)WFe3S3Q] units. With appropriate terminal iron ligation, these units are capable of independent existence or may be transformed into higher nuclearity species. Selenide is used as a surrogate for sulfide in cluster assembly in order to determine by X-ray structures the position occupied by an external chalcogenide nucleophile or an internal chalcogenide atom in product clusters. Specific incorporation of selenide is demonstrated by formation of [WFe3S3Se]2+,3+ cubane cores. Reductive dimerization of the cubane leads to the EBDC core [W2Fe6S6Se2]2+ containing μ4-Se sites. Reaction of these species with HSe− affords the PN-type cores [W2Fe6S6Se3]1+ in which selenide occupies μ6-Se and μ2-Se sites. Reaction of [(Tp*)WS3]1−, FeCl2, and Na2Se results in the double cuboidal [W2Fe4S6Se3]2+,0 core with μ2-Se and μ4-Se bridges. It is highly probable that in analogous sulfide-only assembly systems, external and internal sulfide reactants occupy corresponding positions in cluster products. The results further demonstrate the viability of template-assisted cluster synthesis inasmuch as the reduced (Tp*)WS3 unit is present in all clusters. Structures, zero-field Mössbauer data, and redox potentials are presented for all cluster types. (Tp* = tris(pyrazolyl)hydroborate(1−)) PMID:22424175

  17. Metal ion displacements in noncentrosymmetric chalcogenides La3Ga1.67S7, La3Ag0.6GaCh7 (Ch=S, Se), and La3MGaSe7 (M=Zn, Cd)

    NASA Astrophysics Data System (ADS)

    Iyer, Abishek K.; Yin, Wenlong; Rudyk, Brent W.; Lin, Xinsong; Nilges, Tom; Mar, Arthur

    2016-11-01

    The quaternary Ga-containing chalcogenides La3Ag0.6GaS7, La3Ag0.6GaSe7, La3ZnGaSe7, and La3CdGaSe7, as well as the related ternary chalcogenide La3Ga1.67S7, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P63, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La3M1-xGaCh7 (M=Ga, Ag, Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La3Ag0.6GaS7, La3Ag0.6GaSe7) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced.

  18. Study of Third-Order Optical Nonlinearities of Se-Sn (Bi,Te) Quaternary Chalcogenide Thin Films Using Ti: Sapphire Laser in Femtosecond Regime

    NASA Astrophysics Data System (ADS)

    Yadav, Preeti; Sharma, Ambika

    2017-01-01

    The objective of the present research work is to study the nonlinear optical properties of quaternary Se-Sn (Bi,Te) chalcogenide thin films. A Z-scan technique utilizing 800 nm femtosecond laser source has been used for the determination of the nonlinear refractive index ( n 2), two-photon absorption coefficient ( β 2) and third-order susceptibility ( χ (3)). In the measurement of n 2, an aperture is placed in the far field before the detector (closed aperture), while for the measurement of β 2, entire transmitted light is collected by the detector without an aperture (open aperture). Self-focusing has been observed in closed aperture transmission spectra. The appearance of the peak after the valley in this spectrum reflects the positive nonlinear refractive index. The calculated value of n 2 of the studied thin films varies from 1.06 × 10-12 cm2/W to 0.88 × 10-12 cm2/W. The compound-dependent behavior of n 2 is explained in this paper. We have also compared the experimental values of n 2 with the theoretically determined values, other compounds of chalcogenide glass and pure silica. The n 2 of the investigated thin films is found to be 3200 times higher than pure silica. The results of the open aperture Z-scan revealed that the value of β 2 of the studied compound is in the order of 10-8 cm/W. The behavior of two-photon absorption is described by means of the optical band gap ( E g) of the studied compound. The variation in the figure-of-merit from 0.32 to 1.4 with varying Sn content is also reported in this paper. The higher value of nonlinearity makes this material advantageous for optical fibers, waveguides and optical limiting devices.

  19. Focus on superconducting properties of iron chalcogenides

    NASA Astrophysics Data System (ADS)

    Takano, Yoshihiko

    2012-10-01

    Since the discovery of iron-based superconductors, much attention has been given to the exploration of new superconducting compounds. Numerous superconducting iron compounds have been found and categorized into five groups: LnFeAsO (Ln = lanthanide), BaFe2As2, KFeAs, FeSe and FeAs with perovskite blocking layers. Among them, FeSe has the simplest crystal structure. Since the crystal structure is composed of only superconducting Fe layers, the FeSe family must be the best material to investigate the mechanism of iron-based superconductivity. FeSe shows very strong pressure effects. The superconducting transition temperature (Tc) of FeSe is approximately 8 K at ambient pressure. However Tc dramatically increases up to 37 K under applied pressure of 4-6 GPa. This is the third highest Tc value among binary superconductors, surpassed only by CsC60 under pressure (Tc = 38 K) and MgB2 (Tc = 39 K). On the other hand, despite FeTe having a crystal structure analogous to that of FeSe, FeTe shows antiferromagnetic properties without superconductivity. Doping of small ions, either Se or S, however, can induce superconductivity in FeTe1-xSex or FeTe1-xSx . The superconductivity is very weak for small x values, and annealing under certain conditions is required to obtain strong superconductivity, for instance annealing in oxygen or alcoholic beverages such as red wine. The following selection of papers describe many important experimental and theoretical studies on iron chalcogenide superconductors including preparation of single crystals, bulk samples and thin films; NMR measurements; photoemission spectroscopy; high-pressure studies; annealing effects and research on new BiS2-based superconductors. I hope this focus issue will help researchers understand the frontiers of iron chalcogenide superconductors and assist in the discovery of new phenomena related to iron-based superconductivity.

  20. Pressure-driven phase transition from antiferromagnetic semiconductor to nonmagnetic metal in the two-leg ladders A Fe 2 X 3 ( A = Ba , K ; X = S , Se )

    DOE PAGES

    Zhang, Yang; Lin, Lingfang; Zhang, Jun -Jie; ...

    2017-03-15

    The recent discovery of superconductivity in BaFe 2S 3 has stimulated considerable interest in 123-type iron chalcogenides. This material is the first reported iron-based two-leg ladder superconductor, as opposed to the prevailing two-dimensional layered structures of the iron superconductor family. Once the hydrostatic pressure exceeds 11 GPa, BaFe 2S 3 changes from a semiconductor to a superconductor below 24 K. Although previous calculations correctly explained its ground-state magnetic state and electronic structure, the pressure-induced phase transition was not successfully reproduced. In this work, our first-principles calculations show that with increasing pressure the lattice constants as well as local magnetic momentsmore » are gradually suppressed, followed by a first-order magnetic transition at a critical pressure, with local magnetic moments dropping to zero suddenly. Our calculations suggest that the self-doping caused by electrons transferred from S to Fe may play a key role in this transition. The development of a nonmagnetic metallic phase at high pressure may pave the way to superconductivity. As extensions of this effort, two other 123-type iron chalcogenides, KFe 2S 3 and KFe 2Se 3, have also been investigated. KFe 2S 3 also displays a first-order transition with increasing pressure, but KFe 2Se 3 shows instead a second-order or weakly first-order transition. Here, the required pressures for KFe 2S 3 and KFe 2Se 3 to quench the magnetism are higher than for BaFe 2S 3. Further experiments could confirm the predicted first-order nature of the transition in BaFe 2S 3 and KFe 2S 3, as well as the possible metallic/superconductivity state in other 123-type iron chalcogenides under high pressure.« less

  1. Fabrication of Low-Loss Halide Glass Fibers.

    DTIC Science & Technology

    1985-09-01

    chalcogenides, have some merit. Well known, also are the polycrystalline halide materials such as KRS-5, TlBr , *TlI and AgCl and their single...tension of the melt zone is high enough to *" eliminate sagging in the fibers. Using this technique, ( TlBr )I (KRS-5), TlBr , CuCl, AgCl, and AgBr have

  2. Raman Investigation of Structural Photoinduced Irreversible Changes of Ga(10)Ge(25)S(65) Chalcogenide Glasses

    DTIC Science & Technology

    2001-06-01

    Brazil cDepto de Quimica - Universidade Federal de Juiz de Fora, Juiz de Fora, MG- Brazil dEscola de Engenharia de Sao Carlos- - Universidade de Sao Paulo...Inorganic Materials IIC ASCR and ICT, Pelleova 24, Prague 6, Czech Republic blnstituto de Quimica - UNESP- C.P. 355, CEP: 14801-970, Araraquara, SP

  3. Dependence of reflection and transmission of soliton on angle of incidence at an interface between chalcogenide fibre and gallium nanoparticle film by phase plane trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naruka, Preeti, E-mail: preety-naruka@Yyahoo.co.in; Bissa, Shivangi; Nagar, A. K.

    In the present paper, we study propagation of a soliton at an interface formed between special type of chalcogenide fibre and gallium in three different phases with the help of equivalent particle theory. Critical angle of incidence and critical power required for transmission and reflection of soliton beam have investigated. Here it is found that if the incident angle of the beam or initial velocity of the equivalent particle is insufficient to overcome the maximum increase in potential energy then the particle (light beam) is reflected by the interface and if this incident angle is greater than a critical anglemore » then light beam will be transmitted by the interface. From an equation these critical angles for α-gallium, one of a metastable phase and liquid gallium are calculated and concluded that at large incident angles, the soliton is transmitted through the boundary, whereas at small incidence angles the soliton get reflected on keeping the power of incident beam constant. These results are explained by phase plane trajectories of the effective potential which are experimentally as well as theoretically proved.« less

  4. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  5. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  6. Tandem-layered quantum dot solar cells: tuning the photovoltaic response with luminescent ternary cadmium chalcogenides.

    PubMed

    Santra, Pralay K; Kamat, Prashant V

    2013-01-16

    Photon management in solar cells is an important criterion as it enables the capture of incident visible and infrared photons in an efficient way. Highly luminescent CdSeS quantum dots (QDs) with a diameter of 4.5 nm were prepared with a gradient structure that allows tuning of absorption and emission bands over the entire visible region without varying the particle size. These crystalline ternary cadmium chalcogenides were deposited within a mesoscopic TiO(2) film by electrophoretic deposition with a sequentially-layered architecture. This approach enabled us to design tandem layers of CdSeS QDs of varying band gap within the photoactive anode of a QD solar cell (QDSC). An increase in power conversion efficiency of 1.97-2.81% with decreasing band gap was observed for single-layer CdSeS, thus indicating varying degrees of photon harvesting. In two- and three-layered tandem QDSCs, we observed maximum power conversion efficiencies of 3.2 and 3.0%, respectively. These efficiencies are greater than the values obtained for the three individually layered photoanodes. The synergy of using tandem layers of the ternary semiconductor CdSeS in QDSCs was systematically evaluated using transient spectroscopy and photoelectrochemistry.

  7. A reprogrammable multifunctional chalcogenide guided-wave lens.

    PubMed

    Cao, Tun; Wei, Chen-Wei; Cen, Meng-Jia; Guo, Bao; Kim, Yong-June; Zhang, Shuang; Qiu, Cheng-Wei

    2018-06-05

    The transformation optics (TO) technique, which establishes an equivalence between a curved space and a spatial distribution of inhomogeneous constitutive parameters, has enabled an extraordinary paradigm for manipulating wave propagation. However, extreme constitutive parameters, as well as a static nature, inherently limit the simultaneous achievement of broadband performance, ultrafast reconfigurability and versatile reprogrammable functions. Here, we integrate the TO technique with an active phase-change chalcogenide to achieve a reconfigurable multi-mode guided-wave lens. The lens is made of a Rinehart-shaped curved waveguide with an effective refractive index gradient profile through partially crystallizing Ge2Sb2Te5. Upon changing the bias time of the external voltage imparted to the Ge2Sb2Te5 segments, the refractive index gradient profile can be tuned with a transformative platform for various functions for visible light. The electrically reprogrammable multi-mode guided-wave lens is capable of dynamically acquiring various functionalities with an ultrafast response time. Our findings may offer a significant step forward by providing a universal method to obtain ultrafast and highly versatile guided-wave manipulation, such as in Einstein rings, cloaking, Maxwell fish-eye lenses and Luneburg lenses.

  8. Crystal growth of LiIn 1–xGa xSe 2 crystals

    DOE PAGES

    Wiggins, Brenden; Bell, Joseph; Woodward, Jonathan; ...

    2016-10-22

    Lithium containing chalcogenide single crystals have become very promising materials for photonics and radiation detection. Detection applications include nuclear nonproliferation, neutron science, and stellar investigations for the search of life. Synthesis and single crystal growth methods for lithium containing chalcogenide, specifically LiIn 1-xGa xSe 2, single crystals are discussed. This study elucidates the possibility of improving neutron detection by reducing the indium capture contribution; with the incorporation of the lithium-6 isotope, gallium substitution may overcome the neutron detection efficiency limitation of 6LiInSe 2 due to appreciable neutron capture by the indium-115 isotope. As a figure of merit, the ternary parentmore » compounds 6LiInSe 2 and 6LiGaSe 2 were included in this study. Quality crystals can be obtained utilizing the vertical Bridgman method to produce quaternary compounds with tunable optical properties. Here, quaternary crystals of varying quality depending on the gallium concentration, approximately 5 x 5 x 2 mm 3 or larger in volume, were harvested, analyzed and revealed tunable absorption characteristics between 2.8-3.4 eV.« less

  9. Superionic phase transition in silver chalcogenide nanocrystals realizing optimized thermoelectric performance.

    PubMed

    Xiao, Chong; Xu, Jie; Li, Kun; Feng, Jun; Yang, Jinlong; Xie, Yi

    2012-03-07

    Thermoelectric has long been recognized as a potentially transformative energy conversion technology due to its ability to convert heat directly into electricity. However, how to optimize the three interdependent thermoelectric parameters (i.e., electrical conductivity σ, Seebeck coefficient S, and thermal conductivity κ) for improving thermoelectric properties is still challenging. Here, we put forward for the first time the semiconductor-superionic conductor phase transition as a new and effective way to selectively optimize the thermoelectric power factor based on the modulation of the electric transport property across the phase transition. Ultra low value of thermal conductivity was successfully retained over the whole investigated temperature range through the reduction of grain size. As a result, taking monodisperse Ag(2)Se nanocrystals for an example, the maximized ZT value can be achieved around the temperature of phase transition. Furthermore, along with the effective scattering of short-wavelength phonons by atomic defects created by alloying, the alloyed ternary silver chalcogenide compounds, monodisperse Ag(4)SeS nanocrystals, show better ZT value around phase transition temperature, which is cooperatively contributed by superionic phase transition and alloying at nanoscale. © 2012 American Chemical Society

  10. Thermoelectric properties and thermal stability of layered chalcogenides, TlScQ2, Q = Se, Te.

    PubMed

    Aswathy, Vijayakumar Sajitha; Sankar, Cheriyedath Raj; Varma, Manoj Raama; Assoud, Abdeljalil; Bieringer, Mario; Kleinke, Holger

    2017-12-12

    A few thallium based layered chalcogenides of α-NaFeO 2 structure-type are known for their excellent thermoelectric properties and interesting topological insulator nature. TlScQ 2 belongs to this structural category. In the present work, we have studied the electronic structure, electrical and thermal transport properties and thermal stability of the title compounds within the temperature range 2-600 K. Density functional theory (DFT) predicts a metallic nature for TlScTe 2 and a semiconducting nature for TlScSe 2 . DFT calculations also show significant lowering of energies of frontier bands upon inclusion of spin-orbit coupling contribution in the calculation. The electronic structure also shows the simultaneous occurrence of holes and electron pockets for the telluride. Experiments reveal that the telluride shows a semi-metallic behaviour whereas the selenide is a semiconductor. The thermoelectric properties for both the materials were also investigated. Both these materials possess very low thermal conductivity which is an attractive feature for thermoelectrics. However, they lack thermal stability and decompose upon warming above room temperature, as evidenced from high temperature powder X-ray diffraction and thermal analysis.

  11. A monotopic aluminum telluride with an Al=Te double bond stabilized by N-heterocyclic carbenes

    PubMed Central

    Franz, Daniel; Szilvási, Tibor; Irran, Elisabeth; Inoue, Shigeyoshi

    2015-01-01

    Aluminum chalcogenides are mostly encountered in the form of bulk aluminum oxides that are structurally diverse but typically consist of networks with high lattice energy in which the chalcogen atoms bridge the metal centres. This makes their molecular congeners difficult to synthesize because of a pronounced tendency for oligomerization. Here we describe the isolation of the monotopic aluminum chalcogenide (LDipN)AlTe(LEt)2 (LDip=1,3-(2,6-diisopropylphenyl)-imidazolin-2-imine, LEt=1,3-diethyl-4,5-dimethyl-imidazolin-2-ylidene). Unique features of (LDipN)AlTe(LEt)2 are the terminal position of the tellurium atom, the shortest aluminum–tellurium distance hitherto reported for a molecular complex and the highest bond order reported for an interaction between these elements, to the best of our knowledge. At elevated temperature (LDipN)AlTe(LEt)2 equilibrates with dimeric {(LDipN)AlTe(LEt)}2 in which the chalcogen atoms assume their common role as bridges between the metal centres. These findings demonstrate that (LDipN)AlTe(LEt)2 comprises the elusive Al=Te double bond in the form of an N-heterocyclic carbene-stabilized species. PMID:26612781

  12. Enhanced interfacial thermal transport in pnictogen tellurides metallized with a lead-free solder alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devender,; Ramanath, Ganpati, E-mail: Ramanath@rpi.edu; Lofgreen, Kelly

    2015-11-15

    Controlling thermal transport across metal–thermoelectric interfaces is essential for realizing high efficiency solid-state refrigeration and waste-heat harvesting power generation devices. Here, the authors report that pnictogen chalcogenides metallized with bilayers of Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5} solder and Ni barrier exhibit tenfold higher interfacial thermal conductance Γ{sub c} than that obtained with In/Ni bilayer metallization. X-ray diffraction and x-ray spectroscopy indicate that reduced interdiffusion and diminution of interfacial SnTe formation due to Ni layer correlates with the higher Γ{sub c}. Finite element modeling of thermoelectric coolers metallized with Sn{sub 96.5}Ag{sub 3}Cu{sub 0.5}/Ni bilayers presages a temperature drop ΔT ∼ 22 K that is 40%more » higher than that obtained with In/Ni metallization. Our results underscore the importance of controlling chemical intermixing at solder–metal–thermoelectric interfaces to increase the effective figure of merit, and hence, the thermoelectric cooling efficiency. These findings should facilitate the design and development of lead-free metallization for pnictogen chalcogenide-based thermoelectrics.« less

  13. Measurement of the refractive index dispersion of As2Se3 bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, Nathan; Anheier, Norman C.; Qiao, Hong

    2011-05-01

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5–10.6 μm range. The instrumental error was found to be ±0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  14. Measurement of the refractive index dispersion of As{sub 2}Se{sub 3} bulk glass and thin films prior to and after laser irradiation and annealing using prism coupling in the near- and mid-infrared spectral range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlie, N.; Petit, L.; Musgraves, J. D.

