NASA Technical Reports Server (NTRS)
Castro, Stephanie L.; Bailey, Sheila G.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Hepp, Aloysius F.
2003-01-01
Nanometer sized particles of the chalcopyrite compounds CuInS2 and CuInSe2 were synthesized by thermal decomposition of molecular single-source precursors (PPh3)2CuIn(SEt)4 and (PPh3)2CuIn(SePh)4, respectively, in the non-coordinating solvent dioctyl phthalate at temperatures between 200 and 300 C. The nanoparticles range in size from 3 - 30 nm and are aggregated to form roughly spherical clusters of about 500 nm in diameter. X-ray diffraction of the nanoparticle powders shows greatly broadened lines indicative of very small particle sizes, which is confirmed by TEM. Peaks present in the XRD can be indexed to reference patterns for the respective chalcopyrite compounds. Optical spectroscopy and elemental analysis by energy dispersive spectroscopy support the identification of the nanoparticles as chalcopyrites.
Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans
NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Lin, Hai; Fu, Kai-bin; Xu, Xiao-fang; Zhou, Shan-shan
2013-02-01
Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with Acidithiobacillus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.
NASA Astrophysics Data System (ADS)
Yu, Jin-sheng; Liu, Run-qing; Wang, Li; Sun, Wei; Peng, Hong; Hu, Yue-hua
2018-05-01
Selective recovery of chalcopyrite-galena ore by flotation remains a challenging issue. The development of highly efficient, low-cost, and environmentally friendly depressants for this flotation is necessary because most of available reagents (e.g., K2Cr2O4) are expensive and adversely affect the environment. In this study, ferric chromium lignin sulfonate (FCLS), which is a waste-product from the paper and pulp industry, was introduced as a selective depressant for galena with butyl xanthate (BX) as a collector. Results show that the residue recovery of Pb in Cu concentrate was substantially reduced to 4.73% using FCLS compared with 10.71% using the common depressant K2Cr2O4. The underlying mechanisms were revealed using zeta-potential measurements and X-ray photoelectron spectroscopy (XPS). Zeta-potential measurements revealed that FCLS was more efficiently absorbed onto galena than onto chalcopyrite. XPS measurements further suggested that FCLS enhanced the surface oxidation of galena but prevented that of chalcopyrite. Thus, FCLS could be a potential candidate as a depressant for chalcopyrite-galena flotation because of its low cost and its lack of detrimental effects on the environment.
Pressure-induced structural transition in chalcopyrite ZnSiP2
NASA Astrophysics Data System (ADS)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.; Hrubiak, Rostislav; Greenberg, Eran; Prakapenka, Vitali B.; Strobel, Timothy A.
2017-05-01
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. The phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.
The structure of reconstructed chalcopyrite surfaces
NASA Astrophysics Data System (ADS)
Thinius, Sascha; Islam, Mazharul M.; Bredow, Thomas
2018-03-01
Chalcopyrite (CuFeS2) surfaces are of major interest for copper exploitation in aqueous solution, called leaching. Since leaching is a surface process knowledge of the surface structure, bonding pattern and oxidation states is important for improving the efficiency. At present such information is not available from experimental studies. Therefore a detailed computational study of chalcopyrite surfaces is performed. The structures of low-index stoichiometric chalcopyrite surfaces {hkl} h, k, l ∈ {0, 1, 2} have been studied with density functional theory (DFT) and global optimization strategies. We have applied ab initio molecular dynamics (MD) in combination with simulated annealing (SA) in order to explore possible reconstructions via a minima hopping (MH) algorithm. In almost all cases reconstruction involving substantial rearrangement has occurred accompanied by reduction of the surface energy. The analysis of the change in the coordination sphere and migration during reconstruction reveals that S-S dimers are formed on the surface. Further it was observed that metal atoms near the surface move toward the bulk forming metal alloys passivated by sulfur. The obtained surface energies of reconstructed surfaces are in the range of 0.53-0.95 J/m2.
Pressure-induced structural transition in chalcopyrite ZnSiP 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhadram, Venkata S.; Krishna, Lakshmi; Toberer, Eric S.
The pressure-dependent phase behavior of semiconducting chalcopyrite ZnSiP 2 was studied up to 30 GPa using in situ X-ray diffraction and Raman spectroscopy in a diamond-anvil cell. A structural phase transition to the rock salt type structure was observed between 27 and 30 GPa, which is accompanied by soft phonon mode behavior and simultaneous loss of Raman signal and optical transmission through the sample. The high-pressure rock salt type phase possesses cationic disorder as evident from broad features in the X-ray diffraction patterns. The behavior of the low-frequency Raman modes during compression establishes a two-stage, order-disorder phase transition mechanism. Themore » phase transition is partially reversible, and the parent chalcopyrite structure coexists with an amorphous phase upon slow decompression to ambient conditions.« less
NASA Astrophysics Data System (ADS)
Uvarova, Yulia A.; Pearce, Mark A.; Liu, Weihua; Cleverley, James S.; Hough, Robert M.
2018-04-01
The Emmie Bluff iron oxide, copper, gold (IOCG) prospect is located in the Olympic Dam district, South Australia, and hosts sub-economic 150-m-thick Cu-Au mineralisation associated with the hematite-chlorite-sericite alteration with chalcopyrite commonly replacing pre-existing pyrite at a depth of 800 m. With the use of cutting-edge synchrotron X-ray fluorescence microscopy and field emission gun-scanning electron microscopy, it is shown for the first time that sub-economic IOCG mineralisation in the Olympic Dam district was affected by a late fluid event, which resulted in partial dissolution of Cu mineralisation and transport of Cu in the form of chloride complexes. The porous chlorite-sericite matrix associated with the late alteration of chalcopyrite hosts a Cu-Cl-OH phase previously undescribed in IOCG rocks, which was identified as one of the polymorphs of the atacamite group of minerals, Cu2Cl(OH)3. Thermodynamic modelling shows that "atacamite" is produced during dissolution of chalcopyrite by an oxidised, Cl-bearing fluid. An acidic environment is produced within millimetres of the chalcopyrite grains during oxidation. This process drives chlorite recrystallisation that is recorded by compositional variation of chlorite proximal to chalcopyrite. The existence of the atacamite is discussed in the context of fluid evolution and interaction with IOCG-type mineralisation and its implications to ore preservation versus destruction and remobilisation.
Yu, R-L; Liu, A; Liu, Y; Yu, Z; Peng, T; Wu, X; Shen, L; Liu, Y; Li, J; Liu, X; Qiu, G; Chen, M; Zeng, W
2017-06-01
To explore the distribution disciplinarian of alginate on the chalcopyrite concentrate surface during bioleaching. The evolution of Sulfobacillus thermosulfidooxidans secreting alginate during bioleaching of chalcopyrite concentrate was investigated through gas chromatography coupled with mass spectrometry (GC-MS) and confocal laser scanning microscope (CLSM), and the critical synthetic genes (algA, algC, algD) of alginate were analysed by real-time polymerase chain reaction (RT-PCR). The GC-MS analysis results indicated that there was a little amount of alginate formed on the mineral surface at the early stage, while increasing largely to the maximum value at the intermediate stage, and then kept a stable value at the end stage. The CLSM analysis of chalcopyrite slice showed the same variation trend of alginate content on the mineral surface. Furthermore, the RT-PCR results showed that during the early stage of bioleaching, the expressions of the algA, algC and the algD genes were all overexpressed. However, at the final stage, the algD gene expression decreased in a large scale, and the algA and algC decreased slightly. This expression pattern was attributed to the fact that algA and algC genes were involved in several biosynthesis reactions, but the algD gene only participated in the alginate biosynthesis and this was considered as the key gene to control alginate synthesis. The content of alginate on the mineral surface increased largely at the beginning of bioleaching, and remained stable at the end of bioleaching due to the restriction of algD gene expression. Our findings provide valuable information to explore the relationship between alginate formation and bioleaching of chalcopyrite. © 2017 The Society for Applied Microbiology.
Selby, D.; Kelley, K.D.; Hitzman, M.W.; Zieg, J.
2009-01-01
New Re-Os data for chalcopyrite, bornite, and pyrite from the carbonate-hosted Cu deposit at Ruby Creek (Bornite), Alaska, show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the carbonate-hosted Ruby Creek Cu-(Co) deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization pre dominantly occurred at 384 ?? 4.2 Ma, with an earlier phase possibly at ???400 Ma. The Re-Os data are consistent with the observed paragenetic sequence and coincide with zircon U-Pb ages from igneous rocks within the Ambler metallogenic belt, some of which are spatially and genetically associated with regional volcanogenic massive sulfide deposits. The latter may suggest a temporal link between regional magmatism and hydrothermal mineralization in the Ambler district. The utility of bornite and chalcopyrite, in addition to pyrite, contributes to a new understanding of Re-Os geochronology and permits a refinement of the genetic model for the Ruby Creek deposit. ?? 2009 Society of Economices Geologists, Inc.
Rechargeable solid state neutron detector and visible radiation indicator
Stowe, Ashley C.; Wiggins, Brenden; Burger, Arnold
2017-05-23
A radiation detection device, including: a support structure; and a chalcopyrite crystal coupled to the support structure; wherein, when the chalcopyrite crystal is exposed to radiation, a visible spectrum of the chalcopyrite crystal changes from an initial color to a modified color. The visible spectrum of the chalcopyrite crystal is changed back from the modified color to the initial color by annealing the chalcopyrite crystal at an elevated temperature below a melting point of the chalcopyrite crystal over time. The chalcopyrite crystal is optionally a .sup.6LiInSe.sub.2 crystal. The radiation is comprised of neutrons that decrease the .sup.6Li concentration of the chalcopyrite crystal via a .sup.6Li(n,.alpha.) reaction. The initial color is yellow and the modified color is one of orange and red. The annealing temperature is between about 450 degrees C. and about 650 degrees C. and the annealing time is between about 12 hrs and about 36 hrs.
Slime coating of kaolinite on chalcopyrite in saline water flotation
NASA Astrophysics Data System (ADS)
Li, Zhi-li; Rao, Feng; Song, Shao-xian; Li, Yan-mei; Liu, Wen-biao
2018-05-01
In saline water flotation, the salinity can cause a distinguishable slime coating of clay minerals on chalcopyrite particles through its effect on their electrical double layers in aqueous solutions. In this work, kaolinite was used as a representative clay mineral for studying slime coating during chalcopyrite flotation. The flotation of chalcopyrite in the presence and absence of kaolinite in tap water, seawater, and gypsum-saturated water and the stability of chalcopyrite and kaolinite particles in slurries are presented. Zeta-potential distributions and scanning electron microscopy images were used to characterize and explain the different slime coating degrees and the different flotation performances. Kaolinite particles induced slime coating on chalcopyrite surfaces and reduced chalcopyrite floatability to the greatest extent when the pH value was in the alkaline range. At 0.24wt% of kaolinite, the chalcopyrite floatability was depressed by more than 10% at alkaline pH levels in tap water. Salinity in seawater and gypsum-saturated water compressed the electrical double layers and resulted in extensive slime coating.
Zhu, Jianyu; Wang, Qianfen; Zhou, Shuang; Li, Qian; Gan, Min; Jiang, Hao; Qin, Wenqing; Liu, Xueduan; Hu, Yuehua; Qiu, Guanzhou
2015-02-01
This paper presents a study on the relation between bacterial adhesion force and bioleaching rate of chalcopyrite, which sheds light on the influence of interfacial interaction on bioleaching behavior. In our research, Acidithiobacillus ferrooxidans (A. ferrooxidans) were adapted to grow with FeSO4 · 7H2O, element sulfur or chalcopyrite. Then, surface properties of Acidithiobacillus ferrooxidans and chalcopyrite were analyzed by contact angle, zeta potential and Fourier transform infrared spectroscopy (FTIR). Adhesion force between bacteria and chalcopyrite was measured by atomic force microscopy (AFM). Attachment and bioleaching behaviors were also monitored. The results showed that A. ferrooxidans adapted with chalcopyrite exhibited the strongest adhesion force to chalcopyrite and the highest bioleaching rate. Culture adapted with sulfur bacteria took second place and FeSO4 · 7H2O-adapted bacteria were the lowest. Bioleaching rate and bacterial attachment capacity were positively related to bacterial adhesion force, which is affected by the nature of energy source. According to this work, the attachment of bacteria to chalcopyrite surface is one of the most important aspects that influence the bioleaching process of chalcopyrite. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Arif, J.; Baker, T.
2004-10-01
Gold is an important by-product in many porphyry-type deposits but the distribution and chemistry of gold in such systems remains poorly understood. Here we report the results of petrographic, electron microprobe, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and flotation test studies of gold and associated copper sulfides within a paragenetic framework from the world-class Batu Hijau (914 mt @ 0.53% Cu, 0.40 g/t Au) porphyry copper gold deposit, Indonesia. Unlike many other porphyry copper gold deposits, early copper minerals (bornite digenite chalcocite) are well preserved at Batu Hijau and the chalcopyrite pyrite overprint is less developed. Hence, it provides an excellent opportunity to study the entire gold paragenesis of the porphyry system. In 105 polished thin sections, 699 native gold grains were identified. Almost all of the native gold grains occurred either within quartz veins, attached to sulfide, or as free gold along quartz or silicate grain boundaries. The native gold grains are dominantly round in shape and mostly 1 12 μm in size. The majority of gold was deposited during the formation of early ‘A’ veins and is dominantly associated with bornite rather than chalcopyrite. The petrographic and LA-ICP-MS study results indicate that in bornite-rich ores gold mostly occurs within copper sulfide grains as invisible gold (i.e., within the sulfide structure) or as native gold grains. In chalcopyrite-rich ores gold mostly occurs as native gold grains with lesser invisible gold. Petrographic observations also indicate a higher proportion of free gold (native gold not attached to any sulfide) in chalcopyrite-rich ores compared to bornite rich ores. The pattern of free gold distribution appears to correlate with the flotation test data, where the average gold recovery value from chalcopyrite-rich ores is consistently lower than bornite-rich ores. Our data suggest that porphyry copper-gold deposits with chalcopyrite-rich ores are more likely to have a higher proportion of free gold and may require different ore processing strategies.
First insights on the molybdenum-copper Bled M'Dena complex (Eglab massif, Algeria)
NASA Astrophysics Data System (ADS)
Lagraa, Karima; Salvi, Stefano; Béziat, Didier; Debat, Pierre; Kolli, Omar
2017-03-01
Molybdenum-Copper showings in the Eglab massif (eastern part of the Reguibat rise of Algeria), are found in quartz-monzodiorite and granodiorite of the Bled M'Dena complex, a Paleoproterozoic circular structure of ∼5 km in diameter, comprising volcanic and intrusive suites. The latter consist of quartz-diorite, quartz-monzodiorite and granodiorite with a metaluminous normative composition. They display an "adakitic character" with moderate light rare-earth element (LREE) enrichment, minor Eu anomalies, high Sr/Y ratio and low Yb concentration, suggestive of a hydrous, arc magma of volcanic-arc affinity. The mineralization occurs mostly in quartz + molybdenite + chalcopyrite stockwork veins marked by widespread propylitic alteration along the selvages. Molybdenite and chalcopyrite are commonly associated with calcite, which precipitated at relatively late stages of the hydrothermal alteration. Fluid inclusions related to the mineralization stage, range from aqueous to aqueous-carbonic to solid bearing. The latter inclusions have the highest homogenization temperature (up to ∼400 °C), are salt saturated, and commonly contain molybdenite and/or chalcopyrite crystals. The petrology and geochemistry of the host rocks, the style of the hydrothermal alteration, the ore mineral associations, and the characteristics of the fluid inclusions, are all coherent in indicating that the Bled M'Dena represents a Paleoproterozoic porphyry style Mo mineralization, which is far unreported in the African continent.
NASA Astrophysics Data System (ADS)
Baidya, Abu Saeed; Sen, Atlanta; Pal, Dipak C.
2018-06-01
The Khetri Copper Belt (KCB), a part of the Proterozoic Delhi-Aravalli fold belt in western India, hosts several Cu deposits, which are known to contain considerable Au, Ag, Co and Ni. Although many Co-bearing phases have been reported from the KCB and adjacent areas, detailed textural and geochemical data are either unavailable or scant except for mackinawite. In this study, we describe the textures and compositions (determined by EPMA) of two very rare Co-rich phases, namely cobaltian mackinawite (containing up to 12.68 wt.% Co, 1.90 wt.% Ni and 2.52 wt.% Cu) and cobalt-pentlandite (containing up to 49.30 wt.% Co and 10.19 wt.% Ni), identified based on composition, from the Madan-Kudan deposit. To the best of our knowledge, neither cobalt-pentlandite nor such highly Co-rich mackinawite have previously been reported from this area. The common sulphide minerals viz. chalcopyrite, pyrrhotite and rare pyrite occur in chalcopyrite-pyrrhotite ± pyrite-magnetite-chlorite-blue amphibole (Cl-rich hastingsite-pargasite-sadanagaite) ± marialitic scapolite ± allanite ± uraninite veins in amphibole-bearing feldspathic quartzite and garnetiferous chlorite schist. Cobaltian mackinawite is invariably associated with chalcopyrite and occurs as exsolution and inclusion within chalcopyrite or outside, but at the contact of chalcopyrite. On the other hand, cobalt-pentlandite is invariably associated with pyrrhotite and shows similar textural relation with pyrrhotite as that of mackinawite with chalcopyrite. Mineralogically diverse undeformed sulphide veins comprising Cl-rich amphibole and locally Cl-rich marialitic scapolite suggests epigenetic hydrothermal mineralization involving Cl-rich saline fluid in the Madan-Kudan deposit. Transport of metals, derived from a mafic source rock with high intrinsic Ni:Co ratio, by Cl-rich fluid can suitably explain the high Co:Ni ratio of the studied ore minerals. Presence of such highly Co-rich phases and other circumstantial evidences, enumerated in this work, are consistent with variants of Fe oxide (-Cu-Au) (IOCG) style mineralization, at least for some stages of mineralization in the Madan-Kudan deposit.
Selective excitation of window and buffer layers in chalcopyrite devices and modules
Glynn, Stephen; Repins, Ingrid L.; Burst, James M.; ...
2018-02-02
Window and buffer layers in chalcopyrite devices are well known to affect junctions, conduction, and photo-absorption properties of the device. Some of these layers, particularly 'buffers,' which are deposited directly on top of the absorber, exhibit metastable effects upon exposure to light. Thus, to understand device performance and/or metastability, it is sometimes desirable to selectively excite different layers in the device stack. Absorption characteristics of various window and buffer layers used in chalcopyrite devices are measured. These characteristics are compared with emission spectra of common and available light sources that might be used to optically excite such layers. Effects ofmore » the window and buffer absorption on device quantum efficiency and metastability are discussed. For the case of bath-deposited Zn(O,S) buffers, we conclude that this layer is not optically excited in research devices or modules. Furthermore, this provides a complimentary mechanism to the chemical differences that may cause long time constants (compared to devices with CdS buffers) associated with reaching a stable 'light-soaked' state.« less
Selective excitation of window and buffer layers in chalcopyrite devices and modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynn, Stephen; Repins, Ingrid L.; Burst, James M.
Window and buffer layers in chalcopyrite devices are well known to affect junctions, conduction, and photo-absorption properties of the device. Some of these layers, particularly 'buffers,' which are deposited directly on top of the absorber, exhibit metastable effects upon exposure to light. Thus, to understand device performance and/or metastability, it is sometimes desirable to selectively excite different layers in the device stack. Absorption characteristics of various window and buffer layers used in chalcopyrite devices are measured. These characteristics are compared with emission spectra of common and available light sources that might be used to optically excite such layers. Effects ofmore » the window and buffer absorption on device quantum efficiency and metastability are discussed. For the case of bath-deposited Zn(O,S) buffers, we conclude that this layer is not optically excited in research devices or modules. Furthermore, this provides a complimentary mechanism to the chemical differences that may cause long time constants (compared to devices with CdS buffers) associated with reaching a stable 'light-soaked' state.« less
NASA Astrophysics Data System (ADS)
He, G. C.; Ding, J.; Huang, C. H.; Kang, Q.
2018-01-01
Hydrophobic polystyrene nanoparticles bearing thiazole groups named HNP were used as collectors to improve recovery of microfine chalcopyrite in flotation. HNP adsorbs onto microfine particles selectively, which were modified hydrophobically to induce flotation effectively. Particle size and scanning electron microscope analysis for HNP show that HNP is a spherical nano particles with small size, uniform distribution and good dispersion. Infrared spectrum analysis for HNP proved that functional monomer 2-mercapto styrene acrylic thiazole was bonded chemically onto styrene. Flotation test results indicate that HNP is the right collector of chalcopyrite. Especially, the recovery of chalcopyrite is higher than 95% in neutral and acid media. FTIR results reveal that the flotation selectivity of collector HNP is due to strong chemical absorption onto chalcopyrite surface. Zeta potential analysis shows that the zeta potential of chalcopyrite decreased more quickly after interaction with HNP with the increase of pulp pH value, confirming that collector HNP is an anionic collector. Scanning electron microscope conform that HNP has good selective adsorption on chalcopyrite.
Zhao, Hongbo; Wang, Jun; Hu, Minghao; Qin, Wenqing; Zhang, Yansheng; Qiu, Guanzhou
2013-12-01
Bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans was carried out to investigate the influences between each other during bioleaching. Bioleaching results indicated that bornite accelerated the dissolution of chalcopyrite, and chalcopyrite also accelerated the dissolution of bornite, it could be described as a synergistic effect during bioleaching, this synergistic effect might be attributed to the galvanic effect between chalcopyrite and bornite, and to the relatively low solution potential as the addition of bornite. Significantly amount of elemental sulfur and jarosite formed on the minerals surface might be the main passivation film inhibiting the further dissolution, and the amount of elemental sulfur significantly increased with the addition of bornite. Results of electrochemical measurements indicated that the oxidation and reduction mechanisms of chalcopyrite and bornite were similar, the addition of bornite or chalcopyrite did not change the oxidative and reductive mechanisms, but increased the oxidation rate. Copyright © 2013 Elsevier Ltd. All rights reserved.
Panda, Sandeep; Akcil, Ata; Pradhan, Nilotpala; Deveci, Haci
2015-11-01
Chalcopyrite is the primary copper mineral used for production of copper metal. Today, as a result of rapid industrialization, there has been enormous demand to profitably process the low grade chalcopyrite and "dirty" concentrates through bioleaching. In the current scenario, heap bioleaching is the most advanced and preferred eco-friendly technology for processing of low grade, uneconomic/difficult-to-enrich ores for copper extraction. This paper reviews the current status of chalcopyrite bioleaching. Advanced information with the attempts made for understanding the diversity of bioleaching microorganisms; role of OMICs based research for future applications to industrial sectors and chemical/microbial aspects of chalcopyrite bioleaching is discussed. Additionally, the current progress made to overcome the problems of passivation as seen in chalcopyrite bioleaching systems have been conversed. Furthermore, advances in the designing of heap bioleaching plant along with microbial and environmental factors of importance have been reviewed with conclusions into the future prospects of chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hybrid particles and associated methods
Fox, Robert V; Rodriguez, Rene; Pak, Joshua J; Sun, Chivin
2015-02-10
Hybrid particles that comprise a coating surrounding a chalcopyrite material, the coating comprising a metal, a semiconductive material, or a polymer; a core comprising a chalcopyrite material and a shell comprising a functionalized chalcopyrite material, the shell enveloping the core; or a reaction product of a chalcopyrite material and at least one of a reagent, heat, and radiation. Methods of forming the hybrid particles are also disclosed.
Deng, Sha; Gu, Guohua; Ji, Jing; Xu, Baoke
2018-02-01
The bioleaching of two different genetic types of chalcopyrite by the moderate thermophile Sulfobacillus thermosulfidooxidans was investigated by leaching behaviors elucidation and their comparative mineralogical assessment. The leaching experiment showed that the skarn-type chalcopyrite (STC) revealed a much faster leaching rate with 33.34% copper extracted finally, while only 23.53% copper was bioleached for the porphyry-type chalcopyrite (PTC). The mineralogical properties were analyzed by XRD, SEM, XPS, and Fermi energy calculation. XRD indicated that the unit cell volume of STC was a little larger than that of PTC. SEM indicated that the surface of STC had more steps and ridges. XPS spectra showed that Cu(I) was the dominant species of copper on the surfaces of the two chalcopyrite samples, and STC had much more copper with lower Cu 2p 3/2 binding energy. Additionally, the Fermi energy of STC was much higher than that of PTC. These mineralogical differences were in good agreement with the bioleaching behaviors of chalcopyrite. This study will provide some new information for evaluating the oxidation kinetics of chalcopyrite.
Comparative study on the passivation layers of copper sulphide minerals during bioleaching
NASA Astrophysics Data System (ADS)
Fu, Kai-bin; Lin, Hai; Mo, Xiao-lan; Wang, Han; Wen, Hong-wei; Wen, Zi-long
2012-10-01
The bioleaching of copper sulphide minerals was investigated by using A. ferrooxidans ATF6. The result shows the preferential order of the minerals bioleaching as djurleite>bornite>pyritic chalcopyrite>covellite>porphyry chalcopyrite. The residues were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). It is indicated that jarosite may not be responsible for hindered dissolution. The elemental sulfur layer on the surface of pyritic chalcopyrite residues is cracked. The compact surface layer of porphyry chalcopyrite may strongly hinder copper extraction. X-ray photoelectron spectroscopy (XPS) further confirms that the passivation layers of covellite, pyritic chalcopyrite, and porphyry chalcopyrite are copper-depleted sulphide Cu4S11, S8, and copper-rich iron-deficient polysulphide Cu4Fe2S9, respectively. The ability of these passivation layers was found as Cu4Fe2S9>Cu4S11>S8>jarosite.
NASA Astrophysics Data System (ADS)
Kaur, Jasmeet; Schoonen, Martin A.
2017-06-01
The formation of hydroxyl radicals was studied in mixed pyrite-chalcopyrite dispersions in water using the conversion rate of adenine as a proxy for hydroxyl radical formation rate. Experiments were conducted as a function of pH, presence of phosphate buffer, surface loading, and pyrite-to-chalcopyrite ratio. The results indicate that hydroxyl radical formation rate in mixed systems is non-linear with respect to the rates in the pure endmember dispersions. The only exception is a set of experiments in which phosphate buffer is used. In the presence of phosphate buffer, the hydroxyl radical formation is suppressed in mixtures and the rate is close to that predicted based on the reaction kinetics of the pure endmembers. The non-linear hydroxyl radical formation in dispersions containing mixtures of pyrite and chalcopyrite is likely the result of two complementary processes. One is the fact that pyrite and chalcopyrite form a galvanic couple. In this arrangement, chalcopyrite oxidation is accelerated, while pyrite passes electrons withdrawn from chalcopyrite to molecular oxygen, the oxidant. The incomplete reduction of molecular oxygen leads to the formation of hydrogen peroxide and hydroxyl radical. The galvanic coupling appears to be augmented by the fact that chalcopyrite generates a significant amount of hydrogen peroxide upon dispersal in water. This hydrogen peroxide is then available for conversion to hydroxyl radical, which appears to be facilitated by pyrite as chalcopyrite itself produces only minor amounts of hydroxyl radical. In essence, pyrite is a ;co-factor; that facilitates the conversion of hydrogen peroxide to hydroxyl radical. This conversion reaction is a surface-mediated reaction. Given that hydroxyl radical is one of the most reactive species in nature, the formation of hydroxyl radicals in aqueous systems containing chalcopyrite and pyrite has implications for the stability of organic molecules, biomolecules, the viability of microbes, and exposure to dust containing the two metal sulfides may present a health burden.
Leaching of chalcopyrite with sodium hypochlorite
NASA Astrophysics Data System (ADS)
Garlapalli, Ravinder Kumar
Chalcopyrite is the most important copper mineral source and also a refractory mineral for leaching. Several processing routes have been proposed to overcome the environmental problems related to copper extraction from chalcopyrite. In this study, the leaching of chalcopyrite has been investigated with a new reagent sodium hypochlorite (NaOCl). Experiments were carried out in two stages: conversion of chalcopyrite to cupric oxide with NaOCl solution in the first stage, followed by dissolution of the cupric oxide to cupric ion with 1 normal sulfuric acid at room temperature in the second stage. In the first stage leaching, the initial pH varied from 12.5 to 13.7; the temperature, from 35 to 75°C; NaOCl concentration, from 0.2 to 0.85 molar; and the chalcopyrite dosage, from 1 to 10 grams/500 ml. The leaching conversion showed a maximum (68.3%) around pH 13.2 at 0.5 molar of hypochlorite concentration and 65°C in 1 hour. The reagent consumption ratio, defined as the number of moles of hypochlorite consumed to leach one mole of chalcopyrite is found to be much higher than its stoichiometric ratio of 8.5. It reached 57.6 when the solid dosage was 1 gram/500 ml and decreased to 12.9 when the solid dosage was increased to 10 grams/500 ml. It was found that the leaching rate of chalcopyrite in the first stage was controlled by chemical reaction with the activation energy of 50.2 kJ/mol (12.0 kcal/mol). A leaching scheme was identified in which 98% chalcopyrite was leached by adding hypochlorite stock solution stepwise in less than three hours.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K. (Inventor); Hepp, Aloysius F. (Inventor); Harris, Jerry D. (Inventor); Jin, Michael Hyun-Chul (Inventor); Castro, Stephanie L. (Inventor)
2006-01-01
A single source precursor for depositing ternary I-III-VI.sub.2 chalcopyrite materials useful as semiconductors. The single source precursor has the I-III-VI.sub.2 stoichiometry built into a single precursor molecular structure which degrades on heating or pyrolysis to yield the desired I-III-VI.sub.2 ternary chalcopyrite. The single source precursors effectively degrade to yield the ternary chalcopyrite at low temperature, e.g. below 500.degree. C., and are useful to deposit thin film ternary chalcopyrite layers via a spray CVD technique. The ternary single source precursors according to the invention can be used to provide nanocrystallite structures useful as quantum dots. A method of making the ternary single source precursors is also provided.
NASA Astrophysics Data System (ADS)
Zhao, Hong-bo; Wang, Jun; Gan, Xiao-wen; Qin, Wen-qing; Hu, Ming-hao; Qiu, Guan-zhou
2015-08-01
Interactions between chalcopyrite and bornite during bioleaching by moderately thermophilic bacteria were investigated mainly by X-ray diffraction, scanning electron microscopy, and electrochemical measurements performed in conjunction with bioleaching experiments. The results showed that a synergistic effect existed between chalcopyrite and bornite during bioleaching by both Acidithiobacillus caldus and Leptospirillum ferriphilum and that extremely high copper extraction could be achieved when chalcopyrite and bornite coexisted in a bioleaching system. Bornite dissolved preferentially because of its lower corrosion potential, and its dissolution was accelerated by the galvanic current during the initial stage of bioleaching. The galvanic current and optimum redox potential of 390-480 mV vs. Ag/AgCl promoted the reduction of chalcopyrite to chalcocite (Cu2S), thus accelerating its dissolution.
Recovery of Copper from Cyanidation Tailing by Flotation
NASA Astrophysics Data System (ADS)
Qiu, Tingsheng; Huang, Xiong; Yang, Xiuli
2016-02-01
In this work, sodium hypochlorite, hydrogen peroxide, sodium metabisulfite and copper sulfate as activators were investigated to lessen the depression effect of cyanide for deep-depressing chalcopyrite. The experimental results indicate that the copper recovery exceeded 94%, 84% and 97% at the dosage: sodium hypochlorite 3 mL/L, hydrogen peroxide 2 mL/L, sodium metabisulfite 2 × 10-3 mol/L and copper sulfate 1.67 × 10-4 mol/L, respectively. According to the results of zeta potential and Fourier transform infrared spectrum, it is suggested that chalcopyrite was depressed because of the chemical adsorption of cyanide on the chalcopyrite surfaces. Sodium hypochlorite, hydrogen peroxide and sodium metabisulfite can destroy Cu-C bond on the deep-depressing chalcopyrite surface by chemical reaction. Copper sulfate can activate deep-depressing chalcopyrite by copper ion adsorption.
Romano, P; Blázquez, M L; Alguacil, F J; Muñoz, J A; Ballester, A; González, F
2001-03-01
This study evaluates different bioleaching treatments of a molybdenite concentrate using mesophilic and thermophilic bacterial cultures. Further studies on the chemical leaching and the electrochemical behavior of the MoS(2) concentrate were carried out. Bioleaching tests showed a progressive removal of chalcopyrite from the molybdenite concentrate with an increase in temperature. Chemical leaching tests support the idea of an indirect attack of the concentrate. Electrochemical tests indicate that chalcopyrite dissolution is favored when molybdenite is present. Therefore, this type of bioleaching treatment could be applied to purify molybdenite flotation concentrates by selectively dissolving chalcopyrite.
Lara, René H; García-Meza, J Viridiana; González, Ignacio; Cruz, Roel
2013-03-01
Surfaces of massive chalcopyrite (CuFeS2) electrodes were modified by applying variable oxidation potential pulses under growth media in order to induce the formation of different secondary phases (e.g., copper-rich polysulfides, S n(2-); elemental sulfur, S(0); and covellite, CuS). The evolution of reactivity (oxidation capacity) of the resulting chalcopyrite surfaces considers a transition from passive or inactive (containing CuS and S n(2-)) to active (containing increasing amounts of S(0)) phases. Modified surfaces were incubated with cells of sulfur-oxidizing bacteria (Acidithiobacillus thiooxidans) for 24 h in a specific culture medium (pH 2). Abiotic control experiments were also performed to compare chemical and biological oxidation. After incubation, the density of cells attached to chalcopyrite surfaces, the structure of the formed biofilm, and their exopolysaccharides and nucleic acids were analyzed by confocal laser scanning microscopy (CLSM) and scanning electron microscopy coupled to dispersive X-ray analysis (SEM-EDS). Additionally, CuS and S n(2-)/S(0) speciation, as well as secondary phase evolution, was carried out on biooxidized and abiotic chalcopyrite surfaces using Raman spectroscopy and SEM-EDS. Our results indicate that oxidized chalcopyrite surfaces initially containing inactive S n(2-) and S n(2-)/CuS phases were less colonized by A. thiooxidans as compared with surfaces containing active phases (mainly S(0)). Furthermore, it was observed that cells were partially covered by CuS and S(0) phases during biooxidation, especially at highly oxidized chalcopyrite surfaces, suggesting the innocuous effect of CuS phases during A. thiooxidans performance. These results may contribute to understanding the effect of the concomitant formation of refractory secondary phases (as CuS and inactive S n(2-)) during the biooxidation of chalcopyrite by sulfur-oxidizing microorganisms in bioleaching systems.
NASA Astrophysics Data System (ADS)
Varley, J. B.; Lordi, V.; Ogitsu, T.; Deangelis, A.; Horsley, K.; Gaillard, N.
2018-04-01
Understanding the impact of impurities in solar absorbers is critical to engineering high-performance in devices, particularly over extended periods of time. Here, we use hybrid functional calculations to explore the role of hydrogen interstitial (Hi) defects in the electronic properties of a number of attractive solar absorbers within the chalcopyrite and kesterite families to identify how this common impurity may influence device performance. Our results identify that Hi can inhibit the highly p-type conditions desirable for several higher-band gap absorbers and that H incorporation could detrimentally affect the open-circuit voltage (Voc) and limit device efficiencies. Additionally, we find that Hi can drive the Fermi level away from the valence band edge enough to lead to n-type conductivity in a number of chalcopyrite and kesterite absorbers, particularly those containing Ag rather than Cu. We find that these effects can lead to interfacial Fermi-level pinning that can qualitatively explain the observed performance in high-Ga content CIGSe solar cells that exhibit saturation in the Voc with increasing band gap. Our results suggest that compositional grading rather than bulk alloying, such as by creating In-rich surfaces, may be a better strategy to favorably engineering improved thin-film photovoltaics with larger-band gap absorbers.
Fingerprinting two metal contaminants in streams with Cu isotopes near the Dexing Mine, China.
Song, Shiming; Mathur, Ryan; Ruiz, Joaquin; Chen, Dandan; Allin, Nicholas; Guo, Kunyi; Kang, Wenkai
2016-02-15
Transition metal isotope signatures are becoming useful for fingerprinting sources in surface waters. This study explored the use of Cu isotope values to trace dissolved metal contaminants in stream water throughout a watershed affected by mining by-products of the Dexing Mine, the largest porphyry Cu operation in Asia. Cu isotope values of stream water were compared to potential mineral sources of Cu in the mining operation, and to proximity to the known Cu sources. The first mineral source, chalcopyrite, CuFeS2 has a 'tight' cluster of Cu isotope values (-0.15‰ to +1.65‰; +0.37 ± 0.6‰, 1σ, n=10), and the second mineral source, pyrite (FeS2), has a much larger range of Cu isotope values (-4‰ to +11.9‰; 2.7 ± 4.3‰, 1σ, n=16). Dissolved Cu isotope values of stream water indicated metal derived from either chalcopyrite or pyrite. Above known Cu mineralization, stream waters are approximately +1.5‰ greater than the average chalcopyrite and are interpreted as derived from weathering of chalcopyrite. In contrast, dissolved Cu isotope values in stream water emanating from tailings piles had Cu isotope values similar to or greater than pyrite (>+6‰, a common mineral in the tailings). These values are interpreted as sourced from the tailings, even in solutions that possess significantly lower concentrations of Cu (<0.05 ppm). Elevated Cu isotope values were also found in two soil and two tailings samples (δ(65)Cu ranging between +2 to +5‰). These data point to the mineral pyrite in tailings as the mineral source for the elevated Cu isotope values. Therefore, Cu isotope values of waters emanating from a clearly contaminated drainage possess different Cu isotope values, permitting the discrimination of Cu derived from chalcopyrite and pyrite in solution. Data demonstrate the utility of Cu isotopic values in waters, minerals, and soils to fingerprint metallic contamination for environmental problems. Copyright © 2015 Elsevier B.V. All rights reserved.
Chalcopyrite disease in sphalerite: pathology and epidemiology.
Barton, P.B.; Bethke, P.M.
1987-01-01
This descriptive paper identifies three widely occurring textures designated as 'watermelon', 'dusting' and 'bimodal' that characterize the replacement of original Fe-bearing sphalerite by an aggregate of chalcopyrite and low-Fe sphalerite as an integral part of the mineralization process. Replacement probably predominates over alternative modes of origin for small chalcopyrite blebs in sphalerite from most vein and sea-floor massive sulphide deposits that formed in the 200-400oC temperature range and that have not been subsequently subjected to higher T. Sphalerite from the epithermal Ag-Pb-Zn deposit at Creede, Colorado, displays a rich variety of features ("bead chains') that are primary crystal dislocations decorated by exsolved chalcopyrite.-J.A.Z.
Catalytic effect of light illumination on bioleaching of chalcopyrite.
Zhou, Shuang; Gan, Min; Zhu, Jianyu; Li, Qian; Jie, Shiqi; Yang, Baojun; Liu, Xueduan
2015-04-01
The influence of visible light exposure on chalcopyrite bioleaching was investigated using Acidithiobacillus ferrooxidans. The results indicated, in both shake-flasks and aerated reactors with 8500-lux light, the dissolved Cu was 91.80% and 23.71% higher, respectively, than that in the controls without light. The catalytic effect was found to increase bioleaching to a certain limit, then plateaued as the initial chalcopyrite concentration increased from 2% to 4.5%. Thus a balanced mineral concentration is highly amenable to bioleaching via offering increased available active sites for light adsorption while eschewing mineral aggregation and screening effects. Using semiconducting chalcopyrite, the light facilitated the reduction of Fe(3+) to Fe(2+) as metabolic substrates for A.ferrooxidans, leading to better biomass, lower pH and redox potential, which are conducive to chalcopyrite leaching. The light exposure on iron redox cycling was further confirmed by chemical leaching tests using Fe(3+), which exhibited higher Fe(2+) levels in the light-induced system. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhu, Jianyu; Jiao, Weifeng; Li, Qian; Liu, Xueduan; Qin, Wenqing; Qiu, Guanzhou; Hu, Yuehua; Chai, Liyuan
2012-12-01
In order to better understand the bioleaching mechanism, expression of genes involved in energy conservation and community structure of free and attached acidophilic bacteria in chalcopyrite bioleaching were investigated. Using quantitative real-time PCR, we studied the expression of genes involved in energy conservation in free and attached Acidithiobacillus ferrooxidans during bioleaching of chalcopyrite. Sulfur oxidation genes of attached A. ferrooxidans were up-regulated while ferrous iron oxidation genes were down-regulated compared with free A. ferrooxidans in the solution. The up-regulation may be induced by elemental sulfur on the mineral surface. This conclusion was supported by the results of HPLC analysis. Sulfur-oxidizing Acidithiobacillus thiooxidans and ferrous-oxidizing Leptospirillum ferrooxidans were the members of the mixed culture in chalcopyrite bioleaching. Study of the community structure of free and attached bacteria showed that A. thiooxidans dominated the attached bacteria while L. ferrooxidans dominated the free bacteria. With respect to available energy sources during bioleaching of chalcopyrite, sulfur-oxidizers tend to be on the mineral surfaces whereas ferrous iron-oxidizers tend to be suspended in the aqueous phase. Taken together, these results indicate that the main role of attached acidophilic bacteria was to oxidize elemental sulfur and dissolution of chalcopyrite involved chiefly an indirect bioleaching mechanism.
Huerta, G; Escobar, B; Rubio, J; Badilla-Ohlbaum, R
1995-09-01
Oxidation of Fe(II) iron and bioleaching of pyrite and chalcopyrite by Thiobacillus ferrooxidans was adversely affected by isopropylxanthate, a flotation agent, and by LIX 984, a solvent-extraction agent, each at ≤ 1 g/l. The reagents/l were adsorbed on the bacterial surface, decreasing the bacteria's development and preventing biooxidation. Both reagents inhibited the bioleaching of pyrite and LIX 984 also inhibited the bioleaching of chalcopyrite.
Adsorption Mechanism of 4-Amino-5-mercapto-1,2,4-triazole as Flotation Reagent on Chalcopyrite.
Yin, Zhigang; Hu, Yuehua; Sun, Wei; Zhang, Chenyang; He, Jianyong; Xu, Zhijie; Zou, Jingxiang; Guan, Changping; Zhang, Chenhu; Guan, Qingjun; Lin, Shangyong; Khoso, Sultan Ahmed
2018-04-03
A novel compound 4-amino-5-mercapto-1,2,4-triazole was first synthesized, and its selective adsorption mechanism on the surface of chalcopyrite was comprehensively investigated using UV-vis spectra, zeta-potential, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy measurements (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), and first principles calculations. The experimental and computational results consistently demonstrated that AMT would chemisorb onto the chalcopyrite surface by the formation of a five-membered chelate ring. The first principles periodic calculations further indicated that AMT would prefer to adsorb onto Cu rather than Fe due to the more negative adsorption energy of AMT on Cu in the chalcopyrite (001) surface, which was further confirmed by the coordination reaction energies of AMT-Cu and AMT-Fe based on the simplified cluster models at a higher accuracy level (UB3LYP/Def2-TZVP). The bench-scale results indicated that the selective index improved significantly when using AMT as a chalcopyrite depressant in Cu-Mo flotation separation.
NASA Astrophysics Data System (ADS)
Li, Yubiao; Qian, Gujie; Brown, Paul L.; Gerson, Andrea R.
2017-09-01
Dissolution and oxidation of sulfide minerals play key roles in both acid and metalliferous rock drainage and supergene enrichment. Surface speciation heterogeneity, critical to understanding mechanisms of mineral sulfide dissolution, has to date largely not been considered. To this end synchrotron scanning photoelectron microscopy (SPEM) was employed to examine freshly fractured and partially dissolved chalcopyrite (CuFeS2) surfaces (pH 1.0 HClO4 solution, redox potential 650 mV relative to a standard hydrogen electrode, 75 °C). S2- (bulk), S22- and Sn2- were found to be present on all samples at varying concentrations. Oxidation was observed to take place heterogeneously at the sub-micron scale. As compared to chalcopyrite partially dissolved for 5 days, extended dissolution to 10 days did not show appreciably enhanced oxidation of surface species; however surface roughness increased markedly due to the growth/overlap of oxidised sulfur species. On addition of 4 mM iron both S0 and SO42- were observed but not SO32-, indicating that the greater Fe3+ activity/concentration promotes heterogeneous sulfur oxidation. On contact of pyrite (FeS2) with chalcopyrite, significantly greater chalcopyrite surface oxidation was observed than for the other systems examined, with S0, SO32- and SO42- being identified heterogeneously across the surface. It is proposed that chalcopyrite oxidative dissolution is enhanced by increasing its cathodic area, e.g. contacting with pyrite, while increased Fe3+ activity/concentration also contributes to increased dissolution rates. The high degree of surface heterogeneity of these surface products indicates that these surfaces are not passivated by their formation. These results suggest that chalcopyrite dissolution will be accelerated when in contact with pyrite at solution redox potential intermediate between the rest potentials of chalcopyrite and pyrite (560 mV and 660 mV, respectively) and/or iron rich acidic waters with resulting enhanced formation of secondary sulfur containing species and release of copper and iron. This in turn suggests accelerated supergene formation and enhanced metalliferous drainage under these conditions.
2006-11-01
shallow 120-meV acceptor and residual donor impurities. To produce low -absorption material for use in nonlinear optical devices, it is necessary to reduce...our knowledge, -20x higher than in previously reported works. This is accomplished by simply inserting a layer of low - index material (AlxOy) in the...and thin - film ferromagnetic semiconductors with Curie points above room temperature, and characterization of their magnetic and transport properties
Zhou, H; Zhang, R; Hu, P; Zeng, W; Xie, Y; Wu, C; Qiu, G
2008-08-01
To isolate Ferroplasma thermophilum L1(T) from a low pH environment and to understand its role in bioleaching of chalcopyrite. Using serial dilution method, a moderately thermophilic and acidophilic ferrous iron-oxidizing archaeon, named L1(T), was isolated from a chalcopyrite-leaching bioreactor. The morphological, biochemical and physiological characteristics of strain L1(T) and its role in bioleaching of chalcopyrite were studied. Strain L1(T) was a nonmotile coccus that lacked cell wall. Strain L1(T) had a temperature optimum of 45 degrees C and the optimum pH for growth was 1.0. Strain L1(T) was capable of chemomixotrophic growth on ferrous iron and yeast extract. Results of fatty acid analysis, DNA-DNA hybridization, G+C content, and analysis based on 16S rRNA gene sequence indicated that strain L1(T) should be grouped in the genus Ferroplasma, and represented a new species, Ferroplasma thermophilum. Ferroplasma thermophilum in combination with Acidithiobacillus caldus and Leptospirillum ferriphilum could improve the copper dissolution in bioleaching of chalcopyrite. A novel extremely acidophilic, moderately thermophilic archaeon isolated from a bioleaching reactor has been identified as F. thermophilum that played an important role in bioleaching of chalcopyrite at low pH. This study contributes to understand the characteristics of F. thermophilum L1(T) and its role in bioleaching of sulfide ores.
Chawla, Parul; Singh, Son; Sharma, Shailesh Narain
2014-01-01
In this work, we have demonstrated the structural and optoelectronic properties of the surface of ternary/quaternary (CISe/CIGSe/CZTSe) chalcopyrite nanocrystallites passivated by tri-n-octylphosphine-oxide (TOPO) and tri-n-octylphosphine (TOP) and compared their charge transfer characteristics in the respective polymer: chalcopyrite nanocomposites by dispersing them in poly(3-hexylthiophene) polymer. It has been found that CZTSe nanocrystallites due to their high crystallinity and well-ordered 3-dimensional network in its pristine form exhibit a higher steric- and photo-stability, resistance against coagulation and homogeneity compared to the CISe and CIGSe counterparts. Moreover, CZTSe nanocrystallites display efficient photoluminescence quenching as evident from the high value of the Stern-Volmer quenching constant (K SV) and eventually higher charge transfer efficiency in their respective polymer P3HT:CZTSe composites. We modelled the dependency of the charge transfer from the donor and the charge separation mechanism across the donor-acceptor interface from the extent of crystallinity of the chalcopyrite semiconductors (CISe/CIGSe/CZTSe). Quaternary CZTSe chalcopyrites with their high crystallinity and controlled morphology in conjunction with regioregular P3HT polymer is an attractive candidate for hybrid solar cells applications.
Selective separation of pyrite and chalcopyrite by biomodulation.
Chandraprabha, M N; Natarajan, K A; Modak, Jayant M
2004-09-01
Selective separation of pyrite from other associated ferrous sulphides at acidic and neutral pH has been a challenging problem. This paper discusses the utility of Acidithiobacillus ferrooxidans for the selective flotation of chalcopyrite from pyrite. Consequent to interaction with bacterial cells, pyrite remained depressed even in the presence of potassium isopropyl xanthate collector while chalcopyrite exhibited significant flotability. However, when the minerals were conditioned together, the selectivity achieved was poor due to the activation of pyrite surface by the copper ions in solution. The selectivity was improved when the sequence of conditioning with bacterial cells and collector was reversed, since the bacterial cells were able to depress collector interacted pyrite effectively, while having negligible effect on chalcopyrite. The observed behaviour is analysed and discussed in detail. The separation obtained was significant both at acidic and alkaline pH. This selectivity achieved was retained when the minerals were interacted with both bacterial cells and collector simultaneously.
NASA Astrophysics Data System (ADS)
Kalegowda, Yogesh; Chan, Yuet-Loy; Wei, Der-Hsin; Harmer, Sarah L.
2015-05-01
Synchrotron-based X-ray photoemission electron microscopy (X-PEEM), X-ray photo-electron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and ultraviolet visible spectroscopy were used to characterize the flotation behaviour of chalcopyrite with xanthate at different processing conditions. The flotation recovery of chalcopyrite decreased from 97% under oxidative conditions (Eh ~ 385 mV SHE, pH 4) to 41% at a reductive potential of - 100 mV SHE (at pH 9). X-PEEM images constructed from the metal L3 absorption edges were used to produce near-edge X-ray absorption fine structure (NEXAFS) spectra from regions of interest, allowing the variability in mineral surface chemistry of each mineral particle to be analysed, and the effect of pulp potential (Eh) on the flotation of chalcopyrite to be determined. XPS, ToF-SIMS and NEXAFS analyses of chalcopyrite particles at oxidative conditions show that the surface was mildly oxidised and covered with adsorbed molecular CuEX. The Cu 2p XPS and Cu L2,3 NEXAFS spectra were dominated by CuI species attributed to bulk chalcopyrite and adsorbed CuEX. At a reductive potential of - 100 mV SHE, an increase in concentration of CuI and FeIII oxides and hydroxides was observed. X-PEEM analysis was able to show the presence of a low percentage of CuII oxides (CuO or Cu(OH)2) with predominantly CuI oxide (Cu2O) which is not evident in Cu 2p XPS spectra.
Tao, Huang; Dongwei, Li
2014-12-01
This review outlines classic and current research, scientific documents and research achievements in bioleaching, particularly in respect of the bioleaching of chalcopyrite and pyrite. The diversity and commonality of the microbial leaching process can be easily studied through comparing the bioleaching mechanism and the application of these two metal sulfides. The crystal, electronic and surface structures of chalcopyrite and pyrite are summarized in detail in this paper. It determines the specific and complicated interaction pathways, kinetics of the atmospheric/aqueous oxidation, and the control process of bioleaching of the minerals as the precondition. Bioleaching of metal sulfides is performed by a diverse group of microorganisms and microbial communities. The species of the bacteria which have a significant effect on leaching ores are miraculously diverse. The newly identified acidophilic microorganisms with unique characteristics for efficient bioleaching of sulfidic minerals are increasing sharply. The cell-to-cell communication mechanisms, which are still implicit, elusive and intangible at present day, have gradually become a research hotspot. The different mineralogy characteristics and the acid solubility of the metal sulfides (e.g., chalcopyrite and pyrite) cause two different dissolution pathways, the thiosulfate and the polysulfide pathways. The bioleaching mechanisms are categorized by contact (an electrostatic attachment) and noncontact (planktonic) process, with emphasis on the produce of extracellular polymeric substances and formation of biofilm on the surface of the metal sulfides in this paper. The division of the direct and indirect effect are not adopted due to the redox chain, the reduction of the ferric iron and oxidation of the ferrous iron. The molecular oxygen is reduced by the electrons extracted from the specific metal sulfide, via a redox chain forming a supercomplex spanning the periplasmic space and connecting both outer and inner membrane. The passivation of the mineral surface can obviously hinder the dissolution of metal sulfides during the bioleaching process, which is significantly affected by the kinetic model, microenvironment on the surface of ore and the leach conditions, such as temperature, pH and E h . The new development of mechanism research, enhanced and intensified technologies on the bioleaching of chalcopyrite and pyrite, are conducted and summarized from the different branches of natural science. Some are depicted and explained based on molecular level in this paper. Catalyst and catalytic mechanisms in bioleaching and biooxidation for this two sulfide minerals have been concluded and applied for several decades, the continuous emergence of the new material and technology are also gradually applied into the biohydrometallurgy. The industrial applications of the bioleaching on chalcopyrite and pyrite are totally based on the understanding of the interaction mechanism between microbes and minerals, the optimization of ore leaching conditions and the development of new material and the leaching equipment. It is not incredible and unimaginable to take a different bioleaching process and diagram to deal with the two sulfuric metals, which is vital to succeed in elevating the leaching rate of copper.
Bobadilla-Fazzini, Roberto A; Cortés, Maria Paz; Maass, Alejandro; Parada, Pilar
2014-12-01
Currently more than 90% of the world's copper is obtained through sulfide mineral processing. Among the copper sulfides, chalcopyrite is the most abundant and therefore economically relevant. However, primary copper sulfide bioleaching is restricted due to high ionic strength raffinate solutions and particularly chloride coming from the dissolution of ores. In this work we describe the chalcopyrite bioleaching capacity of Sulfobacillus thermosulfidooxidans strain Cutipay (DSM 27601) previously described at the genomic level (Travisany et al. (2012) Draft genome sequence of the Sulfobacillus thermosulfidooxidans Cutipay strain, an indigenous bacterium isolated from a naturally extreme mining environment in Northern Chile. J Bacteriol 194:6327-6328). Bioleaching assays with the mixotrophic strain Cutipay showed a strong increase in copper recovery from chalcopyrite concentrate at 50°C in the presence of chloride ion, a relevant inhibitory element present in copper bioleaching processes. Compared to the abiotic control and a test with Sulfobacillus acidophilus DSM 10332, strain Cutipay showed an increase of 42 and 69% in copper recovery, respectively, demonstrating its high potential for chalcopyrite bioleaching. Moreover, a genomic comparison highlights the presence of the 2-Haloacid dehalogenase predicted-protein related to a potential new mechanism of chloride resistance in acidophiles. This novel and industrially applicable strain is under patent application CL 2013-03335.
NASA Astrophysics Data System (ADS)
Maulana, Adi; Jaya, Asri; Imai, Akira
2018-02-01
Uluwai Prospect is located in the northern part of South Arm of Sulawesi along the eastern part of the Kalosi Fold Belt and Latimojong Mountain. The area is generally characterized by moderate to rugged topography area with elevation in the range of 700 to 1400 m above sea level in the mountainous complex called Latimojong Mountain Complex. The mineralization is characterized by a relatively simple sulphide ore mineral assemblage consists of pyrite, sphalerite and chalcopyrite. Samples were collected in areas showing abundant sulphide minerals where younger faults cut the bedding and foliation of country rocks. A number of silicified zones have been observed, as well as float material containing disseminated pyrite, chalcopyrite, and sphalerite with hematite, goethite and limonite. Some alteration types have been observed including sericitization, albitization, carbonatization and silisification. The samples collected indicated that the mineralisation is contained within metasedimentary (sandstone to mudstone) and greenschist. Geochemical analyses from 16 samples including 5 stream sediment samples indicated that the most promising mineralization occur in the prospect area are copper (Cu) and zinc (Zn). This is also supported by the abundance of chalcopyrite and sphalerite in some highly altered samples. Assaying of the collected samples revealed most of samples contain relatively low gold (Au) concentration. However, two samples contain 0.007 and 0.01 ppm of Au. In the mineralized area, Zn concentrations are up to 134 ppm, Cu up to 120 ppm and Pb up to 18 ppm and As up to 70 ppm. There is no clear relationship that exists between Au and the base metals except that one of the samples with highest Au values tend to have high Zn and As. This unclear pattern also shown by Cu, Pb and Zn. Base metal concentration in stream sediment samples show a relatively stable pattern than in rock samples. Arsenic tends to be elevated in base metal rich samples. Sb and Mo are relatively low in all sample type. However, Mo values will be high in the samples which contain highest Cu and Zn.
Structural, optical, electron paramagnetic, thermal and dielectric characterization of chalcopyrite.
Prameena, B; Anbalagan, G; Gunasekaran, S; Ramkumaar, G R; Gowtham, B
2014-03-25
Chalcopyrite (CuFeS2) a variety of pyrite minerals was investigated through spectroscopic techniques and thermal analysis. The morphology and elemental analysis of the chalcopyrite have been done by high resolution SEM with EDAX. The lattice parameters were from the powder diffraction data (a=5.3003±0.0089 Å, c=10.3679±0.0289 Å; the volume of the unit cell=291.266 Å(3) with space group I42d (122)). The thermal decomposition behavior of chalcopyrite was studied by means of thermogravimetric analysis at three different heating rates 10, 15 and 20 °C/min. The values of effective activation energy (Ea), pre-exponential factor (ln A) for thermal decomposition have been measured at three different heating rates by employing Kissinger, Kim-Park and Flynn-Wall methods. Dielectric studies at different temperatures have also been carried out and it was found that both dielectric constant and dielectric loss decreases with the increase of frequency. Copyright © 2013 Elsevier B.V. All rights reserved.
Feng, Shoushuai; Yang, Hailin; Wang, Wu
2016-01-01
The effects of free cells on community structure of attached cells and chalcopyrite bioleaching by Acidithiobacillus sp. during different stages were investigated. The attached cells of Acidithiobacillus thiooxidans owned the community advantage from 14thd to the end of bioprocess in the normal system. The community structure of attached cells was greatly influenced in the free cells-deficient systems. Compared to A. thiooxidans, the attached cells community of Acidithiobacillus ferrooxidans had a higher dependence on its free cells. Meanwhile, the analysis of key biochemical parameters revealed that the effects of free cells on chalcopyrite bioleaching in different stages were diverse, ranging from 32.8% to 64.3%. The bioleaching contribution of free cells of A. ferrooxidans in the stationary stage (8-14thd) was higher than those of A. thiooxidans, while the situation was gradually reversed in the jarosite passivation inhibited stage (26-40thd). These results may be useful in guiding chalcopyrite bioleaching. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mineralogy, chemical composition and structure of the MIR Mound, TAG Hydrothermal Field
NASA Astrophysics Data System (ADS)
Stepanova, T. V.; Krasnov, S. G.; Cherkashev, G. A.
The study of samples collected from the surface of the MIR mound (TAG Hydrothermal Field) by video-controlled hydraulic grab allowed identification of a number of mineralogical types. These include pyrite-chalcopyrite (Py-Cp), bornite-chalcopyrite-opaline (Bn-Cp-Op) and sphalerite-opaline (Sp-Op) sulfide chimneys, massive sulfides composed of pyrite (Py), chalcopyrite-pyrite (Cp-Py), marcasite-pyrite-opaline (Mc-Py-Op), sphalerite-pyrite-opaline (Sp-Py-Op) and sphalerite-chalcopyrite-pyrite-opaline (Sp-Cp-Py-Op), as well as siliceous and Fe-Mn oxide hydrothermal deposits. Most of the minor elements (Ag, Au, Cd, Ga, Hg, Sb and Pb) are associated with Zn-rich massive sulfides, Co Bi, Pb, and As with Ferich ones, while Cu-rich sulfides are depleted of trace metals. Cu-enriched assemblages are concentrated in the northern part, Zn-enriched in the center, and siliceous rocks in the south of the MIR mound. According to paragenetic relations, the development of the mound started with the formation of quartz (originally opaline) rocks and dendritic assemblages of melnikovite-pyrite, followed by deposition of chalcopyrite and recrystallization of primary pyrite, subsequent generation of sphalerite-rich assemblages and final deposition of opaline rocks. The late renewal of hydrothermal activity led to local formation of Cu-rich chimneys enriched in Au, Ag, Hg and Pb probably due to their remobilization from inner parts of the deposit.
Site Synthesis Report of DSDP Sites 417 and 418
1989-06-01
radmolarsan sands including pyrite . chert and organics (black-clay facites) VII Pale to dark red brown, pink Upper Aptian to 291.5-324.0e -32,5 418A... pyrite , pyrrhotite, chalcopyrite, and pentlaudite. Plasse (1980) and Bleil and Smith (1980b) show that titanomaghemite, the primary magnetic mineral at...Hole 418A where it occurs as a rare phenocryst. Pyrite is the most common secondary opaque mineral. Except in Hole 417A, alteration products generally
Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation.
Mitchell, Timothy K; Nguyen, Anh V; Evans, Geoffrey M
2005-06-30
Heterocoagulation between various fine mineral particles contained within a mineral suspension with different structural and surface chemistry can interfere with the ability of the flotation processes to selectively separate the minerals involved. This paper examines the interactions between chalcopyrite (a copper mineral) and pyrite (an iron mineral often bearing gold) as they approach each other in suspensions with added chemicals, and relates the results to the experimental data for the flotation recovery and selectivity. The heterocoagulation was experimentally studied using the electrophoretic light scattering (ELS) technique and was modelled by incorporating colloidal forces, including the van der Waals, electrostatic double layer and hydrophobic forces. The ELS results indicated that pyrite has a positive zeta potential (zeta) up to its isoelectric point (IEP) at approximately pH 2.2, while chalcopyrite has a positive zeta up to its IEP at approximately pH 5.5. This produces heterocoagulation of chalcopyrite with pyrite between pH 2.2 and pH 5.5. The heterocoagulation was confirmed by the ELS spectra measured with a ZetaPlus instrument from Brookhaven and by small-scale flotation experiments.
NASA Astrophysics Data System (ADS)
Evans, G. N.; Tivey, M. K.; Seewald, J.; Rouxel, O. J.; Monteleone, B.
2016-12-01
Analyses of trace elements (Ag, As, Co, Mn, and Zn) hosted in the chalcopyrite linings of `black smoker' chimneys using secondary ion mass spectrometry (SIMS) have been combined with data for trace metal concentrations in corresponding vent fluids to investigate fluid-mineral partitioning of trace elements. Goals of this research include development of proxies for fluid chemistry based on mineral trace element content. The use of SIMS allows for the measurement of trace elements below the detection limits of electron microprobe and at the necessary spatial resolution (20 microns) to examine fine-grained and mixed-mineral samples. Results indicate that the chalcopyrite linings of many `black smoker' chimneys are homogeneous with respect to Ag, Mn, Co, and Zn. Minerals picked from samples exhibiting homogeneity with respect to specific elements were dissolved and analyzed by solution inductively coupled plasma mass spectrometry (ICP-MS) for use as working standards. Results also document a strong correlation between the Ag content of chalcopyrite and the Ag:Cu ratio of the corresponding hydrothermal fluid. This supports systematic partitioning of Ag into chalcopyrite as a substitute for Cu, providing a proxy for fluid Ag concentration. Additionally, the Ag content of chalcopyrite correlates with fluid pH, particularly at pH>3, and thus represents an effective proxy for fluid pH. Application of these proxies to chimney samples provides an opportunity to better identify hydrothermal conditions even when fluids have not been sampled, or not fully analyzed.
Metal Resistance and Lithoautotrophy in the Extreme Thermoacidophile Metallosphaera sedula
Maezato, Yukari; Johnson, Tyler; McCarthy, Samuel; Dana, Karl
2012-01-01
Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS2). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO3) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy. PMID:23065978
Thurston, R.S.; Mandernack, K.W.; Shanks, Wayne C.
2010-01-01
Laboratory experiments were conducted to simulate chalcopyrite oxidation under anaerobic and aerobic conditions in the absence or presence of the bacterium Acidithiobacillus ferrooxidans. Experiments were carried out with 3 different oxygen isotope values of water (??18OH2O) so that approach to equilibrium or steady-state isotope fractionation for different starting conditions could be evaluated. The contribution of dissolved O2 and water-derived oxygen to dissolved sulfate formed by chalcopyrite oxidation was unambiguously resolved during the aerobic experiments. Aerobic oxidation of chalcopyrite showed 93 ?? 1% incorporation of water oxygen into the resulting sulfate during the biological experiments. Anaerobic experiments showed similar percentages of water oxygen incorporation into sulfate, but were more variable. The experiments also allowed determination of sulfate-water oxygen isotope fractionation, ??18OSO4-H2O, of ~ 3.8??? for the anaerobic experiments. Aerobic oxidation produced apparent ??SO4-H2O values (6.4???) higher than the anaerobic experiments, possibly due to additional incorporation of dissolved O2 into sulfate. ??34SSO4 values are ~ 4??? lower than the parent sulfide mineral during anaerobic oxidation of chalcopyrite, with no significant difference between abiotic and biological processes. For the aerobic experiments, a small depletion in ??34SSO4 of ~- 1.5 ?? 0.2??? was observed for the biological experiments. Fewer solids precipitated during oxidation under aerobic conditions than under anaerobic conditions, which may account for the observed differences in sulfur isotope fractionation under these contrasting conditions. ?? 2009 Elsevier B.V.
NASA Astrophysics Data System (ADS)
Voute, F.; Thébaud, N.
2015-08-01
In the Norseman-Wiluna belt, Yilgarn Craton, the Agnew-Mt. White district is the host of many gold deposits. Located in the hinge of the regional Lawlers anticline, the Turret gold deposit is structurally controlled by the Table Hill shear zone that transects the Agnew Ultramafic unit. Geochemistry, coupled with petrographic data, allowed the delineation of the paragenetic sequence associated with gold mineralisation and include (1) a pervasive talc-carbonate alteration assemblage, (2) a pre-mineralisation stage associated with pervasive arsenopyrite + chalcopyrite + pyrrhotite + pyrite alteration, followed by (3) a late deformation event along a dilatational segment of the main Table Hill shear zone, leading to the formation of a breccia hosting a Cu-Bi-Mo-Au (± Ag ± Zn ± Te ± W) metal assemblage. The presence of Au-Ag-Cu alloys, native bismuth, chalcopyrite and other Bi-Te-S phases in the mineralisation stage suggest that gold may have been scavenged from the hydrothermal fluids by composite Bi-Te-Cu-Au-Ag-S liquids or melts. Using this mineral paragenetic sequence, together with mineralogical re-equilibration textures observed, we show that the gold deposition at Turret occurred over a temperature range approximately between c. 350 and 270 °C. This temperature range, together with the structural control and typical mesothermal alteration pattern including carbonate-chlorite alteration, shows that the Turret deposit shares common characteristics with the orogenic gold deposit class. However, the metal association of Cu, Au, Bi, and Mo, the quartz-poor, and high copper-sulphide content (up to 15 %) are characteristics that depart from the typical orogenic gold deposit mineralogy. Through comparison with similar deposits in the Yilgarn Craton and worldwide, we propose that the Turret deposit represents an example of a porphyry-derived Au-Cu-Bi-Mo deposit.
Kelly, Karen; Slack, John; Selby, David
2009-01-01
The Brooks Range contains enormous accumulations of zinc and copper, either as VMS or sediment-hosted deposits. The Ruby Creek and Omar deposits are Cu-Co stratabound deposits associated with dolomitic breccias. Numerous volcanogenic Cu-Zn (+/-Ag, Au) deposits are situated ~20 km north of the Ruby Creek deposit. The carbonate-hosted deposits consist of chalcopyrite and bornite that fill open spaces, replace the matrix of the breccias, and occur in later cross-cutting veins. Cobaltiferous pyrite, chalcocite, minor tennantite-tetrahedrite, galena, and sphalerite are also present. At Ruby Creek, phases such as carrollite, renierite, and germanite occur rarely. The deposits have undergone post-depositional metamorphism (Ruby Creek, low greenschist facies; Omar, blueschist facies). The unusual geochemical signature includes Cu-Co +/- Ag, As, Au, Bi, Ge, Hg, Sb, and U with sporadic high Re concentrations (up to 2.7 ppm). New Re-Os data were obtained for chalcopyrite, bornite, and pyrite from the Ruby Creek deposit (analyses of sulfides from Omar are in progress). The data show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the Ruby Creek deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization occurred at 384 +/-4.2 Ma, which coincides with zircon U-Pb ages from igneous rocks that are spatially and genetically associated with VMS deposits. This suggests a temporal link between regional magmatism and hydrothermal mineralization.
Local Bonding Influence on the Band Edge and Band Gap Formation in Quaternary Chalcopyrites.
Miglio, Anna; Heinrich, Christophe P; Tremel, Wolfgang; Hautier, Geoffroy; Zeier, Wolfgang G
2017-09-01
Quaternary chalcopyrites have shown to exhibit tunable band gaps with changing anion composition. Inspired by these observations, the underlying structural and electronic considerations are investigated using a combination of experimentally obtained structural data, molecular orbital considerations, and density functional theory. Within the solid solution Cu 2 ZnGeS 4- x Se x , the anion bond alteration parameter changes, showing larger bond lengths for metal-selenium than for metal-sulfur bonds. The changing bonding interaction directly influences the valence and conduction band edges, which result from antibonding Cu-anion and Ge-anion interactions, respectively. The knowledge of the underlying bonding interactions at the band edges can help design properties of these quaternary chalcopyrites for photovoltaic and thermoelectric applications.
NASA Astrophysics Data System (ADS)
Yu, Run-lan; Liu, Jing; Tan, Jian-xi; Zeng, Wei-min; Shi, Li-juan; Gu, Guo-hua; Qin, Wen-qing; Qiu, Guan-zhou
2014-04-01
The pH value plays an important role in the bioleaching of sulphide minerals. The effect of pH values on the extracellular polysaccharide secreted by Acidithiobacillus ferrooxidans was investigated in different phases of bacterial growth during chalcopyrite bioleaching. It is found that extracellular polysaccharide secretion from the cells attached to chalcopyrite is more efficiently than that of the free cells in the bioleaching solution. Three factors, pH values, the concentration of soluble metal ions, and the bacterial growth and metabolism, affect extracellular polysaccharide secretion in the free cells, and are related to the bacterial growth phase. Extracellular polysaccharide secretion from the attached cells is mainly dependent on the pH value of the bacterial culture.