    2011-05-15

    The prism coupling technique has been utilized to measure the refractive index in the near- and mid-IR spectral region of chalcogenide glasses in bulk and thin film form. A commercial system (Metricon model 2010) has been modified with additional laser sources, detectors, and a new GaP prism to allow the measurement of refractive index dispersion over the 1.5-10.6 {mu}m range. The instrumental error was found to be {+-}0.001 refractive index units across the entire wavelength region examined. Measurements on thermally evaporated AMTIR2 thin films confirmed that (i) the film deposition process provides thin films with reduced index compared to thatmore » of the bulk glass used as a target, (ii) annealing of the films increases the refractive index of the film to the level of the bulk glass used as a target to create it, and (iii) it is possible to locally increase the refractive index of the chalcogenide glass using laser exposure at 632.8 nm.« less

  15. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    NASA Astrophysics Data System (ADS)

    Petersen, Christian Rosenberg; Møller, Uffe; Kubat, Irnis; Zhou, Binbin; Dupont, Sune; Ramsay, Jacob; Benson, Trevor; Sujecki, Slawomir; Abdel-Moneim, Nabil; Tang, Zhuoqi; Furniss, David; Seddon, Angela; Bang, Ole

    2014-11-01

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. To date, the limitations of mid-infrared light sources such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central wavelength of either 4.5 μm or 6.3 μm into short pieces of ultra-high numerical-aperture step-index chalcogenide glass optical fibre generates a mid-infrared supercontinuum spanning 1.5 μm to 11.7 μm and 1.4 μm to 13.3 μm, respectively. This is the first experimental demonstration to truly reveal the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control.

  16. Study of interatomic interactions and phonons in magnesium chalcogenides

    NASA Astrophysics Data System (ADS)

    Gupta, Yuhit; Sinha, M. M.

    2018-05-01

    Alkaline earth chalcogenides (AECs) are very important compounds because of these possess semiconducting properties besides having large band gap mostly of the order of 7-10 eV which is the characteristic properties of insulators. These compounds are having many important optoelectronic properties, which serves its role in the production of many electronic devices. These are found in many crystallographic phases such as rock salt (B1), zinc blende (B3), wurtzite (B5) and nickel arsenide (B8) phase. A de-Launay angular force (DAF) model has been used to study the interatomic interactions and phonons of MgX (X=S, Se, Te) in zinc blende structure. The interatomic interaction in the form of central and angular forces up to second nearest neighbors has been considered. The interatomic interaction Mg-X is found to be strongest and its value is highest for MgS compared to others. This is because of small bond length in MgS compared to others. Zone centre phonons have been calculated for MgX and are in agreement with other available results. The phonon dispersion curves in three high symmetric direction are calculated for MgX (X=S, Se, Te) and are interpreted in light of other existing results.

  17. Study of linear optical parameters of sodium sulphide nano-particles added ADP crystals

    NASA Astrophysics Data System (ADS)

    Kochuparampil, A. P.; Joshi, J. H.; Dixit, K. P.; Jethva, H. O.; Joshi, M. J.

    2017-05-01

    Ammonium Dihydrogen Phosphate (ADP) is one of the nonlinear optical crystals. It is having various applications like optical mixing, electro-optical modulator, harmonic generators, etc. Chalcogenide compounds are poorly soluble in water and difficult to add in the water soluble ADP crystals. The solubility of Chalcogenide compounds can be increased by synthesizing the nano-structured samples with suitable capping agent. In the present study sodium sulphide was added in to ADP to modify its linear optical parameters. Sodium sulphide nano particles were synthesized by co-precipitation technique using Ethylene diamine as capping agent followed by microwave irradiation. The powder XRD confirmed the nano-structured nature of sodium sulphide nano particles. The solubility of nanoparticles of sodium sulphide increased significantly in water compared to the bulk. Pure and Na2S added ADP crystals were grown by slow solvent evaporation method at room temperature. The presence of sodium in ADP was confirmed by AAS. The UV-Vis spectra were recorded for all crystals. Various optical parameters like, transmittance, energy band gap, extinction coefficient, refractive index, optical conductivity, etc. were evaluated. The electronic polarizibility of pure and doped crystals calculated from energy band gap. The effect of doping concentration was found on various parameters.

  18. Soluble Lead and Bismuth Chalcogenidometallates: Versatile Solders for Thermoelectric Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Hao; Son, Jae Sung; Dolzhnikov, Dmitriy S.

    Here we report the syntheses of largely unexplored lead and bismuth chalcogenidometallates in the solution phase. Using N2H4 as the solvent, new compounds such as K6Pb3Te6·7N2H4 were obtained. These soluble molecular compounds underwent cation exchange processes using resin chemistry, replacing Na+ or K+ by decomposable N2H5+ or tetraethylammonium cations. They also transformed into stoichiometric lead and bismuth chalcogenide nanomaterials with the addition of metal salts. Such a versatile chemistry led to a variety of composition-matched solders to join lead and bismuth chalcogenides and tune their charge transport properties at the grain boundaries. Solution-processed thin films composed of Bi0.5Sb1.5Te3 microparticles solderedmore » by (N2H5)6Bi0.5Sb1.5Te6 exhibited thermoelectric power factors (~28 μW/cm K2) comparable to those in vacuum-deposited Bi0.5Sb1.5Te3 films. The soldering effect can also be integrated with attractive fabrication techniques for thermoelectric modules, such as screen printing, suggesting the potential of these solders in the rational design of printable and moldable thermoelectrics.« less

  19. Synthesis, Crystal Structure, and Physical Properties of New Layered Oxychalcogenide La2O2Bi3AgS6

    NASA Astrophysics Data System (ADS)

    Hijikata, Yudai; Abe, Tomohiro; Moriyoshi, Chikako; Kuroiwa, Yoshihiro; Goto, Yosuke; Miura, Akira; Tadanaga, Kiyoharu; Wang, Yongming; Miura, Osuke; Mizuguchi, Yoshikazu

    2017-12-01

    We have synthesized a new layered oxychalcogenide La2O2Bi3AgS6. From synchrotron X-ray diffraction and Rietveld refinement, the crystal structure of La2O2Bi3AgS6 was refined using a model of the P4/nmm space group with a = 4.0644(1) Å and c = 19.412(1) Å, which is similar to the related compound LaOBiPbS3, while the interlayer bonds (M2-S1 bonds) are apparently shorter in La2O2Bi3AgS6. The tunneling electron microscopy (TEM) image confirmed the lattice constant derived from Rietveld refinement (c ˜ 20 Å). The electrical resistivity and Seebeck coefficient suggested that the electronic states of La2O2Bi3AgS6 are more metallic than those of LaOBiS2 and LaOBiPbS3. The insertion of a rock-salt-type chalcogenide into the van der Waals gap of BiS2-based layered compounds, such as LaOBiS2, will be a useful strategy for designing new layered functional materials in the layered chalcogenide family.

  20. Thermodynamic properties of PbTe, PbSe, and PbS: a first-principles study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yi; Ke, Xuezhi; Chen, Changfeng

    2009-01-01

    The recent discovery of novel lead chalcogenide-based thermoelectric materials has attracted great interest. These materials exhibit low thermal conductivity which is closely related to their lattice dynamics and thermodynamic properties. In this paper, we report a systematic study of electronic structures and lattice dynamics of the lead chalcogenides PbX (X=Te, Se, S) using first-principles density functional theory calculations and a direct force-constant method. We calculate the struc- tural parameters, elastic moduli, electronic band structures, dielectric constants, and Born effective charges. Moreover, we determine phonon dispersions, phonon density of states, and phonon softening modes in these materials. Based on the resultsmore » of these calculations, we further employ quasihar- monic approximation to calculate the heat capacity, internal energy, and vibrational entropy. The obtained results are in good agreement with experimental data. Lattice thermal conductivities are evaluated in terms of the Gruneisen parameters. The mode Gruneisen parameters are calculated to explain the anharmonicity in these materials. The effect of the spin-orbit interaction is found to be negligible in determining the thermodynamic properties of PbTe, PbSe, and PbS.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, H.; Yu, N. N.; Yang, Z.

    Opposite to the almost persistent p-type conductivity of the crystalline chalcogenides along the GeTe-Sb{sub 2}Te{sub 3} tie line, n-type Hall mobility is observed in crystalline GeTe/Sb{sub 2}Te{sub 3} superlattice-like material (SLL) with a short period length. We suggest that this unusual carrier characteristic originates from the structural disorder introduced by the lattice strain and dangling bonds at the SLL interfaces, which makes the crystalline SLLs behave like the amorphous chalcogenides. Detailed structural disorder in crystalline SLL has been studied by Raman scattering, X-ray photoelectron spectroscopy, as well as Variable-energy positron annihilation spectroscopy measurements. First-principles calculations results show that this structuralmore » disorder gives rise to three-site junctions that dominate the charge transport as the period length decreases and result in the anomalously signed Hall effect in the crystalline SLL. Our findings indicate a similar tetrahedral structure in the amorphous and crystalline states of SLLs, which can significantly reduce the entropy difference. Due to the reduced entropy loss and increased resistivity of crystalline phase introduced by disorder, it is not surprising that the SLLs exhibit extremely lower RESET current and power consumption.« less

  2. Structural and Thermal Diffusivity Studies of Polycrystalline (CuSe)1-XSeX Metal Chalcogenide Compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephine, L. Y. C.; Talib, Z. A.; Yunus, W. M. M.

    2007-05-09

    This paper reports the preparation and the characterization of the (CuSe)1-xSex metal chalcogenide semiconductor compounds with different stoichiometric compositions of Se (x = 0, 0.2, 0.4, 0.5, 0.6, 0.8, 1.0) in bulk form. The (CuSe)1-xSex compounds were prepared using the solid state reaction by varying the ratio of CuSe:Se in the reaction mixture. X-ray powder diffraction analysis is used to identify and measure the mass absorption coefficient of the (CuSe)1-xSex compounds to support the thermal diffusivity behaviour. The thermal diffusivity of the polycrystalline (CuSe)1-xSex compounds were measured and analyzed for the first time, using the photoflash technique. The thermal diffusivitymore » values were determined to be in the range of 2.524 x 10-3 cm2/s to 1.125 x 10-2 cm2/s. It was found that the thermal diffusivity value tends to decrease as the parameter x increases. The relationship between the thermal diffusivity, mass absorption coefficient and density of the (CuSe)1-xSex are discussed in detail.« less

  3. Efficient Photothermoelectric Conversion in Lateral Topological Insulator Heterojunctions.

    PubMed

    Mashhadi, Soudabeh; Duong, Dinh Loc; Burghard, Marko; Kern, Klaus

    2017-01-11

    Tuning the electron and phonon transport properties of thermoelectric materials by nanostructuring has enabled improving their thermopower figure of merit. Three-dimensional topological insulators, including many bismuth chalcogenides, attract increasing attention for this purpose, as their topologically protected surface states are promising to further enhance the thermoelectric performance. While individual bismuth chalcogenide nanostructures have been studied with respect to their photothermoelectric properties, nanostructured p-n junctions of these compounds have not yet been explored. Here, we experimentally investigate the room temperature thermoelectric conversion capability of lateral heterostructures consisting of two different three-dimensional topological insulators, namely, the n-type doped Bi 2 Te 2 Se and the p-type doped Sb 2 Te 3 . Scanning photocurrent microscopy of the nanoplatelets reveals efficient thermoelectric conversion at the p-n heterojunction, exploiting hot carriers of opposite sign in the two materials. From the photocurrent data, a Seebeck coefficient difference of ΔS = 200 μV/K was extracted, in accordance with the best values reported for the corresponding bulk materials. Furthermore, it is in very good agreement with the value of ΔS = 185 μV/K obtained by DFT calculation taking into account the specific doping levels of the two nanostructured components.

  4. Diffraction efficiency growth of nano-scale holographic recording produced in a corona discharge

    NASA Astrophysics Data System (ADS)

    Bodurov, I.; Yovcheva, T.; Vlaeva, I.; Viraneva, A.; Todorov, R.; Spassov, G.; Sainov, S.

    2012-12-01

    The nano-scale holographic gratings ware recorded in 29 nm and 56 nm thick As2S3 films. The chalcogenide layers were deposited on a transparent chromium electrode with thickness 10 nm, produced on a glass substrate. Both chromium and chalcogenide films were deposited in one vacuum cycle by e-beam and thermal evaporation, respectively. The diode 532 nm diode laser was used as a light source in the present holographic experiments. The total internal reflection arrangement (Stetson-Nassenstein) was used in holographic recordings. The reference beam was totally reflected from the air-As2S3 boundary surface by an input glass prism. The object beam was normally incident on the recording medium. The corona charging was performed by a needle fixed at the distance of 1 cm from the holographic recording medium by applying a - 5 kV voltage. The diffraction efficiency increased from 9 to 30 times when the corona discharge was applied during the holographic recording, in comparison to the uncharged recording. The possible reason of the observed effect is discussed on the basis of the Franz-Keldysh effect and Moss rule.

  5. Nonlinear optical properties of As20S80 system chalcogenide glass using Z-scan and its strip waveguide under bandgap light using the self-phase modulation

    NASA Astrophysics Data System (ADS)

    Zou, L. E.; He, P. P.; Chen, B. X.; Iso, M.

    2017-02-01

    Optical nonlinearities in the undoped As20S80, low doped P2As20S78 and Sn1As20S79 chacogenide glasses are investigated by using Z-scan method. These experiments show that at 1064 nm the figure of merit (FOM) for As20S80 is ˜1.02, while for Sn1As20S79 increases to ˜1.42, and for P2As20S78 decreases to ˜0.83. These resulted data indicate the addition of Sn in As20S80 system chalcogenide glass can enhance FOM due to creating narrow energy gaps. In addition, the self-phase modulation (SPM) width experiment for Sn1As20S79 strip waveguide displays that the full width half maximum (FWHM) of spectral width increases approximately 0.8 nm under the induction of bandgap light, meaning that the bandgap light can induce to enhance its optical nonlinearity with the nonlinear refractive index of n2≅5.27×10-14 cm2/W.

  6. Direct femtosecond laser writing of buried infrared waveguides in chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Le Coq, D.; Bychkov, E.; Masselin, P.

    2016-02-01

    Direct laser writing technique is now widely used in particular in glass, to produce both passive and active photonic devices. This technique offers a real scientific opportunity to generate three-dimensional optical components and since chalcogenide glasses possess transparency properties from the visible up to mid-infrared range, they are of great interest. Moreover, they also have high optical non-linearity and high photo-sensitivity that make easy the inscription of refractive index modification. The understanding of the fundamental and physical processes induced by the laser pulses is the key to well-control the laser writing and consequently to realize integrated photonic devices. In this paper, we will focus on two different ways allowing infrared buried waveguide to be obtained. The first part will be devoted to a very original writing process based on a helical translation of the sample through the laser beam. In the second part, we will report on another original method based on both a filamentation phenomenon and a point by point technique. Finally, we will demonstrate that these two writing techniques are suitable for the design of single mode waveguide for wavelength ranging from the visible up to the infrared but also to fabricate optical components.

  7. Solution-based synthesis and design of late transition metal chalcogenide materials for oxygen reduction reaction (ORR).

    PubMed

    Gao, Min-Rui; Jiang, Jun; Yu, Shu-Hong

    2012-01-09

    Late transition metal chalcogenide (LTMC) nanomaterials have been introduced as a promising Pt-free oxygen reduction reaction (ORR) electrocatalysts because of their low cost, good ORR activity, high methanol tolerance, and facile synthesis. Herein, an overview on the design and synthesis of LTMC nanomaterials by solution-based strategies is presented along with their ORR performances. Current solution-based synthetic approaches towards LTMC nanomaterials include a hydrothermal/solvothermal approach, single-source precursor approach, hot-injection approach, template-directed soft synthesis, and Kirkendall-effect-induced soft synthesis. Although the ORR activity and stability of LTMC nanomaterials are still far from what is needed for practical fuel-cell applications, much enhanced electrocatalytic performance can be expected. Recent advances have emphasized that decorating the surface of the LTMC nanostructures with other functional nanoparticles can lead to much better ORR catalytic activity. It is believed that new synthesis approaches to LTMCs, modification techniques of LTMCs, and LTMCs with desirable morphology, size, composition, and structures are expected to be developed in the future to satisfy the requirements of commercial fuel cells. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Correlation between structure and physical properties of chalcogenide glasses in the AsxSe1-x system

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Bureau, Bruno; Rouxel, Tanguy; Gueguen, Yann; Gulbiten, Ozgur; Roiland, Claire; Soignard, Emmanuel; Yarger, Jeffery L.; Troles, Johann; Sangleboeuf, Jean-Christophe; Lucas, Pierre

    2010-11-01

    Physical properties of chalcogenide glasses in the AsxSe1-x system have been measured as a function of composition including the Young’s modulus E , shear modulus G , bulk modulus K , Poisson’s ratio ν , the density ρ , and the glass transition Tg . All these properties exhibit a relatively sharp extremum at the average coordination number ⟨r⟩=2.4 . The structural origin of this trend is investigated by Raman spectroscopy and nuclear magnetic resonance. It is shown that the reticulation of the glass structure increases continuously until x=0.4 following the “chain crossing model” and then undergoes a transition toward a lower dimension pyramidal network containing an increasing number of molecular inclusions at x>0.4 . Simple theoretical estimates of the network bonding energy confirm a mismatch between the values of mechanical properties measured experimentally and the values predicted from a continuously reticulated structure, therefore corroborating the formation of a lower dimension network at high As content. The evolution of a wide range of physical properties is consistent with this sharp structural transition and suggests that there is no intermediate phase in these glasses at room temperature.