Wang, Yuguang; Zeng, Weimin; Qiu, Guanzhou; Chen, Xinhua
2014-01-01
Three kinds of samples (acid mine drainage, coal mine wastewater, and thermal spring) derived from different sites were collected in China. Thereafter, these samples were combined and then inoculated into a basal salts solution in which different substrates (ferrous sulfate, elemental sulfur, and chalcopyrite) served as energy sources. After that, the mixed cultures growing on different substrates were pooled equally, resulting in a final mixed culture. After being adapted to gradually increasing pulp densities of chalcopyrite concentrate by serial subculturing for more than 2 years, the final culture was able to efficiently leach the chalcopyrite at a pulp density of 20% (wt/vol). At that pulp density, the culture extracted 60.4% of copper from the chalcopyrite in 25 days. The bacterial and archaeal diversities during adaptation were analyzed by denaturing gradient gel electrophoresis and constructing clone libraries of the 16S rRNA gene. The results show that the culture consisted mainly of four species, including Leptospirillum ferriphilum, Acidithiobacillus caldus, Sulfobacillus acidophilus, and Ferroplasma thermophilum, before adapting to a pulp density of 4%. However, L. ferriphilum could not be detected when the pulp density was greater than 4%. Real-time quantitative PCR was employed to monitor the microbial dynamics during bioleaching at a pulp density of 20%. The results show that A. caldus was the predominant species in the initial stage, while S. acidophilus rather than A. caldus became the predominant species in the middle stage. F. thermophilum accounted for the greatest proportion in the final stage. PMID:24242252
A review of the structure, and fundamental mechanisms and kinetics of the leaching of chalcopyrite.
Li, Y; Kawashima, N; Li, J; Chandra, A P; Gerson, A R
2013-09-01
Most investigators regard CuFeS2 as having the formal oxidation states of Cu(+)Fe(3+)(S(2-))2. However, the spectroscopic characterisation of chalcopyrite is clearly influenced by the considerable degree of covalency between S and both Fe and Cu. The poor cleavage of CuFeS2 results in conchoidal surfaces. Reconstruction of the fractured surfaces to form, from what was previously bulk S(2-), a mixture of surface S(2-), S2(2) and S(n)(2-) (or metal deficient sulfide) takes place. Oxidation of chalcopyrite in air (i.e. 0.2 atm of O2 equilibrated with atmospheric water vapour) results in a Fe(III)-O-OH surface layer on top of a Cu rich sulfide layer overlying the bulk chalcopyrite with the formation of Cu(II) and Fe(III) sulfate, and Cu(I)-O on prolonged oxidation. Cu2O and Cu2S-like species have also been proposed to form on exposure of chalcopyrite to air. S2(2-), S(n)(2-) and S(0) form on the chalcopyrite surface upon aqueous leaching. The latter two of these species along with a jarosite-like species are frequently proposed to result in surface leaching passivation. However, some investigators have reported the formation of S(0) sufficiently porous to allow ion transportation to and from the chalcopyrite surface. Moreover, under some conditions both S(n)(2-) and S(0) were observed to increase in surface concentration for the duration of the leach with no resulting passivation. The effect of a number of oxidants, e.g. O2, H2O2, Cu(2+), Cr(6+) and Fe(3+), has been examined. However, this is often accompanied by poor control of leach parameters, principally pH and E(h). Nevertheless, there is general agreement in the literature that chalcopyrite leaching is significantly affected by solution redox potential with an optimum E(h) range suggesting the participation of leach steps that involve both oxidation and reduction. Three kinetic models have generally been suggested by researchers to be applicable: diffusion, chemical reaction and a mixed model containing diffusion and chemical components which occur at different stages of leaching. Passivation effects, due to surface diffusion rate control, may be affected by leach conditions such as pH or E(h). However, only initial conditions are generally described and these parameters are not controlled in most studies. However, at fixed pH, E(h) and temperature, it appears most likely that leaching in sulfuric acid media in the presence of added Fe(3+) is surface reaction rate controlled with some initial period, depending on leach conditions, where the leach rate is surface layer diffusion controlled. Although bioleaching of some copper ores has been adopted by industry, bioleaching has yet to be applied to predominantly chalcopyrite ores due to the slow resulting leach rates. Mixed microbial strains usually yield higher leach rates, as compared to single strains, as different bacterial strains are able to adapt to the changing leach conditions throughout the leach process. As for chemical leaching, passivation is also observed on bioleaching with jarosite being likely to be the main contributor. In summary, whilst much has been observed at the macro-scale regarding the chalcopyrite leach process it is clear that interpretation of these phenomena is hampered by lack of understanding at the molecular or atomic scale. Three primary questions that require elucidation, before the overall mechanism can be understood are: 1. How does the surface of chalcopyrite interact with solution or air borne oxidants? 2. How does the nature of these oxidants affect the surface products formed? 3. What determines whether the surface formed will be passivating or not? These can only realistically be tackled by the application of near atomic-scale analytical approaches, which may include quantum chemical modelling, PEEM/SPEM, TEM, AFM etc. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
FTIR studies of xanthate adsorption on chalcopyrite, pentlandite and pyrite surfaces
NASA Astrophysics Data System (ADS)
Zhang, Yahui; Cao, Zhao; Cao, Yongdan; Sun, Chuanyao
2013-09-01
The Fourier transform infrared (FTIR) spectra of sodium butyl xanthate, dibutyl dixanthogen, metal xanthate compounds and surfaces of chalcopyrite, pentlandite and pyrite treated with sodium butyl xanthate solution were systematically studied. The products of xanthate adsorpted on the three different minerals were characterized by comparing their FTIR spectra to those of dixanthogen and metal xanthate. Both metal xanthate and dixanthogen are formed on the surfaces of these minerals. However, the relative proportions of metal xanthate to dixanthogen on the minerals are different. In the cases of chalcopyrite and pentlandite, the quantity of metal xanthate is larger than that of dixanthogen. For pyrite, on the contrary, the quantity of dixanthogen is much greater than that of ferric xanthate. Therefore, the formation of dixanthogen is more essential for the flotation of pyrite.
NASA Astrophysics Data System (ADS)
Maeda, Tsuyoshi; Yu, Ying; Chen, Qing; Ueda, Kenta; Wada, Takahiro
2017-04-01
We synthesized Cu-poor Cu-Ga-S samples such, as CuGaS2 and CuGa5S8 with the composition of (1 - x)Cu2S-(x)Ga2S3 with 0.5 ≤ x ≤ 1.0, by a mechanochemical process and sequential heating. The crystal structure changes from tetragonal chalcopyrite-type CuGaS2 (0.5 ≤ x ≤ 0.55) to tetragonal stannite-type CuGa5S8 (x = 0.8). For samples with 0.60 ≤ x ≤ 0.75, the diffraction peaks were identified to be those of a mixed phase of the chalcopyrite- and stannite-type structures. The band-gap energies of Cu-poor Cu-Ga-S samples increase in a stepwise manner with increasing x. The band-gap energy of CuGa5S8 (x = 0.8) with the tetragonal stannite-type structure is approximately 2.66 eV, which is wider than that of chalcopyrite-type CuGaS2 (2.45 eV). The energy levels of valence band maxima (VBMs) were estimated from the ionization energies measured by photoemission yield spectroscopy (PYS). The energy levels of the VBM and conduction band minimum (CBM) of the Cu-poor Cu-Ga-S samples decrease significantly with increasing x (decreasing Cu/Ga ratio). The energy level of the VBM of CuGaS2 (-5.8 eV) is considerably deeper than those of CuInSe2 (-5.2 eV) and CuInS2 (-5.5 eV). The VBM of stannite-type CuGa5S8 with x = 0.8 (-6.4 eV) is much deeper than that of chalcopyrite-type CuGaS2 (-5.8 eV) and stannite-type CuIn3Se5 (-5.6 eV). In order to understand the band structures of chalcopyrite-type CuGaS2 and stannite-type CuGa5S8, we performed first-principles calculations using the Heyd-Scuseria-Ernzerhof (HSE06), nonlocal screened hybrid density functional method. The theoretical band-gap energy of stannite-type CuGa5S8 (2.2 eV) is wider than that of chalcopyrite-type CuGaS2 (2.0 eV). Both the theoretical and experimental band gaps of stannite-type CuGa5S8 are about 0.2 eV wider than those of chalcopyrite-type CuGaS2.
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. In this work, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We demonstratemore » the modeling approach with the example of chalcopyrite Cu(InGa)(SeS){sub 2} thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS){sub 2} thin films arises and persists. We believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
A stochastic model of solid state thin film deposition: Application to chalcopyrite growth
Lovelett, Robert J.; Pang, Xueqi; Roberts, Tyler M.; ...
2016-04-01
Developing high fidelity quantitative models of solid state reaction systems can be challenging, especially in deposition systems where, in addition to the multiple competing processes occurring simultaneously, the solid interacts with its atmosphere. Here, we develop a model for the growth of a thin solid film where species from the atmosphere adsorb, diffuse, and react with the film. The model is mesoscale and describes an entire film with thickness on the order of microns. Because it is stochastic, the model allows us to examine inhomogeneities and agglomerations that would be impossible to characterize with deterministic methods. We also demonstrate themore » modeling approach with the example of chalcopyrite Cu(InGa)(SeS) 2 thin film growth via precursor reaction, which is a common industrial method for fabricating thin film photovoltaic modules. The model is used to understand how and why through-film variation in the composition of Cu(InGa)(SeS) 2 thin films arises and persists. Finally, we believe that the model will be valuable as an effective quantitative description of many other materials systems used in semiconductors, energy storage, and other fast-growing industries.« less
Curtis, Susan B; Hewitt, Jeff; Macgillivray, Ross T A; Dunbar, W Scott
2009-02-01
During mineral processing, concentrates of sulfide minerals of economic interest are formed by froth flotation of fine ore particles. The method works well but recovery and selectivity can be poor for ores with complex mineralogy. There is considerable interest in methods that improve the selectivity of this process while avoiding the high costs of using flotation chemicals. Here we show the first application of phage biotechnology to the processing of economically important minerals in ore slurries. A random heptapeptide library was screened for peptide sequences that bind selectively to the minerals sphalerite (ZnS) and chalcopyrite (CuFeS2). After several rounds of enrichment, cloned phage containing the surface peptide loops KPLLMGS and QPKGPKQ bound specifically to sphalerite. Phage containing the peptide loop TPTTYKV bound to both sphalerite and chalcopyrite. By using an enzyme-linked immunosorbant assay (ELISA), the phage was characterized as strong binders compared to wild-type phage. Specificity of binding was confirmed by immunochemical visualization of phage bound to mineral particles but not to silica (a waste mineral) or pyrite. The current study focused primarily on the isolation of ZnS-specific phage that could be utilized in the separation of sphalerite from silica. At mining sites where sphalerite and chalcopyrite are not found together in natural ores, the separation of sphalerite from silica would be an appropriate enrichment step. At mining sites where sphalerite and chalcopyrite do occur together, more specific phage would be required. This bacteriophage has the potential to be used in a more selective method of mineral separation and to be the basis for advanced methods of mineral processing.
Geochemistry of pyrite and chalcopyrite from an active black smoker in 49.6°E Southwest Indian Ridge
NASA Astrophysics Data System (ADS)
Yuan, Bo; Yang, Yaomin; Yu, Hongjun; Zhao, Yuexia; Ding, Qingfeng; Yang, Jichao; Tang, Xin
2017-06-01
Active hydrothermal chimneys, as the product of submarine hydrothermal activity, can be used to determine the fluid evolution and formation process of potential volcanic-hosted massive sulfide deposits. A hard-won specimen from an active hydrothermal chimney was collected in the 49.6°E ultraslow-spreading Southwest Indian Ridge (SWIR) field through a television-guided grab. A geochemical study of prominent sulfide (e.g., pyrite and chalcopyrite) included in this sample was performed using laser ablation inductively coupled plasma mass spectroscopy. The early sulfides produced at low temperature are of disseminated fine-grained anhedral morphology, whereas the late ones with massive, coarse euhedral features precipitated in a high-temperature setting. The systematic variations in the contents of minor and trace elements are apparently related to the crystallization sequence, as well as to texture. Micro-disseminated anhedral sulfides rich in Pb, As, Ni, Ba, Mn, Mo, U, and V were formed during the initial chimney wall growth, whereas those rich in Sn, Se, and Co with massive, coarse euhedral morphology were formed within the late metallogenic stage. The hydrothermal fluid composition has experienced a great change during the chimney growth. Such a conclusion is consistent with that indicated by using principal component analysis, which is a powerful statistical analysis method widely used to project multidimensional datasets (e.g., element contents in different mineral phases) into a few directions. This distribution pattern points to crystallographic controls on minor and trace element uptake during chimney growth, occurring with concomitant variations in the fluid composition evolutionary history. In this pyrite-chalcopyrite-bearing active hydrothermal chimney at the SWIR, the metal concentration and precipitation of sulfides largely occurred at the seafloor as a result of mixing between the upwelling hot hydrothermal fluid and cold seawater. Over the course of mixing, significant variations in metal solubility were caused by changes in temperature, pH, and redox conditions in the parental fluid phase.
Fox, Robert V.; Zhang, Fengyan; Rodriguez, Rene G.; Pak, Joshua J.; Sun, Chivin
2016-06-21
Single source precursors or pre-copolymers of single source precursors are subjected to microwave radiation to form particles of a I-III-VI.sub.2 material. Such particles may be formed in a wurtzite phase and may be converted to a chalcopyrite phase by, for example, exposure to heat. The particles in the wurtzite phase may have a substantially hexagonal shape that enables stacking into ordered layers. The particles in the wurtzite phase may be mixed with particles in the chalcopyrite phase (i.e., chalcopyrite nanoparticles) that may fill voids within the ordered layers of the particles in the wurtzite phase thus produce films with good coverage. In some embodiments, the methods are used to form layers of semiconductor materials comprising a I-III-VI.sub.2 material. Devices such as, for example, thin-film solar cells may be fabricated using such methods.
Leaching of Chalcopyrite with Thiobacillus ferrooxidans: Effect of Surfactants and Shaking
Duncan, D. W.; Trussell, P. C.; Walden, C. C.
1964-01-01
The rate of leaching of chalcopyrite by Thiobacillus ferrooxidans has been greatly accelerated by using shaken flasks in place of stationary bottles or percolators. A further increase in rate and extent of leaching was obtained by the use of Tween 20, 40, 60, and 80, Triton X-100, Quaker TT 5386, and Hyamine 2389. Tween 20 was the most effective surfactant. No individual component of the Tween molecule was responsible for the improved leaching. The Tween-to-chalcopyrite ratio is more important than the Tween-to-medium ratio. The effect of the surfactants is probably due to increased contact between the mineral surface and the organism, and shaking provides the necessary oxygen. Rates and yields obtained by use of surfactants and shaking as aids to microbiological leaching approach those obtained with acidified erric sulfate leaching. PMID:14131359
Structural and optical properties of (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin film alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.
2014-06-14
The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se{sub 2} polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a{sub o} lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, andmore » Zunger. However, the refined c{sub o} lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.« less
First find of platinum group metals in the ore of Kirganik copper-porphyry deposit (Kamchatka)
NASA Astrophysics Data System (ADS)
Sidorov, E. G.; Ignatyev, E. K.; Chubarov, V. M.
2017-08-01
The Kirganik copper-porphyry deposit is situated in the central part of the Sredinnyi Mountain Range of Kamchatka and is confined to fields of development of potassic orthoclase metasomatite and hypabyssal intrusions of shonkinite. Platinum group metals (PGMs), such as merenskyite, kotulskite, keithconnite, and temagamite, were discovered in the chalcopyrite-bornite and chalcopyrite-bornite-chalcosine ore of the deposit for the first time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matukhin, V. L.; Pogoreltsev, A. I.; Gavrilenko, A. N., E-mail: ang-2000@mail.ru
The results of investigating natural samples of chalcopyrite mineral CuFeS{sub 2} from massive oceanic sulfide ores of the Mid-Atlantic ridge by the {sup 63}Cu nuclear magnetic resonance (NMR {sup 63}Cu) in a local field at room temperature are presented. The significant width of the resonance lines found in the {sup 63}Cu NMR spectrum directly testifies to a wide distribution of local magnetic and electric fields in the investigated chalcopyrite samples. This distribution can be the consequence of an appreciable deviation of the structure of the investigated chalcopyrite samples from the stoichiometric one. The obtained results show that the pulsed {supmore » 63}Cu NMR can be an efficient method for studying the physical properties of deep-water polymetallic sulfides of the World Ocean.« less
Robie, R.A.; Wiggins, L.B.; Barton, P.B.; Hemingway, B.S.
1985-01-01
The heat capacity of CuFeS2 (chalcopyrite) was measured between 6.3 and 303.5 K. At 298.15 K, Cp,mo and Smo(T) are (95.67??0.14) J??K-1??mol-1 and (124.9??0.2) J??K-1??mol-1, respectively. From a consideration of the results of two sets of equilibrium measurements we conclude that ??fHmo(CuFeS2, cr, 298.15 K) = -(193.6??1.6) kJ??mol-1 and that the recent bomb-calorimetric determination by Johnson and Steele (J. Chem. Thermodynamics 1981, 13, 991) is in error. The standard molar Gibbs free energy of formation of bornite (Cu5FeS4) is -(444.9??2.1) kJ??mol-1 at 748 K. ?? 1985.
A High-Yield Synthesis of Chalcopyrite CuIn S 2 Nanoparticles with Exceptional Size Control
Sun, Chivin; Gardner, Joseph S.; Shurdha, Endrit; ...
2009-01-01
We repormore » t high-yield and efficient size-controlled syntheses of Chalcopyrite CuIn S 2 nanoparticles by decomposing molecular single source precursors (SSPs) via microwave irradiation in the presence of 1,2-ethanedithiol at reaction temperatures as low as 100 ° C and times as short as 30 minutes. The nanoparticles sizes were 1.8 nm to 10.8 nm as reaction temperatures were varied from 100 ° C to 200 ° C with the bandgaps from 2.71 eV to 1.28 eV with good size control and high yields (64%–95%). The resulting nanoparticles were analyzed by XRD, UV-Vis, ICP-OES, XPS, SEM, EDS, and HRTEM. Titration studies by 1 H NMR using SSP 1 with 1,2-ethanedithiol and benzyl mercaptan were conducted to elucidate the formation of Chalcopyrite CuIn S 2 nanoparticles.« less
Xiao, Yunhua; Liu, Xueduan; Dong, Weiling; Liang, Yili; Niu, Jiaojiao; Gu, Yabing; Ma, Liyuan; Hao, Xiaodong; Zhang, Xian; Xu, Zhen; Yin, Huaqun
2017-07-01
This study used an artificial microbial community with four known moderately thermophilic acidophiles (three bacteria including Acidithiobacillus caldus S1, Sulfobacillus thermosulfidooxidans ST and Leptospirillum ferriphilum YSK, and one archaea, Ferroplasma thermophilum L1) to explore the variation of microbial community structure, composition, dynamics and function (e.g., copper extraction efficiency) in chalcopyrite bioleaching (C) systems with additions of pyrite (CP) or sphalerite (CS). The community compositions and dynamics in the solution and on the ore surface were investigated by real-time quantitative PCR (qPCR). The results showed that the addition of pyrite or sphalerite changed the microbial community composition and dynamics dramatically during the chalcopyrite bioleaching process. For example, A. caldus (above 60%) was the dominant species at the initial stage in three groups, and at the middle stage, still dominated C group (above 70%), but it was replaced by L. ferriphilum (above 60%) in CP and CS groups; at the final stage, L. ferriphilum dominated C group, while F. thermophilum dominated CP group on the ore surface. Furthermore, the additions of pyrite or sphalerite both made the increase of redox potential (ORP) and the concentrations of Fe 3+ and H + , which would affect the microbial community compositions and copper extraction efficiency. Additionally, pyrite could enhance copper extraction efficiency (e.g., improving around 13.2% on day 6) during chalcopyrite bioleaching; on the contrary, sphalerite restrained it.
NASA Astrophysics Data System (ADS)
Piña, R.; Gervilla, F.; Barnes, S.-J.; Oberthür, T.; Lunar, R.
2016-10-01
The Main Sulfide Zone (MSZ) of the Great Dyke of Zimbabwe hosts the world's second largest resource of platinum-group elements (PGE) after the Bushveld Complex in South Africa. The sulfide assemblage of the MSZ comprises pyrrhotite, pentlandite, chalcopyrite, and minor pyrite. Recently, several studies have observed in a number of Ni-Cu-PGE ore deposits that pyrite may host significant amounts of PGE, particularly Pt and Rh. In this study, we have determined PGE and other trace element contents in pyrite from the Hartley, Ngezi, Unki, and Mimosa mines of the Great Dyke by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Based on the textures and PGE contents, two types of pyrite can be differentiated. Py1 occurs as individual euhedral or subhedral grains or clusters of crystals mostly within chalcopyrite and pentlandite, in some cases in the form of symplectitic intergrowths, and is PGE rich (up to 99 ppm Pt and 61 ppm Rh; 1.7 to 47.1 ppm Ru, 0.1 to 7.8 ppm Os, and 1.2 to 20.2 ppm Ir). Py2 occurs as small individual euhedral or subhedral crystals within pyrrhotite, pentlandite, and less frequently within chalcopyrite and silicates and has low PGE contents (<0.11 ppm Pt, <0.34 ppm Rh, <2.5 ppm Ru, <0.37 ppm Ir, and <0.40 ppm Os). Py1 contains higher Os, Ir, Ru, Rh, and Pt contents than the associated pyrrhotite, pentlandite, and chalcopyrite, whereas Py2 has similar PGE contents as coexisting pyrrhotite and pentlandite. Based on the textural relationships, two different origins are attributed for each pyrite type. Py1 intergrowth with pentlandite and chalcopyrite is inferred to have formed by late, low temperature (<300 °C) decomposition of residual Ni-rich monosulfide solid solution, whereas Py2 is suggested to have formed by replacement of pyrrhotite and pentlandite caused by late magmatic/hydrothermal fluids.
Copper isotope fractionation in acid mine drainage
Kimball, B.E.; Mathur, R.; Dohnalkova, A.C.; Wall, A.J.; Runkel, R.L.; Brantley, S.L.
2009-01-01
We measured the Cu isotopic composition of primary minerals and stream water affected by acid mine drainage in a mineralized watershed (Colorado, USA). The ??65Cu values (based on 65Cu/63Cu) of enargite (??65Cu = -0.01 ?? 0.10???; 2??) and chalcopyrite (??65Cu = 0.16 ?? 0.10???) are within the range of reported values for terrestrial primary Cu sulfides (-1??? < ??65Cu < 1???). These mineral samples show lower ??65Cu values than stream waters (1.38??? ??? ??65Cu ??? 1.69???). The average isotopic fractionation (??aq-min = ??65Cuaq - ??65Cumin, where the latter is measured on mineral samples from the field system), equals 1.43 ?? 0.14??? and 1.60 ?? 0.14??? for chalcopyrite and enargite, respectively. To interpret this field survey, we leached chalcopyrite and enargite in batch experiments and found that, as in the field, the leachate is enriched in 65Cu relative to chalcopyrite (1.37 ?? 0.14???) and enargite (0.98 ?? 0.14???) when microorganisms are absent. Leaching of minerals in the presence of Acidithiobacillus ferrooxidans results in smaller average fractionation in the opposite direction for chalcopyrite (??aq-mino = - 0.57 ?? 0.14 ???, where mino refers to the starting mineral) and no apparent fractionation for enargite (??aq-mino = 0.14 ?? 0.14 ???). Abiotic fractionation is attributed to preferential oxidation of 65Cu+ at the interface of the isotopically homogeneous mineral and the surface oxidized layer, followed by solubilization. When microorganisms are present, the abiotic fractionation is most likely not seen due to preferential association of 65Cuaq with A. ferrooxidans cells and related precipitates. In the biotic experiments, Cu was observed under TEM to occur in precipitates around bacteria and in intracellular polyphosphate granules. Thus, the values of ??65Cu in the field and laboratory systems are presumably determined by the balance of Cu released abiotically and Cu that interacts with cells and related precipitates. Such isotopic signatures resulting from Cu sulfide dissolution should be useful for acid mine drainage remediation and ore prospecting purposes. ?? 2008 Elsevier Ltd.
Slack, John F.
2012-01-01
Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As, consistent with the general lack of abundant chalcopyrite in cobaltite-rich samples.Paragenetic relations determined by scanning electron microscopy indicate that the earliest Y-REE-Be mineralization preceded deposition of Co, Cu, Au, and Bi. Allanite, xenotime, and gadolinite-(Y) commonly occur as intergrowths with and inclusions in cobaltite; the opposite texture is rare. Monazite, in contrast, forms a poikiloblastic matrix to cobaltite and thin rims on allanite and xenotime, reflecting a later metamorphic paragenesis. Allanite and xenotime also show evidence of late dissolution and reprecipitation, forming discordant rims on older anhedral allanite and xenotime and separate euhedral crystals of each mineral. Textural data suggest extensive deformation of the deposits by folding and shearing, and by pervasive recrystallization, all during Cretaceous metamorphism. Sensitive high resolution ion microprobe U-Pb geochronology by Aleinikoff et al. (2012) supports these paragenetic interpretations, documenting contemporaneous Mesoproterozoic growth of early xenotime and crystallization of megacrystic A-type granite on the northern border of the district. These ages are used together with mineralogical and geochemical data from the present study to support an epigenetic, IOCG model for Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho cobalt belt. A sulfide facies variant of IOCG deposits is proposed for the Blackbird district, in which reducing hydrothermal conditions favored deposition of sulfide minerals over iron oxides. This new model includes Mesoproterozoic vein mineralization and related Fe-Cl metasomatism that formed the biotite-rich lenses, a predominantly felsic magmatic source for metals in the deposits, given their local abundance of Y, REEs, and Be, and a major sedimentary component in the hydrothermal fluids based on independent sulfur isotope and boron isotope data for sulfides and ore-related tourmaline, respectively.
NASA Astrophysics Data System (ADS)
Urbano, Gustavo; Lázaro, Isabel; Rodríguez, Israel; Reyes, Juan Luis; Larios, Roxana; Cruz, Roel
2016-02-01
Comparative voltammetry and differential double-layer capacitance studies were performed to evaluate interfacial interactions between chalcopyrite (CuFeS2) and n-isopropyl xanthate (X) in the presence of ammonium bisulfite/39wt% SO2 and caustic starch at different pH values. Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, contact angle measurements, and microflotation tests were used to establish the type and extent of xanthate adsorption as well as the species involved under different mineral surface conditions in this study. The results demonstrate that the species that favor a greater hydrophobicity of chalcopyrite are primarily CuX and S0, whereas oxides and hydroxides of Cu and Fe as well as an excess of starch decrease the hydrophobicity. A conditioning of the mineral surface with ammonium bisulfite/39wt% SO2 at pH 6 promotes the activation of surface and enhances the xanthate adsorption. However, this effect is diminished at pH ≥ 8, when an excess of starch is added during the preconditioning step.
Yang, Hailin; Feng, Shoushuai; Xin, Yu; Wang, Wu
2014-02-01
The community dynamics of attached and free cells of Acidithiobacillus sp. were investigated and compared during chalcopyrite bioleaching process. In the mixed strains system, Acidithiobacillus ferrooxidans was the dominant species at the early stage while Acidithiobacillus thiooxidans owned competitive advantage from the middle stage to the end of bioprocess. Meanwhile, compared to A. ferrooxidans, more significant effects of attached cells on free biomass with A. thiooxidans were shown in either the pure or mixed strains systems. Moreover, the effects of attached cells on key chemical parameters were also studied in different adsorption-deficient systems. Consistently, the greatest reduction of key chemical ion was shown with A. thiooxidans and the loss of bioleaching efficiency was high to 50.5%. These results all demonstrated the bioleaching function of attached cells was more efficient than the free cells, especially with A. thiooxidans. These notable results would help us to further understand the chalcopyrite bioleaching. Copyright © 2013 Elsevier Ltd. All rights reserved.
Khaleque, Himel N; Corbett, Melissa K; Ramsay, Joshua P; Kaksonen, Anna H; Boxall, Naomi J; Watkin, Elizabeth L J
2017-11-20
Successful process development for the bioleaching of mineral ores, particularly the refractory copper sulfide ore chalcopyrite, remains a challenge in regions where freshwater is scarce and source water contains high concentrations of chloride ion. In this study, a pure isolate of Acidihalobacter prosperus strain F5 was characterized for its ability to leach base metals from sulfide ores (pyrite, chalcopyrite and pentlandite) at increasing chloride ion concentrations. F5 successfully released base metals from ores including pyrite and pentlandite at up to 30gL -1 chloride ion and chalcopyrite up to 18gL -1 chloride ion. In order to understand the genetic mechanisms of tolerance to high acid, saline and heavy metal stress the genome of F5 was sequenced and analysed. As well as being the first strain of Ac. prosperus to be isolated from Australia it is also the first complete genome of the Ac. prosperus species to be sequenced. The F5 genome contains genes involved in the biosynthesis of compatible solutes and genes encoding monovalent cation/proton antiporters and heavy metal transporters which could explain its abilities to tolerate high salinity, acidity and heavy metal stress. Genome analysis also confirmed the presence of genes involved in copper tolerance. The study demonstrates the potential biotechnological applicability of Ac. prosperus strain F5 for saline water bioleaching of mineral ores. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dutta Roy, S.
2010-12-01
The refractive index, optical nonlinearity, lowest energy band gap, and other related parameters of some mixed defect ternary chalcopyrites are calculated using Levine's bond charge model and its modification developed by Samanta et al. for multinary and mixed compounds. The dependence of the band gap energy on the average quantum number, molecular weight, and anion displacement parameter is shown for the first time, which will be very useful for designing various optoelectronic and nonlinear laser devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehmann, Jascha; Potsdam Institute for Climate Impact Research; Lehmann, Sebastian, E-mail: sebastian.lehmann@ftf.lth.se
2014-12-21
Currently, Cu-containing chalcopyrite-based solar cells provide the highest conversion efficiencies among all thin-film photovoltaic (PV) technologies. They have reached efficiency values above 20%, the same performance level as multi-crystalline silicon-wafer technology that dominates the commercial PV market. Chalcopyrite thin-film heterostructures consist of a layer stack with a variety of interfaces between different materials. It is the chalcopyrite/buffer region (forming the p-n junction), which is of crucial importance and therefore frequently investigated using surface and interface science tools, such as photoelectron spectroscopy and scanning probe microscopy. To ensure comparability and validity of the results, a general preparation guide for “realistic” surfacesmore » of polycrystalline chalcopyrite thin films is highly desirable. We present results on wet-chemical cleaning procedures of polycrystalline Cu(In{sub 1-x}Ga{sub x})Se{sub 2} thin films with an average x = [Ga]/([In] + [Ga]) = 0.29, which were exposed to ambient conditions for different times. The hence natively oxidized sample surfaces were etched in KCN- or NH{sub 3}-based aqueous solutions. By x-ray photoelectron spectroscopy, we find that the KCN treatment results in a chemical surface structure which is – apart from a slight change in surface composition – identical to a pristine as-received sample surface. Additionally, we discover a different oxidation behavior of In and Ga, in agreement with thermodynamic reference data, and we find indications for the segregation and removal of copper selenide surface phases from the polycrystalline material.« less
NASA Astrophysics Data System (ADS)
Gregory, Melissa J.; Mathur, Ryan
2017-11-01
Copper stable isotope geochemistry has the potential to constrain aspects of ore deposit formation once variations in the isotopic data can be related to the physiochemical conditions during metal deposition. This study presents Cu isotope ratios for samples from the Pebble porphyry Cu-Au-Mo deposit in Alaska. The δ65Cu values for hypogene copper sulfides range from -2.09‰ to 1.11‰ and show linear correlations with the δ18O isotope ratios calculated for the fluid in equilibrium with the hydrothermal alteration minerals in each sample. Samples with sodic-potassic, potassic, and illite alteration display a negative linear correlation between the Cu and O isotope results. This suggests that fractionation of Cu isotopes between the fluid and precipitating chalcopyrite is positive as the hydrothermal fluid is evolving from magmatic to mixed magmatic-meteoric compositions. Samples with advanced argillic alteration display a weak positive linear correlation between Cu and O isotope results consistent with small negative fluid-chalcopyrite Cu isotope fractionation during fluid evolution. The hydrothermal fluids that formed sodic-potassic, potassic, and illite alteration likely transported Cu as CuHS0. Hydrothermal fluids that resulted in advanced argillic alteration likely transport Cu as CuCl2-. The pH conditions also control Cu isotope fractionation, consistent with previous experimental work. Larger fractionation factors were found between fluids and chalcopyrite precipitating under neutral conditions contrasting with small fractionation factors calculated between fluids and chalcopyrite precipitating under acidic conditions. Therefore, this study proposes that hydrothermal fluid compositions and pH conditions are related to Cu isotope variations in high temperature magmatic-hydrothermal deposits.
Hydrometallurgical Extraction of Zinc and Copper A 57Fe-Mössbauer and XRD Approach
NASA Astrophysics Data System (ADS)
Mulaba-Bafubiandi, A. F.; Waanders, F. B.
2005-02-01
The most commonly used route in the hydrometallurgical extraction of zinc and copper from a sulphide ore is the concentrate roast leach electro winning process. In the present investigation a zinc copper ore from the Maranda mine, located in the Murchison Greenstone Belt, South Africa, containing sphalerite (ZnS) and chalcopyrite (CuFeS2), was studied. The 57Fe-Mössbauer spectrum of the concentrate yielded pyrite, chalcopyrite and clinochlore, consistent with XRD data. Optimal roasting conditions were found to be 900°C for 3 h and the calcine produced contained according to X-ray diffractometry equal amounts of franklinite (ZnFe2O4) and zinc oxide (ZnO) and half the amount of willemite (Zn2SiO4). The Mössbauer spectrum showed predominantly franklinite (59%), hematite (6%) and other Zn- or Cu-depleted ferrites (35%). The latter could not be detected by XRD analyses as peak overlapping with other species occurred. Leaching was done with HCl, H2SO4 and HNO3, to determine which process would result in maximum recovery of Zn and Cu. More than 80% of both were recovered by using either one of the three techniques. From the residue of the leaching, the Fe-compounds were precipitated and <1% of the Zn and Cu was not recovered.
NASA Astrophysics Data System (ADS)
Peng, Huiqing; Wu, Di; Abdelmonem, Mohamed
In this study, effects of the collector added before grinding and after grinding on the subsequent flotation and mineral surface properties were investigated. The pH was controlled at 10 during the grinding and flotation processes opened to the atmosphere. With enough amounts of sodium butyl xanthate addition, adding the collector before grinding recovered more chalcopyrite than adding it after grinding in single mineral flotation. The Eh of each ground pulp before and after conditioning were measured and it was found that adding collector before grinding obtained higher and relatively suitable pulp potential for chalcopyrite flotation. Particle size analyses of the flotation products indicate that the different flotation recoveries occurred due to the different flotation losses in fine particles (<20 μm). XPS analyses focused on the fine particles of flotation feedings and found that more carbon and oxygen, and less iron were remained on mineral surfaces when the collector was added before grinding, due to the higher collector adsorption capacity, larger free oxygen adsorbance and less iron oxide/hydroxide species.
Ionic liquids for metal extraction from chalcopyrite: solid, liquid and gas phase studies.
Kuzmina, O; Symianakis, E; Godfrey, D; Albrecht, T; Welton, T
2017-08-16
We studied leaching of Cu and Fe from naturally occurring chalcopyrite ore using aqueous solutions of ionic liquids (ILs) based on imidazolium and ethylammonium cations and hydrogensulfate, nitrate, acetate or dicyanamide anions. Liquid, solid and gas phases of the leaching systems were characterised. We have shown that nonoxidative leaching is greatly dependant not only on temperature and pH, but on the anion species of the IL. Solutions of 1-butylimidazolium hydrogen sulfate exhibited the best leaching performance among hydrogen sulphate ILs. We have suggested that the formation of an oxide layer in some ILs may be responsible for a reduced leaching ability. The analysis of the gas phase showed the production of CO 2 and CS 2 in all leached samples. Our results suggested that the CS 2 produced upon leaching could be responsible for decreasing the sulfur, but not oxide, layer on the surface of chalcopyrite samples and therefore more efficient leaching. This is the first study, to our knowledge, to provide a systematic comparison of the leaching performance of ILs composed of different anions and cations and without added oxidants.
Feng, Shoushuai; Yang, Hailin; Zhan, Xiao; Wang, Wu
2014-06-01
An integrated strategy (additional energy substrate-three stage pH control-fed batch) was firstly proposed for efficiently improving chalcopyrite bioleaching by Acidithiobacillus sp. in a 7-L fermenter. The strain adaptive-growing phase was greatly shortened from 8days into 4days with the supplement of additional 2g/L Fe(2+)+2g/L S(0). Jarosite passivation was effectively weakened basing on higher biomass via the three-stage pH-stat control (pH 1.3-1.0-0.7). The mineral substrate inhibition was attenuated by fed-batch fermentation. With the integrated strategy, the biochemical reaction was promoted and achieved a better balance. Meanwhile, the domination course of A. thiooxidans in the microbial community was shortened from 14days to 8days. As the results of integrated strategy, the final copper ion and productivity reached 89.1mg/L and 2.23mg/(Ld), respectively, which was improved by 52.8% compared to the uncontrolled batch bioleaching. The integrated strategy could be further exploited for industrial chalcopyrite bioleaching. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ma, Liyuan; Wang, Xingjie; Feng, Xue; Liang, Yili; Xiao, Yunhua; Hao, Xiaodong; Yin, Huaqun; Liu, Hongwei; Liu, Xueduan
2017-01-01
The effect of co-culture microorganisms with different initial proportions on chalcopyrite bioleaching was investigated. Communities were rebuilt by six typical strains isolated from the same habitat. The results indicated, by community with more sulfur oxidizers at both 30 and 40°C, the final copper extraction rate was 19.8% and 6.5% higher, respectively, than that with more ferrous oxidizers. The variations of pH, redox potential, ferrous and copper ions in leachate also provided evidences that community with more sulfur oxidizers was more efficient. Community succession of free and attached cells revealed that initial proportions played decisive roles on community dynamics at 30°C, while communities shared similar structures, not relevant to initial proportions at 40°C. X-ray diffraction analysis confirmed different microbial functions on mineral surface. A mechanism model for chalcopyrite bioleaching was established coupling with community succession. This will provide theoretical basis for reconstructing an efficient community in industrial application. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Vikentev, I.
2016-04-01
During processing the most of Au, Ag, Se, Te, Pb, Bi, Sb, Hg as well as notable part of Cu, Zn and Cd fail for tailings and became heavy metal pollutants. Modes of occurrence of Au, Ag, Te and Se covers two giant VMS deposits: Uchaly (intensively deformed) and Uzelginsk (altered by late hydrothermal processes) as well as middle-sized Molodezn and West Ozern deposits (nondeformed) have been studied. Mineral forms of these elements as well as their presence in disperse mode in common ore minerals (pyrite, chalcopyrite, sphalerite) have been studied using SEM, EPMA, INAA, ICP-MS and LA-ICP-MS.
NASA Astrophysics Data System (ADS)
Agangi, Andrea; Reddy, S. M.; Plavsa, D.; Vieru, C.; Selvaraja, V.; LaFlamme, C.; Jeon, H.; Martin, L.; Nozaki, T.; Takaya, Y.; Suzuki, K.
2018-02-01
The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope analyses of pyrite and chalcopyrite indicate a narrow range of δ34SVCD (- 0.2 to + 4.6 ‰), and no significant mass-independent fractionation (- 0.1 < Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu enrichment and narrow δ34S ranges. Although a possible explanation for some of these characteristics is leaching of S and metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system.
NASA Astrophysics Data System (ADS)
Wright, K. A.; Miller, N. R.; Ketcham, R. A.; Kyle, R.
2016-12-01
The Ertsberg-Grasberg district in Papua, Indonesia, hosts to two of the largest intrusion-related Cu-Au deposits in the world: the Ertsberg East Skarn system and the Grasberg Intrusive Complex. Cu mineralization within the Grasberg porphyry and Ertsberg skarn systems primarily consists of bornite and chalcopyrite, with minor digenite and idiate. Native Au is commonly found in association with Cu mineralization where Au occurs as inclusions within or immediately proximal to primary Cu-sulfide minerals. At hydrothermal-ore forming temperatures, approximately 400° to 700° C, bornite and chalcopyrite can host up to 1800 ppm Au within the Cu-sulfide lattice. Upon retrograde cooling of the hydrothermal system, the ability of bornite and chalcopyrite to host Au decreases significantly to about 10 ppm, indicating that the Au could be expulsed from the sulfide lattice. Given the close association of native Au and Cu-sulfide concentrations, it is possible that native gold grains form as the Au emerges from the Cu-sulfides. Constraining the genetic and spatio-temporal relationship between Cu-sulfide and Au mineralization within these deposits is of significant interest with regard to the geometallurgical processing of the ore, and to future exploration. This study seeks to evaluate this relationship using High Resolution X-ray Computed Tomography (HRXCT) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS). Previous HRXCT studies on Ertsberg-Grasberg ore samples have identified numerous occurrences of native Au grains at the edges of Cu-sulfide masses. HRXCT data are used here to construct 3D Voronoi regions of potential Au "diffusional drainage" from within the Cu-sulfides, where the expectation is a positive correlation between Au grain size and modified Voronoi polyhedron volume, defined as the volume of sulfide closer to that grain than any other via a connected path through sulfide. LA-ICP-MS data are used to determine variations in Au contents of Cu-sulfide minerals using 2D transects away from Au inclusions in 3D contact with Cu-sulfide minerals.
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Cowen, Jonathan; Hepp, Aloysius
2002-01-01
Molecular engineering of ternary single source precursors based on the [{PBu3}2Cu(SR')2In(SR')2] architecture have afforded the first liquid CIS ternary single source precursors (when R = Et, n-Pr), which are suitable for low temperature deposition (< 350 C). Thermogravimetric analyses (TGA) and modulated-differential scanning calorimetry (DSC) confirm their liquid phase and reduced stability. X-ray diffraction studies, energy dispersive analyzer (EDS), and scanning electron microscopy (SEM) support the formation of the single-phase chalcopyrite CuInS2 at low temperatures.
Synthesis and structures of metal chalcogenide precursors
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Duraj, Stan A.; Eckles, William E.; Andras, Maria T.
1990-01-01
The reactivity of early transition metal sandwich complexes with sulfur-rich molecules such as dithiocarboxylic acids was studied. Researchers recently initiated work on precursors to CuInSe2 and related chalcopyrite semiconductors. Th every high radiation tolerance and the high absorption coefficient of CuInSe2 makes this material extremely attractive for lightweight space solar cells. Their general approach in early transition metal chemistry, the reaction of low-valent metal complexes or metal powders with sulfur and selenium rich compounds, was extended to the synthesis of chalcopyrite precursors. Here, the researchers describe synthesis, structures, and and routes to single molecule precursors to metal chalcogenides.
NASA Astrophysics Data System (ADS)
Jiang, F. D.; Feng, J. Y.
2008-02-01
Using first principles calculation, we systematically investigate the electronic modification of Cu-based chalcopyrite semiconductors induced by lattice deformation and composition alchemy. It is shown that the optical band gap Eg is remarkably sensitive to the anion displacement μ, resulting from the opposite shifts of conduction band minimum and valence band maximum. Meanwhile, the dependence of structural parameters of alloyed compounds on alloy composition x is demonstrated for both cation and anion alloying. The d orbitals of group-III cations are found to be of great importance in the calculation. Abnormal changes in the optical band gap Eg induced by anion alloying are addressed.
Chalcopyrite—bearer of a precious, non-precious metal
Kimball, Bryn E.
2013-01-01
The mineral chalcopyrite (CuFeS2) is the world's most abundant source of copper, a metal component in virtually every piece of electrical equipment. It is the main copper mineral in several different ore deposit types, the most important of which are porphyry deposits. Chalcopyrite is unstable at the Earth's surface, so it weathers from sulphide outcrops and mine waste piles, contributing acid and dissolved copper to what is known as acid rock drainage. If not prevented, dissolved copper from chalcopyrite weathering will be transported downstream, potentially harming ecosystems along the way. Pristine areas are becoming targets for future copper supply as we strive to meet ever-increasing demands for copper by developed and developing nations. Additionally, our uses for copper are expanding to include technology such as solar energy production. This has lead to the processing of increasingly lower grade ores, which is possible, in part, due to advances in bio-leaching (i.e. metal extraction catalysed by micro-organisms). Although copper is plentiful, it is still a nonrenewable resource. Future copper supply promises to fall short of demand and the volatility of the copper market may continue if we do not prioritize copper use and improve copper recycling and ore extraction efficiency.
Aqueous Solution-Phase Selenized CuIn(S,Se)2 Thin Film Solar Cells Annealed under Inert Atmosphere.
Oh, Yunjung; Yang, Wooseok; Kim, Jimin; Woo, Kyoohee; Moon, Jooho
2015-10-14
A nonvacuum solution-based approach can potentially be used to realize low cost, roll-to-roll fabrication of chalcopyrite CuIn(S,Se)2 (CISSe) thin film solar cells. However, most solution-based fabrication methods involve highly toxic solvents and inevitably require sulfurization and/or postselenization with hazardous H2S/H2Se gases. Herein, we introduce novel aqueous-based Cu-In-S and Se inks that contain an amine additive for producing a high-quality absorber layer. CISSe films were fabricated by simple deposition of Cu-In-S ink and Se ink followed by annealing under an inert atmosphere. Compositional and phase analyses confirmed that our simple aqueous ink-based method facilitated in-site selenization of the CIS layer. In addition, we investigated the molecular structures of our aqueous inks to determine how crystalline chalcopyrite absorber layers developed without sulfurization and/or postselenization. CISSe thin film solar cells annealed at 550 °C exhibited an efficiency of 4.55% under AM 1.5 illumination. The low-cost, nonvacuum method to deposit chalcopyrite absorber layers described here allows for safe and simple processing of thin film solar cells.
Influence of Organic Solvents on Chalcopyrite Oxidation Ability of Thiobacillus ferrooxidans
Torma, Arpad E.; Itzkovitch, Irwin J.
1976-01-01
It has been shown that organic solvents used primarily for the extraction of metals from aqueous leach liquors decrease both the surface tension of the aqueous phase and the chalcopyrite oxidation ability of Thiobacillus ferrooxidans. For the reagents and modifiers investigated, the order of inhibition was found to be LIX 70 < LIX 73 < LIX 71 < LIX 64N < LIX 65N < TBP ∼ isodecanol ∼ nonylphenol < LIX 63 <<< D2EHPA ∼ Kelex 100 < Kelex 120 <<< Alamine 336 ∼ Alamine 308 ∼ Alamine 310 < Alamine 304 < Adogen 381 ∼ Aliquat 336 < Adogen 364. To avoid limitation in bacterial activity, organic matter should be removed from the recycling liquor prior to leaching. PMID:16345164
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azam, Sikander; Khan, Saleem Ayaz; Goumri-Said, Souraya, E-mail: Souraya.Goumri-Said@chemistry.gatech.edu
Highlights: • Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) are chalcopyrite and semiconductors. • Their direct band gap is suitable for PV, optolectronic and thermoelectric applications. • Combination of DFT and Boltzmann transport theory is employed. • The present arsenides are found to be covalent materials. - Abstract: Chalcopyrite semiconductors have attracted much attention due to their potential implications in photovoltaic and thermoelectric applications. First principle calculations were performed to investigate the electronic, optical and thermoelectric properties of the Zintl tetragonal phase ACdGeAs{sub 2} (A = K, Rb) using the full potential linear augmented plane wave method andmore » the Engle–Vosko GGA (EV–GGA) approximation. The present compounds are found semiconductors with direct band gap and covalent bonding character. The optical transitions are investigated via the dielectric function (real and imaginary parts) along with other related optical constants including refractive index, reflectivity and energy-loss spectrum. Combining results from DFT and Boltzmann transport theory, we reported the thermoelectric properties such as the Seebeck’s coefficient, electrical and thermal conductivity, figure of merit and power factor as function of temperatures. The present chalcopyrite Zintl quaternary arsenides deserve to be explored for their potential applications as thermoelectric materials and for photovoltaic devices.« less
Selective Adhesion of Thiobacillus ferrooxidans to Pyrite
Ohmura, Naoya; Kitamura, Keiko; Saiki, Hiroshi
1993-01-01
Bacterial adhesion to mineral surfaces plays an important role not only in bacterial survival in natural ecosystems, but also in mining industry applications. Selective adhesion was investigated with Thiobacillus ferrooxidans by using four minerals, pyrite, quartz, chalcopyrite, and galena. Escherichia coli was used as a control bacterium. Contact angles were used as indicators of hydrophobicity, which was an important factor in the interaction between minerals and bacteria. The contact angle of E. coli in a 0.5% sodium chloride solution was 31°, and the contact angle of T. ferrooxidans in a pH 2.0 sulfuric acid solution was 23°. E. coli tended to adhere to more hydrophobic minerals by hydrophobic interaction, while T. ferrooxidans selectively adhered to iron-containing minerals, such as pyrite and chalcopyrite. Ferrous ion inhibited the selective adhesion of T. ferrooxidans to pyrite competitively, while ferric ion scarcely inhibited such adhesion. When selective adhesion was quenched by ferrous ion completely, adhesion of T. ferrooxidans was controlled by hydrophilic interactions. Adhesion of E. coli to pyrite exhibited a liner relationship on langmuir isotherm plots, but adhesion of T. ferrooxidans did not. T. ferrooxidans recognized the reduced iron in minerals and selectively adhered to pyrite and chalcopyrite by a strong interaction other than the physical interaction. PMID:16349106
Vakylabad, Ali Behrad; Schaffie, Mahin; Naseri, Ali; Ranjbar, Mohammad; Manafi, Zahra
2016-07-01
In this investigation, copper was bioleached from a low-grade chalcopyrite ore using a chloride-containing lixiviant. In this regard, firstly, the composition of the bacterial culture media was designed to control the cost in commercial application. The bacterial culture used in this process was acclimated to the presence of chloride in the lixiviant. Practically speaking, the modified culture helped the bio-heap-leaching system operate in the chloridic media. Compared to the copper recovery from the low-grade chalcopyrite by bioleaching in the absence of chloride, bioleaching in the presence of chloride resulted in improved copper recovery. The composition of the lixiviant used in this study was a modification with respect to the basal salts in 9 K medium to optimize the leaching process. When leaching the ore in columns, 76.81 % Cu (based on solid residues of bioleaching operation) was recovered by staged leaching with lixiviant containing 34.22 mM NaCl. The quantitative findings were supported by SEM/EDS observations, X-ray elemental mapping, and mineralogical analysis of the ore before and after leaching. Finally, Adaptive neuro-fuzzy inference system (ANFIS) was used to simulate the operational parameters affecting the bioleaching operation in chloride-sulfate system.
Selenium content in sulfide ores from the Chalkidiki peninsula, Greece.
Nicolaidou, A E
1998-01-01
Selenium (Se) was assessed in galena, sphalerite, and pyrite samples. These are components of mixed sulfide ores from the Olympias and Madem Lakkos-Mavres Petres deposits and the Skouries porphyry-copper deposit. We used atomic absorption spectroscopy (AAS) with a hydride generator system. The highest concentration of Se (516 ppm) was found in the fine-grained galena at the -135 level of the Olympias deposits. In the Madem Lakkos-Mavres Petres deposit, the highest concentration of Se (33 ppm) was found in the pyrites of the level 30. The concentration of Se in the arsenopyrites and chalcopyrites is lower than the detection limit of the analytical method (< 100 ppb). The concentrated chalcopyrite from the porphyry copper deposit at Skouries exhibits a significant Se content (average 200 ppm) in contrast to the chalcopyrite from the Olympias and the Madem Lakkos-Mavres Petres. Variations in the Se content of the sulfide minerals studied could be caused by redox-pH and/or temperature conditions, as well as by the difference in crystal structure. The Se found in the areas studied may positively affect the environment. Sulfide minerals are oxidized by microorganisms, infiltrate in the soil-water in the form of selenate or selenite ion, and directly or indirectly influence the human organism.
Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun
2015-12-01
This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function.
Full potential calculations on the electron bandstructures of Sphalerite, Pyrite and Chalcopyrite
NASA Astrophysics Data System (ADS)
Edelbro, R.; Sandström, Å.; Paul, J.
2003-02-01
The bulk electronic structures of Sphalerite, Pyrite and Chalcopyrite have been calculated within an ab initio, full potential, density functional approach. The exchange term was approximated with the Dirac exchange functional, the Vosko-Wilk-Nusair parameterization of the Cepler-Alder free electron gas was used for correlation and linear combinations of Gaussian type orbitals were used as basis functions. The Sphalerite (zinc blende) band gap was calculated to be direct with a width of 2.23 eV. The Sphalerite valence band was 5.2 eV wide and composed of a mixture of sulfur and zinc orbitals. The band below the valence band located around -6.2 eV was mainly composed of Zn 3d orbitals. The S 3s orbitals gave rise to a band located around -12.3 eV. Pyrite was calculated to be a semiconductor with an indirect band gap of 0.51 eV, and a direct gap of 0.55 eV. The valence band was 1.25 eV wide and mainly composed of non-bonding Fe 3d orbitals. The band below the valence band was 4.9 eV wide and composed of a mixture of sulfur and iron orbitals. Due to the short inter-atomic distance between the sulfur dumbbells, the S 3s orbitals in Pyrite were split into a bonding and an anti-bonding range. Chalcopyrite was predicted to be a conductor, with no band-crossings at the Fermi level. The bands at -13.2 eV originate from the sulfur 3s orbitals and were quite similar to the sulfur 3s bands in Sphalerite, though somewhat shifted to lower energy. The top of the valence band consisted of a mixture of orbitals from all the atoms. The lower part of the same band showed metal character. Computational modeling as a tool for illuminating the flotation and leaching processes of Pyrite and Chalcopyrite, in connection with surface science experiments, is discussed.
NASA Astrophysics Data System (ADS)
KIM, Y.; Lee, I.; Oyungerel, S.; Jargal, L.; Tsedenbal, T.; Ryu, J. S.
2016-12-01
The copper isotope (δ65Cu) and sulfur isotope (δ34S) compositions of major ore minerals from the Erdenetiin-Ovoo Cu-Mo porphyry deposit were measured to trace sources of copper and sulfur, and to evaluate the precipitation environment of ore minerals. The major ore minerals are pyrite, chalcopyrite, molybdenite and chalcocite developed in the QSP (Quartz-Sericite-Pyrite) alteration zone. The sulfide minerals such as sphalerite and covellite, and carbonate ore minerals like malachite, azurite are also identified. The copper isotope ratios (65Cu/63Cu) of copper ore minerals (chalcopyrite, chalcocite, malachite, azurite, covellite and chrysocolla) were analyzed by the MC-ICPMS in KBSI located in Ochang, South Korea. The measured δ65Cu values relative to NIST 976 range from -1.01 ‰ to 5.76 ‰. The average δ65Cu values of sulfide minerals such as chalcopyrite (1.03 ‰), chalcocite (0.62 ‰) and covellite (0.51 ‰) seem to be relatively lower than those of carbonate and silicate Cu minerals such as malachite (0.24 ‰), azurite (2.17 ‰) and chrysocolla (5.76 ‰). The sulfur isotope ratios (34S/32S) of major sulfide minerals were measured by EA-CF-IRMS (Elemental Analyzer - Continuous Flow - Isotope Ratio Mass Spectrometer) in NCIRF, Seoul National University. The average δ34SV-CDT value is -1.1 ‰ indicating the magmatic signature of sulfur. There is the difference of δ34S values between sulfide minerals. While the δ34S values of pyrite, chalcopyrite and molybdenite range from -0.9 to 0.8 ‰, the δ34S values of chalcocite range from -2.6 ‰ to -1.4 ‰. These lower values might be attributed to the sulfur isotope fractionation during its precipitation.
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Banger, Kulbinder K.; Jin, Michael H.-C.; Harris, Jerry D.; McNatt, Jeremiah S.; Dickman, John E.
2008-01-01
Thin-film solar cells on flexible, lightweight, space-qualified substrates provide an attractive approach to fabricating solar arrays with high mass-specific power. A polycrystalline chalcopyrite absorber layer is among the new generation of photovoltaic device technologies for thin film solar cells. At NASA Glenn Research Center we have focused on the development of new single-source precursors (SSPs) for deposition of semiconducting chalcopyrite materials onto lightweight, flexible substrates. We describe the syntheses and thermal modulation of SSPs via molecular engineering. Copper indium disulfide and related thin-film materials were deposited via aerosol-assisted chemical vapor deposition using SSPs. Processing and post-processing parameters were varied in order to modify morphology, stoichiometry, crystallography, electrical properties, and optical properties to optimize device quality. Growth at atmospheric pressure in a horizontal hotwall reactor at 395 C yielded the best device films. Placing the susceptor closer to the evaporation zone and flowing a more precursor-rich carrier gas through the reactor yielded shinier-, smoother-, and denser-looking films. Growth of (112)-oriented films yielded more Cu-rich films with fewer secondary phases than growth of (204)/(220)-oriented films. Post-deposition sulfur-vapor annealing enhanced stoichiometry and crystallinity of the films. Photoluminescence studies revealed four major emission bands and a broad band associated with deep defects. The highest device efficiency for an aerosol-assisted chemical vapor deposited cell was one percent.
NASA Astrophysics Data System (ADS)
Kashyap, Manish K.; Paudyal, D.; Harmon, B. N.
In the present study, we have performed ab-initio simulations of sp-element defect in ZnCdTe2-xSex (x =0.625) chalcopyrite to check the tuning of band gap as compared to the pristine case. The exchange and correlation (XC) effects are taken into account by an orbital independent modified Becke-Johnson (mBJ) potential as coupled with Local Density Approximation (LDA) for these calculations. The calculated energy band structures show a direct band gap at the point in the brillouin zone for the pristine as well as the defected case and the band gap decreases with inclusion of sp-disorder. The imaginary dielectric function predicts the optical band gap of pristine ZnCdTe2 very close to the experimental value and the results are in reasonable agreement without applying any scissor operator. With inclusion of sp-element defect, the optical spectra is tuned to optimal region, suitable for photovoltaics. It is apparent that mBJ functional is well suited for calculating electronic structure of pristine as well as defected ZnCdTe2chalcopyrite. MKK acknowledges financial support from UGC, India in the form of RAMAN Post-doctoral fellowship. This work at Ames Laboratory was supported by the DOE, Office of Basic Energy Sciences, Materials Sciences Division under contract No. DE-AC02-07CH11358.
Zhou, Dan; Peng, Tangjian; Zhou, Hongbo; Liu, Xueduan; Gu, Guohua; Chen, Miao; Qiu, Guanzhou; Zeng, Weimin
2015-07-01
Sulfate adenylyltransferase gene and 4Fe-4S ferredoxin gene are the key genes related to sulfur and iron oxidations during bioleaching system, respectively. In order to better understand the bioleaching and microorganism synergistic mechanism in chalcopyrite bioleaching by mixed culture of moderate thermophiles, expressions of the two energy metabolism genes and community dynamics of free and attached microorganisms were investigated. Specific primers were designed for real-time quantitative PCR to study the expression of these genes. Real-time PCR results showed that sulfate adenylyltransferase gene was more highly expressed in Sulfobacillus thermosulfidooxidans than that in Acidithiobacillus caldus, and expression of 4Fe-4S ferredoxin gene was higher in Ferroplasma thermophilum than that in S. thermosulfidooxidans and Leptospirillum ferriphilum. The results indicated that in the bioleaching system of chalcopyrite concentrate, sulfur and iron oxidations were mainly performed by S. thermosulfidooxidans and F. thermophilum, respectively. The community dynamics results revealed that S. thermosulfidooxidans took up the largest proportion during the whole period, followed by F. thermophilum, A. caldus, and L. ferriphilum. The CCA analysis showed that 4Fe-4S ferredoxin gene expression was mainly affected (positively correlated) by high pH and elevated concentration of ferrous ion, while no factor was observed to prominently influence the expression of sulfate adenylyltransferase gene.
NASA Astrophysics Data System (ADS)
Gunawan; Haris, A.; Widiyandari, H.; Septina, W.; Ikeda, S.
2017-02-01
Copper chalcopyrite semiconductors include a wide range of compounds that are of interest for photoelectrochemical water splitting which enables them to be used as photochatodes for H2 generation. Among them, CuInS2 is one of the most important materials due to its optimum band gap energy for sunlight absorption. In the present study, we investigated the application of CuInS2 fabricated by electrodeposition as photochatodes for water splitting. Thin film of CuInS2 chalcopyrite was formed on Mo-coated glass substrate by stacked electrodeposition of copper and indium followed by sulfurization under H2S flow. The films worked as a H2 liberation electrode under cathodic polarization from a solution containing Na2SO4 after loading Pt deposits on the film. Introduction of an n-type CdS layer by chemical bath deposition on the CuInS2 surface before the Pt loading resulted appreciable improvements of H2 liberation efficiency and a higher photocurrent onset potential. Moreover, the use of In2S3 layer as an alternative n-type layer to the CdS significantly improved the H2 liberation performance: the CuInS2 film modified with In2S3 and Pt deposits worked as an efficient photocathode for photoelectrochemical water splitting.
Visible scintillation photodetector device incorporating chalcopyrite semiconductor crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stowe, Ashley C.; Burger, Arnold
2017-04-04
A photodetector device, including: a scintillator material operable for receiving incident radiation and emitting photons in response; a photodetector material coupled to the scintillator material operable for receiving the photons emitted by the scintillator material and generating a current in response, wherein the photodetector material includes a chalcopyrite semiconductor crystal; and a circuit coupled to the photodetector material operable for characterizing the incident radiation based on the current generated by the photodetector material. Optionally, the scintillator material includes a gamma scintillator material and the incident radiation received includes gamma rays. Optionally, the photodetector material is further operable for receiving thermalmore » neutrons and generating a current in response. The circuit is further operable for characterizing the thermal neutrons based on the current generated by the photodetector material.« less
Single Source Precursors for Thin Film Solar Cells
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Hollingsworth, Jennifer A.; Harris, Jerry D.; Cowen, Jonathan; Buhro, William E.; Hepp, Aloysius F.
2002-01-01
The development of thin film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. At NASA GRC we have focused on the development of new single source precursors (SSP) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD (chemical vapor deposition) process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV (photovoltaic) devices.
Geology of the Huron River pitchblende occurrence, Baraga County, Michigan
Vickers, R.C.
1955-01-01
Pitchblende and secondary uranium minerals occur as very small, discontinuous stringers and pods in calcite and quartz cementing the breccia within a low-angle shear zone that dips about 10 degrees to the southwest. The shear zone has a thickness of 10 to 30 feet and cuts black, locally carbonaceous slates of the upper Huronian Precambrian Michigamme slate. Mineral deposition during two hypogene stages and one supergene stage was identified in polished sections. The first phase consisted of the introduction of quartz and minor hematite into the sheared slate. After fracturing of the quartz the second stage was initiated by deposition of calcite, pyrite, rutile, pitchblende, bornite, sphalerite, chalcopyrite, galena, and greenockite. The supergene stage consisted of the development of metatyuyamunite, chalcopyrite, chalcocite, covellite, cuprite, volborthite, malachite, and goethite.
Watling, Helen R; Collinson, David M; Corbett, Melissa K; Shiers, Denis W; Kaksonen, Anna H; Watkin, Elizabeth L J
2016-09-01
The application of thermoacidophiles for chalcopyrite (CuFeS2) bioleaching in hot, acidic, saline solution was investigated as a possible process route for rapid Cu extraction. The study comprised a discussion of protective mechanisms employed for the survival and/or adaptation of thermoacidophiles to osmotic stress, a compilation of chloride tolerances for three genera of thermoacidophiles applied in bioleaching and an experimental study of the activities of three species in a saline bioleaching system. The data showed that the oxidation rates of iron(II) and reduced inorganic sulfur compounds (tetrathionate) were reduced in the presence of chloride levels well below chloride concentrations in seawater, limiting the applicability of these microorganisms in the bioleaching of CuFeS2 in saline water. Copyright © 2016. Published by Elsevier Masson SAS.
Te-Rich argyrodite occurrence in Roşia Montană ore deposit, Apuseni Mountains, Romania
NASA Astrophysics Data System (ADS)
Bailly, Laurent; Tămaş, Călin-Gabriel; Minuţ, Adrian
2005-06-01
A new argyrodite occurrence has been discovered in the Roşia Montană ore deposit located in the South Apuseni Mountains, Romania. Argyrodite is associated with common base metal sulfides and sulfosalts (galena, sphalerite, chalcopyrite, tetrahedrite ± alabandite, pyrite, and marcasite), tellurides (hessite, altaite, sylvanite) and rare electrum grains in the Ag-rich Cârnicel vein hosted by an extracraterial phreatomagmatic breccia within the Cârnic massif. SEM and EPMA analyses revealed that this argyrodite is Te-rich and a mean Ag 8.04Ge 0.9Te 2.07S 3.77 formula was calculated. This phase could be the germaniferous equivalent of the previously-described Te-rich canfieldite. To cite this article: L. Bailly et al., C. R. Geoscience 337 (2005).
Barnes, S.-J.; Cox, R.A.; Zientek, M.L.
2006-01-01
Concentrations of Ag, Au, Cd, Co, Re, Zn and Platinum-group elements (PGE) have been determined in sulfide minerals from zoned sulfide droplets of the Noril'sk 1 Medvezky Creek Mine. The aims of the study were; to establish whether these elements are located in the major sulfide minerals (pentlandite, pyrrhotite, chalcopyrite and cubanite), to establish whether the elements show a preference for a particular sulfide mineral and to investigate the model, which suggests that the zonation in the droplets is caused by the crystal fractionation of monosulfide solid solution (mss). Nickel, Cu, Ag, Re, Os, Ir, Ru, Rh and Pd, were found to be largely located in the major sulfide minerals. In contrast, less than 25% of the Au, Cd, Pt and Zn in the rock was found to be present in these sulfides. Osmium, Ir, Ru, Rh and Re were found to be concentrated in pyrrhotite and pentlandite. Palladium and Co was found to be concentrated in pentlandite. Silver, Cd and Zn concentrations are highest in chalcopyrite and cubanite. Gold and platinum showed no preference for any of the major sulfide minerals. The enrichment of Os, Ir, Ru, Rh and Re in pyrrhotite and pentlandite (exsolution products of mss) and the low levels of these elements in the cubanite and chalcopyrite (exsolution products of intermediate solid solution, iss) support the mss crystal fractionation model, because Os, Ir, Ru, Rh and Re are compatible with mss. The enrichment of Ag, Cd and Zn in chalcopyrite and cubanite also supports the mss fractionation model these minerals are derived from the fractionated liquid and these elements are incompatible with mss and thus should be enriched in the fractionated liquid. Gold and Pt do not partition into either iss or mss and become sufficiently enriched in the final fractionated liquid to crystallize among the iss and mss grains as tellurides, bismithides and alloys. During pentlandite exsolution Pd appears to have diffused from the Cu-rich portion of the droplet into pentlandite. ?? Springer-Verlag 2006.
NASA Astrophysics Data System (ADS)
Sherman, David M.
2013-10-01
Copper exists as two isotopes: 65Cu (∼30.85%) and 63Cu (∼69.15%). The isotopic composition of copper in secondary minerals, surface waters and oxic groundwaters is 1-12‰ heavier than that of copper in primary sulfides. Changes in oxidation state and complexation should yield substantial isotopic fractionation between copper species but it is unclear to what extent the observed Cu isotopic variations reflect equilibrium fractionation. Here, I calculate the reduced partition function ratios for chalcopyrite (CuFeS2), cuprite (Cu2O), tenorite (CuO) and aqueous Cu+, Cu+2 complexes using periodic and molecular hybrid density functional theory to predict the equilibrium isotopic fractionation of Cu resulting from oxidation of Cu+ to Cu+2 and by complexation of dissolved Cu. Among the various copper(II) complexes in aqueous environments, there is a significant (1.3‰) range in the reduced partition function ratios. Oxidation and congruent dissolution of chalcopyrite (CuFeS2) to dissolved Cu+2 (as Cu(H2O)5+2) yields 65-63δ(Cu+2-CuFeS2) = 3.1‰ at 25 °C; however, chalcopyrite oxidation/dissolution is incongruent so that the observed isotopic fractionation will be less. Secondary precipitation of cuprite (Cu2O) would yield further enrichment of dissolved 65Cu since 65-63δ(Cu+2-Cu2O) is 1.2‰ at 25 °C. However, precipitation of tenorite (CuO) will favor the heavy isotope by +1.0‰ making dissolved Cu isotopically lighter. These are upper-limit estimates for equilibrium fractionation. Therefore, the extremely large (9‰) fractionations between dissolved Cu+2 (or Cu+2 minerals) and primary Cu+ sulfides observed in supergene environments must reflect Rayleigh (open-system) or kinetic fractionation. Finally the previously proposed (Asael et al., 2009) use of δ65Cu in chalcopyrite to estimate the oxidation state of fluids that transported Cu in stratiform sediment-hosted copper deposits is refined.
Publications - SR 58 | Alaska Division of Geological & Geophysical Surveys
; Arsenopyrite; Barite; Base Metals; Big Delta; Bismuth; Chalcopyrite; Chicken Pluton; Cliff Mine; Coal ; Delta Junction; Diamond Drilling; Diamonds; Donlin Creek; Drift Mine; Drilling; Duke Island; Economic
Kalegowda, Yogesh; Harmer, Sarah L
2013-01-08
Artificial neural network (ANN) and a hybrid principal component analysis-artificial neural network (PCA-ANN) classifiers have been successfully implemented for classification of static time-of-flight secondary ion mass spectrometry (ToF-SIMS) mass spectra collected from complex Cu-Fe sulphides (chalcopyrite, bornite, chalcocite and pyrite) at different flotation conditions. ANNs are very good pattern classifiers because of: their ability to learn and generalise patterns that are not linearly separable; their fault and noise tolerance capability; and high parallelism. In the first approach, fragments from the whole ToF-SIMS spectrum were used as input to the ANN, the model yielded high overall correct classification rates of 100% for feed samples, 88% for conditioned feed samples and 91% for Eh modified samples. In the second approach, the hybrid pattern classifier PCA-ANN was integrated. PCA is a very effective multivariate data analysis tool applied to enhance species features and reduce data dimensionality. Principal component (PC) scores which accounted for 95% of the raw spectral data variance, were used as input to the ANN, the model yielded high overall correct classification rates of 88% for conditioned feed samples and 95% for Eh modified samples. Copyright © 2012 Elsevier B.V. All rights reserved.
Platinum-group mineralization at the margin of the Skaergaard intrusion, East Greenland
NASA Astrophysics Data System (ADS)
Andersen, Jens C. Ø.; Rollinson, Gavyn K.; McDonald, Iain; Tegner, Christian; Lesher, Charles E.
2017-08-01
Two occurrences of platinum-group elements (PGEs) along the northern margin of the Skaergaard intrusion include a sulfide-bearing gabbro with slightly less than 1 ppm PGE + Au and a clinopyroxene-actinolite-plagioclase-biotite-ilmenite schist with 16 vol% sulfide and 1.8 ppm PGE + Au. Both have assemblages of pyrrhotite, pentlandite, and chalcopyrite typical for orthomagmatic sulfides. Matching platinum-group mineral assemblages with sperrylite (PtAs2), kotulskite (Pd(Bi,Te)1-2), froodite (PdBi2), michenerite (PdBiTe), and electrum (Au,Ag) suggest a common origin. Petrological and geochemical similarities suggest that the occurrences are related to the Skaergaard intrusion. The Marginal Border Series locally displays Ni depletion consistent with sulfide fractionation, and the PGE fractionation trends of the occurrences are systematically enriched by 10-50 times over the chilled margin. The PGE can be explained by sulfide-silicate immiscibility in the Skaergaard magma with R factors of 110-220. Nickel depletion in olivine suggests that the process occurred within the host cumulate, and the low R factors require little sulfide mobility. The sulfide assemblages are different to the chalcopyrite-bornite-digenite assemblage found in the Skaergaard Layered Series and Platinova Reef. These differences can be explained by the early formation of sulfide melt, while magmatic differentiation or sulfur loss caused the unusual sulfide assemblage within the Layered Series. The PGEs indicate that the sulfides formed from the Skaergaard magma. The sulfides and PGEs could not have formed from the nearby Watkins Fjord wehrlite intrusion, which is nearly barren in sulfide. We suggest that silicate-sulfide immiscibility led to PGE concentration where the Skaergaard magma became contaminated with material from the Archean basement.
Orogenic-type copper-gold-arsenic-(bismuth) mineralization at Flatschach (Eastern Alps), Austria
NASA Astrophysics Data System (ADS)
Raith, Johann G.; Leitner, Thomas; Paar, Werner H.
2015-10-01
Structurally controlled Cu-Au mineralization in the historic Flatschach mining district (Styria, Austria) occurs in a NE-SW to NNE-WSW oriented vein system as multiple steep-dipping calcite-(dolomite)-quartz veins in amphibolite facies metamorphic rocks (banded gneisses/amphibolites, orthogneisses, metagranitoids) of the poly-metamorphosed Austroalpine Silvretta-Seckau nappe. Vein formation postdated ductile deformation events and Eoalpine (Late Cretaceous) peak metamorphism but predated Early to Middle Miocene sediment deposition in the Fohnsdorf pull-apart basin; coal-bearing sediments cover the metamorphic basement plus the mineralized veins at the northern edge of the basin. Three gold-bearing ore stages consist of a stage 1 primary hydrothermal (mesothermal?) ore assemblage dominated by chalcopyrite, pyrite and arsenopyrite. Associated minor minerals include alloclasite, enargite, bornite, sphalerite, galena, bismuth and matildite. Gold in this stage is spatially associated with chalcopyrite occurring as inclusions, along re-healed micro-fractures or along grain boundaries of chalcopyrite with pyrite or arsenopyrite. Sericite-carbonate alteration is developed around the veins. Stage 2 ore minerals formed by the replacement of stage 1 sulfides and include digenite, anilite, "blue-remaining covellite" (spionkopite, yarrowite), bismuth, and the rare copper arsenides domeykite and koutekite. Gold in stage 2 is angular to rounded in shape and occurs primarily in the carbonate (calcite, Fe-dolomite) gangue and less commonly together with digenite, domeykite/koutekite and bismuth. Stage 3 is a strongly oxidized assemblage that includes hematite, cuprite, and various secondary Cu- and Fe-hydroxides and -carbonates. It formed during supergene weathering. Stage 1 and 2 gold consists mostly of electrum (gold fineness 640-860; mean = 725; n = 46), and rare near pure gold (fineness 930-940; n = 6). Gold in stage 3 is Ag-rich electrum (fineness 350-490, n = 12), and has a high Hg content (up to 11 mass %). The Cu-Au deposits in the Flatschach area show similarities with meso- to epizonal orogenic lode gold deposits regarding the geological setting, the structural control of mineralization, the type of alteration, the early (stage 1) sulfide assemblage and composition of gold. Unique about the Flatschach district is the lower-temperature overprint of copper arsenides (domeykite and koutekite) and copper sulfides (djurleite, yarrowite/spionkopite) on earlier formed sulfide mineralization. Based on mineralogical considerations temperature of stage 2 mineralization was between about 70 °C and 160 °C. Gold was locally mobilized during this low-temperature hydrothermal overprint as well as during stage 3 supergene oxidation and cementation processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozaki, Shunji, E-mail: ozaki@el.gunma-u.ac.jp; Horikoshi, Yoshimichi
2014-02-07
Optical absorption spectra have been measured on the single-crystalline chalcopyrite semiconductor AgInS{sub 2} using polarized light at T = 10–300 K. The bandgap energy E{sub g} of AgInS{sub 2} shows unusual temperature dependence at low temperatures. The resultant temperature coefficient ∂E{sub g}/∂T is found to be positive at T < 130 K and negative above 130 K. This result has been successfully explained by considering the effects of thermal expansion and electron–phonon interaction. The free-exciton emission of photoluminescence spectra also indicates positive temperature dependence of the peak energies at low temperatures. The exciton binding energy of AgInS{sub 2} is determined to be 26.4 meV.
NASA Astrophysics Data System (ADS)
Chen, Qin-Miao; Zhou, Fang-Fang; Yuan, Hong-Chun; Chen, Jin; Ni, Yi; Zhu, Xi-Fang; Dou, Xiao-Ming
2017-07-01
Chalcopyrite and wurtzite CuInS2 (CIS) nanomaterials were synthesized from Cu2+, In3+, thiourea with or without triethanolamine (TEA) by simple hot injection method at low temperature. The effect of synthesis duration on the various properties of the synthesized CIS nanomaterials was studied. It shows that for chalcopyrite CIS, the optimal synthesis duration is 60 min and the synthesized nanomaterial is in spherical shape with diameter of about 90 nm. However, for the wurtzite CIS, the optimal synthesis duration should reach 150 min and the synthesized nanomaterial looks like nanoplate with thicknesses of ˜10 nm and diameters near 100 nm. The photovoltaic characteristics of two types of nanomaterials are quite different. This study may contribute to the synthesis of CIS nanomaterials at low temperatures.
NASA Astrophysics Data System (ADS)
Mayengbam, Rishikanta; Tripathy, S. K.; Pandey, B. P.
2018-03-01
In this paper, we have investigated the structural, electronic and optical properties of ZnAl2Te4 defect chalcopyrite semiconductor using generalized gradient approximation (GGA) within density functional theory (DFT). We have calculated the optimized lattice constants (a and c) and compared with the available experimental values. The optimized lattice constants have been used to calculate the energy band gap and found to be 1.57 eV. The partial density of states and total density of states have been discussed in detail. The frequency dependent dielectric constant and refractive index have been calculated and plotted in the energy range 0-13 eV. All the above parameters have been compared with the available experimental and theoretical values and found good agreement between them.
NASA Astrophysics Data System (ADS)
Lovelett, Robert J.
The direct conversion of solar energy to electricity, or photovoltaic energy conversion, has a number of environmental, social, and economic advantages over conventional electricity generation from fossil fuels. Currently, the most commonly-used material for photovoltaics is crystalline silicon, which is now produced at large scale and silicon-based devices have achieved power conversion efficiencies over 25% However, alternative materials, such as inorganic thin films, offer a number of advantages including the potential for lower manufacturing costs, higher theoretical efficiencies, and better performance in the field. One of these materials is the chalcopyrite Cu(InGa)(SeS) 2, which has demonstrated module efficiencies over 17% and cell efficiencies over 22%. Cu(InGa)(SeS)2 is now in the early stages of commercialization using a precursor reaction process referred to as a "selenization/sulfization" reaction. The precursor reaction process is promising because it has demonstrated high efficiency along with the large area (approximately 1 m2) uniformity that is required for modules. However, some challenges remain that limit the growth of the chalcopyrite solar cell industry including: slow reactions that limit process throughput, a limited understanding of complex reaction kinetics and transport phenomena that affect the through-film composition, and the use of highly toxic H2Se in the reaction process. In this work, I approach each of these challenges. First, to improve process throughput, I designed and implemented a rapid thermal processing (RTP) reactor, whereby the samples are heated by a 1000 W quartz-halogen lamp that is capable of fast temperature ramps and high temperature dwells. With the reactor in place, however, achieving effective temperature control in the thin film material system is complicated by two intrinsic process characteristics: (i) the temperature of the Cu(InGa)(SeS)2 film cannot be measured directly, which leaves the system without complete state feedback; and (ii), the process is significantly nonlinear due to the dominance of radiative heat transfer at high temperatures. Therefore, I developed a novel control system using a first principles-based observer and a specialized temperature controller. Next, to understand the complex kinetics governing the selenization/sulfization processes, a stochastic model of solid state reaction kinetics was developed and applied to the system. The model is capable of predicting several important phenomena observed experimentally, including steep through-film gradients in gallium mole fraction. Furthermore, the model is mathematically general and can be useful for understanding a number of solid state reaction systems. Finally, the RTP system was then used to produce and characterize chalcopyrite films using two general methods: (i) single stage and multi stage reactions in H2Se and H2S, and (ii), reaction of a selenium "capped" precursor in H2S, where selenium was deposited on the precursor by thermal evaporation and the use of toxic H2Se was avoided. It was found that the processing conditions could be used to control material properties including relative sulfur incorporation, crystallinity, and through-film gallium and sulfur profiles. Films produced using the selenium-capped precursor reaction process were used to fabricate solar cell devices using a Mo/Cu(InGa)(SeS)2/CdS/ZnO/ITO substrate device structure, and the devices were tested by measuring the current-voltage characteristic under standard conditions. Devices with approximately 10% efficiency were obtained over a range of compositions and the best device obtained in this work had an efficiency of 12.7%.
NASA Astrophysics Data System (ADS)
McDermott, Jill M.; Ono, Shuhei; Tivey, Margaret K.; Seewald, Jeffrey S.; Shanks, Wayne C.; Solow, Andrew R.
2015-07-01
Multiple sulfur isotopes were measured in metal sulfide deposits, elemental sulfur, and aqueous hydrogen sulfide to constrain sulfur sources and the isotopic systematics of precipitation in seafloor hydrothermal vents. Areas studied include the Eastern Manus Basin and Lau Basin back-arc spreading centers and the unsedimented basalt-hosted Southern East Pacific Rise (SEPR) and sediment-hosted Guaymas Basin mid-ocean ridge spreading centers. Chalcopyrite and dissolved hydrogen sulfide (H2S) δ34S values range from -5.5‰ to +5.6‰ in Manus Basin samples, +2.4‰ to +6.1‰ in Lau Basin samples, and +3.7‰ to +5.7‰ in SEPR samples. Values of δ34S for cubic cubanite and H2S range from -1.4‰ to +4.7‰ in Guaymas Basin samples. Multiple sulfur isotope systematics in fluid-mineral pairs from the SEPR and Lau Basin show that crustal host rock and thermochemical reduction of seawater-derived dissolved sulfate (SO4) are the primary sources of sulfur in mid-ocean ridge and some back-arc systems. At PACMANUS and SuSu Knolls hydrothermal systems in the Eastern Manus Basin, a significant contribution of sulfur is derived from disproportionation of magmatic sulfur dioxide (SO2), while the remaining sulfur is derived from crustal host rocks and SO4 reduction. At the sedimented Guaymas Basin hydrothermal system, sulfur sources include crustal host rock, reduced seawater SO4, and biogenic sulfide. Vent fluid flow through fresher, less-mature sediment supplies an increased quantity of reactant organic compounds that may reduce 34S-enriched SO4, while fluid interaction with more highly-altered sediments results in H2S characterized by a small, but isotopically-significant input of 34S-depleted biogenic sulfides. Near-zero Δ33S values in all samples implicate the abiotic processes of SO4 reduction and leaching of host rock as the major contributors to sulfur content at a high temperature unsedimented mid-ocean ridge and at a back-arc system. Δ33S values indicate that SO2 disproportionation is an additional process that contributes sulfur to a different back-arc system and to acid spring-type hydrothermal fluid circulation. At the sedimented Guaymus Basin, near-zero Δ33S values are also observed, despite negative δ34S values that indicate inputs of biogenic pyrite for some samples. In contrast with previous studies reporting isotope disequilibrium between H2S and chalcopyrite, the δ34S values of chalcopyrite sampled from the inner 1-2 mm of a chimney wall are within ±1‰ of δ34S values for H2S in the paired vent fluid, suggesting equilibrium fluid-mineral sulfur isotope exchange at 300-400 °C. Isotopic equilibrium between hydrothermal fluid H2S and precipitating chalcopyrite implies that sulfur isotopes in the chalcopyrite lining across a chimney wall may accurately record past hydrothermal activity.
Chemical Vapor Deposition for Ultra-lightweight Thin-film Solar Arrays for Space
NASA Technical Reports Server (NTRS)
Hepp, Aloysius F.; Raffaelle, Ryne P.; Banger, Kulbinder K.; Jin, Michael H.; Lau, Janice E.; Harris, Jerry D.; Cowen, Jonathan E.; Duraj, Stan A.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified substrates provides an attractive cost solution to fabricating solar arrays with high specific power, (W/kg). The use of a polycrystalline chalcopyrite absorber layer for thin film solar cells is considered as the next generation photovoltaic devices. A key technical issues outlined in the 2001 U.S. Photovoltaic Roadmap, is the need to develop low cost, high throughput manufacturing for high-efficiency thin film solar cells. At NASA GRC we have focused on the development of new single-source-precursors (SSPs) and their utility to deposit the chalcopyrite semi-conducting layer (CIS) onto flexible substrates for solar cell fabrication. The syntheses and thermal modulation of SSPs via molecular engineering is described. Thin-film fabrication studies demonstrate the SSPs can be used in a spray CVD process, for depositing CIS at reduced temperatures, which display good electrical properties, suitable for PV devices.
Ang, Ran; Khan, Atta Ullah; Tsujii, Naohito; Takai, Ken; Nakamura, Ryuhei; Mori, Takao
2015-10-26
Current high-performance thermoelectric materials require elaborate doping and synthesis procedures, particularly in regard to the artificial structure, and the underlying thermoelectric mechanisms are still poorly understood. Here, we report that a natural chalcopyrite mineral, Cu1+x Fe1-x S2 , obtained from a deep-sea hydrothermal vent can directly generate thermoelectricity. The resistivity displayed an excellent semiconducting character, and a large thermoelectric power and high power factor were found in the low x region. Notably, electron-magnon scattering and a large effective mass was detected in this region, thus suggesting that the strong coupling of doped carriers and antiferromagnetic spins resulted in the natural enhancement of thermoelectric properties during mineralization reactions. The present findings demonstrate the feasibility of thermoelectric energy generation and electron/hole carrier modulation with natural materials that are abundant in the Earth's crust. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
(012)-cut chalcopyrite ZnGeP2 as a high-bandwidth terahertz electro-optic detection crystal
NASA Astrophysics Data System (ADS)
Carnio, B. N.; Greig, S. R.; Firby, C. J.; Zawilski, K. T.; Schunemann, P. G.; Elezzabi, A. Y.
2017-02-01
The detection properties of a chalcopyrite zinc germanium diphosphide (ZnGeP2, ZGP) electro-optic (EO) crystal, having thickness of 1080 μm and cut along the <012> plane, is studied in the terahertz (THz) frequency range. Outstanding phase matching is achieved between the optical probe pulse and the THz frequency components, leading to a large EO detection bandwidth. ZGP has the ability to measure frequencies that are 1.3 and 1.2 times greater than that of ZnTe for crystal thicknesses of 1080 and 500 μm, respectively. Furthermore, the ZGP crystal is able to detect frequency components that are >=4.6 times larger than both ZnSe and GaP (for crystal thicknesses of 1080 μm) and >=2.2 times larger than ZnSe and GaP (for crystal thicknesses of 500 μm).
Extraction of Copper from Malanjkhand Low-Grade Ore by Bacillus stearothermophilus.
Singh, Sradhanjali; Sukla, Lala Behari; Mishra, Baroda Kanta
2011-10-01
Thermophilic bacteria are actively prevalent in hot water springs. Their potential to grow and sustain at higher temperatures makes them exceptional compare to other microorganism. The present study was initiated to isolate, identify and determine the feasibility of extraction of copper using thermophilic heterotrophic bacterial strain. Bacillus stearothermophilus is a thermophilic heterotrophic bacterium isolated from hot water spring, Atri, Orissa, India. This bacterium was adapted to low-grade chalcopyrite ore and its efficiency to solubilize copper from Malanjkhand low-grade ore was determined. The low-grade copper ore contains 0.27% Cu, in which the major copper-bearing mineral is chalcopyrite associated with other minerals present as minor phase. Variation in parameters such as pulp-density and temperatures were studied. After 30 days of incubation, it was found that Bacillus stearothermophilus solubilize copper up to 81.25% at pH 6.8 at 60°C.
NASA Astrophysics Data System (ADS)
Mahmoudian, Ali Reza; Sadrnezhaad, S. K.; Manafi, Zahra
2014-08-01
A heat-transfer model was formulated to determine the distribution of temperature within a bioheap of chalcopyrite of Sarcheshmeh copper mine. Bioleaching employs mixed mesophilic and thermophilic microbes for Cu extraction. Thermophiles are better than mesophiles to dissolve CuFeS2. The solution irrigation and aeration rates were taken into account as the main operational factors. The model was validated by comparing the temperature profiles of test columns with those of bioheap. The model was used to find the optimal ratio of irrigation to aeration. It was found that when the solution was fed at a flow rate of 5 kg/m2 h and air was blown at a flow rate of 7.5 kg/m2 h, the transition from a mesophilic to thermophilic state inside the heap was possible. In this situation, the maximum temperature rise inside the heap was about 332 K (59 °C) after 60 days.
Bacterial consortium for copper extraction from sulphide ore consisting mainly of chalcopyrite
Romo, E.; Weinacker, D.F.; Zepeda, A.B.; Figueroa, C.A.; Chavez-Crooker, P.; Farias, J.G.
2013-01-01
The mining industry is looking forward for bacterial consortia for economic extraction of copper from low-grade ores. The main objective was to determine an optimal bacterial consortium from several bacterial strains to obtain copper from the leach of chalcopyrite. The major native bacterial species involved in the bioleaching of sulphide ore (Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferrooxidans and Leptospirillum ferriphilum) were isolated and the assays were performed with individual bacteria and in combination with At. thiooxidans. In conclusion, it was found that the consortium integrated by At. ferrooxidans and At. thiooxidans removed 70% of copper in 35 days from the selected ore, showing significant differences with the other consortia, which removed only 35% of copper in 35 days. To validate the assays was done an escalation in columns, where the bacterial consortium achieved a higher percentage of copper extraction regarding to control. PMID:24294251
NASA Astrophysics Data System (ADS)
Sidali, Tarik; Bou, Adrien; Coutancier, Damien; Chassaing, Elisabeth; Theys, Bertrand; Barakel, Damien; Garuz, Richard; Thoulon, Pierre-Yves; Lincot, Daniel
2018-03-01
In this paper, a new way of preparing semi-transparent solar cells using Cu(In1-xGax)Se2 (CIGS) chalcopyrite semiconductors as absorbers for BIPV applications is presented. The key to the elaboration process consists in the co-electrodeposition of Cu-In-Ga mixed oxides on submillimetric hole-patterned molybdenum substrate, followed by thermal reduction to metallic alloys and selenisation. This method has the advantage of being a selective deposition technique where the thin film growth is carried out only on Mo covered areas. Thus, after annealing, the transparency of the sample is always preserved, allowing light to pass through the device. A complete device (5 × 5 cm2) with 535 μm diameter holes and total glass aperture of around 35% shows an open circuit voltage (VOC) of 400 mV. Locally, the I-V curves reveal a maximum efficiency of 7.7%, VOC of 460 mV, JSC of 24 mA.cm-2 in an area of 0.1 cm2 with 35% aperture. This efficiency on the semi-transparent area is equivalent to a record efficiency of 11.9% by taking into account only the effective area.
NASA Astrophysics Data System (ADS)
Salem, S. M.; El Sharkawi, M.; El-Alfy, Z.; Soliman, N. M.; Ahmed, S. E.
2016-05-01
The present study aims at exploration of new gold occurrences in the alteration zones at Dungash district. Processed ASTER images band ratios 7/6 × 4/6 and (7 + 9/8), field geology and mineralogical and geochemical data help characterize three types of alterations in three areas 1 to 3 that may be targeted for Au exploration. Area1 confined to the metavolcanics located in the SE of Dungash gold mine and revealed silicified and sericitized type alterations, composed of quartz, epidote, chlorite, biotite and opaque minerals mainly pyrite and chalcopyrite. Area2 occurs in the gabbro-diorite rocks at Abu Meraiwa area NE of Dungash gold mine, which are rich in kaolinite, illite, sericite, pyrite, arsenopyrite and chalcopyrite that record kaolinitized alteration. Area3 is hosted in carbonaceous listwaenized serpentinite thus indicating the role of listwaenitization type alteration in ore genesis. It is composed of calcite, chromite, pyrite, arsenopyrite, chalcopyrite and Ni-bearing sulphides. Au contents in area 1 range between 0.12 and 14.91 ppm, and between 6.1 and 16.3 ppm in area 2, while gold values in area 3 vary from <0.01 to 0.03 ppm. Dungash district is comprised of Pan-African assemblages of ophiolitic ultramafics thrusted over the island arc metavolcanics of dacitic- andesite composition. Gabbro-diorite rocks are intruded in the ultramafics and the acidic metavolcanics as well as diorite-quartz diorite suite intruded in the intermediate metavolcanics. Several acidic dykes, granitic dykes and quartz veins cut through the different rocks types.
Magnetic influence on the unidentified luminous phenomena in Hessdalen, Norway
NASA Astrophysics Data System (ADS)
Gitle Hauge, Bjørn; Kjøniksen, Anna-Lena; Petter Strand, Erling; Zlotnicki, Jaques; Vargemezis, George
2016-04-01
Unidentified luminous phenomena have been observed in the low atmosphere over the Hessdalen valley for decades. First scientific investigation was done by E.Strand in 1984, where spiral movements of lights was recorded. The Science Camp program has conducted yearly field investigations since 2002 and has confirmed the existence of this spiral-behavior. (http://sciencecamp.no) Such behavior has also been documented in Alabama, USA. In September 2015 spiral like movement of lights was observed together with the more common spherical lights. This spiral movement indicates the presence of low atmospheric charged matter, moving in a magnetic field. A geological survey in 2014 reviled the presence of strong magnetic anomalies. The valley contains several abandoned copper mines containing Chalcopyrite and Magnetite. The Magnetite was not useful in the copper production, and left in heaps around the valley unused. This may contribute to the magnetic anomalies in the valley.
Publications - SR 60 | Alaska Division of Geological & Geophysical Surveys
Mapping Advisory Board STATEMAP Publications Geophysics Program Information Geophysical Survey ; Aeromagnetic Survey; Airborne Geophysical Survey; Alaska Highway Corridor; Alaska Peninsula; Alaska, State of ; Bismuth; Chalcopyrite; Chandalar Mining District; Cleary Summit; Coal; Conductivity Survey; Construction
NASA Astrophysics Data System (ADS)
Bauer, Matthias E.; Seifert, Thomas; Burisch, Mathias; Krause, Joachim; Richter, Nancy; Gutzmer, Jens
2017-12-01
At the Hämmerlein skarn deposit, located in the western Erzgebirge (Germany), a major cassiterite-dominated Sn mineralization stage is spatially associated with a younger Zn-Cu-In sulfide mineralization stage. In this contribution, we provide the first detailed description of the Zn-Cu-In sulfide mineralization stage, based on field geological observations combined with detailed petrographic studies and electron probe microanalysis data. Indium-rich sulfide mineralization occurs as irregular, semi-massive lenses or as infill of short, discontinuous veinlets that crosscut the cassiterite-bearing skarn assemblage. Indium- and Cu-rich sphalerite and roquesite are found to be closely associated with In-bearing chalcopyrite. The highest In concentrations in sphalerite occur at the rims and along cracks of sphalerite grains. The distribution resembles diffusion profiles, suggesting that the In enrichment is due to an hydrothermal overprint that postdates the initial formation of both sphalerite and chalcopyrite. Textural relations illustrate that the diffusion fronts in sphalerite grains are thicker where they are in contact to anhedral masses of hematite and magnetite. Our observations suggest that In enrichment in sphalerite at the Hämmerlein skarn deposit is due to the decomposition of In-bearing chalcopyrite. The resultant release of Fe led to the formation of hematite and magnetite, whereas Cu and In were incorporated into sphalerite along grain boundaries and micro fractures. Incorporation into the sphalerite lattice took place by coupled substitution of Cu+ + In3+ ↔ 2Zn2+, suggesting that the concurrent availability of Cu and In may be an essential factor to enrich In in sphalerite in hydrothermal ore-forming environments.
NASA Astrophysics Data System (ADS)
Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie
2015-05-01
Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourlier, Yoan; Cristini Robbe, Odile; Laboratoire de Physique des Lasers, Atomes et Molécules
Highlights: • CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin films were prepared by sol–gel process. • Evolution of lattice parameters is characteristic of a solid solution. • Optical band gap was found to be linearly dependent on the gallium rate. - Abstract: In this paper, we report the elaboration of Cu(In,Ga)S{sub 2} chalcopyrite thin films via a sol–gel process. To reach this aim, solutions containing copper, indium and gallium complexes were prepared. These solutions were thereafter spin-coated onto the soda lime glass substrates and calcined, leading to metallic oxides thin films. Expected chalcopyrite films were finally obtained by sulfurization of oxides layersmore » using a sulfur atmosphere at 500 °C. The rate of gallium incorporation was studied both at the solutions synthesis step and at the thin films sulfurization process. Elemental and X-ray diffraction (XRD) analyses have shown the efficiency of monoethanolamine used as a complexing agent for the preparation of CuIn{sub (1−x)}Ga{sub x}S{sub 2} thin layers. Moreover, the replacement of diethanolamine by monoethanolamine has permitted the substitution of indium by isovalent gallium from x = 0 to x = 0.4 and prevented the precipitation of copper derivatives. XRD analyses of sulfurized thin films CuIn{sub (1−x)}Ga{sub x}S{sub 2,} clearly indicated that the increasing rate of gallium induced a shift of XRD peaks, revealing an evolution of the lattice parameter in the chalcopyrite structure. These results were confirmed by Raman analyses. Moreover, the optical band gap was also found to be linearly dependent upon the gallium rate incorporated within the thin films: it varies from 1.47 eV for x = 0 to 1.63 eV for x = 0.4.« less
Liljeqvist, Maria; Rzhepishevska, Olena I; Dopson, Mark
2013-02-01
The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments.
NASA Astrophysics Data System (ADS)
Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin
2014-08-01
Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.
Liljeqvist, Maria; Rzhepishevska, Olena I.
2013-01-01
The psychrotolerant acidophile Acidithiobacillus ferrivorans has been identified from cold environments and has been shown to use ferrous iron and inorganic sulfur compounds as its energy sources. A bioinformatic evaluation presented in this study suggested that Acidithiobacillus ferrivorans utilized a ferrous iron oxidation pathway similar to that of the related species Acidithiobacillus ferrooxidans. However, the inorganic sulfur oxidation pathway was less clear, since the Acidithiobacillus ferrivorans genome contained genes from both Acidithiobacillus ferrooxidans and Acidithiobacillus caldus encoding enzymes whose assigned functions are redundant. Transcriptional analysis revealed that the petA1 and petB1 genes (implicated in ferrous iron oxidation) were downregulated upon growth on the inorganic sulfur compound tetrathionate but were on average 10.5-fold upregulated in the presence of ferrous iron. In contrast, expression of cyoB1 (involved in inorganic sulfur compound oxidation) was decreased 6.6-fold upon growth on ferrous iron alone. Competition assays between ferrous iron and tetrathionate with Acidithiobacillus ferrivorans SS3 precultured on chalcopyrite mineral showed a preference for ferrous iron oxidation over tetrathionate oxidation. Also, pure and mixed cultures of psychrotolerant acidophiles were utilized for the bioleaching of metal sulfide minerals in stirred tank reactors at 5 and 25°C in order to investigate the fate of ferrous iron and inorganic sulfur compounds. Solid sulfur accumulated in bioleaching cultures growing on a chalcopyrite concentrate. Sulfur accumulation halted mineral solubilization, but sulfur was oxidized after metal release had ceased. The data indicated that ferrous iron was preferentially oxidized during growth on chalcopyrite, a finding with important implications for biomining in cold environments. PMID:23183980
NASA Astrophysics Data System (ADS)
Bestemianova, K. V.; Grinev, O. M.
2017-12-01
Zmeinogorsky ore district is located in the northwest part of Ore Altai megatrough, which has long-lasting history of its development and complicated geological structure. Within the ore district, which is the northwest part of the devonian Zmeinogorsk-Bystrushinsky trough, ore mineralization is associated with the system of northwest border faults and cross branch faults. There were four main stages and five phases of minerogenesis. The first stage is the stage of oregenesis beginning and quartz-chlorite-sericite wall-rock alteration rocks formation. Ore deposition and intense tectonics took place during the second stage. The third stage is the most longstanding and productive ore formation stage. There are five distinct minerogenesis phases within this stage. The fourth stage expressed in erosion development and supergene alteration of already formed ore bodies with oxidation zone formation. Main ore minerals are pyrite, chalcopyrite, sphalerite and galena. Minor minerals are tetrahedrite, bornite, tennantite and chalcocite. Precious metals minerals are acanthite, gold, electrum, gold and silver amalgams. Barren minerals are barite, quartz, calcite, gypsum. According to obtained data average isotopic composition of third stage sulphides is: pyrite -0,2‰, chalcopyrite 0‰, galena +0,5‰, sphalerite -1,2‰ for the first complex; chalcopyrite -1,9‰, galena -3,4‰, sphalerite -2,3‰, tetrahedrite -3,7‰ for the second complex; tennantite -12,8‰, bornite -8,9‰ for the third complex. Sulfur isotopic compoisiton variations indicate source inhomogeneity. Thus, there was dominant source change from mantle one in the beginning to crustal one in the end. Main oregenesis stages took place in the range of temperatures between 170 and 210°С and in the mineral-forming solutions salinity range between 3 and 10 wt % NaCl equiv.
Leaching: use of a thermophilic and chemoautotrophic microbe.
Brierley, C L; Murr, L E
1973-02-02
A chemoautotrophic, thermophilic, and acidophilic microorganism capable of oxidizing reduced sulfur and iron compounds and leaching concentrates of molybdenite and chalcopyrite at 60 degrees C has been characterized by transmission and scanning electron microscopy. This constitutes the first direct observations of microorganisms on ore fines.
Effects of solvents on the synthesis of CuInSe2 nanoparticles for thin film solar cells.
Lee, Jaehyeong; Lee, Soo-Ho; Hahn, Jae-Sub; Sun, Ho-Jung; Park, Gyungse; Shim, Joongpyo
2014-12-01
Chalcopyrite CuInSe2 (CIS) nanoparticles were synthesized in oleic acid, 1-octadecene, oleyl amine and tetraethylene glycol at temperature above 200 degrees C. Depending on the solvent used and reaction temperature, the obtained nanoparticles had different shapes, sizes, chemical compositions, and crystal and thermal properties. CIS powders synthesized in oleic acid, 1-octadecene and oleyl amine above 200 degrees C exhibited chalcopyrite structure. On the other hand, powders prepared in tetraethylene glycol contained a mixture of CIS and CuSe compounds. The CIS powder obtained in oleyl amine had a high thermal stability over 500 degrees C. CIS thin films prepared from nanoparticles were heat-treated in order to observe changes in their property. After 10 min heat-treatment at 500 degrees C, their crystal structure and chemical composition were slightly changed, and their band gap energies were ca. 1.01 eV except in the case of powders prepared in tetraethylene glycol.
Pecina-Treviño, E T; Ramos-Escobedo, G T; Gallegos-Acevedo, P M; López-Saucedo, F J; Orrantia-Borunda, E
2012-09-01
Surface oxidation of sulfides and copper (Cu) activation are 2 of the main processes that determine the efficiency of flotation. The present study was developed with the intention to ascertain the role of the phenomena in the biomodification of sulfides by Acidithiobacillus ferrooxidans culture (cells and growth media) and their impact in bioflotation. Surface characteristics of chalcopyrite, sphalerite, and pyrrhotite, alone and in mixtures, after interaction with A. ferrooxidans were evaluated. Chalcopyrite floatability was increased substantially by biomodification, while bacteria depressed pyrrhotite floatability, favoring separation. The results showed that elemental sulfur concentration increased because of the oxidation generated by bacterial cells, the effect is intensified by the Fe(III) left in the culture and by galvanic contact. Acidithiobacillus ferrooxidans culture affects the Cu activation of sphalerite. The implications of elemental sulfur concentration and Cu activation of sphalerite are key factors that must be considered for the future development of sulfide bioflotation processes, since the depressive effect of cells could be counteracted by elemental sulfur generation.
NASA Astrophysics Data System (ADS)
Ouahrani, Tarik
2013-09-01
Local properties of the XSiP2 (X = Be, Mg, Cd, Zn and Hg) compounds are revisited through the partition of static thermodynamic properties under pressure. We pay attention to the metallization that occurs when the investigated compounds undergo a phase transition from chalcopyrite to the NaCl structure. Electron localization function analysis shows that the local valence basin attractors values decrease as a function of pressure. As the pressure increases, the tetragonal distortion ( c/ a) diminishes while the degree of ionicity enhances. In addition, by means of atom in molecule approach, atomic-like local compressibility and pressures are analyzed. We found that the basins volumes of the investigated compounds in the NaCl phase have lower compressibilities than those in the chalcopyrite phase. According to the predicted core-valence basins, the phosphorus cation is found to be the more affected by the hydrostatic pressure.
NASA Astrophysics Data System (ADS)
Barbanson, Luc; Chauvet, Alain; Gaouzi, Aziz; Badra, Lakhifi; Mechiche, Mohamed; Touray, Jean Claude; Oukarou, Saı̈d
2003-11-01
The Cu ore of Ifri is a chalcopyrite stockwork hosted by Cambrian formations and was until now interpreted as a syngenetic massive sulphide deposit. Textural studies highlight two generations of pyrite early (Py I) and late (Py II) with respect to the regional deformation. The chalcopyrite stockwork overprinted Py II, outlining the epigenetic nature of the Cu mineralization. Regarding the origin of Cu-depositing fluids, the presence in the stockwork paragenesis of an U, W, Sn association and preliminary Pb/Pb dating of a brannerite belonging to this association suggest a contribution of the Tichka granite. To cite this article: L. Barbanson et al., C. R. Geoscience 335 (2003).
NASA Astrophysics Data System (ADS)
Ouahrani, T.; Reshak, A. H.; de La Roza, A. Otero; Mebrouki, M.; Luaña, V.; Khenata, R.; Amrani, B.
2009-12-01
We report results from first-principles density functional calculations using the full-potential linear augmented plane wave (FP-LAPW) method. The generalized gradient approximation (GGA) and the Engel-Vosko-generalized gradient approximation (EV-GGA) were used for the exchange-correlation energy of the structural, electronic, linear and nonlinear optical properties of the chalcopyrite Ga2PSb compound. The valence band maximum (VBM) is located at the Γv point, and the conduction band minimum (CBM) is located at the Γc point, resulting in a direct band gap of about 0.365 eV for GGA and 0.83 eV for EV-GGA. In comparison with the experimental one (1.2 eV) we found that EV-GGA calculation gives energy gap in reasonable agreement with the experiment. The spin orbit coupling has marginal influence on the optical properties. The ground state quantities such as lattice parameters (a, c and u), bulk modules B and its pressure derivative B^primeare evaluated.
Microbiological Leaching of Metallic Sulfides
Razzell, W. E.; Trussell, P. C.
1963-01-01
The percentage of chalcopyrite leached in percolators by Thiobacillus ferrooxidans was dependent on the surface area of the ore but not on the amount. Typical examples of ore leaching, which demonstrate the role of the bacteria, are presented. In stationary fermentations, changes in KH2PO4 concentration above or below 0.1% decreased copper leaching as did reduction in the MgSO4·7H2O and increase in the (NH4)2SO4 concentration. Bacterial leaching of chalcopyrite was more effective than nonbiological leaching with ferric sulfate; ferric sulfate appeared to retard biological leaching, but this effect was likely caused by formation of an insoluble copper-iron complex. Ferrous sulfate and sodium chloride singly accentuated both bacterial and nonbiological leaching of chalcocite but jointly depressed bacterial action. Sodium chloride appeared to block bacterial iron oxidation without interfering with sulfide oxidation. Bacterial leaching of millerite, bornite, and chalcocite was greatest at pH 2.5. The economics of leaching a number of British Columbia ore bodies was discussed. PMID:16349627
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kocak, Belgin, E-mail: koakbelgin@gmail.com; Ciftci, Yasemin Oztekin, E-mail: yasemin@gazi.edu.tr
2016-03-25
The structural, electronic band structure and optic properties of the Ni doped MgSiP{sub 2} chalcopyrite compound have been performed by using first-principles method in the density functional theory (DFT) as implemented in Vienna Ab-initio Simulation Package (VASP). The generalized gradient approximation (GGA) in the scheme of Perdew, Burke and Ernzerhof (PBE) is used for the exchange and correlation functional. The present lattice constant (a) follows generally the Vegard’s law. The electronic band structure, total and partial density of states (DOS and PDOS) are calculated. We present data for the frequency dependence of imaginary and real parts of dielectric functions ofmore » Ni doped MgSiP{sub 2}. For further investigation of the optical properties the reflectivity, refractive index, extinction coefficient and electron energy loss function are also predicted. Our obtained results indicate that the lattice constants, electronic band structure and optical properties of this compound are dependent on the substitution concentration of Ni.« less
Latorre, Mauricio; Ehrenfeld, Nicole; Cortés, María Paz; Travisany, Dante; Budinich, Marko; Aravena, Andrés; González, Mauricio; Bobadilla-Fazzini, Roberto A; Parada, Pilar; Maass, Alejandro
2016-01-01
In order to provide new information about the adaptation of Acidithiobacillus ferrooxidans during the bioleaching process, the current analysis presents the first report of the global transcriptional response of the native copper mine strain Wenelen (DSM 16786) oxidized under different sulfide minerals. Microarrays were used to measure the response of At. ferrooxidans Wenelen to shifts from iron supplemented liquid cultures (reference state) to the addition of solid substrates enriched in pyrite or chalcopyrite. Genes encoding for energy metabolism showed a similar transcriptional profile for the two sulfide minerals. Interestingly, four operons related to sulfur metabolism were over-expressed during growth on a reduced sulfur source. Genes associated with metal tolerance (RND and ATPases type P) were up-regulated in the presence of pyrite or chalcopyrite. These results suggest that At. ferrooxidans Wenelen presents an efficient transcriptional system developed to respond to environmental conditions, namely the ability to withstand high copper concentrations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Konnunaho, J. P.; Hanski, E. J.; Bekker, A.; Halkoaho, T. A. A.; Hiebert, R. S.; Wing, B. A.
2013-12-01
Archean komatiites host important resources of Ni, Cu, Co, and PGE, particularly in Western Australia and Canada. In Finland, several small, low-grade sulfide deposits have been found in komatiites, including the ca. 2.8 Ga Vaara deposit in the Archean Suomussalmi greenstone belt. It occurs in the central part of the serpentinized olivine cumulate zone of a komatiitic extrusive body and is composed of disseminated interstitial sulfides consisting of pyrite, pentlandite, millerite, violarite, and chalcopyrite accompanied by abundant magnetite. Although currently subeconomic, the mineralization is interesting due to the very high chalcophile element contents of the sulfide fraction (38 wt% Ni, 3.4 wt% Cu, 0.7 wt% Co, 22.4 ppm Pd, and 9.5 ppm Pt). The sulfides occur in relatively Cr-poor olivine cumulates suggesting involvement of a chromite-undersaturated magma. The parental magma was an Al-undepleted komatiite with an estimated MgO content of at least 24 wt%. In contrast to the common komatiite types in the eastern Finland greenstone belts, the Vaara rocks are moderately enriched in LREE relative to MREE, suggesting that crustal contamination played an important role in the genesis of the Vaara deposit. Multiple sulfur isotope data reveal considerable mass-independent sulfur isotope fractionation both in country rock sedimentary sulfides (Δ33S ranges from -0.50 to +2.37 ‰) and in the Vaara mineralization (Δ33S ranges from +0.53 to +0.66 ‰), which provides strong evidence for incorporation of crustal sulfur. Extensive replacement of interstitial sulfides by magnetite and the presence of millerite- and violarite-bearing, pyrrhotite-free sulfide assemblages indicate significant post-magmatic, low-temperature hydrothermal oxidation of the primary magmatic pyrrhotite-pentlandite-chalcopyrite assemblages and associated sulfur loss that led to a significant upgrading of the original metal tenors of the Vaara deposit.
NASA Astrophysics Data System (ADS)
Fabricio-Silva, Wendell; Rosière, Carlos Alberto; Bühn, Bernhard
2018-05-01
Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548-600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak-Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.
NASA Astrophysics Data System (ADS)
Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé
2016-04-01
The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in stockwork. One of them is the east-west-oriented 6th vein zone in the northern part of the deposit, which contains quartz-molybdenite veins and late quartz-galena-sphalerite veins. This is interpreted as a telescoping between porphyry and epithermal environments. It is supported by microscopic studies of mineral paragenesis, which reveal the presence of enargite and tennantite-tetrahedrite, luzonite, sphalerite, and galena, generally in a gangue of quartz, followed by a late carbonate and gypsum stage. On-going fluid inclusion studies are being carried out on quartz samples from the different mineralization stages. Five types of fluid inclusions were distinguished according to their nature, bubble size, and daughter mineral content: vapor-rich, aqueous-carbonic, brine, polyphase brine and liquid-rich inclusions. Cathodoluminescence images from the porphyry veins reveal four generations of quartz. Molybdenite and chalcopyrite are associated with two different dark luminescent quartz generations, which contain typical brine, aqueous-carbonic and vapour-rich H2O fluid inclusions, with some of them coexisting locally as boiling assemblages. Epithermal veins are mainly characterized by liquid-rich H2O fluid inclusions. Microthermometric studies of fluid inclusions reveal a major difference in homogenisation temperatures between the early quartz-molybdenite- chalcopyrite stage (Thtotal between 3600 and 4250C) and the late quartz-galena-sphalerite vein stage (Thtotal 300-2700C), which is attributed to the transition from a porphyry to an epithermal environment in the Kadjaran deposit.
Geochemistry of the Patricia Zn-Pb-Ag Deposit (paguanta, NE Chile)
NASA Astrophysics Data System (ADS)
Chinchilla Benavides, D.; Merinero Palomares, R.; Piña García, R.; Ortega Menor, L.; Lunar Hernández, R.
2013-12-01
The Patricia Zn-Pb-Ag ore deposit is located within the Paguanta mining project, situated at the northern end of the Andean Oligocene Porphyry Copper Belt of Chile. The sulfide mineralization occurs as W-E oriented veins hosted in volcanic rocks, mainly andesite (pyroclastic, ash and lavas), of Upper Cretaceous to Middle Tertiary age. The ore mineralogy (obtained by EMPA analyses) comprises in order of abundance, pyrite, sphalerite (5.5 - 10.89 wt % Fe, 9.8-19 % molar FeS and 0.52 wt % Cd), galena, arsenopyrite, chalcopyrite and Ag-bearing sulfosalts. The veins show a zoned and banded internal structure with pyrite at the edges and sphalerite in the center. The Ag occurs mostly as Ag-Cu-Sb sulfosalts, in order of abundance: series freibergite - argentotennantite -polybasite and stephanite. Other minor Ag phases such as argentite, pyrargirite and diaphorite were also identified. These Ag phases are typically associated with the base-metal sulfides. Freibergite occurs filling voids within sphalerite, chalcopyrite and at the contact between sphalerite and galena. Polybasite, stephanite, pyrargirite and argentite are mostly in close association with freibergite. In the case of diaphorite, it commonly occurs filling voids between galena crystals or as inclusions within galena. Some minor Ag-bearing sulfosalts are also identified between pyrite crystals. The alteration minerals are dominated by chlorite, illite and kaolinite. The gangue minerals consist of quartz and carbonates identified by XRD as kutnahorite. We obtained linear correlation statistically significant only for Ag, As Au, Cd, Cu, Pb, Sb and Zn and therefore we generated an enhanced scatter plot matrix of these elements. Bulk rock analyses (ICP/MS and XRF) of drill cores show that Ag is strongly and positively correlated with Pb and As, moderately with Cd, Sb, Au and Zn and weakly with Cu, while Au is moderately and positively correlated with Ag, As, Cd, Sb and Zn and weakly with Cu and Pb. These results are consistent with bulk rock analyses of selected and mineralized samples were similar correlations have been obtained. Ag positive correlations indicate that the formation of Ag-bearing minerals is mainly associated with galena, arsenopyrite and sphalerite occurrence. Au positive correlations indicate that this element occurs in close relationship with Ag-bearing minerals, arsenopyrite and sphalerite. The weak correlation between Cu and Ag and Au indicate that the formation of chalcopyrite is not related with the main stages of Ag-Au mineralization. The main conclusion of this study is that geochemical analyses along drill cores that cut mineralization confirm that the occurrence of Ag and Au in the Paguanta deposit is associated with the formation of galena, arsenopyrite and sphalerite. This study also confirm previous conclusions suggesting that the Patricia Pb-Zn-Ag ore deposit probably represents an example of epithermal mineralization of intermediate sulfidation state, with periods of lower sulfidation state during sphalerite deposition.
NASA Astrophysics Data System (ADS)
Skvarenina, L.; Gajdos, A.; Macku, R.; Skarvada, P.
2017-12-01
The aim of this research is to detect and localize microstructural defects by using an electrically excited light emission from a forward/reverse-bias stressed pn-junction in thin-film Cu(In; Ga)Se2 solar cells with metal wrap through architecture. A different origin of the local light emission from intrinsic/extrinsic imperfections in these chalcopyrite-based solar cells can be distinguished by a spectrally-filtered electroluminescence mapping. After a light emission mapping and localization of the defects in a macro scale is performed a micro scale exploration of the solar cell surface by a scanning electron microscope which follows the particular defects obtained by an electroluminescence. In particular, these macroscopic/microscopic examinations are performed independently, then the searching of the corresponding defects in the micro scale is rather difficult due to a diffused light emission obtained from the macro scale localization. Some of the defects accompanied by a highly intense light emission very often lead to a strong local overheating. Therefore, the lock-in infrared thermography is also performed along with an electroluminescence mapping.
Pressure leaching of chalcopyrite concentrate
NASA Astrophysics Data System (ADS)
Aleksei, Kritskii; Kirill, Karimov; Stanislav, Naboichenko
2018-05-01
The results of chalcopyrite concentrate processing using low-temperature and high-temperature sulfuric acid pressure leaching are presented. A material of the following composition was used, 21.5 Cu, 0.1 Zn, 0.05 Pb, 0.04 Ni, 26.59 S, 24.52 Fe, 16.28 SiO2 (in wt.%). The influence of technological parameters on the degree of copper and iron extraction into the leach solution was studied in the wide range of values. The following conditions were suggested as the optimal for the high-temperature pressure leaching: t = 190 °C, PO2 = 0.5 MPa, CH2SO4 = 15 g/L, L:S = 6:1. At the mentioned parameters, it is possible to extract at least 98% Cu from concentrate into the leaching solution during 100 minutes. The following conditions were suggested as optimal for the low-temperature pressure leaching: t = 105 °C, PO2 = 1.3-1.5 MPa, CH2SO4 = 90 g/L, L:S = 10:1. At the mentioned parameters, it is possible to extract up to 83% Cu from the concentrate into the leach solution during 300-360 minutes.
Investigation on microwave heating for direct leaching of chalcopyrite ores and concentrates
NASA Astrophysics Data System (ADS)
Onol, Kubra; Saridede, Muhlis Nezihi
2013-03-01
The use of microwave energy in materials processing is a relatively new development presenting numerous advantages because of the rapid heating feature. Microwave technology has great potential to improve the extraction efficiency of metals in terms of both a reduction in required leaching time and an increase in the recovery of valuable metals. This method is especially pertinent in view of the increased demand for environment-friendly processes. In the present study, the influence of microwave heating on the direct leaching of chalcopyrite ores and concentrates were investigated. The results of microwave leaching experiments were compared with those obtained under conventional conditions. During these processes, parameters such as leaching media, temperature, and time have been worked to determine the optimum conditions for proper copper dissolution. Experimental results show that microwave leaching is more efficient than conventional leaching. The optimum leaching conditions for microwave leaching are the solid-to-liquid ratio of 1:100 g/mL, the temperature of 140°C, the solution of 0.5 M H2SO4 + 0.05 M Fe2(SO4)3, and the time of 1 h.
NASA Astrophysics Data System (ADS)
Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan
2017-04-01
The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.
Li, Qihou; Tian, Ye; Fu, Xian; Yin, Huaqun; Zhou, Zhijun; Liang, Yiting; Qiu, Guanzhou; Liu, Jie; Liu, Hongwei; Liang, Yili; Shen, Li; Cong, Jing; Liu, Xueduan
2011-08-01
To determine the effect of organics (yeast extract) on microbial community during chalcopyrite bioleaching at different temperature, real-time polymerase chain reaction (PCR) was employed to analyze community dynamics of major bacteria applied in bioleaching. The results showed that yeast extract exerted great impact on microbial community, and therefore influencing bioleaching rate. To be specific, yeast extract was adverse to this bioleaching process at 30°C due to decreased proportion of important chemolithotrophs such as Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. However, yeast extract could promote bioleaching rate at 40°C on account of the increased number and enhanced work of Ferroplasma thermophilum, a kind of facultative bacteria. Similarly, bioleaching rate was enhanced under the effect of yeast extract at 50°C owing to the work of Acidianus brierleyi. At 60°C, bioleaching rate was close to 100% and temperature was the dominant factor determining bioleaching rate. Interestingly, the existence of yeast extract greatly enhanced the relative competitiveness of Ferroplasma thermophilum in this complex bioleaching microbial community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.
We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less
Frick, Jessica J.; Kushwaha, Satya K.; Cava, Robert J.; ...
2017-07-27
We report the carrier transport properties of CuIn(S 1-xSe x) 2 (0 ≤ x ≤ 1), a promising chalcopyrite semiconductor series for solar water splitting. A low concentration Mg dopant is used to decrease the carrier resistivity through facilitating bulk p-type transport at ambient temperature. Temperature-dependent resistivity measurements reveal a four-order magnitude decrease in bulk electrical resistivity (from 10 3 to 10 –1 Ohm cm) for 1% Mg-doped CuIn(S 1–xSe x) 2 as x increases from 0 to 1. Hall effect measurements at room temperature reveal p-type majority carrier concentrations that vary from 10 15 to 10 18 cm –3more » and mobilities of approximately 1–10 cm 2 V –1 s –1. These results provide insights into the fundamental carrier transport properties of CuIn(S 1–xSe x) 2 and will be of value in optimizing these materials further for photoelectrochemistry applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jianjun, E-mail: zhangjianjun7110@163.com; Chen, Jun; Li, Qiang
2015-03-15
Graphical abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. Results show that microwave heating time plays an important role in the formation of CuInS{sub 2} nanostructure phase. The SEM results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The UV–vis spectrum results indicated that the CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. The possible growth mechanism of CuInS{sub 2} nanorods was discussed. -more » Abstract: Chalcopyrite structured CuInS{sub 2} nanorods were synthesized by an environmentally friendly microwave heating method in deep eutectic solvent. The as-synthesized CuInS{sub 2} nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), respectively. The results indicated that the obtained CuInS{sub 2} nanostructures display rod-like morphology with diameters of about 40 nm and lengths of about 400 nm. The influences of microwave heating time on the formation of CuInS{sub 2} phase were discussed. Ultraviolet–visible (UV–vis) and photoluminescence (PL) spectra were utilized to investigate the optical properties of CuInS{sub 2} nanorods. The results showed that the as-synthesized CuInS{sub 2} nanorods exhibit strong absorption from the entire visible light region to the near-infrared region beyond 1100 nm. PL spectrum of the as-synthesized CuInS{sub 2} nanorods displays an emission peak centered at 580 nm under excitation wavelength of 366 nm at room temperature. The possible growth mechanism of CuInS{sub 2} nanorods was discussed.« less
NASA Astrophysics Data System (ADS)
Bjerkgard, T.; Stein, H. J.; Bingen, B.; Henderson, I. H. C.; Sandstad, J. S.; Moniz, A.
2009-01-01
The Niassa Gold Belt, in northernmost Mozambique, is hosted in the Txitonga Group, a Neoproterozoic rift sequence overlying Paleoproterozoic crust of the Congo-Tanzania Craton and deformed during the Pan-African Orogeny. The Txitonga Group is made up of greenschist-facies greywacke and schist and is characterized by bimodal, mainly mafic, magmatism. A zircon U-Pb age for a felsic volcanite dates deposition of the sequence at 714 ± 17 Ma. Gold is mined artisanally from alluvial deposits and primary chalcopyrite-pyrite-bearing quartz veins containing up to 19 ppm Au have been analyzed. In the Cagurué and M'Papa gold fields, dominantly N-S trending quartz veins, hosted in metagabbro and schist, are regarded as tension gashes related to regional strike-slip NE-SW-trending Pan-African shear zones. These gold deposits have been classified as mesozonal and metamorphic in origin. Re-Os isotopic data on sulfides suggest two periods of gold deposition for the Cagurué Gold Field. A coarse-crystalline pyrite-chalcopyrite assemblage yields an imprecise Pan-African age of 483 ± 72 Ma, dating deposition of the quartz veins. Remobilization of early-formed sulfides, particularly chalcopyrite, took place at 112 ± 14 Ma, during Lower Cretaceous Gondwana dispersal. The ˜483 Ma assemblage yields a chondritic initial 187Os/ 188Os ratio of 0.123 ± 0.058. This implies a juvenile source for the ore fluids, possibly involving the hosting Neoproterozoic metagabbro. The Niassa Gold Belt is situated at the eastern end of a SW-NE trending continental-scale lineament defined by the Mwembeshi Shear Zone and the southern end of a NW-SE trending lineament defined by the Rukwa Shear Zone. We offer a review of gold deposits in Zambia and Tanzania associated with these polyphase lineaments and speculate on their interrelation.
Characteristics of the Late Devonian Tsagaan Suvarga Cu-Mo deposit, Southern Mongolia
NASA Astrophysics Data System (ADS)
Tungalag, Naidansuren; Jargalan, Sereenen; Khashgerel, Bat-Erdene; Mijiddorj, Chuluunbaatar; Kavalieris, Imants
2018-05-01
The Late Devonian Tsagaan Suvarga deposit (255 Mt at 0.55% Cu, 0.02% Mo) is located on the NW margin of the Tsagaan Suvarga Complex (TSC), which extends ENE over 15 × 10 km and comprises mainly medium-grained equigranular hornblende-biotite quartz monzonite and monzodiorite. Distinct mineralized intrusions are inferred from distribution of Cu-Mo mineralization but are not clearly discernible. The Tsagaan Suvarga Complex is a window within Carboniferous volcanic and sedimentary rocks, and wall rocks to the TSC are not known or exposed in the nearby district. Whole-rock analyses and Sr-Nd isotopes, 87Sr/86Sr0 = 0.7027 to 0.7038 (n = 12) and ɛNd0 = + 4.26 to + 2.77 (n = 12), show that the granitoids are subduction-related I-type, high K-calc-alkaline to shoshonitic series and derived from a mantle source. They exhibit fractionated light rare earth elements, without depleted Eu and depleted middle heavy rare earth elements and Y, typical of oxidized, fertile porphyry magmatic suites. Early porphyry-style quartz veins include A- and B-type. Molybdenite occurs in monomineralic veins (1-5 mm) or A veins. Copper mineralization occurs mainly as chalcopyrite and subordinate bornite, disseminated and associated with quartz-muscovite veins. Pyrite (vol%) content is less than chalcopyrite and bornite combined. Deep oxidation to about 50 m depth has formed zones of malachite and covellite in late fractures. The most important alteration is actinolite-biotite-chlorite-magnetite replacing hornblende and primary biotite. Quartz-K-feldspar alteration is minor. Late albite replaces primary K-feldspar and enhances sodic rims on plagioclase crystals. Quartz-muscovite (or sericitic alteration) overprints actinolite-biotite and porphyry-type quartz veins. Field observations and petrographic studies suggest that the bulk of the chalcopyrite-bornite mineralization at the Tsagaan Suvarga formed together with coarse muscovite alteration.
Characterization of porosity in sulfide ore minerals: A USANS/SANS study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, F.; Zhao, J.; Etschmann, B. E.
Porosity plays a key role in the formation and alteration of sulfide ore minerals, yet our knowledge of the nature and formation of the residual pores is very limited. Herein, we report the application of ultra-small-angle neutron scattering and small-angle neutron scattering (USANS/SANS) to assess the porosity in five natural sulfide minerals (violarite, marcasite, pyrite, chalcopyrite, and bornite) possibly formed by hydrothermal mineral replacement reactions and two synthetic sulfide minerals (violarite and marcasite) prepared experimentally by mimicking natural hydrothermal conditions. USANS/SANS data showed very different pore size distributions for these minerals. Natural violarite and marcasite tend to possess less poresmore » in the small size range (<100 nm) compared with their synthetic counterparts. This phenomenon is consistent with a higher degree of pore healing or diagenetic compaction experienced by the natural violarite and marcasite. Surprisingly, nanometer-sized (<20 nm) pores were revealed for a natural pyrite cube from La Rioga, Spain, and the sample has a pore volume fraction of ~7.7%. Both chalcopyrite and bornite from the massive sulfide assemblage of the Olympic Dam deposit in Roxby Downs, South Australia, were found to be porous with a similar pore volume fraction (~15%), but chalcopyrite tends to have a higher proportion of nanometer-size pores centered at ~4 nm while bornite tends to have a broader pore size distribution. The specific surface area is generally low for these minerals ranging from 0.94 to 6.28 m2/g, and the surfaces are generally rough as surface fractal behavior was observed for all these minerals. This investigation has demonstrated that USANS/SANS is a very useful tool for analyzing porosity in ore minerals. We believe that with this quantified porosity information a deeper understanding of the complex fluid flow behavior within the porous minerals can be expected.« less
NASA Astrophysics Data System (ADS)
Wohlgemuth-Ueberwasser, Cora C.; Viljoen, Fanus; Petersen, Sven; Vorster, Clarisa
2015-06-01
The key for understanding the trace metal inventory of currently explored VHMS deposits lies in the understanding of trace element distribution during the formation of these deposits on the seafloor. Recrystallization processes already occurring at the seafloor might liberate trace elements to later hydrothermal alteration and removement. To investigate the distribution and redistribution of trace elements we analyzed sulfide minerals from 27 black smoker samples derived from three different seafloor hydrothermal fields: the ultramafic-hosted Logatchev hydrothermal field on the Mid-Atlantic Ridge, the basaltic-hosted Turtle Pits field on the mid-atlantic ridge, and the felsic-hosted PACMANUS field in the Manus basin (Papua New Guinea). The sulfide samples were analyzed by mineral liberation analyser for the modal abundances of sulfide minerals, by electron microprobe for major elements and by laser ablation-inductively coupled plasma-mass spectrometry for As, Sb, Se, Te, and Au. The samples consist predominantly of chalcopyrite, sphalerite, pyrite, galena and minor isocubanite as well as inclusions of tetrahedrite-tennantite. Laser ablation spectra were used to evaluate the solubility limits of trace elements in different sulfide minerals at different textures. The solubility of As, Sb, and Au in pyrite decreases with increasing degree of recrystallization. When solubility limits are reached these elements occur as inclusions in the different sulfide phases or they are expelled from the mineral phase. Most ancient VHMS deposits represent felsic or bimodal felsic compositions. Samples from the felsic-hosted PACMANUS hydrothermal field at the Pual ridge (Papua New Guinea) show high concentrations of Pb, As, Sb, Bi, Hg, and Te, which is likely the result of an additional trace element contribution derived from magmatic volatiles. Co-precipitating pyrite and chalcopyrite are characterized by equal contents of Te, while chalcopyrite that replaced pyrite (presumably during black smoker growth) is enriched in Te relative to pyrite. These higher Te concentrations may be related to higher fluid temperature.
NASA Astrophysics Data System (ADS)
Noku, Shadrach K.; Espi, Joseph O.; Matsueda, Hiroharu
2015-01-01
We present the first sulfur (S) isotope data of sulfides, sulfates, pyrite in host mudstone, and bulk sulfur of gabbroic rocks from the Laloki and Federal Flag massive Cu-Zn-Au-Ag deposits in the Astrolabe mineral district, Papua New Guinea. Early-stage pyrite-marcasite, chalcopyrite, and sphalerite from Laloki display wide range of δ34S values from -4.5 to +7.0 ‰ ( n = 16). Late-stage pyrite, chalcopyrite, and sphalerite have restricted δ34S values of -1.9 to +4.7 ‰ ( n = 16). The mineralizing stage these correspond to had moderately saline (5.9-8.4 NaCl eq. wt%) mineralizing fluids of possible magmatic origin. A single analysis of late-stage barite has a value of δ34S +17.9 ‰, which is likely similar to coexisting seawater sulfate. Pyrite from the foot-wall mudstone at Laloki has very light δ34S values of -36.1 to -33.8 ‰ ( n = 2), which suggest an organic source for S. Pyrite-marcasite and chalcopyrite from Federal Flag show δ34S values of -2.4 to -1.9 ‰ ( n = 2), consistent with a magmatic origin, either leached from intrusive magmatic rocks or derived from magmatic-hydrothermal fluids. The very narrow range and near-zero δ34S values (-1.0 to +0.6 ‰) of bulk gabbroic samples is consistent with mantle-derived magmatic S. Sulfur isotope characteristics of sulfides and sulfates are, however, very similar to base metal sulfide accumulations associated with modern volcanic arcs and sedimented mid-ocean ridges. The most reasonable interpretation is that the range of the sulfide and sulfate δ34S values from both Laloki and Federal Flag massive sulfide deposits is indicative of the complex interaction of magmatic fluids, seawater, gabbroic rocks, and mudstone.
Geology of the Wood and East Calhoun mines, Central City District, Gilpin County, Colorado
Drake, Avery Ala
1955-01-01
The Wood-East Calhoun mine area is underlain by complexly folded Precambrian gneiss and pegmatite. The major fold in the area is an anticline that trends about N. 60° E. The Precambrian rocks are intruded by bostonite porphyry dikes of Tertiary age. All the rocks are cut by east- to northeast - trending faults that have been filled by precious metal-sulfide veins which have been worked chiefly for gold. The Wood vein occurs in an east-trending fault; the Calhoun vein occurs in a northeast-trending fault. Much of the uranium production of the Central City district has come from the Wood vein on Quartz Hill. The veins consist chiefly of quartz; pyrite is the chief metallic mineral and chalcopyrite is next in abundance. Sphalerite, galena, tetrahedrite-tennantite, and pitchblende are locally present. Deposition began with alteration-stage quartz and pyrite followed in order by pitchblend, light-yellow pyrite, massive quartz, yellow pyrite, shalerite, comb quartz, chalcopyrite, tetrahedrite-tennantite, galena, chalcopyrite, pyrite, and gray to light-brown fine-grained quartz. The veins of the Central City district are zoned, with quartz-pyrite veins near the center and galena-sphalerite veins on the periphery. The known pitchblende bodies are in the transition between these, but paragenetically, the pitchblende is earlier than all other metallic minerals. A trace element study of the ore indicates an association of zirconium and molybdenum with uranium, of bismuth, antimony, and arsenic with copper, and of cadmium with zinc. The pitchblende and other ore minerals are concentrated in ore shoots. The shoots are in open spaces controlled by the competency of the wall rocks, the presence of a prevailing direction of weakness in the rocks, and changes in strike and dip of the vein. The pitchblende is thought to be a local constituent of the quartz-pyrite ores and to owe its origin to residual solutions from the quartz bostonite magma.
Mineralogy of Copper-Gold Deposit, Masjid Daghi Area, Jolfa, IRAN
NASA Astrophysics Data System (ADS)
Zenoozi, Roya
2010-05-01
The Copper-Gold deposit of Masjid Daghi area is located in the Jolfa quadrangle (scale 1:100,000), East Azerbaijan Province, north-west Iran. The deposit, hosting by sub-volcanic bodies comprise of quartz monzonite composition whose intruded the Tertiary volcanic and volcanic-sedimentary rocks and turbidities. The Tertiary volcanic rocks consist of andesite, trachy andesite and quartz andesite. These mineral-bearing bodies related to Late Eocene sub-volcanic activities which intrudded the Eocene volcanic rocks. Mineralography, XRD and SEM studies showed that the variations in mineralization of the area. The main agent of mineralization is the intrusion of Late Eocene sub volcanic bodies inside the Tertiary volcanic units. The mineralography studies revealed two main groups of mineralization as oxides and sulfides. The sulfide minerals formed as veins, vein lets and stock work.The economic minerals comprise of native gold, copper sulfides. The native gold occurring in siliceous veins and almost as inclusions inside the sulfides minerals such as chalcopyrite. The copper sulfides, contain pyrite, chalcopyrite and chalco-pyrrhoyite. Pyrite is main sulfide in the area and formed as disseminations, cavity filling and colloform. The amount of pyrite, chalcopyrite and chalco-pyrrhoyite increases with depth. Supergene alteration produced digenite, covellite, bornite, and malachite. The alteration occurred as potassic, phyllic, argillic and propylitic minerals. Furthermore, selective sercitic, sericitic-chloritic and alunitic alterations are seen around the mineralized veins. The mineralography studies indicate that pyrite is main mineral phase and native gold occurred in silicious vein almost as inclusions inside the sulfide mineral. Most of economic mineral formed as veins, vein lets, disseminated, cavity filling and colloform which related to intrusions of Late Eocene quartz monzonite bodies into the Eocene volcanic rocks and turbiditse. Some types of alterations such as potassic, phillic, argillic and prophylitic in the area and silicious alteration near the mineralized veins, indicate probable existence of porphyry copper ore and imply epithermal gold in the Jolfa area, north west of Iran. Key words: Masjid Dagi, Alteration, Pyrite, Sulfide, Mineralography, Stock work.
NASA Astrophysics Data System (ADS)
Höhn, S.; Frimmel, H. E.; Debaille, V.; Pašava, J.; Kuulmann, L.; Debouge, W.
2017-12-01
The stratiform Cu-Zn sulfide deposit at Kupferberg in Germany represents Bavaria's largest historic base metal producer. The deposit is hosted by Early Paleozoic volcano-sedimentary strata at the margin of a high-grade allochthonous metamorphic complex. The present paper reports on the first Cu and S isotope data as well as trace element analyses of pyrite from this unusual deposit. The new data point to syn-orogenic mineralization that was driven by metamorphic fluids during nappe emplacement. Primary Cu ore occurs as texturally late chalcopyrite within stratiform laminated pyrite in black shale in two different tectonostratigraphic units of very low and low metamorphic grade, respectively, that were juxtaposed during the Variscan orogeny. Trace element contents of different pyrite types suggest the presence of at least one hydrothermal pyrite generation (mean Co/Ni = 35), with the other pyrite types being syn-sedimentary/early diagenetic (mean Co/Ni = 3.7). Copper isotope analyses yielded a narrow δ65Cu range of -0.26 to 0.36‰ for all ore types suggesting a hypogene origin for the principal chalcopyrite mineralization. The ore lenses in the two different tectonostratigraphic units differ with regard to their δ34S values, but little difference exists between poorly and strongly mineralized domains within a given locality. A genetic model is proposed in which syn-sedimentary/early diagenetic pyrite with subordinate chalcopyrite and sphalerite formed in black shale beds in the two different stratigraphic units, followed by late-tectonic strata-internal, hydrothermal mobilization of Fe, Cu, and Zn during syn-orogenic thrusting, which concentrated especially Cu to ore grade. In agreement with this model, Cu distribution in stream sediments in this region shows distinct enrichments bound to the margin of the allochthonous complex. Thus, Kupferberg can be considered a rare example of a syn-orogenic Cu deposit with the Cu probably being derived from syn-sedimentary/early diagenetic pyrite contained in Early Paleozoic shale units.
Chemical dissolution of sulfide minerals
Chao, T.T.; Sanzolone, R.F.
1977-01-01
Chemical dissolution treatments involving the use of aqua regia, 4 N HNO3, H2O2-ascorbic acid, oxalic acid, KClO3+HCl, and KClO3+HCl followed by 4 N HNO3 were applied to specimens of nine common sulfide minerals (galena, chalcopyrite, cinnabar, molybdenite, orpiment, pyrite, stibnite, sphalerite, and tetrahedrite) mixed individually with a clay loam soil. The resultant decrease in the total sulfur content of the mixture, as determined by using the Leco induction furnace, was used to evaluate the effectiveness of each chemical treatment. A combination of KClO3+HCl followed by 4 N HNO3 boiling gently for 20 min has been shown to be very effective in dissolving all the sulfide minerals. This treatment is recommended to dissolve metals residing in sulfide minerals admixed with secondary weathering products, as one step in a fractionation scheme whereby metals in soluble and adsorbed forms, and those associated with organic materials and secondary oxides, are first removed by other chemical extractants.