  9. Manufacturing and testing of wavefront filters for DARWIN

    NASA Astrophysics Data System (ADS)

    Flatscher, R.; Artjushenko, V.; Sakharova, T.; Pereira do Carmo, Joao

    2017-11-01

    Wavefront filtering is mandatory in the realisation of nulling interferometers with high star light suppression capability required to detect extrasolar planets, such as the one foreseen for the ESA Darwin mission. This paper presents the design, manufacturing, and test results of single mode fibres to be used as wavefront filters in mid-infrared range. Fibres made from chalcogenide glass and silver halide crystals were produced. The first class can serve as wavefront filters up to a wavelength of 11 microns, while silver halide fibres can be used over the full Darwin wavelength range from 6.5 to 18 micron. The chalcogenide glass fibres were drawn by double crucible method whereas polycrystalline fibres from silver halides were fabricated by multiple extrusion from a crystalline preform. Multi-layer AR-coatings for fibre ends were developed and environmentally tested for both types of fibres. Special fibre facet polishing procedures were established, in particular for the soft silver halide fibre ends. Cable design and assembly process were also developed, including termination by SMA-connectors with ceramic ferrules and fibre protection by loose PEEK-tubings to prevent excessive bending and chemical attacks for fibres. The wavefront filtering capability of the fibres was demonstrated on a high quality Mach-Zehnder interferometer. Two different groups of laser sources were used to measure the wavefront filtering of the fibres by using a CO-laser for testing in the lower sub-band and a CO2-laser to check the upper sub-band. Measurements of the fibres far field intensity distribution and transmission were performed for numerous cable samples. Single mode behaviour was observed in more than 25 silver halide fibre cables before AR-coating of their ends, while after that 17 cables were compliant with all technical requirements. Residual cladding modes existing in short single mode fibres were effectively removed by applying of a proper absorbing jacket to the fibre's lateral surface and by adding an oversized output aperture in front of fibre ends. Several fibres were exposed to gamma radiation of total dose of 25, 50, and even 500 krad. No deterioration was found on AR-coated fibre ends and on fibre material. Five fibres were irradiated by proton radiation of 10MeV energy and 1010 p/cm2 equivalent fluence. Several fibres were cooled down to 10 K by plunging them in a dipstick into liquid Helium. Silver halide fibres survived that test when cables were properly assembled. The brittle chalcogenide glass fibres were much more sensitive to thermal gradients and the related cables did not survive the thermal shock. Critical issues have been revealed in multiple drawings of chalcogenide glass fibres where core and cladding composition were not stable at some fabrication stages - resulting in a poor single mode guiding. Much better results have been achieved with polycrystalline fibres from silver halides made with a small core and low NA and enabling single mode guiding in the mid infrared.

  10. The Optoelectronic Properties of Nanoparticles from First Principles Calculations

    NASA Astrophysics Data System (ADS)

    Brawand, Nicholas Peter

    The tunable optoelectronic properties of nanoparticles through the modification of their size, shape, and surface chemistry, make them promising platforms for numerous applications, including electronic and solar conversion devices. However, the rational design and optimization of nanostructured materials remain open challenges, e.g. due to difficulties in controlling and reproducing synthetic processes and in precise atomic-scale characterization. Hence, the need for accurate theoretical predictions, which can complement and help interpret experiments and provide insight into the underlying physical properties of nanostructured materials. This dissertation focuses on the development and application of first principles calculations to predict the optoelectronic properties of nanoparticles. Novel methods based on density functional theory are developed, implemented, and applied to predict both optical and charge transport properties. In particular, the generalization of dielectric dependent hybrid functionals to finite systems is introduced and shown to yield highly accurate electronic structure properties of molecules and nanoparticles, including photoemission and absorption properties. In addition, an implementation of constrained density functional theory is discussed, for the calculation of hopping transport in nanoparticle systems. The implementation was verified against literature results and compared against other methods used to compute transport properties, showing that some methods used in the literature give unphysical results for thermally disordered systems. Furthermore, the constrained density functional theory implementation was coupled to the self-consistent image charge method, making it possible to include image charge effects self-consistently when predicting charge transport properties of nanoparticles near interfaces. The methods developed in this dissertation were then applied to study the optoelectronic and transport properties of specific systems, in particular, silicon and lead chalcogenide nanoparticles. In the case of Si, blinking in oxidized Si nanoparticles was addressed. Si dangling bonds at the surface were found to introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. We also investigated, engineering of band edge positions of nanoparticles through post-synthetic surface chemistry modification, with a focus on lead chalcogenides. In collaboration with experiment, we demonstrated how band edge positions of lead sulfide nanoparticles can be tuned by over 2.0 eV. We established a clear relationship between ligand dipole moments and nanoparticle band edge shifts which can be used to engineer nanoparticles for optoelectronic applications. Calculations of transport properties focused on charge transfer in silicon and lead chalcogenide nanoparticles. Si nanoparticles with deep defects and shallow impurities were investigated, showing that shallow defects may be more detrimental to charge transport than previously assumed. In the case of lead chalcogenide nanoparticles, hydrogen was found to form complexes with defects which can be used to remove potentially detrimental charge traps in nanoparticle solids. The methods and results presented in this dissertation are expected to help guide engineering of nanoparticles for future device applications.

  11. Metal ion displacements in noncentrosymmetric chalcogenides La{sub 3}Ga{sub 1.67}S{sub 7}, La{sub 3}Ag{sub 0.6}GaCh{sub 7} (Ch=S, Se), and La{sub 3}MGaSe{sub 7} (M=Zn, Cd)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Abishek K.; Yin, Wenlong; Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900

    The quaternary Ga-containing chalcogenides La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}, La{sub 3}ZnGaSe{sub 7}, and La{sub 3}CdGaSe{sub 7}, as well as the related ternary chalcogenide La{sub 3}Ga{sub 1.67}S{sub 7}, were prepared by reactions of the elements at 950 °C. They adopt noncentrosymmetric hexagonal structures (space group P6{sub 3}, Z=2) with cell parameters (a=10.2 Å, c=6.1 Å for the sulfides; a=10.6 Å, c=6.4 Å for the selenides) that are largely controlled by the geometrical requirements of one-dimensional stacks of Ga-centered tetrahedra separated by the La atoms. Among these compounds, which share the common formulation La{sub 3}M{sub 1–x}GaCh{sub 7} (M=Ga, Ag,more » Zn, Cd; Ch=S, Se), the M atoms occupy sites within a stacking of trigonal antiprisms formed by Ch atoms. The location of the M site varies between extremes with trigonal antiprismatic (CN6) and trigonal planar (CN3) geometry. Partial occupation of these sites and intermediate ones accounts for the considerable versatility of these structures and the occurrence of large metal displacement parameters. The site occupations can be understood in a simple way as being driven by the need to satisfy appropriate bond valence sums for both the M and Ch atoms. Band structure calculations rationalize the substoichiometry observed in the Ag-containing compounds (La{sub 3}Ag{sub 0.6}GaS{sub 7}, La{sub 3}Ag{sub 0.6}GaSe{sub 7}) as a response to overbonding. X-ray photoelectron spectroscopy supports the presence of monovalent Ag atoms in these compounds, which are not charge-balanced. - Graphical abstract: Partial occupation of metal atoms in multiple sites accounts for versatility in Ga-containing chalcogenides La{sub 3}M{sub 1–x}GaCh{sub 7} with noncentrosymmetric hexagonal structures. - Highlights: • La{sub 3}M{sub 1–x}GaCh{sub 7} (M =Ga, Ag, Zn, Cd; Ch =S, Se) adopt related hexagonal structures. • Large displacements of M atoms originate from partial occupation of multiple sites. • Bond valence sum arguments give a simple explanation for site preference. • XPS studies confirm presence of monovalent Ag in La{sub 3}Ag{sub 0.6}GaCh{sub 7}. • Substoichiometry in La{sub 3}Ag{sub 0.6}GaCh{sub 7} avoids occupation of Ag–Ch antibonding levels.« less

  12. Molten salt battery having inorganic paper separator

    DOEpatents

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  13. Catalyzed Preparation of Amorphous Chalcogenides

    DTIC Science & Technology

    1998-01-30

    hydrogen sulfide through lanthanum isopropoxide in dry benzene, as the solvent. The powder obtained was heat-treated in hydrogen sulfide finally 15...producing single-phase crystalline lanthanum sulfide (La2S3) . Amorphous particles were also prepared by reacting titanium tetrapropoxide [Ti...OC3H7)4] and hydrogen sulfide. Resulting powder was heat-treated in flowing hydrogen sulfide to produce crystalline titanium sulfide (TiS2) . 20

  14. Study of the self-organization processes in lead sulfide quantum dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, S. A., E-mail: SATarasov@mail.ru; Aleksandrova, O. A.; Maksimov, A. I.

    A procedure is described for the synthesis of nanoparticles based on lead chalcogenides. The procedure combines the synthesis of colloidal quantum dots (QDs) in aqueous solutions with simultaneous organization of the QDs into ordered arrays. The processes of the self-organization of QDs are analyzed at the nano- and microscopic levels by the photoluminescence method, atomic-force microscopy, and optical microscopy.

  15. Effect of Se concentration on photonic bandgap of 1-D As-S-Se/air multilayers

    NASA Astrophysics Data System (ADS)

    Singh, Rajpal; Suthar, B.; Bhargava, A.

    2018-05-01

    The photonic band structure of 1-D chalcogenide photonic crystal consisting of As-S-Se/air multilayered structure is studied. The photonic band structure is calculated using plane wave expansion method. The effect of Se constration on the photonic bandgap is studied. It is found that the photonic bandgap increases with Se-concentration and shows the red shift.

  16. 2D materials: Graphene and others

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, Suneev Anil, E-mail: suneev@gmail.com; Singh, Amrinder Pal; Kumar, Suresh

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  17. Recent developments in the fabrication of infrared fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Florea, Catalin; Shaw, Brandon; Sanghera, Jas; Nguyen, Vinh; Chin, Geoff; Aggarwal, Ishwar

    2012-02-01

    We report on the study of adding metal dopants in chalcogenide glasses to enhance the photosensitivity of the fiber core versus cladding compositions, with goal to enable high reflectivity gratings in infrared-transmitting fibers. Results for the optical and thermal properties of these glasses will be presented, as well as for gratings formation in the glasses using various writing wavelengths for the different doped compositions.

  18. Electronic structure of layered quaternary chalcogenide materials for band-gap engineering: The example of Cs2MIIM3IVQ8

    NASA Astrophysics Data System (ADS)

    Besse, Rafael; Sabino, Fernando P.; Da Silva, Juarez L. F.

    2016-04-01

    Quaternary chalcogenide materials offer a wide variety of chemical and physical properties, and hence, those compounds have been widely studied for several technological applications. Recently, experimental studies have found that the chalcogenide Cs2MIIM3IVQ8 family (MII = Mg , Zn , Cd , Hg , MIV = Ge , Sn and Q = S , Se , Te ), which includes 24 compounds, yields a wide range of band gaps, namely, from 1.07 to 3.4 eV, and hence, they have attracted great interest. To obtain an improved atomistic understanding of the role of the cations and anions on the physical properties, we performed a first-principles investigation of the 24 Cs2MIIM3IVQ8 compounds employing density functional theory within semilocal and hybrid exchange-correlation energy functionals and the addition of van der Waals corrections to improve the description of the weakly interacting layers. Our lattice parameters are in good agreement with the available experimental data (i.e., 11 compounds), and the equilibrium volume increases linearly by increasing the atomic number of the chalcogen, which can be explained by the increased atomic radius of the chalcogen atoms from S to Te . We found that van der Waals corrections play a crucial role in the lattice parameter in the stacking direction of the Cs2MIIM3IVQ8 layers, while the binding energy per unit area has similar magnitude as obtained for different layered materials. We obtained that the band gaps follow a linear relation as a function of the unit cell volume, which can be explained by the atomic size of the chalcogen atom and the relative position of the Q p states within the band structure. The fundamental and optical band gaps differ by less than 0.1 eV. The band gaps obtained with the hybrid functional are in good agreement with the available experimental data. Furthermore, we found from the Bader analysis, that the Coulomb interations among the cations and anions play a crucial role on the energetic properties.

  19. High-precision measurements of the compressibility of chalcogenide glasses at a hydrostatic pressure up to 9 GPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazhkin, V. V., E-mail: brazhkin@hppi.troitsk.ru; Bychkov, E.; Tsiok, O. B.

    2016-08-15

    The volumes of glassy germanium chalcogenides GeSe{sub 2}, GeS{sub 2}, Ge{sub 17}Se{sub 83}, and Ge{sub 8}Se{sub 92} are precisely measured at a hydrostatic pressure up to 8.5 GPa. The stoichiometric GeSe{sub 2} and GeS{sub 2} glasses exhibit elastic behavior in the pressure range up to 3 GPa, and their bulk modulus decreases at pressures higher than 2–2.5 GPa. At higher pressures, inelastic relaxation processes begin and their intensity is proportional to the logarithm of time. The relaxation rate for the GeSe{sub 2} glasses has a pronounced maximum at 3.5–4.5 GPa, which indicates the existence of several parallel structural transformation mechanisms.more » The nonstoichiometric glasses exhibit a diffuse transformation and inelastic behavior at pressures above 1–2 GPa. The maximum relaxation rate in these glasses is significantly lower than that in the stoichiometric GeSe{sub 2} glasses. All glasses are characterized by the “loss of memory” of history: after relaxation at a fixed pressure, the further increase in the pressure returns the volume to the compression curve obtained without a stop for relaxation. After pressure release, the residual densification in the stoichiometric glasses is about 7% and that in the Ge{sub 17}Se{sub 83} glasses is 1.5%. The volume of the Ge{sub 8}Se{sub 92} glass returns to its initial value within the limits of experimental error. As the pressure decreases, the effective bulk moduli of the Ge{sub 17}Se{sub 83} and Ge{sub 8}Se{sub 92} glasses coincide with the moduli after isobaric relaxation at the stage of increasing pressure, and the bulk modulus of the stoichiometric GeSe{sub 2} glass upon decreasing pressure noticeably exceeds the bulk modulus after isobaric relaxation at the stage of increasing pressure. Along with the reported data, our results can be used to draw conclusions regarding the diffuse transformations in glassy germanium chalcogenides during compression.« less

  20. The Nanocrystalline State of Narrow Gap Semiconducting Chalcogenides

    DTIC Science & Technology

    2010-08-23

    using a 1 nm scanning probe and the EDS microanalysis . For Annealing studies nanocrystal powder samples were placed in ceramic crucibles and annealed...nanocrystals are homogenous single phase EDS spectral images were collected in scanning transmission electron microcopy using a 1 nm electron probe...explorations with alio-valent elements (e.g. Sb3+, Ag+ doping in PbTe). • Perform chemical and physical characterization to demonstrate that nanocrystals are

  1. The Physics of Ultrabroadband Frequency Comb Generation and Optimized Combs for Measurements in Fundamental Physics

    DTIC Science & Technology

    2016-07-02

    great potential of chalcogenide microwires for applications in the mid-IR ranging from absorption spectroscopy to entangled photon pairs generation...modulation instability) gain. Stochastic nonlinear Schrödinger equation simulations were shown to be in very good agreement with experiment. This...as the seed coherence decreases. Stochastic nonlinear Schrödinger equation simulations of spectral and noise properties are in excellent agreement with

  2. Investigation of Co, Ni and Fe Doped II-VI Chalcogenides

    DTIC Science & Technology

    2013-01-04

    dopants to the Fe ions. Figure 4. Cobalt doped ZnSe (7×3.1×50 mm3) samples after annealing for 7 days at 950C. A B 8 Approved for public...distribution unlimited. 4.2 Cobalt doped samples ........................................................................................................77...curve for the deposition monitor used for cobalt deposition during magnetron spattering at 1000 nm; B) percentage transmission of a cobalt thin film

  3. Laser Materials Search and Characterization

    DTIC Science & Technology

    2014-05-30

    AgBr doped with dysprosium ions are obtained by extrusion, and their optical and spectral properties are studied. Task 3. Waveguides based on LiF...fluoride are obtained by extrusion for the first time. Task 4. Spectroscopic properties of Dy3+ ions in chalcogenide crystals and fibers are studied...Task 5. Crystals and ceramics doped with rare-earth ions , as well as glasses and crystals doped with bismuth ions , are synthesized. Their

  4. Second harmonic generation response of the cubic chalcogenides Ba( 6-x)Sr x[Ag( 4-y)Sn( y/4)](SnS 4) 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haynes, Alyssa S.; Liu, Te-Kun; Frazer, Laszlo

    We synthesized the barium/strontium solid solution sequence Ba 6-xSr x[Ag( 4-y)Sn( y/4)](SnS 4) 4 for nonlinear optical (NLO) applications in the infrared (IR) via a flux synthesis route. All title compounds are isotypic, crystallizing in the cubic space group Imore » $$\\bar{_4}$$ 3d and are composed of a three-dimensional (3D) anionic framework of alternating corner-sharing SnS 4 and AgS 4 tetrahedra charge balanced by Ba and Sr. The shrinkage of Ba/Sr-S bond lengths causes the tetrahedra in the anionic framework to become more distorted, which results in a tunable band gap from 1.58 to 1.38 eV with increasing x values. The performance of the barium limit (x=0) is also superior to that of Sr (x=6), but surprisingly second harmonic generation (SHG) of the solid solution remains strong and is insensitive to the value of x over the range 0-3.8. Results show that the non-type-I phase-matched SHG produced by these cubic chalcogenides display intensities higher than the benchmark AgGaSe 2 from 600 to 1000 nm.« less

  5. II-I2-IV-VI4 (II = Sr,Ba; I = Cu,Ag; IV = Ge,Sn; VI = S,Se): Earth-Abundant Chalcogenides for Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Zhu, Tong; Huhn, William P.; Shin, Donghyeop; Mitzi, David B.; Blum, Volker; Saparov, Bayrammurad

    Chalcogenides such as CdTe, CIGSSe, and CZTSSe are successful for thin film photovoltaics (PV) but contain elements that are rare, toxic, or prone to the formation of detrimental antisite disorder. Recently, the BaCu2SnS4-xSex system has been shown to offer a prospective path to circumvent these problems. While early prototypes show efficiencies of a few percent, many avenues remain to optimize the materials, including the underlying chemical composition. In this work, we explore 16 compounds II-I2-IV-VI4 to help identify new candidate materials for PV, with predictions based on both known experimental and computationally derived structures that belong to five different space groups. We employ hybrid density functional theory (HSE06) to explore the band gap tunability by substituting different elements, and other characteristics such as the effective mass and the absorption coefficient. Compounds containing Cu (rather than Ag) are found to have direct or nearly direct band gaps. Depending on the compound, replacing S with Se leads to a decrease of the predicted band gaps by 0.2-0.8 eV and to somewhat decreasing hole effective masses.

  6. Orbital-dependent electron correlation effects in iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Yi, Ming

    The iron chalcogenide superconductors constitute arguably one of the most intriguing families of the iron-based high temperature superconductors given their ability to superconduct at comparable temperatures as the iron pnictides, despite the lack of similarities in their magnetic structures and Fermi surface topologies. In particular, the lack of hole Fermi pockets at the Brillouin zone center posts a challenge to the previous proposal of spin fluctuation mediated pairing via Fermi surface nesting. In this talk, using angle-resolved photoemission spectroscopy measurements, I will present evidence that show that instead of Fermi surface topology, strong electron correlation observed in electron bandwidth is an important ingredient for superconductivity in the iron chalcogenides. Specifically, I will show i) there exists universal strong orbital-selective renormalization effects and proximity to an orbital-selective Mott phase in Fe1+yTe1-xSex, AxFe2-ySe2, and monolayer FeSe film on SrTiO3, and ii) in RbxFe2(Se1-zSz)2 , where sulfur substitution for selenium continuously suppresses superconductivity down to zero, little change occurs in the Fermi surface topology while a substantial reduction of electron correlation is observed in an expansion of the overall bandwidth, implying that electron correlation is one of the key tuning parameters for superconductivity in these materials.