An Example of Cyprus type Volcanogenic Massive Sulfide Deposit in the Southeast of Turkey
NASA Astrophysics Data System (ADS)
Kang, J.; Lee, I.; Donmez, C.; Yildirim, N.; Chang, S.
2013-12-01
Ortaklar mineral deposit of Gaziantep province in Turkey is located in the Southeast Anatolian orogenic belt which was developed as a result of closure of Neotethyan ocean, between Tauride (at north) and Arabian platform (at south), during upper Cretaceous-Miocene periods. Copper mineralization is in spilitic basalt and pillow lavas of Kocali complex. The complex includes oceanic fragments that represent serpentinite, mafic and ultramafic cumulates, isotropic gabbros, sheeted dyke complexes, spilitic basalt, pillow lavas, and radiolarian chert. The deposit is generally parallel to the thrust lines (E-W/30-60 North). Ore minerals occur in massive form and also as stockwork or disseminated forms at subsurface. Oxidized zone appears about 1 km in width at surface. The orebody is underlain and contacted with radiolarian chert. The samples mainly have been collected from open pit but also include some core samples. The samples were examined with unaided eyes and under microscope. In basalts, clino-pyroxenes subophitically enclose laths of plagioclases. Amygdales are filled with calcite in spilitic basalts and it is heavily chloritized and cut by calcite veins. In some parts of basalt, crystobalite is intergrowth with plagioclas. Globules between laths of plagioclase are also observed due to liquid immiscibility. Cherts have spherical radiolaria skeletons and their long thin spines. A lot of carbonate veinlets are developed as well. Few samples of cherts have radialfibrous quartz, known as chalcedonic quartz. Serpentinites in the study area are divided into two types on the basis of the existence of relics of the original minerals. One has relict crystals of olivine or pyroxene within the network of serpenitine and the other has no mineral remnants. Both types have opaque iron oxides with some brown stains among small blocks by numerous veinlets. Major ore minerals consist of chalcopyrite, pyrite, magnetite, and hematite. Minor ore minerals are composed of bornite, covellite, chalcocite, sphalerite, and Fe-oxide. Pyrite occurs as a typical cube shape or shows cataclastic texture. And intergrowth of chalcopyrite with magnetite and massive chalcopyrite are observed in the samples. Goethite and lepidocrocite occur in needle or lath shape in the samples from the iron cap as the secondary minerals. It is also shown that pyrite and chalcopyrite are replaced by anhedral bornite and chalcocite. Sulfide textures also indicate grain-coarsening and crystallization under hydrothermal conditions. Electron microprobe was used to identify several minerals and to find out the difference of trace elements such as Cr, Ni, Co, As, Zn, and Pb within mineral grains. Ortaklar copper deposit in Gaziantep resembles Cyprus type volcanogenic massive sulfide deposit based on ore mineralogy, mineral assemblages, textures, and host rock relationship. To investigate more detail characteristics of the deposit, trace elements and rare earth elements were analyzed using inductively coupled plasma mass spectrometer.
Development of Chalcopyrite Crystals for Nonlinear Optical Applications
1974-12-01
write the expansion ol the homopolar and the heteropolar part of the mean energy gap in the following way. £.(«) - £. + (a«», + (a.)’*, + (Ha) C...a nearly linear relation over a wide 7 —12-um spectral range. We therefore used a 1 stepping motor and synchronously rotated the AgGaSe, crystal
Microstructure and thermoelectric properties of CuInSe2/In2Se3 compound
NASA Astrophysics Data System (ADS)
Wang, Kang; Feng, Jing; Ge, Zhen-Hua; Qin, Peng; Yu, Jie
2018-01-01
CuInSe2 powders were synthesized by solvothermal method, and then the CuInSe2/In2Se3 bulk samples were fabricated by spark plasma sintering (SPS) technique. To investigate the phase composition, the powders were determined by X-ray diffraction (XRD). The microstructures of the powders and bulk samples were observed by scanning electron microscopy (SEM). The transportation of the electronic properties and thermal conductivity were measured at room temperature to 700 K. According to the results, the CuInSe2 powders appeared in flower-like patterns which ranged from 3 μm to 6 μm. CuInSe2 powders were synthesized at 180∘C with a chalcopyrite structure. The Seebeck coefficient increased significantly in composite thermoelectric materials up to 200μVṡK-1 at 623 K. The thermal conductivity of the sample significantly decreases from the room temperature to 700 K. The CuInSe2 bulk composite by solvothermal method achieves the highest ZT value of 0.187 at 700 K.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.
1993-01-01
The growth of ZnGeP2/GaP double and multiple heterostructures on GaP substrates by organometallic chemical vapor deposition is reported. These epitaxial films were deposited at a temperature of 580 C using dimethylzinc, trimethylgallium, germane, and phosphine as source gases. With appropriate deposition conditions, mirror smooth epitaxial GaP/ZnGeP2 multiple heterostructures were obtained on (001) GaP substrates. Transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) studies of the films showed that the interfaces are sharp and smooth. Etching study of the films showed dislocation density on the order of 5x10(exp 4)cm(sup -2). The growth rates of the GaP layers depend linearly on the flow rates of trimethylgallium. While the GaP layers crystallize in zinc-blende structure, the ZnGeP2 layers crystallize in the chalcopyrite structure as determined by (010) electron diffraction pattern. This is the first time that multiple heterostructures combining these two crystal structures were made.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, K. J.; Posthill, J. B.; Timmons, M. L.
1991-01-01
In this paper, we report the epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube OMCVD. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology has been achieved for x less than or equals to 0.05. Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10 exp 18 to 2 x 10 exp 17/cu cm. Absorption measurements indicate that the band tailing in the absorption spectra of the alloy has been shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material.
NASA Astrophysics Data System (ADS)
Zhang, Bin; Zhou, Tao; Zheng, Maojun; Xiong, Zuzhou; Zhu, Changqing; Li, Hong; Wang, Faze; Ma, Li; Shen, Wenzhong
2014-07-01
Quaternary nanostructured Cu(In1 - xGax)Se2 (CIGS) arrays were successfully fabricated via a novel and simple solution-based protocol on the electroless deposition method, using a flexible, highly ordered anodic aluminium oxide (AAO) substrate. This method does not require electric power, complicated sensitization processes, or complexing agents, but provides nearly 100% pore fill factor to AAO templates. The field emission scanning electron microscopy (FE-SEM) images show that we obtained uniformly three-dimensional nanostructured CIGS arrays, and we can tailor the diameter and wall thicknesses of the nanostructure by adjusting the pore diameter of the AAO and metal Mo layer. Their chemical composition was determined by energy-dispersive spectroscopy analysis, which is very close to the stoichiometric value. The Raman spectroscopy, x-ray diffraction (XRD) pattern, and transmission electron microscopy (TEM) further confirm the formation of nanostructured CIGS with prominent chalcopyrite structure. The nanostructured CIGS arrays can support the design of low-cost, highlight-trapping, and enhanced carrier collection nanostructured solar cells.
Plumlee, Geoffrey S.; Heald Whitehouse-Veaux, Pamela
1994-01-01
The Bulldog Mountain vein system, Creede district, Colorado, is one of four major epithermal vein systems from which the bulk of the district's historical Ag-Pb-Zn-Cu production has come. Ores deposited along the vein system were discovered in 1965 and were mined from 1969 to 1985.Six temporally gradational mineralization stages have been identified along the Bulldog Mountain vein system, each with a characteristic suite of minerals deposited or leached and a characteristic distribution within the vein system; some of these stages are also strongly zoned within the vein system. Stage A was dominated by deposition of rhodochrosite along the lower levels of the Bulldog Mountain ore zone. Stage B in the northern parts of the ore zone is characterized by abundant fine-grained sphalerite and galena, with lesser tetrahedrite and minor chlorite and hematite. With increasing elevation to the south, stage B ores become progressively more barite and silver rich, with alternating barite and fine-grained sphalerite + galena generations; native silver + or - acanthite assemblages are also locally abundant within southern stage B barite sulfide ores, whereas chalcopyrite and other Cu and Ag sulfides and sulfosalts are present erratically in minor amounts. Stage C in the upper and northern portions of the ore zone is characterized by abundant quartz and fluorite, minor adularia, hematite, Mn siderite, sphalerite, and galena, and major leaching of earlier barite; to the south, some barite and sulfides may have been deposited. Stage D sphalerite and galena were deposited in the upper and northern portions of the ore zone; a barite- and silver-rich facies of this stage may also be present in the southern portions of the vein system. Late in stage D, mineralogically complex assemblages containing chalcopyrite, tetrahedrite, polybasite, bornite, pyrargyrite, and a variety of other sulfides and sulfosalts were deposited in modest amounts throughout the vein system. This complex assemblage marked the transition to stage E. During stage E, the final sulfide stage, abundant botryoidal pyrite and marcasite with lesser stibnite, sphalerite, and sulfosalts were deposited primarily along the top of the Bulldog Mountain ore zone. Stage F, the final mineralization stage along the vein system, is marked by wire silver and concurrent leaching of earlier sulfides and sulfosalts; this stage may reflect the transition to a supergene environment.The sequence of mineralization stages identified in this study along the Bulldog Mountain system can be correlated with corresponding stages identified by other researchers along the OH and P veins, and the southern Amethyst vein system. Mineral zoning patterns identified along the Bulldog Mountain vein system also parallel larger scale zoning patterns across the central and southern Creede district.The complex variations in mineral assemblages documented in time and space along the Bulldog Mountain vein system were produced by the combined effects of many processes. Large-scale changes in vein mineralogy over time produced discrete mineralization stages. Short-term mineralogical fluctuations produced complex interbanding of mineralogically distinct generations. Fluid chemistry evolution within the vein system produced large-scale lateral zoning patterns within certain stages. Hypogene leaching substantially modified the distributions of some minerals. Finally, structural activity, mineral deposition, and mineral leaching modified fluid flow pathways repeatedly during mineralization, and so added to the complex mineral distribution patterns within the vein system.
NASA Astrophysics Data System (ADS)
Li, Ji-Lei; Gao, Jun; Klemd, Reiner; John, Timm; Wang, Xin-Shui
2016-09-01
The oxidized nature of the sub-arc mantle and hence arc magmas is generally interpreted as a result of the migration of subduction-related oxidizing fluids or melts from the descending slab into the mantle wedge. This is of particular importance seeing that the oxidization state of sub-arc magmas seems to play a key role in the formations of arc-related ore deposits. However, direct constraints on the redox state of subducted oceanic crust are sparse. Here, we provide a detailed petrological investigation on sulfide- and oxide-bearing eclogites, blueschists, micaschists, eclogite-facies and retrograde veins from the Akeyazi high-pressure (HP) terrane (NW China) in order to gain insight into the redox processes recorded in a subducting oceanic slab. Sulfides in these rocks are mainly pyrite and minor pyrrhotite, chalcopyrite, bornite, molybdenite, sphalerite and chalcocite, including exsolution textures of bornite-chalcopyrite intergrowth. Magnetite, ilmenite and pyrite occur as inclusions in garnet, whereas sulfides are dominant in the matrix. Large pyrite grains in the matrix contain inclusions of garnet, omphacite and other HP index minerals. However, magnetite replacing pyrite textures are commonly observed in the retrograded samples. The eclogite-facies and retrograde veins display two fluid events, which are characterized by an early sulfide-bearing and a later magnetite-bearing mineral assemblage, respectively. Textural and petrological evidences show that the sulfides were mainly formed during HP metamorphism. Mineral assemblage transitions reveal that the relative oxygen fugacity of subducted oceanic crust decreases slightly with increasing depths. However, according to oxygen mass balance calculations, based on the oxygen molar quantities ( nO2), the redox conditions remain constant during HP metamorphism. At shallow levels (<60 km) in the subduction channel, interaction with oxidized fluid seems to have caused an increase of the oxygen fugacity and the oxidation state of exhuming HP rocks. This study suggests that oxygen components are not released in significant amounts during HP metamorphism of subducted oceanic crust and, thus, cannot be responsible for oxidizing the mantle wedge and increasing the oxidation state of sub-arc mantle melts.
A Review of Single Source Precursors for the Deposition of Ternary Chalcopyrite Materials
NASA Technical Reports Server (NTRS)
Banger, K. K.; Cowen, J.; Harris, J.; McClarnon, R.; Hehemann, D. G.; Duraj, S. A.; Scheiman, D.; Hepp, A. F.
2002-01-01
The development of thin-film solar cells on flexible, lightweight, space-qualified durable substrates (i.e. Kapton) provides an attractive solution to fabricating solar arrays with high specific power, (W/kg). The syntheses and thermal modulation of ternary single source precursors, based on the [{LR}2Cu(SR')2In(SR')2] architecture in good yields are described. Thermogravimetric analyses (TGA) and Low temperature Differential Scanning Caloriometry, (DSC) demonstrate that controlled manipulation of the steric and electronic properties of either the group five-donor and/or chalcogenide moiety permits directed adjustment of the thermal stability and physical properties of the precursors. TGA-Evolved Gas Analysis, confirms that single precursors decompose by the initial extrusion of the sulphide moiety, followed by the loss of the neutral donor group, (L) to release the ternary chalcopyrite matrix. X-ray diffraction studies, EDS and SEM on the non-volatile pyrolized material demonstrate that these derivatives afford single-phase CuInS2/CuInSe2 materials at low temperature. Thin-film fabrication studies demonstrate that these single source precursors can be used in a spray chemical vapor deposition process, for depositing CuInS2 onto flexible polymer substrates at temperatures less than 400 C.
NASA Astrophysics Data System (ADS)
Yao, Junming; Mathur, Ryan; Sun, Weidong; Song, Weile; Chen, Huayong; Mutti, Laurence; Xiang, Xinkui; Luo, Xiaohong
2016-05-01
The study presents δ65Cu and δ97Mo isotope values from cogenetic chalcopyrite and molybdenite found in veins and breccias of the Dahutang W-Cu-Mo ore field in China. The samples span a 3-4 km range. Both isotopes show a significant degree of fractionation. Cu isotope values in the chalcopyrite range from -0.31‰ to +1.48‰, and Mo isotope values in the molybdenite range from -0.03‰ to +1.06‰. For the cogenetic sulfide veined samples, a negative slope relationship exists between δ65Cu and δ97Mo values, which suggest a similar fluid history. Rayleigh distillation models the vein samples' change in isotope values. The breccia samples do not fall on the trend, thus indicating a different source mineralization event. Measured fluid inclusion and δD and δ18O data from cogenetic quartz indicate changes in temperature, and mixing of fluids do not appear to cause the isotopic shifts measure. Related equilibrium processes associated with the partitioning of metal between the vapor-fluid in the hydrothermal system could be the probable cause for the relationship seen between the two isotope systems.
Rye, R.O.; Roberts, R.J.; Snyder, W.S.; Lahusen, G.L.; Motica, J.E.
1984-01-01
The Big Mike deposit is a massive sulphide lens entirely within a carbonaceous argillite of the Palaeozoic Havallah pelagic sequence. The massive ore contains two generations of pyrite, a fine- and a coarse-grained variety; framboidal pyrite occurs in the surrounding carbonaceous argillite. Coarse grained pyrite is largely recrystallized fine-grained pyrite and is proportionately more abundant toward the margins of the lens. Chalcopyrite and sphalerite replace fine-grained pyrite and vein-fragmented coarse-grained pyrite. Quartz fills openings in the sulphide fabric. S-isotope data are related to sulphide mineralogy and textures. Isotopically light S in the early fine-grained pyrite was probably derived from framboidal biogenic pyrite. The S-isotope values of the later coarse-grained pyrite and chalcopyrite probably reflect a combination of reduced sea-water sulphate and igneous S. Combined S- and O-isotope and textural data accord with precipitation of fine-grained pyrite from a hydrothermal plume like those at the East Pacific Rise spreading centre at lat. 21oN. The primary material was recystallized and mineralized by later fluids of distinctly different S-isotope composition. -G.J.N.
Chalcogen Polymers for Completely Solution-Processed Inorganic Photovoltaics
NASA Astrophysics Data System (ADS)
Martin, Trevor R.
Chalcopyrite materials such as CuInSxSe2-x (CISSe), the gallium alloy variant CuInxGa1-xSySe2-y (CIGSSe), and the earth-abundant kesterite material Cu2ZnSnS xSe4-x (CZTSSe) possess a range of properties that are ideally suited for thin-film photovoltaics (PV) applications. Although these materials are beginning to see some commercial success, they are manufactured using complicated and expensive techniques such as high temperature processing, vacuum deposition methods, and vapor-phase reactions. These production methods require an exorbitantly large capital investment to create new manufacturing facilities, which severely hampers the widespread and rapid deployment of these emerging solar energy technologies. This work has focused on developing novel chalcogen polymers to synthesize nanoparticles and produce thin-films for printed photovoltaics applications. This new method provides a pathway towards using chalcogen copolymers to produce these materials via a completely solution-processed, low-temperature fabrication procedure. This technique constitutes one of the first viable means to produce low-bandgap chalcogenides without additional vapor-phase or high-temperature reactions. Therefore, this process can potentially be implemented to rapidly and cheaply manufacture printed chalcopyrite and kesterite photovoltaics.
NASA Astrophysics Data System (ADS)
Ball, T. K.; Basham, I. R.
1984-01-01
The Bosworgey granite cusp forms an apical portion of the concealed northern extension of the Tregonning-Godolphin granite ridge. It is characterised by unusually high values of B, P, Mn, Fe, As, Cu, Nb, Ta, Bi, Sn, W, U and S which are present largely as tourmaline, apatite, pyrite, arsenopyrite, chalcopyrite, bismuth, columbite, cassiterite, wolframite and uraninite; and low levels of Zr, Hf, Ti and REE present in zircon, ilmenite and monazite. The granite is classified as Sn and W “specialised” (Tischendorf, 1974) and it belongs to the ilmenite series of Japanese workers. The classification of Chappell and White (1974) (“S” and “I” type granites) is shown to be inapplicable to Cornubian rocks although the Bosworgey samples show characteristics of “S” type granites. The accessory mineral assemblages are typical of high temperature lodes (cassiterite, wolframite, arsenopyrite, chalcopyrite) and the assamblage is concluded to be the cusp analogue of hypothermal lodes produced by extreme differentiation and concentration of volatiles. It is speculated that such granites could provide the parent material for the mesothermal crosscourse mineralisation (pitchblende, bismuth, pyrite, galena, sphalerite).
NASA Astrophysics Data System (ADS)
Pistor, P.; Greiner, D.; Kaufmann, C. A.; Brunken, S.; Gorgoi, M.; Steigert, A.; Calvet, W.; Lauermann, I.; Klenk, R.; Unold, T.; Lux-Steiner, M.-C.
2014-08-01
The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se2 absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se2 absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletion in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60-70 mV compared to the untreated absorbers, while the fill factor deteriorated.
NASA Astrophysics Data System (ADS)
Shen, Kesheng; Lu, Hai; Zhang, Xianzhou; Jiao, Zhaoyong
2018-06-01
The electronic structure, elastic and optical properties of the defect quaternary semiconductor CuGaSnSe4 in I 4 bar structure are systematically investigated using first-principles calculations. We summarize and discuss some of the studies on CuGaSnSe4 in partially ordered chalcopyrite structure and find that there are three atomic arrangements so far, but it is still uncertain which is the most stable. Through detailed simulation and comparison with the corresponding literature, we get three models and predict that M1 model should be the most stable. The band structure and optical properties of compound CuGaSnSe4, including dielectric constant, refractive index and absorption spectrum, are drawn for a more intuitive understanding. The elastic constants are also calculated, which not only prove that CuGaSnSe4 in I 4 bar structure is stable naturally but also help solve the problem of no data to accurately predict axial thermal expansion coefficients. The calculated values of the zero frequency dielectric constant and refractive index are comparable to those of the corresponding chalcopyrite structure but slightly larger.
Improved Single-Source Precursors for Solar-Cell Absorbers
NASA Technical Reports Server (NTRS)
Banger, Kulbinder K.; Harris, Jerry; Hepp, Aloysius
2007-01-01
Improved single-source precursor compounds have been invented for use in spray chemical vapor deposition (spray CVD) of chalcopyrite semiconductor absorber layers of thin-film cells. A "single-source precursor compound" is a single molecular compound that contains all the required elements, which when used under the spray CVD conditions, thermally decomposes to form CuIn(x)Ga(1-x)S(y)Se(2-y).
Auernik, Kathryne S.; Kelly, Robert M.
2010-01-01
Hydrogen served as a competitive inorganic energy source, impacting the CuFeS2 bioleaching efficiency of the extremely thermoacidophilic archaeon Metallosphaera sedula. Open reading frames encoding key terminal oxidase and electron transport chain components were triggered by CuFeS2. Evidence of heterotrophic metabolism was noted after extended periods of bioleaching, presumably related to cell lysis. PMID:20190092
Christel, Stephan; Herold, Malte; Bellenberg, Sören; El Hajjami, Mohamed; Buetti-Dinh, Antoine; Pivkin, Igor V; Sand, Wolfgang; Wilmes, Paul; Poetsch, Ansgar; Dopson, Mark
2017-11-17
Leptospirillum ferriphilum plays a major role in acidic, metal rich environments where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of this model species' type strain is available, limiting the possibilities to investigate the strategies and adaptations Leptospirillum ferriphilum T applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum T DSM 14647 obtained by PacBio SMRT long read sequencing for use as a high quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as substrate and bioleaching cultures containing chalcopyrite (CuFeS 2 ). Leptospirillum ferriphilum T adaptations to growth on chalcopyrite included a possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, expression and translation of genes responsible for chemotaxis and motility were enhanced. IMPORTANCE Leptospirillum ferriphilum is one of the most important iron-oxidizers in the context of acidic and metal rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum T coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on Leptospirillum ferriphilum T adaptation strategies to growth on the copper mineral chalcopyrite. This data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction. Copyright © 2017 Christel et al.
Graham, Garth; Hitzman, Murray W.; Zieg, Jerry
2012-01-01
The northern margin of the Helena Embayment contains extensive syngenetic to diagenetic massive pyrite horizons that extend over 25 km along the Volcano Valley-Buttress fault zone and extend up to 8 km basinward (south) within the Mesoproterozoic Newland Formation. The Sheep Creek Cu-Co deposit occurs within a structural block along a bend in the fault system, where replacement-style chalcopyrite mineralization is spatially associated mostly with the two stratigraphically lowest massive pyrite zones. These mineralized pyritic horizons are intercalated with debris flows derived from synsedimentary movement along the Volcano Valley-Buttress fault zone. Cominco American Inc. delineated a geologic resource of 4.5 Mt at 2.5% Cu and 0.1% Co in the upper sulfide zone and 4 Mt at 4% Cu within the lower sulfide zone. More recently, Tintina Resources Inc. has delineated an inferred resource of 8.48 Mt at 2.96% Cu, 0.12% Co, and 16.4 g/t Ag in the upper sulfide zone. The more intact upper sulfide zone displays significant thickness variations along strike thought to represent formation in at least three separate subbasins. The largest accumulation of mineralized sulfide in the upper zone occurs as an N-S–trending body that thickens southward from the generally E trending Volcano Valley Fault and probably occupies a paleograben controlled by normal faults in the hanging wall of the Volcano Valley Fault. Early microcrystalline to framboidal pyrite was accompanied by abundant and local barite deposition in the upper and lower sulfide zones, respectively. The sulfide bodies underwent intense (lower sulfide zone) to localized (upper sulfide zone) recrystallization and overprinting by coarser-grained pyrite and minor marcasite that is intergrown with and replaces dolomite. Silicification and paragenetically late chalcopyrite, along with minor tennantite in the upper sulfide zone, replaces fine-grained pyrite, barite, and carbonate. The restriction of chalcopyrite to inferred synsedimentary E- and northerly trending faults and absence of definitive zonation with respect to the Laramide Volcano Valley Fault in the lower sulfide zone suggest a diagenetic age related to basin development for the Sheep Creek Cu-Co-Ag deposit.
Free Energy Defect Model for the Cu-In-Ga-Se Tetrahedral Lattice
NASA Astrophysics Data System (ADS)
Stanbery, B. J.
2003-03-01
The most efficient thin-film photovoltaic converters of solar insolation to electrical power have recently achieved conversion efficiencies exceeding 19%, and are based on light absorbing layers containing the binary alloy (CuInSe_2)_1-X(CuGaSe_2)X of the α phases of these ternary chalcopyrite compounds. A statistical quantum mechanical model of the thermodynamic equilibrium defect structure of the tetrahedral lattice of copper, indium, and selenium with composition in the domain between that of the stoichiometric CuIn_1-XGa_XSe2 alloy and the β phase Cu(In_1-XGa_X)_3Se5 composition is presented. Compositions more copper-deficient than the latter have been reported experimentally to result in a breakdown of the tetrahedral coordination characteristic of the chalcopyrite lattice. These computations are based on a cluster expansion algorithm that minimizes the total free energy of the system using the Gibbs-Duhem equation to compute quasichemical reaction equilibria between the neutral clusters, and explicitly incorporates Fermi-Dirac statistics to determine their ionization equilibria and consequent carrier concentrations in the conduction and valence bands. The results are consistent with recent experimental evidence that the stoichiometric CuIn_1-XGa_XSe2 composition segregates in equilibrium into a two-phase mixture of a copper-deficient quaternary Cu_1-γIn_1-XGa_XSe2 composition and the binary Cu_2-δSe compound. The model predicts that the hole majority carrier (p-type) can only be achieved in the equilibrium single-phase chalcopyrite lattice with compositions that correspond to Cu_1-γIn_1-XGa_XSe_2+ɛ with γ and ɛ >0. This predicted requirement for selenium enrichment compared to the stoichiometric CuIn_1-XGa_XSe2 alloy composition for the dominance of holes over electrons as the majority carrier type is consistent with experimental evidence, and is explained in terms of a transition of the dominant lattice defect from the selenium vacancy in the stoichiometric case to the copper vacancy defect in the selenium-enriched lattice. This result is of particular importance since all CuIn_1-XGa_XSe2 thin-film solar cells utilize p-type absorber films.
The effects of Na on high pressure phases of CuIn(0.5)Ga(0.5)Se(2) from ab initio calculation.
Pluengphon, P; Bovornratanaraks, T; Vannarat, S; Pinsook, U
2012-03-07
The effects of Na atoms on high pressure structural phase transitions of CuIn(0.5)Ga(0.5)Se(2) (CIGS) were studied by an ab initio method using density functional theory. At ambient pressure, CIGS is known to have chalcopyrite (I42d) structure. The high pressure phase transitions of CIGS were proposed to be the same as the order in the CuInSe(2) phase transitions which are I42d → Fm3m → Cmcm structures. By using the mixture atoms method, the Na concentration in CIGS was studied at 0.1, 1.0 and 6.25%. The positive mixing enthalpy of Na at In/Ga sites (Na(InGa)) is higher than that of Na at Cu sites (Na(Cu)). It confirmed previous studies that Na preferably substitutes on the Cu sites more than the (In, Ga) sites. From the energy-volume curves, we found that the effect of the Na substitutes is to reduce the hardness of CIGS under high pressure. The most significant effects occur at 6.25% Na. We also found that the electronic density of states of CIGS near the valence band maximum is increased noticeably in the chalcopyrite phase. The band gap is close in the cubic and orthorhombic phases. Also, the Na(Cu)-Se bond length in the chalcopyrite phase is significantly reduced at 6.25% Na, compared with the pure Cu-Se bond length. Consequently, the energy band gap in this phase is wider than in pure CIGS, and the gap increased at the rate of 31 meV GPa(-1) under pressure. The Na has a small effect on the transition pressure. The path of transformation from the cubic to orthorhombic phase was derived. The Cu-Se plane in the cubic phase displaced relatively parallel to the (In, Ga)-Se plane by 18% in order to transform to the Cmcm phase. The enthalpy barrier is 0.020 eV/atom, which is equivalent to a thermal energy of 248 K. We predicted that Fm3m and Cmcm can coexist in some pressure range.
NASA Astrophysics Data System (ADS)
Kanitpanyacharoen, W.; Boudreau, A. E.
2013-02-01
The petrology of base metal sulfides and associated accessory minerals in rocks away from economically significant ore zones such as the Merensky Reef of the Bushveld Complex has previously received only scant attention, yet this information is critical in the evaluation of models for the formation of Bushveld-type platinum-group element (PGE) deposits. Trace sulfide minerals, primarily pyrite, pyrrhotite, pentlandite, and chalcopyrite are generally less than 100 microns in size, and occur as disseminated interstitial individual grains, as polyphase assemblages, and less commonly as inclusions in pyroxene, plagioclase, and olivine. Pyrite after pyrrhotite is commonly associated with low temperature greenschist alteration haloes around sulfide grains. Pyrrhotite hosted by Cr- and Ti-poor magnetite (Fe3O4) occurs in several samples from the Marginal to Lower Critical Zones below the platiniferous Merensky Reef. These grains occur with calcite that is in textural equilibrium with the igneous silicate minerals, occur with Cl-rich apatite, and are interpreted as resulting from high temperature sulfur loss during degassing of interstitial liquid. A quantitative model demonstrates how many of the first-order features of the Bushveld ore metal distribution could have developed by vapor refining of the crystal pile by chloride-carbonate-rich fluids during which sulfur and sulfide are continuously recycled, with sulfur moving from the interior of the crystal pile to the top during vapor degassing.
Ten Years Development of Metallurgical Research and Technology in Communist China
1960-01-15
milling problems. The methods are magnetic separa- tion combined with flotation , roasting followed by magnetic separation in S’GteS -. ..o . *tPeca...combination with flotation , and reverse flotation . In each process, the iron concentrate made contains 60 Fe or better, recovery is more than 80", and...extracted. For example, from tungsten ores, we are recovering molybdaniti, bismuthinite, chalcopyrite, cassiter- ite, scheelite, pyrite , and other useful
Atomistic and Ab Initio Calculations or Ternary II-IV-V2 Semiconductors
1999-12-07
consisting of two- and three-body terms is developed reproducing crystal lattice constants, elastic and dielectric constants very well. The calculated...the lattice . This difference may well be due to defect-induced lattice distortion which plays a key role in stabilizing the hole states in the... lattice . 15. SUBJECT TERMS Chalcopyrites, Defects, Atomistic and AB Initio Calculations 16. SECURITY CLASSIFICATION OF: a. REPORT u b. ABSTRACT U
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2017-11-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
NASA Astrophysics Data System (ADS)
Ayupova, N. R.; Melekestseva, I. Yu.; Maslennikov, V. V.; Tseluyko, A. S.; Blinov, I. A.; Beltenev, V. E.
2018-05-01
Fe-oxyhydroxide sediments (gossans) from the Ashadze-2 hydrothermal sulfide field (Mid-Atlantic Ridge) and hematite-carbonate-quartz rocks (gossanites) from the Yubileynoe Cu-Zn VHMS deposit (South Urals) are characterized by anomalously high U contents (up to 352 ppm and 73 ppm, respectively). In gossans from the Ashadze-2 hydrothermal sulfide field, rare isometric anhedral uraninite grains (up to 2 μm) with outer P- and Ca-rich rims, and numerous smaller (<1 μm) grains, occur in Fe-oxyhydroxides and sepiolite, associated with pyrite, isocubanite, chalcopyrite, galena, atacamite and halite. In gossanites from the Yubileynoe deposit, numerous uraninite particles (<3 μm) are associated with apatite, V-rich Mg-chlorite, micro-nodules of pyrite, Se-bearing galena, hessite and acanthite in a hematite-carbonate-quartz matrix. Small (1-3 μm) round grains of uraninite, which locally coalesce to large grains up to 10 μm in size, are associated with authigenic chalcopyrite. The similar diagenetic processes of U accumulation in modern and ancient Fe-oxyhydroxide sediments were the result of U fixation from seawater during the oxidation of sulfide minerals. Uraninite in gossanites was mainly deposited from diagenetic pore fluids, which circulated in the sulfide-hyaloclast-carbonate sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pistor, P., E-mail: paul.pistor@physik.uni-halle.de; Greiner, D.; Kaufmann, C. A.
2014-08-11
The implementation of potassium fluoride treatments as a doping and surface modification procedure in chalcopyrite absorber preparation has recently gained much interest since it led to new record efficiencies for this kind of solar cells. In the present work, Cu(In,Ga)Se{sub 2} absorbers have been evaporated on alkali containing Mo/soda-lime glass substrates. We report on compositional and electronic changes of the Cu(In,Ga)Se{sub 2} absorber surface as a result of a post deposition treatment with KF (KF PDT). In particular, by comparing standard X-ray photoelectron spectroscopy and synchrotron-based hard X-ray photoelectron spectroscopy (HAXPES), we are able to confirm a strong Cu depletionmore » in the absorbers after the KF PDT which is limited to the very near surface region. As a result of the Cu depletion, we find a change of the valence band structure and a shift of the valence band onset by approximately 0.4 eV to lower binding energies which is tentatively explained by a band gap widening as expected for Cu deficient compounds. The KF PDT increased the open circuit voltage by 60–70 mV compared to the untreated absorbers, while the fill factor deteriorated.« less
NASA Technical Reports Server (NTRS)
Jin, Michael; Banger, Kal; Harris, Jerry; Hepp, Aloysius
2003-01-01
Polycrystalline CuInS2 films were deposited by aerosol-assisted chemical vapor deposition using both solid and liquid ternary single-source precursors (SSPs) which were prepared in-house. Films with either (112) or (204/220) preferred orientation, had a chalcopyrite structure, and (112)-oriented films contained more copper than (204/220)-oriented films. The preferred orientation of the film is likely related to the decomposition and reaction kinetics associated with the molecular structure of the precursors at the substrate. Interestingly, the (204/220)-oriented films were always In-rich and were accompanied by a secondary phase. From the results of post-growth annealing, etching experiments, and Raman spectroscopic data, the secondary phase was identified as an In-rich compound. On the contrary, (112)-oriented films were always obtained with a minimal amount of the secondary phase, and had a maximum grain size of about 0.5 micron. Electrical and optical properties of all the films grown were characterized. They all showed p-type conduction with an electrical resistivity between 0.1 and 30 Omega-cm, and an optical band gap of approximately 1.46 eV +/- 0.02, as deposited. The material properties of deposited films revealed this methodology of using SSPs for fabricating chalcopyrite-based solar cells to be highly promising.
Invisible gold in Colombian auriferous soils
NASA Astrophysics Data System (ADS)
Bustos Rodriguez, H.; Oyola Lozano, D.; Rojas Martínez, Y. A.; Pérez Alcázar, G. A.; Balogh, A. G.
2005-11-01
Optic microscopy, X-ray diffraction (XRD), Mössbauer spectroscopy (MS), Electron microprobe analysis (EPMA) and secondary ions mass spectroscopy (SIMS) were used to study Colombian auriferous soils. The auriferous samples, collected from El Diamante mine, located in Guachavez-Nariño (Colombia), were prepared by means of polished thin sections and polished sections for EPMA and SIMS. Petrography analysis was made using an optical microscope with a vision camera, registering the presence, in different percentages, of the following phases: pyrite, quartz, arsenopyrite, sphalerite, chalcopyrite and galena. By XRD analysis, the same phases were detected and their respective cell parameters calculated. By MS, the presence of two types of pyrite was detected and the hyperfine parameters are: δ 1 = 0.280 ± 0.01 mm/s and Δ Q 1 = 0.642 ± 0.01 mm/s, δ 2 = 0.379 ± 0.01 mm/s and Δ Q 2 = 0.613 ± 0.01 mm/s. For two of the samples MS detected also the arsenopyrite and chalcopyrite presence. The mean composition of the detected gold regions, established by EPMA, indicated 73% Au and 27% Ag (electrum type). Multiple regions of approximately 200 × 200 μm of area in each mineral sample were analyzed by SIMS registering the presence of “invisible gold” associated mainly with the pyrite and occasionally with the arsenopyrite.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2018-06-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
NASA Astrophysics Data System (ADS)
Pérez-Tello, Manuel; Parra-Sánchez, Víctor R.; Sánchez-Corrales, Víctor M.; Gómez-Álvarez, Agustín; Brown-Bojórquez, Francisco; Parra-Figueroa, Roberto A.; Balladares-Varela, Eduardo R.; Araneda-Hernández, Eugenia A.
2018-04-01
An experimental study was conducted to elucidate the evolution of size and chemical composition of La Caridad copper concentrate particles during oxidation under simulated flash smelting conditions. Input variables tested included particle size and oxygen concentration in the process gas. The response variables included the size distributions, chemical composition, and morphology of the reacted particles at seven locations along a laboratory reactor. Particles with initial size < 45 µm contained mostly chalcopyrite, they increased their mean size and decreased the amount of dust in the population during oxidation. This was explained by a reaction path involving rapid melting followed by collision and coalescence of reacting droplets during flight. Particles with sizes > 45 µm contained varying amounts of chalcopyrite and pyrite, and tended to either maintain or decrease their mean size upon oxidation. When size reduction was observed, dust was produced because of fragmentation, and the particles showed no evidence of collisions during flight. The main oxidation products detected in the particles consisted of matte, cuprospinel, and magnetite. A plot of the mean size divided by the mean size in the feed against the fraction of sulfur eliminated generalized the experimental data so far reported in the literature, and helped identify the reaction path followed by the particles.
Temperature induced CuInSe2 nanocrystal formation in the Cu2Se-In3Se2 multilayer thin films
NASA Astrophysics Data System (ADS)
Mohan, A.; Rajesh, S.
2017-04-01
The paper deals with the impact of annealing on Cu2Se-In3Se2 multilayer structure and discusses the quantum confinements. Thermal evaporation technique was used to prepare multilayer films over the glass substrates. The films were annealed at different temperatures (150 °C-350 °C) under vacuum atmosphere. The XRD pattern reveals that the films exhibit (112) peaks with CuInSe2 Chalcopyrite structure and upon annealing crystallinity improved. The grain size comes around 13-19 nm. The optical band gap value was found to be 2.21 to 2.09 eV and band gap splitting was observed for higher annealing temperatures. The increase in the band gap is related to quantum confinement effect. SEM image shows nano crystals spread over the entire surface for higher annealing temperatures. Optical absorption and PL spectra shows the blue shift during annealing. The HR-TEM shows the particle size in the nano range and which confirms the CuInSe2 nanocrystal formation. AFM image shows the rough surface with homogenous grains for the as deposited films and smooth surface for annealed films.
Selenization of CIS and CIGS layers deposited by chemical spray pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babu, B. J.; Egaas, B.; Velumani, S.
Cu(In1-xGax)Se2 (CIGS) thin films with x=0 (CIS) and x=0.3 (CIGS) were prepared on Mo-coated glass substrate by using chemical spray pyrolysis at a substrate temperature of 350 degrees C, followed by selenization treatment at 550 degrees C in selenium environment under N2 gas flow. X-ray diffraction patterns of as-deposited CIGS layers on Mo showed polycrystalline chalcopyrite phase with an intense (112) plane. Splitting of (204)/(220) and (116)/(312) planes for the film with x=0.3 reveals deviation of tetragonal nature. Field emission scanning electron microscopy cross-sectional images of selenized films showed clear re-crystallization of grains. During the selenization process of the CIGSmore » absorber, a thin interface layer of MoSe2 is formed. Line mapping of Mo/CIGS layer showed more gallium segregation at the interface of back contact resulting in band gap grading. Chemical composition and mapping of the as-deposited and selenized samples were determined by energy dispersive analysis of X-rays. This work leads to fabrication of low cost and large scale Mo/CIGS/CdS/ZnO/ZnO:Al device structure.« less
Laser ablation ICP-MS applications using the timescales of geologic and biologic processes
NASA Astrophysics Data System (ADS)
Ridley, W. I.
2003-04-01
Geochemists commonly examine geologic processes on timescales of 10^4--10^9 years, and accept that often age relations, e.g., chemical zoning in minerals, can only be measured in a relative sense. The progression of a geologic process that involves geochemical changes may be assessed using trace element microbeam techniques, because the textural, and therefore spatial context, of the analytical scheme can be preserved. However, quantification requires appropriate calibration standards. Laser ablation ICP-MS (LA-ICP-MS) is proving particularly useful now that appropriate standards are becoming available. For instance, trace element zoning patterns in primary sulfides (e.g., pyrite, sphalerite, chalcopyrite, galena) and secondary phases can be inverted to examine relative changes in fluid composition during cycles of hydrothermal mineralization. In turn such information provides insights into fluid sources, migration pathways and depositional processes. These studies have only become possible with the development of appropriate sulfide calibration standards. Another example, made possible with the development of appropriate silicate calibration standards, is the quantitative spatial mapping of REE variations in amphibolite-grade garnets. The recognition that the trace and major elements are decoupled provides a better understanding of the various sources of elements during metamorphic re-equilibration. There is also a growing realization that LA-ICP-MS has potential in biochemical studies, and geochemists have begun to turn their attention in this direction, working closely with biologists. Unlike many geologic processes, the timescales of biologic processes are measured in years to centuries and are frequently amenable to absolute dating. Examples that can be cited where LA-ICP-MS has been applied include annual trace metal variations in tree rings, corals, teeth, bones, bird feathers and various animal vibrissae (sea lion, walrus, wolf). The aim of such studies is to correlate trace element variations with changes in environmental variables. Such studies are proving informative in climate change and habitat management. Again, such variations have been quantified with the availability of appropriate organic, carbonate and phosphate calibration standards.
Characteristics and 40Ar/39Ar geochronology of the Erdenet Cu-Mo deposit, Mongolia
Kavalieris, Imants; Khashgerel, Bat-Erdene; Morgan, Leah; Undrakhtamir, Alexander; Borohul, Adiya
2017-01-01
The Early to Middle Triassic Erdenet porphyry Cu-Mo deposit, in northern Mongolia, developed in a continent-continent arc collision zone, within the Central Asian orogenic belt. The porphyry system is related to multiple intrusions of crystal-crowded biotite granodiorite porphyry, which formed a composite stock about 900 m in diameter, with multiple porphyritic microgranodiorite dikes. Wall rocks are Late Permian to Early Triassic, medium-grained granodiorite, with similar whole-rock geochemistry, mineralogy, and composition to the granodiorite porphyry. Whole-rock analysis of the granodiorite porphyry and wall rocks shows that these rocks cannot be discriminated, but both have depleted middle heavy rare earth elements and Y, typical of fertile porphyry magmatic suites.At the current pit level (1,250 m elev), early porphyry-style quartz veins (A and B type) are locally infilled by pyrite-chalcopyrite, with subordinate bornite, but most of the chalcopyrite occurs in D veins that constitute more than 50% of the Cu grade (~0.5 wt % Cu). The 0.3 wt % Cu shell resembles a molar tooth, enveloping the granodiorite porphyry, with deeper roots extending down the wal-rock contacts. Molybdenite occurs in monomineralic veins, and in finely laminated to massive quartz-molybdenite veins.The most important alteration is quartz-muscovite, which occurs as relatively coarse (100–500 μm) alteration selvages (1–5 cm) that envelop D veins. The D veins cut illite ± kaolinite-smectite (or intermediate argillic) alteration. Intermediate argillic alteration, together with abundant pink anhydrite (commonly hydrated to gypsum), extends from at least 1,300- to 900-m elevation in the deepest drill holes, and has overprinted early potassic alteration, or relatively unaltered red granodiorite. Meter-wide zones of kaolinite cut the anhydrite-gypsum at all levels. There is an abrupt transition outward from the intermediate argillic alteration to chlorite-epidote (propylitic) alteration, at 50 to 200 m from the granodiorite porphyry contact, although D veins (and chalcopyrite) extend outward to the propylitic zone.The Erdenet porphyry system, was overprinted by advanced argillic alteration, which outcrops 2 km northwest of the pit, and forms a lithocap that extends over 10 × 2.5 km. It is characterized by residual quartz, andalusite, Na-Ca and K-alunite, diaspore, pyrophyllite, zunyite, topaz, dickite, and kaolinite. The upper part of the porphyry Cu-Mo deposit (removed by mining), comprised a bornite-chalcocite enriched zone up to 300 m thick with an average grade of 0.7 wt % Cu and up to 5 wt % Cu locally. Based on hypogene bornite-chalcocite mineral textures and high-sulfidation state mineralogy, the enriched zone is inferred to be of hypogene origin, but modified by supergene processes. Consequently, it may be related to formation of the lithocap.Previous Re-Os dates of 240.4 and 240.7 ± 0.8 Ma for molybdenite in quartz veins are comparable to new 40Ar/39Ar dates of 239.7 ± 1.6 and 240 ± 2 Ma for muscovite that envelops D veins. One 40Ar/39Ar date on K-alunite from the lithocap of 223.5 ± 1.9 Ma suggests that it may be about 16 m.y. younger than Erdenet, but this result needs to be verified by further dating.
Sulfide enrichment at an oceanic crust-mantle transition zone: Kane Megamullion (23°N, MAR)
NASA Astrophysics Data System (ADS)
Ciazela, Jakub; Koepke, Juergen; Dick, Henry J. B.; Botcharnikov, Roman; Muszynski, Andrzej; Lazarov, Marina; Schuth, Stephan; Pieterek, Bartosz; Kuhn, Thomas
2018-06-01
The Kane Megamullion oceanic core complex located along the Mid-Atlantic Ridge (23°30‧N, 45°20‧W) exposes lower crust and upper mantle directly on the ocean floor. We studied chalcophile elements and sulfides in the ultramafic and mafic rocks of the crust-mantle transition and the mantle underneath. We determined mineralogical and elemental composition and the Cu isotope composition of the respective sulfides along with the mineralogical and elemental composition of the respective serpentines. The rocks of the crust-mantle transition zone (i.e., plagioclase harzburgite, peridotite-gabbro contacts, and dunite) overlaid by troctolites are by one order of magnitude enriched in several chalcophile elements with respect to the spinel harzburgites of the mantle beneath. Whereas the range of Cu concentrations in spinel harzburgites is 7-69 ppm, the Cu concentrations are highly elevated in plagioclase harzburgites with a range of 90-209 ppm. The zones of the peridotite-gabbro contacts are even more enriched, exhibiting up to 305 ppm Cu and highly elevated concentrations of As, Zn, Ga, Sb and Tl. High Cu concentrations show pronounced correlation with bulk S concentrations at the crust-mantle transition zone implying an enrichment process in this horizon of the oceanic lithosphere. We interpret this enrichment as related to melt-mantle reaction, which is extensive in crust-mantle transition zones. In spite of the ubiquitous serpentinization of primary rocks, we found magmatic chalcopyrites [CuFeS2] as inclusions in plagioclase as well as associated with pentlandite [(Fe,Ni)9S8] and pyrrhotite [Fe1-xS] in polysulfide grains. These chalcopyrites show a primary magmatic δ65Cu signature ranging from -0.04 to +0.29 ‰. Other chalcopyrites have been dissolved during serpentinization. Due to the low temperature (<300 °C) of circulating fluids chalcophile metals from primary sulfides have not been mobilized and transported away but have been trapped in smaller secondary sulfides and hydroxides. Combined with the Cu deposits documented in the crust-mantle transition zones of various ophiolite complexes, our results indicate that the metal enrichment, increased sulfide modes, and potentially formation of small sulfide deposits could be expected globally along the petrological Moho.
2017-01-01
ABSTRACT Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilumT) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilumT obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilumT to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced. IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilumT coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilumT for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction. PMID:29150517
Assawincharoenkij, Thitiphan; Hauzenberger, Christoph; Ettinger, Karl; Sutthirat, Chakkaphan
2018-02-01
Waste rocks from gold mining in northeastern Thailand are classified as sandstone, siltstone, gossan, skarn, skarn-sulfide, massive sulfide, diorite, and limestone/marble. Among these rocks, skarn-sulfide and massive sulfide rocks have the potential to generate acid mine drainage (AMD) because they contain significant amounts of sulfide minerals, i.e., pyrrhotite, pyrite, arsenopyrite, and chalcopyrite. Moreover, both sulfide rocks present high contents of As and Cu, which are caused by the occurrence of arsenopyrite and chalcopyrite, respectively. Another main concern is gossan contents, which are composed of goethite, hydrous ferric oxide (HFO), quartz, gypsum, and oxidized pyroxene. X-ray maps using electron probe micro-analysis (EPMA) indicate distribution of some toxic elements in Fe-oxyhydroxide minerals in the gossan waste rock. Arsenic (up to 1.37 wt.%) and copper (up to 0.60 wt.%) are found in goethite, HFO, and along the oxidized rim of pyroxene. Therefore, the gossan rock appears to be a source of As, Cu, and Mn. As a result, massive sulfide, skarn-sulfide, and gossan have the potential to cause environmental impacts, particularly AMD and toxic element contamination. Consequently, the massive sulfide and skarn-sulfide waste rocks should be protected from oxygen and water to avoid an oxidizing environment, whereas the gossan waste rocks should be protected from the formation of AMD to prevent heavy metal contamination.
NASA Astrophysics Data System (ADS)
Teixeira, J. P.; Sousa, R. A.; Sousa, M. G.; da Cunha, A. F.; Fernandes, P. A.; Salomé, P. M. P.; Leitão, J. P.
2014-12-01
The theoretical models of radiative recombinations in both CuIn1 -xGaxSe2 chalcopyrite and Cu2ZnSnS4 kesterite, and related compounds, were revised. For heavily doped materials, electrons are free or bound to large donor agglomerates which hinders the involvement of single donors in the radiative recombination channels. In this work, we investigated the temperature and excitation power dependencies of the photoluminescence of Cu2ZnSnS4-based solar cells in which the absorber layer was grown through sulphurization of multiperiod structures of precursor layers. For both samples the luminescence is dominated by an asymmetric band with peak energy at ˜1.22 eV, which is influenced by fluctuating potentials in both conduction and valence bands. A value of ˜60 meV was estimated for the root-mean-square depth of the tails in the conduction band. The radiative transitions involve the recombination of electrons captured by localized states in tails of the conduction band with holes localized in neighboring acceptors that follow the fluctuations in the valence band. The same acceptor level with an ionization energy of ˜280 meV was identified in both absorber layers. The influence of fluctuating potentials in the electrical performance of the solar cells was discussed.
NASA Astrophysics Data System (ADS)
Shukla, Anoop Kant; Pradhan, Manoj; Tiwari, Onkar Nath
2018-04-01
Mining activity causes transition of rock-mass from its original position in earth into open environment. The action of environmental elements such air, water, microorganisms leads to oxidation of minerals which constitute the rock. The oxidation of sulphide minerals in presence of moisture releases acidic mine discharge (AMD). The acidic nature of AMD causes leaching of metals from rock minerals. Dissolution of other minerals may occur upon reaction with AMD. Chalcopyrite (CuFeS2) undergoes oxidation in acidic condition releasing copper among other products. This study reveals contamination of copper in sediment samples and seepage water from the tailing dam of a large copper project in located in central India. Elevation was studied using GIS to ascertain to the topographic elevation of tailing dam area. It was located at relatively high altitude causing seepage to flow away from tailing dam. The seepage water from tailing dam was found to be acidic with mean pH value of 4.0 and elevated copper content. Similarly, sediments from seepage water flow displayed elevated copper concentration. The copper concentration in seepage water was found with a mean value of 10.73 mg/l. The sediments from seepage water flow also displayed elevated copper concentration with mean value of 26.92 g/kg. This indicates impact on sediments by release of copper due to acidic mine drainage.
Reshak, Ali Hussain; Khenata, R; Kityk, I V; Plucinski, K J; Auluck, S
2009-04-30
An all electron full potential linearized augmented plane wave method has been applied for a theoretical study of the band structure, density of states, and electron charge density of a noncentrosymmetric chalcopyrite compound HgGa(2)S(4) using three different approximations for the exchange correlation potential. Our calculations show that the valence band maximum (VBM) and conduction band minimum (CBM) are located at Gamma resulting in a direct energy gap of about 2.0, 2.2, and 2.8 eV for local density approximation (LDA), generalized gradient approximation (GGA), and Engel-Vosko (EVGGA) compared to the experimental value of 2.84 eV. We notice that EVGGA shows excellent agreement with the experimental data. This agreement is attributed to the fact that the Engel-Vosko GGA formalism optimizes the corresponding potential for band structure calculations. We make a detailed comparison of the density of states deduced from the X-ray photoelectron spectra with our calculations. We find that there is a strong covalent bond between the Hg and S atoms and Ga and S atoms. The Hg-Hg, Ga-Ga, and S-S bonds are found to be weaker than the Hg-S and Ga-S bonds showing that a covalent bond exists between Hg and S atoms and Ga and S atoms.
Park, Jae -Cheol; Al-Jassim, Mowafak; Kim, Tae -Won
2017-02-01
Here, copper gallium selenide (CGS) thin films were fabricated using a combinatorial one-step sputtering process without an additional selenization process. The sample libraries as a function of vertical and lateral distance from the sputtering target were synthesized on a single soda-lime glass substrate at the substrate temperature of 500 °C employing a stoichiometric CGS single target. As we increased the vertical distance between the target and substrate, the CGS thin films had more stable and uniform characteristics in structural and chemical properties. Under the optimized conditions of the vertical distance (150 mm), the CGS thin films showed densely packed grainsmore » and large grain sizes up to 1 μm in scale with decreasing lateral distances. The composition ratio of Ga/[Cu+Ga] and Se/[Cu+Ga] showed 0.50 and 0.93, respectively, in nearly the same composition as the sputtering target. X-ray diffraction and Raman spectroscopy revealed that the CGS thin films had a pure chalcopyrite phase without any secondary phases such as Cu–Se or ordered vacancy compounds, respectively. In addition, we found that the optical bandgap energies of the CGS thin films are shifted from 1.650 to 1.664 eV with decreasing lateral distance, showing a near-stoichiometric region with chalcopyrite characteristics.« less
Bobadilla Fazzini, Roberto A.; Levican, Gloria
2010-01-01
The nature of the mineral–bacteria interphase where electron and mass transfer processes occur is a key element of the bioleaching processes of sulfide minerals. This interphase is composed of proteins, metabolites, and other compounds embedded in extracellular polymeric substances mainly consisting of sugars and lipids (Gehrke et al., Appl Environ Microbiol 64(7):2743–2747, 1998). On this respect, despite Acidithiobacilli—a ubiquitous bacterial genera in bioleaching processes (Rawlings, Microb Cell Fact 4(1):13, 2005)—has long been recognized as secreting bacteria (Jones and Starkey, J Bacteriol 82:788–789, 1961; Schaeffer and Umbreit, J Bacteriol 85:492–493, 1963), few studies have been carried out in order to clarify the nature and the role of the secreted protein component: the secretome. This work characterizes for the first time the sulfur (meta)secretome of Acidithiobacillus thiooxidans strain DSM 17318 in pure and mixed cultures with Acidithiobacillus ferrooxidans DSM 16786, identifying the major component of these secreted fractions as a single lipoprotein named here as Licanantase. Bioleaching assays with the addition of Licanantase-enriched concentrated secretome fractions show that this newly found lipoprotein as an active protein additive exerts an increasing effect on chalcopyrite bioleaching rate. Electronic supplementary material The online version of this article (doi:10.1007/s00253-010-3063-8) contains supplementary material, which is available to authorized users. PMID:21191788
The geology, mineralogy and paragenesis of the Castrovirreyna lead-zinc-silver deposits, Peru
Lewis, Richard Wheatley
1964-01-01
The Castrovirreyna mining district lies in the Andean Cordillera of South Central Peru, and has been worked sporadically since its discovery in 1591. Supergene silver ores were first mined. Currently the district produces about 20,000 tons of lead-zinc ore and 5000 tons of silver ore annually. The district is underlain by Tertiary andesitic rocks interbedded with basalts and intruded by small bodies of quartz latite porphyry. The terrane reflects recent glaciation and is largely covered by glacial debris. The ore deposits are steeply dipping veins that strike N. 60? E. to S. 50? E., and average 60 centimeters wide and 300 meters long. The principal veins are grouped around three centers, lying 5 kilometers apart along a line striking N. 55? E. They are, from east to west: San Genaro, Caudalosa, and La Virreyna. A less important set of veins, similarly aligned, lies 2 kilometers to the north. Most of the veins were worked to depths of about 30 meters, the limit of supergene enrichment; but in the larger veins hypogene ores have been worked to depths of over 150 meters. Galena, sphalerite, chalcopyrite, and tetrahedrite are common to all veins, but are most abundant in the westernmost veins at La Virreyna. In the center of the district, around Caudalosa, land sulfantimonides are the commonest ore minerals, and at the eastern end, around San Genaro and Astohuaraca, silver sulfosalts predominate. Supergene enrichment of silver is found at shallow depths in all deposits. Silver at San Genaro, however, was concentrated towards the surface by migration along hypogene physico-chemical gradients in time and space, as vein material was reworked by mineralizing fluids. The pattern of wallrock alteration throughout the district grades from silicification and scricitization adjacent to the veins, through argillization and propylitization, to widespread chloritization farther away. Mineralization can be divided into three stages: 1) Preparatory stage, characterized by silicification and pyritization; 2) Depositional stage, characterized by the deposition of base-metal sulfides; and 3) Reworking stage, characterized by the formation of lead sulfantimonides from galena at Caudalosa, and the deposition of silver sulfide and sulfosalts at San Genaro. Maximum temperatures, indicated by the wurtzite-sphalerite, famatinite-energite and chalcopyrite-sphalerite assemblages, did not exceed 350? C. The low iron content of sphalerite suggests that most of the base-metal sulfides were deposited below 250? C. The colloidal habits of pyrite and quartz in the preparatory and reworking stages imply relatively low temperatures of deposition, probably between 50? C and 100? C. Mineralization was shallow and pressures ranged from 17 atmospheres in the silver deposits to over 45 atmospheres in the lead sulfantimonide deposits. Mineralization at Castrovirreyna represents an open chemical system in which mineralizing fluids constantly modified the depositional environment while they themselves underwent modification. The deposits formed under nonequilibrium conditions from fluids containing complex ions and colloids. Reworking and migration along persistent physico-chemical gradients in time and space, from a deep source to the west concentrated base-metal sulfides in the western half, lead-antimony minerals in the center, and silver-antimony minerals in the eastern part of the district. Silver, antimony, and bismuth were kept in solution as complex ions until low temperature and pressure prevailed. They document in situ reworking by reacting with existing minerals. Physico-chemical gradients controlled the type of minerals deposited, whereas vein structure controlled the quantity deposited. Vein fissures formed by the equivalent of from east-west compression during Andean orogenesis and mineralization probably came from the underlying Andean Batholith.
Mauk, Jeffrey L.; Skinner, Erin G; Fyfe, Sarah J; Menzies, Andrew H; Lowers, Heather A.; Koenig, Alan E.
2016-01-01
The Waihi district in the Hauraki Goldfield of New Zealand contains adularia-sericite epithermal gold-silver veins that have produced more than 7.7 Moz gold. The outermost veins of the district (Martha, Favona, Moonlight, and Cowshed) contain abundant colloform, cherty, and black quartz fill textures, with minor crustiform and massive quartz. The central veins (Amaranth, Trio, and Union) contain predominantly massive and crustiform textures, and these veins are also commonly coarser grained than outermost veins. Pyrite, sphalerite, galena, chalcopyrite, electrum, and acanthite occur in both outermost and central veins; base metal sulfide minerals typically increase in abundance in deeper samples. Antimony-, arsenic-, and selenium-bearing minerals are most abundant in the Favona and Moonlight veins, whereas base metal sulfide minerals are more abundant in the central veins at Correnso. Throughout the Waihi vein system, electrum is by far the most widespread, abundant, and significant gold-bearing mineral, but LA-ICP-MS analyses show that arsenian pyrite also contains some gold. Mineralogical and textural data are consistent with the central veins forming at a deeper structural level, or from hydrothermal fluids with different chemistry, or both.
Melt and metallic solution crystal growth of CuInSe 2
NASA Astrophysics Data System (ADS)
Baldus, A.; Benz, K. W.
1993-05-01
In this paper the fabrication of CuInSe 2 chalcopyrite single crystals by the vertical Bridgman technique using non-stoichiometric In 2Se 3-rich congruent composition and a novel ampoule design is describe. Furthermore the growth of CuInSe 2 crystals by the travelling heater method (THM) using an In solvent was investigated. The elemental composition of as-grown CuInSe 2 semiconducting compounds and their electrical properties are discussed and correlated with predictions made by an intrinsic chemistry model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar
Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.
Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.
NASA Astrophysics Data System (ADS)
Ilboudo, Hermann; Lompo, Martin; Wenmenga, Urbain; Napon, Salif; Naba, Seta; Ngom, Papa Malick
2017-05-01
Twenty years after the discovery of the Perkoa Znsbnd Ag deposit, another type of Znsbnd Cusbnd Pb ± Ag Volcanogenic Massive Sulfide (VMS) subgroup of occurrences forming a district has been highlighted within the Paleoproterozoic Birimian Greenstone Belts of the West African Craton in Burkina Faso. The geology of the area is characterized by a series of dominantly mafic volcanic rocks with intercalated black shales which increase in proportion upwards in the stratigraphy. This stratigraphic package is overlain by a felsic volcanic sequence comprising reworked tuff and rhyolite. Although mineralization is locally associated with sedimentary rocks, it is more commonly found in rhyolites. The metamorphic grade is dominantly greenschist facies. The main lithologies in the mafic sequence range from basalt to andesite with associated gabbro. The felsic sequence consists of dacite to rhyolite with associated granitoids (granite-granodiorite-tonalite). The volcanic rocks are commonly tholeiitic (Zr/Y = 2-4.5) with relatively high Zr and Y content, although a limited number of samples plot in transitional (Zr/Y = 4.5-7) or calc-alkaline (Zr/Y = 7-25) fields. Rhyolites, which constitute the main mineralized rocks at Tiébélé, have similar key trace element signatures to other rhyolites-related known VMS systems worldwide. Both have low Zr/Y (<7) and low LaN/YbN (<6), which suggests low crustal residence times of magmas in extensional settings. Detailed investigations identified at least four VMS targets notably at Koubongo, Nabenia, Loubel and AVV (Aménagement de la Vallée des Voltas) extending over an area of 332 km2. Typical mineral assemblages defining VMS occurrences are mainly hosted by meta-sedimentary rocks and rhyolite but are also found as veins in tonalite. These assemblages can be grouped into four different styles: (i) Variably banded massive sulfides dominated by sphalerite over galena, pyrite, and chalcopyrite within metasediments; (ii) Pyrite-rich or pyrrhotite banded type associated with sphalerite, chalcopyrite, and galena within silicified and carbonatized units; (iii) Disseminated and finely oriented sulfides, including pyrite - pyrrhotite - magnetite ± sphalerite within quartz-phyric rhyolite; and (iv) Fracture filling pyrrhotite-rich - magnetite - sphalerite mineralization possibly within tonalite. Irrespective of the style of the mineralization, chemistry of altered and least altered rhyolite reveals a significant increase in Mg ± Fe and H2O, and a loss of K within mineralization associated alteration. This may suggest sea water leaching of underlying (?) mafic and sedimentary rocks, with Mgsbnd Fe transfer into the rhyolites concomitant with the loss of K. This paper highlights the features of new occurrences of VMS mineralization type within the Birimian system of West Africa. We think this could help for new discoveries along the belts. Exploration based upon ground mapping, geochemistry and geophysics is highly recommended.
Aleinikoff, John N.; Hayes, Timothy S.; Evans, Karl V.; Mazdab, Frank K.; Pillers, Renee M.; Fanning, C. Mark
2012-01-01
Xenotime occurs as epitaxial overgrowths on detrital zircons in the Mesoproterozoic Revett Formation (Belt Supergroup) at the Spar Lake red bed-associated Cu-Ag deposit, western Montana. The deposit formed during diagenesis of Revett strata, where oxidizing metal-bearing hydrothermal fluids encountered a reducing zone. Samples for geochronology were collected from several mineral zones. Xenotime overgrowths (1–30 μm wide) were found in polished thin sections from five ore and near-ore zones (chalcocite-chlorite, bornite-calcite, galena-calcite, chalcopyrite-ankerite, and pyrite-calcite), but not in more distant zones across the region. Thirty-two in situ SHRIMP U-Pb analyses on xenotime overgrowths yield a weighted average of 207Pb/206Pb ages of 1409 ± 8 Ma, interpreted as the time of mineralization. This age is about 40 to 60 m.y. after deposition of the Revett Formation. Six other xenotime overgrowths formed during a younger event at 1304 ± 19 Ma. Several isolated grains of xenotime have 207Pb/206Pb ages in the range of 1.67 to 1.51 Ga, and thus are considered detrital in origin. Trace element data can distinguish Spar Lake xenotimes of different origins. Based on in situ SHRIMP analysis, detrital xenotime has heavy rare earth elements-enriched patterns similar to those of igneous xenotime, whereas xenotime overgrowths of inferred hydrothermal origin have hump-shaped (i.e., middle rare earth elements-enriched) patterns. The two ages of hydrothermal xenotime can be distinguished by slightly different rare earth elements patterns. In addition, 1409 Ma xenotime overgrowths have higher Eu and Gd contents than the 1304 Ma overgrowths. Most xenotime overgrowths from the Spar Lake deposit have elevated As concentrations, further suggesting a genetic relationship between the xenotime formation and Cu-Ag mineralization.
Optimization of Cu-Zn Massive Sulphide Flotation by Selective Reagents
NASA Astrophysics Data System (ADS)
Soltani, F.; Koleini, S. M. J.; Abdollahy, M.
2014-10-01
Selective floatation of base metal sulphide minerals can be achieved by using selective reagents. Sequential floatation of chalcopyrite-sphalerite from Taknar (Iran) massive sulphide ore with 3.5 % Zn and 1.26 % Cu was studied. D-optimal design of response surface methodology was used. Four mixed collector types (Aer238 + SIPX, Aero3477 + SIPX, TC1000 + SIPX and X231 + SIPX), two depressant systems (CuCN-ZnSO4 and dextrin-ZnSO4), pH and ZnSO4 dosage were considered as operational factors in the first stage of flotation. Different conditions of pH, CuSO4 dosage and SIPX dosage were studied for sphalerite flotation from first stage tailings. Aero238 + SIPX induced better selectivity for chalcopyrite against pyrite and sphalerite. Dextrin-ZnSO4 was as effective as CuCN-ZnSO4 in sphalerite-pyrite depression. Under optimum conditions, Cu recovery, Zn recovery and pyrite content in Cu concentrate were 88.99, 33.49 and 1.34 % by using Aero238 + SIPX as mixed collector, CuCN-ZnSO4 as depressant system, at ZnSO4 dosage of 200 g/t and pH 10.54. When CuCN was used at the first stage, CuSO4 consumption increased and Zn recovery decreased during the second stage. Maximum Zn recovery was 72.19 % by using 343.66 g/t of CuSO4, 22.22 g/t of SIPX and pH 9.99 at the second stage.
Design of Multifunctional Materials: Chalcogenides and Chalcopyrites
NASA Technical Reports Server (NTRS)
Singh, N. B.; Su, Ching Hua; Arnold, Brad; Choa, Fow-Sen
2017-01-01
There is a strong need for developing multifunctional materials to reduce the cost of applied material without compromising the performance of the detectors, devices and sensors. The materials design, processing, growth and fabrication of bulk and nanocrystals and fabrication into devices and sensors involve huge cost and resources including a multidisciplinary team of experts. Because of this reason, prediction of multifunctionality of materials before design and development should be evaluated. Chalcogenides and chalcopyrites are a very exciting class of materials for developing multifunctionality. Materials such as Gallium selenide GaSe and zinc selenide ZnSe have been proven to be excellent examples. GaSe is a layered material and very difficult to grow in large crystal. However, it's ternary and quaternary analogs such as thallium gallium selenide TlGaSe2, thallium gallium selenide sulfide TlGaSe2-xSs, thallium arsenic selenide Tl3AsSe3, silver gallium selenide AgGaGe3Se8, AgGaGe5Se12 and several others have shown great promise for multifunctionality. Several of these materials have shown good efficiency for frequency conversion (nonlinear optical NLO), electro-optic modulation, and acousto-optic tunable filters and imagers suitable for the visible, near-infrared wavelength, mid wave infrared (MWIR), long wave infrared (LWIR) and even up to Tera hertz wavelength (THW) regions. In addition, this class of materials have demonstrated low absorption coefficients and power handling capability in the systems. Also, these crystals do not require post growth annealing, show very large transparency range and fabricability.
High-pressure study of the structural and elastic properties of defect-chalcopyrite HgGa2Se4
NASA Astrophysics Data System (ADS)
Gomis, O.; Vilaplana, R.; Manjón, F. J.; Santamaría-Pérez, D.; Errandonea, D.; Pérez-González, E.; López-Solano, J.; Rodríguez-Hernández, P.; Muñoz, A.; Tiginyanu, I. M.; Ursaki, V. V.
2013-02-01
In this work, we focus on the study of the structural and elastic properties of mercury digallium selenide (HgGa2Se4) which belongs to the family of AB2X4 ordered-vacancy compounds with tetragonal defect chalcopyrite structure. We have carried out high-pressure x-ray diffraction measurements up to 13.2 GPa. Our measurements have been complemented and compared with total-energy ab initio calculations. The equation of state and the axial compressibilities for the low-pressure phase of HgGa2Se4 have been experimentally and theoretically determined and compared to other related ordered-vacancy compounds. The theoretical cation-anion and vacancy-anion distances in HgGa2Se4 have been determined. The internal distance compressibility in HgGa2Se4 has been compared with those that occur in binary HgSe and ɛ-GaSe compounds. It has been found that the Hg-Se and Ga-Se bonds behave in a similar way in the three compounds. It has also been found that bulk compressibility of the compounds decreases following the sequence "ɛ-GaSe > HgGa2Se4 > HgSe." Finally, we have studied the pressure dependence of the theoretical elastic constants and elastic moduli of HgGa2Se4. Our calculations report that the low-pressure phase of HgGa2Se4 becomes mechanically unstable above 13.3 GPa.
Yang, Jianhui; Cheng, Xinlu
2017-01-01
The electronic, vibrational and thermoelectric transport characteristics of AgInTe2 and AgGaTe2 with chalcopyrite structure have been investigated. The electronic structures are calculated using the density-functional theory within the generalized gradient approximation (GGA) of Perdew–Burke–Ernzerhof functional considering the Hubbard-U exchange correlation. The band-gaps of AgInTe2 and AgGaTe2 are much larger than previous standard GGA functional results and agree well with the existing experimental data. The effective mass of the hole and the shape of density of states near the edge of the valence band indicate AgInTe2 and AgGaTe2 are considerable p-type thermoelectric materials. An analysis of lattice dynamics shows the low thermal conductivities of AgInTe2 and AgGaTe2. The thermoelectric transport properties' dependence on carrier concentration for p-type AgInTe2 and AgGaTe2 in a wide range of temperatures has been studied in detail. The results show that p-type AgInTe2 and AgGaTe2 at 800 K can achieve the merit values of 0.91 and 1.38 at about 2.12 × 1020 cm−3 and 1.97 × 1020 cm−3 carrier concentrations, respectively. This indicates p-type AgGaTe2 is a potential thermoelectric material at high temperature. PMID:29134079
NASA Technical Reports Server (NTRS)
Castro, S. L.; Bailey, S. G.; Raffaelle, R. P.; Banger, K. K.; Fahey, Stephen; Hepp, A. F.
2003-01-01
Nanocrystalline (or quantum dot) materials hold potential as components of next-generation photovoltaic (PV) devices. The inclusion of quantum dots in PV devices has been proposed as a means to improve the efficiency of photon conversion (quantum dot solar cell), enable low-cost deposition of thin-films, provide sites for exciton dissociation, and pathways for electron transport. Quantum dots are also expected to be more resistant to degradation from electron, proton, and alpha particle radiation than the corresponding bulk material, a requirement for use in space solar sells. Chalcopyrite nanocrystals can be produced by low-temperature thermal decomposition of single-source precursors such as (PR3)2CuIn(ER')4 (R = Ph, R' = Et, E = S; R = R' = Ph, E = Se). Single-source precursors are molecules which contain all the necessary elements for synthesis of a desired material. Thermal decomposition of the precursor results in the formation of material with the correct stoichiometry as a nanocrystalline powder or a thin film, often at significantly lower temperatures than those typically employed for thin-film deposition by multi-source evaporation techniques, typically less than 500 C. We show that CuInSz and CuInSe2 nanocrystals can be synthesized from the precursors at temperatures as low as 250 C. The nanocrystals are characterized by optical spectroscopy, X-ray diffraction, and electron microscopy.
Mickelsen, Reid A.; Chen, Wen S.
1983-01-01
Apparatus for forming thin-film, large area solar cells having a relatively high light-to-electrical energy conversion efficiency and characterized in that the cell comprises a p-n-type heterojunction formed of: (i) a first semiconductor layer comprising a photovoltaic active material selected from the class of I-III-VI.sub.2 chalcopyrite ternary materials which is vacuum deposited in a thin "composition-graded" layer ranging from on the order of about 2.5 microns to about 5.0 microns (.congruent.2.5 .mu.m to .congruent.5.0 .mu.m) and wherein the lower region of the photovoltaic active material preferably comprises a low resistivity region of p-type semiconductor material having a superimposed region of relatively high resistivity, transient n-type semiconductor material defining a transient p-n homojunction; and (ii), a second semiconductor layer comprising a low resistivity n-type semiconductor material wherein interdiffusion (a) between the elemental constituents of the two discrete juxtaposed regions of the first semiconductor layer defining a transient p-n homojunction layer, and (b) between the transient n-type material in the first semiconductor layer and the second n-type semiconductor layer, causes the transient n-type material in the first semiconductor layer to evolve into p-type material, thereby defining a thin layer heterojunction device characterized by the absence of voids, vacancies and nodules which tend to reduce the energy conversion efficiency of the system.
Yang, Jianhui; Fan, Qiang; Cheng, Xinlu
2017-10-01
The electronic, vibrational and thermoelectric transport characteristics of AgInTe 2 and AgGaTe 2 with chalcopyrite structure have been investigated. The electronic structures are calculated using the density-functional theory within the generalized gradient approximation (GGA) of Perdew-Burke-Ernzerhof functional considering the Hubbard-U exchange correlation. The band-gaps of AgInTe 2 and AgGaTe 2 are much larger than previous standard GGA functional results and agree well with the existing experimental data. The effective mass of the hole and the shape of density of states near the edge of the valence band indicate AgInTe 2 and AgGaTe 2 are considerable p-type thermoelectric materials. An analysis of lattice dynamics shows the low thermal conductivities of AgInTe 2 and AgGaTe 2 . The thermoelectric transport properties' dependence on carrier concentration for p-type AgInTe 2 and AgGaTe 2 in a wide range of temperatures has been studied in detail. The results show that p-type AgInTe 2 and AgGaTe 2 at 800 K can achieve the merit values of 0.91 and 1.38 at about 2.12 × 10 20 cm -3 and 1.97 × 10 20 cm -3 carrier concentrations, respectively. This indicates p-type AgGaTe 2 is a potential thermoelectric material at high temperature.
Identifying Au-based Te alloys for optical data storage
NASA Astrophysics Data System (ADS)
Wamwangi, D.; Detemple, R.; Woeltgens, H.-W.; Wuttig, M.; Zhang, X.
2004-06-01
Au18Sb23Te59 and Au19In26Te55 have been investigated to determine their suitability as phase change recording alloys. Recrystallization experiments identify Au18Sb23Te59 as a suitable phase change material with a recrystallization time of 110 ns and high optical contrast. Coupled to the high optical contrast is a considerable density increase of 4% upon crystallization which allows phase change recording for the Au18Sb23Te59 alloy. On the other hand no recrystallization has been observed optically for Au19In26Te55 due to its low optical contrast of less than 1%. This is related to a lower density contrast of 2%. The crystallization for the Au18Sb23Te59 and Au19In26Te55 alloys observed from temperature-dependent sheet resistance measurements have yielded transition temperatures of 113 and 175 °C, and activation barriers of 1.61±0.01 eV and 2.42±0.02 eV, respectively. We report a cubic structure (a=2.99±0.002 Å) for the Au18Sb23Te59 alloy and a chalcopyrite structure (a=6.50±0.018 Å and 12.27±0.025 Å) for the Au19In26Te55 material. These results confirm that suitable phase change alloys possess cubic structures rather than the chalcopyrite structure typical for sp3 bonded semiconductors.
A study of the trace sulfide mineral assemblages in the Stillwater Complex, Montana, USA
NASA Astrophysics Data System (ADS)
Aird, Hannah M.; Ferguson, Katherine M.; Lehrer, Malia L.; Boudreau, Alan E.
2017-03-01
The sulfide assemblages of the Stillwater Complex away from the well-studied ore zones are composed mainly of variable proportions of pyrrhotite, chalcopyrite, pentlandite, and ±pyrite. Excluding vein assemblages and those affected by greenschist and lower temperature alteration, the majority can be classified into two broad assemblages, defined here as pristine (multiphase, often globular in shape) or volatile-bearing (multiphase, high-temperature, volatile-rich minerals such as biotite, hornblende, or an unmixed calcite-dolomite assemblage). The volatile-bearing assemblages are mainly found within and below the J-M reef, where native copper and sphalerite are also locally present. Pristine sulfides are found throughout the stratigraphy. Both groups can be affected by apparent S loss in the form of pyrite being converted to magnetite and chalcopyrite to a Cu-Fe-oxide (delafossite), with little to no silicate alteration. An upward trend from pentlandite-rich to pyrrhotite-rich to pyrite-rich assemblages is observed in the footwall rocks in upper GN-I, and the same trend repeats from just below the reef and continues into the overlying N-II and GN-II. Modeling suggests that the sulfide Ni in the Peridotite Zone is largely controlled by silicate Ni. When taken together, observations are most readily explained by the remobilization of selected elements by a high-temperature fluid with the apparent loss of S > Cu > Ni. This could concentrate ore metals by vapor refining, eventually producing a platinum group element-enriched sulfide ore zone, such as the J-M reef.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serviss, C.R.; Grout, C.M.; Hagni, R.D.
1985-01-01
Ore microscopic examination of uncommon silver-rich ores from the Edwards mine has detected three silver minerals, native silver, freibergite, and argentite, that were previously unreported in the literature from the Balmat-Edwards district. The zinc-lead ore deposits of the Balmat-Edwards District in northern New York are composed of very coarse-grained massive sulfides, principally sphalerite, galena, and pyrite. The typical ores contain small amounts of silver in solid solution galena. Galena concentrates produced from those ores have contained an average of 15 ounces of silver per ton of 60% lead concentrates. In contrast to the typical ore a silver-rich pocket, that measuredmore » three feet by three feet on the vertical mine face and was the subject of this study, contained nearly 1% silver in a zinc ore. Ore microscopic study shows that this ore is especially characterized by abundant, relatively fine-grained chalcopyrite with anhedral pyrite inclusions. Fine-grained sphalerite, native silver, argentite, freibergite and arsenopyrite occur in association with the chalcopyrite and as fracture-fillings in gangue minerals. Geochemically anomalous amounts of tin, barium, chromium, and nickel also are present in the silver-rich pocket. The silver-rich pocket may mark the locus of an early feeder vent or alternatively it may record a hydrothermal event that was superimposed upon the event responsible for the metamorphic ore textures.« less
The Common Prescription Patterns Based on the Hierarchical Clustering of Herb-Pairs Efficacies
2016-01-01
Prescription patterns are rules or regularities used to generate, recognize, or judge a prescription. Most of existing studies focused on the specific prescription patterns for diverse diseases or syndromes, while little attention was paid to the common patterns, which reflect the global view of the regularities of prescriptions. In this paper, we designed a method CPPM to find the common prescription patterns. The CPPM is based on the hierarchical clustering of herb-pair efficacies (HPEs). Firstly, HPEs were hierarchically clustered; secondly, the individual herbs are labeled by the HPEC (the clusters of HPEs); and then the prescription patterns were extracted from the combinations of HPEC; finally the common patterns are recognized statistically. The results showed that HPEs have hierarchical clustering structure. When the clustering level is 2 and the HPEs were classified into two clusters, the common prescription patterns are obvious. Among 332 candidate prescriptions, 319 prescriptions follow the common patterns. The description of the patterns is that if a prescription contains the herbs of the cluster (C 1), it is very likely to have other herbs of another cluster (C 2); while a prescription has the herbs of C 2, it may have no herbs of C 1. Finally, we discussed that the common patterns are mathematically coincident with the Blood-Qi theory. PMID:27190534
Fe-U-PGE-Au-Ag-Cu Deposits of the Udokan-Chiney Region (East Siberia, Russia)
NASA Astrophysics Data System (ADS)
Gongalskiy, B.; Krivolutskaya, N.; Murashov, K.; Nistratov, S.; Gryazev, S.
2012-04-01
Introduction. Cupriferous sandstones-shales and magmatic copper-nickel deposits mark out the western and southern boundaries of the Siberian Craton accordingly. Of special interest are the Paleoproterozoic deposits of the Udokan-Chiney mining district (Gongalskiy, Krivolutskaya, 2008). Copper reserves and resources of this region are estimated at more than 50 Mt. Half of them is concentrated at the unique Udokan Deposit and the second half is distributed among sedimentary (Unkur, Pravoingamakitskoye, Sakinskoye, Krasnoye, Burpala) and magmatic deposits of the Chiney (Rudnoye, Verkhnechineyskoye, Kontaktovoye), Luktur and Maylav massifs. Results. It was established that the ores are characterized by similarity in chemical composition (main, major and rare elements that are Ag, Au, PGE) and mineral assemblages with varying proportions. It is important to emphasize that Fe role in mineralization was previously ignored. Meanwhile the Udokan deposit contains 10 Mt of magnetite metacrystals so as chalcocite ores may contain up to 50% magnetite too. It has been recently found that the Chiney titanomagnetite ores comprise commercially significant uranium and rare-earth metal concentrations (Makaryev et al., 2011). Thus the Udokan-Chiney region comprises Cu, Fe, Ti, V, U, REE, Ag, Au, PGE. These deposits differ from similar objects, the Olympic Dam in particular, by a much smaller content of fluid-bearing minerals. Copper mineralization at the Udokan is represented by chalcocite-bornite ores. They occur as ore beds conformable with sedimentary structures or as cross-cutting veins. The central zones of the former are often brecciated. They are rimmed by fine magnetite, bornite, and chalcocite dissemination. Bornite-chalcopyrite and chalcopyrite-pyrite veins are known at the lower levels of the Udokan ore bed. Such ore compositions are predominant in other ore deposits in sedimentary rocks (Pravoingamakitskoye, Unkur) and have a hydrothermal origin. Silver grades are up to 370 g/t in grab samples (Gongalskiy et al., 2008a). The long-lived Udokan-Chiney ore-magmatic has small areal extent of explosive rocks and breccias (n*10 m) with massive sulfide veins (chalcopyrite, pyrrhotite) which are similar to Sudbury offset dikes. While the same vertical zones at the Rudnoye deposit have been confirmed over 0.5 km downward from the lower contact of the Chiney massif. Conclusions. Multielement and similar mineralogical composition ores of different deposits in the Udokan-Chiney area reflect long evolution of ore processes in very movable block of the crust. Observed combination of magmatic, sedimentary and partially hydrothermal deposits is a result of the telescoping of a wide range of metals into a limited area.
NASA Astrophysics Data System (ADS)
Lerouge, C.; Cailteux, J.; Kampunzu, A. B.; Milesi, J. P.; Fléhoc, C.
2005-07-01
Luiswishi is a Congo-type Neoproterozoic sediment-hosted stratiform Cu-Co ore deposit of the Central Africa Copperbelt, located northwest of Lubumbashi (DRC). The ores form two main Cu-Co orebodies hosted by the Mines Subgroup, one in the lower part of the Kamoto Formation and the other at the base of the Dolomitic Shales Formation. Sulphides occur essentially as early parallel layers of chalcopyrite and carrolite, and secondarily as late stockwork sulphides cross-cutting the bedding and the early sulphide generation. Both types of stratiform and stockwork chalcopyrite and carrolite were systematically analyzed for sulphur isotopes, along the lithostratigraphic succession of the Mine Series. The quite similar δ 34S values of stratiform sulphides and late stockwork sulphides suggest an in situ recrystallization or a slight remobilization of stockwork sulphides without attainment of isotopic equilibrium between different sulphide phases (chalcopyrite and carrolite). The distribution of δ 34S values (-14.4‰ to +17.5‰) combined with the lithology indicates a strong stratigraphic control of the sulphur isotope signature, supporting bacterial sulphate reduction during early diagenesis of the host sediments, in a shallow marine to lacustrine environment. Petrological features combined with sulphur isotopic data of sulphides at Luiswishi and previous results on nodules of anhydrite in the Mine Series indicate a dominant seawater/lacustrine origin for sulphates, precluding a possible hydrothermal participation. The high positive δ 34S values of sulphides in the lower orebody at Luiswishi, hosted in massive chloritic-dolomitic siltite (known as Grey R.A.T.), fine-grained stratified dolostone (D.Strat.) and silicified-stromatolitic dolomites alternating with chloritic-dolomitic silty beds (R.S.F.), suggest that they were probably deposited during a period of regression in a basin cut off from seawater. The variations of δ 34S values (i.e. the decrease of δ 34S values from the Kamoto Formation to the overlying Dolomitic Shales and then the slight increase from S.D.2d to S.D.3a and S.D.3b members) are in perfect agreement with the inferred lithological and transgressive-regressive evolution of the ore-hosting sedimentary rocks [Cailteux, J., 1994. Lithostratigraphy of the Neoproterozoic Shaba-type (Zaire) Roan Supergroup and metallogenesis of associated stratiform mineralization. In: Kampunzu A.B., Lubala, R.T. (Eds.), Neoproterozoic Belts of Zambia, Zaire and Namibia. Journal of African Earth Sciences 19, 279-301].
Metallogeny of The Sierra de Guanajuato Range, Central México
NASA Astrophysics Data System (ADS)
Pedro F., Z. D.
2004-12-01
The Sierra de Guanajuato Range (SGR), trending N315° at Central México, is an orographic feature extending over a distance of 80 km. SGR comprises three well defined lithostratigraphic units: (1) a cretaceous basement including an arc-derived terrane named Guanajuato Arc (GA) made of gabbro, diorite and basaltic pillowed lava, and volcano-sedimentary rocks belonging to Arperos fore-arc basin which are geochemically anomalous in Au (0.15 ppm), Ag (3 ppm), Cu (40 ppm), Pb (50 ppm) and Zn (15 ppm); (2) Early Tertiary intrusive rocks, e.g., Comanja Granite which is affected by the presence of tourmalinized (schörl) aplito-pegmatite dykes mineralized with rare earths elements, and (3) Eocene redbeds (1,500-2000 m) and Oligocene-Miocene volcanics cover. The metallogeny of the SGR shows a multiple origin in time and space: volcano-sedimentary, granitic and volcanic, being possible to define three metallogenic epochs: cretaceous, paleocene and oligocene. Cretaceous epoch includes: (a) volcanogenic massive sulphide deposits (VMS) of bimodal-siliclastic type belonging to León-Guanajuato district; wallrock of VMS is made of felsic-internediate volcanics and black argillite; at Los Gavilanes deposit paragenesis is next: chalcopyrite > sphalerite > galena, pyrite > pyrrhotite > marcasite; grade is as follows: Au: .02-.07 g/t; Ag: 157-18.5 g/t; Cu: 2.24-0.81%, Pb: 4.16-0.03%; Zn: 10.35-3.02 %; (b) lens-shaped stratiform bodies of massive pyrite (i. ex., San Ignacio prospect; ˜ 4,000 ton) of exhalative-sedimentary origin with chalcopyrite and sphalerite microveins. Paleocene epoch includes both quartz-cordierite-sanidine veins and replacement bodies of hydrothermal metamorphic filliation (W +Se-Bi, Pb, Zn, Cu), and pyrometasomatic bodies [Cu, Pb, Zn (Ag), W] which genetically are linked to Comanja Granite emplacement. The wallrock at El Maguey mine (35,000 ton; 0.6% WO3) is made of hornfel and the vein (1.8-3.2m width) has a banding structure made of : \\{quartz & K-feldspar\\}, \\{(schörl) & specular hematite\\} and epidote alternating bands; ore minerals are scheelite and tetradymite. Oligocene epoch includes quartz-calcite-adulaire epithermal veins (Ag-Au) of geothermal-volcanic filliation. At Guanajuato mining District; ore minerals are: Au, electrum, acanthite, aguilarite, naumannite, polybasite, proustite, fischesserite (?); chalcopyrite, sphalerite and galena. Ore grade at Las Torres mine are: Ag 300 g/t, Au 2 g/t. At El Cubo mine because of the presence of rhyolitic domes gold grade reaches 100 g/t. Since Early Cretaceous Epoch, metallogenic concepts of heritage and permanence are valid in SG ore deposits.
Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia
NASA Astrophysics Data System (ADS)
Li, Weiqiang; Jackson, Simon E.; Pearson, Norman J.; Graham, Stuart
2010-07-01
Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ 65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1 σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ˜-0.4‰ (-0.25 ± 0.36‰, 1 σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1 σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ 65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.
Computational Study of Chalcopyrite Semiconductors and Their Non-Linear Optical Properties
2007-09-12
34 Xiaoshu Jiang, M. S. Miao , and Walter R. Lambrecht, Phys. Rev. B 71, 205212 (2005). 4. "Structure and phonons of ZnGeN 2 ," Walter R. Lambrecht, Erik All...dredge, and Kwiseon Kim Phys. Rev. B 72, 155202 (2005) 5. "Theoretical study of the phosphorus vacancy in ZnGeP 2 ," Xiaoshu Jiang, M. S. Miao , and...Rocksalt Phase Transitions," M. S. Miao and Walter R. Lambrecht, Phys. Rev. Lett. 94, 225501 (2005) 1 20070925383 b. Manuscripts submitted to peer
Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells.
Chirilă, Adrian; Reinhard, Patrick; Pianezzi, Fabian; Bloesch, Patrick; Uhl, Alexander R; Fella, Carolin; Kranz, Lukas; Keller, Debora; Gretener, Christina; Hagendorfer, Harald; Jaeger, Dominik; Erni, Rolf; Nishiwaki, Shiro; Buecheler, Stephan; Tiwari, Ayodhya N
2013-12-01
Thin-film photovoltaic devices based on chalcopyrite Cu(In,Ga)Se2 (CIGS) absorber layers show excellent light-to-power conversion efficiencies exceeding 20%. This high performance level requires a small amount of alkaline metals incorporated into the CIGS layer, naturally provided by soda lime glass substrates used for processing of champion devices. The use of flexible substrates requires distinct incorporation of the alkaline metals, and so far mainly Na was believed to be the most favourable element, whereas other alkaline metals have resulted in significantly inferior device performance. Here we present a new sequential post-deposition treatment of the CIGS layer with sodium and potassium fluoride that enables fabrication of flexible photovoltaic devices with a remarkable conversion efficiency due to modified interface properties and mitigation of optical losses in the CdS buffer layer. The described treatment leads to a significant depletion of Cu and Ga concentrations in the CIGS near-surface region and enables a significant thickness reduction of the CdS buffer layer without the commonly observed losses in photovoltaic parameters. Ion exchange processes, well known in other research areas, are proposed as underlying mechanisms responsible for the changes in chemical composition of the deposited CIGS layer and interface properties of the heterojunction.
Duuring, P.; Hagemann, S.G.; Cassidy, K.F.; Johnson, C.A.
2004-01-01
Tarmoola is a structurally controlled Archean orogenic gold deposit hosted in greenschist facies metamorphosed komatiite and trondhjemite in the Leonora district of the Eastern Goldfields province, Yilgarn craton. High-grade (>1 g/t Au) orebodies are located in komatiite wall rock adjacent to the eastern and northeastern margins of the asymmetrical, north-south-striking, Tarmoola trondhjemite intrusion. Gold-bearing veins post-date trondhjemite emplacement (ca. 2700 Ma), quartz diorite dikes (ca. 2667 Ma), and regional greenschist facies metamorphism. Textures and crosscutting relationships in gold-bearing veins indicate two stages of hydrothermal fluid infiltration associated with a single gold-related hydrothermal event: a volumetrically dominant, but gold-poor, stage I fluid and a gold-rich stage II fluid. Gold-bearing veins contain stage I milky quartz and pyrite that are overprinted by stage II quartz-ankerite-muscovite-chalcopyrite-sphalerite-galena-gold-tellurides ?? albite ?? chlorite ?? fuchsite ?? epidote ?? scheelite. Stage I hydrothermal alteration assemblages are different in trondhjemite and komatiite due to contrasting reactions between a common ore fluid and disparate wall-rock chemistry. Stage II fluid-wall rock interaction was minor compared to stage I and is indicated by the overprinting of stage I mineral assemblages by stage II microveins. Wall-rock alteration proximal to veins in trondhjemite is characterized by replacement of igneous plagioclase, amphibole, biotite, and metamorphic chlorite by hydrothermal quartz, muscovite, ankerite, calcite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold, whereas in proximal alteration in komatiite, metamorphic chlorite and talc are replaced by ankerite, quartz, muscovite, albite, chlorite, fuchsite, pyrite, chalcopyrite, sphalerite, galena, tellurides, and gold. The stage II fluid was enriched in H2O, CO2, Si, Ca, K, Na, S, Au, Ag, Cu, Pb, W, Bi, As, Mo, Zn, and Te. Based on fluid inclusion studies and stage II mineral equilibria, gold deposited from a homogeneous, neutral to slightly alkaline (pH 5.1-5.5), reduced, low-salinity (<5.5 wt % NaCl equiv) fluid that had a bulk composition of 78 mole percent H2O and 21 mole percent CO2, and trace amounts of CH4, C2H6, H2, Ar, H2S, and He. Gold deposition occurred at 300?? ?? 50??C and 0.5 to 3.0 kbars. Assuming lithostatic fluid pressures, gold precipitated at a 2- to 10-km depth. Stage II gray quartz ??18Ofluid values range from 5.9 to 7.5 per mil, whereas ??Dfluid values calculated from the dehydration of muscovite grains and measured directly from bulk fluid inclusion analyses of stage II gray quartz have ranges of -9 to -35 and -27 to -28 per mil, respectively. Hydrothermal ore fluids were transported from greater crustal depths to the site of gold deposition during the district-scale D3 event by shallowly W dipping, reverse brittle-ductile shear zones in supracrustal rock and along the steeply east dipping trondhjemite contact. Associated subhorizontal east-west shortening caused the reactivation of the eastern trondhjemite margin and subparallel foliation, which facilitated the transport of hydrothermal fluids and the generation of gold-bearing veins and hydrothermal alteration zones in komatiite. East-west-striking fractures in trondhjemite aided the lateral migration of ore fluids away from trondhjemite margins and the formation of east-west-striking gold-bearing veins and broad alteration zones. Gold was most likely transported in the stage II fluid as bisulfide complexes. The sulfidation of trondhjemite and komatiite wall rock by the stage II fluid caused the destabilization of An bisulfide complexes and gold deposition. Potassium, Ca, and CO2 metasomatism of komatiite wall rock may have enhanced gold deposition via the acidification of the stage II fluid. The physicochemical characteristics of the Tarmoola ore fluid and relative timing of gold mineralization are consistent with the Yilgarn-wide,
Aqueous synthesis of highly luminescent AgInS2-ZnS quantum dots and their biological applications
NASA Astrophysics Data System (ADS)
Regulacio, Michelle D.; Win, Khin Yin; Lo, Seong Loong; Zhang, Shuang-Yuan; Zhang, Xinhai; Wang, Shu; Han, Ming-Yong; Zheng, Yuangang
2013-02-01
Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated.Highly emissive and air-stable AgInS2-ZnS quantum dots (ZAIS QDs) with quantum yields of up to 20% have been successfully synthesized directly in aqueous media in the presence of polyacrylic acid (PAA) and mercaptoacetic acid (MAA) as stabilizing and reactivity-controlling agents. The as-prepared water-dispersible ZAIS QDs are around 3 nm in size, possess the tetragonal chalcopyrite crystal structure, and exhibit long fluorescence lifetimes (>100 ns). In addition, these ZAIS QDs are found to exhibit excellent optical and colloidal stability in physiologically relevant pH values as well as very low cytotoxicity, which render them particularly suitable for biological applications. Their potential use in biological labelling of baculoviral vectors is demonstrated. Electronic supplementary information (ESI) available: Quantum yields, EDX spectrum and photoluminescence decay curves. See DOI: 10.1039/c3nr34159c
Effect of Pressure on the Stability and Electronic Structure of ZnO0.5S0.5 and ZnO0.5Se0.5
NASA Astrophysics Data System (ADS)
Manotum, R.; Klinkla, R.; Phaisangittisakul, N.; Pinsook, U.; Bovornratanaraks, T.
2017-12-01
Structures and high-pressure phase transitions in ZnO0.5S0.5 and ZnO0.5Se0.5 have been investigated using density functional theory calculations. The previously proposed structures of ZnO0.5S0.5 and ZnO0.5Se0.5 which are chalcopyrite ( I\\bar{4}2d ), rocksalt ( Fm3m ), wurtzite ( P63 mc ) and CuAu-I ( P\\bar{4}m2 ) have been fully investigated. Stabilities of these materials have been systematically studied up to 40 GPa using various approaches. We have confirmed the stability of the chalcopyrite structure up to 30 GPa for which the CuAu-I structure has been previously proposed. However, our calculation revealed that CuAu-I is not a stable structure under 32 GPa and 33 GPa for both ZnO0.5S0.5 and ZnO0.5Se0.5, respectively, which could explain the failure in several attempts to fabricate these materials under such conditions. We have also examined the pressure-dependence of the bandgap and electronic structure up to 30 GPa. We can conclude from our PDOS analysis that the applied pressure does not change the atomic state characters of electronic states near the top of valence and the bottom of conduction bands, but mainly modifies the dominant Zn-3d atomic state of the deep Bloch state at -1 eV below Fermi level.
NASA Astrophysics Data System (ADS)
Mukherjee, Ria; Mondal, Sisir K.; González-Jiménez, José M.; Griffin, William L.; Pearson, Norman J.; O'Reilly, Suzanne Y.
2015-06-01
The 3.1 Ga Nuggihalli greenstone belt in the Western Dharwar craton is comprised of chromitite-bearing sill-like ultramafic-mafic rocks that are surrounded by metavolcanic schists (compositionally komatiitic to komatiitic basalts) and a suite of tonalite-trondhjemite-granodiorite gneissic rocks. The sill-like plutonic unit consists of a succession of serpentinite (after dunite)-peridotite-pyroxenite and gabbro with bands of titaniferous magnetite ore. The chromitite ore-bodies (length ≈30-500 m; width ≈2-15 m) are hosted by the serpentinite-peridotite unit. Unaltered chromites from massive chromitites (>80 % modal chromite) of the Byrapur and Bhaktarhalli chromite mines in the greenstone belt are characterized by high Cr# (100Cr/(Cr + Al)) of 78-86 and moderate Mg# (100 Mg/(Mg + Fe2+)) of 45-55. In situ trace-element analysis (LA-ICPMS) of unaltered chromites indicates that the parental magma of the chromitite ore-bodies was a komatiite lacking nickel-sulfide mineralization. In the Ga/Fe3+# versus Ti/Fe3+# diagram, the Byrapur chromites plot in the field of suprasubduction zone (SSZ) chromites while those from Bhaktarhalli lie in the MOR field. The above results corroborate our previous results based on major-element characteristics of the chromites, where the calculated parental melt of the Byrapur chromites was komatiitic to komatiitic basalt, and the Bhaktarhalli chromite was derived from Archean high-Mg basalt. The major-element chromite data hinted at the possibility of a SSZ environment existing in the Archean. Altered and compositionally zoned chromite grains in our study show a decrease in Ga, V, Co, Zn, Mn and enrichments of Ni and Ti in the ferritchromit rims. Trace-element heterogeneity in the altered chromites is attributed to serpentinization. The trace-element patterns of magnetite from the massive magnetite bands in the greenstone belt are similar to those from magmatic Fe-Ti-V-rich magnetite bands in layered intrusions, and magnetites from andesitic melts, suggesting that magnetite crystallized from an evolved gabbroic melt. Enrichments of Ni, Co, Te, As and Bi in disseminated millerite and niccolite occurring within chromitites, and in disseminated bravoite within magnetites, reflect element mobility during serpentinization. Monosulfide solid solution inclusions within pyroxenes (altered to actinolite) in pyroxenite, and interstitial pyrites and chalcopyrites in magnetite, retain primary characteristics except for Fe-enrichment in chalcopyrite, probably due to sub-solidus re-equilibration with magnetite. Disseminated sulfides are depleted in platinum-group elements (PGE) due to late sulfide saturation and the PGE-depleted nature of the mantle source of the sill-like ultramafic-mafic plutonic rocks in the Nuggihalli greenstone belt.
Doping effect on the thermoelectric properties of chalcopyrite CuGaTe2
NASA Astrophysics Data System (ADS)
Sharma, Sonu; Singh, Birender; Kumar, Pradeep
2018-05-01
In the present work, we have investigated the thermoelectric properties of CuGaTe2 by combining the first principle calculations with Boltzmann transport theory. CuGaTe2 is found to be a potential thermoelectric material with Seebeck coefficient 275µVK-1 at 200K. The thermoelectric properties of the compound can be further improved by doping it with p as well as n-type charge carriers. The heavily p-doped and lightly n-doped, CuGaTe2 provides power factor comparable to that of state-of-art Bi2Te3.
NASA Astrophysics Data System (ADS)
Hualong, Yu; Xiaorong, Liu
2017-04-01
Copper solvent extraction entrained and dissoluted organics (SX organics) in the raffinate during SX operation can contaminated chalcopyrite ores and influence bioleaching efficiency by raffinate recycling. The adsorption and bioleaching of A. ferrooxidans and L. ferriphilum with contaminated ores were investigated. The results showed that, A. ferrooxidans and L. ferriphilum cells could adsorb quickly on minerals, the adsorption rate on contaminated ores were 83% and 60%, respectively, larger than on uncontaminated ores. However, in the bioleaching by the two kinds of acid bacterias, contaminated ores presented a lower bioleaching efficiency.
Electronegativity estimation of electronic polarizabilities of semiconductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Keyan; Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn
2010-03-15
On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.
Pressure-Induced Structural Transition and Enhancement of Energy Gap of CuAlO2
NASA Astrophysics Data System (ADS)
Nakanishi, Akitaka
2011-02-01
By using first-principles calculations, we studied the stable crystal structures and energy gaps of CuAlO2 under high pressure. Our simulation shows that CuAlO2 transforms from a delafossite structure to a leaning delafossite structure. The critical pressure of the transition was determined to be 60 GPa. The energy gap of CuAlO2 increases through the structural transition due to the enhanced covalency of Cu 3d and O 2p states. We found that a chalcopyrite structure does not appear as a stable structure under high pressure.
Impact of solvent extraction organics on bioleaching by Acidithiobacillus ferrooxidans
NASA Astrophysics Data System (ADS)
Yu, Hualong; Liu, Xiaorong; Shen, Junhui; Chi, Daojie
2017-03-01
Solvent extraction organics (SX organics) entrained and dissoluted in the raffinate during copper SX operation, can impact bioleaching in case of raffinate recycling. The influence of SX organics on bioleaching process by Acidithiobacillus ferrooxidans (At. ferrooxidans) has been investigated. The results showed that, cells of At. ferrooxidans grew slower with contaminated low-grade chalcopyrite ores in shaken flasks bioleaching, the copper bioleaching efficiency reached 15%, lower than that of 24% for uncontaminated minerals. Obviously, the SX organics could adsorb on mineral surface and hinder its contact with bacterials, finanlly lead to the low bioleaching efficiency.
Rye, Robert O.; Hall, W.E.; Cunningham, C.G.; Czamanske, G.K.; Afifi, A.M.; Stacey, J.S.
1983-01-01
The Mahd adh Dhahab mine, located about 280 km northeast of Jiddah, Kingdom of Saudi Arabia, has yielded more than 2 million ounces of gold from periodic production during the past 3,000 years. A new orebody on the southern side of the ancient workings, known as the South orebody, is being developed by Gold Fields-Mahd adh Dhahab Limited. A suite of samples was collected from the newly exposed orebody for preliminary mineralogic, stable isotope, fluid inclusion, and geochemical studies. The Mahd adh Dhahab deposit is in the carapace of a Proterozoic epizonal rhyolite stock that domed pyroclastic and metasedimentary rocks of the Proterozoic Halaban group. Ore of gold, silver, copper, zinc, tellurium, and lead is associated with north-trending, steeply dipping quartz veins in a zone 1,000 m long and 400 m wide. The veins include an assemblage of quartz-chlorite-pyrite-hematite-chalcopyrite-sphalerite-precious metals, which is similar to the mineral assemblage at the epithermal deposit at Creede, Colorado. The primary ore contains abundant chalcopyrite, sphalerite, and pyrite in addition to a complex precious metal assemblage. Gold and silver occur principally as minute grains of telluride minerals disseminated in quartz-chlorite-hematite and as inclusions in chalcopyrite and sphalerite. Telluride minerals include petzite, hessite, and sylvanite. Free gold is present but not abundant. All of the vein-quartz samples contained abundant, minute inclusions of both low-density, vapor-rich fluids and liquid-rich fluids. Primary fluid inclusions yielded homogenization temperatures of from 110? to 238? C. Preliminary light-stable isotope studies of the sulfide minerals and quartz showed that all of the d34S values are between 1.2 and 6.3 per mil, which is a typical range for hydrothermal sulfide minerals that derive their sulfur from an igneous source. The data-suggest that the sulfide sulfur isotope geochemistry was controlled by exchange with la large sulfur isotope reservoir at depth. The d18O values of all stages of vein quartz in the South orebody range between 8.5 and 11.1 per mil. This range is similar to that for quartz from the North orebody and indicates that the hydrothermal system consisted of dominantly exchanged meteoric water, which was uniform in temperature and d18O content throughout the area during the entire period of mineralization. Lead isotope analyses of two galena samples indicate that the lead in the South orebody is less radiogenic than that from the North orebody and confirm that the lead was derived from oceanic crust approximately 700 Ma ago.
Leonard, B.F.; Christian, R.P.
1987-01-01
Silver is an accessory element in gold, antimony, and tungsten deposits of the caldera complex. Most of the deposits are economically of low grade and genetically of xenothermal or epithermal character. Their gold- and silver-bearing minerals are usually disseminated, fine grained, and difficult to study. Sparsely disseminated pyrite and arsenoprite are common associates. Identified silver minerals are: native silver and electrum; the sulfides acanthite, argentite (the latter always inverted to acanthite), and members of the Silberkies group; the sulfosalts matildite, miargyrite, pyrargyrite, argentian tetrahedrite, and unnamed Ag-Sb-S and Ag-Fe-Sb-S minerals; the telluride hessite and the selenide naumannite; halides of the cerargyrite group; and the antimonate stetefeldtite. Suspected silver minerals include the sulfide uytenbogaardtite and the sulfosalts andorite, diaphorite, and polybasite. Electrum, acanthite, and argentian tetrahedrite are common, though nowhere abundant. The other silver minerals are rare. Silver is present as a minor element in the structure of some varieties of other minerals. These include arsenopyrite, chalcopyrite, chalcostibite, covelline, digenite, galena, sphalerite, and stibnite. The search for adventitious Ag in most of these minerals has been cursory. The results merely indicate that elemental silver is not confined to discrete silver minerals and is, therefore, an additional complication for the recovery of silver-bearing material from some deposits. Silver occurs cryptically in some plants of the region. At Red Mountain, for example, the ashed sapwood of Douglas-fir (Pseudotsuga menziesii) contains 2 to 300 ppm Ag. Silver in the ashed wood is roughly 100 times as abundant as it is in soil. The phenomenon, useful in biogeochemical exploration, deserves the attention of mineralogists. ?? 1987 Springer-Verlag.
Influence of carrier concentration on the performance of CIAS solar cell
NASA Astrophysics Data System (ADS)
Patel, Kinjal; Ray, Jaymin
2018-05-01
Photovoltaic research has moved beyond the use of single crystalline materials such as Group IV elemental Si and Group III-V compounds like GaAs to much more complex compounds of the Group I-III-VI2 with chalcopyrite structure. The ternary ABC2 chalcopyrites (A=Cu; B=In, Ga or Al; C= S, Se or Te) form a large group of semiconducting materials with diverse structural and electrical properties. These materials are attractive for thin film photovoltaic application for a number of reasons. The bandgap of CuInSe2 is relatively low, 1.04 eV, but it can be adjusted to better match the solar spectrum either by substituting part of In by Ga or part of Se by S. Most reported and popular Cu(In,Ga)Se2 (CIGS) is one of its derivative. Efficiency of the CIGS devices with Eg >1.3 eV is reduced by the degradation of the electronic properties of the absorber leading to losses in the fill-factor and the open-circuit voltage. Alternatively, the performance can be improved by the addition of Al to form CuInAlSe2 (CIAS) absorber layers with an increase in the bandgap energy, which matches closely with the solar spectrum. In the present work an effort was made in the direction of improving the conversion efficiency by studying the influence of carrier concentration. SCAPS simulation program is used to simulate the CIAS structure numerically. The obtained results intended the significant variation in the values of conversion efficiency. Variation in the efficiency can be considered because of the relation optical absorption and carrier concentration. Observed highest efficiency is 10 %, which can be further improved by considering actual parameters of the device as well as the operating condition.
Anderson, E.D.; Atkinson, William W.; Marsh, T.; Iriondo, A.
2009-01-01
The Copper Creek mining district, southeastern Arizona, contains more than 500 mineralized breccia pipes, buried porphyry-style, copper-bearing stockworks, and distal lead-silver veins. The breccia pipes are hosted by the Copper Creek Granodiorite and the Glory Hole volcanic rocks. The unexposed Mammoth breccia pipe, solely recognized by drilling, has a vertical extent of 800 m and a maximum width of 180 m. The pipe consists of angular clasts of granodiorite cemented by quartz, chalcopyrite, bornite, anhydrite, and calcite. Biotite 40Ar/ 39Ar dates suggest a minimum age of 61.5??0.7 Ma for the host Copper Creek Granodiorite and 40Ar/39Ar dates on hydrothermal sericite indicate an age of 61.0??0.5 Ma for copper mineralization. Fluid inclusion studies suggest that a supercritical fluid with a salinity of approximately 10 wt.% NaCl equiv. condensed to a dilute aqueous vapor (1-2.8 wt.% NaCl equiv.) and a hypersaline brine (33.4-35.1 wt.% NaCl equiv.). Minimum trapping temperatures are 375??C and trapping depths are estimated at 2 km. Sulfur isotope fractionation of cogenetic anhydrite and chalcopyrite yields a temperature of mineralization of 469??25??C. Calculated oxygen and hydrogen isotope values for fluids in equilibrium with quartz and sericite range from 10.2??? to 13.4??? and -60??? to -39???, respectively, suggesting that the mineralizing fluid was dominantly magmatic. Evidence from the stable isotope and fluid inclusion analyses suggests that the fluids responsible for Cu mineralization within the Mammoth breccia pipe exsolved from a gray porphyry phase found at the base of the breccia pipe. ?? Springer-Verlag 2008.
NASA Astrophysics Data System (ADS)
Xue, H. T.; Tang, F. L.; Gruhn, T.; Lu, W. J.; Wan, F. C.; Rui, Z. Y.; Feng, Y. D.
2014-04-01
We calculate the generalized stacking fault (GSF) energies and cleavage energies γcl of the chalcopyrite compounds CuAlSe2, CuGaSe2, CuInSe2, CuGaS2 and CuGaTe2 using first principles. From the GSF energies, we obtain the unstable stacking fault energies γus and intrinsic stacking fault energies γisf. By analyzing γus and γisf, we find that the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) direction is the easiest slip direction for these five compounds. Also, for CuInSe2, it is most possible to undergo a dislocation-nucleation-induced plastic deformation along the \\langle \\bar{{1}}\\,1\\,0\\rangle (1 1 2) slip direction. We show that the (1 1 2) plane is the preferable plane for fracture in the five compounds by comparing γcl of the (0 0 1) and (1 1 2) planes. It is also found that both γus and γcl decrease as the cationic or anionic radius increases in these chalcopyrites, i.e. along the sequences CuAlSe2 → CuGaSe2 → CuInSe2 and CuGaS2 → CuGaSe2 → CuGaTe2. Based on the values of the ratio γcl/γus, we discuss the brittle-ductile properties of these compounds. All of the compounds can be considered as brittle materials. In addition, a strong relationship between γcl/γus and the total proportion of ionic bonding in these compounds is found.
NASA Astrophysics Data System (ADS)
Pripachkin, Pavel V.; Rundkvist, Tatyana V.; Miroshnikova, Yana A.; Chernyavsky, Alexey V.; Borisenko, Elena S.
2016-12-01
The South Sopchinsky massif (SSM), Gabbro-10 (G-10) massif, and Moroshkovoe Lake (ML) target Monchegorsk area, Kola Peninsula, are located at the junction of the Monchepluton and Monchetundra layered intrusions. The intrusions were studied in detail as they are targets for platinum-group element (PGE) mineralization. The rocks in these targets comprise medium- to coarse-grained mesocratic to leucocratic gabbronorites, medium-grained mesocratic to melanocratic norites and pyroxenites, and various veins mainly comprising norite, plagioclase-amphibole-magnetite rocks, and quartz-magnetite rocks. The veins contain Ni-Cu-PGE mineralization associated with magnetite and chromite. In all targets, the contacts between gabbronorite and norite-pyroxenite are undulating, and the presence of magmatic (intrusive) breccias suggests that these rocks formed through mingling of two distinct magmatic pulses. In places, the gabbronorites clearly crosscut the modal layering of the norites and pyroxenites. Trace element data indicate that the gabbronorites have similar compositions to rocks of the upper part of the Monchetundra intrusion, whereas the norites and pyroxenites resemble rocks from the lower to intermediate stratigraphic levels of the Monchepluton, such as in the Nude-Poaz and Sopcha massifs. Sulfide mineralization in the studied targets principally consists of secondary bornite, millerite, and chalcopyrite. In contrast, the primary sulfide assemblage within the layered sequence of the adjacent Monchepluton is characterized by pentlandite, chalcopyrite, and pyrrhotite. Therefore, the mineralization in the studied targets is interpreted to be of a contact style. We argue that the studied area represents the contact zone between gabbronorites of the Monchetundra intrusion and norites and pyroxenites of the Monchepluton. In addition, the rocks were overprinted by postmagmatic veining and remobilization of contact style sulfide and PGE mineralization.
Ltaïef, Aziza Hadj; Sabatino, Simona; Proietto, Federica; Ammar, Salah; Gadri, Abdellatif; Galia, Alessandro; Scialdone, Onofrio
2018-07-01
The treatment of toxic organic pollutants by electro-Fenton (EF) presents some drawbacks such as the necessity to work at low pH and the low solubility of oxygen in water contacted with air or oxygen at room pressure that results often in slow and relatively low abatements. Here, the coupled adoption of natural heterogeneous catalysts and of relatively high pressure was proposed in order to improve the performances of EF for the treatment of organic pollutants. Caffeic acid (CA) and 3-chlorophenol were used as model resistant organic pollutants. EF process was performed using both conventional homogeneous FeSO 4 and natural heterogeneous catalysts (pyrite, chalcopyrite, Fe 2 O 3 and Fe 3 O 4 ) as iron catalysts and oxygen at various pressures in the absence or in the presence of BDD anode. The effect of the nature of the catalyst, the oxygen pressure, the current density and the catalyst load was widely investigated in order to optimize the process. It was shown that the coupled utilization of a natural heterogeneous catalyst such as chalcopyrite and a relatively high pressure allows to obtain the total removal of CA and a high removal of the TOC (about 75%) in short times (2 h) with relatively high current efficiencies using an Iridium based anode. In the case of 3-chlorophenol, the utilization of a BDD anode was necessary to achieve a high removal of the pollutant and the TOC. It was shown that the removal of 3-chlorophenol can be effectively performed in different water bodies and with different initial concentrations of 3-chlorophenol. Copyright © 2018 Elsevier Ltd. All rights reserved.
Modified sulfur isotopic compositions of sulfides in the nakhlites and Chassigny
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenwood, J.P.; Riciputi, L.R.; McSween, H.Y. Jr.
Variable sulfur isotopic ratios of sulfide minerals in the nakhlites and Chassigny have been measured by ion microprobe. The ranges and means of {delta}{sup 34}S values of pyrrhotite and pyrite in nakhlites become more negative in the sequence Nakhla > Governador Valadares > Lafayette. This is also the sequence of increasing degrees of subsolidus re-equilibration, suggesting that {sup 32}S enrichment may be related to the subsolidus thermal history. A chalcopyrite vein cross cutting a pyrrhotite in Nakhla, coupled with chalcopyrite having slightly lighter {delta}{sup 34}S values, suggests that subsolidus fluids may have become isotopically lighter (with respect to sulfur) inmore » Nakhla with time. Pyrite has replaced pyrrhotite in Lafayette, suggesting that {line_integral}O{sub 2} and/or {line_integral}S{sub 2} increased after pyrrhotite crystallization. A model involving subsolidus hydrothermal modification of igneous sulfide minerals (with {delta}{sup 34}S {approximately} 0{degree}) due to late-stage oxidation of fluids provides a reasonable explanation for the sulfur isotopic systematics of the nakhlites and Chassigny. Sulfur isotopic alteration is believed to have occurred during the waning stages of nakhlite magmatism, rather than during a much later low-temperature (<100 C) iddingsite formation event, based on the ineffectiveness of abiogenic sulfur isotopic fractionation below 200 C. Variable mixing of two isotopically different fluids also could have produced the observed fractionations, although an isotopically light reservoir of sulfur is problematic. Other possible mechanisms evaluated to explain the sulfur isotopic values of the sulfide minerals include martial mantle heterogeneity, possible influence of martial biological processes, and magmatic degassing of SO{sub 2}.« less
NASA Astrophysics Data System (ADS)
Rezeau, Hervé; Moritz, Robert; Beaudoin, Georges
2017-03-01
The Lac Herbin deposit consists of a network of mineralized, parallel steep-reverse faults within the synvolcanic Bourlamaque granodiorite batholith at Val-d'Or in the Archean Abitibi greenstone belt. There are two related quartz-tourmaline-carbonate fault-fill vein sets in the faults, which consist of subvertical fault-fill veins associated with subhorizontal veins. The paragenetic sequence is characterized by a main vein filling ore stage including quartz, tourmaline, carbonate, and pyrite-hosted gold, chalcopyrite, tellurides, pyrrhotite, and cubanite inclusions. Most of the gold is located in fractures in deformed pyrite and quartz in equilibrium with chalcopyrite and carbonates, with local pyrrhotite, sphalerite, galena, cobaltite, pyrite, or tellurides. Petrography and microthermometry on quartz from the main vein filling ore stage reveal the presence of three unrelated fluid inclusion types: (1) gold-bearing aqueous-carbonic inclusions arranged in three-dimensional intragranular clusters in quartz crystals responsible for the main vein filling stage, (2) barren high-temperature, aqueous, moderately saline inclusions observed in healed fractures, postdating the aqueous-carbonic inclusions, and considered as a remobilizing agent of earlier precipitated gold in late fractures, and (3) barren low-temperature, aqueous, high saline inclusions in healed fractures, similar to the crustal brines reported throughout the Canadian Shield and considered to be unrelated to the gold mineralization. At the Lac Herbin deposit, the aqueous-carbonic inclusions are interpreted to have formed first and to represent the gold-bearing fluid, which were generated contemporaneous with regional greenschist facies metamorphism. In contrast, the high-temperature aqueous fluid dissolved gold from the main vein filling ore stage transported and reprecipitated it in late fractures during a subsequent local thermal event.
NASA Astrophysics Data System (ADS)
Tolometti, Gavin; McCarthy, Will
2016-04-01
Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite mineralization. Extensive hydrothermal alteration is observed within 75 meters of veins that exhibit prominent disseminated mineralisation. To investigate associated geochemical alteration 24 samples were selected along two traverses that cross cut two distinct vein structures. XRF analysis results show that calcium decreases from 1.8 - 0.2 wt% and sulphur increases from 0.2 - 0.9 wt% moving away from the mineralized zones which is to be expected due to their mobile nature. Unexpectedly, minor element data shows no fluctuation in Cu concentrations moving away from either vein structures, despite chalcopyrite found greatest near the vein structures. XRF data analysis is underway to compare the non-mobile and mobile elements to investigate the extent of the decreasing and increasing trends moving proximal to the mineralization zones. The relative decrease in calcium may be caused by the exchange of ion end members between feldspars and this will be tested using a WDS electron micro-probe.
Han, Baisui; Altansukh, Batnasan; Haga, Kazutoshi; Stevanović, Zoran; Jonović, Radojka; Avramović, Ljiljana; Urosević, Daniela; Takasaki, Yasushi; Masuda, Nobuyuki; Ishiyama, Daizo; Shibayama, Atsushi
2018-06-15
Sulfide copper mineral, typically Chalcopyrite (CuFeS 2 ), is one of the most common minerals for producing metallic copper via the pyrometallurgical process. Generally, flotation tailings are produced as a byproduct of flotation and still consist of un‒recovered copper. In addition, it is expected that more tailings will be produced in the coming years due to the increased exploration of low‒grade copper ores. Therefore, this research aims to develop a copper recovery process from flotation tailings using high‒pressure leaching (HPL) followed by solvent extraction. Over 94.4% copper was dissolved from the sample (CuFeS 2 as main copper mineral) by HPL in a H 2 O media in the presence of pyrite, whereas the iron was co‒dissolved with copper according to an equation given as C Cu = 38.40 × C Fe . To avoid co‒dissolved iron giving a negative effect on the subsequent process of electrowinning, solvent extraction was conducted on the pregnant leach solution for improving copper concentration. The result showed that 91.3% copper was recovered in a stripped solution and 98.6% iron was removed under the optimal extraction conditions. As a result, 86.2% of copper was recovered from the concentrate of flotation tailings by a proposed HPL‒solvent extraction process. Copyright © 2018 Elsevier B.V. All rights reserved.
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-09
We report the preparation of Cu 2 S, In 2 S 3 , CuInS 2 and Cu(In,Ga)S 2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN 1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
NASA Astrophysics Data System (ADS)
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-01
We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
Electronic structure and optical properties of defect chalcopyrite HgGa2Se4
NASA Astrophysics Data System (ADS)
Gabrelian, B. V.; Lavrentyev, A. A.; Vu, Tuan V.; Parasyuk, O. V.; Khyzhun, O. Y.
2018-01-01
We report on studies from an experimental and theoretical viewpoint of the electronic structure of mercury digallium selenide, HgGa2Se4, a very promising optoelectronic material. In particular, the method of X-ray photoelectron spectroscopy (XPS) was used to evaluate binding energies of the constituent element core electrons and the shape of the valence band for pristine and Ar+-ion bombarded surfaces of HgGa2Se4 single crystal. First principles band-structure calculations were performed in the present work using the augmented plane wave + local orbitals (APW+lo). These calculations indicate that the Se 4p states are the main contributors at the top and in the upper portion of the valence band with slightly smaller contributions of the Ga 4p states in the upper portion of the band as well. Further, the central portion of the valence band is determined mainly by contributions of the Ga 4s states, and the Hg 5d states are the principal contributors to the bottom of the valence band. These theoretical data are in fair agreement when matching on a common energy scale of the X-ray emission bands giving information on the energy distribution of the Se 4p and Ga 4p states and the XPS valence-band spectrum of the HgGa2Se4 crystal. The principal optical constants are elucidated from the DFT calculations.
Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A.
2013-01-01
Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining. PMID:23509422
Orell, Alvaro; Remonsellez, Francisco; Arancibia, Rafaela; Jerez, Carlos A
2013-01-01
Sulfolobus metallicus is a thermoacidophilic crenarchaeon used in high-temperature bioleaching processes that is able to grow under stressing conditions such as high concentrations of heavy metals. Nevertheless, the genetic and biochemical mechanisms responsible for heavy metal resistance in S. metallicus remain uncharacterized. Proteomic analysis of S. metallicus cells exposed to 100 mM Cu revealed that 18 out of 30 upregulated proteins are related to the production and conversion of energy, amino acids biosynthesis, and stress responses. Ten of these last proteins were also up-regulated in S. metallicus treated in the presence of 1 mM Cd suggesting that at least in part, a common general response to these two heavy metals. The S. metallicus genome contained two complete cop gene clusters, each encoding a metallochaperone (CopM), a Cu-exporting ATPase (CopA), and a transcriptional regulator (CopT). Transcriptional expression analysis revealed that copM and copA from each cop gene cluster were cotranscribed and their transcript levels increased when S. metallicus was grown either in the presence of Cu or using chalcopyrite (CuFeS2) as oxidizable substrate. This study shows for the first time the presence of a duplicated version of the cop gene cluster in Archaea and characterizes some of the Cu and Cd resistance determinants in a thermophilic archaeon employed for industrial biomining.
2013-01-01
Background One of the most intriguing questions in evolutionary developmental biology is how an insect acquires a mimicry pattern within its body parts. A striking example of pattern mimicry is found in the pattern diversity of moth and butterfly wings, which is thought to evolve from preexisting elements illustrated by the nymphalid ground plan (NGP). Previous studies demonstrated that individuality of the NGP facilitates the decoupling of associated common elements, leading to divergence. In contrast, recent studies on the concept of modularity have argued the importance of a combination of coupling and decoupling of the constituent elements. Here, we examine the modularity of a mimicry wing pattern in a moth and explore an evolvable characteristic of the NGP. Results This study examined the wings of the noctuid moth Oraesia excavata, which closely resemble leaves with a leaf venation pattern. Based on a comparative morphological procedure, we found that this leaf pattern was formed by the NGP common elements. Using geometric morphometrics combined with network analysis, we found that each of the modules in the leaf pattern integrates the constituent components of the leaf venation pattern (i.e., the main and lateral veins). Moreover, the detected modules were established by coupling different common elements and decoupling even a single element into different modules. The modules of the O. excavata wing pattern were associated with leaf mimicry, not with the individuality of the NGP common elements. For comparison, we also investigated the modularity of a nonmimetic pattern in the noctuid moth Thyas juno. Quantitative analysis demonstrated that the modules of the T. juno wing pattern regularly corresponded to the individuality of the NGP common elements, unlike those in the O. excavata wing pattern. Conclusions This study provides the first evidence for modularity in a leaf mimicry pattern. The results suggest that the evolution of this pattern involves coupling and decoupling processes to originate these modules, free from the individuality of the NGP system. We propose that this evolution has been facilitated by a versatile characteristic of the NGP, allowing the association of freely modifiable subordinate common elements to make modules. PMID:23890367
Methods of forming semiconductor devices and devices formed using such methods
Fox, Robert V; Rodriguez, Rene G; Pak, Joshua
2013-05-21
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Methods for forming particles from single source precursors
Fox, Robert V [Idaho Falls, ID; Rodriguez, Rene G [Pocatello, ID; Pak, Joshua [Pocatello, ID
2011-08-23
Single source precursors are subjected to carbon dioxide to form particles of material. The carbon dioxide may be in a supercritical state. Single source precursors also may be subjected to supercritical fluids other than supercritical carbon dioxide to form particles of material. The methods may be used to form nanoparticles. In some embodiments, the methods are used to form chalcopyrite materials. Devices such as, for example, semiconductor devices may be fabricated that include such particles. Methods of forming semiconductor devices include subjecting single source precursors to carbon dioxide to form particles of semiconductor material, and establishing electrical contact between the particles and an electrode.
Silberman, Miles L.; Csejtey, Bela; Smith, James G.; Lanphere, Marvin A.; Wilson, Frederic H.
1978-01-01
The now largely abandoned Willow Creek mining district, southern Talkeetna Mountains, Alaska, produced nearly $18,000,000 in gold and minor silver between 1909 and the early 1950's. Mineralized quartz veins, which contain gold and silver along with minor quantities of base metals (in pyrite, galena, chalcopyrite, sphalerite, molybdenite, and arsenopyrite), cut Late Cretaceous and early Tertiary tonalite and quartzmica schist of probable Jurassic age (Ray, 1954; Silberman and others, 1976; Bela Csejtey, Jr., unpub. data, 1978).
Thin Film CuInS2 Prepared by Spray Pyrolysis with Single-Source Precursors
NASA Technical Reports Server (NTRS)
Jin, Michael H.; Banger, Kulinder K.; Harris, Jerry D.; Cowen, Jonathan E.; Hepp, Aloysius F.; Lyons, Valerie (Technical Monitor)
2002-01-01
Both horizontal hot-wall and vertical cold-wall atmospheric chemical spray pyrolysis processes deposited near single-phase stoichiometric CuInS2 thin films. Single-source precursors developed for ternary chalcopyrite materials were used for this study, and a new liquid phase single-source precursor was tested with a vertical cold-wall reactor. The depositions were carried out under an argon atmosphere, and the substrate temperature was kept at 400 C. Columnar grain structure was obtained with vapor deposition, and the granular structure was obtained with (liquid) droplet deposition. Conductive films were deposited with planar electrical resistivities ranging from 1 to 30 Omega x cm.
Geology and ore deposits of the Mahd Adh Dhahab District, Kingdom of Saudi Arabia
Luce, Robert W.; Bagdady, Abdulaziz; Roberts, Ralph Jackson
1976-01-01
The principal ore minerals are pyrite, chalcopyrite, sphalerite, galena, and minor tetrahedrite, argentite, and native gold and silver. The gold and silver occurs finely disseminated in the veins and in the altered selvages of the veins. Widespread potassic and propylitic alteration accompanied the ore-forming processes. Potassium feldspar was introduced during an early stage of vein formation. Isotopic analyses of lead in vein potassium feldspar and galena yield a model age of about 900-1050 million years with the possibility of the original lead source having been remobilized about 600 million years ago. Chlorite and carbonate are also prominent vein minerals.
Oldekop, Johan A.; Bebbington, Anthony J.; Truelove, Nathan K.; Tysklind, Niklas; Villamarín, Santiago; Preziosi, Richard F.
2012-01-01
Indicator taxa are commonly used to identify priority areas for conservation or to measure biological responses to environmental change. Despite their widespread use, there is no general consensus about the ability of indicator taxa to predict wider trends in biodiversity. Many studies have focused on large-scale patterns of species co-occurrence to identify areas of high biodiversity, threat or endemism, but there is much less information about patterns of species co-occurrence at local scales. In this study, we assess fine-scale co-occurrence patterns of three indicator taxa (epiphytic ferns, leaf litter frogs and dung beetles) across a remotely sensed gradient of human disturbance in the Ecuadorian Amazon. We measure the relative contribution of rare and common species to patterns of total richness in each taxon and determine the ability of common and rare species to act as surrogate measures of human disturbance and each other. We find that the species richness of indicator taxa changed across the human disturbance gradient but that the response differed among taxa, and between rare and common species. Although we find several patterns of co-occurrence, these patterns differed between common and rare species. Despite showing complex patterns of species co-occurrence, our results suggest that species or taxa can act as reliable indicators of each other but that this relationship must be established and not assumed. PMID:22701730
NASA Astrophysics Data System (ADS)
Wang, J.; Zhu, J.; He, Y. X.
2014-01-01
The influence of two different locations of sputter guns on the morphological and structural properties of Cu-In-Ga precursors and Cu(In,Ga)Se2 (CIGS) thin films was investigated. All the precursors contained cauliflower-like nodules, whereas smaller subnodules were observed on the background. All the precursors revealed apparent three-layered structures, and voids were observed at the CIGS/SLG interface of Sets 1 and 2 films rather than Set 3 film. EDS results indicated that all CIGS thin films were Cu-deficient. Based on the grazing incidence X-ray diffraction (GIXRD) patterns, as-selenized films showed peaks corresponding to the chalcopyrite-type CIGS structure. Depth-resolved Raman spectra showed the formation of a dominant CIGS phase inside the films for all the as-selenized samples investigated, and of an ordered vacancy compound (OVC) phase like Cu(In,Ga)3Se5 or Cu(In,Ga)2Se3.5 at the surface and/or CIGS/SLG interface region of Sets 2 and 3 films. No evidence was obtained on the presence of an OVC phase in Set 1 CIGS film, which may be speculated that long-time annealing is contributed to suppress the growth of OVC phases. The results of the present work suggest that the metallic precursors deposited with the upright-location sputter gun might be more appropriate to prepare CIGS thin films than those sputtered with the titled-location gun.
NASA Astrophysics Data System (ADS)
Wang, Jialin; Gu, Xuexiang; Zhang, Yongmei; Zhou, Chao; He, Ge; Liu, Ruiping
2018-03-01
The Sanfengshan copper deposit, located in the Beishan orogenic belt, Northwestern China, is hosted in the lower member of the Hongliuyuan Formation, an early Carboniferous metavolcanic-sedimentary sequence. Mineralization occurs as stratiform, stratiform-like and lenticular orebodies, and comprises of laminated, brecciated, banded, massive, and disseminated ores. The mineralogy is dominated by pyrite, chalcopyrite and sphalerite. Fe-Mn chert is widely distributed and generally occurs as massive, laminated, bands or lenses, which are consistent with the orebody. Alteration at Sanfengshan displays a clear concentric zoning pattern and the footwall alteration is more intense and somewhat thicker than the hanging-wall alteration. Systematic geochemical investigation on the volcanic rocks in this area shows that the basalts of the Hongliuyuan Formation (HLY) are predominantly tholeiites with nearly flat rare earth element (REE) pattern, insignificant negative anomalies of high field strength elements (HFSEs), and low Ti/V and Th/Nb ratios. They were most likely derived from partial melting of depleted asthenospheric mantle and formed in a fore-arc setting during initiation of the southward subduction of the Paleo-Asian Ocean. The basalts of the Maotoushan Formation (MTS) display a calc-alkaline nature and are enriched in large ion lithophile elements (LILEs) and depleted in HFSEs, suggesting an active continental margin setting. Sulfur isotope (δ34S) values of the sulfide and sulfate minerals vary between 0‰ and 5.4‰, which are consistent with sulfur derivation from leaching of the host volcanic rocks, although a direct magmatic contribution cannot be ruled out. The Re-Os isotope data of pyrite yield an isochron age of 353 ± 35 Ma, consistent with the age of the host HLY basalts. Thus, a syngenetic (volcanogenic massive sulfide) model is proposed and it is concluded that the Sanfengshan copper deposit is a typical Cyprus-type VMS deposit that formed in an early Carboniferous fore-arc setting in the Beishan orogenic belt.
Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia
NASA Astrophysics Data System (ADS)
Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.
2010-12-01
The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into liquid upon its ascent.
The Genesis of Precious and Base Metal Mineralization at the Miguel Auza Deposit, Zacatecas, Mexico
NASA Astrophysics Data System (ADS)
Findley, A. A.; Olivo, G. R.; Godin, L.
2009-05-01
The Miguel Auza mine located in Zacatecas State, Mexico, is a vein-type polymetallic epithermal deposit hosted in deformed argillite, siltstone and, greywacke of the Cretaceous Caracol Formation. Silver-rich base metal veins (0.2 m to >1.5 m wide) are spatially associated with the NE-striking, steeply SE- dipping (70-80°) Miguel Auza fault over a strike length of 1.6 km and a depth of 460 m. A 2 km2 monzonitic stock located in the proximity of the mineralized zones, has previously been interpreted as the source of the mineralizing fluids. Four distinct structural stages are correlated with hydrothermal mineral deposition: (I) The Pre-ore stage is characterized by normal faulting, fracturing of host rock, and rotation of bedding planes. This stage consists of quartz, illite, chlorite, +/- pyrite alteration of sedimentary wall rocks. (II) The Pyrite-vein stage is associated with reverse-sense reactivation of early normal faults, dilation of bedding planes/fractures, and deposition of generally barren calcite + pyrite veinlets. (III) The Main-ore stage is related to the development of reverse-fault- hosted massive sulphide veins. During this stage three phases of mineral deposition are recorded: early pyrite and arsenopyrite, intermediate chalcopyrite, pyrite, arsenopyrite, and base metals, and late base metals and Ag-bearing minerals. Associated gangue minerals during the main ore stage are quartz, muscovite, calcite and chlorite. (IV) The Post-ore stage involves late NW-SE striking block faulting, brecciation and calcite veining. Later supergene oxidation of veins led to deposition of Fe-oxides and hydroxides, commonly filling fractures or replacing early-formed sulphide assemblages. The various vein types display classic epithermal textures including open space filling, banding, comb quartz and brecciation. The Ag-bearing minerals comprise pyrargyrite [Ag3(Sb,As)S3], argentotennantite [(Cu,Ag)10(Zn,Fe)2(Sn,As)4S13], polybasite-pearceite [(Ag,Cu)16(Sb,As)2S11], and acanthite [AgS2]; associated sulphides include galena, sphalerite, chalcopyrite, arsenopyrite and pyrite. In the main ore zone, base metal sulphides are commonly intergrown with the Ag-bearing sulfosalts. Analyses of galena show no significant silver values indicating that silver grades are exclusively associated with the Ag-bearing sulfosalts and sulphides. The distribution of the Sb/(Sb + As) ratios in the silver sulfosalts indicate that the ore forming fluid(s) was consistently antimony-rich during the Ag-rich ore deposition with no significant variation laterally, vertically, or along strike of the vein systems. However, Ag/(Ag + Cu) values in argentotennantite decrease along-strike from NE to SW and with depth. Compositions of argentotennantite + pyrargyrite + sphalerite indicate a primary depositional temperature around 325-350° C for the late phase of the Main-ore stage. Compositions of sphalerite also show an increasing trend in FeS (mol %) along strike of the deposit from NE to SW. The geometric relationship between the various structures, vein types, and the regional Miguel Auza fault zone suggest episodic reverse-sense reactivation of normal faults. It is argued that the structural evolution of the area, and, in particular, the Main-ore stage, provided transport pathways for metal-rich fluids and controlled the orientations of ore-bearing veins. Variations in mineral chemistry suggest that the rocks in the NE sector interacted with hotter fluids than in the SW part of the deposit.
The Transfiguration continental red-bed Cu-Pb-Zn-Ag deposit, Quebec Appalachians, Canada
NASA Astrophysics Data System (ADS)
Cabral, Alexandre Raphael; Beaudoin, Georges; Taylor, Bruce E.
2009-04-01
The Transfiguration Cu-Pb-Zn-Ag deposit, enclosed within reduced grey sandstone, is associated with continental red beds of the Lower Silurian Robitaille Formation in the Quebec Appalachians, Canada. The Robitaille Formation rests unconformably on foliated Cambro-Ordovician rocks. The unconformity is locally cut by barite veins. The basal unit of the Robitaille Formation comprises green wacke and pebble conglomerate, which locally contain calcite nodules. The latter have microstructures characteristic of alpha-type calcretes, such as “floating” fabrics, calcite-filled fractures (crystallaria) and circumgranular cracks. Massive, grey sandstone overlies the basal green wacke and pebble conglomerate unit, which is overlain, in turn, by red, fine-grained sandstone. Mineralisation occurred underneath the red sandstone unit, chiefly in the grey sandstone unit, as disseminated and veinlet sulphides. Chalcopyrite, the most abundant Cu sulphide, replaced early pyrite. Calcrete, disseminated carbonate and vein carbonate have stable isotope ratios varying from -7.5‰ to -1.1‰ δ13C and from 14.7‰ to 21.3‰ δ18O. The negative δ13C values indicate the oxidation of organic matter in a continental environment. Sulphur isotope ratios for pyrite, chalcopyrite and galena vary from -19‰ to 25‰ δ34S, as measured on mineral concentrates by a conventional SO2 technique. Laser-assisted microanalyses (by fluorination) of S isotopes in pyrite show an analogous range in δ34S values, from -21‰ to 25‰. Negative and positive δ34S values are compatible with bacterial sulphate reduction (BSR) in systems open and closed with respect to sulphate. We interpret similarly high δ34S values for sulphide concentrates (25.1‰) and for vein barite (26.2‰) to result from rapid and complete thermochemical reduction of pore-water sulphate. Two early to late diagenetic stages of mineralisation best explain the origin of the Transfiguration deposit. The first stage was characterised by the ponding of groundwater over the Taconian unconformity, recorded by calcrete and early pyrite formation via BSR in grey sandstone. Early pyrite contains up to 2 wt.% Pb, which is consistent with Pb fixation by sulphate-reducing bacteria. The second stage (II) is defined by the replacement of early pyrite by chalcopyrite, as well as by sulphide precipitation via either BSR or thermochemical sulphate reduction (TSR) in grey sandstone. This event resulted from the synsedimentary fault-controlled percolation and mixing of (1) an oxidising, sulphate-bearing cupriferous fluid migrating per descensum from the red-bed sequence and (2) a hydrocarbon-bearing fluid migrating per ascensum from the Cambro-Ordovician basement. Mixing between the two fluids led to sulphate reduction, causing Cu sulphide precipitation. The positive correlation between Cu and Fe3+/Fe2+ bulk rock values suggests that Fe acted as a redox agent during sulphate reduction. Stage II diagenetic fluid migration is tentatively attributed to the Late Silurian Salinic extensional event.