  7. Surface Chemistry in Cobalt Phosphide-Stabilized Lithium-Sulfur Batteries.

    PubMed

    Zhong, Yiren; Yin, Lichang; He, Peng; Liu, Wen; Wu, Zishan; Wang, Hailiang

    2018-01-31

    Chemistry at the cathode/electrolyte interface plays an important role for lithium-sulfur batteries in which stable cycling of the sulfur cathode requires confinement of the lithium polysulfide intermediates and their fast electrochemical conversion on the electrode surface. While many materials have been found to be effective for confining polysulfides, the underlying chemical interactions remain poorly understood. We report a new and general lithium polysulfide-binding mechanism enabled by surface oxidation layers of transition-metal phosphide and chalcogenide materials. We for the first time find that CoP nanoparticles strongly adsorb polysulfides because their natural oxidation (forming Co-O-P-like species) activates the surface Co sites for binding polysulfides via strong Co-S bonding. With a surface oxidation layer capable of confining polysulfides and an inner core suitable for conducting electrons, the CoP nanoparticles are thus a desirable candidate for stabilizing and improving the performance of sulfur cathodes in lithium-sulfur batteries. We demonstrate that sulfur electrodes that hold a high mass loading of 7 mg cm -2 and a high areal capacity of 5.6 mAh cm -2 can be stably cycled for 200 cycles. We further reveal that this new surface oxidation-induced polysulfide-binding scheme applies to a series of transition-metal phosphide and chalcogenide materials and can explain their stabilizing effects for lithium-sulfur batteries.

  8. Design of cadmium-free colloidal II-VI semiconductor quantum dots exhibiting RGB emission

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi; Omata, Takahisa

    2017-04-01

    The size and composition dependence of the optical gap of colloidal alloyed quantum dots (QDs) of Zn(Te1-xSex) and Zn(Te1-xSx) were calculated by the finite-depth-well effective mass approximation method. QDs that exhibited red, green and blue emission were explored to develop cadmium-free II-VI chalcogenide-based QD-phosphors. We considered that highly monodisperse colloidal QDs with diameters of 3-6 nm are easy to synthesize and II-VI semiconductor QDs usually exhibit a Stokes shift ranging between 50 and 150 meV. We showed that Zn(Te1-xSex) QDs with 0.02≤x≤0.68, and 0≤x≤0.06, and 0.66≤x≤0.9 may be expected to exhibit green, and blue emission, respectively. Zn(Te1-xSx) QDs with 0.26≤x≤0.37, 0.01≤x≤0.2 and 0.45≤x≤0.61, 0≤x≤0.02, and 0.63≤x≤0.72, should give red, green and blue emission respectively. On the basis of our calculations, we showed that Zn(Te,Se) and Zn(Te,S) QDs are very promising cadmium-free II-VI chalcogenide semiconductor QD phosphors.

  9. Supercontinuum generation and analysis in extruded suspended-core As2S3 chalcogenide fibers

    NASA Astrophysics Data System (ADS)

    Si, Nian; Sun, Lihong; Zhao, Zheming; Wang, Xunsi; Zhu, Qingde; Zhang, Peiqing; Liu, Shuo; Pan, Zhanghao; Liu, Zijun; Dai, Shixun; Nie, Qiuhua

    2018-02-01

    Compared with the traditional fluoride fibers and tellurite fibers that can work in the near-infrared region, suspended-core fibers based on chalcogenide glasses have wider transmitting regions and higher nonlinear coefficients, thus the mid-infrared supercontinuum generations can be achieved easily. Rather than adopting the traditional fabrication technique of hole-drilling and air filling, we adopted a totally novel extrusion technique to fabricate As2S3 suspended-core fibers with four holes, and its mid-infrared supercontinuum generation was investigated systematically by integrating theoretical simulation and empirical results. The generalized nonlinear SchrÖdinger equation was used to simulate the supercontinuum generation in the As2S3 suspended-core fibers. The simulated supercontinuum generation in the As2S3 suspended-core fibers with different pump wavelengths (2-5 µm), increasing powers (0.3-4 kW), and various fiber lengths (1-50 cm) was obtained by a simulative software, MATLAB. The experimental results of supercontinuum generation via femtosecond optical parametric amplification (OPA) were recorded by changing fiber lengths (5-25 cm), pump wavelengths (2.9-5 µm), and pump powers (10-200 kW). The simulated consulting spectra are consistent with the experimental results of supercontinuum generation only if the fiber loss is sufficiently low.

  10. [Ag115S34(SCH2C6H4 t Bu)47(dpph)6]: synthesis, crystal structure and NMR investigations of a soluble silver chalcogenide nanocluster.

    PubMed

    Bestgen, Sebastian; Fuhr, Olaf; Breitung, Ben; Kiran Chakravadhanula, Venkata Sei; Guthausen, Gisela; Hennrich, Frank; Yu, Wen; Kappes, Manfred M; Roesky, Peter W; Fenske, Dieter

    2017-03-01

    With the aim to synthesize soluble cluster molecules, the silver salt of (4-( tert -butyl)phenyl)methanethiol [AgSCH 2 C 6 H 4 t Bu] was applied as a suitable precursor for the formation of a nanoscale silver sulfide cluster. In the presence of 1,6-(diphenylphosphino)hexane (dpph), the 115 nuclear silver cluster [Ag 115 S 34 (SCH 2 C 6 H 4 t Bu) 47 (dpph) 6 ] was obtained. The molecular structure of this compound was elucidated by single crystal X-ray analysis and fully characterized by spectroscopic techniques. In contrast to most of the previously published cluster compounds with more than a hundred heavy atoms, this nanoscale inorganic molecule is soluble in organic solvents, which allowed a comprehensive investigation in solution by UV-Vis spectroscopy and one- and two-dimensional NMR spectroscopy including 31 P/ 109 Ag-HSQC and DOSY experiments. These are the first heteronuclear NMR investigations on coinage metal chalcogenides. They give some first insight into the behavior of nanoscale silver sulfide clusters in solution. Additionally, molecular weight determinations were performed by 2D analytical ultracentrifugation and HR-TEM investigations confirm the presence of size-homogeneous nanoparticles present in solution.

  11. Lead sulphide: Low cost, abundant thermoelectrics

    NASA Astrophysics Data System (ADS)

    Ahmad, Sajid; Singh, Ajay; Bhattacharya, Shovit; Basu, Ranita; Bhatt, Ranu; Bohra, Anil; Muthe, K. P.; Gadkari, S. C.

    2018-04-01

    Lead and sulphur are the most abundant and low cost materials on the earth's crust, lead chalcogenide (S, Se and Te) materials have got best applications in thermoelectric power generations. Among the chalcogenides, selenium and tellurium are costlier and are more toxic material than sulphur. [1][2] Decreasing the thermal conductivity has been proven to be the easiest approach to improve the thermoelectric performance of a material. In the present work, the lead sulphide (PbS) and SrxPb(1-x)S composite materials were synthesized and investigated. Addition of 0.4 and 0.8 moles of Sr atoms into the PbS lattice has appreciably reduced the thermal conductivity from 2.2 W/mK to 0.43 W/mK for Sr0.4Pb0.6S composition. Temperature (T) dependence of thermoelectric (TE) properties PbS and and SrxPb(1-x)S nanocomposite material has been studied with in the temperature range of 300 K to 700 K. It is observed that there is reduction in the thermal conductivity of PbS alloy on addition of Sr that is mainly attributed to the scattering centres of Sr in the PbS matrix also the presence of the Sr also plays a role in the refinement of the PbS matrix.

  12. Gold fillings unravel the vacancy role in the phase transition of GeTe

    NASA Astrophysics Data System (ADS)

    Feng, Jinlong; Xu, Meng; Wang, Xiaojie; Lin, Qi; Cheng, Xiaomin; Xu, Ming; Tong, Hao; Miao, Xiangshui

    2018-02-01

    Phase change memory (PCM) is an important candidate for future memory devices. The crystalline phase of PCM materials contains abundant intrinsic vacancies, which plays an important role in the rapid phase transition upon memory switching. However, few experimental efforts have been invested to study these invisible entities. In this work, Au dopants are alloyed into the crystalline GeTe to fill the intrinsic Ge vacancies so that the role of these vacancies in the amorphization of GeTe can be indirectly studied. As a result, the reduction of Ge vacancies induced by Au dopants hampers the amorphization of GeTe as the activation energy of this process becomes higher. This is because the vacancy-interrupted lattice can be "repaired" by Au dopants with the recovery of bond connectivity. Our results demonstrate the importance of vacancies in the phase transition of chalcogenides, and we employ the percolation theory to explain the impact of these intrinsic defects on this vacancy-ridden crystal quantitatively. Specifically, the threshold of amorphization increases with the decrease in vacancies. The understanding of the vacancy effect sheds light on the long-standing puzzle of the mechanism of ultra-fast phase transition in PCMs. It also paves the way for designing low-power-consumption electronic devices by reducing the threshold of amorphization in chalcogenides.

  13. Low-loss, robust fusion splicing of silica to chalcogenide fiber for integrated mid-infrared laser technology development.

    PubMed

    Thapa, Rajesh; Gattass, Rafael R; Nguyen, Vinh; Chin, Geoff; Gibson, Dan; Kim, Woohong; Shaw, L Brandon; Sanghera, Jasbinder S

    2015-11-01

    We demonstrate a low-loss, repeatable, and robust splice between single-mode silica fiber and single-mode chalcogenide (CHG) fiber. These splices are particularly difficult to create because of the significant difference in the two fibers' glass transition temperatures (∼1000°C) as well as the large difference in the coefficients of thermal expansion between the fibers (∼20×10(-6)/°C). With 90% light coupled through the silica-CHG fiber splice, predominantly in the fundamental circular-symmetric mode, into the core of the CHG fiber and with 0.5 dB of splice loss measured around the wavelength of 2.5 μm, after correcting only for the Fresnel loss, the silica-CHG splice offers excellent beam quality and coupling efficiency. The tensile strength of the splice is greater than 12 kpsi, and the laser damage threshold is greater than 2 W (CW) and was limited by the available laser pump power. We also utilized this splicing technique to demonstrate 2 to 4.5 μm ultrabroadband supercontinuum generation in a monolithic all-fiber system comprising a CHG fiber and a high peak power 2 μm pulsed Raman-shifted thulium fiber laser. This is a major development toward compact form factor commercial applications of soft-glass mid-IR fibers.

  14. Tuning of electronic band gaps and optoelectronic properties of binary strontium chalcogenides by means of doping of magnesium atom(s)- a first principles based theoretical initiative with mBJ, B3LYP and WC-GGA functionals

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    First principle based theoretical initiative is taken to tune the optoelectronic properties of binary strontium chalcogenide semiconductors by doping magnesium atom(s) into their rock-salt unit cells at specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and such tuning is established by studying structural, electronic and optical properties of designed binary compounds and ternary alloys employing WC-GGA, B3LYP and mBJ exchange-correlation functionals. Band structure of each compound is constructed and respective band gaps under all the potential schemes are measured. The band gap bowing and its microscopic origin are calculated using quadratic fit and Zunger's approach, respectively. The atomic and orbital origins of electronic states in the band structure of any compound are explored from its density of states. The nature of chemical bonds between the constituent atoms in each compound is explored from the valence electron density contour plots. Optical properties of any specimen are explored from the computed spectra of its dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity optical absorption and energy loss function. Several calculated results are compared with available experimental and earlier theoretical data.

  15. Ultra-low thermal conductivity of TlIn5Se8 and structure of the new complex chalcogenide Tl0.98In13.12Se16.7Te2.3

    NASA Astrophysics Data System (ADS)

    Lefèvre, Robin; Berthebaud, David; Pérez, Olivier; Pelloquin, Denis; Boudin, Sophie; Gascoin, Franck

    2017-06-01

    TlIn5Se8 has been synthesized by means of solid-state reaction and densified by Spark Plasma Sintering. The compound is a semiconductor with a band gap of 1.62 eV estimated from reflectance measurements. Its thermal conductivity is about 0.45 W m-1. K-1 in the temperature range 300-673 K, an extremely low value attributed to its complex pseudo-1D structure reminiscent of the pseudo-hollandite. While attempting to dope TlIn5Se8 with Te, a new complex chalcogenide was discovered and characterized by the combination of TEM and XRD diffraction. It belongs to the A2In12X19 family, crystallizing in the R 3 ̅:H space group. Single crystal X-ray diffraction study led to a refined composition of Tl0.98In13.12Se16.7Te2.3 with cell parameters: a=13.839(5) Å and c=35.18(3) Å. A static disorder is found on one indium site situated in an octahedral environment. The single crystal XRD study is in agreement with TEM analyses in STEM-HAADF image mode that do not show any extended defects or disorder at atomic scale.

  16. Power requirements reducing of FBG based all-optical switching

    NASA Astrophysics Data System (ADS)

    Scholtz, Ľubomír.; Solanská, Michaela; Ladányi, Libor; Müllerová, Jarmila

    2017-12-01

    Although Fiber Bragg gratings (FBGs) are well known devices, their using as all-optical switching elements has been still examined. Current research is focused on optimization of their properties for their using in future all-optical networks. The main problem are high switching intensities needed for achieving the changes of the transmission state. Over several years switching intensities have been reduced from hundreds of GW/cm2 to tens of MW/cm2 by selecting appropriate gratings and signal parameters or using suitable materials. Two principal nonlinear effects with similar power requirements can result in the bistable transmission/reflection of an input optical pulse. In the self-phase modulation (SPM) regime switching is achieved by the intense probe pulse itself. Using cross-phase modulation (XPM) a strong pump alters the FBG refractive index experienced by a weak probe pulse. As a result of this the detuning of the probe pulse from the center of the photonic band gap occurs. Using of XPM the effect of modulation instability is reduced. Modulation instability which is the main SPM degradation mechanism. We focused on nonlinear FBGs based on chalcogenide glasses which are very often used in various applications. Thanks to high nonlinear parameters chalcogenide glasses are suitable candidates for reducing switching intensities of nonlinear FBGs.

  17. Super Nonlinear Electrodeposition-Diffusion-Controlled Thin-Film Selector.

    PubMed

    Ji, Xinglong; Song, Li; He, Wei; Huang, Kejie; Yan, Zhiyuan; Zhong, Shuai; Zhang, Yishu; Zhao, Rong

    2018-03-28

    Selector elements with high nonlinearity are an indispensable part in constructing high density, large-scale, 3D stackable emerging nonvolatile memory and neuromorphic network. Although significant efforts have been devoted to developing novel thin-film selectors, it remains a great challenge in achieving good switching performance in the selectors to satisfy the stringent electrical criteria of diverse memory elements. In this work, we utilized high-defect-density chalcogenide glass (Ge 2 Sb 2 Te 5 ) in conjunction with high mobility Ag element (Ag-GST) to achieve a super nonlinear selective switching. A novel electrodeposition-diffusion dynamic selector based on Ag-GST exhibits superior selecting performance including excellent nonlinearity (<5 mV/dev), ultra-low leakage (<10 fA), and bidirectional operation. With the solid microstructure evidence and dynamic analyses, we attributed the selective switching to the competition between the electrodeposition and diffusion of Ag atoms in the glassy GST matrix under electric field. A switching model is proposed, and the in-depth understanding of the selective switching mechanism offers an insight of switching dynamics for the electrodeposition-diffusion-controlled thin-film selector. This work opens a new direction of selector designs by combining high mobility elements and high-defect-density chalcogenide glasses, which can be extended to other materials with similar properties.

  18. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations

    NASA Astrophysics Data System (ADS)

    Wen, Jinsheng; Xu, Guangyong; Gu, Genda; Tranquada, J. M.; Birgeneau, R. J.

    2011-12-01

    In this review, we present a summary of results on single crystal growth of two types of iron-chalcogenide superconductors, Fe1+yTe1-xSex (11), and AxFe2-ySe2 (A = K, Rb, Cs, Tl, Tl/K, Tl/Rb), using Bridgman, zone-melting, vapor self-transport and flux techniques. The superconducting and magnetic properties (the latter gained mainly from neutron scattering measurements) of these materials are reviewed to demonstrate the connection between magnetism and superconductivity. It will be shown that for the 11 system, while static magnetic order around the reciprocal lattice position (0.5, 0) competes with superconductivity, spin excitations centered around (0.5, 0.5) are closely coupled to the materials' superconductivity; this is made evident by the strong correlation between the spectral weight around (0.5, 0.5) and the superconducting volume fraction. The observation of a spin resonance below the superconducting temperature, Tc, and the magnetic-field dependence of the resonance emphasize the close interplay between spin excitations and superconductivity, similar to cuprate superconductors. In AxFe2-ySe2, superconductivity with Tc ~ 30 K borders an antiferromagnetic insulating phase; this is closer to the behavior observed in the cuprates but differs from that in other iron-based superconductors.

  19. Sulfur in oleylamine as a powerful and versatile etchant for oxide, sulfide, and metal colloidal nanoparticles: Sulfur in oleylamine as a powerful and versatile etchant

    DOE PAGES

    Yuan, Bin; Tian, Xinchun; Shaw, Santosh; ...

    2016-11-02

    Understanding of crystal growth is essential to the design of materials with improved properties. Unfortunately, still very little is understood about the basic growth mechanisms of nanostructures, even in the most established colloidal synthetic routes. Etching is one of the most important mechanisms to consider during particle growth, but it is rarely considered in the syntheses of oxide or chalcogenide nanostructures. Here in this paper, we report that the most common precursor for the synthesis of sulfide nanostructures – the mixture of sulfur and oleylamine – acts as a very powerful etchant for oxide, chalcogenide, and metal nanostructures. Specifically, wemore » discuss its effect on several nanoparticle compositions (PbS, Cu 2S, Fe 3O 4, and Au) and compare it to control conditions in which only oleylamine is present. Our experiments suggest that the etching results from the evolution of H 2S from the sulfur–oleylamine precursor. We predict that the simultaneous role of this precursor as both etchant and ligand stabilizer will make it a useful tool for the chemical post-processing (e.g., size reduction, focusing of size distributions, faceting) of nanocrystal dispersions.« less

  20. Synthesis of Wurtzite Cu2ZnSnS4 Nanosheets with Exposed High-Energy (002) Facets for Fabrication of Efficient Pt-Free Solar Cell Counter Electrodes.

    PubMed

    Zhang, Xiaoyan; Xu, You; Zhang, Junjie; Dong, Shuai; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2018-01-10

    Two-dimensional (2D) semiconducting nanomaterials have generated much interest both because of fundamental scientific interest and technological applications arising from the unique properties in two dimensions. However, the colloidal synthesis of 2D quaternary chalcogenide nanomaterials remains a great challenge owing to the lack of intrinsic driving force for its anisotropic growth. 2D wurtzite Cu 2 ZnSnS 4 nanosheets (CZTS-NS) with high-energy (002) facets have been obtained for the first time via a simple one-pot thermal decomposition method. The CZTS-NS exhibits superior photoelectrochemical activity as compared to zero-dimensional CZTS nanospheres and comparable performance to Pt counter electrode for dye sensitized solar cells. The improved catalytic activity can be attributed to additional reactive catalytic sites and higher catalytic reactivity in high-energy (002) facets of 2D CZTS-NS. This is in accordance with the density functional theory (DFT) calculations, which indicates that the (002) facets of wurtzite CZTS-NS possess higher surface energy and exhibits remarkable reducibility for I 3 - ions. The developed synthetic method and findings will be helpful for the design and synthesis of 2D semiconducting nanomaterials, especially eco-friendly copper chalcogenide nanocrystals for energy harvesting and photoelectric applications.