Granitoid-associated gold mineralization in Egypt: a case study from the Atalla mine
NASA Astrophysics Data System (ADS)
Zoheir, Basem; Deshesh, Fatma; Broman, Curt; Pitcairn, Iain; El-Metwally, Ahmed; Mashaal, Shabaan
2018-06-01
Gold-bearing sulfide-quartz veins cutting mainly through the Atalla monzogranite intrusion in the Eastern Desert of Egypt are controlled by subparallel NE-trending brittle shear zones. These veins are associated with pervasive sericite-altered, silicified, and ferruginated rocks. The hosting shear zones are presumed as high-order structures of the Najd-style faults in the Central Eastern Desert ( 615-585 Ma). Ore minerals include an early pyrite-arsenopyrite (±pyrrhotite) mineralization, partly replaced by a late pyrite-galena-sphalerite-chalcopyrite (±gold/electrum ± tetrahedrite ± hessite) assemblage. Gold occurs as small inclusions in pyrite and arsenopyrite, or more commonly as intergrowths with galena and sphalerite/tetrahedrite in microfractures. Arsenopyrite geothermometry suggests formation of the early Fe-As-sulfide mineralization at 380-340 °C, while conditions of deposition of the late base metal-gold assemblage are assumed to be below 300 °C. Rare hessite, electrum, and Bi-galena are associated with sphalerite and gold in the late assemblage. The early and late sulfide minerals show consistently a narrow range of δ34S ‰ (3.4-6.5) that overlaps with sulfur isotopic values in ophiolitic rocks. The Au-quartz veins are characterized by abundant CO2 and H2O ± CO2 ± NaCl inclusions, where three-dimensional clusters of inclusions show variable aqueous/carbonic proportions and broad range of total (bimodal) homogenization temperatures. Heterogeneous entrapment of immiscible fluids is interpreted to be caused by unmixing of an originally homogenous, low salinity ( 2 eq. mass % NaCl) aqueous-carbonic fluid, during transition from lithostatic to hydrostatic conditions. Gold deposition occurred generally under mesothermal conditions, i.e., 1.3 kbar and 280 °C, and continued during system cooling to < 200 °C and pressure decrease to 0.1 kbar. Based on the vein textures, sulfur isotope values, composition of ore fluids, and conditions of ore formation, we suggest that the Atalla monzogranite intrusion acted only as a competent structural host for ore deposition from shear-related, metal-rich fluids migrated up from depth. This model is also presumed for most granitoid-associated Au deposits in the region, considering the similarity in their structural control, alteration pattern and mineralogy, and chemistry of the ore fluids.
Kelley, K.D.; Kelley, D.L.
1992-01-01
A reconnaissance geochemical survey was conducted in the southern Killik River quadrangle, central Brooks Range, northern Alaska. The Brooks Range lies within the zone of continuous permafrost which may partially inhibit chemical weathering and oxidation. The minus 30-mesh and nonmagnetic heavy-mineral concentrate fractions of sediment samples were chosen as the sample media for the survey so that mechanical rather than chemical dispersion patterns would be enhanced. A total of 263 sites were sampled within the southern half of the Killik River quadrangle at an average sample density of approximately one sample per 12 km2. All samples were submitted for multi-element analyses. In the western and central Brooks Range, several known sediment-hosted Zn-Pb-Ag(-Ba) deposits occur within a belt of Paleozoic rocks of the Endicott Mountains allochthon. Exploration for this type of deposit in the Brook Range is difficult, due to the inherently high background values for Ba, Zn and Pb in shale and the common occurrence of metamorphic quartz-calcite veins, many of which contain traces of sulfide minerals. Stream sediments derived from these sources produce numerous geochemical anomalies which are not necessarily associated with significant mineralization. R-mode factor analysis provides a means of distinguishing between element associations related to lithology and those related to possible mineralization. Factor analysis applied to the multi-element data from the southern Killik River quadrangle resulted in the discovery of two additional Zn-Pb-Ag mineral occurrences of considerable areal extent which are 80-100 km east of any previously known deposit. These have been informally named the Kady and Vidlee. Several lithogeochemical element associations, or factors, and three factors which represent sulfide mineralization were identified: Ag-Pb-Zn (galena and sphalerite) and Fe-Ni-Co-Cu (pyrite ?? chalcopyrite) in the concentrate samples and Cd-Zn-Pb-As-Mn in the sediment samples. The distribution of high scores for each individual mineralization factor outlined several relatively large (200-250 km2) geochemically favorable areas. When the distribution of high scores for all three factors were superimposed, samples characterized by high scores for one or both of the concentrate mineralization factors and the mineralization factor in sediments define basin areas of approximately 48 and 64 km2 surrounding Kady and Vidlee, respectively. ?? 1992.
Common Warming Pattern Emerges Irrespective of Forcing Location
NASA Astrophysics Data System (ADS)
Kang, Sarah M.; Park, Kiwoong; Jin, Fei-Fei; Stuecker, Malte F.
2017-10-01
The Earth's climate is changing due to the existence of multiple radiative forcing agents. It is under question whether different forcing agents perturb the global climate in a distinct way. Previous studies have demonstrated the existence of similar climate response patterns in response to aerosol and greenhouse gas (GHG) forcings. In this study, the sensitivity of tropospheric temperature response patterns to surface heating distributions is assessed by forcing an atmospheric general circulation model coupled to an aquaplanet slab ocean with a wide range of possible forcing patterns. We show that a common climate pattern emerges in response to localized forcing at different locations. This pattern, characterized by enhanced warming in the tropical upper troposphere and the polar lower troposphere, resembles the historical trends from observations and models as well as the future projections. Atmospheric dynamics in combination with thermodynamic air-sea coupling are primarily responsible for shaping this pattern. Identifying this common pattern strengthens our confidence in the projected response to GHG and aerosols in complex climate models.
The mineralogical transformation of a polymetallic sulfide ore during partial roasting
NASA Astrophysics Data System (ADS)
Evrard, Louis
2001-12-01
A partial desulfurization roasting process has been tested on a typical copper-zinc sulfide concentrate in a Nichols Herreshoff monohearth pilot furnace. In this process, the sulfur is partially removed and iron, to a certain degree, is preferentially oxidized. The mineralogical characterizations of the reaction products at different residence times enable the recognition of a sequence of reactions and various textural relationships during the roasting. The testing showed that a controlled desulfurization at a temperature as low as 650°C can lead to the decomposition of chalcopyrite, resulting in the formation of discrete particles of Cu2S having a size ranging from five to 20 micrometers or more.
Tucker, Robert D.; Stettner, Will R.; Masonic, Linda M.; Bogdanow, Anya K.
2014-01-01
The Ahankashan and Rakhna prospect area is one of several gold and copper deposits within west-central Afghanistan. Here, various felsic to intermediate igneous porphyries intrude Lower Triassic to lower Paleogene sedimentary rocks, producing mineral and ore-bearing zones related to hydrothermal alteration, skarns, silicification, and crushing (brecciation). Mineralized skarns contain assemblages such as magnetite, magnetite-hematite, epidote-hematite, and epidote-garnet, as well as disseminations of chalcopyrite, covellite, chalcocite, cuprite, malachite, and azurite. Gold mineralization is mainly associated with zones of crushing along faults, and with small silicified igneous veins within granite and quartz porphyry.
Sabour, Hadis; Soltani, Zahra; Latifi, Sahar; Javidan, Abbas Norouzi
2016-07-01
Plasma lipids (triglyceride (TG), total cholesterol (TC), high-density lipoprotein (HDL-C) and low-density lipoprotein (LDL-C)) may be associated with dietary intakes. The purpose of this study was to identify the most common food patterns among Iranian persons with spinal cord injury (SCI) and investigate their associations with lipid profile. Cross-sectional. Tertiary rehabilitation center. Referred individuals to Brain and Spinal Injury Research Center (BASIR) from 2011 to 2014. Dietary intakes were assessed by 24-hour dietary recall interviews in three non-consecutive days. Principal component analysis (PCA) was used to identify dietary patterns. Total of 100 persons (83 male and 17 female) entered the study. Four food patterns were detected. The most common dietary pattern (Pattern 1) included processed meat, sweets desserts and soft drink and was similar to 'Western' food pattern described previously. Pattern 1 was related to higher levels of TC and LDL-C (r = 0.09; P = 0.04 and r = 0.11; P = 0.03 for TC and LDL-C, respectively) only in male participants. Pattern 2 which included tea, nuts, vegetable oil and sugars had a positive association with TC level (r = 0.11; P = 0.02) again in male participants. Pattern 3 which represented a healthy food pattern showed no significant influence on lipid profiles. In this study, the four most common dietary patterns among Iranian individuals with SCI have been identified. Western food pattern was the most common diet and was associated with increased TC and LDL-C. The healthy food pattern, in which the major source of calories was protein, was not associated with variance in lipid profile.
NASA Astrophysics Data System (ADS)
Carrillo-Rosúa, J.; Morales-Ruano, S.; Morata, D.; Boyce, A. J.; Belmar, M.; Fallick, A. E.; Fenoll Hach-Alí, P.
2008-03-01
The El Dorado Au-Cu deposit is located in an extensive intra-caldera zone of hydrothermal alteration affecting Upper Cretaceous andesites of the Los Elquinos Formation at La Serena (≈ 29°47'S Lat., 70°43'W Long., Chile). Quartz-sulfide veins of economic potential are hosted by N25W and N20E fault structures associated with quartz-illite alteration (+supergene kaolinite). The main ore minerals in the deposit are pyrite, chalcopyrite ± fahlore (As/(As + Sb): 0.06-0.98), with electrum, sphalerite, galena, bournonite-seligmanite (As/(As + Sb): 0.21-0.31), marcasite, pyrrhotite being accessory phases. Electrum, with an Ag content between 32 and 37 at.%, occurs interstitial to pyrite aggregates or along pyrite fractures. Pyrite commonly exhibits chemical zonation with some zones up to 1.96 at.% As. Electron probe microanalyses of pyrite indicate that As-rich zones do not exhibit detectable Au values. Fluid inclusion microthermometry shows homogenization temperatures between 130 and 352 °C and salinities between 1.6 and 6.9 wt.% NaCl eq. Isotope data for quartz, ankerite and phyllosilicates and estimated temperatures show that δ18O and δD for the hydrothermal fluids were between 3 and 10‰ and between -95 and -75‰, respectively. These results suggest the mineralizing fluids were a mixture of meteoric and magmatic waters. An epithermal intermediate-sulfidation model is proposed for the formation of the El Dorado deposit.
Temporal patterns of drug use - a pilot study.
Sinnett, E R
1976-12-01
Examination of pilot data for classes of drugs showed significant coefficients of concordance for ranked times of most common to least common use. Marijuana, psychedelics, and amphetamines were used most commonly from 6 to 10 p.m., coincidental with temporal patterns for viewing television suggests recreational use. Use times for caffeine were completely different.
So, H C; Pearl, D L; von Königslöw, T; Louie, M; Chui, L; Svenson, L W
2013-08-01
Molecular typing methods have become a common part of the surveillance of foodborne pathogens. In particular, pulsed-field gel electrophoresis (PFGE) has been used successfully to identify outbreaks of Escherichia coli O157:H7 in humans from a variety of food and environmental sources. However, some PFGE patterns appear commonly in surveillance systems, making it more difficult to distinguish between outbreak and sporadic cases based on molecular data alone. In addition, it is unknown whether these common patterns might have unique epidemiological characteristics reflected in their spatial and temporal distributions. Using E. coli O157:H7 surveillance data from Alberta, collected from 2000 to 2002, we investigated whether E. coli O157:H7 with provincial PFGE pattern 8 (national designation ECXAI.0001) clustered in space, time and space-time relative to other PFGE patterns using the spatial scan statistic. Based on our purely spatial and temporal scans using a Bernoulli model, there did not appear to be strong evidence that isolates of E. coli O157:H7 with provincial PFGE pattern 8 are distributed differently from other PFGE patterns. However, we did identify space-time clusters of isolates with PFGE pattern 8, using a Bernoulli model and a space-time permutation model, which included known outbreaks and potentially unrecognized outbreaks or additional outbreak cases. There were differences between the two models in the space-time clusters identified, which suggests that the use of both models could increase the sensitivity of a quantitative surveillance system for identifying outbreaks involving isolates sharing a common PFGE pattern. © 2012 Blackwell Verlag GmbH.
Guidelines on common cold for traditional Chinese medicine based on pattern differentiation.
Jiao, Yang; Liu, Jianping; Jiang, Liangduo; Liu, Qingquan; Li, Xiaoli; Zhang, Shunan; Zhao, Baixiao; Wang, Tianfang
2013-08-01
To establish the guidelines on common cold treated with Traditional Chinese Medicine (TCM) in terms of pattern identification. The guidelines were formulated by using the basic patterns common cold in China Pharmacopeia integrated with findings from systematic literature review and the experts' consensus on the issue in question. Common cold was divided into four patterns in the guidelines. The medications were recommended respectively: Ganmaoqingre granule for wind-cold exterior syndrome, Yinqiaojiedu granule for wind-heat exterior syndrome, Huoxiangzhengqi Wan for summer-heat dampness exterior syndrome and Shensu Wan for wind-cold exterior syndrome accompanied with Qi deficiency. The guidelines were primarily derived from the practice experience of TCM and the experts' consensus. The process was not strictly evidence-based because of lacking enough clinical studies. Further refinement of the guidelines should be needed as more studies are available.
Dai, S.; Ren, D.; Li, D.; Chou, C.-L.; Luo, K.
2006-01-01
Mineralogy and geochemistry of the No. 11 Coal bed were investigated by using inductively-coupled plasma mass spectrometry (ICP-MS), X-ray fluorescence (XRF), scanning electron microscopy equipped with energy-dispersive X-ray (SEM-EDX), sequential chemical extraction procedure (SCEP), and optical microscopy. The results show that the No. 11 Coal bed has very high contents of veined quartz (Vol. 11.4%) and veined ankerite (Vol. 10.2 %). The veined ankerite was generally coated by goethite and the veined quartz embraced chalcopyrite, sphalerite, and selenio-galena. In addition, a trace amount of kaolinite was filled in the veins. These seven minerals often occur in the same veins. The formation temperatures of the veined ankerite and quartz are 85??C and 180??C respectively, indicating their origins of iron-rich calcic and siliceous low-temperature hydrothermal fluids in different epigenetic periods. Studies have also found that the veined quartz probably formed earlier than the veined ankerite, and at least three distinct ankerite formation stages were observed by the ration of Ca/Sr and Fe/Mn of ankerite. The mineral formation from the early to late stage is in order of sulfide, quartz, kaolinite, ankerite, and goethite. The veined ankerite is the dominant source of Mn, Cu, Ni, Pb, and Zn, which are as high as 0.09%, 74.0 ??g/g, 33.6 ??g/g, 185 ??g/g, and 289 ??g/g in this coal seam, respectively. However, the veined quartz is the main carrier of Pd, Pt, and Ir, which are 1.57 ??g/g, 0.15 ??g/g, and 0.007 ??g/g in this coal seam, respectively. In addition, chalcopyrite, sphalerite, and selenio-galena of hydrothermal origin were determined in the veined quartz, and these three sulfide minerals are also important carriers of Cu, Zn and Pb in the No. 11 Coal bed.
Metallogeny of the Mont-de-l'Aigle IOCG deposit, Gaspé Peninsula, Québec, Canada
NASA Astrophysics Data System (ADS)
Simard, M.; Beaudoin, G.; Bernard, J.; Hupé, A.
2006-09-01
The Mont-de-l’Aigle deposit is located in the northern part of Dome Lemieux, in the Connecticut Valley-Gaspé Synclinorium, Gaspé Peninsula, Québec. The Dome Lemieux is a subcircular antiform of Siluro-Devonian sedimentary rocks that is cut by numerous mafic and felsic sills and dikes of Silurian to Late Devonian age. Plutonism occurred in a continental within-plate extensional setting typical of orogenic collapse. The Cu-Fe (± Au) mineralization of Mont-de-l’Aigle occurs in veins, stockworks, and breccias. Mineralization is located near or within N-S and NW-SE faults cutting sedimentary rocks. IOCG mineralization postdates intrusions, skarns, hornfels, and epithermal mineralization typical of the southern part of the Dome Lemieux. The paragenetic sequence comprises: (1) pervasive sodic, potassic, chlorite, and silica alteration, (2) hematite, quartz, pyrite, magnetite, and chalcopyrite veins, stockworks and breccias and, (3) dolomite ± hematite veins and veinlets cutting the earlier mineralization. Intrusions display proximal sodic and potassic alteration, whereas sedimentary rocks have proximal decalcification, silicification, and potassic alteration. Both intrusive and sedimentary rocks are affected by a pervasive distal chlorite (± silica) alteration. The sulfur isotope composition of pyrite and chalcopyrite (δ34S=-1.5 to 4.8‰) suggests that sulfur was derived mainly from igneous rocks. Fluid δ18O (-0.4 to 2.65‰) indicates meteoric or seawater that reacted with the country rocks. Mixing of hot magmatic fluids with a cooler fluid, perhaps meteoric or seawater is suggested for mineral deposition and alteration of the Mont-de-l’Aigle deposit. The mineralogy, alteration, and sulfur isotope composition of the Mont-de-l’Aigle deposit compare well with IOCG deposits worldwide, making the Mont-de-l’Aigle deposit a rare example of Paleozoic IOCG mineralization, formed at shallow depth, within a low metamorphic grade sedimentary rock sequence.
NASA Astrophysics Data System (ADS)
Zhu, Zhimin; Tan, Hongqi; Liu, Yingdong; Li, Chao
2018-03-01
The Lala Fe-Cu deposit is one of the largest iron oxide-copper-gold (IOCG) deposits in the Kangdian copper belt, southwest China. The paragenetic sequence of the Lala deposit includes six hydrothermal stages: pre-ore pervasive Na alteration (I); magnetite stage with K-feldspar and apatite (II); polymetallic disseminated/massive magnetite-sulfide stage (III); banded magnetite-sulfide stage (IV); sulfide vein stage (V); and late quartz-carbonate vein stage (VI). Fifteen molybdenite separates from stages III to VI were analyzed for Re-Os dating. Our new Re-Os data, together with previous studies, identify four distinct hydrothermal events at the Lala deposit. Molybdenite from the stage III disseminated to massive chalcopyrite-magnetite ores yielded a weighted average Re-Os age of 1306 ± 8 Ma (MSWD = 1.1, n = 6) which represents the timing of main ore formation. Molybdenite from the stage IV-banded magnetite-chalcopyrite ores yielded a weighted average Re-Os age of 1086 ± 8 Ma (MSWD = 2.2, n = 7), i.e., a second ore-forming event. Molybdenite from the stage V sulfide veins yielded a weighted average Re-Os age of 988 ± 8 Ma (MSWD = 1.3, n = 7) which represents the timing of a third hydrothermal event. Molybdenite from the quartz-carbonate veins (stage VI) yielded a weighted average Re-Os age at 835 ± 4 Ma (MSWD = 0.66, n = 10) and documented the timing of a late hydrothermal event. Our results indicate that the Lala deposit formed during multiple, protracted mineralization events over several hundred million years. The first three Mesoproterozoic mineralization events are coeval with intra-continental rifting (breakup of the supercontinent Nuna) and share a temporal link to other IOCG-style deposits within the Kangdian Copper Belt, and the last Neoproterozoic hydrothermal event is coeval with the Sibao orogeny which culminated with the amalgamation of the Yangtze Block with the Cathaysia Block at 860-815 Ma.
NASA Astrophysics Data System (ADS)
Bowden, Bryan; Fraser, Geoff; Davidson, Garry J.; Meffre, Sebastien; Skirrow, Roger; Bull, Stuart; Thompson, Jay
2017-08-01
The Mesoproterozoic Prominent Hill iron-oxide copper-gold deposit lies on the fault-bound southern edge of the Mt Woods Domain, Gawler Craton, South Australia. Chalcocite-bornite-chalcopyrite ores occur in a hematitic breccia complex that has similarities to the Olympic Dam deposit, but were emplaced in a shallow water clastic-carbonate package overlying a thick andesite-dacite pile. The sequence has been overturned against the major, steep, east-west, Hangingwall Fault, beyond which lies the clastic to potentially evaporitic Blue Duck Metasediments. Immediately north of the deposit, these metasediments have been intruded by dacite porphyry and granitoid and metasomatised to form magnetite-calc-silicate skarn ± pyrite-chalcopyrite. The hematitic breccia complex is strongly sericitised and silicified, has a large sericite ± chlorite halo, and was intruded by dykes during and after sericitisation. This paper evaluates the age of sericite formation in the mineralised breccias and provides constraints on the timing of granitoid intrusion and skarn formation in the terrain adjoining the mineralisation. The breccia complex contains fragments of granitoid and porphyry that are found here to be part of the Gawler Range Volcanics/Hiltaba Suite magmatic event at 1600-1570 Ma. This indicates that some breccia formation post-dated granitoid intrusion. Monazite and apatite in Fe-P-REE-albite metasomatised granitoid, paragenetically linked with magnetite skarn formation north of the Hangingwall Fault, grew soon after granitoid intrusion, although the apatite experienced U-Pb-LREE loss during later fluid-mineral interaction; this accounts for its calculated age of 1544 ± 39 Ma. To the south of the fault, within the breccia, 40Ar-39Ar ages yield a minimum age of sericitisation (+Cu+Fe+REE) of dykes and volcanics of ˜1575 Ma, firmly placing Prominent Hill ore formation as part of the Gawler Range Volcanics/Hiltaba Suite magmatic event within the Olympic Cu-Au province of the Gawler Craton.
Non-injection synthesis of monodisperse Cu-Fe-S nanocrystals and their size dependent properties.
Gabka, Grzegorz; Bujak, Piotr; Żukrowski, Jan; Zabost, Damian; Kotwica, Kamil; Malinowska, Karolina; Ostrowski, Andrzej; Wielgus, Ireneusz; Lisowski, Wojciech; Sobczak, Janusz W; Przybylski, Marek; Pron, Adam
2016-06-01
It is demonstrated that ternary Cu-Fe-S nanocrystals differing in composition (from Cu-rich to Fe-rich), structure (chalcopyrite or high bornite) and size can be obtained from a mixture of CuCl, FeCl3, thiourea and oleic acid (OA) in oleylamine (OLA) using the heating up procedure. This new preparation method yields the smallest Cu-Fe-S nanocrystals ever reported to date (1.5 nm for the high bornite structure and 2.7 nm for the chalcopyrite structure). A comparative study of nanocrystals of the same composition (Cu1.6Fe1.0S2.0) but different in size (2.7 nm and 9.3 nm) revealed a pronounced quantum confinement effect, confirmed by three different techniques: UV-vis spectroscopy, cyclic voltammetry and Mössbauer spectroscopy. The optical band gap increased from 0.60 eV in the bulk material to 0.69 eV in the nanocrystals of 9.3 nm size and to 1.39 eV in nanocrystals of 2.7 nm size. The same trend was observed in the electrochemical band gaps, derived from cyclic voltammetry studies (band gaps of 0.74 eV and 1.54 eV). The quantum effect was also manifested in Mössbauer spectroscopy by an abrupt change in the spectrum from a quadrupole doublet to a Zeeman sextet below 10 K, which could be interpreted in terms of the well defined energy states in these nanoparticles, resulting from quantum confinement. The Mössbauer spectroscopic data confirmed, in addition to the results of XPS spectroscopy, the co-existence of Fe(iii) and Fe(ii) in the synthesized nanocrystals. The organic shell composition was investigated by NMR (after dissolution of the inorganic core) and IR spectroscopy. Both methods identified oleylamine (OLA) and 1-octadecene (ODE) as surfacial ligands, the latter being formed in situ via an elimination-hydrogenation reaction occurring between OLA and the nanocrystal surface.
NASA Technical Reports Server (NTRS)
Xing, G. C.; Bachmann, Klaus J.; Posthill, J. B.; Timmons, M. L.
1993-01-01
The epitaxial growth of ZnGe(1-x)Si(x)P2-Ge alloys on GaP substrates by open tube organometallic chemical vapor deposition (OMCVD) is reported. The chemical composition of the alloys characterized by energy dispersive X-ray spectroscopy shows that alloys with x up to 0.13 can be deposited on (001) GaP. Epitaxial growth with mirror smooth surface morphology was achieved for x less than or equal to 0.05. Transmission electron microscopy (TEM) micrographs of these alloys show specular epitaxy and the absence of microstructural defects indicating a defect density of less than 10(exp 7) cm(sup -2). Selected area electron diffraction pattern of the alloy shows that the epitaxial layer crystallizes in the chalcopyrite structure with relatively weak superlattice reflections indicating certain degree of randomness in the cation sublattice. Hall measurements show that the alloys are p-type, like the unalloyed films; the carrier concentration, however, dropped about 10 times from 2 x 10(exp 18) to 2 x 10(exp 17) cm(sup -3). Absorption measurements indicate that the band tailing in the absorption spectra of the alloy was shifted about 0.04 eV towards shorter wavelength as compared to the unalloyed material. Diodes fabricated from the n(+)-GaP/p-ZnSiP2-ZnGeP2-Ge heterostructure at x = 0.05 have a reverse break-down voltage of -10.8 V and a reverse saturation current density of approximately 6 x 10(exp -8) A/sq cm.
Su, Wang; Zhang, Yan-Ping; Qu, Yang; Li, Cui; Miao, Jia-Yuan; Gao, Xiao-Li; Liu, Jian-Hua; Feng, Bai-Li
2014-11-01
The objective of this study was to explore the effects of mulching patterns on soil water, growth, photosynthetic characteristics, grain yield and water use efficiency (WUE) of broomcorn millet in the dryland of Loess Plateau in China. In a three-year field experiment from 2011 to 2013, we compared four different mulching patterns with traditional plat planting (no mulching) as the control (CK). The mulching patterns included W ridge covered with common plastic film + intredune covered with straw (SG), common ridge covered with common plastic film + intredune covered with straw (LM), double ridges covered with common plastic film + intredune covered with straw (QM), and the traditional plat planting covered with straw (JG). The results showed that the soil water storage in 0-100 cm layer was significantly higher in all mulching patterns than in CK, particularly in SG then followed by LM, QM and JG, and the differences among the mulching patterns reached a significant level at the different growth stages of broomcorn millet. Among all mulching patterns, SG had the greatest effect on the growth and photosynthesis of broomcorn millet, respectively increasing the yield and WUE by 55.9% and 64.9% over CK, and the differences among the mulching patterns also reached a significant level. Therefore, SG was recommended as an efficient planting pattern for broomcorn millet production in the dryland of Loess Plateau in China.
NASA Astrophysics Data System (ADS)
Larsen, R. B.; Iljina, M.; Schanke, M.
2012-12-01
SIP covers an area of 5500 km2 in N. Norway. 50 % of the volume comprises mafic layered or homogenous plg+px+Fe-Ti±ol gabbros. 25 % of the area comprises ultramafic intrusions, mostly peridotite and subsidiary pyroxenite and hornblendite. 25 % comprises calc-alkaline and alkaline plutons, respectively. Ultramafic plutons intersect gabbros and calc-alkaline plutons. Recent zircon U/Pb geochronology imply that SIP formed at 560-570 Ma, with mafic- and ultramafic rocks being emplaced in <4 Ma (Roberts et al., Geol. Mag, 2007). Geothermobarometry of contact metamorphic mineral assemblages, implies minimum depth of 20-30 kilometres. Accordingly, the Seiland province arguably provides a unique cross section through the deep-seated parts of a huge magmatic plumbing system. Sulphide Cu-Ni-(PGE) deposits are intimately associated with the ultramafic rock suite. One deposit from Stjernøy comprises sulphide dissiminations at the floor of a peridotitic pluton, another deposit occur at the floor of the Reinfjord ultramafic layered complex in the far West of SIP and the third deposit comprises vertical sulphide dykes in the interior of a hornblendite on the Øksfjord peninsula. Currently, only the Reinfjord deposit is studied in detail. The Reinfjord intrusions is layered and develops from olivine clinopyroxenites in the Lower Zone to wherlite in the Middle Zone to wehrlites and dunite in the Upper Zone. Earlier studies suggest parental melts with pyroxenitic compositions whereas the dunites and wherlites formed by fractional crystallization (Bennet et al., Bull. NGU, 405, 1-41). During our fieldwork we observed spectacular examples of cumulus structures, not previously reported, and including modally layered and modally graded dunite/wherlite, cross-bedding, slumping and mush-diapirs. Finally we saw an example of magma-replenishment where an olivine pyroxenitic magma was emplaced in to and mixed with the contemporary olivine/wherlite mushes!. The country rock gabbros were unconsolidated and were partially melted during emplacement of the hot peridotitic melts. Previous studies (Søyland Hansen, 1971, unpub. MSc thesis, NTNU) and our preliminary work document dissiminated Cu-Ni sulphides in a 10-20 metres thick and two km's long deposit at the lower contacts of the Reinfjord intrusion. Several analysis imply 0.15 wt% for both Ni and Cu. The sulphide assemblage iincludes pentlandite, chalcopyrite, pyrrhotite and minor pyrite. Pentlandite is partially bravoitised. Airborne and ground geophysics done as part of our study implied a bowled shaped conducter c. 100 metres below the surface. Exploratory drilling confirmed two layers of 7 and 9 metres, respectively with 0.3-0.4 wt% Ni and minor Cu. The 9 m's zone included 5 m's with 0.6 ppm PGE+Au. Ni is in pentlandite whereas Cu is in chalcopyrite, cubanite or native Cu that apparently exsolved from Chalcopyrite. All sulphide deposits at Reinfjord has only 0.3 to 0.7 wt% S. The source of S is currently unknown, but new sulphur isotope data will be reported at the AGU-meeting.
NASA Astrophysics Data System (ADS)
Rottier, Bertrand; Kouzmanov, Kalin; Casanova, Vincent; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Fontboté, Lluís
2018-01-01
Cerro de Pasco (Peru) is known for its large epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) mineralization emplaced at shallow level, a few hundred meters below the paleo-surface, at the border of a large diatreme-dome complex. Porphyry-style veins crosscutting hornfels and magmatic rock clasts are found in the diatreme breccia and in quartz-monzonite porphyry dikes. Such mineralized veins in clasts allow investigation of high-temperature porphyry-style mineralization developed in the deep portions of magmatic-hydrothermal systems. Quartz in porphyry-style veins contains silicate melt inclusions as well as fluid and solid mineral inclusions. Two types of high-temperature (> 600 °C) quartz-molybdenite-(chalcopyrite)-(pyrite) veins are found in the clasts. Early, thin (1-2 mm), and sinuous HT1 veins are crosscut by slightly thicker (up to 2 cm) and more regular HT2 veins. The HT1 vein quartz hosts CO2- and sulfur-rich high-density vapor inclusions. Two subtypes of the HT1 veins have been defined, based on the nature of mineral inclusions hosted in quartz: (i) HT1bt veins with inclusions of K-feldspar, biotite, rutile, and minor titanite and (ii) HT1px veins with inclusions of actinolite, augite, titanite, apatite, and minor rutile. Using an emplacement depth of the veins of between 2 and 3 km (500 to 800 bar), derived from the diatreme breccia architecture and the supposed erosion preceding the diatreme formation, multiple mineral thermobarometers are applied. The data indicate that HT1 veins were formed at temperatures > 700 °C. HT2 veins host assemblages of polyphase brine inclusions, generally coexisting with low-density vapor-rich inclusions, trapped at temperatures around 600 °C. Rhyolitic silicate melt inclusions found in both HT1 and HT2 veins represent melt droplets transported by the ascending hydrothermal fluids. LA-ICP-MS analyses reveal a chemical evolution coherent with the crystallization of an evolved rhyolitic melt. Quartz from both HT1 and HT2 veins also contains secondary, low-temperature ( 300 °C) brine and aqueous fluid inclusions that record the cooling of the system. Both vein types are locally crosscut and/or reopened by a pre-diatreme polymetallic event consisting of pyrite, sphalerite with "chalcopyrite disease," galena, chalcopyrite, tetrahedrite-tennantite, and minor quartz. LA-ICP-MS analyses of mineral and high-temperature fluid inclusions hosted in HT1 and HT2 veins and in situ secondary-ion mass spectrometry oxygen isotope analyses of vein quartz indicate a magmatic signature for the mineralizing fluids with no major meteoric water input and allow reconstruction of the source and chemical evolution of fluids that formed these porphyry-style veins as snapshots of the early and deep mineralizations at Cerro de Pasco. This detailed study of the porphyry-type mineralization hosted in clasts offers a unique opportunity to reconstruct the late magmatic and early hydrothermal evolutions of porphyry mineralization underlying the world-class Cerro de Pasco epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) deposit.
NASA Astrophysics Data System (ADS)
Gole, Martin J.
2014-10-01
Komatiite-hosted disseminated Ni sulphide deposits in the Agnew-Wiluna greenstone belt occur both above and below the olivine isograd that was imposed on the greenstone sequence during the M2 metamorphic/deformation event. Deposits in the northern and central part of the belt and that are located below the isograd (Mount Keith, Honeymoon Well and West Jordan) have complex sulphide mineralogy and strongly zoned sulphide assemblages. These range from least-altered assemblages of pentlandite-pyrrhotite-chalcopyrite±pyrite to altered assemblages of pentlandite±chalcopyrite, pentlandite-heazlewoodite (or millerite), heazlewoodite (or millerite), and rarely to heazlewoodite-native Ni. Deposits to the south and that are above of the olivine isograd (Six Mile, Goliath North) are dominated by less complex magmatic assemblages with a lower proportion of weakly altered pentlandite±chalcopyrite assemblages. More altered assemblages are uncommon in these deposits and occur as isolated patches around the periphery of the deposits. The sulphide zonation is reflected by whole-rock reductions in S, Cu, Fe and Zn, whereas Ni, Pt and Pd and, with some exceptions, Co are conservative. The leaching of S, Cu, Fe and Zn from sulphide assemblages and the whole rock was initiated by highly reduced conditions that were produced during low fluid/rock ratio serpentinization. Consumption of H2O resulted in Cl, a component of the fluid, being concentrated sufficiently to stabilise iowaite as part of lizardite-rich assemblages. Once the rate of olivine hydration reactions declined and during and after expansion and associated fracturing of the ultramafic sequence allowed higher fluid access, a more fluid-dominated environment formed and new carbonate-bearing fluid gained access to varying extents to the ultramafic rock sequence. This drove Cl from iowaite (to form pyroaurite) and caused the sulphide assemblages to be altered from the original magmatic assemblages and compositions to those stable at the prevailing fO2 and fS2 conditions. Mass transfer was made possible via metal chloride complexes and H2S with fluids driven by deformation associated with the M2 metamorphism. Disseminated deposits in higher metamorphic grade terrains where olivine was stable during peak metamorphism did not undergo the metasomatism seen in the deposits in areas of lower metamorphic grade. Some minor leaching of S, Fe and Cu occurred around the periphery of the deposits during early, pre-M2 peak metamorphism, but once olivine stability was reached the driving force for the series of leaching reactions was exhausted. The effect of this process on the original magmatic sulphides is to induce significant variability in texture, mineralogy and bulk composition and to markedly reduce the Fe and S contents of the sulphide fraction (in extreme cases to zero for both elements), and to reduce the volume of the sulphide fraction per unit of Ni. These changes impact unfavourably on Ni sulphide recoveries and metallurgical characteristics of these Ni ores.
Growth and characterization of epitaxial silver indium diselenide
NASA Astrophysics Data System (ADS)
Pena Martin, Pamela
Photovoltaics (solar cells) are a key player in the renewable energy frontier, and will become increasingly important as their cost per watt continues to drop, especially if fossil fuel costs increase. One particularly promising photovoltaic technology is based on chalcopyrite-structure semiconductors. Within the chalcopyrite compounds the highest efficiency thin film solar cell absorber material to date is Cu(In,Ga)Se2 (CIGS). While current efficiency records are over 21% for single-junction cells, there is still room for improvement. Replacing some of the Cu with Ag has been shown to be beneficial in CIGS devices. However, the Ag- containing chalcopyrites are still relatively unknown in terms of their growth mechanism, energetics, and surface atomic and electronic properties. These are best inferred through study of epitaxial films, yet they have little mention in literature and have not been the subject of a detailed study. This work describes the growth of epitaxial AgInSe2 (AIS) on GaAs substrates, studying the morphology, structure, and surface properties to understand how growth takes place. It also seeks to experimentally determine the surface electronic and atomic structure at the atomic scale to gain insight into the part of the material that forms the heterojunction that collects photon energy in the device. Finally, this work seeks to compare and contrast these findings with what is known about CIGS to determine where similarities and, more importantly, the differences may lie. This study has found that single phase tetragonal AIS can be epitaxially grown on GaAs, as illustrated by x-ray diffraction (XRD), transmission electron microscope (TEM), and surface morphology data. Like CIGS, the close packed polar (112) planes have the lowest energy. The morphology points to a difference in step dynamics, leading to less faceted, straight edged island shapes compared to CIGS. Epitaxial temperature as a function of growth direction shows a different trend in AIS than in CIGS. Interdiffusion of the group III elements across the substrate interface was found to result in an epitaxial intermixed layer between the film and substrate in some cases, which may help mediate the lattice mismatch. At the atomic scale, scanning tunneling microscopy (STM) was used to observe details of the surface morphology, which indicated growth of the (112)A orientation of AIS by a screw dislocation mechanism (other surfaces were not examined by STM but are expected to show similar results). The surface atomic structure was directly imaged for the first time, revealing an arrangement similar to that expected from a bulk terminated surface. The electronic structure shows a gap in surface electronic states with a width comparable to bulk AIS, n-type conduction, and a tail of states near the valence band edge that decay well into the gap. The conduction and valence bands show fluctuations as a function of position on the surface, with greater magnitude in the valence band. The fluctuations in both bands are less than those observed on the surface of CIS by STM. It seems to indicate a reduction in band tails, both in magnitude and spacial extent, in AIS compared to CIS, likely tied to a reduction in point defect concentration at the surface.
Corral, Isaac; Cardellach, Esteve; Corbella, Merce; Canals, Angels; Griera, Albert; Gomez-Gras, David; Johnson, Craig A.
2017-01-01
Cerro Quema is a high sulfidation epithermal Au-Cu deposit with a measured, indicated and inferred resource of 35.98 Mt. @ 0.77 g/t Au containing 893,600 oz. Au (including 183,930 oz. Au equiv. of Cu ore). It is characterized by a large hydrothermal alteration zone which is interpreted to represent the lithocap of a porphyry system. The innermost zone of the lithocap is constituted by vuggy quartz with advanced argillic alteration locally developed on its margin, enclosed by a well-developed zone of argillic alteration, grading to an external halo of propylitic alteration. The mineralization occurs in the form of disseminations and microveinlets of pyrite, chalcopyrite, enargite, tennantite, and trace sphalerite, crosscut by quartz, barite, pyrite, chalcopyrite, sphalerite and galena veins.Microthermometric analyses of two phase (L + V) secondary fluid inclusions in igneous quartz phenocrysts in vuggy quartz and advanced argillically altered samples indicate low temperature (140–216 °C) and low salinity (0.5–4.8 wt% NaCl eq.) fluids, with hotter and more saline fluids identified in the east half of the deposit (Cerro Quema area).Stable isotope analyses (S, O, H) were performed on mineralization and alteration minerals, including pyrite, chalcopyrite, enargite, alunite, barite, kaolinite, dickite and vuggy quartz. The range of δ34S of sulfides is from − 4.8 to − 12.7‰, whereas δ34S of sulfates range from 14.1 to 17.4‰. The estimated δ34SΣS of the hydrothermal fluid is − 0.5‰. Within the advanced argillic altered zone the δ34S values of sulfides and sulfates are interpreted to reflect isotopic equilibrium at temperatures of ~ 240 °C. The δ18O values of vuggy quartz range from 9.0 to 17.5‰, and the δ18O values estimated for the vuggy quartz-forming fluid range from − 2.3 to 3.0‰, indicating that it precipitated from mixing of magmatic fluids with surficial fluids. The δ18O of kaolinite ranges from 12.7 to 18.1‰ and δD from − 103.3 to − 35.2‰, whereas the δ18O of dickite varies between 12.7 and 16.3‰ and δD from − 44 to − 30. Based on δ18O and δD, two types of kaolinite/dickite can be distinguished, a supergene type and a hypogene type. Combined, the analytical data indicate that the Cerro Quema deposit formed from magmatic-hydrothermal fluids derived from a porphyry copper-like intrusion located at depth likely towards the east of the deposit. The combination of stable isotope geochemistry and fluid inclusion analysis may provide useful exploration vectors for porphyry copper targets in the high sulfidation/lithocap environment.
NASA Astrophysics Data System (ADS)
Raič, Sara; Mogessie, Aberra; Benkó, Zsolt; Molnár, Ferenc; Hauck, Steven; Severson, Mark
2014-05-01
The magmatic sulfide ore deposit Wetlegs is found within the troctolitic Partridge River Intrusion (PRI) of the 1.1 Ga Duluth Complex. It is of great interest, due to its highly mineralized zones containing Cu-Ni-Fe-Sulfides, platinum-group minerals (PGM) and arsenic-enriched ores. Sulfides appear as disseminated patches of primary pyrrhotite, chalcopyrite, Co-rich pentlandite and cubanite within a plagioclase, olivine and pyroxene matrix. Ores associated with hydrous silicate phases are secondary chalcopyrite, arsenic-enriched minerals, PGMs like sperrylite, stibiopalladinite and other precious minerals such as clausthalite, parkerite and electrum. Based on textural relationships, mineral compositions and sulfur isotopic studies, a paragenetic sequence of ore genesis in Wetlegs could be reconstructed starting with the formation of composite sulfides such as pyrrhotite, chalcopyrite, Co-enriched pentlandite and cubanite (at increased sulfur fugacity), defined as the Sulfide Stage. The Arsenide Stage is characterized by increased arsenic fugacity and a strong drop in sulfur fugacity with the following succession of precipitated minerals: 1) Monoarsenides (nickeline) found as remnants in diarsenides. 2) Diarsenides comprising members of the rammelsbergite - safflorite - loellingite solid-solution series (RSLss) and minerals of the rammelsbergite - loellingite solid-solutions series (RLss). Their crystallization temperature is between 550 and 625°C, estimated with solvus lines postulated by ROSEBOOM (1963) and GERVILLA & RØNSBO (1992) in the system CoAs2 - NiAs2 - FeAs2. This is subsequently followed by an Arsenide/Sulfide Stage which marks the formation of sulfarsenides of the cobaltite - gersdorffite solid-solution series at increased sulfur fugacity (drop in arsenic fugacity). Sulfarsenides display a clear cobalt trend from core to rim, and formed around 650°C with a decrease in temperature to ~ 500°C, documented by cobalt enriched rims, based on the solvus lines form HEM & MAKOVICKY (2004) and HEM (2006) in the system CoAsS - NiAsS - FeAsS. The presence of arsenides, sulfarsenides and graphite in footwall rocks may suggest the metasedimentary Virginia Formation as a potential source of As, Sb, and C. These elements were remobilized by hydrothermal fluids and introduced in the crystallizing magma to form arsenic-enriched Cu-Ni-PGE mineralization within the basal ultramafic rocks. δ34S of sulfides from representative samples of Wetlegs vary between 2.04 and 22.80 ‰. This suggests the involvement of crustal materials in addition to the magmatic source of sulfur in the Cu-Ni-PGE mineralization, as documented in previous studies (MOGESSIE & STUMPFL, 1992). We acknowledge financial support by the Austrian Research Fund (P23157-N21) to A. Mogessie GERVILLA, F. & RØNSBO, J. (1992): Neues Jahrb. Mineral., Monatsh. 13, pp. 193-206. HEM, S. R. (2006): Chem. Geol. 225, pp. 291-303. HEM. S. R. & MAKOVICKY, E. (2004): Canadian Mineralogist, v. 42, pp. 63-86. MOGESSIE, A. & STUMPLF, E. F. (1992): Australian Journal of Earth Sciences, v. 39, pp. 315-325. ROSEBOOM, E. H. (1963): American Mineralogist, v. 48, pp. 271-299.
Post-depositional tectonic modification of VMS deposits in Iberia and its economic significance
NASA Astrophysics Data System (ADS)
Castroviejo, Ricardo; Quesada, Cecilio; Soler, Miguel
2011-07-01
The original stratigraphic relationships and structure of VMS deposits are commonly obscured by deformation. This can also affect their economic significance, as shown by several Iberian Pyrite Belt (IPB, SW Iberia) examples. The contrasting rheologic properties of the different lithologies present in an orebody (massive sulphide, feeder stockwork, alteration envelope, volcanic and sedimentary rocks) play a major role in determining its overall behaviour. Variscan thin-skinned tectonics led to stacking of the massive pyrite and stockwork bodies in duplex structures, resulting in local thickening and increased tonnage of minable mineralization. Furthermore, differential mechanical behaviour of the different sulphide minerals localised the detachments along relatively ductile sulphide-rich bands. The result was a geochemical and mineralogical reorganisation of most deposits, which now consist of barren, massive pyrite horses, bounded by base metal-rich ductile shear zones. Metal redistribution was enhanced by mobilisation of the base metal sulphides from the initially impoverished massive pyrite, through pressure-solution processes, to tensional fissures within the already ductile shear zones. In NW Iberia, VMS deposits were also strongly overprinted by the Variscan deformation during emplacement of the Cabo Ortegal and Órdenes allochthonous nappe complexes, but no stacking of the orebodies was produced. Original contacts were transposed, and the orebodies, their feeder zones and the country rock acquired pronounced laminar geometry. In lower-grade rocks (greenschist facies, Cabo Ortegal Complex), solution transfer mechanisms are common in pyrite, which remains in the brittle domain, while chalcopyrite shows ductile behaviour. In higher-grade rocks (amphibolite facies, Órdenes Complex), metamorphic recrystallisation overprints earlier deformation textures. The contrasting behaviour of the IPB and NW Iberian deposits is explained by key factors that affect their final geometry, composition and economics, such as pre-deformation structure, size and mineralogical composition of the orebody and associated lithologies, temperature, crustal level, deviatoric stress and availability of a fluid phase during deformation and the style and rate of deformation.
NASA Astrophysics Data System (ADS)
Castroviejo, R.
1990-12-01
Recent research has discovered high-grade Au ores in NNE-SSW trending shear zones in metamorphic proterozoic and palaeozoic terranes, some 40 km NW of Santiago de Compostela (NW Spain). The orebodies are bound to late-stage Hercynian structures, mainly due to brittle deformation, which are superimposed on earlier ductile shear zones, cutting through various catazonal lithologies, including ortho- and paragneisses, amphibolites, eclogites, and granites. Ore mineralogy, alteration, and ore textures define a frame whose main features are common to all prospects in the area. Main minerals are arsenopyrite and pyrite — accompanied by quartz, adularia, sericite, ± (tourmaline, chlorite, carbonates, graphite), as main gangue minerals -with subordinate amounts of boulangerite, bismuthinite, kobellite, jamesonite, chalcopyrite, marcasite, galena, sphalerite, rutile, titanite, scheelite, beryl, fluorite, and minor native gold, electrum, native bismuth, fahlore, pyrrhotite, mackinawite, etc., defining a meso-catathermal paragenesis. Detailed microscopic study allows the author to propose a general descriptive scheme of textural classification for this type of ore. Most of the ores fill open spaces or veins, seal cracks or cement breccias; disseminated ores with replacement features related to alteration (mainly silicification, sericitization, and adularization) are also observed. Intensive and repeated cataclasis is a common feature of many ores, suggesting successive events of brittle deformation, hydrothermal flow, and ore precipitation. Gold may be transported and accumulated in any of these events, but tends to be concentrated in later ones. The origin of the gold ores is explained in terms of hydrothermal discharge, associated with mainly brittle deformation and possibly related to granitic magmas, in the global tectonic frame of crustal evolution of West Galicia. The mineralogical and textural study suggests some criteria which will be of practical value for exploration and for ore processing. Ore grades can be improved by flotation of arsenopyrite. Non-conventional methods, such as pressure or bacterial leaching, may subsequently obtain a residue enriched in gold.
Engeset, Dagrun; Hofoss, Dag; Nilsson, Lena M; Olsen, Anja; Tjønneland, Anne; Skeie, Guri
2015-04-01
To identify dietary patterns with whole grains as a main focus to see if there is a similar whole grain pattern in the three Scandinavian countries; Denmark, Sweden and Norway. Another objective is to see if items suggested for a Nordic Food Index will form a typical Nordic pattern when using factor analysis. The HELGA study population is based on samples of existing cohorts: the Norwegian Women and Cancer Study, the Swedish Västerbotten cohort and the Danish Diet, Cancer and Health study. The HELGA study aims to generate knowledge about the health effects of whole grain foods. The study included a total of 119 913 participants. The associations among food variables from FFQ were investigated by principal component analysis. Only food groups common for all three cohorts were included. High factor loading of a food item shows high correlation of the item to the specific diet pattern. The main whole grain for Denmark and Sweden was rye, while Norway had highest consumption of wheat. Three similar patterns were found: a cereal pattern, a meat pattern and a bread pattern. However, even if the patterns look similar, the food items belonging to the patterns differ between countries. High loadings on breakfast cereals and whole grain oat were common in the cereal patterns for all three countries. Thus, the cereal pattern may be considered a common Scandinavian whole grain pattern. Food items belonging to a Nordic Food Index were distributed between different patterns.
Platinum-group minerals in the LG and MG chromitites of the eastern Bushveld Complex, South Africa
NASA Astrophysics Data System (ADS)
Oberthür, Thomas; Junge, Malte; Rudashevsky, Nikolay; de Meyer, Eveline; Gutter, Paul
2016-01-01
The chromitites of the Bushveld Complex in South Africa contain vast resources of platinum-group elements (PGE); however, except for the economic upper group (UG)-2 chromitite seam, information on the distribution of the PGE in the ores and on the mineralogical nature, assemblages, and proportions of platinum-group minerals (PGM) is essentially missing. In the present geochemical and mineralogical study, PGE concentrates originating from the lower group (LG)-6 and middle group (MG)-1/2 chromitites were investigated with the intention to fill this gap of knowledge. Chondrite-normalized PGE patterns of bulk rock and concentrates are characterized by a positive slope from Os to Rh, a slight drop to Pt, and an increase to Pd again. The pronounced similarities of the PGE patterns indicate similar primary processes of PGE concentration in the chromitites, namely "sulfide control" of the PGE mineralization, i.e., co-precipitation of chromite and sulfide. Further, the primary control of PGE concentration in chromitites appears to be dual in character: (i) base-level concentrations of IPGE (up to ˜500 ppb) hosted within chromite and (ii) co-precipitation of chromite and sulfide, the latter containing virtually the entire remaining PGE budget. Sulfides (chalcopyrite, pentlandite, and pyrite; pyrrhotite is largely missing) are scarce within the chromitites and occur mainly interstitial to chromite grains. Pd and Rh contents in pentlandite are low and erratic. Essentially, the whole PGE inventory of the ores occurs in the form of discrete PGM. The PGM are almost always associated with sulfides. The dominant PGM are various Pt-Pd-Rh sulfides (cooperite/braggite [(Pt,Pd)S] and malanite/cuprorhodsite [CuPt2S4]/[CuRh2S4]), laurite [RuS2], the main carrier of the IPGE (Os, Ir, Ru), sulfarsenides [(Rh,Pt,Ir)AsS], sperrylite [PtAs2], Pt-Fe alloys, and a large variety of mainly Pd-rich PGM. The LG and MG chromitites have many characteristics in common and define a general, "typical" PGM spectrum of Bushveld chromitites. This PGM assemblage is characterized by the predominance of PGE-sulfides including elevated proportions of malanite, variable proportions of (sulf) arsenides, and Pt-Fe alloys in conjunction with a paucity of (bismutho)tellurides. The formation of this specific PGM spectrum is related to the distinct chromitite environment and its depositional and post-depositional history, whereby desulfurization reactions have probably played an important role. The LG-6 samples have higher contents of PGE-sulfides, including extraordinary high proportions of malanite but low PGE-arsenide and PGE-sulfarsenide contents compared to the MG-1/2 samples. This indicates a higher availability of arsenic either in the stratigraphically higher MG-1/2 samples (compared to the LG-6) or regionally in the chromitites south of the Steelpoort lineament.
NEW 3D TECHNIQUES FOR RANKING AND PRIORITIZATION OF CHEMICAL INVENTORIES
New three-dimensional quantitative structure activity (3-D QSAR) techniques for prioritizing chemical inventories for endocrine activity will be presented. The Common Reactivity Pattern (COREPA) approach permits identification of common steric and/or electronic patterns associate...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pal, Suresh, E-mail: ajay-phy@rediffmail.com; Tiwari, R. K.; Gupta, D. C.
In this paper, we present the expressions relating the inter atomic force constants like as bond-stretching force constant (α in N/m) and bond-bending force constant (β in N/m) for the binary (zinc blende structure) and ternary (chalcopyrite structure) semiconductors with the product of ionic charges (PIC) and crystal ionicity (f{sub i}). Interatomic force constants of these compounds exhibit a linear relationship; when plot a graph between Interatomic force constants and the nearest neighbor distance d (Å) with crystal ionicity (f{sub i}), but fall on different straight lines according to the product of ionic charges of these compounds. A fairly goodmore » agreement has been found between the observed and calculated values of the α and β for binary and ternary tetrahedral semiconductors.« less
Thermodynamic assessment of Ag–Cu–In
Muzzillo, Christopher P.; Anderson, Tim
2018-01-16
The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.
Driscoll, Rhonda; Hageman, Phillip L.; Benzel, William M.; Diehl, Sharon F.; Adams, David T.; Morman, Suzette; Choate, LaDonna M.
2012-01-01
In this study, four randomly selected copper-bearing minerals were examined—azurite, malachite, bornite, and chalcopyrite. The objectives were to examine and enumerate the crystalline and chemical properties of each of the minerals, to determine which, if any, of the Cu-bearing minerals might adversely affect systems biota, and to provide a multi-procedure reference. Laboratory work included use of computational software for quantifying crystalline and amorphous material and optical and electron imaging instruments to model and project crystalline structures. Chemical weathering, human fluid, and enzyme simulation studies were also conducted. The analyses were conducted systematically: X-ray diffraction and microanalytical studies followed by a series of chemical, bio-leaching, and toxicity experiments.
Thermodynamic assessment of Ag–Cu–In
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.; Anderson, Tim
The Ag-Cu-In thermodynamic material system is of interest for brazing alloys and chalcopyrite thin-film photovoltaics. To advance these applications, Ag-Cu-In was assessed and a Calphad model was developed. Binary Ag-Cu and Cu-In parameters were taken from previous assessments, while Ag-In was re-assessed. Structure-based models were employed for ..beta..-bcc(A2)-Ag 3In, ..gamma..-Ag 9In 4, and AgIn 2 to obtain good fit to enthalpy, phase boundary, and invariant reaction data for Ag-In. Ternary Ag-Cu-In parameters were optimized to achieve excellent fit to activity, enthalpy, and extensive phase equilibrium data. Relative to the previous Ag-Cu-In assessment, fit was improved while fewer parameters were used.
Sandhu, Harpreet; Verma, Pradhuman; Padda, Sarfaraz; Raj, Seetharamaiha Sunder
2017-11-01
To investigate the frequency and uniqueness of different lip print patterns, fingerprint patterns in relation to gender and ABO Rh blood groups among a semi-urban population of Sriganganagar, Rajasthan. The study was conducted on 1200 healthy volunteers aged 18-30 years. The cheiloscopic and dermatographic data of each subject were obtained and were analysed according to the Suzuki and Tsuchihashi and Henry systems of classification, respectively. Two forensic experts analyzed the patterns independently. The ABO Rh blood group was also recorded for each subject. The Chi square statistical analysis was done and tests were considered significant when p value <0.001 and Cohen kappa test was applied to analyze inter-observer reliability. The B+ blood group was noted as most common in both genders while least common were A- among males and AB- in females. Type II lip pattern was most predominant while the least common was Type I' in males and Type I' and Type V in females. The UL fingerprint pattern was the most common, while RL was least noted in both genders. All the fingerprint patterns showed correlation with different lip print patterns. A correlation was found between different blood groups and lip print patterns except Type I (vertical) lip pattern. A positive correlation was observed between all the blood groups and fingerprint patterns, except for RL pattern. There is an association between lip print patterns, fingerprint patterns and ABO blood groups in both the genders. Thus, correlating the uniqueness of these physical evidences sometimes helps the forensic team members in accurate personal identification or it can at least narrow the search for an individual where there are no possible data referring to the identity of the subject. Copyright © 2017 by Academy of Sciences and Arts of Bosnia and Herzegovina.
Multivariate Brain Prediction of Heart Rate and Skin Conductance Responses to Social Threat.
Eisenbarth, Hedwig; Chang, Luke J; Wager, Tor D
2016-11-23
Psychosocial stressors induce autonomic nervous system (ANS) responses in multiple body systems that are linked to health risks. Much work has focused on the common effects of stress, but ANS responses in different body systems are dissociable and may result from distinct patterns of cortical-subcortical interactions. Here, we used machine learning to develop multivariate patterns of fMRI activity predictive of heart rate (HR) and skin conductance level (SCL) responses during social threat in humans (N = 18). Overall, brain patterns predicted both HR and SCL in cross-validated analyses successfully (r HR = 0.54, r SCL = 0.58, both p < 0.0001). These patterns partly reflected central stress mechanisms common to both responses because each pattern predicted the other signal to some degree (r HR→SCL = 0.21 and r SCL→HR = 0.22, both p < 0.01), but they were largely physiological response specific. Both patterns included positive predictive weights in dorsal anterior cingulate and cerebellum and negative weights in ventromedial PFC and local pattern similarity analyses within these regions suggested that they encode common central stress mechanisms. However, the predictive maps and searchlight analysis suggested that the patterns predictive of HR and SCL were substantially different across most of the brain, including significant differences in ventromedial PFC, insula, lateral PFC, pre-SMA, and dmPFC. Overall, the results indicate that specific patterns of cerebral activity track threat-induced autonomic responses in specific body systems. Physiological measures of threat are not interchangeable, but rather reflect specific interactions among brain systems. We show that threat-induced increases in heart rate and skin conductance share some common representations in the brain, located mainly in the vmPFC, temporal and parahippocampal cortices, thalamus, and brainstem. However, despite these similarities, the brain patterns that predict these two autonomic responses are largely distinct. This evidence for largely output-measure-specific regulation of autonomic responses argues against a common system hypothesis and provides evidence that different autonomic measures reflect distinct, measurable patterns of cortical-subcortical interactions. Copyright © 2016 the authors 0270-6474/16/3611987-12$15.00/0.
Matheson, Heath E; Buxbaum, Laurel J; Thompson-Schill, Sharon L
2017-11-01
Our use of tools is situated in different contexts. Prior evidence suggests that diverse regions within the ventral and dorsal streams represent information supporting common tool use. However, given the flexibility of object concepts, these regions may be tuned to different types of information when generating novel or uncommon uses of tools. To investigate this, we collected fMRI data from participants who reported common or uncommon tool uses in response to visually presented familiar objects. We performed a pattern dissimilarity analysis in which we correlated cortical patterns with behavioral measures of visual, action, and category information. The results showed that evoked cortical patterns within the dorsal tool use network reflected action and visual information to a greater extent in the uncommon use group, whereas evoked neural patterns within the ventral tool use network reflected categorical information more strongly in the common use group. These results reveal the flexibility of cortical representations of tool use and the situated nature of cortical representations more generally.
Dermoscopy of inverted follicular keratosis: study of 12 cases.
Llambrich, A; Zaballos, P; Taberner, R; Terrasa, F; Bañuls, J; Pizarro, A; Malvehy, J; Puig, S
2016-07-01
Inverted follicular keratosis (IFK) is an uncommon benign tumour of the follicular infundibulum, which is often misdiagnosed clinically as other keratinizing tumours, and commonly diagnosed correctly by histopathology. There are few reports about the dermoscopic findings of this lesion. To evaluate the dermoscopic features of IFK. The dermoscopic structures and patterns in digital dermoscopic images of 12 histopathologically confirmed cases of IFK collected from 5 hospitals in Spain were evaluated. A keratoacanthoma (KA)-like pattern composed of central keratin surrounded by hairpin vessels in a radial arrangement was the most common pattern in IFK (58.3%). The second most common pattern was composed of a yellowish-white amorphous central area surrounded by vascular structures in a radial arrangement (33.3%). The remaining case showed a pattern composed of a yellowish-white amorphous central area with milky red globules. Vascular structures were present in all cases, with a monomorphic pattern in seven cases and a polymorphic pattern in five, mainly with radial arrangement. Arborizing vessels, linear irregular vessels, corkscrew vessels and milky red globules were present in some cases. We describe the two main patterns of IFK. Lesions with a KA-like pattern are clinically and dermoscopically undistinguishable from KA and squamous cell carcinoma. Cases with a polymorphic vascular pattern could be confused with malignant tumours, including basal cell carcinoma and amelanotic melanoma. © 2016 British Association of Dermatologists.
Analysis of the skin transcriptome in two oujiang color varieties of common carp.
Wang, Chenghui; Wachholtz, Michael; Wang, Jun; Liao, Xiaolin; Lu, Guoqing
2014-01-01
Body color and coloration patterns are important phenotypic traits to maintain survival and reproduction activities. The Oujiang color varieties of common carp (Cyprinus carpio var. color), with a narrow distribution in Zhejiang Province of China and a history of aquaculture for over 1,200 years, consistently exhibit a variety of body color patterns. The molecular mechanism underlying diverse color patterns in these variants is unknown. To the practical end, it is essential to develop molecular markers that can distinguish different phenotypes and assist selective breeding. In this exploratory study, we conducted Roche 454 transcriptome sequencing of two pooled skin tissue samples of Oujiang common carp, which correspond to distinct color patterns, red with big black spots (RB) and whole white (WW), and a total of 737,525 sequence reads were generated. The reads obtained in this study were co-assembled jointly with common carp Roche 454 sequencing reads downloaded from NCBI SRA database, resulting in 43,923 isotigs and 546,676 singletons. Over 31 thousand (31,445; 71.6%) isotigs were found with significant BLAST matches (E<1e-10) to the nr protein database, which corresponds to 12,597 annotated zebrafish genes. A total of 70,947 isotigs and singletons (transcripts) were annotated with Gene Ontology, and 60,221 transcripts were found with corresponding EC numbers. Out of 145 zebrafish pigmentation genes, orthologs for 117 were recovered in Oujiang color carp transcriptome, including 18 found only among singletons. Our transcriptome analysis revealed over 52,902 SNPs in Oujiang common carp, and identified 63 SNP markers that are putatively unique either for RB or WW. The transcriptome of Oujiang color varieties of common carp obtained through this study, along with the pigmentation genes recovered and the color pattern-specific molecular markers developed, will facilitate future research on the molecular mechanism of color patterns and promote aquaculture of Oujiang color varieties of common carp through molecular marker assisted-selective breeding.
Rezazadeh, Arezoo; Omidvar, Nasrin; Eini-Zinab, Hassan; Ghazi-Tabatabaie, Mahmoud; Majdzadeh, Reza; Ghavamzadeh, Saeid; Nouri-Saeidlou, Sakineh
2016-12-01
To identify major dietary patterns and their association with socio-economic status (SES) and food insecurity in two major ethnic groups living in Urmia, north-west Iran. A cross-sectional study. All four geographical zones of Urmia city. Participants (n 723; 427 women and 296 men), aged 20-64 years, from two ethnic groups (445 Azeri Turks and 278 Kurds). Three major dietary patterns were extracted: 'Traditional High SES' (THS), 'Traditional Low SES' (TLS) and 'Transitional'. After adjusting for confounders, the THS pattern was positively associated with education level and negatively associated with moderate or severe food insecurity in Azeri Turks; whereas, among Kurds, it was more common in women and positively associated with age. The TLS pattern was more common among men and negatively associated with educational level and all levels of food insecurity in Azeris; while, among Kurds, it was more common among men, positively associated with being married and negatively associated with household income/capita. The 'Transitional' pattern was positively associated with being employed and negatively associated with age and all levels of food insecurity in Azeris; while, among Kurds, it was more common among men and negatively associated with age, being married and physical activity level. Findings suggest that household SES and food insecurity are associated with detrimental dietary patterns and that this effect may be stronger than cultural and ethnic background. These patterns differ by age and gender. Therefore, such characteristics should be considered in planning and formulating diet-related policies and programmes.
Clinicopathological patterns and distribution of Schistosomiasis in Asir Region.
Morad, N A; Khan, A R
2001-06-01
The objective of this study is to report, for the first time, the histopathologic pattern of Schistosomiasis from the Asir Region and to compare it to patterns reported from other regions of the Kingdom of Saudi Arabia. Several studies have reported the patterns of Schistosomiasis in other regions of the Kingdom of Saudi Arabia and other countries where Schistosomiasis is endemic. Schistosomiasis is endemic in certain areas of Asir region, however no data is available concerning the clinicopathological pattern of Schistosomiasis in the Asir Region. This is a retrospective analysis of 217 cases of Schistosomiasis from surgical and biopsy files of Asir Central Hospital during a period from January 1990 to October 1999. Our study revealed that Schistosomiasis was more common among the expatriate population of Asir Region than Saudi nationals residing in this area. The urinary tract was most commonly involved, and then in descending frequency came the vermiform appendix, liver and large bowel. These findings are somewhat different from those observed in the Riyadh Region where the vermiform appendix was the most commonly affected organ. Based on the histopathologic pattern, our study describes the pattern of Schistosomiasis in the Asir Region and may serve as a base-line for future research work.
NASA Astrophysics Data System (ADS)
Dreher, Ana M.; Xavier, Roberto P.; Taylor, Bruce E.; Martini, Sérgio L.
2008-02-01
The Igarapé Bahia Cu-Au deposit in the Carajás Province, Brazil, is hosted by steeply dipping metavolcano-sedimentary rocks of the Igarapé Bahia Group. This group consists of a low greenschist grade unit of the Archean (˜2,750 Ma) Itacaiúnas Supergroup, in which other important Cu-Au and iron ore deposits of the Carajás region are also hosted. The orebody at Igarapé Bahia is a fragmental rock unit situated between chloritized basalt, with associated hyaloclastite, banded iron formation (BIF), and chert in the footwall and mainly coarse- to fine-grained turbidites in the hanging wall. The fragmental rock unit is a nearly concordant, 2 km long and 30-250 m thick orebody made up of heterolithic, usually matrix-supported rocks composed mainly of coarse basalt, BIF, and chert clasts derived from the footwall unit. Mineralization is confined to the fine-grained matrix and comprises disseminated to massive chalcopyrite accompanied by magnetite, gold, U- and light rare earth element (LREE)-minerals, and minor other sulfides like bornite, molybdenite, cobaltite, digenite, and pyrite. Gangue minerals include siderite, chlorite, amphibole, tourmaline, quartz, stilpnomelane, epidote, and apatite. A less important mineralization style at Igarapé Bahia is represented by late quartz-chalcopyrite-calcite veins that crosscut all rocks in the deposit area. Fluid inclusions trapped in a quartz cavity in the ore unit indicate that saline aqueous fluids (5 to 45 wt% NaCl + CaCl2 equiv), together with carbonic (CO2 ± CH4) and low-salinity aqueous carbonic (6 wt% NaCl equiv) fluids, were involved in the mineralization process. Carbonates from the fragmental layer have δ13C values from -6.7 to -13.4 per mil that indicate their origin from organic and possibly also from magmatic carbon. The δ34S values for chalcopyrite range from -1.1 to 5.6 per mil with an outlier at -10.8 per mil, implying that most sulfur is magmatic or leached from magmatic rocks, whereas a limited contribution of reduced and oxydized sulfur is also evident. Oxygen isotopic ratios in magnetite, quartz, and siderite yield calculated temperatures of ˜400°C and δ18O-enriched compositions (5 to 16.5 per mil) for the ore-forming fluids that suggest a magmatic input and/or an interaction with 18O-rich, probably sedimentary rocks. The late veins of the Igarapé Bahia deposit area were formed from saline aqueous fluids (2 to 60 wt% NaCl + CaCl2 equiv) with δ18Ofluid compositions around 0 per mil that indicate contribution from meteoric fluids. With respect to geological features, Igarapé Bahia bears similarity with syngenetic, volcanic-hosted massive sulfide (VHMS)-type deposits, as indicated by the volcano-sedimentary geological context, stratabound character, and association with submarine volcanic flows, hyaloclastite, and exhalative beds such as BIF and chert. On the other hand, the highly saline ore fluids and the mineral assemblage, dominated by magnetite and chalcopyrite, with associated gold, U- and LREE-minerals and scarce pyrite, indicate that Igarapé Bahia belongs to the Fe oxide Cu-Au (IOCG) group of deposits. The available geochronologic data used to attest syngenetic or epigenetic origins for the mineralization are either imprecise or may not represent the main mineralization episode but a later, superimposed event. The C, S, and O isotopic results obtained in this study do not clearly discriminate between fluid sources. However, recent B isotope data obtained on tourmaline from the matrix of the fragmental rock ore unit (Xavier, Wiedenbeck, Dreher, Rhede, Monteiro, Araújo, Chemical and boron isotopic composition of tourmaline from Archean and Paleoproterozoic Cu-Au deposits in the Carajás Mineral Province, 1° Simpósio Brasileiro de Metalogenia, Gramado, Brazil, extended abstracts, CD-ROM, 2005) provide strong evidence of the involvement of a marine evaporitic source in the hydrothermal system of Igarapé Bahia. Evaporite-derived fluids may explain the high salinities and the low reduced sulfur mineral paragenesis observed in the deposit. Evaporite-derived fluids also exclude a significant participation of magmatic or mantle-derived fluids, reinforcing the role of nonmagmatic brines in the genesis of Igarapé Bahia. Considering this aspect and the geological features, the possibility that the deposit was generated by a hydrothermal submarine system whose elevated salinity was acquired by leaching of ancient evaporite beds should be evaluated.
Modality-independent representations of small quantities based on brain activation patterns.
Damarla, Saudamini Roy; Cherkassky, Vladimir L; Just, Marcel Adam
2016-04-01
Machine learning or MVPA (Multi Voxel Pattern Analysis) studies have shown that the neural representation of quantities of objects can be decoded from fMRI patterns, in cases where the quantities were visually displayed. Here we apply these techniques to investigate whether neural representations of quantities depicted in one modality (say, visual) can be decoded from brain activation patterns evoked by quantities depicted in the other modality (say, auditory). The main finding demonstrated, for the first time, that quantities of dots were decodable by a classifier that was trained on the neural patterns evoked by quantities of auditory tones, and vice-versa. The representations that were common across modalities were mainly right-lateralized in frontal and parietal regions. A second finding was that the neural patterns in parietal cortex that represent quantities were common across participants. These findings demonstrate a common neuronal foundation for the representation of quantities across sensory modalities and participants and provide insight into the role of parietal cortex in the representation of quantity information. © 2016 Wiley Periodicals, Inc.
Theodore, Ted G.; Orris, Greta J.; Hammerstrom, Jane M.; Bliss, James D.
1991-01-01
In recent years, a significant proportion of the mining industry's interest has been centered on discovery of gold deposits; this includes discovery of additional deposits where gold occurs in skarn, such as at Fortitude, Nevada, and at Red Dome, Australia. Under the classification of Au-bearing skarns, we have modeled these and similar gold-rich deposits that have a gold grade of at least 1 g/t and exhibit distinctive skarn mineralogy. Two subtypes, Au-skarns and byproduct Au-skarns, can be recognized on the basis of gold, silver, and base-metal grades, although many other geological factors apparently are still undistinguishable largely because of a lack of detailed studies of the Au-skarns. Median grades and tonnage for 40 Au-skarn deposits are 8.6 g/t Au, 5.0 g/t Ag, and 213,000 t. Median grades and tonnage for 50 byproduct and Au-skarn deposits are 3.7 g/t Au, 37 g/t Ag, and 330,000 t. Gold-bearing skarns are generally calcic exoskarns associated with intense retrograde hydrosilicate alteration. These skarns may contain economic amounts of numerous other commodities (Cu, Fe, Pb, Zn, As, Bi, W, Sb, Co, Cd, and S) as well as gold and silver. Most Au-bearing skarns are found in Paleozoic and Cenozoic orogenic-belt and island-arc settings and are associated with felsic to intermediate intrusive rocks of Paleozoic to Tertiary age. Native gold, electru, pyrite, pyrrhotite, chalcopyrite, arsenopyrite, sphalerite, galena, bismuth minerals, and magnetite or hematite are the most common opaque minerals. Gangue minerals typically include garnet (andradite-grossular), pyroxene (diopside-hedenbergite), wollastonite, chlorite, epidote, quartz, actinolite-tremolite, and (or) calcite.
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A.A.
2014-01-01
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 minutes and measured systematically for up to 24 hours). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. This study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management. PMID:25107347
[Characteristics of body constitution and their relations to success in learning].
Vikhruk, T I; Vikhruk, A Ia; Churganov, O A; Kolotov, V Ia
2004-01-01
Somatotype, finger dermatoglyphic pattern type, emotional stability level and foreign languages learning successfulness have been analyzed in 297 male cadets (aged 17-20 years) of the Military Institute of Physical Training. The cadets studied most frequently belonged to macrosomal and mesosomal somatotypes. In the study of finger patterns, loops were found to be most common (61.5% of all the patterns), while ringlets (33.4%) and arc patterns (5.1%) were less frequent. The amount of ulnar loops increased, while that of ringlets became less in the direction from micro- to macrosomal type. Almost half (46.9%) of the cadets appeared to be ambiverts, 30.8% were intraverts and the rest were extraverts. Loop patterns on all the fingers to a greater extent were found in cadets with high level of neuroticism; the cadets having lower neuroticism level were characterized by a combinations of loops with arcs on the left hand and arcs with ringlets on the right one. The cadets differing in foreign language learning successfulness level were different in their dermatoglyphic patterns and, especially in the prevalence of pattern combinations. So, among the excellent pupils the loop-arc combinations were 2.7 times more common and combinations of all three types of patterns (arcs, loops, ringlets) were 1.4 times more common.
Out-of-This-World Calculations
ERIC Educational Resources Information Center
Kalb, Kristina S.; Gravett, Julie M.
2012-01-01
By following learned rules rather than reasoning, students often fall into common error patterns, something every experienced teacher has observed in the classroom. In their effort to circumvent the developing common error patterns of their students, the authors decided to supplement their math text with two weeklong investigations. The first was…
Lacquaniti, F.; Grasso, R.; Zago, M.
1999-08-01
Despite the fact that locomotion may differ widely in mammals, common principles of kinematic control are at work. These reflect common mechanical and neural constraints. The former are related to the need to maintain balance and to limit energy expenditure. The latter are related to the organization of the central pattern-generating networks.
Evidence against a Central Control Model of Timing in Typing.
1981-12-01
timing pattern, or "motor engram ," for each common word and some common letter sequences. These timing patterns may vary from one typist to another...represented within the engram by * using a (functionally) parallel arrangement. (Terzuolo & Viviani, 1960, pp. 1101-1102) The contrast here is between a
Selwyn, Jason D; Hogan, J Derek; Downey-Wall, Alan M; Gurski, Lauren M; Portnoy, David S; Heath, Daniel D
2016-01-01
The phenomenon of chaotic genetic patchiness is a pattern commonly seen in marine organisms, particularly those with demersal adults and pelagic larvae. This pattern is usually associated with sweepstakes recruitment and variable reproductive success. Here we investigate the biological underpinnings of this pattern in a species of marine goby Coryphopterus personatus. We find that populations of this species show tell-tale signs of chaotic genetic patchiness including: small, but significant, differences in genetic structure over short distances; a non-equilibrium or "chaotic" pattern of differentiation among locations in space; and within locus, within population deviations from the expectations of Hardy-Weinberg equilibrium (HWE). We show that despite having a pelagic larval stage, and a wide distribution across Caribbean coral reefs, this species forms groups of highly related individuals at small spatial scales (<10 metres). These spatially clustered family groups cause the observed deviations from HWE and local population differentiation, a finding that is rarely demonstrated, but could be more common than previously thought.
Frank, Steven A.
2010-01-01
We typically observe large-scale outcomes that arise from the interactions of many hidden, small-scale processes. Examples include age of disease onset, rates of amino acid substitutions, and composition of ecological communities. The macroscopic patterns in each problem often vary around a characteristic shape that can be generated by neutral processes. A neutral generative model assumes that each microscopic process follows unbiased or random stochastic fluctuations: random connections of network nodes; amino acid substitutions with no effect on fitness; species that arise or disappear from communities randomly. These neutral generative models often match common patterns of nature. In this paper, I present the theoretical background by which we can understand why these neutral generative models are so successful. I show where the classic patterns come from, such as the Poisson pattern, the normal or Gaussian pattern, and many others. Each classic pattern was often discovered by a simple neutral generative model. The neutral patterns share a special characteristic: they describe the patterns of nature that follow from simple constraints on information. For example, any aggregation of processes that preserves information only about the mean and variance attracts to the Gaussian pattern; any aggregation that preserves information only about the mean attracts to the exponential pattern; any aggregation that preserves information only about the geometric mean attracts to the power law pattern. I present a simple and consistent informational framework of the common patterns of nature based on the method of maximum entropy. This framework shows that each neutral generative model is a special case that helps to discover a particular set of informational constraints; those informational constraints define a much wider domain of non-neutral generative processes that attract to the same neutral pattern. PMID:19538344
Deformation, geochemistry, and origin of massive sulfide deposits, Gossan lead district, Virginia.
Gair, J.E.; Slack, J.F.
1984-01-01
Lenses and layers of massive sulphides comprise a discontinuous horizon in the late Proterozoic metasedimentary Ashe formation. The folded and brecciated sulphides include pyrrhotite, minor chalcopyrite, sphalerite and pyrite, and rare arsenopyrite and galena. The deposits were mined for supergene copper, later for gossan iron, and finally for sulphur. The Ashe formation is interpreted to be marine turbidites, and contains lenses of mafic rocks of probable tholeiitic basalt parentage. Mineralogically and chemically distinctive rocks - for the Ashe formation - are interbedded with the sulphides and may represent metamorphosed alteration zones and/or mixed chemical and clastic sediments. The sulphide deposits are interpreted as syngenetic sediments, modified by deformation during metamorphism. Their deposition occurred in a deep, elongate marine basin overlying a crustal rift zone.-G.J.N.
PHOTONICS AND NANOTECHNOLOGY Laser synthesis and modification of composite nanoparticles in liquids
NASA Astrophysics Data System (ADS)
Tarasenko, N. V.; Butsen, A. V.
2010-12-01
The works devoted to the formation and modification of nanoparticles using laser ablation of solid targets in liquids are reviewed. Several approaches to implement laser ablation in liquids, aimed at synthesising nanoparticles of complex composition, are considered: direct laser ablation of a target of corresponding composition, laser ablation of a combined target composed of two different metals, laser irradiation of a mixture of two or more colloidal solutions, and laser ablation in reactive liquids. The properties of two-component bimetallic systems (Ag — Cu, Ag — Au), semiconductor nanocrystals (ZnO, CdSe), chalcopyrite nanoparticles, and doped oxide nanoparticles (ZnO:Ag, Gd2O2:Tb3+) formed as a result of single- and double-pulse laser ablation in different liquids (water, ethanol, acetone, solutions of polysaccharides) are discussed.
Analysis of future generation solar cells and materials
NASA Astrophysics Data System (ADS)
Yamaguchi, Masafumi; Zhu, Lin; Akiyama, Hidefumi; Kanemitsu, Yoshihiko; Tampo, Hitoshi; Shibata, Hajime; Lee, Kan-Hua; Araki, Kenji; Kojima, Nobuaki
2018-04-01
The efficiency potentials of future generation solar cells such as wide bandgap chalcopyrite, Cu2ZnSnS4 (CZTS), Cu2ZnSn(S,Se)4 (CZTSSe), multi quantum well (MQW) and quantum dot (QD) solar cells are discussed on the basis of external radiative efficiency (ERE), open-circuit voltage loss, fill factor loss, and nonradiative recombination losses. CZTS and CZTSSe solar cells have efficiency potentials of more than 20% owing to the improvement in ERE from about 0.001 to 1%. MQW and QD cells have efficiency potentials of 24.8%, and 25.8% owing to the improvement in ERE from around 0.01 to 0.1%, and 1%, respectively. In this paper, the effects of nonradiative recombination on the properties of future generation solar cells are discussed.
Koski, Randolph A.
1979-01-01
The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of igneous rocks is progressively more alkaline and silicic from basalt to granodiorite. Early (Stage I) chalcopyrite-bornite (-molybdenite) mineralization and genetically related K-silicate alteration are centered on the Christmas stock. K-silicate alteration is manifested by pervasive hornblende-destructive biotitization in the stock, biotitization of basaltic volcanic wall rocks, and a continuous stockwork of K-feldspar veinlets and quartz-K-feldspar veins in the stock and quartz-sulfide veins in volcanic rocks. Younger (Stage II) pyrite-chalcopyrite mineralization and quartz-sericite-chlorite alteration occur in a zone overlapping with but largely peripheral to the zone of Stage I stockwork veins. Within the Christmas intrusive complex, K-silicate-altered rocks in the central stock are flanked east and west by zones of fracture-controlled quartz-sericite alteration and strong pyritization. In volcanic rocks quartz-chlorite-pyrite-chalcopyrite veins are superimposed on earlier biotitization and crosscut Stage I quartz-sulfide veins. Beyond the zones of quartz-sericite alteration, biotite rhyodacite porphyry dikes contain the propylitic alteration assemblage epidote-chlorite-albite-sphene. Chemical analyses indicate the following changes during pervasive alteration of igneous rocks: (1) addition of Si, K, H, S, and Cu, and loss of Fe 3+ and Ca during intense biotitization of basalt; (2) loss of Na and Ca, increase of Fe3+/Fe2+, and strong H-metasomatism during sericitization of quartz diorite; and (3) increase in Ca, Na, and Fe3+/Fe2+, and loss of K during intense propylitization of biotite rhyodacite porphyry dikes. Thorough biotitization of biotite granodiorite porphyry in the Christmas stock was largely an isochemical process. Fluid-inclusion petrography reveals that Stage I veins are characterized by low to moderate populations of moderate-salinity and gas-rich inclusions, and sparse but ubiquitous halite-bearing inclusions. Moderate-salinity an
Koski, R.A.; Munk, L.; Foster, A.L.; Shanks, Wayne C.; Stillings, L.L.
2008-01-01
The oxidation of sulfide-rich rocks, mostly leftover debris from Cu mining in the early 20th century, is contributing to metal contamination of local coastal environments in Prince William Sound, Alaska. Analyses of sulfide, water, sediment, precipitate and biological samples from the Beatson, Ellamar, and Threeman mine sites show that acidic surface waters generated from sulfide weathering are pathways for redistribution of environmentally important elements into and beyond the intertidal zone at each site. Volcanogenic massive sulfide deposits composed of pyrrhotite and (or) pyrite + chalcopyrite + sphalerite with subordinate galena, arsenopyrite, and cobaltite represent potent sources of Cu, Zn, Pb, As, Co, Cd, and Hg. The resistance to oxidation among the major sulfides increases in the order pyrrhotite ??? sphalerite < chalcopyrite ??? pyrite; thus, pyrrhotite-rich rocks are typically more oxidized than those dominated by pyrite. The pervasive alteration of pyrrhotite begins with rim replacement by marcasite followed by replacement of the core by sulfur, Fe sulfate, and Fe-Al sulfate. The oxidation of chalcopyrite and pyrite involves an encroachment by colloform Fe oxyhydroxides at grain margins and along crosscutting cracks that gradually consumes the entire grain. The complete oxidation of sulfide-rich samples results in a porous aggregate of goethite, lepidocrocite and amorphous Fe-oxyhydroxide enclosing hydrothermal and sedimentary silicates. An inverse correlation between pH and metal concentrations is evident in water data from all three sites. Among all waters sampled, pore waters from Ellamar beach gravels have the lowest pH (???3) and highest concentrations of base metals (to ???25,000 ??g/L), which result from oxidation of abundant sulfide-rich debris in the sediment. High levels of dissolved Hg (to 4100 ng/L) in the pore waters probably result from oxidation of sphalerite-rich rocks. The low-pH and high concentrations of dissolved Fe, Al, and SO4 are conducive to precipitation of interstitial jarosite in the intertidal gravels. Although pore waters from the intertidal zone at the Threeman mine site have circumneutral pH values, small amounts of dissolved Fe2+ in the pore waters are oxidized during mixing with seawater, resulting in precipitation of Fe-oxyhydroxide flocs along the beach-seawater interface. At the Beatson site, surface waters funneled through the underground mine workings and discharged across the waste dumps have near-neutral pH (6.7-7.3) and a relatively small base-metal load; however, these streams probably play a role in the physical transport of metalliferous particulates into intertidal and offshore areas during storm events. Somewhat more acidic fluids, to pH 5.3, occur in stagnant seeps and small streams emerging from the Beatson waste dumps. Amorphous Fe precipitates in stagnant waters at Beatson have high Cu (5.2 wt%) and Zn (2.3 wt%) concentrations that probably reflect adsorption onto the extremely high surface area of colloidal particles. Conversely, crystalline precipitates composed of ferrihydrite and schwertmannite that formed in the active flow of small streams have lower metal contents, which are attributed to their smaller surface area and, therefore, fewer reactive sorption sites. Seeps containing precipitates with high metal contents may contribute contaminants to the marine environment during storm-induced periods of high runoff. Preliminary chemical data for mussels (Mytilus edulis) collected from Beatson, Ellamar, and Threeman indicate that bioaccumulation of base metals is occurring in the marine environment at all three sites.
Geologic history of the Blackbird Co-Cu district in the Lemhi subbasin of the Belt-Purcell Basin
Bookstrom, Arthur A.; Box, Stephen E.; Cossette, Pamela M.; Frost, Thomas P.; Gillerman, Virginia; King, George; Zirakparvar, N. Alex
2016-01-01
The Blackbird cobalt-copper (Co-Cu) district in the Salmon River Mountains of east-central Idaho occupies the central part of the Idaho cobalt belt—a northwest-elongate, 55-km-long belt of Co-Cu occurrences, hosted in grayish siliciclastic metasedimentary strata of the Lemhi subbasin (of the Mesoproterozoic Belt-Purcell Basin). The Blackbird district contains at least eight stratabound ore zones and many discordant lodes, mostly in the upper part of the banded siltite unit of the Apple Creek Formation of Yellow Lake, which generally consists of interbedded siltite and argillite. In the Blackbird mine area, argillite beds in six stratigraphic intervals are altered to biotitite containing over 75 vol% of greenish hydrothermal biotite, which is preferentially mineralized.Past production and currently estimated resources of the Blackbird district total ~17 Mt of ore, averaging 0.74% Co, 1.4% Cu, and 1.0 ppm Au (not including downdip projections of ore zones that are open downward). A compilation of relative-age relationships and isotopic age determinations indicates that most cobalt mineralization occurred in Mesoproterozoic time, whereas most copper mineralization occurred in Cretaceous time.Mesoproterozoic cobaltite mineralization accompanied and followed dynamothermal metamorphism and bimodal plutonism during the Middle Mesoproterozoic East Kootenay orogeny (ca. 1379–1325 Ma), and also accompanied Grenvilleage (Late Mesoproterozoic) thermal metamorphism (ca. 1200–1000 Ma). Stratabound cobaltite-biotite ore zones typically contain cobaltite1 in a matrix of biotitite ± tourmaline ± minor xenotime (ca. 1370–1320 Ma) ± minor chalcopyrite ± sparse allanite ± sparse microscopic native gold in cobaltite. Such cobaltite-biotite lodes are locally folded into tight F2 folds with axial-planar S2 cleavage and schistosity. Discordant replacement-style lodes of cobaltite2-biotite ore ± xenotime2 (ca. 1320–1270 Ma) commonly follow S2fractures and fabrics. Discordant quartz-biotite and quartz-tourmaline breccias, and veins contain cobaltite3 ± xenotime3 (ca. 1058–990 Ma).Mesoproterozoic cobaltite deposition was followed by: (1) within-plate plutonism (530–485 Ma) and emplacement of mafic dikes (which cut cobaltite lodes but are cut by quartz-Fe-Cu-sulfide veins); (2) garnet-grade metamorphism (ca. 151–93 Ma); (3) Fe-Cu-sulfide mineralization (ca. 110–92 Ma); and (4) minor quartz ± Au-Ag ± Bi mineralization (ca. 92–83 Ma).Cretaceous Fe-Cu-sulfide vein, breccia, and replacement-style deposits contain various combinations of chalcopyrite ± pyrrhotite ± pyrite ± cobaltian arsenopyrite (not cobaltite) ± arsenopyrite ± quartz ± siderite ± monazite (ca. 144–88 Ma but mostly 110–92 Ma) ± xenotime (104–93 Ma). Highly radiogenic Pb (in these sulfides) and Sr (in siderite) indicate that these elements resided in Mesoproterozoic source rocks until they were mobilized after ca. 100 Ma. Fe-Cu-sulfide veins, breccias, and replacement deposits appear relatively undeformed and generally lack metamorphic fabrics.Composite Co-Cu-Au ore contains early cobaltite-biotite lodes, cut by Fe-Cu-sulfide veins and breccias, or overprinted by Fe-Cu-sulfide replacement-style deposits, and locally cut by quartz veinlets ± Au-Ag ± Bi minerals.
Pattern statistics on Markov chains and sensitivity to parameter estimation
Nuel, Grégory
2006-01-01
Background: In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). Results: In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of σ, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. Conclusion: We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation. PMID:17044916
Pattern statistics on Markov chains and sensitivity to parameter estimation.
Nuel, Grégory
2006-10-17
In order to compute pattern statistics in computational biology a Markov model is commonly used to take into account the sequence composition. Usually its parameter must be estimated. The aim of this paper is to determine how sensitive these statistics are to parameter estimation, and what are the consequences of this variability on pattern studies (finding the most over-represented words in a genome, the most significant common words to a set of sequences,...). In the particular case where pattern statistics (overlap counting only) computed through binomial approximations we use the delta-method to give an explicit expression of sigma, the standard deviation of a pattern statistic. This result is validated using simulations and a simple pattern study is also considered. We establish that the use of high order Markov model could easily lead to major mistakes due to the high sensitivity of pattern statistics to parameter estimation.
Comprehensive analysis and discovery of drought-related NAC transcription factors in common bean.
Wu, Jing; Wang, Lanfen; Wang, Shumin
2016-09-07
Common bean (Phaseolus vulgaris L.) is an important warm-season food legume. Drought is the most important environmental stress factor affecting large areas of common bean via plant death or reduced global production. The NAM, ATAF1/2 and CUC2 (NAC) domain protein family are classic transcription factors (TFs) involved in a variety of abiotic stresses, particularly drought stress. However, the NAC TFs in common bean have not been characterized. In the present study, 86 putative NAC TF proteins were identified from the common bean genome database and located on 11 common bean chromosomes. The proteins were phylogenetically clustered into 8 distinct subfamilies. The gene structure and motif composition of common bean NACs were similar in each subfamily. These results suggest that NACs in the same subfamily may possess conserved functions. The expression patterns of common bean NAC genes were also characterized. The majority of NACs exhibited specific temporal and spatial expression patterns. We identified 22 drought-related NAC TFs based on transcriptome data for drought-tolerant and drought-sensitive genotypes. Quantitative real-time PCR (qRT-PCR) was performed to confirm the expression patterns of the 20 drought-related NAC genes. Based on the common bean genome sequence, we analyzed the structural characteristics, genome distribution, and expression profiles of NAC gene family members and analyzed drought-responsive NAC genes. Our results provide useful information for the functional characterization of common bean NAC genes and rich resources and opportunities for understanding common bean drought stress tolerance mechanisms.
Ollague Sierra, Jose E; Ollague Torres, Jose M
2013-04-01
Histoplasmosis has attained increasing relevance in the past 3 decades because of the appearance of the human immunodeficiency virus (HIV). In most immunocompetent persons, the infection is asymptomatic or can produce a respiratory condition with symptoms and radiological images similar to those observed in pulmonary tuberculosis; in non-HIV+ immunocompromised patients, it can cause respiratory symptoms or evolve into a disseminated infection. The same can occur in acquired immunodeficiency syndrome (AIDS) patients. We have observed a series of HIV+ patients with AIDS who presented with cutaneous histoplasmosis and in whom the clinical and histopathological features were highly unusual, including variable mucocutaneous lesions that were difficult to diagnose clinically. These patients displayed unusual, previously undescribed, histological patterns, including lichenoid pattern, nodular pseudomyxoid pattern, pyogenic granuloma-like pattern, perifollicular pattern, and superficial (S), mid (M), and deep perivascular dermatitis; and more commonly encountered patterns, such as histiocytic lobular panniculitis and focal nodular dermatitis. The novel histopathological patterns of cutaneous involvement by histoplasmosis seen in these patients resembled other common inflammatory and infectious conditions and required a high level of suspicion and the application of special stains for organisms for confirmation. These new, clinical, and histological findings do not seem to be commonly encountered in HIV- patients infected with the fungus but seem to be displayed most prominently in HIV+ patients with AIDS.
Cohen, M M
1989-08-01
Part I introduces the survey and presents a topic outline of the 10 parts that make up this overview of syndromology in this and the next four issues. The discussion in Part I considers various concepts and definitions of the term "syndrome" and different ways of applying syndrome designations. A population definition of a syndrome is then developed to show the meaning of common, less common, and occasional anomalies in various syndromes. The differences between a true multiple anomaly syndrome and a variant familial pattern are discussed. Finally, two types of weak recurrent patterns--chance patterns and association patterns--are explained.
Kumar, Manoj; Federmeier, Kara D; Fei-Fei, Li; Beck, Diane M
2017-07-15
A long-standing core question in cognitive science is whether different modalities and representation types (pictures, words, sounds, etc.) access a common store of semantic information. Although different input types have been shown to activate a shared network of brain regions, this does not necessitate that there is a common representation, as the neurons in these regions could still differentially process the different modalities. However, multi-voxel pattern analysis can be used to assess whether, e.g., pictures and words evoke a similar pattern of activity, such that the patterns that separate categories in one modality transfer to the other. Prior work using this method has found support for a common code, but has two limitations: they have either only examined disparate categories (e.g. animals vs. tools) that are known to activate different brain regions, raising the possibility that the pattern separation and inferred similarity reflects only large scale differences between the categories or they have been limited to individual object representations. By using natural scene categories, we not only extend the current literature on cross-modal representations beyond objects, but also, because natural scene categories activate a common set of brain regions, we identify a more fine-grained (i.e. higher spatial resolution) common representation. Specifically, we studied picture- and word-based representations of natural scene stimuli from four different categories: beaches, cities, highways, and mountains. Participants passively viewed blocks of either phrases (e.g. "sandy beach") describing scenes or photographs from those same scene categories. To determine whether the phrases and pictures evoke a common code, we asked whether a classifier trained on one stimulus type (e.g. phrase stimuli) would transfer (i.e. cross-decode) to the other stimulus type (e.g. picture stimuli). The analysis revealed cross-decoding in the occipitotemporal, posterior parietal and frontal cortices. This similarity of neural activity patterns across the two input types, for categories that co-activate local brain regions, provides strong evidence of a common semantic code for pictures and words in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Gamyanin, G. N.; Vikent'eva, O. V.; Prokof'ev, V. Yu.; Bortnikov, N. S.
2015-11-01
The formation sequence of orebodies, chemical composition of gangue and ore minerals, fluid inclusions, REE patterns, 40Ar/39Ar isotopic age, and relationships of stable isotopes (C, O, S) in minerals of the Arkachan gold-bismuth-siderite-sulfide deposit have been studied. The deposit has been localized in the Kuranakh Anticlinorium of the Verkhoyansky Fold-Nappe Belt at the intersection of the near-meridional Kygyltas and the NE-trending North Tirekhtyakh faults. The orebodies are extended (>2 km) and steeply dipping zones of veins and veinlets are hosted in Carbonaceous and Permian sandstones and siltstones deformed in anticlines and cut through by dikes pertaining to diorite-granodiorite-granite association. The deposit was formed during hydrothermal-metamorphic, productive main gold, silver-polymetallic, and silver-antimony stages. The orebodies are largely composed of quartz and siderite; arsenopyrite, pyrite, and pyrrhotite are widespread; bismuthinite, chalcopyrite, sphalerite, galena, and bismuth sulfosalts (gustavite, cosalite, matildite) are less abundant. The REE patterns of carbonates and quartz are characterized by a negative Eu anomaly. Three types of fluid inclusions (FI) in quartz and carbonates are distinguished: (I) liquid H2O + CO2 ± CH4 + NaCl, (II) gaseous CO2 ± CH4, and (III) aqueous salt solutions. The homogenization temperature and salinity of FI I vary from 385 to 280°C and 18.8 to 26.2 wt % NaCl equiv, respectively, whereas in FI III these parameters vary from 261 to 324°C and 3.7 to 9.5 wt % NaCl equiv. The pressure is estimated at 1830 to 1060 bar. The δ18O of quartz II associated with siderite I, native gold, and sulfosalts changes from +13.6 to 16.3‰(SMOW); δ18O and δ13C of siderite I related to gold-ore stage vary from +13.6 to +17.7‰ (SMOW) and from-6.0 to-3.0 (PDB). A wide range of δ34S from-5.7 to 16.0‰ (CDT) has been obtained for sulfides. The isotopic 40Ar/39Ar age of muscovite is 101.9 ± 1.4 Ma. The isotopic compositions of C, O, and S in fluids and their REE patterns suggest that magmatic components are predominant. Metamorphic H2O, CO2, and occasionally CH4 are derived from the apical part of a hidden intrusion, whereas sulfur is delivered from country rocks as a result of heating.
Cu-In Halide Perovskite Solar Absorbers.
Zhao, Xin-Gang; Yang, Dongwen; Sun, Yuanhui; Li, Tianshu; Zhang, Lijun; Yu, Liping; Zunger, Alex
2017-05-17
The long-term chemical instability and the presence of toxic Pb in otherwise stellar solar absorber APbX 3 made of organic molecules on the A site and halogens for X have hindered their large-scale commercialization. Previously explored ways to achieve Pb-free halide perovskites involved replacing Pb 2+ with other similar M 2+ cations in ns 2 electron configuration, e.g., Sn 2+ or by Bi 3+ (plus Ag + ), but unfortunately this showed either poor stability (M = Sn) or weakly absorbing oversized indirect gaps (M = Bi), prompting concerns that perhaps stability and good optoelectronic properties might be contraindicated. Herein, we exploit the electronic structure underpinning of classic Cu[In,Ga]Se 2 (CIGS) chalcopyrite solar absorbers to design Pb-free halide perovskites by transmuting 2Pb to the pair [B IB + C III ] such as [Cu + Ga] or [Ag + In] and combinations thereof. The resulting group of double perovskites with formula A 2 BCX 6 (A = K, Rb, Cs; B = Cu, Ag; C = Ga, In; X = Cl, Br, I) benefits from the ionic, yet narrow-gap character of halide perovskites, and at the same time borrows the advantage of the strong Cu(d)/Se(p) → Ga/In(s/p) valence-to-conduction-band absorption spectra known from CIGS. This constitutes a new group of CuIn-based Halide Perovskite (CIHP). Our first-principles calculations guided by such design principles indicate that the CIHPs class has members with clear thermodynamic stability, showing direct band gaps, and manifesting a wide-range of tunable gap values (from zero to about 2.5 eV) and combination of light electron and heavy-light hole effective masses. Materials screening of candidate CIHPs then identifies the best-of-class Rb 2 [CuIn]Cl 6 , Rb 2 [AgIn]Br 6 , and Cs 2 [AgIn]Br 6 , having direct band gaps of 1.36, 1.46, and 1.50 eV, and theoretical spectroscopic limited maximal efficiency comparable to chalcopyrites and CH 3 NH 3 PbI 3 . Our finding offers a new routine for designing new-type Pb-free halide perovskite solar absorbers.
S-33 constraints on the seawater sulfate contribution in modern seafloor hydrothermal vent sulfides
Ono, Shuhei; Shanks, Wayne C.; Rouxel, O.J.; Rumble, D.
2007-01-01
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different ??33S (?????33S-0.515 ??34S) values of up to 0.04??? even if ??34S values are identical. Detection of such small ??33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006??? (2??). Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10??N, 13??N, and 21??S and Mid-Atlantic Ridge (MAR) 37??N yield ??33S values ranging from -0.002 to 0.033 and ??34S from -0.5??? to 5.3???. The combined ??34S and ??33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13??N and marcasite from MAR 37??N are in isotope disequilibrium not only in ??34S but also in ??33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low ??33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles. ?? 2006 Elsevier Inc. All rights reserved.
Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)
NASA Astrophysics Data System (ADS)
Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.
2017-12-01
Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (< 0.1%) and the main part of their primary Cu and Zn content has likely been mobilized. Cu concentrations increase at the edges of the mounds (up to wt. 20%) or in distal depositionary channels (up to wt.10%) where sulphide minerals (e.g. pyrite, chalcopyrite and sphalerite) are still present in the sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched in more distal sediment basins.
Ore microscopy of the Paoli silver-copper deposit, Oklahoma
Thomas, C.A.; Hagni, R.D.; Berendsen, P.
1991-01-01
The Paoli silver-copper deposit is located in south-central Oklahoma, 56 km south-southeast from Norman, Oklahoma. It was mined for high-grade silver-copper near the beginning of this century, and intensive exploratory drilling during the early 1970's delineated unmined portions of the deposit. A collaborative study between the U.S.G.S., the Kansas Geological Survey, and the University of Missouri-Rolla was undertaken to provide new information on the character of red bed copper deposits of the Midcontinent region. The Paoli deposit has been interpreted to occur as a roll-front type of deposit. The silver and copper mineralization occurs within paleochannels in the Permian Wellington Formation. The silver-copper interfaces appear to be controlled by oxidation-reduction interfaces that are marked by grey to red color changes in the host sandstone. Ore microscopic examinations of polished thin sections show that unoxidized ore consists of chalcocite, digenite, chalcopyrite, covellite and pyrite; and oxidized ores are characterized by covellite, bornite, hematite and goethite. In sandstone-hosted ores, chalcocite and digenite replace dolomite and border clastic quartz grains. In siltstone-hosted ores, the copper sulfide grains have varied shapes; most are irregular in shape and 5-25 ??m across, others have euhedral shapes suggestive of pyrite crystal replacements, and some are crudely spherical and are 120-200 ??m across. Chalcopyrite is the predominant copper sulfide at depth. Covellite and malachite replace chalcocite and digenite near the surface. Silver only occurs as native silver; most as irregularly shaped grains 40-80 ??m across, but some as cruciform crystals that are up to 3.5 mm across. The native silver has been deposited after copper sulfides, and locally replaces chalcocite. Surficial nodules of pyrite, malachite and hematite locally are present in outcrops at the oxidation-reduction fronts. Polished sections of the nodules show that malachite forms a cement around quartz sand grains, and brecciated pyrite grains are surrounded by rims of hematite and goethite. Dolomite is the principal sandstone cement. Cathodoluminescence microscopic study of the mineral has shown that it was deposited during seven periods before the copper sulfide mineralization. ?? 1991.
NASA Astrophysics Data System (ADS)
Choi, S. K.; Pak, S. J.; Kim, J.; Park, J. W.; Son, S. K.
2017-12-01
Sn-rich chimney fragments (up to 1,720 ppm) were recovered with ultramafic rocks from ocean core complex (OCC-4-1) of Central Indian Ridge, 12.4°S. The chimney fragments are featured by barite-free and Zn-rich (up to 50.1 wt.%) ores. The chimney fragments are mainly composed of sphalerite, isocubanite, pyrrhotite, chalcopyrite and marcasite with galena and electrum as minor minerals. The precipitation sequences of the minerals are categorized into three stages by mineral assemblage; early stage with low-temperature minerals, late stage with high-temperature minerals and seawater weathering stage with covellite, Fe-oxyhydroxides and amorphous silica. Early stage is characterized by sphalerite, intermittently showing colloform-texture, closely co-existed with anhedral marcasite and minor galena, whereas late stage is dominated by aggregates of isocubanite with chalcopyrite exsolution lamellae, pyrrhotite partially replaced by long prismatic marcasite and FeS enriched sphalerite (up to 42.69 FeS mole%). Electrums, main phase of gold mineralization, are mostly visible grains (< 3 um in diameter), occuring in sphalerite and isocubanite as inclusions and/or free gold in amorphous silica through the whole mineralization stages. On the basis of semi-quantified analysis, electrum grains are likely to have Au-rich composition. High Sn concentrations are typically observed in altered rim along the grain boundaries between sphalerite and isocubanite, going up to 5.5 wt.% in sphalerite. LA-ICP-MS mapping exhibits that Sn is preferentially incorporated into sphalerite relative to isocubanite, especially showing the highest values in boundaries between both minerals, but significantly lower in marcasite. Stoichiometry of Sn-enriched sphalerite rim seems to have a uniform ratio of atomic proportion of Cu to Sn as almost 2:1, implying that stannite micro-inclusions may result in Sn-enrichment. The LA-ICP-MS spectra also shows abrupt increase in Sn signal intensity, indicating Sn-bearing inclusions are distributed within sphalerite. Therefore, Sn-bearing mineral in sphalerite and isocubanite is likely to be fine particle of stannite in late stage and subsequently one of the possible ways to precipitate these particles could be reworking process of previously deposited Sn-bearing sulfides.
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9-10°N
Rouxel, O.; Shanks, Wayne C.; Bach, W.; Edwards, K.J.
2008-01-01
In this study, we report on coupled Fe- and S-isotope systematics of hydrothermal fluids and sulfide deposits from the East Pacific Rise at 9–10°N to better constrain processes affecting Fe-isotope fractionation in hydrothermal environments. We aim to address three fundamental questions: (1) Is there significant Fe-isotope fractionation during sulfide precipitation? (2) Is there significant variability of Fe-isotope composition of the hydrothermal fluids reflecting sulfide precipitation in subsurface environments? (3) Are there any systematics between Fe- and S-isotopes in sulfide minerals? The results show that chalcopyrite, precipitating in the interior wall of a hydrothermal chimney displays a limited range of δ56Fe values and δ34S values, between − 0.11 to − 0.33‰ and 2.2 to 2.6‰ respectively. The δ56Fe values are, on average, slightly higher by 0.14‰ relative to coeval vent fluid composition while δ34S values suggest significant S-isotope fractionation (− 0.6 ± 0.2‰) during chalcopyrite precipitation. In contrast, systematically lower δ56Fe and δ34S values relative to hydrothermal fluids, by up to 0.91‰ and 2.0‰ respectively, are observed in pyrite and marcasite precipitating in the interior of active chimneys. These results suggest isotope disequilibrium in both Fe- and S-isotopes due to S-isotopic exchange between hydrothermal H2S and seawater SO42− followed by rapid formation of pyrite from FeS precursors, thus preserving the effects of a strong kinetic Fe-isotope fractionation during FeS precipitation. In contrast, δ56Fe and δ34S values of pyrite from inactive massive sulfides, which show evidence of extensive late-stage reworking, are essentially similar to the hydrothermal fluids. Multiple stages of remineralization of ancient chimney deposits at the seafloor appear to produce minimal Fe-isotope fractionation. Similar affects are indicated during subsurface sulfide precipitation as demonstrated by the lack of systematic differences between δ56Fe values in both high-temperature, Fe-rich black smokers and lower-temperature, Fe-depleted vents.
NASA Astrophysics Data System (ADS)
Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa
2016-04-01
The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount of Cu and Mo mineralization having addition of Si and K with removal of Fe, Mg, Ca, and Na. Keywords: Mass balance calculation; Tepeoba porphyry Cu-Mo-Au deposits; Balikesir; Turkey
Style consistent classification of isogenous patterns.
Sarkar, Prateek; Nagy, George
2005-01-01
In many applications of pattern recognition, patterns appear together in groups (fields) that have a common origin. For example, a printed word is usually a field of character patterns printed in the same font. A common origin induces consistency of style in features measured on patterns. The features of patterns co-occurring in a field are statistically dependent because they share the same, albeit unknown, style. Style constrained classifiers achieve higher classification accuracy by modeling such dependence among patterns in a field. Effects of style consistency on the distributions of field-features (concatenation of pattern features) can be modeled by hierarchical mixtures. Each field derives from a mixture of styles, while, within a field, a pattern derives from a class-style conditional mixture of Gaussians. Based on this model, an optimal style constrained classifier processes entire fields of patterns rendered in a consistent but unknown style. In a laboratory experiment, style constrained classification reduced errors on fields of printed digits by nearly 25 percent over singlet classifiers. Longer fields favor our classification method because they furnish more information about the underlying style.
Most common patterns of acne in male adolescents: a population-based study.
Duquia, Rodrigo P; de Almeida, Hiram L; Breunig, Juliano A; Souzat, Paulo R M; Göellner, Caroline D
2013-05-01
Acne vulgaris is a common skin disease affecting more than 85% of adolescents and often continuing into adulthood. Population-based studies to assess the patterns and severity of acne have not been achieved. The aim of this study was to assess the most common patterns of facial and trunk acne in young (18-year-old) men in a representative sample of male adolescents in a city in southern Brazil and to investigate the severity of inflammatory and non-inflammatory lesions in these individuals. In Brazil, military service is compulsory for all males. Every adolescent male must report to his military service headquarters to submit to a medical screening examination. The study included 2201 adolescents, each of whom underwent a skin examination conducted by a dermatologist to identify and quantify all non-inflammatory (comedones) and inflammatory (papules, pustules, and nodules) lesions. Non-inflammatory lesions (comedones) were observed on 1487 individuals, and inflammatory lesions (papules and pustules) were noted on 1497 individuals. The most common patterns of facial acne were the full-face, bilateral malar and frontal mentonian distributions. This is the first population-based study to evaluate patterns of acne. Facial involvement was very prevalent, and the frontal region was found to dominate patterns of distribution of acne vulgaris. Comedonian acne of the face was much more intense and affected the entire face. In inflammatory facial acne, the majority of the study subjects exhibited up to five lesions in the region under study. © 2013 The International Society of Dermatology.
Differences among Job Positions Related to Communication Errors at Construction Sites
NASA Astrophysics Data System (ADS)
Takahashi, Akiko; Ishida, Toshiro
In a previous study, we classified the communicatio n errors at construction sites as faulty intention and message pattern, inadequate channel pattern, and faulty comprehension pattern. This study seeks to evaluate the degree of risk of communication errors and to investigate differences among people in various job positions in perception of communication error risk . Questionnaires based on the previous study were a dministered to construction workers (n=811; 149 adminis trators, 208 foremen and 454 workers). Administrators evaluated all patterns of communication error risk equally. However, foremen and workers evaluated communication error risk differently in each pattern. The common contributing factors to all patterns wer e inadequate arrangements before work and inadequate confirmation. Some factors were common among patterns but other factors were particular to a specific pattern. To help prevent future accidents at construction sites, administrators should understand how people in various job positions perceive communication errors and propose human factors measures to prevent such errors.
Blue Pattern Flower in Common Bean Expressed by Interaction of Prpi-2 with a New Gene tbp
USDA-ARS?s Scientific Manuscript database
The inheritance of blue pattern flower (BPF) expression was investigated in common bean (Phaseolus vulgaris L.). The BPF trait was derived from accession line G07262, and the flowers express blue banner petal and white wings with blue veins. Crosses between a BPF stock and three other parents - t ...
Kenow, Kevin P.; Houdek, Steven C.; Fara, Luke; Gray, Brian R.; Lubinski, Brian R.; Heard, Darryl J.; Meyer, Michael W.; Fox, Timothy J.; Kratt, Robert
2018-01-01
Common loons (Gavia immer) staging on the Great Lakes during fall migration are at risk to episodic outbreaks of type E botulism. Information on distribution, foraging patterns, and exposure routes of loons are needed for understanding the physical and ecological factors that contribute to avian botulism outbreaks. Aerial surveys were conducted to document the spatiotemporal distribution of common loons on Lake Michigan during falls 2011–2013. In addition, satellite telemetry and archival geolocator tags were used to determine the distribution and foraging patterns of individual common loons while using Lake Michigan during fall migration. Common loon distribution observed during aerial surveys and movements of individual radiomarked and/or geotagged loons suggest a seasonal pattern of use, with early fall use of Green Bay and northern Lake Michigan followed by a shift in distribution to southern Lake Michigan before moving on to wintering areas. Common loons tended to occupy offshore areas of Lake Michigan and, on average, spent the majority of daylight hours foraging. Dive depths were as deep as 60 m and dive characteristics suggested that loons were primarily foraging on benthic prey. A recent study concluded that round gobies (Neogobius melanostomus) are an important prey item of common loons and may be involved in transmission of botulinum neurotoxin type E. Loon distribution coincides with the distribution of dreissenid mussel biomass, an important food resource for round gobies. Our observations support speculation that energy transfer to higher trophic levels via gobies may occur in deep-water habitats, along with transfer of botulinum neurotoxin.
The evolution of floral scent and insect chemical communication.
Schiestl, Florian P
2010-05-01
Plants have evolved a range of strategies to manipulate the behaviour of their insect partners. One powerful strategy is to produce signals that already have a role in the animals' own communication systems. To investigate to what extent the evolution of floral scents is correlated with chemical communication in insects, I analyse the occurrence, commonness, and evolutionary patterns of the 71 most common 'floral' volatile organic compounds (VOCs) in 96 plant families and 87 insect families. I found an overlap of 87% in VOCs produced by plants and insects. 'Floral' monoterpenes showed strong positive correlation in commonness between plants (both gymnosperms and angiosperms) and herbivores, whereas the commonness of 'floral' aromatics was positively correlated between angiosperms and both pollinators and herbivores. According to a multivariate regression analysis the commonness of 'floral' aromatics was best explained by their commonness in pollinators, whereas monoterpenes were best explained by herbivores. Among pollinator orders, aromatics were significantly more common in Lepidoptera than in Hymenoptera, whereas monoterpenes showed no difference among the two orders. Collectively, these patterns suggest that plants and insects converge in overall patterns of volatile production, both for attraction and defence. Monoterpenes seem to have evolved primarily for defence under selection by herbivores, whereas aromatics evolved signalling functions in angiosperms, primarily for pollinator attraction.
... A telltale abnormality — called a type 1 Brugada ECG pattern — is detected by an electrocardiogram (ECG) test. Brugada syndrome is much more common in ... syndrome is an abnormal pattern on an electrocardiogram (ECG) called a type 1 Brugada ECG pattern. You ...
The Relation between Patterning, Executive Function, and Mathematics
ERIC Educational Resources Information Center
Schmerold, Katrina Lea
2015-01-01
Patterning, or the ability to understand patterns, is a skill commonly taught to young children as part of school mathematics curricula. While a number of studies have demonstrated that patterning is beneficial for young children acquiring mathematical skills, little research exists that examines the cognitive components of the skill. It seems…
Spray Chemical Vapor Deposition of CulnS2 Thin Films for Application in Solar Cell Devices
NASA Technical Reports Server (NTRS)
Hollingsworth, Jennifer A.; Buhro, William E.; Hepp, Aloysius F.; Jenkins. Philip P.; Stan, Mark A.
1998-01-01
Chalcopyrite CuInS2 is a direct band gap semiconductor (1.5 eV) that has potential applications in photovoltaic thin film and photoelectrochemical devices. We have successfully employed spray chemical vapor deposition using the previously known, single-source, metalorganic precursor, (Ph3P)2CuIn(SEt)4, to deposit CuInS2 thin films. Stoichiometric, polycrystalline films were deposited onto fused silica over a range of temperatures (300-400 C). Morphology was observed to vary with temperature: spheroidal features were obtained at lower temperatures and angular features at 400 C. At even higher temperatures (500 C), a Cu-deficient phase, CuIn5S8, was obtained as a single phase. The CuInS2 films were determined to have a direct band gap of ca. 1.4 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasai, S.; Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako 351-0198; Takahashi, Y. K.
2016-07-18
We investigated the structure and magneto-transport properties of magnetic junctions using a Co{sub 2}Fe(Ga{sub 0.5}Ge{sub 0.5}) Heusler alloy as ferromagnetic electrodes and a Cu(In{sub 0.8}Ga{sub 0.2})Se{sub 2} (CIGS) semiconductor as spacers. Owing to the semiconducting nature of the CIGS spacer, large magnetoresistance (MR) ratios of 40% at room temperature and 100% at 8 K were obtained for low resistance-area product (RA) values between 0.3 and 3 Ω μm{sup 2}. Transmission electron microscopy observations confirmed the fully epitaxial growth of the chalcopyrite CIGS layer, and the temperature dependence of RA indicated that the large MR was due to spin dependent tunneling.
Thermal neutron detector and gamma-ray spectrometer utilizing a single material
Stowe, Ashley; Burger, Arnold; Lukosi, Eric
2017-05-02
A combined thermal neutron detector and gamma-ray spectrometer system, including: a detection medium including a lithium chalcopyrite crystal operable for detecting thermal neutrons in a semiconductor mode and gamma-rays in a scintillator mode; and a photodetector coupled to the detection medium also operable for detecting the gamma rays. Optionally, the detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the detection medium comprises a compound formed by the process of: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound and heating; wherein the Group I element includes lithium.
Enhancement of Au-Ag-Te contents in tellurium-bearing ore minerals via bioleaching
NASA Astrophysics Data System (ADS)
Choi, Nag-Choul; Cho, Kang Hee; Kim, Bong Ju; Lee, Soonjae; Park, Cheon Young
2018-03-01
The purpose of this study was to enhance the content of valuable metals, such as Au, Ag, and Te, in tellurium-bearing minerals via bioleaching. The ore samples composed of invisible Au and Au paragenesis minerals (such as pyrite, chalcopyrite, sphalerite and galena) in combination with tellurium-bearing minerals (hessite, sylvanite and Tellurobismuthite) were studied. Indigenous microbes from mine drainage were isolated and identified as Acidithiobacillus ferrooxidans, which were used in bioleaching after adaption to copper. The effect of the microbial adaption on the bioleaching performance was then compared with the results produced by the non-adaptive process. The microbial adaption enhanced the Au-Ag-Te contents in biological leaching of tellurium-bearing ore minerals. This suggests that bioleaching with adapted microbes can be used both as a pretreatment and in the main recovery processes of valuable metals.
Dai, Shengfa; Wei, Qingguo
2017-01-01
Common spatial pattern algorithm is widely used to estimate spatial filters in motor imagery based brain-computer interfaces. However, use of a large number of channels will make common spatial pattern tend to over-fitting and the classification of electroencephalographic signals time-consuming. To overcome these problems, it is necessary to choose an optimal subset of the whole channels to save computational time and improve the classification accuracy. In this paper, a novel method named backtracking search optimization algorithm is proposed to automatically select the optimal channel set for common spatial pattern. Each individual in the population is a N-dimensional vector, with each component representing one channel. A population of binary codes generate randomly in the beginning, and then channels are selected according to the evolution of these codes. The number and positions of 1's in the code denote the number and positions of chosen channels. The objective function of backtracking search optimization algorithm is defined as the combination of classification error rate and relative number of channels. Experimental results suggest that higher classification accuracy can be achieved with much fewer channels compared to standard common spatial pattern with whole channels.
Trace elements and isotope data of the Um Garayat gold deposit, Wadi Allaqi district, Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem; Emam, Ashraf; Pitcairn, Iain K.; Boskabadi, Arman; Lehaye, Yann; Cooper, Matthew J.
2018-04-01
Trace element composition of sulfides and O, C, Sr and S isotopic data are assessed to constrain the evolution and potential fluid and metal sources of the Um Garayat gold deposit. Ore microscopy and BSE investigations of quartz veins show blocky arsenopyrite and pyrite replaced in part by pyrrhotite, chalcopyrite, sphalerite, galena, and gersdorffite. Free-milling gold occurs commonly in close association with the late sulfides, and along fractures in pyrite. On the other hand, recrystallized pyrite is disseminated in host metavolcaniclastic/metasedimentary rocks that commonly contain carbonaceous material. In situ LA-ICP-MS analysis of sulfides shows the recrystallized pyrite enriched in most trace elements, while blocky pyrite contains only some traces of arsenic. Detected concentrations of gold (up to 17 ppm) were only reported in arsenopyrite disseminated in quartz veins. The δ34S values of blocky pyrite and pyrrhotite in quartz veins define a narrow range (1.6 to 3.7‰), suggesting a homogenous sulfur source which is consistent with the dominantly mafic host rocks. The recrystallized pyrite has a distinctive sulfur isotope composition (δ34S - 9.3 to - 10.6‰), which is rather comparable to diagenetic sulfides. Hydrothermal carbonate in quartz veins and wallrock have nearly constant values of δ18O (10.5 to 11.9‰) and δ13C (- 4.2 to - 5.5‰). Based on constraints from mineral assemblages and chlorite thermometry, data of six samples indicate that carbonate precipitation occurred at 280 °C from a homogenous hydrothermal fluid with δ18OH2O 4.4 ± 0.7‰ and δ13C = 3.7 ± 0.8‰. Strontium isotope values of two samples (87Sr/86Sr = 0.7024 and 0.7025) are similar to the initial 87Sr/86Sr ratios of island arc metabasalts ( 710 Ma) in the South Eastern Desert. The generally homogenous sulfur, C, O, Sr isotope data are suggestive of metamorphogenic fluids, likely produced from dominantly mafic volcanic rocks at the greenschist-amphibolite facies transition.
A Primer on the Pathway to Scholarly Writing: Helping Nascent Writers to Unlearn Conditioned Habits
ERIC Educational Resources Information Center
McDougall, Dennis; Ornelles, Cecily; Rao, Kavita
2015-01-01
In this article, we identify eight common error patterns of nascent writers when they attempt to navigate the pathway to scholarly writing. We illustrate each error pattern via examples and counter-examples (corrections). We also describe how to identify such patterns, why those patterns might occur and persist, and why each pattern is…
Trace and minor elements in sphalerite from metamorphosed sulphide deposits
NASA Astrophysics Data System (ADS)
Lockington, Julian A.; Cook, Nigel J.; Ciobanu, Cristiana L.
2014-12-01
Sphalerite is a common sulphide and is the dominant ore mineral in Zn-Pb sulphide deposits. Precise determination of minor and trace element concentrations in sulphides, including sphalerite, by Laser-Ablation Inductively-Coupled-Plasma Mass-Spectrometry (LA-ICP-MS) is a potentially valuable petrogenetic tool. In this study, LA-ICP-MS is used to analyse 19 sphalerite samples from metamorphosed, sphalerite-bearing volcanic-associated and sedimentary exhalative massive sulphide deposits in Norway and Australia. The distributions of Mn, Fe, Co, Cu, Ga, Se, Ag, Cd, In, Sn, Sb, Hg, Tl, Pb and Bi are addressed with emphasis on how concentrations of these elements vary with metamorphic grade of the deposit and the extent of sulphide recrystallization. Results show that the concentrations of a group of trace elements which are believed to be present in sphalerite as micro- to nano-scale inclusions (Pb, Bi, and to some degree Cu and Ag) diminish with increasing metamorphic grade. This is interpreted as due to release of these elements during sphalerite recrystallization and subsequent remobilization to form discrete minerals elsewhere. The concentrations of lattice-bound elements (Mn, Fe, Cd, In and Hg) show no correlation with metamorphic grade. Primary metal sources, physico-chemical conditions during initial deposition, and element partitioning between sphalerite and co-existing sulphides are dominant in defining the concentrations of these elements and they appear to be readily re-incorporated into recrystallized sphalerite, offering potential insights into ore genesis. Given that sphalerite accommodates a variety of trace elements that can be precisely determined by contemporary microanalytical techniques, the mineral has considerable potential as a geothermometer, providing that element partitioning between sphalerite and coexisting minerals (galena, chalcopyrite etc.) can be quantified in samples for which the crystallization temperature can be independently constrained.
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; ...
2014-07-10
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less
Occurence of ore metals in some terrestrial geothermal systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Browne, P.
1984-02-01
Drilling programs and the study of active geothermal systems have shown that the reservoir rocks in many fields contain minor quantities of base and precious metals. Commonly, base-metal sulfides occur in the subsurface but, where present, Au, Ag, Hg, As, Tl and Sb rich precipitates deposit near, or at, the surface. Although in some fields (Geysers, Larderello, Tongonan) some of the ore minerals (and others) are relict, there is evidence that they are now depositing in a few systems. Recent work on active hydrothermal systems in New Zealand shows that: (1) Sphalerite, galena, chalcopyrite (forming veins and disseminated discrete crystals)more » plus rare pentlandite, cobaltite and arsenopyrite, occur at Broadlands, NZ. Rare quantities of base-metal sulfides also occur in cores and cuttings from the geothermal fields of Waiotapu, Kawerau, Tauhara, and Ngawha. Further, Kakimoto (1983) has identified cassiterite, native silver, and trace gold in cores from Tauhara, in the south-eastern part of the Wairakei field. Bore temperatures at the depths from which these minerals were recovered are mostly between 220/sup 0/ and 300/sup 0/C, but at Broadlands are locally as low as 120/sup 0/C. The host rocks are Quaternary calc-alkali, silicic lavas and pyroclastic rocks, andesites, dacite and deep Mesozoic greywackes and argillites; however, there is no obvious relationship between mineralization and stratigraphy, permeability or well output. The deposition of amorphous precious metal precipitates (Au, Ag, Hg, As, Sb, Tl) from hot springs and well discharges has taken place at Broadlands, Waiotapu and Rotokawa; it also occurs at Kawerau. Water discharging from Frying Pan Lake, Waimangu, is presently depositing siliceous sinter containing up to 4.1% tungsten.« less
Review of the inorganic geochemistry of peats and peatland waters
NASA Astrophysics Data System (ADS)
Shotyk, William
1988-06-01
The major floristic and geochemical differences between bogs, fens, and swamps are summarized, and the most common peat types described. This is followed by a critical, historical review of the literature. The methods used to measure the pH of peatland (mire) waters are examined, and the pH range of various peatland types is reported. In addition, horizontal and vertical pH variations are illustrated, and factors affecting the pH of these waters reviewed. The cause of the low pH of surface waters of Sphagnum bogs (approximately pH 4) is critically investigated, and the relative importance of dissolved CO 2 and other inorganic acids, and organic acids to the low pH is assessed. Cation exchange on the surfaces of Sphagnum mosses is found to be a relatively unimportant acidification mechanism, but important to the chemical ecology of the plants. The redox chemistry of mire waters is described in terms of the geochemistry of such redox indicators as O 2, CO 2, CH 4, CO, H 2, H 2S, SO 42-, native Cu, and siderite (FeCO 3). Published studies of Eh in peatlands are cited, and the problems of Eh measurement and interpretation are explored. The chemical composition of mire waters (major and trace metals, and nonmetallic species) is examined, and factors affecting their composition reported. The abundance and distribution of mineral matter in peats is described, and the occurrence and formation of minerals of Fe (pyrite and other sulphides, siderite, vivianite), Cu (chalcopyrite, native Cu, covellite) and Zn (smithsonite and wurtzite) investigated. The abundance and distribution of major elements (Si, Al, Na, K, Mg, Ca) and trace metals (Ni, V, Cr, Fe, Mn, Cu, U, Zn, Pb) is described, and factors affecting their solubility examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.
The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m 2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less
Microbial pattern of pressure ulcer in pediatric patients
NASA Astrophysics Data System (ADS)
Paramita, D. A.; Khairina; Lubis, N. Z.
2018-03-01
Pressure ulcer (PU) is a localized trauma to the skin and or tissue beneath which lies in bony prominence due to pressure or pressure that combines with a sharp surface. Several studies have found that PU is a common problem in pediatrics population. Infection at the site of a PU is the most common complication in which the PU may host a resistant microorganism and may turn into a local infection that will be the source of bacteremia in hospitalized patients. To reveal which is the most common microbial species that underlie in pressure ulcer of pediatrics patients.A cross-sectional study was conducted in July-September 2017, involving 18 PU pediatric patients in Haji Adam Malik Hospital. To each subject, swab culture from the ulcer was madein microbial laboratory in Haji Adam Malik Hospital to determine the microbial pattern. This study found that the most common microbial pattern in pressure ulcers of pediatrics patient in Haji Adam Malik Hospital is Acinetobacter baumannii (22.2%).
ERIC Educational Resources Information Center
Haberman, Shelby J.; Lee, Yi-Hsuan
2017-01-01
In investigations of unusual testing behavior, a common question is whether a specific pattern of responses occurs unusually often within a group of examinees. In many current tests, modern communication techniques can permit quite large numbers of examinees to share keys, or common response patterns, to the entire test. To address this issue,…
Yi, Ming; Mudunuri, Uma; Che, Anney; Stephens, Robert M
2009-06-29
One of the challenges in the analysis of microarray data is to integrate and compare the selected (e.g., differential) gene lists from multiple experiments for common or unique underlying biological themes. A common way to approach this problem is to extract common genes from these gene lists and then subject these genes to enrichment analysis to reveal the underlying biology. However, the capacity of this approach is largely restricted by the limited number of common genes shared by datasets from multiple experiments, which could be caused by the complexity of the biological system itself. We now introduce a new Pathway Pattern Extraction Pipeline (PPEP), which extends the existing WPS application by providing a new pathway-level comparative analysis scheme. To facilitate comparing and correlating results from different studies and sources, PPEP contains new interfaces that allow evaluation of the pathway-level enrichment patterns across multiple gene lists. As an exploratory tool, this analysis pipeline may help reveal the underlying biological themes at both the pathway and gene levels. The analysis scheme provided by PPEP begins with multiple gene lists, which may be derived from different studies in terms of the biological contexts, applied technologies, or methodologies. These lists are then subjected to pathway-level comparative analysis for extraction of pathway-level patterns. This analysis pipeline helps to explore the commonality or uniqueness of these lists at the level of pathways or biological processes from different but relevant biological systems using a combination of statistical enrichment measurements, pathway-level pattern extraction, and graphical display of the relationships of genes and their associated pathways as Gene-Term Association Networks (GTANs) within the WPS platform. As a proof of concept, we have used the new method to analyze many datasets from our collaborators as well as some public microarray datasets. This tool provides a new pathway-level analysis scheme for integrative and comparative analysis of data derived from different but relevant systems. The tool is freely available as a Pathway Pattern Extraction Pipeline implemented in our existing software package WPS, which can be obtained at http://www.abcc.ncifcrf.gov/wps/wps_index.php.
Demographics and Injuries Associated With Knee Dislocation: A Prospective Review of 303 Patients
Moatshe, Gilbert; Dornan, Grant J.; Løken, Sverre; Ludvigsen, Tom C.; LaPrade, Robert F.; Engebretsen, Lars
2017-01-01
Background: Information on the incidence, injury mechanisms, ligament injury patterns, and associated injuries of knee dislocations is lacking in the literature. There is a need to characterize ligament injury patterns and associated injuries in knee dislocations to avoid missing common associated diagnoses and to plan surgical treatment. Purpose: To evaluate patient demographics, ligament injury patterns and associated injury patterns, and associated injuries in patients with knee dislocation. Study Design: Cross-sectional study; Level of evidence, 3. Methods: A total of 303 patients with knee dislocations treated at a single level 1 trauma center were followed prospectively. Injury mechanism; ligament injury patterns; associated neurovascular, meniscal, and cartilage injuries; and surgical complications were recorded. The Schenck knee dislocation classification was used to classify the ligament injury patterns. Results: The mean age at injury was 37.8 ± 15.3 years. Of the 303 patients included, 65% were male and 35% were female. There was an equal distribution of high-energy and low-energy injuries. Injury to 3 major ligaments was the most common, with Schenck classification type KD III-M constituting 52.4% of the injuries and KD III-L comprising 28.1%. Meniscal injuries and cartilage injuries occurred in 37.3% and 28.3% of patients, respectively. Patients with acute injuries had significantly lower odds of a cartilage injury than those with chronic injuries (odds ratio [OR], 0.28; 95% CI, 0.15-0.50; P < .001). Peroneal nerve injuries were recorded in 19.2% of patients (10.9% partial and 8.3% complete deficit), while vascular injuries were recorded in 5%. The odds of having a common peroneal nerve injury were 42 times greater (P < .001) among those with posterolateral corner injury (KD III-L) than those without. The odds for popliteal artery injury were 9 times greater (P = .001) among those with KD III-L injuries than other ligament injury types. Conclusion: Medial-sided bicruciate injuries were the most common injury pattern in knee dislocations. Cartilage injuries were common in chronically treated patients. There was a significant risk of peroneal nerve injury with lateral-sided injuries. PMID:28589159
Byun, Jun-Seop; Yang, Su-Young; Jeong, In-Cheol; Hong, Kwon-Eui; Kang, Weechang; Yeo, Yoon; Park, Yang-Chun
2011-01-27
So-cheong-ryong-tang (SCRT) and Yeon-gyo-pae-dok-san (YPS) extracts are widely used in treatment of the common cold. The purpose of this study is to evaluate the efficacy of SCRT and YPS on the common cold. Four hundred eighty participants with symptoms of the common cold within 48 h were recruited for this randomized, double-blind, placebo-controlled trial. SCRT extract and YPS extract were put in gelatin capsules and orally administered 3 times a day. The pattern of participants was determined according to the Questionnaire for Common Cold Pattern Identification (QCCPI), and the severity of illness was assessed by Wisconsin Upper Respiratory Symptom Survey-21 Korean version (WURSS-21-K) every 7 days. The test and control groups were not significantly different in gender, age, smoking history, and baseline score of WURSS-21-K at the time of enrollment. SCRT treatment significantly decreased the total WURSS-21-K score on the 6th and 7th day (p<0.05) of the enrollment compared with the placebo group. YPS treatment decreased the total WURSS-21-K score on the 5th and 6th day (p<0.05 vs. the placebo group) of the enrollment. In the patients with Wind-cold pattern cold, SCRT significantly decreased the total WURSS-21-K score from 4th to 8th day (p<0.05), and YPS significantly decreased the total WURSS-21-K score from 4th to 6th day (p<0.05). For the Wind-heat pattern cold, neither SCRT nor YPS group showed significant difference from the placebo group. SCRT and YPS did not significantly decrease the time to complete resolution of the cold symptoms. SCRT and YPS have beneficial, albeit limited, effects on common cold patients, especially those with the Wind-cold pattern cold. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Pattern association--a key to recognition of shark attacks.
Cirillo, G; James, H
2004-12-01
Investigation of a number of shark attacks in South Australian waters has lead to recognition of pattern similarities on equipment recovered from the scene of such attacks. Six cases are presented in which a common pattern of striations has been noted.
Common arc method for diffraction pattern orientation.
Bortel, Gábor; Tegze, Miklós
2011-11-01
Very short pulses of X-ray free-electron lasers opened the way to obtaining diffraction signal from single particles beyond the radiation dose limit. For three-dimensional structure reconstruction many patterns are recorded in the object's unknown orientation. A method is described for the orientation of continuous diffraction patterns of non-periodic objects, utilizing intensity correlations in the curved intersections of the corresponding Ewald spheres, and hence named the common arc orientation method. The present implementation of the algorithm optionally takes into account Friedel's law, handles missing data and is capable of determining the point group of symmetric objects. Its performance is demonstrated on simulated diffraction data sets and verification of the results indicates a high orientation accuracy even at low signal levels. The common arc method fills a gap in the wide palette of orientation methods. © 2011 International Union of Crystallography
Power Terminal Communication Access Network Monitoring System Scheme Based on Design Patterns
NASA Astrophysics Data System (ADS)
Yan, Shengchao; Wu, Desheng; Zhu, Jiang
2018-01-01
In order to realize patterns design for terminal communication monitoring system, this paper introduces manager-workers, tasks-workers design patterns, based on common design patterns such as factory method, chain of responsibility, facade. Using these patterns, the communication monitoring system which combines module-groups like networking communication, business data processing and the peripheral support has been designed successfully. Using these patterns makes this system have great flexibility and scalability and improves the degree of systematic pattern design structure.
Etiologies of the Relationships Among Body Mass Index and Cold-Heat Patterns: A Twin Study.
Hur, Yoon-Mi; Jin, Hee-Jeong; Lee, Siwoo
2018-06-01
The phenotypic relationships between body mass index (BMI) and cold-heat patterns have been frequently reported, but the etiology of these relationships remains unknown. We previously demonstrated that the cold pattern (CP) and the heat pattern (HP) were heritable traits. In the present study, we explored underlying genetic and environmental structures of the relationships among BMI and the CP and the HP. Twins (N = 1,752) drawn from the South Korean twin registry completed a cold-heat pattern questionnaire via a telephone interview. The phenotypic correlations among the three phenotypes were moderate but significant. Cross-twin, cross-trait correlations among BMI and the CP and the HP were consistently greater in monozygotic than in dizygotic twins, suggesting the presence of genetic effects on the relationships between BMI and the two patterns. A trivariate Cholesky model was applied to the raw data. The results indicated that the phenotypic relationship between the HP and BMI was completely determined by common genetic influences, while the relationship between the CP and BMI was explained by both common genetic and common individual-specific environmental influences. The genetic correlation between the HP and the CP was not significant, suggesting that the two patterns may be genetically independent from each other. Genetic correlations were 0.31 between the HP and BMI, and -0.22 between the CP and BMI. The individual-specific environmental correlation was -0.22 between HP and CP, and between CP and BMI.
USDA-ARS?s Scientific Manuscript database
Several isolates from nodules of Phaseolus vulgaris grown in soil of Lanzarote, an island of the Canaries, had electrophoretic LMW RNA patterns identical with a less common pattern within S. meliloti (assigned as group II) obtained from nodules of alfalfa and alfalfa-related legumes grown in northe...
A Narrative Review of Acute Adult Poisoning in Iran
Alinejad, Samira; Zamani, Nasim; Abdollahi, Mohammad; Mehrpour, Omid
2017-01-01
Poisoning is a frequent cause of referral to medical emergencies and a major health problem around the world, especially in developing countries. We aimed to review the epidemiology and pattern of adult poisoning in Iran in order to facilitate the early diagnosis and management of poisoning. The pattern of poisoning is different in various parts of Iran. Pharmaceutical compounds were the most common cause of poisoning in most parts of Iran. Pesticide-related toxicities were more common in northern agricultural regions, whereas bites and stings were seen more commonly in southern Iran. Carbon monoxide poisoning was common in cities with many motor vehicles such as Tehran and in colder climates such as in northern and western regions due to inadequately vented gas appliances such as stoves and heaters. Majoon Birjandi (containing cannabis) is a unique substance used in eastern Iran. Poisoning by opioids, tramadol, and pesticides (organophosphate and aluminum phosphide) has remained a common hazard in Iran. Poisoning-associated morbidity and mortality rates vary by region and have changed over time due to the introduction of new drugs and chemicals. Early diagnosis and proper treatment may be lifesaving; thus, understanding the general pattern of poisoning in different regions is important. PMID:28761199
A major gene controls mimicry and crypsis in butterflies and moths
Nadeau, Nicola J.; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan; Saenko, Suzanne V.; Wallbank, Richard W. R.; Wu, Grace C.; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J.; Hines, Heather; Salazar, Camilo; Merrill, Richard; Dowling, Andrea; ffrench-Constant, Richard; Llaurens, Violaine; Joron, Mathieu; McMillan, W. Owen; Jiggins, Chris D.