  1. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    PubMed

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  2. Quantum cascade transmitters for ultrasensitive chemical agent and explosives detection

    NASA Astrophysics Data System (ADS)

    Schultz, John F.; Taubman, Matthew S.; Harper, Warren W.; Williams, Richard M.; Myers, Tanya L.; Cannon, Bret D.; Sheen, David M.; Anheier, Norman C., Jr.; Allen, Paul J.; Sundaram, S. K.; Johnson, Bradley R.; Aker, Pamela M.; Wu, Ming C.; Lau, Erwin K.

    2003-07-01

    The small size, high power, promise of access to any wavelength between 3.5 and 16 microns, substantial tuning range about a chosen center wavelength, and general robustness of quantum cascade (QC) lasers provide opportunities for new approaches to ultra-sensitive chemical detection and other applications in the mid-wave infrared. PNNL is developing novel remote and sampling chemical sensing systems based on QC lasers, using QC lasers loaned by Lucent Technologies. In recent months laboratory cavity-enhanced sensing experiments have achieved absorption sensitivities of 8.5 x 10-11 cm-1 Hz-1/2, and the PNNL team has begun monostatic and bi-static frequency modulated, differential absorption lidar (FM DIAL) experiments at ranges of up to 2.5 kilometers. In related work, PNNL and UCLA are developing miniature QC laser transmitters with the multiplexed tunable wavelengths, frequency and amplitude stability, modulation characteristics, and power levels needed for chemical sensing and other applications. Current miniaturization concepts envision coupling QC oscillators, QC amplifiers, frequency references, and detectors with miniature waveguides and waveguide-based modulators, isolators, and other devices formed from chalcogenide or other types of glass. Significant progress has been made on QC laser stabilization and amplification, and on development and characterization of high-purity chalcogenide glasses, waveguide writing techniques, and waveguide metrology.

  3. Possible New Irdome Materials for Transmission to 4.5-5 Micrometers.

    DTIC Science & Technology

    1978-02-01

    transmission completel to 5 microns and it has quite a high index or fraction. Several nitrides may be possible candidates with silicon nitride currently...receiving some consideration.1 However, it only transmits to 4.5 microns and also has a fairly high index or fraction. Many mixed nitride compounds are...should meet the IR transmission requirements but these generally have high indices of fraction . Many sulf ides, other chalcogenides, and semi-conductors

  4. 1.9 octave supercontinuum generation in a As₂S₃ step-index fiber driven by mid-IR OPCPA.

    PubMed

    Hudson, Darren D; Baudisch, Matthias; Werdehausen, Daniel; Eggleton, Benjamin J; Biegert, Jens

    2014-10-01

    Using a 3.1-μm optical parametric chirped-pulse amplifier (OPCPA), we generate a supercontinuum in a step-index chalcogenide fiber that spans from 1.6 to 5.9 μm at the -20  dB points. The rugged step-index geometry allows for long-term operation, while the spectral bandwidth is limited by the transmission of the As2S3 fiber.

  5. An Integrated Computational and Experimental Approach Toward the Design of Materials for Fuel Cell Systems

    DTIC Science & Technology

    2012-10-01

    13 Based on the limited work done, the best reported ORR chalcogenide electrocatalysts for PEMFC applications can be ranked as follows: MoRuSe... PEMFC catalysts is the durability of the catalyst particles. Particle size distribution tends to shift towards larger particles during the...the design of new materials for applications in PEMFCs . Reference: A more detailed treatment of the topics of this section, Experimental Target 11

  6. Fullerene-Like Nickel Oxysulfide Hollow Nanospheres as Bifunctional Electrocatalysts for Water Splitting.

    PubMed

    Liu, Junli; Yang, Yong; Ni, Bing; Li, Haoyi; Wang, Xun

    2017-02-01

    Fullerene-like nickel oxysulfide hollow nanospheres with ≈50 nm are constructed by in situ growth on the surface of nickel foam by taking advantage of solvothermal reaction. The as-prepared composite exhibits exhilaratingly high HER and OER performance in 1 m KOH, which opens up a very promising aspect for non-noble metal chalcogenides as bifunctional electrocatalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Picosecond Electronic Relaxations In Amorphous Semiconductors

    NASA Astrophysics Data System (ADS)

    Tauc, Jan

    1983-11-01

    Using the pump and probe technique the relaxation processes of photogenerated carriers in amorphous tetrahedral semiconductors and chalcogenide glasses in the time domain from 0.5 Ps to 1.4 ns have been studied. The results obtained on the following phenomena are reviewed: hot carrier thermalization in amorphous silicon; trapping of carriers in undoped a-Si:H; trapping of carriers in deep traps produced by doping; geminate recombination in As2S3-xSex glasses.

  8. Supercontinuum Generation in an on-Chip Silica Waveguide

    DTIC Science & Technology

    2014-02-15

    eration ( SCG ) due to the feasibility of controlling the dispersion and reducing the mode area by engineering its air-hole geometry [2–4]. Interest in... SCG has been driven by applications including frequency combs [5,6], optical coherence tomography [7], and wavelength divi- sion multiplexing [8,9...In the past few years, SCG has also been investigated in several chip-based systems, in- cluding silicon photonic nanowires [10–12], chalcogenide

  9. Soviet Developments in Material Science No. 1, January - June 1975

    DTIC Science & Technology

    1975-11-30

    Zotova, T. Makhanbetaliyev, B. Ya. Mel’tser, and D. N. Nasledov. Effect of fluctuations in local composition of solid solutions on...289-297. Gurin, N. T., D. G. Semak, and V. V. Fedak. Threshold switching and local states in chalcogenide glasses. FTP, no. 4, 1975...L. N. Seregina. Crystal-glass transition in Ge0 .-Te- p. and its effect on local environment of germanium atoms. FTT, no. 2, 1975, 633

  10. Electronic Materials and Applications 2014 (Abstracts)

    DTIC Science & Technology

    2015-04-02

    the thermal image using IR camera and surface tempera- ture using thermo couple. Lastly, we conducted a surface coating to change the surface...progress in the superconducting films and coated conductors of iron chalcogenides. With a CeO2 buffer , critical current densities (Jc) over 7 MA/cm2...Roosen, University of Erlangen-Nuremberg, Germany Kato, N. 23-Jan 11:15AM Pacific 11:30 AM (EMA-S1-021-2014) Glass-like Thermal Conductivity of (010

  11. Potentially improved glasses from space environment

    NASA Technical Reports Server (NTRS)

    Nichols, R.

    1977-01-01

    The benefits of processing glasses in a low-gravity space environment are examined. Containerless processing, the absence of gravity driven convection, and lack of sedimentation are seen as potential advantages. Potential applications include the formation of glass-ceramics with a high content of active elements for ferromagnetic devices, the production of ultrapure chalcogenide glasses for laser windows and IR fiber optics, and improved glass products for use in optical systems and laser fusion targets.

  12. NMR and transport measurements of copper chalcogenide and clathrate compounds

    NASA Astrophysics Data System (ADS)

    Sirusi Arvij, Ali

    Due to limited sources of fossil fuels worldwide and a large percentage wasted as heat energy, searching for efficient thermoelectric materials to convert heat to electricity has gained a great deal of attention. Most of the attempts are focused on materials with substantially lower lattice thermal conductivity and narrow band gaps. Among them, inorganic clathrates and copper-based chalcogenides possess intrinsic low thermal conductivity which makes them promising thermoelectrics. In this work, nuclear magnetic resonance (NMR), transport, and magnetic measurements were performed on clathrates and copper-based chalcogenides to investigate their vibrational and electronic charge carrier properties, as well as the unknown structures of Cu2Se and Cu 2Te at low temperatures, and the effect of rattling of guest atoms in the clathrates. The NMR results in Ba8Ga16Ge30 indicate a pseudogap in the Ga electronic density of states, superposed upon a surprisingly large Ba contribution to the conduction band. Meanwhile, the phonon contributions to the Ga relaxation rates are large and increase more rapidly with temperature than typical semiconductors due to enhanced anharmonicity of the propagative phonon modes over a wide range. Moreover, the observed NMR shifts in the Ba8Cu5Si xGe41-x clathrates change in a nonlinear way with increasing Si substitution: from x = 0 to about 20 the shifts are essentially constant, while approaching x = 41 they increase rapidly, demonstrating a significant change in hybridizations vs Si substitution. NMR studies of Cu2Se show an initial appearance of ionic hopping in a narrow temperature range above 100 K, coinciding with the recently observed low-temperature phase transition. At room temperature and above, this goes over to rapid Cu-ion hopping and a single motionally narrowed line both above and below the alpha-beta structural transition. Furthermore, the NMR results on Cu2Te and Cu 1.98Ag0.2Te demonstrate unusually large negative chemical shifts, as well as large Cu and Te s-state contributions in the valence band. The large diamagnetic chemical shifts coincide with behavior previously identified for materials with topologically nontrivial band inversion, and in addition, the large metallic shifts point to analogous features in the valence band density of states, suggesting that Cu2Te may have similar inverted features.

  13. Interaction of Polarized Light with Chalcogenide Glasses

    DTIC Science & Technology

    2001-06-01

    simultaneous measurement of the laser radiation transmitted through the bulk sample and radiation scattered by the sample to various angles up to 230...fixed in the central part of the lens, reflected the transmitted light beam to a second photodiode. He-Ne laser radiation (), = 633 nm) which was sub...band-gap radiation for the studied bulk glass samples (As 2S3 glass) played in this installation, by turns, a role of inducing or probing light. This

  14. Removal of Oxygen from Electronic Materials by Vapor-Phase Processes

    NASA Technical Reports Server (NTRS)

    Palosz, Witold

    1997-01-01

    Thermochemical analyses of equilibrium partial pressures over oxides with and without the presence of the respective element condensed phase, and hydrogen, chalcogens, hydrogen chalcogenides, and graphite are presented. Theoretical calculations are supplemented with experimental results on the rate of decomposition and/or sublimation/vaporization of the oxides under dynamic vacuum, and on the rate of reaction with hydrogen, graphite, and chalcogens. Procedures of removal of a number of oxides under different conditions are discussed.

  15. Topological Aspects of Infinite Metal Clusters and Superconductors.

    DTIC Science & Technology

    1987-08-11

    tetrahedra. T chemical bonding topologies qf discrete octahedral metal clusters can be either edge- localized (e.g., MoX8L 6 4 derivatives), face- localized ...constructed from edge- localized metal polyhedra such as the Mo 6 octahedra in the ternary molybdenum chalcogenides (Chevrel phases) and Rh4 tetrahedra in the...chemical bonding topologies of discrete octahedral metal clusters can be either e4ge- localized (e.g., No X L 4+ derivatives), face- localized (e.g

  16. Materials Characterization and Microelectronic Implementation of Metal-insulator Transition Materials and Phase Change Materials

    DTIC Science & Technology

    2015-03-26

    appropriate. Group 16 (VI) contains the following elements: Oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and polonium (Po). They are shown...below in Figure 33. S, Se, and Te are referred to as chalcogens, and their compounds are chalcogenides [68]. Polonium is excluded from the chalcogen...temperature dots and paint were placed on samples on the substrate. Temperature dots are typically used in the transportation of goods such as food in order

  17. Synergistic Gating of Electro-Iono-Photoactive 2D Chalcogenide Neuristors: Coexistence of Hebbian and Homeostatic Synaptic Metaplasticity.

    PubMed

    John, Rohit Abraham; Liu, Fucai; Chien, Nguyen Anh; Kulkarni, Mohit R; Zhu, Chao; Fu, Qundong; Basu, Arindam; Liu, Zheng; Mathews, Nripan

    2018-06-01

    Emulation of brain-like signal processing with thin-film devices can lay the foundation for building artificially intelligent learning circuitry in future. Encompassing higher functionalities into single artificial neural elements will allow the development of robust neuromorphic circuitry emulating biological adaptation mechanisms with drastically lesser neural elements, mitigating strict process challenges and high circuit density requirements necessary to match the computational complexity of the human brain. Here, 2D transition metal di-chalcogenide (MoS 2 ) neuristors are designed to mimic intracellular ion endocytosis-exocytosis dynamics/neurotransmitter-release in chemical synapses using three approaches: (i) electronic-mode: a defect modulation approach where the traps at the semiconductor-dielectric interface are perturbed; (ii) ionotronic-mode: where electronic responses are modulated via ionic gating; and (iii) photoactive-mode: harnessing persistent photoconductivity or trap-assisted slow recombination mechanisms. Exploiting a novel multigated architecture incorporating electrical and optical biases, this incarnation not only addresses different charge-trapping probabilities to finely modulate the synaptic weights, but also amalgamates neuromodulation schemes to achieve "plasticity of plasticity-metaplasticity" via dynamic control of Hebbian spike-time dependent plasticity and homeostatic regulation. Coexistence of such multiple forms of synaptic plasticity increases the efficacy of memory storage and processing capacity of artificial neuristors, enabling design of highly efficient novel neural architectures. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Design and growth of novel compounds for radiation sensors: multinary chalcogenides

    NASA Astrophysics Data System (ADS)

    Singh, N. B.; Su, Ching-Hua; Nagaradona, Teja; Arnold, Brad; Choa, Fow-Sen

    2016-05-01

    Increasing threats of radiological weapons have revitalized the researches for low cost large volume γ-ray and neutron ray sensors In the past few years we have designed and grown ternary and quaternary lead and thallium chalcogenides and lead selenoiodides for detectors to meet these challenges. These materials are congruent, can be tailored to enhance the parameters required for radiation sensors. In addition, this class of compounds can be grown by Bridgman method which promises for large volume productions. We have single crystals of several compounds from the melt including Tl3AsSe3, Tl3AsSe3-xSx, TlGaSe2, AgGaGe3Se8, AgxLi1-xAgGaGe3Se8 and PbTlI5-x Sex compounds. Experimental studies indicate that these have very low absorption coefficient, low defect density and can be fabricated in any shape and sizes. These crystals do not require post growth annealing and do not show any second phase precipitates when processed for electrode bonding and other fabrication steps. In this paper we report purification, growth and fabrication of large Tl3AsSe3 (TAS) crystals. We observed that TAS crystals grown by using further purification of as supplied high purity source materials followed by directionally solidified charge showed higher resistivity than previously reported values. TAS also showed constant value as the function of voltage.

  19. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  20. Electronic and optical properties of mixed Be-chalcogenides

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ahmad, Iftikhar; Zhang, D.; Rahnamaye Aliabad, H. A.; Jalali Asadabadi, S.

    2013-02-01

    The electronic and optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x, (0≤x≤1) are studied using the highly accurate modified Beck and Johnson (mBJ) potential. The binary Be-chalcogenides are wide and indirect band gap semiconductors and hence they are not efficient materials for optoelectronics. In order to modify them into optically active materials, the anion chalcogen atoms are partially replaced by other chalcogen atoms like BeSxSe1-x, BeSxTe1-x and BeSexTe1-x (0≤x≤1). The modified ternary compounds are of direct band gap nature and hence they are optically active. Some of these direct band gap materials are lattice matched with silicon and can possibly replace Si in semiconductor devices. Keeping in view the importance of these materials in optoelectronics, the optical properties of BeSxSe1-x, BeSxTe1-x and BeSexTe1-x in the full composition range are investigated. It is found that these materials are transparent in the IR, visible and near UV spectral regions. The alloys for the most of the concentrations have band gaps larger than 3 eV, so it is expected that they may be efficient materials for blue, green and UV light emitting diodes.

  1. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    PubMed

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  2. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.

    PubMed

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-03-23

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge 20 Te 77 Se₃ glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge 20 Te 77 Se₃) 100- x M x (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge 20 Te 77 Se₃) 100- x Bi x ( x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm -1 K -1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses.

  3. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi

    PubMed Central

    Srinivasan, Bhuvanesh; Boussard-Pledel, Catherine; Dorcet, Vincent; Samanta, Manisha; Biswas, Kanishka; Lefèvre, Robin; Gascoin, Franck; Cheviré, François; Tricot, Sylvain; Reece, Michael; Bureau, Bruno

    2017-01-01

    Chalcogenide semiconducting systems are of growing interest for mid-temperature range (~500 K) thermoelectric applications. In this work, Ge20Te77Se3 glasses were intentionally crystallized by doping with Cu and Bi. These effectively-crystallized materials of composition (Ge20Te77Se3)100−xMx (M = Cu or Bi; x = 5, 10, 15), obtained by vacuum-melting and quenching techniques, were found to have multiple crystalline phases and exhibit increased electrical conductivity due to excess hole concentration. These materials also have ultra-low thermal conductivity, especially the heavily-doped (Ge20Te77Se3)100−xBix (x = 10, 15) samples, which possess lattice thermal conductivity of ~0.7 Wm−1 K−1 at 525 K due to the assumable formation of nano-precipitates rich in Bi, which are effective phonon scatterers. Owing to their high metallic behavior, Cu-doped samples did not manifest as low thermal conductivity as Bi-doped samples. The exceptionally low thermal conductivity of the Bi-doped materials did not, alone, significantly enhance the thermoelectric figure of merit, zT. The attempt to improve the thermoelectric properties by crystallizing the chalcogenide glass compositions by excess doping did not yield power factors comparable with the state of the art thermoelectric materials, as these highly electrically conductive crystallized materials could not retain the characteristic high Seebeck coefficient values of semiconducting telluride glasses. PMID:28772687

  4. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    PubMed

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  5. Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density.

    PubMed

    Sarkar, Samrat; Howli, Promita; Das, Biswajit; Das, Nirmalya Sankar; Samanta, Madhupriya; Das, G C; Chattopadhyay, K K

    2017-07-12

    In this work we have synthesized quaternary chalcogenide Cu 2 NiSnS 4 (QC) nanoparticles grown in situ on 2D reduced graphene oxide (rGO) for application as anode material of solid-state asymmetric supercapacitors (ASCs). Thorough characterization of the synthesized composite validates the proper phase, stoichiometry, and morphology. Detailed electrochemical study of the electrode materials and ASCs has been performed. The as-fabricated device delivers an exceptionally high areal capacitance (655.1 mF cm -2 ), which is much superior to that of commercial micro-supercapacitors. Furthermore, a remarkable volumetric capacitance of 16.38 F cm -3 is obtained at a current density of 5 mA cm -2 combined with a very high energy density of 5.68 mW h cm -3 , which is comparable to that of commercially available lithium thin film batteries. The device retains 89.2% of the initial capacitance after running for 2000 cycles, suggesting its long-term capability. Consequently, the enhanced areal and volumetric capacitances combined with decent cycle stability and impressive energy density endow the uniquely decorated QC/rGO composite material as a promising candidate in the arena of energy storage devices. Moreover, Cu 2 NiSnS 4 being a narrow band gap photovoltaic material, this work offers a novel protocol for the development of self-charging supercapacitors in the days to come.

  6. Modification of band gaps and optoelectronic properties of binary calcium chalcogenides by means of doping of magnesium atom(s) in rock-salt phase- a first principle based theoretical initiative

    NASA Astrophysics Data System (ADS)

    Debnath, Bimal; Sarkar, Utpal; Debbarma, Manish; Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2018-02-01

    The band gaps and optoelectronic properties of binary calcium chalcogenide semiconductors have been modified theoretically by doping magnesium atom(s) into their respective rock-salt unit cells at some specific concentrations x = 0.0, 0.25, 0.50, 0.75 and 1.0 and confirmed such modifications by studying their structural, electronic and optical properties using DFT based FP-LAPW approach. The WC-GGA functional is used to calculate structural properties, while mBJ, B3LYP and WC-GGA are used for calculating electronic and optical properties. The concentration dependences of lattice parameter, bulk modulus and fundamental band gap for each alloy system exhibit nonlinearity. The atomic and orbital origin of different electronic states in the band structure of each compound are explored from its density of states (DOS). The microscopic origin of band gap bowing for each of the alloy systems is explored in terms of volume deformation, charge exchange and structural relaxation. The chemical bonds between the constituent atoms in each compound are found as ionic in nature. Optical properties of each specimen are calculated from its computed spectra of dielectric function, refractive index, extinction coefficient, normal incidence reflectivity, optical conductivity, optical absorption and energy loss function. Several calculated results have been compared with available experimental and other theoretical data.

  7. Chalcogenide glass waveguide-integrated black phosphorus mid-infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Deckoff-Jones, Skylar; Lin, Hongtao; Kita, Derek; Zheng, Hanyu; Li, Duanhui; Zhang, Wei; Hu, Juejun

    2018-04-01

    Black phosphorus (BP) is a promising 2D material that has unique in-plane anisotropy and a 0.3 eV direct bandgap, making it an attractive material for mid-IR photodetectors. So far, waveguide integrated BP photodetectors have been limited to the near-IR on top of Si waveguides that are unable to account for BP’s crystalline orientation. In this work, we employ mid-IR transparent chalcogenide glass (ChG) both as a broadband mid-IR transparent waveguiding material to enable waveguide-integration of BP detectors, and as a passivation layer to prevent BP degradation during device processing as well as in ambient atmosphere post-fabrication. Our ChG-on-BP approach not only leads to the first demonstration of mid-IR waveguide-integrated BP detectors, but also allows us to fabricate devices along different crystalline axes of BP to investigate, for the first time, the impact of in-plane anisotropy on photoresponse of waveguide-integrated devices. The best device exhibits responsivity up to 40 mA W-1 and noise equivalent power as low as 30 pW Hz-1/2 at 2185 nm wavelength. We also found that photodetector responsivities changed by an order of magnitude with different BP orientations. This work validates BP as an effective photodetector material in the mid-IR, and demonstrates the power of the glass-on-2D-material platform for prototyping of 2D material photonic devices.

  8. Chalcogenide thin films deposited by rfMS technique using a single quaternary target

    NASA Astrophysics Data System (ADS)

    Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.

    2017-12-01

    Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.

  9. Ternary chalcogenides C s 2 Z n 3 S e 4 and C s 2 Z n 3 T e 4 : Potential p -type transparent conducting materials

    DOE PAGES

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; ...

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs 2Zn 3Ch 4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4 are calculated to assess the viability of these materials as p-type TCMs. Cs 2Zn 3Se 4 and Cs 2Zn 3Te 4, which are stable under ambient air, displaymore » large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77 m e) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.« less

  10. Density functional theory (DFT) study of the gas-phase decomposition of the Cd[((i)Pr)2PSSe] 2 single-source precursor for the CVD of binary and ternary cadmium chalcogenides.

    PubMed

    Opoku, Francis; Asare-Donkor, Noah Kyame; Adimado, Anthony A

    2014-11-01

    The chemistry of group II-VI semiconductors has spurred considerable interest in decomposition reaction mechanisms and has been exploited for various technological applications. In this work, computational chemistry was employed to investigate the possible gas-phase decomposition pathways of the mixed Cd[((i)Pr)2PSSe]2 single-source precursor for the chemical vapour deposition of cadmium chalcogenides as thin films. The geometries of the species involved were optimised by employing density functional theory at the MO6/LACVP* level. The results indicate that the steps that lead to CdS formation on the singlet potential energy surface are favoured kinetically over those that lead to CdSe and ternary CdSe(x)S(1-x) formation. On the doublet PES, the steps that lead to CdSe formation are favoured kinetically over those that lead to CdS and CdSe(x)S(1-x) formation. However, thermodynamically, the steps that lead to ternary CdSe(x)S(1-x) formation are more favourable than those that lead to CdSe and CdS formation on both the singlet and the doublet PESs. Density functional theory calculations revealed that the first steps exhibit huge activation barriers, meaning that the thermodynamically favourable process takes a very long time to initiate.

  11. How metallic is the binding state of indium hosted by excess-metal chalcogenides in ore deposits?

    NASA Astrophysics Data System (ADS)

    Ondina Figueiredo, Maria; Pena Silva, Teresa; Oliveira, Daniel; Rosa, Diogo

    2010-05-01

    Discovered in 1863, indium is nowadays a strategic scarce metal used both in classical technologic fields (like low melting-temperature alloys and solders) and in innovative nano-technologies to produce "high-tech devices" by means of new materials, namely liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and the recently introduced transparent flexible thin-films manufactured with ionic amorphous oxide semiconductors (IAOS). Indium is a typical chalcophile element, seldom forming specific minerals and occurring mainly dispersed within polymetallic sulphides, particularly with excess metal ions [1]. The average content of indium in the Earth's crust is very low but a further increase in its demand is still expected in the next years, thus focusing a special interest in uncovering new exploitation sites through promising polymetallic sulphide ores - e.g., the Iberian Pyrite Belt (IPB) [2] - and in improving recycling technologies. Indium recovery stands mostly on zinc extraction from sphalerite, the natural cubic sulphide which is the prototype of so-called "tetrahedral sulphides" where metal ions fill half of the available tetrahedral sites within the cubic closest packing of sulphur anions where the double of unfilled interstices are available for further in-filling. It is worth remarking that such packing array is particularly suitable for accommodating polymetallic cations by filling closely located interstitial sites [3] as happens in excess-metal tetrahedral sulphides - e.g. bornite, ideally Cu5FeS4, recognized as an In-carrying mineral [4]. Studying the tendency towards In-In interactions able of leading to the formation of polycations would efficiently contribute to understand indium crystal chemistry and the metal binding state in natural chalcogenides. Accordingly, an X-ray absorption near-edge spectroscopy (XANES) study at In L3-edge was undertaken using the instrumental set-up of ID21 beamline at the ESRF (European Synchrotron Radiation Facility, in Grenoble/France). Polymetallic chalcogenide minerals and various model compounds displaying distinct bonding situations of indium to other ligands (oxygen and halides) were studied. Encouraging results from a first experiment [5] showed the presence of a "white line" in the XANES spectra collected from InF3 and from In-hosting bornite; however, the impossibility of clearly identifying the nanoscale phase hosting indium in sulphide ore samples has hindered a full interpretation of X-ray absorption data. The crystal chemistry of indium in natural chalcogenides is now reanalysed and XANES results obtained so far for polymetallic sulphides are accordingly re-evaluated, disclosing a challenging clue for indium binding state in these host minerals within sulphide ores. [1] M.O. Figueiredo et al. (2007) Procd. 9th Biennial SGA Mtg., Dublin/Ireland, edt. C. Andrew et al., 1355-1357. [2] O.C. Gaspar (2002) Canad. Miner. 40, 611-636. [3] M.O. Figueiredo & T.P. Silva (2009) ICANS 23, 23rd Int. Conf. Amorphous & Nano-crystalline Semiconductors, Netherlands, August 23-28. Poster ID 229 (abstract). [4] T. Seifert & D. Sandmann (2002) Ore Geol. Reviews 28, 1-31. [5] M.O. Figueiredo & T.P. Silva (2009) XVIII Int. Mater. Res. Congr., Mexico, August 16-20. Symp. 20, Poster nr. 1 (abstract). * Work developed within the research project PTDC/CTE-GIN/67027/2006 financed by the Portuguese Foundation for Science & Technology (FCT/MCTES). The financial support from EU to perform the experiments at the ESRF is also acknowledged.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitkova, Maria; Butt, Darryl; Kozicki, Michael

    For many decades, various radiation detecting material have been extensively researched, to find a better material or mechanism for radiation sensing. Recently, there is a growing need for a smaller and effective material or device that can perform similar functions of bulkier Geiger counters and other measurement options, which fail the requirement for easy, cheap and accurate radiation dose measurement. Here arises the use of thin film chalcogenide glass, which has unique properties of high thermal stability along with high sensitivity towards short wavelength radiation. The unique properties of chalcogenide glasses are attributed to the lone pair p-shell electrons, whichmore » provide some distinctive optical properties when compared to crystalline material. These qualities are derived from the energy band diagram and the presence of localized states in the band gap. Chalcogenide glasses have band tail states and localized states, along with the two band states. These extra states are primarily due to the lone pair electrons as well as the amorphous structure of the glasses. The localized states between the conductance band (CB) and valence band (VB) are primarily due to the presence of the lone pair electrons, while the band tail states are attributed to the Van der Waal's forces between layers of atoms [1]. Localized states are trap locations within the band gap where electrons from the valence band can hop into, in their path towards the conduction band. Tail states on the other hand are locations near the band gap edges and are known as Urbach tail states (Eu). These states are occupied with many electrons that can participate in the various transformations due to interaction with photons. According to Y. Utsugi et. al.[2], the electron-phonon interactions are responsible for the generation of the Urbach tails. These states are responsible for setting the absorption edge for these glasses and photons with energy near the band gap affect these states. We have studied the effect of x-rays and γ-rays, on thin film chalcogenide glasses and applied them in conjunction with film incorporating a silver source in a new type of radiation sensor for which we have an US patent application [3]. In this report, we give data about our studies regarding our designed radiation sensor along with the testing and performance at various radiation doses. These studies have been preceded by materials characterization research related to the compositional and structural characteristics of the active materials used in the radiation sensor design. During the work on the project, we collected a large volume of material since every experiment was repeated many times to verify the results. We conducted a comprehensive material research, analysis and discussion with the aim to understand the nature of the occurring effects, design different structures to harness these effects, generated models to aid in the understanding the effects, built different device structures and collected data to quantify device performance. These various aspects of our investigation have been detailed in previous quarterly reports. In this report, we present our main results and emphasize on the results pertaining to the core project goals materials development, sensor design and testing and with an emphasis on classifying the appropriate material and design for the optimal application. The report has three main parts: (i) Presentation of the main data; (ii) Bulleted summary of the most important results; (iii) List of the patent, journal publications, conference proceedings and conferences participation, occurring as a result of working on the project.« less

  13. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  14. Simulating equilibrium processes in the Ga(NO3)3-H2O-NaOH system

    NASA Astrophysics Data System (ADS)

    Fedorova, E. A.; Bakhteev, S. A.; Maskaeva, L. N.; Yusupov, R. A.; Markov, V. F.

    2016-06-01

    Equilibrium processes in the Ga(NO3)3-H2O-NaOH system are simulated with allowance for the formation of precipitates of various compositions using experimental data from potentiometric titration and theoretical studies. The values of the instability constants are calculated along with the stoichiometric compositions of the resulting compounds. It is found that pH ranges of 1.0 to 4.3 and 12.0 to 14.0 are best for the deposition of gallium chalcogenide films.

  15. Ion-barrier for memristors/ReRAM and methods thereof

    DOEpatents

    Haase, Gad S.

    2017-11-28

    The present invention relates to memristive devices including a resistance-switching element and a barrier element. In particular examples, the barrier element is a monolayer of a transition metal chalcogenide that sufficiently inhibits diffusion of oxygen atoms or ions out of the switching element. As the location of these atoms and ions determine the state of the device, inhibiting diffusion would provide enhanced state retention and device reliability. Other types of barrier elements, as well as methods for forming such elements, are described herein.

  16. High-Field Superconductivity on Iron Chalcogenide FeSe

    NASA Astrophysics Data System (ADS)

    Shi, Anlu; Kitagawa, Shunsaku; Ishida, Kenji; Böhmer, Anna E.; Meingast, Christoph; Wolf, Thomas

    2018-06-01

    We have performed ac-susceptibility and 77Se-NMR measurements on single-crystal FeSe in the field range from 12.5 to 14.75 T below 1.6 K in order to investigate the superconducting properties of the B phase. Our results show that although superconductivity persists beyond the A-B transition line (H*), the broadening of the 77Se-NMR linewidth arising from the superconducting diamagnetic effect decreases at around H*, suggesting that superconducting character is changed at H*.

  17. Design and high-volume manufacture of low-cost molded IR aspheres for personal thermal imaging devices

    NASA Astrophysics Data System (ADS)

    Zelazny, A. L.; Walsh, K. F.; Deegan, J. P.; Bundschuh, B.; Patton, E. K.

    2015-05-01

    The demand for infrared optical elements, particularly those made of chalcogenide materials, is rapidly increasing as thermal imaging becomes affordable to the consumer. The use of these materials in conjunction with established lens manufacturing techniques presents unique challenges relative to the cost sensitive nature of this new market. We explore the process from design to manufacture, and discuss the technical challenges involved. Additionally, facets of the development process including manufacturing logistics, packaging, supply chain management, and qualification are discussed.

  18. Non-Volatile Memory Technology Symposium 2001: Proceedings

    NASA Technical Reports Server (NTRS)

    Aranki, Nazeeh; Daud, Taher; Strauss, Karl

    2001-01-01

    This publication contains the proceedings for the Non-Volatile Memory Technology Symposium 2001 that was held on November 7-8, 2001 in San Diego, CA. The proceedings contains a a wide range of papers that cover current and new memory technologies including Flash memories, Magnetic Random Access Memories (MRAM and GMRAM), Ferro-electric RAM (FeRAM), and Chalcogenide RAM (CRAM). The papers presented in the proceedings address the use of these technologies for space applications as well as radiation effects and packaging issues.

  19. Preparation and Properties of Iron Doped II-VI Chalcogenides

    DTIC Science & Technology

    1990-03-29

    Toulmin (13) have reported that the solubility limit of iron in the system Znl-xFexS was 58 mole percent iron. Papalardo and Dietz (14) studied the...of iron in zinc sulfide has previously been determined by Barton and Toulmin (13) to be 58 mole percent iron at 890OC. The samples in their studies...1988). 13. P. Barton and P. Toulmin , Economic Geology, 61, (5), 815 (1966). 14. R. Pappalardo and R. Dietz, Phys Rev., 123 (4) 1188 (1961). 15. P. W, R

  20. Silicon nanoparticles: applications in cell biology and medicine

    PubMed Central

    O’Farrell, Norah; Houlton, Andrew; Horrocks, Benjamin R

    2006-01-01

    In this review, we describe the synthesis, physical properties, surface functionalization, and biological applications of silicon nanoparticles (also known as quantum dots). We compare them against current technologies, such as fluorescent organic dyes and heavy metal chalcogenide-based quantum dots. In particular, we examine the many different methods that can be used to both create and modify these nanoparticles and the advantages they may have over current technologies that have stimulated research into designing silicon nanoparticles for in vitro and in vivo applications. PMID:17722279

  1. Chalcogenide Materials Fabrication and Initial Characterization for Reconfigurable Interconnect Technology

    DTIC Science & Technology

    2006-10-01

    The oxide has lower values of (n, k) than Ge2Sb2Te5, and can be etched by hydrofluoric acid or water. No change in the optical constants of the...system. Spin densities were estimated by comparison with a standard sample ( weak pitch). Details are available elsewhere [15]. Both x-ray and x...121Sb and 123Sb are 588A = G, G and G, G, respectively [17]. The simulation yields broad features near 2300 and 4400 G, which are too weak in

  2. High-Pressure Viewports for Infrared Systems. Phase 2. Chalcogenide Glass

    DTIC Science & Technology

    1982-01-28

    radiation. the permanent microcopic dipole domain undergoes spontaneous polarization, which results in the buildup of charge on the opposite surface of the...are quantified in table 3. Materials that have been useful in the 8-12 prm region are all II-VI compounds , ie prepared from elements of group II and...Polycrystalline II-VI compounds . 18 ’T 6" ý4 04 MELT-FORMED GLASS The properties of the melt-formed glasses are quantified in table 4. Only glasses that have been

  3. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.

    PubMed

    Mitzi, David B

    2005-05-16

    The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.

  4. Design of Multifunctional Materials: Chalcogenides and Chalcopyrites

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen

    2017-01-01

    There is a strong need for developing multifunctional materials to reduce the cost of applied material without compromising the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve huge cost and resources including a multidisciplinary team of experts. Because of this reason, prediction of multifunctionality of materials before design and development should be evaluated. Chalcogenides and chalcopyrites are a very exciting class of materials for developing multifunctionality. Materials such as Gallium selenide GaSe and zinc selenide ZnSe have been proven to be excellent examples. GaSe is a layered material and very difficult to grow in large crystal. However, it's ternary and quaternary analogs such as thallium gallium selenide TlGaSe2, thallium gallium selenide sulfide TlGaSe2-xSs, thallium arsenic selenide Tl3AsSe3, silver gallium selenide AgGaGe3Se8, AgGaGe5Se12 and several others have shown great promise for multifunctionality. Several of these materials have shown good efficiency for frequency conversion (nonlinear optical NLO), electro-optic modulation, and acousto-optic tunable filters and imagers suitable for the visible, near-infrared wavelength, mid wave infrared (MWIR), long wave infrared (LWIR) and even up to Tera hertz wavelength (THW) regions. In addition, this class of materials have demonstrated low absorption coefficients and power handling capability in the systems. Also, these crystals do not require post growth annealing, show very large transparency range and fabricability.

  5. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Božin, E. S.; Granroth, G. E.; Winn, B. L.; Feygenson, M.; Birgeneau, R. J.; Gu, Genda; Zaliznyak, I. A.; Tranquada, J. M.; Xu, Guangyong

    2016-03-01

    It has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe1 -xSex . We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure of antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. Finally, we also present powder neutron diffraction results for lattice parameters in FeTe1 -xSex indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3 d orbitals.

  6. Colloidal Synthesis and Thermoelectric Properties of CuFeSe2 Nanocrystals

    PubMed Central

    Zhang, Bing-Qian; Zuo, Yong; Chen, Jing-Shuai; Niu, He-Lin; Mao, Chang-Jie

    2017-01-01

    Copper-based chalcogenides that contain abundant, low-cost and environmentally-friendly elements, are excellent materials for numerous energy conversion applications, such as photocatalysis, photovoltaics, photoelectricity and thermoelectrics (TE). Here, we present a high-yield and upscalable colloidal synthesis route for the production of monodisperse ternary I-III-VI2 chalcogenides nanocrystals (NCs), particularly stannite CuFeSe2, with uniform shape and narrow size distributions by using selenium powder as the anion precursor and CuCl2·2H2O and FeCl3 as the cationic precursors. The composition, the state of valence, size and morphology of the CuFeSe2 materials were examined by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), transmission electron microscope (TEM) and high resolution transmission electron microscope (HRTEM), respectively. Furthermore, the TE properties characterization of these dense nanomaterials compacted from monodisperse CuFeSe2 NCs by hot press at 623 K were preliminarily studied after ligand removal by means of hydrazine and hexane solution. The TE performances of the sintered CuFeSe2 pellets were characterized in the temperature range from room temperature to 653 K. Finally, the dimensionless TE figure of merit (ZT) of this Earth-abundant and intrinsic p-type CuFeSe2 NCs is significantly increased to 0.22 at 653 K in this work, which is demonstrated to show a promising TE materialand makes it a possible p-type candidate for medium-temperature TE applications. PMID:29278381

  7. Superior Electrical Conductivity in Hydrogenated Layered Ternary Chalcogenide Nanosheets for Flexible All-Solid-State Supercapacitors.

    PubMed

    Hu, Xin; Shao, Wei; Hang, Xudong; Zhang, Xiaodong; Zhu, Wenguang; Xie, Yi

    2016-05-04

    As the properties of ultrathin two-dimensional (2D) crystals are strongly related to their electronic structures, more and more attempts were carried out to tune their electronic structures to meet the high standards for the construction of next-generation smart electronics. Herein, for the first time, we show that the conductive nature of layered ternary chalcogenide with formula of Cu2 WS4 can be switched from semiconducting to metallic by hydrogen incorporation, accompanied by a high increase in electrical conductivity. In detail, the room-temperature electrical conductivity of hydrogenated-Cu2 WS4 nanosheet film was almost 10(10) times higher than that of pristine bulk sample with a value of about 2.9×10(4)  S m(-1) , which is among the best values for conductive 2D nanosheets. In addition, the metallicity in the hydrogenated-Cu2 WS4 is robust and can be retained under high-temperature treatment. The fabricated all-solid-state flexible supercapacitor based on the hydrogenated-Cu2 WS4 nanosheet film shows promising electrochemical performances with capacitance of 583.3 F cm(-3) at a current density of 0.31 A cm(-3) . This work not only offers a prototype material for the study of electronic structure regulation in 2D crystals, but also paves the way in searching for highly conductive electrodes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedemeier, Heribert, E-mail: wiedeh@rpi.ed

    Correlations of computed Schottky constants (K{sub S}=[V''{sub Zn}][V{sub S}{sup ..}]) with structural and thermodynamic properties showed linear dependences of log K{sub S} on the lattice energies for the Zn-, Cd-, Hg-, Mg-, and Sr-chalcogenides and for the Na- and K-halides. These findings suggest a basic relation between the Schottky constants and the lattice energies for these families of compounds from different parts of the Periodic Table, namely, {Delta}H{sub T,L}{sup o}=-(2.303nRT log K{sub S})+2.303nRm{sub b}+2.303nRTi{sub b}. {Delta}H{sub T,L}{sup o} is the experimental (Born-Haber) lattice energy (enthalpy), n is a constant approximately equal to the formal valence (charge) of the material, m{submore » b} and i{sub b} are the slope and intercept, respectively, of the intercept b (of the log K{sub S} versus {Delta}H{sub L}{sup o} linear relation) versus the reciprocal temperature. The results of this work also provide an empirical correlation between the Gibbs free energy of vacancy formation and the lattice energy. - Graphical abstract: For the Zn-chalcogenides, the quantities n and I{sub e} are 2.007 and 650.3 kcal (2722 kJ), respectively. For the other groups of compounds, they are approximately equal to the formal valences and ionization energies of the metals: Log K{sub S{approx}}-(2.303nRT){sup -1} (0.99{Delta}H{sup o}{sub T,L}-I{sub e}).« less

  9. Gate-Induced Interfacial Superconductivity in 1T-SnSe2.

    PubMed

    Zeng, Junwen; Liu, Erfu; Fu, Yajun; Chen, Zhuoyu; Pan, Chen; Wang, Chenyu; Wang, Miao; Wang, Yaojia; Xu, Kang; Cai, Songhua; Yan, Xingxu; Wang, Yu; Liu, Xiaowei; Wang, Peng; Liang, Shi-Jun; Cui, Yi; Hwang, Harold Y; Yuan, Hongtao; Miao, Feng

    2018-02-14

    Layered metal chalcogenide materials provide a versatile platform to investigate emergent phenomena and two-dimensional (2D) superconductivity at/near the atomically thin limit. In particular, gate-induced interfacial superconductivity realized by the use of an electric-double-layer transistor (EDLT) has greatly extended the capability to electrically induce superconductivity in oxides, nitrides, and transition metal chalcogenides and enable one to explore new physics, such as the Ising pairing mechanism. Exploiting gate-induced superconductivity in various materials can provide us with additional platforms to understand emergent interfacial superconductivity. Here, we report the discovery of gate-induced 2D superconductivity in layered 1T-SnSe 2 , a typical member of the main-group metal dichalcogenide (MDC) family, using an EDLT gating geometry. A superconducting transition temperature T c ≈ 3.9 K was demonstrated at the EDL interface. The 2D nature of the superconductivity therein was further confirmed based on (1) a 2D Tinkham description of the angle-dependent upper critical field B c2 , (2) the existence of a quantum creep state as well as a large ratio of the coherence length to the thickness of superconductivity. Interestingly, the in-plane B c2 approaching zero temperature was found to be 2-3 times higher than the Pauli limit, which might be related to an electric field-modulated spin-orbit interaction. Such results provide a new perspective to expand the material matrix available for gate-induced 2D superconductivity and the fundamental understanding of interfacial superconductivity.

  10. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  11. Growth Mechanism of Transition Metal Dichalcogenide Monolayers: The Role of Self-Seeding Fullerene Nuclei.

    PubMed

    Cain, Jeffrey D; Shi, Fengyuan; Wu, Jinsong; Dravid, Vinayak P

    2016-05-24

    Due to their unique optoelectronic properties and potential for next generation devices, monolayer transition metal dichalcogenides (TMDs) have attracted a great deal of interest since the first observation of monolayer MoS2 a few years ago. While initially isolated in monolayer form by mechanical exfoliation, the field has evolved to more sophisticated methods capable of direct growth of large-area monolayer TMDs. Chemical vapor deposition (CVD) is the technique used most prominently throughout the literature and is based on the sulfurization of transition metal oxide precursors. CVD-grown monolayers exhibit excellent quality, and this process is widely used in studies ranging from the fundamental to the applied. However, little is known about the specifics of the nucleation and growth mechanisms occurring during the CVD process. In this study, we have investigated the nucleation centers or "seeds" from which monolayer TMDs typically grow. This was accomplished using aberration-corrected scanning transmission electron microscopy to analyze the structure and composition of the nuclei present in CVD-grown MoS2-MoSe2 alloys. We find that monolayer growth proceeds from nominally oxi-chalcogenide nanoparticles which act as heterogeneous nucleation sites for monolayer growth. The oxi-chalcogenide nanoparticles are typically encased in a fullerene-like shell made of the TMD. Using this information, we propose a step-by-step nucleation and growth mechanism for monolayer TMDs. Understanding this mechanism may pave the way for precise control over the synthesis of 2D materials, heterostructures, and related complexes.

  12. Final Project Report for ER15351 “A Study of New Actinide Zintl Ion Materials”

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peter K. Dorhout

    2007-11-12

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metalmore » salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.« less

  13. Numerical investigation on high power mid-infrared supercontinuum fiber lasers pumped at 3 µm.

    PubMed

    Wei, Chen; Zhu, Xiushan; Norwood, Robert A; Song, Feng; Peyghambarian, N

    2013-12-02

    High power mid-infrared (mid-IR) supercontinuum (SC) laser sources in the 3-12 µm region are of great interest for a variety of applications in many fields. Although various mid-IR SC laser sources have been proposed and investigated experimentally and theoretically in the past several years, power scaling of mid-IR SC lasers beyond 3 μm with infrared edges extending beyond 7 μm are still challenges because the wavelengths of most previously used pump sources are below 2 μm. These problems can be solved with the recent development of mode-locked fiber lasers at 3 μm. In this paper, high power mid-IR SC laser sources based on dispersion engineered tellurite and chalcogenide fibers and pumped by ultrafast lasers at 3 µm are proposed and investigated. Our simulation results show that, when a W-type tellurite fiber with a zero dispersion wavelength (ZDW) of 2.7 µm is pumped at 2.78 μm, the power proportion of the SC laser beyond 3 µm can exceed 40% and the attainable SC output power of the proposed solid-cladding tellurite fiber is one order of magnitude higher than that of existing microstructured tellurite fibers. Our calculation also predicts that a very promising super-broadband mid-IR SC fiber laser source covering two atmospheric windows and molecules' "fingerprint" region can be obtained with a microstructured As2Se3 chalcogenide fiber pumped at 2.78 μm.

  14. Cubic Dirac fermions in quasi-one-dimensional transition-metal chalcogenide semimetals immune to Peierls distortion

    NASA Astrophysics Data System (ADS)

    Liu, Qihang; Zunger, Alex

    A Cubic Dirac Fermion in condensed-matter physics refers to a band crossing in periodic solids that has 4-fold degeneracy with cubic dispersions in certain directions. Such a crystalline symmetry induced fermion is composed of 6 Weyl fermions where 3 have left-handed and 3 have right-handed chirality, and constitutes one of the ``new fermions'' that have no counterpart in high-energy physics. However, no prediction has yet pointed to a plausible example of a material candidate hosting such a cubically-dispersed Dirac semimetal (CDSM). Here we establish the design principles for CDSM finding that only 2 out of 230 space groups possess the required symmetry elements. Adding the required band occupancy criteria, we conduct a material search using density functional band theory identifying a group of quasi-one-dimensional molybdenum chalcogenide compounds A(MoX)3 (A = Na, K, Rb, In, Tl; X = S, Se, Te) with space group P63/m as ideal CDSM candidates. Studying the stability of the A(MoX)3 family towards a Peierls distortion reveals a few candidates such as Rb(MoTe)3 and Tl(MoTe)3 that are resilliant to Peierls distortion, thus retaining the metallic character. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division under Grant No. DE-FG02-13ER46959 to University of Colorado, Boulder.

  15. Effect of Se addition on optical and electrical properties of chalcogenide CdSSe thin films

    NASA Astrophysics Data System (ADS)

    Hassanien, A. S.; Akl, Alaa A.

    2016-01-01

    Compositional dependence of optical and electrical properties of chalcogenide CdSxSe1-x (0.4 ≥ x ≥ 0.0 at. %) thin films was studied. Cadmium sulphoselenide films were deposited by thermal evaporation technique at vacuum (8.2 × 10-4 Pa) onto preheated glass substrates (523 K). The evaporation rate and film thickness were kept constant at 2.50 nm/s and 375 ± 5 nm, respectively. X-ray diffractograms showed that, the deposited films have the low crystalline nature. Energy dispersive analysis by X-ray (EDAX) was used to check the compositional elements of deposited films. The absorption coefficient was determined from transmission and reflection measurements at room temperature in the wavelength range 300-2500 nm. Optical density, skin depth, optical energy gap and Urbach's parameters of CdSSe thin films have also been estimated. The direct optical energy gap decreased from 2.248 eV to 1.749 eV when the ratio of Se-content was increased from 0.60 to 1.00 . Conduction band and valance band positions were evaluated. The temperature dependence of dc-electrical resistivity in the temperature range (293-450 K) has been reported. Three conduction regions due to different conduction mechanisms were detected. Electrical sheet resistance, activation energy and pre-exponential parameters were discussed. The estimated values of optical and electrical parameters were strongly dependent upon the Se-content in CdSSe matrix.

  16. High temperature thermoelectric properties of rock-salt structure PbS

    DOE PAGES

    Parker, David S.; Singh, David J.

    2013-12-18

    We present an analysis of the high temperature transport properties of rock-salt structure PbS, a sister compound to the better studied lead chalcogenides PbSe and PbTe. In this study, we find thermopower magnitudes exceeding 200 V/K in a wide doping range for temperatures of 800 K and above. Based on these calculations, and an analysis of recent experimental work we find that this material has a potential for high thermoelectric performance. Also, we find favorable mechanical properties, based on an analysis of published data.

  17. Peculiarities of Gamma-Induced Optical Effects in Ternary Systems of Amorphous Chalcogenide Semiconductors

    DTIC Science & Technology

    2001-06-01

    compactness and bonds concentration into the mechanism of RIOE must be taken into account using the parameter o ) [7]: o =C6, (2) where C- concentration of main...section, in contrast to As2S3-Ge2S3, the characters of ATmax(Z) and 8(Z) dependencies mismatch. 25 , 6 20 - - - 15 - 4 o 6 10 ) 2 --- At 5 -4-A 0...as well as by the origin of constituent chemical elements. Acknowledgement I would like to thank Professor 0. Shpotyuk for his encouragement and the

  18. IR GRIN optics: design and fabrication

    NASA Astrophysics Data System (ADS)

    Gibson, Daniel; Bayya, Shyam; Nguyen, Vinh; Sanghera, Jas; Kotov, Mikhail; McClain, Collin; Deegan, John; Lindberg, George; Unger, Blair; Vizgaitis, Jay

    2017-06-01

    Infrared (IR) transmitting gradient index (GRIN) materials have been developed for broad-band IR imaging. This material is derived from the diffusion of homogeneous chalcogenide glasses has good transmission for all IR wavebands. The optical properties of the IR-GRIN materials are presented and the fabrication and design methodologies are discussed. Modeling and optimization of the diffusion process is exploited to minimize the deviation of the index profile from the design profile. Fully diffused IR-GRIN blanks with Δn of 0.2 are demonstrated with deviation errors of +/-0.01 refractive index units.

  19. Influence of rare earth elements (Nd, Sm, Gd) on the physicochemical properties of ges crystal

    NASA Astrophysics Data System (ADS)

    Madatov, R. S.; Alekperov, A. S.; Magerramova, Dzh. A.

    2015-11-01

    Layered semiconductors (including GeS), which are widely used in modern electronics, are of great interest for researchers. New GeS-based devices have been developed for holographic recording, optical processing, and storage of information. In the last few years, American scientists have developed a unique GeS-based device that makes it possible to accumulate an immense amount of solar energy. The introduction of rare earth elements (REEs) facilitates the healing of metal and chalcogenide vacancies, removes polytypism, and enhances interlayer interaction.

  20. Nonvolatile Memory Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    Oldham, Timothy R.; Irom, Farokh; Friendlich, Mark; Nguyen, Duc; Kim, Hak; Berg, Melanie; LaBel, Kenneth A.

    2010-01-01

    This slide presentation reviews several forms of nonvolatile memory for use in space applications. The intent is to: (1) Determine inherent radiation tolerance and sensitivities, (2) Identify challenges for future radiation hardening efforts, (3) Investigate new failure modes and effects, and technology modeling programs. Testing includes total dose, single event (proton, laser, heavy ion), and proton damage (where appropriate). Test vehicles are expected to be a variety of non-volatile memory devices as available including Flash (NAND and NOR), Charge Trap, Nanocrystal Flash, Magnetic Memory (MRAM), Phase Change--Chalcogenide, (CRAM), Ferroelectric (FRAM), CNT, and Resistive RAM.

  1. Dimensional and compositional change of 1D chalcogen nanostructures leading to tunable localized surface plasmon resonances.

    PubMed

    Min, Yuho; Seo, Ho Jun; Choi, Jong-Jin; Hahn, Byung-Dong; Moon, Geon Dae

    2018-08-24

    As part of the oxygen family, chalcogen (Se, Te) nanostructures have been considered important elements for various practical fields and further exploited to constitute metal chalcogenides for each targeted application. Here, we report a controlled synthesis of well-defined one-dimensional chalcogen nanostructures such as nanowries, nanorods, and nanotubes by controlling reduction reaction rate to fine-tune the dimension and composition of the products. Tunable optical properties (localized surface plasmon resonances) of these chalcogen nanostructures are observed depending on their morphological, dimensional, and compositional variation.

  2. A further step towards tuning the properties of metal-chalcogenide nanocapsules by replacing skeletal oxide by sulphide ligands.

    PubMed

    Schäffer, Christian; Todea, Ana Maria; Bögge, Hartmut; Floquet, Sébastien; Cadot, Emmanuel; Korenev, Vladimir S; Fedin, Vladimir P; Gouzerh, Pierre; Müller, Achim

    2013-01-14

    Addition of [Mo(2)(V)O(2)(μ-O)(μ-S)(aq)](2+) linker-type units to a solution/dynamic library containing tungstates results via the formation of the complementary pentagonal {(W)W(5)} units logically in the self-assembly of a mixed oxide/sulphide {W(VI)(72)Mo(V)(60)}-type Keplerate, thereby demonstrating the ability to tune the capsule's skeletal softness (the (μ-O)(2) and (μ-S)(2) scenarios are known) and providing options to influence differently important capsule-substrate interactions.

  3. The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches.

    PubMed

    Yu, Kui; Liu, Xiangyang; Zeng, Qun; Yang, Mingli; Ouyang, Jianying; Wang, Xinqin; Tao, Ye

    2013-10-11

    One thing in common: The formation of binary colloidal semiconductor nanocrystals from single- (M(EEPPh2 )n ) and dual-source precursors (metal carboxylates M(OOCR)n and phosphine chalcogenides such as E=PHPh2 ) is found to proceed through a common mechanism. For CdSe as a model system (31) P NMR spectroscopy and DFT calculations support a reaction mechanism which includes numerous metathesis equilibriums and Se exchange reactions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Quaternary Chalcogenide-Based Misfit Nanotubes LnS(Se)-TaS(Se)2 (Ln = La, Ce, Nd, and Ho): Synthesis and Atomic Structural Studies.

    PubMed

    Lajaunie, Luc; Radovsky, Gal; Tenne, Reshef; Arenal, Raul

    2018-01-16

    We have synthesized quaternary chalcogenide-based misfit nanotubes LnS(Se)-TaS 2 (Se) (Ln = La, Ce, Nd, and Ho). None of the compounds described here were reported in the literature as a bulk compound. The characterization of these nanotubes, at the atomic level, has been developed via different transmission electron microscopy techniques, including high-resolution scanning transmission electron microscopy, electron diffraction, and electron energy-loss spectroscopy. In particular, quantification at sub-nanometer scale was achieved by acquiring high-quality electron energy-loss spectra at high energy (∼between 1000 and 2500 eV). Remarkably, the sulfur was found to reside primarily in the distorted rocksalt LnS lattice, while the Se is associated with the hexagonal TaSe 2 site. Consequently, these quaternary misfit layered compounds in the form of nanostructures possess a double superstructure of La/Ta and S/Se with the same periodicity. In addition, the interlayer spacing between the layers and the interatomic distances within the layer vary systematically in the nanotubes, showing clear reduction when going from the lightest (La atom) to the heaviest (Ho) atom. Amorphous layers, of different nature, were observed at the surface of the nanotubes. For La-based NTs, the thin external amorphous layer (inferior to 10 nm) can be ascribed to a Se deficiency. Contrarily, for Ho-based NTs, the thick amorphous layer (between 10 and 20 nm) is clearly ascribed to oxidation. All of these findings helped us to understand the atomic structure of these new compounds and nanotubes thereof.

  5. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

    PubMed

    Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou

    2012-10-23

    We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

  6. Rare-earth transition-metal gallium chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se)

    NASA Astrophysics Data System (ADS)

    Rudyk, Brent W.; Stoyko, Stanislav S.; Oliynyk, Anton O.; Mar, Arthur

    2014-02-01

    Six series of quaternary rare-earth transition-metal chalcogenides RE3MGaCh7 (M=Fe, Co, Ni; Ch=S, Se), comprising 33 compounds in total, have been prepared by reactions of the elements at 1050 °C (for the sulphides) or 900 °C (for the selenides). They adopt noncentrosymmetric hexagonal structures (ordered Ce3Al1.67S7-type, space group P63, Z=2) with cell parameters in the ranges of a=9.5-10.2 Å and c=6.0-6.1 Å for the sulphides and a=10.0-10.5 Å and c=6.3-6.4 Å for the selenides as refined from powder X-ray diffraction data. Single-crystal structures were determined for five members of the sulphide series RE3FeGaS7 (RE=La, Pr, Tb) and RE3CoGaS7 (RE=La, Tb). The highly anisotropic crystal structures consist of one-dimensional chains of M-centred face-sharing octahedra and stacks of Ga-centred tetrahedra all pointing in the same direction. Magnetic measurements on the sulphides reveal paramagnetic behaviour in some cases and long-range antiferromagnetic behaviour with low Néel temperatures (15 K or lower) in others. Ga L-edge XANES spectra support the presence of highly cationic Ga tetrahedral centres with a tendency towards more covalent Ga-Ch character on proceeding from the sulphides to the selenides. Band structure calculations on La3FeGaS7 indicate that the electronic structure is dominated by Fe 3d-based states near the Fermi level.

  7. ARPES Study on the Strongly Correlated Iron Chalcogenides Fe1+ySexTe1-x

    NASA Astrophysics Data System (ADS)

    Liu, Zhongkai

    2014-03-01

    The level of electronic correlation has been one of the key questions in understanding the nature of iron-based superconductivity. Using Angle Resolved Photoemission Spectroscopy (ARPES), we systematically investigated the correlation level in the iron chalcogenide family Fe1+ySexTe1-x. For the parent compound Fe1.02Te, we discovered ``peak-dip-hump'' spectra with heavily renormalized quasiparticles in the low temperature antiferromagnetic (AFM) state, characteristic of coherent polarons seen in other correlated materials with complex electronic and lattice interactions. As the temperature (or Se ratio x) increases and Fe1.02SexTe1-x is in the paramagnetic (PM) phase, we observed dissociation behavior of polarons, suggestive of connection between the weakening electron-phonon coupling and AFM. Further increase of x leads to an incoherent to coherent crossover in the electronic structure, indicating a reduction in the electronic correlation as the superconductivity emerges. Furthermore, the reduction of the electronic correlation in Fe1+ySexTe1-x evolves in an orbital-dependent way, where the dxy orbital is influenced most significantly. At the other end of the phase diagram (FeSe) where the single crystal is not stable, we have studied the MBE-grown thin film which also reveals orbital-dependent strong correlation in the electronic structure. Our findings provide a quantitative comprehension on the correlation level and its evolution on the phase diagram of Fe1+ySexTe1-x. We discuss the physical scenarios leading to strong correlations and its connection to superconductivity.

  8. Effects of doping of calcium atom(s) on structural, electronic and optical properties of binary strontium chalcogenides - A theoretical investigation using DFT based FP-LAPW methodology

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Rahul; Chattopadhyaya, Surya

    2017-09-01

    The effects of doping of Ca atom(s) on structural, electronic and optical properties of binary strontium chalcogenide semiconductor compounds have been investigated theoretically using DFT based FP-LAPW approach by modeling the rock-salt (B1) ternary alloys CaxSr1-xS, CaxSr1-xSe and CaxSr1-xTe at some specific concentrations 0 ≤ x ≤ 1 and studying their aforesaid properties. The exchange-correlation potentials for their structural properties have been computed using the Wu-Cohen generalized-gradient approximation (WC-GGA) scheme, while those for the electronic and optical properties have been computed using recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) scheme. In addition, we have computed the electronic and optical properties with the traditional BLYP and PBE-GGA schemes for comparison. The atomic and orbital origin of different electronic states in the band structure of each of the compounds have been identified from the respective density of states (DOS). Using the approach of Zunger and co-workers, the microscopic origin of band gap bowing has been discussed in term of volume deformation, charge exchange and structural relaxation. Bonding characteristics among the constituent atoms of each of the specimens have been discussed from their charge density contour plots. Optical properties of the binary compounds and ternary alloys have been investigated theoretically in terms of their respective dielectric function, refractive index, normal incidence reflectivity and optical conductivity. Several calculated results have been compared with available experimental and other theoretical data.

  9. Panel Discussion: The Future In Infrared Fibers

    NASA Astrophysics Data System (ADS)

    1982-12-01

    DeShazer: During this meeting, IR fibers have been viewed from two aspects - materials and applications. We have had an interesting mix of chemists and physicists, engineers and opticians attending the meeting because of the varied expertise needed to address these questions. While silica glasses are exclusively used for current fiber systems operating at wavelengths less than 2 μm, the material choice has not yet been made for IR fibers at the longer wavelengths. Papers were presented at this meeting on the possible choices, which can be grouped into four general headings, as we have done in the table: hollow waveguides, glasses, polycrystals, and crystals. For the 2 to 5 μm spectrum, the choice appears to be fluoride glass, although the exact glass composition needs to be determined for good fiber drawing properties. For wavelengths longer than 5 μm, however, there is no unanimous choice. Polycrystalline KRS-5 fiber has been the current selection for CO2 laser fiber systems at 10.6 μm, but it exhibits many drawbacks such as large scattering loss, short shelf-life and possible photosensitivity. Chalcogenide glasses, such as arsenic triselenide, have high absorption losses at 10.6 μm, in spite of much past effort to improve the material. Is there hope in producing a highly transparent glass at 10.6 μm? If not chalcogenide glasses, maybe chloride glasses will succeed for fibers at 10 μm. Single-crystal fibers promise low loss, but is it realistic to talk about making a single crystal fiber 10 km long?

  10. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe 1-xSe x

    DOE PAGES

    Xu, Zhijun; Xu, Guangyong; Schneeloch, J. A.; ...

    2016-03-14

    Imore » t has recently been demonstrated that dynamical magnetic correlations measured by neutron scattering in iron chalcogenides can be described with models of short-range correlations characterized by particular choices of four-spin plaquettes, where the appropriate choice changes as the parent material is doped towards superconductivity. Here we apply such models to describe measured maps of magnetic scattering as a function of two-dimensional wave vectors obtained for optimally superconducting crystals of FeTe 1 ₋ x Se x . We show that the characteristic antiferromagnetic wave vector evolves from that of the bicollinear structure found in underdoped chalcogenides (at high temperature) to that associated with the stripe structure of antiferromagnetic iron arsenides (at low temperature); these can both be described with the same local plaquette, but with different interplaquette correlations. While the magnitude of the low-energy magnetic spectral weight is substantial at all temperatures, it actually weakens somewhat at low temperature, where the charge carriers become more itinerant. The observed change in spin correlations is correlated with the dramatic drop in the electronic scattering rate and the growth of the bulk nematic response upon cooling. n conclusion, we also present powder neutron diffraction results for lattice parameters in FeTe 1 ₋ x Se x indicating that the tetrahedral bond angle tends to increase towards the ideal value upon cooling, in agreement with the increased screening of the crystal field by more itinerant electrons and the correspondingly smaller splitting of the Fe 3d orbitals.« less

  11. Local electrical characterization of laser-recorded phase-change marks on amorphous Ge2Sb2Te5 thin films.

    PubMed

    Chang, Chia Min; Chu, Cheng Hung; Tseng, Ming Lun; Chiang, Hai-Pang; Mansuripur, Masud; Tsai, Din Ping

    2011-05-09

    Amorphous thin films of Ge(2)Sb(2)Te(5), sputter-deposited on a thin-film gold electrode, are investigated for the purpose of understanding the local electrical conductivity of recorded marks under the influence of focused laser beam. Being amorphous, the as-deposited chalcogenide films have negligible electrical conductivity. With the aid of a focused laser beam, however, we have written on these films micron-sized crystalline marks, ablated holes surrounded by crystalline rings, and other multi-ring structures containing both amorphous and crystalline zones. Within these structures, nano-scale regions of superior local conductivity have been mapped and probed using our high-resolution, high-sensitivity conductive-tip atomic force microscope (C-AFM). Scanning electron microscopy and energy-dispersive spectrometry have also been used to clarify the origins of high conductivity in and around the recorded marks. When the Ge(2)Sb(2)Te(5) layer is sufficiently thin, and when laser crystallization/ablation is used to define long isolated crystalline stripes on the samples, we find the C-AFM-based method of extracting information from the recorded marks to be superior to other forms of microscopy for this particular class of materials. Given the tremendous potential of chalcogenides as the leading media candidates for high-density memories, local electrical characterization of marks recorded on as-deposited amorphous Ge(2)Sb(2)Te(5) films provides useful information for furthering research and development efforts in this important area of modern technology. © 2011 Optical Society of America

  12. Poisson's ratio and the densification of glass under high pressure.

    PubMed

    Rouxel, T; Ji, H; Hammouda, T; Moréac, A

    2008-06-06

    Because of a relatively low atomic packing density, (Cg) glasses experience significant densification under high hydrostatic pressure. Poisson's ratio (nu) is correlated to Cg and typically varies from 0.15 for glasses with low Cg such as amorphous silica to 0.38 for close-packed atomic networks such as in bulk metallic glasses. Pressure experiments were conducted up to 25 GPa at 293 K on silica, soda-lime-silica, chalcogenide, and bulk metallic glasses. We show from these high-pressure data that there is a direct correlation between nu and the maximum post-decompression density change.

  13. Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials

    PubMed Central

    Tan, Chaoliang; Zhang, Hua

    2015-01-01

    Non-layer structured nanomaterials with single- or few-layer thickness have two-dimensional sheet-like structures and possess intriguing properties. Recent years have seen major advances in development of a host of non-layer structured ultrathin two-dimensional nanomaterials such as noble metals, metal oxides and metal chalcogenides. The wet-chemical synthesis has emerged as the most promising route towards high-yield and mass production of such nanomaterials. These nanomaterials are now finding increasing applications in a wide range of areas including catalysis, energy production and storage, sensor and nanotherapy, to name but a few. PMID:26303763

  14. Suppression of superconductivity in Fe chalcogenides by annealing: A reverse effect to pressure

    NASA Astrophysics Data System (ADS)

    Tong, Peng; Louca, Despina; Llobet, Anna; Yan, Jiaqiang; Arita, Ryotaro

    2012-02-01

    Superconductivity in FeTe1-xSex can be controlled by annealing, in the absence of extrinsic influences. Using neutron diffraction, we show that TC sensitively depends on the atomic configurations of the Te and Se ions. Low temperature annealing not only homogenizes the Te and Se ion distribution as previously observed, it suppresses TC because of changes in the chalcogen ions' z-parameter. In particular, the height of Te from the Fe basal plane is much reduced while that for Se shows a modest increase. These trends are reverse of the effects induced by pressure.

  15. Phase Equilibria Diagrams Database

    National Institute of Standards and Technology Data Gateway

    SRD 31 NIST/ACerS Phase Equilibria Diagrams Database (PC database for purchase)   The Phase Equilibria Diagrams Database contains commentaries and more than 21,000 diagrams for non-organic systems, including those published in all 21 hard-copy volumes produced as part of the ACerS-NIST Phase Equilibria Diagrams Program (formerly titled Phase Diagrams for Ceramists): Volumes I through XIV (blue books); Annuals 91, 92, 93; High Tc Superconductors I & II; Zirconium & Zirconia Systems; and Electronic Ceramics I. Materials covered include oxides as well as non-oxide systems such as chalcogenides and pnictides, phosphates, salt systems, and mixed systems of these classes.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Repins, Ingrid; Mansfield, Lorelle; Kanevce, Ana

    Band-edge effects - including grading, electrostatic fluctuations, bandgap fluctuations, and band tails - affect chalcogenide device efficiency. These effects now require more careful consideration as efficiencies increase beyond 20%. Several aspects of the relationships between band-edge phenomena and device performance for NREL absorbers are examined. For Cu(In, Ga)Se2 devices, recent increases in diffusion length imply changes to the optimum bandgap profile. The origin, impact, and modification of electrostatic and bandgap fluctuations are also discussed. The application of the same principles to devices based on CdTe, kesterites, and emerging absorbers (Cu2SnS3, CuSbS2), considering differences in materials properties, is examined.

  17. Versatile digital micromirror device-based method for the recording of multilevel optical diffractive elements in photosensitive chalcogenide layers (AMTIR-1).

    PubMed

    Joerg, Alexandre; Vignaux, Mael; Lumeau, Julien

    2016-08-01

    A new alternative and versatile method for the production of diffractive optical elements (DOEs) with up to four phase levels in AMTIR-1 (Ge33As12Se55) layers is demonstrated. The developed method proposes the use of the photosensitive properties of the layers and a specific in situ optical monitoring coupled with a reverse engineering algorithm to control the trigger points of the writing of the different diffractive patterns. Examples of various volume DOEs are presented.

  18. Thermal and vibration testing of ruggedized IR-transmitting fiber cables

    NASA Astrophysics Data System (ADS)

    Busse, Lynda; Kung, Fred; Florea, Catalin; Shaw, Brandon; Aggarwal, Ishwar; Sanghera, Jas

    2013-05-01

    We present successful results obtained for thermal/ vibration testing of ruggedized, IR-transmitting chalcogenide glass fiber cables using a government facility with state-of-the-art equipment capable of MIL-SPEC environmental testing. We will also present results of a direct imprinting process to create novel "moth eye" patterned surfaces on the IR fiber cable ends that significantly reduces endface reflection losses from 17% to less than 3%. The cables with these imprinted "moth eye" ends transmit much higher IR laser power without damage than was obtained for previous cables with traditional AR coatings.

  19. Structural, optical, and magnetic properties of Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2} and Na{sub 8}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}: Europium(II) quaternary chalcogenides that contain an ethane-like (Si{sub 2}S{sub 6}){sup 6−} or (Ge{sub 2}S{sub 6}){sup 6−} moiety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choudhury, Amitava, E-mail: choudhurya@mst.edu; Ghosh, Kartik; Grandjean, Fernande

    2015-03-15

    Two isostructural europium(II) quaternary chalcogenides, Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}, 1, and Na{sub 8}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}, 2, containing an ethane-like (Si{sub 2}S{sub 6}){sup 6−} or (Ge{sub 2}S{sub 6}){sup 6−} moiety have been synthesized by employing the polychalcogenide molten flux method. Single-crystal X-ray diffraction reveals that both compounds crystallize in the C2/m space group, and their structures contain layers of ([Na{sub 2}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}]{sup 6−}){sub ∞} or ([Na{sub 2}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}]{sup 6−}){sub ∞} anions held together by six interlayer sodium cations to yield (Na{sub 6}[Na{sub 2}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2}]){sub ∞} and (Na{sub 6}[Na{submore » 2}Eu{sub 2}(Ge{sub 2}S{sub 6}){sub 2}]){sub ∞}. Compound 2 is a semiconductor with an optical band gap of 2.15(2) eV. The temperature dependence of the magnetic susceptibility indicates that compounds 1 and 2 are paramagnetic with μ{sub eff}=7.794(1) μ{sub B} per Eu and g=1.964(1) for 1 and μ{sub eff}=8.016(1) μ{sub B} per Eu and g=2.020(1) for 2, moments that are in good agreement with the europium(II) spin-only moment of 7.94 μ{sub B}. The europium-151 Mössbauer isomer shift of 2 confirms the presence of europium(II) cations with an electronic configuration between [Xe]4f{sup 6.81} and 4f{sup 7}6s{sup 0.32}. - Graphical abstract: TOC figure caption: structure of Na{sub 8}Eu{sub 2}(Si{sub 2}S{sub 6}){sub 2} viewed along the a-axis showing the filling of A–B and B–A types of anion layers with two different types of cations. - Highlights: • Synthesis of quaternary europium chalcogenides containing ethane-like dimer. • Structural characterization employing single-crystal X-ray diffraction. • Mössbauer spectroscopy and magnetic measurements confirm presence of Eu(II)« less

  20. Superconducting selenides intercalated with organic molecules: synthesis, crystal structure, electric and magnetic properties, superconducting properties, and phase separation in iron based-chalcogenides and hybrid organic-inorganic superconductors

    NASA Astrophysics Data System (ADS)

    Krzton-Maziopa, Anna; Pesko, Edyta; Puzniak, Roman

    2018-06-01

    Layered iron-based superconducting chalcogenides intercalated with molecular species are the subject of intensive studies, especially in the field of solid state chemistry and condensed matter physics, because of their intriguing chemistry and tunable electric and magnetic properties. Considerable progress in the research, revealing superconducting inorganic–organic hybrid materials with transition temperatures to superconducting state, T c, up to 46 K, has been brought in recent years. These novel materials are synthesized by low-temperature intercalation of molecular species, such as solvates of alkali metals and nitrogen-containing donor compounds, into layered FeSe-type structure. Both the chemical nature as well as orientation of organic molecules between the layers of inorganic host, play an important role in structural modifications and may be used for fine tuning of superconducting properties. Furthermore, a variety of donor species compatible with alkali metals, as well as the possibility of doping also in the host structure (either on Fe or Se sites), makes this system quite flexible and gives a vast array of new materials with tunable electric and magnetic properties. In this review, the main aspects of intercalation chemistry are discussed with a particular attention paid to the influence of the unique nature of intercalating species on the crystal structure and physical properties of the hybrid inorganic–organic materials. To get a full picture of these materials, a comprehensive description of the most effective chemical and electrochemical methods, utilized for synthesis of intercalated species, with critical evaluation of their strong and weak points, related to feasibility of synthesis, phase purity, crystal size and morphology of final products, is included as well.

Top