2016-01-01
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection1,2. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and if there is any commonality across the 160,000 moth and 17,000 butterfly species. Here, we identify a gene, cortex, through fine-scale mapping using population genomics and gene expression analyses, which regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast evolving subfamily of the otherwise highly conserved fizzy family of cell cycle regulators3, suggesting that it most likely regulates pigmentation patterning through regulation of scale cell development. In parallel with findings in the peppered moth (Biston betularia)4, our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects. PMID:27251285
The gene cortex controls mimicry and crypsis in butterflies and moths.
Nadeau, Nicola J; Pardo-Diaz, Carolina; Whibley, Annabel; Supple, Megan A; Saenko, Suzanne V; Wallbank, Richard W R; Wu, Grace C; Maroja, Luana; Ferguson, Laura; Hanly, Joseph J; Hines, Heather; Salazar, Camilo; Merrill, Richard M; Dowling, Andrea J; ffrench-Constant, Richard H; Llaurens, Violaine; Joron, Mathieu; McMillan, W Owen; Jiggins, Chris D
2016-06-02
The wing patterns of butterflies and moths (Lepidoptera) are diverse and striking examples of evolutionary diversification by natural selection. Lepidopteran wing colour patterns are a key innovation, consisting of arrays of coloured scales. We still lack a general understanding of how these patterns are controlled and whether this control shows any commonality across the 160,000 moth and 17,000 butterfly species. Here, we use fine-scale mapping with population genomics and gene expression analyses to identify a gene, cortex, that regulates pattern switches in multiple species across the mimetic radiation in Heliconius butterflies. cortex belongs to a fast-evolving subfamily of the otherwise highly conserved fizzy family of cell-cycle regulators, suggesting that it probably regulates pigmentation patterning by regulating scale cell development. In parallel with findings in the peppered moth (Biston betularia), our results suggest that this mechanism is common within Lepidoptera and that cortex has become a major target for natural selection acting on colour and pattern variation in this group of insects.
Meyer, Georg F; Spray, Amy; Fairlie, Jo E; Uomini, Natalie T
2014-01-01
Current neuroimaging techniques with high spatial resolution constrain participant motion so that many natural tasks cannot be carried out. The aim of this paper is to show how a time-locked correlation-analysis of cerebral blood flow velocity (CBFV) lateralization data, obtained with functional TransCranial Doppler (fTCD) ultrasound, can be used to infer cerebral activation patterns across tasks. In a first experiment we demonstrate that the proposed analysis method results in data that are comparable with the standard Lateralization Index (LI) for within-task comparisons of CBFV patterns, recorded during cued word generation (CWG) at two difficulty levels. In the main experiment we demonstrate that the proposed analysis method shows correlated blood-flow patterns for two different cognitive tasks that are known to draw on common brain areas, CWG, and Music Synthesis. We show that CBFV patterns for Music and CWG are correlated only for participants with prior musical training. CBFV patterns for tasks that draw on distinct brain areas, the Tower of London and CWG, are not correlated. The proposed methodology extends conventional fTCD analysis by including temporal information in the analysis of cerebral blood-flow patterns to provide a robust, non-invasive method to infer whether common brain areas are used in different cognitive tasks. It complements conventional high resolution imaging techniques.
Bi, Kaixi; Xiang, Quan; Chen, Yiqin; Shi, Huimin; Li, Zhiqin; Lin, Jun; Zhang, Yongzhe; Wan, Qiang; Zhang, Guanhua; Qin, Shiqiao; Zhang, Xueao; Duan, Huigao
2017-11-09
We report an electron-beam lithography process to directly fabricate graphene@copper composite patterns without involving metal deposition, lift-off and etching processes using copper naphthenate as a high-resolution negative-tone resist. As a commonly used industrial painting product, copper naphthenate is extremely cheap with a long shelf time but demonstrates an unexpected patterning resolution better than 10 nm. With appropriate annealing under a hydrogen atmosphere, the produced graphene@copper composite patterns show high conductivity of ∼400 S cm -1 . X-ray diffraction, conformal Raman spectroscopy and X-ray photoelectron spectroscopy were used to analyze the chemical composition of the final patterns. With the properties of high resolution and high conductivity, the patterned graphene@copper composites could be used as conductive pads and interconnects for graphene electronic devices with ohmic contacts. Compared to common fabrication processes involving metal evaporation and lift-off steps, this pattern-transfer-free fabrication process using copper naphthenate resist is direct and simple but allows comparable device performance in practical device applications.
Invisible and microscopic gold in pyrite: Methods and new data for massive sulfide ores of the Urals
NASA Astrophysics Data System (ADS)
Vikentyev, I. V.
2015-07-01
Au speciation in sulfides (including "invisible" Au), which mostly controls the loss of Au during ore dressing, is discussed. Modern methods of analysis of Au speciation, with discussion of limitations by locality and sensitivity, are reviewed. The results of sulfide investigation by the methods of scanning and transmission electron microscopy, mass spectrometric analysis with laser ablation (LA-ICP-MS), the thermochemical method (study of ionic Au speciation), and automated "quantitative mineralogy," are demonstrated for weakly metamorphosed VHMS deposits of the Urals (Galkinsk and Uchaly). Significant content of Au is scattered in sulfides, such as pyrite, chalcopyrite, and sphalerite, with quantitative predomination of pyrite. The portion of such "invisible" gold ranges from <10% (Galkinsk deposit) to 85% (Uchaly deposit). Major part of "invisible" gold occurs as micron- to nanoscale particles of Au minerals. The portion of gold structurally bound in pyrite lattice (from the bulk concentration of Au in pyrite) is estimated to be from few % (the Galkinsk deposit) to 20-25% (the Uchaly deposit). The presence of As and Sb in pyrite and sphalerite, as well as other trace elements (Te, Co, Mn, Cu, Hg, and Ag in both as well as Fe in sphalerite) stimulates the incorporation of Au in sulfide, but mostly in defect-associated, not isomorphic form. Micron particles of Ag sulfosalts (pyrargyrite, freibergite, stephanite, polybasite, pyrostilpnite, argentotetrahedrite, pearceite, proustite), Au-Ag alloys (from gold of high fineness to küstelite), Ag and Au-Ag tellurides (hessite, empressite, calaverite), and occasional Au-Ag sulfides (petrovskaite, uytenbogaardtite) were registered in the areas of Au enrichment of both deposits; selenotelluride (kurilite) particles were found on the Galkinsk deposit. Nanoscale (1-50 nm) native gold (spherical and disk-shaped particles, flakes) with a monocrystal diffraction pattern of some particles and a ring diffraction pattern of other particles was registered in the ores of these deposits by the methods of transmission electron microscopy. The low degree (or absence) of metamorphic recrystallization results in (1) predomination of thin intergrowths of sulfides, which is the main reason for the bad concentration of ores (especially for the Galkinsk deposit) and (2) the high portion of "invisible" gold in the massive sulfide ores, which explains the low yield of Au in copper and zinc concentrates, since it is lost in tailings with predominating pyrite.
Thin films of mixed metal compounds
Mickelsen, R.A.; Chen, W.S.
1985-06-11
Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.
First-principles study of ZnSnAs2-based dilute magnetic semiconductors
NASA Astrophysics Data System (ADS)
Kizaki, Hidetoshi; Morikawa, Yoshitada
2018-02-01
The electronic structure and magnetic properties of chalcopyrite Zn(Sn,TM)As2 and (Zn,TM)SnAs2 have been investigated by the Korringa-Kohn-Rostoker method combined with the coherent potential approximation within the local spin density approximation, where TM denotes a 3d transition metal element. We find that the half-metallic and high-spin ferromagnetic state can be obtained in Zn(Sn,V)As2, Zn(Sn,Cr)As2, Zn(Sn,Mn)As2, (Zn,V)SnAs2, and (Zn,Cr)SnAs2. The calculated result of Zn(Sn,Mn)As2 is in good agreement with the experimentally observed room-temperature ferromagnetism if we can control selective Mn doping at Sn sites. In addition, (Zn,V)SnAs2 and (Zn,Cr)SnAs2 are predicted to exhibit high-Curie-temperature ferromagnetism.
Mizoguchi, T; Ishii, H
1980-06-01
Sulphate in sulphate ores, e.g., alunite, anglesite, barytes, chalcanthite, gypsum, manganese sulphate ore, is reduced to hydrogen sulphide by the hypophosphite-tin metal-CPA method, if a slight modification is made. Sulphide ores, e.g., galena, sphalerite, are quantitatively decomposed with CPA alone to give hydrogen sulphide. Suitable reducing agents must be used for the quantitative recovery of hydrogen sulphide from pyrite, nickel sulphide, cobalt sulphide and cadmium sulphide, or elemental sulphur is liberated. Iodide must be used in the decomposition of chalcopyrite; the copper sulphide is too stable to be decomposed by CPA alone. Molybdenite is not decomposed in CPA even if reducing agents are added. The pretreatment methods for the determination of sulphur in sulphur oxyacids and elemental sulphur have also been investigated.
RBS-channeling study of radiation damage in Ar{sup +} implanted CuInSe{sub 2} crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yakushev, Michael V., E-mail: michael.yakushev@strath.ac.uk; Ural Federal University, Ekaterinburg 620002; Institute of Solid State Chemistry of the Urals Branch of RAS, Ekaterinburg 620990
2016-09-15
Chalcopyrite solar cells are reported to have a high tolerance to irradiation by high energy electrons or ions, but the origin of this is not well understood. This work studies the evolution of damage in Ar{sup +}-bombarded CuInSe{sub 2} single crystal using Rutherford backscattering/channeling analysis. Ar{sup +} ions of 30 keV were implanted with doses in the range from 10{sup 12} to 3 × 10{sup 16} cm{sup −2} at room temperature. Implantation was found to create two layers of damage: (1) on the surface, caused by preferential sputtering of Se and Cu atoms; (2) at the layer of implanted Ar, possibly consisting of stackingmore » faults and dislocation loops. The damage in the second layer was estimated to be less than 2% of the theoretical prediction suggesting efficient healing of primary implantation defects.« less
The copper-cobalt deposits of the Quartzburg district, Grant County, Oregon
Vhay, John Stewart
1960-01-01
The copper- and cobalt-bearing veins of part of the Quartzburg district are in fracture zones trending about N. 70 degrees E. in folded Permian (?) metavolcanic rocks on the southwest side of a quartz diorite stock. Along many of the veins fine-grained tourmaline and quartz have replaced the country rock. The primary ore minerals are chalcopyrite, glaucodot, safflorite, and cobaltite. The copper- and cobalt-rich parts of the deposits appear to be in separate ore shoots. Gold content is generally higher in the cobalt-bearing parts of the veins than in the copper-rich parts. The Standard mine has developed part of one vein zone. Several other vein zones that crop out may contain as much copper as the Standard vein zone. Further bulldozing and diamond drilling on the surface, and more geologic mapping, sampling, and diamond drilling underground are suggested as means to explore for more ore deposits.
Handheld dual thermal neutron detector and gamma-ray spectrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stowe, Ashley C.; Burger, Arnold; Bhattacharya, Pijush
2017-05-02
A combined thermal neutron detector and gamma-ray spectrometer system, including: a first detection medium including a lithium chalcopyrite crystal operable for detecting neutrons; a gamma ray shielding material disposed adjacent to the first detection medium; a second detection medium including one of a doped metal halide, an elpasolite, and a high Z semiconductor scintillator crystal operable for detecting gamma rays; a neutron shielding material disposed adjacent to the second detection medium; and a photodetector coupled to the second detection medium also operable for detecting the gamma rays; wherein the first detection medium and the second detection medium do not overlapmore » in an orthogonal plane to a radiation flux. Optionally, the first detection medium includes a .sup.6LiInSe.sub.2 crystal. Optionally, the second detection medium includes a SrI.sub.2(Eu) scintillation crystal.« less
Johnson, Kathleen M.; McIntyre, David H.
1984-01-01
The Custer graben is a 13 by 32 km northeast-trending volcano-tectonic graben in the Challis volcanic field of central Idaho. Andesites, rhyolites, and associated pyroclastic rocks host vein and disseminated gold-silver deposits that are localized along discrete northeast- and northwest-trending fracture zones. Ore minerals in vein deposits are electrum, native gold and silver, chalcopyrite, and various sulfosalts in a gangue of pyrite and fine-grained quartz. At the Sunbeam Mine, near the center of the graben, vein and disseminated gold-silver mineralization occurred in hydrothermally altered rhyolite and pyroclastic rocks. The host rock has been pervasively silicified, and the feldspars altered to clay minerals. Analyses of surface and drill-core samples show that altered rocks are variably enriched in gold, silver, molybdenum, arsenic, zirconium, and selenium. Intense silicification is shown by SiO//2 values at high as 93%.
NASA Astrophysics Data System (ADS)
Brown, Alex C.
2018-06-01
The curious occurrence of copper-rich early diagenetic sediment-hosted stratiform copper mineralization in the finest-grained facies of Nonesuch greybeds in northern Michigan has been previously attributed to the warming of cupriferous brines in the footwall Copper Harbor Conglomerate by latent volcanic heat from the subjacent Porcupine Volcanics shield volcano. That anomalous footwall warming is employed here to explain other unique aspects of the White Pine-Presque Isle mineralization: the abrupt downward sulfide zoning from disseminated pyrite to chalcocite across the top of the cupriferous zone; the absence of bornite and chalcopyrite in the cupriferous zone proper; and the essential absence of pseudomorphs after pyrite euhedra and framboidal aggregates within the cupriferous zone proper, as well as the relatively coarse-grained character of disseminated chalcocite in the cupriferous zone.
The section TiInSe/sub 2/-TiSbSe/sub 2/ of the system Ti-In-Sb-Se
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guseinov, G.D.; Chapanova, L.M.; Mal'sagov, A.U.
1985-09-01
The ternary compounds A /SUP I/ B /SUP III/ C/sub 2/ /SUP VI/ (A /SUP I/ is univalent Ti; B /SUP III/ is Ga or In; and C /SUP VI/ is S, Se or Te) form a class of semiconductors with a large number of different gap widths. The compounds crystallize in the chalcopyrite structure. Solid solutions based on these compounds, which permit varying smoothly the gap width and other physical parameters over wide limits, are of great interest. The authors synthesized the compounds TiInSe/sub 2/ and TiSbSe/sub 2/ from the starting materials Ti-000, In-000, Sb-000 and Se-OSCh-17-4 by directmore » fusion of the components, taken in a stoichiometric ratio, in quartz ampules evacuated to 1.3 X 10/sup -3/ Pa and sealed.« less
Preparation of CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films on Si substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamamoto, Yukio; Yamaguchi, Toshiyuki; Suzuki, Masayoshi
For fabricating efficient tandem solar cells, CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films have been prepared on Si(100), Si(110) and Si(111) substrates in the temperature range (R.T.{approximately}400 C) by rf sputtering. From EPMA analysis, these sputtered thin films are found to be nearly stoichiometric over the whole substrate temperature range, irrespective of the azimuth plane of the Si substrate. XPS studies showed that the compositional depth profile in these thin films is uniform. X-ray diffraction analysis indicated that all the thin films had a chalcopyrite structure. CuIn{sub x}Ga{sub 1{minus}x}Se{sub 2} thin films were strongly oriented along the (112) plane with increasingmore » the substrate temperature, independent of the azimuth plane of the Si substrate, suggesting the larger grain growth.« less
Slack, J.F.; Wei-Teh, Jiang; Peacor, D.R.; Okita, P.M.
1992-01-01
Berthierine, a 7 A?? Fe-Al member of the serpentine group, occurs in the footwall stringer zone of the Archean Kidd Creek massive sulfide deposit, associated with quartz, muscovite, chlorite, pyrite, sphalerite, chalcopyrite, and local tourmaline, cassiterite, and halloysite. Petrographic and scanning electron microscopic (SEM) studies reveal different types of berthierine occurrences, including interlayers within the rims on deformed chlorite, intergrowths with muscovite and halloysite, and discrete coarse grains. This is the first reported occurrence of berthierine from volcanogenic massive sulfide deposits. Textural relations suggest that most of the berthierine formed as a primary hydrothermal mineral at relatively high temperatures (~350??C) in the footwall stringer zone, probably by the replacement of a pre-existing aluminous phase such as muscovite or chlorite. However, the intergrowth textures observed by SEM and TEM suggest that some of the berthierine originated by syn- or post-metamorphic replacement of chlorite. -from Authors
Zoned Cr, Fe-spinel from the La Perouse layered gabbro, Fairweather Range, Alaska
Czamanske, G.K.; Himmelberg, G.R.; Goff, F.E.
1976-01-01
Zoned spinel of unusual composition and morphology has been found in massive pyrrhotite-chalcopyrite-pent-landite ore from the La Perouse layered gabbro intrusion in the Fairweather Range, southeastern Alaska. The spinel grains show continuous zoning from cores with up to 53 wt.% Cr2O3 to rims with less than 11 wt.% Cr2O3. Their composition is exceptional because they contain less than 0.32 wt.% MgO and less than 0.10 wt.% Al2O3 and TiO2. Also notable are the concentrations of MnO and V2O3, which reach 4.73 and 4.50 wt.%, respectively, in the cores. The spinel is thought to have crystallized at low oxygen fugacity and at temperatures above 900??C, directly from a sulfide melt that separated by immiscibility from the gabbroic parental magma. ?? 1976.
NASA Astrophysics Data System (ADS)
Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.
2014-01-01
Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.
Discovering Semantic Patterns in Bibliographically Coupled Documents.
ERIC Educational Resources Information Center
Qin, Jian
1999-01-01
An example of semantic pattern analysis, based on keywords selected from documents grouped by bibliographical coupling, is used to demonstrate the methodological aspects of knowledge discovery in bibliographic databases. Frequency distribution patterns suggest the existence of a common intellectual base with a wide range of specialties and…
An Experimental Investigation of Phonetic Naturalness
ERIC Educational Resources Information Center
Greenwood, Anna
2016-01-01
This dissertation begins with the observation of a typological asymmetry within phonological patterns related to phonetic naturalness. Patterns that are rooted within existing tendencies of perception and/or production--in other words, patterns that are phonetically "natural"--are common in phonological typology and seen in a variety of…
Competing Processes of Sibling Influence: Observational Learning and Sibling Deidentification
ERIC Educational Resources Information Center
Whiteman, Shawn D.; McHale, Susan M.; Crouter, Ann C.
2007-01-01
Although commonly cited as explanations for patterns of sibling similarity and difference, observational learning and sibling deidentification processes have rarely been examined directly. Using a person-oriented approach, we identified patterns in adolescents' perceptions of sibling influences and connected these patterns to sibling similarities…
Zelmer, Derek A; Platt, Thomas R
2009-12-01
Patterns of infracommunity similarity were examined for 27 male and 6 female common snapping turtles, Chelydra serpentina serpentina, collected from Westhampton Lake on the campus of the University of Richmond in Richmond, Virginia, during the summer months of 1979 and 1980. Patterns of infracommunity similarity based on parasite abundance emphasized differences between years and between host sexes. Patterns of similarity based on parasite presence or absence emphasized differences among the months sampled. This suggests that there were consistent seasonal changes across both years in terms of which parasites were present, but that there were differences between years in terms of the abundances of those parasites.
Bialas, Andrzej
2011-01-01
Intelligent sensors experience security problems very similar to those inherent to other kinds of IT products or systems. The assurance for these products or systems creation methodologies, like Common Criteria (ISO/IEC 15408) can be used to improve the robustness of the sensor systems in high risk environments. The paper presents the background and results of the previous research on patterns-based security specifications and introduces a new ontological approach. The elaborated ontology and knowledge base were validated on the IT security development process dealing with the sensor example. The contribution of the paper concerns the application of the knowledge engineering methodology to the previously developed Common Criteria compliant and pattern-based method for intelligent sensor security development. The issue presented in the paper has a broader significance in terms that it can solve information security problems in many application domains. PMID:22164064
Bialas, Andrzej
2011-01-01
Intelligent sensors experience security problems very similar to those inherent to other kinds of IT products or systems. The assurance for these products or systems creation methodologies, like Common Criteria (ISO/IEC 15408) can be used to improve the robustness of the sensor systems in high risk environments. The paper presents the background and results of the previous research on patterns-based security specifications and introduces a new ontological approach. The elaborated ontology and knowledge base were validated on the IT security development process dealing with the sensor example. The contribution of the paper concerns the application of the knowledge engineering methodology to the previously developed Common Criteria compliant and pattern-based method for intelligent sensor security development. The issue presented in the paper has a broader significance in terms that it can solve information security problems in many application domains.
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high–low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. PMID:25146374
Cancer Information Seeking and Scanning: Sources and Patterns
ERIC Educational Resources Information Center
Barnes, Laura L. B.; Khojasteh, Jam J.; Wheeler, Denna
2017-01-01
Objective: This study aimed to identify predominant search patterns in a recent search for health information and a potential search for strongly needed cancer information, to identify the commonly scanned sources of information that may represent stable elements of the information fields characteristic of these patterns, and to evaluate whether…
NASA Astrophysics Data System (ADS)
Unglert, K.; Radić, V.; Jellinek, A. M.
2016-06-01
Variations in the spectral content of volcano seismicity related to changes in volcanic activity are commonly identified manually in spectrograms. However, long time series of monitoring data at volcano observatories require tools to facilitate automated and rapid processing. Techniques such as self-organizing maps (SOM) and principal component analysis (PCA) can help to quickly and automatically identify important patterns related to impending eruptions. For the first time, we evaluate the performance of SOM and PCA on synthetic volcano seismic spectra constructed from observations during two well-studied eruptions at Klauea Volcano, Hawai'i, that include features observed in many volcanic settings. In particular, our objective is to test which of the techniques can best retrieve a set of three spectral patterns that we used to compose a synthetic spectrogram. We find that, without a priori knowledge of the given set of patterns, neither SOM nor PCA can directly recover the spectra. We thus test hierarchical clustering, a commonly used method, to investigate whether clustering in the space of the principal components and on the SOM, respectively, can retrieve the known patterns. Our clustering method applied to the SOM fails to detect the correct number and shape of the known input spectra. In contrast, clustering of the data reconstructed by the first three PCA modes reproduces these patterns and their occurrence in time more consistently. This result suggests that PCA in combination with hierarchical clustering is a powerful practical tool for automated identification of characteristic patterns in volcano seismic spectra. Our results indicate that, in contrast to PCA, common clustering algorithms may not be ideal to group patterns on the SOM and that it is crucial to evaluate the performance of these tools on a control dataset prior to their application to real data.
Ng, Ka-Yan; Yu, Yee-Man; Ng, Bacon Fung-Leung; Ziea, Eric Tat-Chi
2015-01-01
Traditional Chinese medicine (TCM) treatments are often prescribed based on individuals' pattern diagnoses. A systematic review of randomized controlled trials in Chinese and English literatures on TCM pattern-based treatment for depression has therefore been conducted. A total of 61 studies, 2504 subjects, and 27 TCM patterns were included. Due to the large variation of TCM pattern among participants, we only analyzed the top four commonly studied TCM patterns: liver qi depression, liver depression and spleen deficiency, dual deficiency of the heart, and spleen and liver depression and qi stagnation. We found that Xiaoyao decoction was the most frequently used herbal formula for the treatment of liver qi depression and liver depression with spleen deficiency, while Chaihu Shugan decoction was often used for liver depression and qi stagnation. Bai Shao (Paeonia lactiflora Pall.) and Chai Hu (Bupleurum chinense DC.) were commonly used across different TCM patterns regardless of the prescribed Chinese herbal formulas. The rationale underlying herb selection was seldom provided. Due to the limited number of studies on TCM pattern-based treatment of depression and their low methodological quality, we are unable to draw any conclusion regarding which herbal formulas have higher efficacy and which TCM patterns respond better to CHM. PMID:26180532
Chu, Fenfen; Chen, Guochun; Liu, Yinghong
2014-05-01
The pathological patterns underlying PNS in adult are poorly studied in Central China. This is a retrospective analysis of the clinical and pathologic data involving 627 adult patients with PNS who have been finished the renal biopsies from January 2009 to September 2012 in XiangYa 2nd Hospital of Central South University. Patients enrolled in our study were all from Central China. There were 379 males and 248 females, formed the ratio of 1.53:1. There existed three main sorts of pathological patterns underlying PNS: membranous nephropathy (MN) 26.63%, minimal change disease (MCD) 23.60%, IgA nephropathy (IgAN) 23.39%. Among all biopsies, the proportion of FSGS underlying PNS increased from 5.8% during the period from 2009 to 2010 to 14.7% during the period from 2011 to 2012. The most common complication of PNS was infectious diseases, and MCD underlying PNS ran a higher risk of encountering acute renal injury. IgAN had the highest incidence of hematuresis. The common pathological patterns of PNS differed in age-brackets: IgAN and MCD were the main pathological lesions in patients aged from 16 to 30 years; MN mostly occurs in patients over 30. MCD was the dominating pathological lesions underlying IgAN which expressed as PNS. (1) MN was the most frequent pathological pattern underlying PNS, the proportion of FSGS underlying PNS increased during the last 2 years. (2) The common pathological patterns of PNS differed in age-brackets and pathological patterns correlated to the complications or comorbidities of PNS to some extent.
[Multimorbidity patterns in young adults in Catalonia: an analysis of clusters].
Violán, Concepción; Foguet-Boreu, Quintí; Roso-Llorach, Albert; Rodriguez-Blanco, Teresa; Pons-Vigués, Mariona; Pujol-Ribera, Enriqueta; Valderas, Jose M
2016-01-01
The aim of this study was to identify multimorbidity patterns in patients from 19 to 44 years attended in primary care in Catalonia in 2010. Cross-sectional study. 251 primary care centres. 530,798 people with multimorbidity, aged 19 to 44 years. Multimorbidity was defined as the coexistence of ≥2 more International Classification system (ICD-10) registered in the electronic health record. Multimorbidity patterns were identified using hierarchical cluster analysis and by sex and age group (19-24 and 25-44). Of the 882,708 people from initial population, 530,798 (60.1%) accomplished multimorbidity criterion. Mean age was 33.0 years (SD: 7.0) and 53.3% were women. Multimorbidity was higher in the 25-to 44-years-old group with respect the younger group (60.5 vs. 58.1%, p<0.001), being higher in women. Most prevalent cluster in all groups included, among others, by dental caries, smoking, dorsalgia, common cold and other anxiety disorders. For both sexes in the 25-to 44-years-old group appeared the cardiovascular-endocrine-metabolic pattern (obesity, lipid disorders and arterial hypertension). Multimorbidity affects more than half of persons between 19 to 44-years-old. The most prevalent cluster is formed by grouping common diseases (dental caries, common cold, smoking, anxiety disorders and dorsalgias). Another pattern to highlight is the cardiovascular-endocrine-metabolic pattern in the 25- to 44 years-old group. Knowledge of patterns of multimorbidity in young adults could be used to design individualized preventive strategies. Copyright © 2015 Elsevier España, S.L.U. All rights reserved.
Four not six: Revealing culturally common facial expressions of emotion.
Jack, Rachael E; Sun, Wei; Delis, Ioannis; Garrod, Oliver G B; Schyns, Philippe G
2016-06-01
As a highly social species, humans generate complex facial expressions to communicate a diverse range of emotions. Since Darwin's work, identifying among these complex patterns which are common across cultures and which are culture-specific has remained a central question in psychology, anthropology, philosophy, and more recently machine vision and social robotics. Classic approaches to addressing this question typically tested the cross-cultural recognition of theoretically motivated facial expressions representing 6 emotions, and reported universality. Yet, variable recognition accuracy across cultures suggests a narrower cross-cultural communication supported by sets of simpler expressive patterns embedded in more complex facial expressions. We explore this hypothesis by modeling the facial expressions of over 60 emotions across 2 cultures, and segregating out the latent expressive patterns. Using a multidisciplinary approach, we first map the conceptual organization of a broad spectrum of emotion words by building semantic networks in 2 cultures. For each emotion word in each culture, we then model and validate its corresponding dynamic facial expression, producing over 60 culturally valid facial expression models. We then apply to the pooled models a multivariate data reduction technique, revealing 4 latent and culturally common facial expression patterns that each communicates specific combinations of valence, arousal, and dominance. We then reveal the face movements that accentuate each latent expressive pattern to create complex facial expressions. Our data questions the widely held view that 6 facial expression patterns are universal, instead suggesting 4 latent expressive patterns with direct implications for emotion communication, social psychology, cognitive neuroscience, and social robotics. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
McLaughlin, Donald H.; Arce Herrera, Marino
1970-01-01
At least four evaporite sequences are interbedded with Cretaceous strata in the Bogotga area of the Cordillera Oriental of Colombia. The easternmost and oldest evaporite interval is of probable Berriasian-Valanglnian age; the next oldest is of probable late Barremian-early Aptian age, and is followed by a possible late Aptian sequence. The westernmost and best known sequence is Turonian-early Coniacian in age, in the Sabana de Bogota. This youngest sequence contains the thickest known salt deposits and is probably the most widespread geographically. Three gypsum deposits of probable Barremian-Valanginian age are in the eastern part of the area under investigation. These deposits may have been leached from former salt accumulations. No other evaporites are exposed, but numerous brine springs are known, That the sources of these brines are neither deep not distant is suggested by the generally high concentrations, of the brines, the local presence of rute (leached salt residue), and the commonly significant amounts of H2S gas emitted at these springs. The rock salt exposed in three accessible mines commonly has a characteristic lamination caused by alternating layers of relatively pure halite and very argillaceous halite. Ubiquitously scattered throughout all salt deposits are small clasts of black, commonly pyritic, marly claystone. This lithology is also present as large claystone bodies conformably interbedded in the salt strata. Anhydrite is rare and is apparently more abundant at the Zipaquira mine that at the Nemocon and Upin mine. Paleontologic evidence in the Sabana de Bogota demonstrates that the salt-claystone series, hematite impregnated strata, and carbonaceous to locally coaly claystone are coeval. The salt-claystone facies may have been deposited in shallow evaporite pans that were separated within the overall evaporite interval by barriers on which the locally hematitic strata were deposited. The carbonaceous facies may also have formed in barrier areas or on the edges of the evaporite basins. Whether or not this facies relationship prevails in the older evaporite intervals is not known; meager evidence suggests that it does. Nonmetallic mineral resources other than the evaporite minerals are phosphate rock, limestone, kaolinite, and emeralds. Metallic mineral deposits present in the Zone include hematite at Pericos, La Caldera, Tibirita, Nueva Vizcaya, and Cerro de Montecristo; chalcopyrite at Cerro do Cobre and at Farallones de Medina; galena in several places along the Rio Farallones and Rio Gacheta; and spahlerite in the Junin district.
Mahendra, M; Jayaraj, B S; Lokesh, K S; Chaya, S K; Veerapaneni, Vivek Vardhan; Limaye, Sneha; Dhar, Raja; Swarnakar, Rajesh; Ambalkar, Shrikant; Mahesh, P A
2018-04-01
Respiratory infections account for significant morbidity, mortality and expenses to patients getting admitted to ICU. Antibiotic resistance is a major worldwide concern in ICU, including India. It is important to know the antibiotic prescribing pattern in ICU, organisms and its resistance pattern as there is sparse data on Indian ICUs. We conducted a prospective study from August 2015 to February 2016. All patients getting admitted to RICU with respiratory infection who were treated with antibiotics were included into study. Demographic details, comorbidities, Clinco-pathological score (CPI) on day1 and 2 of admission, duration of ICU admission, number of antibiotics used, antibiotic prescription, antimicrobial resistance pattern of patients were collected using APRISE questionnaire. During study period 352 patients were screened and 303 patients were included into study. Mean age was 56.05±16.37 and 190 (62.70%) were men. Most common diagnosis was Pneumonia (66%). Piperacillin-tazobactam was most common empirical antibiotic used. We found 60% resistance to piperacillin-tazobactam. Acinetobacter baumanii was the most common organism isolated (29.2%) and was highly resistant to Carbapenem (60%). Klebsiella pneumoniae was resistant to Amikacin (45%), piperacillin (55%) and Ceftazidime (50%). Piperacillin-tazobactam was the most common antibiotic prescribed to patients with respiratory infection admitted to ICU. More than half of patients (60%) had resistance to the empirical antibiotic used in our ICU, highlighting the need for antibiogram for each ICU. Thirty six percent of patient had prior antibiotic use and had mainly gram negative organisms with high resistance to commonly used antibiotics.
Kotani, Manato; Shimono, Kohei; Yoneyama, Toshihiro; Nakako, Tomokazu; Matsumoto, Kenji; Ogi, Yuji; Konoike, Naho; Nakamura, Katsuki; Ikeda, Kazuhito
2017-09-01
Eye tracking systems are used to investigate eyes position and gaze patterns presumed as eye contact in humans. Eye contact is a useful biomarker of social communication and known to be deficient in patients with autism spectrum disorders (ASDs). Interestingly, the same eye tracking systems have been used to directly compare face scanning patterns in some non-human primates to those in human. Thus, eye tracking is expected to be a useful translational technique for investigating not only social attention and visual interest, but also the effects of psychiatric drugs, such as oxytocin, a neuropeptide that regulates social behavior. In this study, we report on a newly established method for eye tracking in common marmosets as unique New World primates that, like humans, use eye contact as a mean of communication. Our investigation was aimed at characterizing these primates face scanning patterns and evaluating the effects of oxytocin on their eye contact behavior. We found that normal common marmosets spend more time viewing the eyes region in common marmoset's picture than the mouth region or a scrambled picture. In oxytocin experiment, the change in eyes/face ratio was significantly greater in the oxytocin group than in the vehicle group. Moreover, oxytocin-induced increase in the change in eyes/face ratio was completely blocked by the oxytocin receptor antagonist L-368,899. These results indicate that eye tracking in common marmosets may be useful for evaluating drug candidates targeting psychiatric conditions, especially ASDs. Copyright © 2017 Elsevier Ltd. All rights reserved.
An ore genetic model for the Lubin—Sieroszowice mining district, Poland
NASA Astrophysics Data System (ADS)
Wodzicki, A.; Piestrzyński, A.
1994-04-01
The Lubin-Sieroszowice mining district is a world-class copper-silver, stratabound ore deposit that lies near the Lower-Upper Permian boundary. It transgresses the Werra dolomite, the Kupferschiefer organicrich shale and the Weissliegendes sandstone, which overlie barren Rotliegendes sandstone. On the basis of underground and microscope observations and light stable isotope data, and thermodynamic calculations, a new ore genesis model is proposed whereby ore minerals were deposited in the following stages: Stage 0 was synsedimentary or earliest diagenetic and contains 100s ppm of base metals trapped by clay minerals, and minor sulphides. Stage I was early diagenetic and contains 1000s ppm base metals. It is characterized by bornite and overlying chalcopyrite + pyrite that lie a short distance above the Rotliegendes/Weissliegendes contact. The sulphides were deposited near the interface between an overlying, buffered, reducing fluid (1), largely derived from the Kupferschiefer, and an oxidizing fluid (2) in the Rotliegendes. Stage II is the main ore-forming stage. This stage is late diagenetic, peneconcordant, lies near the Kupferschiefer/Weissliegendes contact, and contains several percent base metals.It is associated with the hematite-bearing Rote Fäule facies and is characterized by vertical zonation. A central chalcocite zone is flanked above and below by bornite and chalcopyrite. Silver occurs with all the above sulphides. Galena and sphalerite occur mainly just above copper zone, whereas pyrite is usually present in the upper part of the copper zone and together with galena and sphalerite. Metals were transported in a copper-rich oxidizing fluid (3), which probably originated deep in the Permian basin, reacted with organic matter in the Kupferschiefer, and mixed with reducing fluid (1) in the Weissliegendes, resulting in the observed mineral zonation. Stage III is late diagenetic, discordant and is represented by massive and dispersed chalcocite ore present on the peripheries and below anhydrite-cemented Weissliegendes sandstone. It resulted from redistribution of earlier copper and silver minerals by descending, reduced, sulphur-rich fluids (4). Stage IV consists of rare polymetallic veins of no economic importance that cut the stratigraphy and are probably related to Alpine tectonism. The richest and thickest ore is in the Weissliegendes, 10-15 km east of the Rote Fäule facies (Fig. 1). It probably occupies structures that trapped fluid (1) which was the main precipitant of metals in the sandstone.
NASA Astrophysics Data System (ADS)
Delibaş, Okan; Moritz, Robert; Chiaradia, Massimo; Selby, David; Ulianov, Alexey; Revan, Mustafa Kemal
2017-12-01
The Pınarbaşı Mo-Cu prospect is hosted within the Pınarbaşı intrusion, which is exposed together with the NW-SE-trending Koyunoba, Eğrigöz, and Baklan plutons along the northeastern border of the Menderes massif. The Pınarbaşı intrusion predominantly comprises monzonite, porphyritic granite, and monzodiorite. All units of the Pınarbaşı intrusion have sharp intrusive contacts with each other. The principal mineralization style at the Pınarbaşı prospect is a porphyry-type Mo-Cu mineralization hosted predominantly by monzonite and porphyritic granite. The porphyry type Mo-Cu mineralization consists mostly of stockwork and NE- and EW-striking sub-vertical quartz veins. Stockwork-type quartz veins hosted by the upper parts of the porphyritic granite within the monzonite, are typically enriched in chalcopyrite, molybdenite, pyrite, and limonite. The late NE- and EW-striking normal faults cut the stockwork vein system and control the quartz-molybdenite-chalcopyrite-sphalerite-fahlore-galena veins, as well as molybdenite-hematite-bearing silicified zones. Lithogeochemical and whole-rock radiogenic isotope data (Sr, Nd and Pb) of the host rocks, together with Re-Os molybdenite ages (18.3 ± 0.1 Ma - 18.2 ± 0.1 Ma) reveal that the monzonitic and granitic rocks of the Pınarbaşı intrusion were derived from an enriched lithospheric mantle-lower crust during Oligo-Miocene post-collisional magmatism. The lithospheric mantle was metasomatised by fluids and subducted sediments, and the mantle-derived melts interacted with lower crust at 35-40 km depth. This mechanism explains the Mo and Cu enrichments of the Pınarbaşı intrusion during back-arc magmatism. We conclude that the melt of the Pınarbaşı intrusion could have rapidly ascended to mid-crustal levels, with only limited crustal assimilation along major trans-lithospheric faults as a result of thinning of the middle to upper crust during regional extension, and resulted in the development of porphyry-style mineralization during the early Miocene (˜18 Ma). The subsequent exhumation history of the Mo-Cu-bearing Pınarbaşı intrusion is attributed to regional-scale uplift, and further exhumation along detachment faults of the associated core complexes during the middle to late Miocene.
Wilmarth, V.R.; Vickers, R.C.
1953-01-01
Uranium deposits that contain uraniferous pyrobitumen of possible hydrothermal origin occur at the Weatherly and Robinson properties near Placerville, San Miguel County, Colo. These deposits were mined for copper, silver, and gold more than 50 years ago and were developed for uranium in 1950. The Robinson property, half a mile east of Placerville, consists of the White Spar, New Discovery Lode, and Barbara Jo claims. The rocks in this area are nearly horizontal sandstones, shales, limestones, and conglomerates of the Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. These rocks have been faulted extensively and intruded by a Tertiary (?) andesite porphyry dike. Uranium-bearing pyrobitumen associated with tennantite, tetrahedrite, galena, sphalerite, chalcopyrite, bornite, azurite, malachite, calcite, barite, and quartz occurs in a lenticular body as much as 40 feet long and 6 feet wide along a northwest-trending, steeply dipping normal fault. The uranium content of eleven samples from the uranium deposit ranges from 0.001 to 0.045 percent uranium and averages about 0.02 percent uranium. The Weatherly property, about a mile northwest of Placerville, consists of the Black King claims nos. 1, 4, and 5. The rocks in this area include the complexly faulted Cutler formation of Permian age and the Dolores formation of Triassic and Jurassic (?) age. Uranium-bearing pyrobitumen arid uranophane occur, along a northwest-trending, steeply dipping normal fault and in the sedimentary rocks on the hanging wall of the fault. Lens-shaped deposits in the fault zone are as much as 6 feet long and 2 feet wide and contain as much as 9 percent uranium; whereas channel samples across the fault zone contain from 0.001 to 0.014 percent uranium. Tetrahedrite, chalcopyrite, galena, sphalerite, fuchsite, malachite, azurite, erythrite, bornite, and molybdite in a gangue of pyrite, calcite, barite, and quartz are associated with the uraniferous material. In the sedimentary rocks on the hanging wall, uranium-bearing pyrobitumen occurs in replacement lenses as much as,8 inches wide and 6 feet long, and in nodules as much as 6 inches in diameter for approximately 100 feet away from the fault. Pyrite and calcite are closely associated with the uraniferous material in the sedimentary rocks. Samples from the replacement bodies contain from 0. 007 to 1.4 percent uranium.
NASA Astrophysics Data System (ADS)
Zhong, Yuhan; Wang, Peida; Mei, Huayue; Jia, Zhenyuan; Cheng, Nanpu
2018-06-01
CuInTe2 chalcopyrite compound is widely used in the fields of optoelectronics and pyroelectricity, and doping atoms can further improve the physical properties of the CuInTe2 compound. For all we know, this is the first time that the elastic behaviors and lattice dynamical properties of Ag-doped CuInTe2 compounds with the tetragonal system are determined theoretically. The elastic, lattice dynamical and thermal properties of Cu1‑x Ag x InTe2 (x = 0, 0.25, 0.5, 0.75 and 1) compounds have been investigated by using density functional theory. The obtained elastic constants of Cu1‑x Ag x InTe2 compounds indicate that these compounds are mechanically stable and elastic anisotropic. The anisotropy of the {001} plane is more obvious than those of the {100} and {010} planes. Additionally, with increasing Ag doping concentrations, the bulk and shear moduli of Cu1‑x Ag x InTe2 compounds decrease and their toughness improves. The phonon spectra and density of states reveal that Cu (or Ag) atoms in Cu1‑x Ag x InTe2 compounds form chemical bonds with Te atoms, and Cu-Te bonds are gradually replaced by Ag-Te bonds with increasing Ag doping concentration. Vibration modes of Cu1‑x Ag x InTe2 compounds at the {{Γ }} point in the Brillouin zone show that each Cu1‑x Ag x InTe2 (x = 0 and 1) crystal includes five irreducible representations (A1, A2, B1, B2 and E). As for Cu1‑x Ag x InTe2 (x = 0.25, 0.5 and 0.75) compounds, each crystal has three irreducible representations (A, B and E). The atomic displacements of several typical phonon modes in CuInTe2 crystals have been analyzed to deepen the understanding of lattice vibrations in Cu1‑x AgxInTe2 compounds. With increasing Ag doping concentration, the Debye temperatures of Cu1‑x Ag x InTe2 compounds decrease, while their heat capacities increase.
Genesis of the Abu Marawat gold deposit, central Eastern Desert of Egypt
NASA Astrophysics Data System (ADS)
Zoheir, Basem A.; Akawy, Ahmed
2010-06-01
Gold mineralisation at the Abu Marawat mine, central Eastern Desert of Egypt, is related to a system of massive and sheared, milky quartz veins cutting a sequence of Neoproterozoic island arc metavolcanic/volcaniclastic rocks and related banded iron formation (BIF). Sulphide-bearing quartz veins and related hydrothermal breccia bodies display a range of textures including sheared, boudinaged and recrystallised quartz, open space filling and microbreccia. These variable textures imply a complex history of crack-seal mechanism characterising the relation between mineral deposition and a major N-S-trending shear zone, during a late brittle-ductile deformation event which affected the area at about 550 Ma. Gold-base metal mineralisation is associated with brecciation and fracturing of the iron ore bands, close to silicified shears and related quartz veins. The auriferous quartz lodes are characterised by the occurrence of visible pyrite-chalcopyrite ± pyrrhotite ± sphalerite ± galena mineralisation. Gold is refractory in pyrite and chalcopyrite, but rare visible gold/electrum and telluride specks were observed in a few samples. Hydrothermal alteration includes pervasive silicification, pyritisation, sericitisation, carbonatisation confined to a delicate set of veins and altered shears, and a more widespread propylitic alteration assemblage (quartz + chlorite + pyrite + calcite ± epidote). Fluid inclusion petrography and microthermometric studies suggest heterogeneous trapping of a low-salinity (1.4-6.7 wt.% eq. NaCl) aqueous solution and a carbonic fluid. Evidence for fluid immiscibility during ore formation includes variable liquid/vapour ratios in inclusions along individual trails and bulk inclusion homogenisation into liquid and occasionally to vapour at comparable temperatures. The trapping conditions of intragranular aqueous-carbonic inclusions approximate 264-378 °C at 700-1300 bar. Similar temperature estimates have been obtained from Al-in-chlorite geothermometry of chlorite associated with sulphides in the mineralised quartz veins. Fracturing enhanced fluid circulation through the wallrock and related BIF, allowing reaction of the S-bearing ore fluid with iron oxides. This caused pyrite formation and concomitant Au precipitation, enhanced by fluid immiscibility as H 2S partitioned preferentially into the carbonic phase. The ore fluids may have originated from granitoid intrusions (likely the post-Hammamat felsites, whereas gold and base metals might have been leached from the Abu Marawat basic metavolcanics.
Mineralogy of the Chaparra IOCG deposit, southern Peru
NASA Astrophysics Data System (ADS)
Yáñez, Juan; Alfonso, Pura
2014-05-01
The Chaparra IOCG, located in southern Peru, near Chala, is mined and exploited by small-scale miners for gold, however, it has not been studied until now. Here we present a preliminary geological and mineralogic study of this deposit. Powder X ray diffraction, electron microscopy and electron microprobe were used to characterize the mineralization. This deposit is hosted in magmatic rocks from the Coastal Batholith. Host rocks belong to the Linga Super-unit, of Upper Cretaceous age and are mainly constituted by monzonites, monzogabbros and diorites. Major alterations are the propylitic (chlorite - albite - quartz), advanced argillic (jarosite - natrojarosite) and sericitic (muscovite-sericite-quartz). Gypsum and other alteration minerals such as potassium feldspar and phlogopite, vermiculite and natrolite are widespread. Mineralization occurs mainly in quartz veins up to 1 m thick, emplaced filling fractures. Ore mineralogy is mainly composed of hematite, goethite, and sulphides (mainly pyrite, chalcopyrite and covellite). Gold and REE-rich minerals also occur. Native gold can reach up to 1 mm in size, but usually is few μm in size. Its composition is 82-92 wt% Au, up to 12 wt% of Ag and Fe can reach up to 4 wt%. The paragenetic sequence in the Chaparra deposit was divided into three stages: (I) primary mineralization, (II) Fracture filling, and (III) supergene alteration. The sequence begins with the crystallization of magnetite, quartz, pyrrhotite and pyrite. Subsequently, native gold, native Bismuth and uraninite crystallices together with the former minerals, in which are enclosed. Later, monacite is formed, being enclosed in quartz. Pyrite also presents small grains of chalcopyrite inside. Galena, sphalerite and arsenopyrite also are formed, whether included in pyrite or outside. Scarce grains of sakuraiite also occur in this stage. Structural formula of sakuraiie from this deposit is Cu 01.78-1.90 Zn 0.07-12Fe 1.16-124In 0.22-0.26Sn 0.79-082S4). Indium content of this mineral is between 5.43 and 6.41 wt%. At the end of this stage hematite and Cu-rich minerals, mainly tetrahedrite and covellite are formed. In addition, other sulphosalts, as tennantite and annivite are generated. Rrutile, zircon, apatite and subsequently ferrocordierite are also formed. In the stage (II) fractures are produced and filled by tetrahedrite, garavellite and native bismuth. Finally, in the stage (III) supergene alteration generates goethite, jarosite, gypsum, scorodite and yodargirite.
Simulation of acid mine drainage generation around Küre VMS Deposits, Northern Turkey
NASA Astrophysics Data System (ADS)
Demirel, Cansu; Kurt, Mehmet Ali; Çelik Balci, Nurgül
2015-04-01
This study investigated comparative leaching characteristics of acidophilic bacterial strains under shifting environmental conditions at proposed two stages as formation stage or post acidic mine drainage (AMD) generation. At the first stage, initial reactions associated with AMD generation was simulated in shaking flasks containing massive pyritic chalcopyrite ore by using a pure strain Acidithiobacillus ferrooxidans and a mixed culture of Acidithiobacillus sp. mostly dominated by A. ferrooxidans and A. thiooxidans at 26oC. At the second stage, long term bioleaching experiments were carried out with the same strains at 26oC and 40oC to investigate the leaching characteristics of pyritic chalcopyrite ore under elevated heavy metal and temperature conditions. During the experiments, physicochemical characteristics (e.i. Eh, pH, EC) metal (Fe, Co, Cu, Zn) and sulfate concentration of the experimental solution were monitored during 180 days. Significant acid generation and sulfate release were determined during bioleaching of the ore by mixed acidophilic cultures containing both iron and sulfur oxidizers. In the early stage of the experiments, heavy metal release from the ore was caused by generation of acid due to accelerated bacterial oxidation of the ore. Generally high concentrations of Co and Cu were released into the solution from the experiments conducted by pure cultures of Acidithiobacillus ferrooxidans whereas high Zn and Fe was released into the solution from the mixed culture experiments. In the later stage of AMD generation and post AMD, chemical oxidation is accelerated causing excessive amounts of contamination, even exceeding the amounts resulted from bacterial oxidation by mixed cultures. Acidithibacillus ferrooxidans was found to be more effective in leaching Cu, Fe and Co at higher temperatures in contrary to mixed acidophiles that are more prone to operate at optimal moderate conditions. Moreover, decreasing Fe values are noted in bioleaching experiments with mixed acidophiles at higher temperatures. Further depleted Fe(III) values coinciding with decreasing pH may point to precipitation of secondary phases (i.e. jarosite). This study revealed that the metals (Fe, Cu, Co and Zn) released during short term leaching of the ore (34 days) are generally caused by acid produced by dissolution reactions rather than oxidation. In the long term experiments a more complex biogeochemical reactions (oxidation and dissolution) take place in conjunction. Key words: Bioleaching, AMD, heavy metal release, environment, acidophilic bacteria, Küre copper ore deposits, volcanogenic massive sulfide deposits
Molecular solution processing of metal chalcogenide thin film solar cells
NASA Astrophysics Data System (ADS)
Yang, Wenbing
The barrier to utilize solar generated electricity mainly comes from their higher cost relative to fossil fuels. However, innovations with new materials and processing techniques can potentially make cost effective photovoltaics. One such strategy is to develop solution processed photovoltaics which avoid the expensive vacuum processing required by traditional solar cells. The dissertation is mainly focused on two absorber material system for thin film solar cells: chalcopyrite CuIn(S,Se)2 (CISS) and kesterite Cu2ZnSn(S,Se) 4 organized in chronological order. Chalcopyrite CISS is a very promising material. It has been demonstrated to achieve the highest efficiency among thin film solar cells. Scaled-up industry production at present has reached the giga-watt per year level. The process however mainly relies on vacuum systems which account for a significant percentage of the manufacturing cost. In the first section of this dissertation, hydrazine based solution processed CISS has been explored. The focus of the research involves the procedures to fabricate devices from solution. The topics covered in Chapter 2 include: precursor solution synthesis with a focus on understanding the solution chemistry, CISS absorber formation from precursor, properties modification toward favorable device performance, and device structure innovation toward tandem device. For photovoltaics to have a significant impact toward meeting energy demands, the annual production capability needs to be on TW-level. On such a level, raw materials supply of rare elements (indium for CIS or tellurium for CdTe) will be the bottleneck limiting the scalability. Replacing indium with zinc and tin, earth abundant kesterite CZTS exhibits great potential to reach the goal of TW-level with no limitations on raw material availability. Chapter 3 shows pioneering work towards solution processing of CZTS film at low temperature. The solution processed devices show performances which rival vacuum-based techniques and is partially attributed to the ease in controlling composition and CZTS phase through this technique. Based on this platform, comprehensive characterization on CZTS devices is carried out including solar cells and transistors. Especially defects properties are exploited in Chapter 4 targeting to identify the limiting factors for further improvement on CZTS solar cells efficiency. Finally, molecular structures and precursor solution stability have been explored, potentially to provide a universal approach to process multinary compounds.
Impaction of lower third molars and their association with age: radiological perspectives.
Ryalat, Soukaina; AlRyalat, Saif Aldeen; Kassob, Zaid; Hassona, Yazan; Al-Shayyab, Mohammad H; Sawair, Faleh
2018-04-04
Third molars are the most commonly impacted teeth, and their extraction is the most commonly performed procedure in oral and maxillofacial surgery. The aim of the present study is to describe the pattern of mandibular third molar impaction and to define the most appropriate age for prophylactic extraction of mandibular third molar teeth. A total of 1198 orthopantomographs (OPGs) with 1810 impacted lower third molars were reviewed by two authors. The pattern of eruption in relation to patient's age was examined using standard radiographic points and angles. Statistical analysis was performed using SPSS for Windows release 16.0 (SPSS Inc., Chicago, IL, USA). In patients older than 20 years, vertical pattern of impaction was the most common (21.4%); while in young patients; horizontal impaction was more common (21.3%). Furthermore, there was a constant pattern of increase in Pell-Gregory ramus class 1 with increasing age, as the prevalence of class 1 was 0% at age 18 years compared to 54.9% at the age of 26 years. Frequency of vertical impaction of lower third molars was seen more at an older age (> 20 years) in this study, with an increase in the retromolar space. Late extraction of mandibular third molar teeth (i.e. after the age of 20) is therefore recommended when prophylactic extraction is considered.
Patterns of pharmacologic treatment in US patients with acromegaly.
Broder, Michael S; Chang, Eunice; Ludlam, William H; Neary, Maureen P; Carmichael, John D
2016-05-01
To establish a baseline pattern of care across academic and community settings, it is important to examine the contemporary treatment of acromegaly. We characterized medical treatment patterns for acromegaly in the US to develop a basis for tracking concordance with guidelines. Acromegaly patients were identified in two commercial claims databases for this retrospective analysis. Study subjects had ≥2 medical claims with acromegaly (ICD-9-CM code 253.0) and ≥1 claim for pharmacotherapy (bromocriptine, cabergoline, octreotide SA, octreotide LAR, lanreotide, or pegvisomant) in the study timeframe (1 January 2002-31 December 2013). Patients were considered newly treated if they were continuously enrolled for ≥6 months before first observed treatment and had no claim for pharmacologic treatment during that time. Outcomes included various pharmacotherapies, including combination treatments, and differences between lines of therapy. A total of 3150 patients had ≥1 pharmacotherapy (mean age: 46.5 years; 50.1% were female); 1471 were newly treated. Somatostatin receptor ligands (SRLs) were the most common drug class used first line (57.2%); cabergoline (27.8%) was the most common treatment, followed by octreotide LAR (22.3%) and lanreotide (19.7%). SRLs were also the most commonly used second-line (42.8%) and third-line pharmacotherapies (43.9%), with combination therapy (23.2%) and octreotide LAR (19.8%) as the most commonly used treatments, respectively. This study, representing the largest claims-based analysis of acromegaly to date, used two databases across a 12 year period to examine complex treatment patterns in a difficult-to-study disease. Although wide variation in acromegaly treatment patterns exists in US clinical practice, in first-line, second-line, and third-line therapy, SRL was the most commonly used drug class. Drug combinations also varied considerably across lines of therapy. The switching between different monotherapies and varied use of drugs in combination may suggest an unmet need for alternative treatment options. Our claims-based technique of examining treatment patterns may be used for other rare diseases, although high censoring rates may be a challenge.
Neurophysiology of Flight in Wild-Type and a Mutant Drosophila
Levine, Jon D.; Wyman, Robert J.
1973-01-01
We report the flight motor output pattern in Drosophila melanogaster and the neural network responsible for it, and describe the bursting motor output pattern in a mutant. There are 26 singly-innervated muscle fibers. There are two basic firing patterns: phase progression, shown by units that receive a common input but have no cross-connections, and phase stability, in which synergic units, receiving a common input and inhibiting each other, fire in a repeating sequence. Flies carrying the mutation stripe cannot fly. Their motor output is reduced to a short duration, high-frequency burst, but the patterning within bursts shows many of the characteristics of the wild type. The mutation is restricted in its effect, as the nervous system has normal morphology by light microscopy and other behaviors of the mutant are normal. Images PMID:4197927
Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot.
Schiefelbein, John
2003-02-01
The specification of epidermal hairs in Arabidopsis provides a useful model for the study of pattern formation in plants. Although the distributions of hair cells in the root and shoot appear quite different, recent studies show that pattern formation in each relies on a common cassette of transcriptional regulators. During development in each organ, neighboring cells compete to express regulators that specify the primary cell fate (including WEREWOLF [WER]/GLABRA1 [GL1], GL3/bHLH, TRANSPARENT TESTA GLABRA [TTG], and GL2), as well as those that prevent their neighbors from adopting this fate (including CAPRICE [CPC] and TRIPTYCHON [TRY]). The basic mechanism of lateral inhibition with feedback that has been uncovered by recent studies provides a conceptual framework for understanding how patterns of cell fate in general may be specified during plant development.
Premenstrual symptoms: another look.
Woods, N F
1987-01-01
A collection of over 200 symptoms has been labeled premenstrual syndrome. Common belief is that most women experience a marked increase in symptoms premenses. Cyclic variations in the prevalence of commonly cited perimenstrual symptoms were estimated from daily symptom recording. A community-based, multiethnic sample of 345 women recorded symptom severity from "not present" to "extreme" for 90 days. Maximum total reported symptom score occurred during menses, not during premenses. When individual symptoms are considered, the prevalence of those rated as moderate to extreme during menses is less than 15 percent. A method for identifying symptom severity patterns throughout the menstrual cycle is described. Six symptom severity patterns were identified. Only 13 percent of the women exhibited a pattern of increased symptom severity in the premenses. Another 13 percent had a pattern of decreased symptom severity in the premenses. PMID:3120207
Myers, B; van Heerden, MS; Grimsrud, A; Myer, L; Williams, DR; Stein, DJ
2012-01-01
Objective Atypical sequences of drug use progression are thought to have important implications for the development of substance dependence. The extent to which this assumption holds for South African populations is unknown. This paper attempts to address this gap by examining the prevalence and correlates of atypical patterns of drug progression among South Africans. Method Data on substance use and other mental health disorders from a nationally representative sample of 4351 South Africans were analysed. Weighted cross tabulations were used to estimate prevalence and correlates of atypical patterns of drug use progression. Results Overall, 12.2% of the sample reported atypical patterns of drug use progression. The most common violation was the use of extra-medical drugs prior to alcohol and tobacco. Gender was significantly associated with atypical patterns of drug use with the risk pattern varying by the type of drug. None of the anxiety or mood disorders were associated with atypical patterns of use. Atypical patterns of drug use were not associated with increased risk for a lifetime substance use disorder. Conclusion Atypical patterns of drug use initiation seem more prevalent in South Africa compared to other countries. The early use of extra-medical drugs is common, especially among young women. Drug availability and social environmental factors may influence patterns of drug use. The findings have important implications for prevention initiatives and future research. PMID:21509404
ERIC Educational Resources Information Center
Papa, Frank; And Others
1990-01-01
In this study an artificial intelligence assessment tool used disease-by-feature frequency estimates to create disease prototypes for nine common causes of acute chest pain. The tool then used each subject's prototypes and a pattern-recognition-based decision-making mechanism to diagnose 18 myocardial infarction cases. (MLW)
ERIC Educational Resources Information Center
Kirov, Roumen; Kinkelbur, Joerg; Banaschewski, Tobias; Rothenberger, Aribert
2007-01-01
Background: In children, attention-deficit/hyperactivity disorder (ADHD), tic disorder (TD), and their coexistence (ADHD + TD comorbidity) are very common and clinically important. Associated sleep patterns and their clinical role are still insufficiently investigated. This study aimed at characterizing these sleep patterns in children with ADHD,…
EMGAN: A computer program for time and frequency domain reduction of electromyographic data
NASA Technical Reports Server (NTRS)
Hursta, W. N.
1975-01-01
An experiment in electromyography utilizing surface electrode techniques was developed for the Apollo-Soyuz test project. This report describes the computer program, EMGAN, which was written to provide first order data reduction for the experiment. EMG signals are produced by the membrane depolarization of muscle fibers during a muscle contraction. Surface electrodes detect a spatially summated signal from a large number of muscle fibers commonly called an interference pattern. An interference pattern is usually so complex that analysis through signal morphology is extremely difficult if not impossible. It has become common to process EMG interference patterns in the frequency domain. Muscle fatigue and certain myopathic conditions are recognized through changes in muscle frequency spectra.
Distribution pattern of phthirapterans infesting certain common Indian birds.
Saxena, A K; Kumar, Sandeep; Gupta, Nidhi; Mitra, J D; Ali, S A; Srivastava, Roshni
2007-08-01
The prevalence and frequency distribution patterns of 10 phthirapteran species infesting house sparrows, Indian parakeets, common mynas, and white breasted kingfishers were recorded in the district of Rampur, India, during 2004-05. The sample mean abundances, mean intensities, range of infestations, variance to mean ratios, values of the exponent of the negative binomial distribution, and the indices of discrepancy were also computed. Frequency distribution patterns of all phthirapteran species were skewed, but the observed frequencies did not correspond to the negative binomial distribution. Thus, adult-nymph ratios varied in different species from 1:0.53 to 1:1.25. Sex ratios of different phthirapteran species ranged from 1:1.10 to 1:1.65 and were female biased.
Pattern separation: a common function for new neurons in hippocampus and olfactory bulb.
Sahay, Amar; Wilson, Donald A; Hen, René
2011-05-26
While adult-born neurons in the olfactory bulb (OB) and the dentate gyrus (DG) subregion of the hippocampus have fundamentally different properties, they may have more in common than meets the eye. Here, we propose that new granule cells in the OB and DG may function as modulators of principal neurons to influence pattern separation and that adult neurogenesis constitutes an adaptive mechanism to optimally encode contextual or olfactory information. See the related Perspective from Aimone, Deng, and Gage, "Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation," in this issue of Neuron. Copyright © 2011 Elsevier Inc. All rights reserved.
Trongnetrpunya, Amy; Nandi, Bijurika; Kang, Daesung; Kocsis, Bernat; Schroeder, Charles E; Ding, Mingzhou
2015-01-01
Multielectrode voltage data are usually recorded against a common reference. Such data are frequently used without further treatment to assess patterns of functional connectivity between neuronal populations and between brain areas. It is important to note from the outset that such an approach is valid only when the reference electrode is nearly electrically silent. In practice, however, the reference electrode is generally not electrically silent, thereby adding a common signal to the recorded data. Volume conduction further complicates the problem. In this study we demonstrate the adverse effects of common signals on the estimation of Granger causality, which is a statistical measure used to infer synaptic transmission and information flow in neural circuits from multielectrode data. We further test the hypothesis that the problem can be overcome by utilizing bipolar derivations where the difference between two nearby electrodes is taken and treated as a representation of local neural activity. Simulated data generated by a neuronal network model where the connectivity pattern is known were considered first. This was followed by analyzing data from three experimental preparations where a priori predictions regarding the patterns of causal interactions can be made: (1) laminar recordings from the hippocampus of an anesthetized rat during theta rhythm, (2) laminar recordings from V4 of an awake-behaving macaque monkey during alpha rhythm, and (3) ECoG recordings from electrode arrays implanted in the middle temporal lobe and prefrontal cortex of an epilepsy patient during fixation. For both simulation and experimental analysis the results show that bipolar derivations yield the expected connectivity patterns whereas the untreated data (referred to as unipolar signals) do not. In addition, current source density signals, where applicable, yield results that are close to the expected connectivity patterns, whereas the commonly practiced average re-reference method leads to erroneous results.
Prescription patterns of Chinese herbal products for post-surgery colon cancer patients in Taiwan.
Chao, Te-Hsin; Fu, Pin-Kuei; Chang, Chiung-Hung; Chang, Shih-Ni; Chiahung Mao, Frank; Lin, Ching-Heng
2014-08-08
Traditional Chinese medicine (TCM) is commonly provided to cancer patients, however, the patterns of prescriptions for this type of medicine in Taiwan are unclear. This study aimed to evaluate the use of traditional Chinese medicine products in colon cancer patients post-surgery in Taiwan and to research patterns of TCM. This was a cross-sectional study of newly diagnosed colon cancer patients who received surgery between 2004 and 2008 identified from the National Health Insurance Research Database of Taiwan. The prescription patterns and reasons for the use of TCM for colon cancer were analyzed. The results showed that "symptoms, signs and ill-defined conditions" (23.3%) and diseases of the digestive system (16.9%) were the most common reasons for using Chinese herbal medicine. Xiang-sha-liu-jun-zi-tang (7.1%), Bu-zhong-yi-qi-tang (4.3%), Jia-wei-xiao-yao-san (4.1%), Shen-Ling-Bai-Zhu-San (3.7%), Ban-Xia-Xie-Xin-Tang (3.4%), Gui-pi-tang (2.4%), Ping-Wei-San (2.4%), Gan-Lu-Yin (2.0%), Bao-He-Wan (1.9%), and Zhen-Ren-Huo-Ming-Yin (1.8%) were the most commonly prescribed single Chinese herbal formulae (CHF) for colon cancer patients post-surgery. Hedyotis diffusa Willd (Bai Hua She She Cao) (5.1%) and Scutellaria barbata (Ban Zhi Lian )(4.8%) were the most commonly prescribed single Chinese herbs. This study identified patterns of TCM use in colon cancer patients post-surgery in Taiwan. The herbal ingredients were most commonly used for stimulate ghrelin secretion to increase food intake and had potential anti-tumor effect. However, further research is required to evaluate any beneficial effects which could identify leads for the development of new treatment strategies using TCM. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Schmidtmann, Gunnar; Kingdom, Frederick A A
2017-05-01
Radial frequency (RF) patterns, which are sinusoidal modulations of a radius in polar coordinates, are commonly used to study shape perception. Previous studies have argued that the detection of RF patterns is either achieved globally by a specialized global shape mechanism, or locally using as cue the maximum tangent orientation difference between the RF pattern and the circle. Here we challenge both ideas and suggest instead a model that accounts not only for the detection of RF patterns but also for line frequency patterns (LF), i.e. contours sinusoidally modulated around a straight line. The model has two features. The first is that the detection of both RF and LF patterns is based on curvature differences along the contour. The second is that this curvature metric is subject to what we term the Curve Frequency Sensitivity Function, or CFSF, which is characterized by a flat followed by declining response to curvature as a function of modulation frequency, analogous to the modulation transfer function of the eye. The evidence that curvature forms the basis for detection is that at very low modulation frequencies (1-3 cycles for the RF pattern) there is a dramatic difference in thresholds between the RF and LF patterns, a difference however that disappears at medium and high modulation frequencies. The CFSF feature on the other hand explains why thresholds, rather than continuously declining with modulation frequency, asymptote at medium and high modulation frequencies. In summary, our analysis suggests that the detection of shape modulations is processed by a common curvature-sensitive mechanism that is subject to a shape-frequency-dependent transfer function. This mechanism is independent of whether the modulation is applied to a circle or a straight line. Copyright © 2017 Elsevier Ltd. All rights reserved.
Caregiving and travel patterns.
DOT National Transportation Integrated Search
2013-06-01
This study explored the impact of caregiving for older adults on mobility and travel : patterns. Specifically, the focus was on how caregivers managed trips on behalf of : another who receives care. Caregiving is becoming increasingly common as the :...
Temporal patterns of the use of non-prescribed drugs.
Sinnett, E R; Morris, J B
1977-12-01
Licit and illicit non-prescribed drugs, regardless of their classification, are used in a common temporal pattern with the possible exceptions of caffeine and cocaine. The temporal patterns of drug use are highly correlated with the nationwide temporal pattern of TV watching, suggesting a pleasure-oriented, recreational use. The peak times for substance use and abuse may have implications for the delivery of professional or paraprofessional services.
Analysis of Spatial Point Patterns in Nuclear Biology
Weston, David J.; Adams, Niall M.; Russell, Richard A.; Stephens, David A.; Freemont, Paul S.
2012-01-01
There is considerable interest in cell biology in determining whether, and to what extent, the spatial arrangement of nuclear objects affects nuclear function. A common approach to address this issue involves analyzing a collection of images produced using some form of fluorescence microscopy. We assume that these images have been successfully pre-processed and a spatial point pattern representation of the objects of interest within the nuclear boundary is available. Typically in these scenarios, the number of objects per nucleus is low, which has consequences on the ability of standard analysis procedures to demonstrate the existence of spatial preference in the pattern. There are broadly two common approaches to look for structure in these spatial point patterns. First a spatial point pattern for each image is analyzed individually, or second a simple normalization is performed and the patterns are aggregated. In this paper we demonstrate using synthetic spatial point patterns drawn from predefined point processes how difficult it is to distinguish a pattern from complete spatial randomness using these techniques and hence how easy it is to miss interesting spatial preferences in the arrangement of nuclear objects. The impact of this problem is also illustrated on data related to the configuration of PML nuclear bodies in mammalian fibroblast cells. PMID:22615822
Amino acids precursors in lunar finds
NASA Technical Reports Server (NTRS)
Fox, S. W.; Harada, K.; Hare, P. E.; Hinsch, G.; Mueller, G.
1975-01-01
The consistent pattern is discussed of amino acids found in lunar dust from Apollo missions. The evidence indicates that compounds yielding amino acids were implanted into the surface of the moon by the solar wind, and the kind and amounts of amino acids found on the moon are closely similar to those found in meteorites. It is concluded that there is a common cosmochemical pattern for the moom and meteorites, and this offers evidence of a common course of cosmochemical reactions for carbon.
Common Mental Disorders among Occupational Groups: Contributions of the Latent Class Model
Martins Carvalho, Fernando; de Araújo, Tânia Maria
2016-01-01
Background. The Self-Reporting Questionnaire (SRQ-20) is widely used for evaluating common mental disorders. However, few studies have evaluated the SRQ-20 measurements performance in occupational groups. This study aimed to describe manifestation patterns of common mental disorders symptoms among workers populations, by using latent class analysis. Methods. Data derived from 9,959 Brazilian workers, obtained from four cross-sectional studies that used similar methodology, among groups of informal workers, teachers, healthcare workers, and urban workers. Common mental disorders were measured by using SRQ-20. Latent class analysis was performed on each database separately. Results. Three classes of symptoms were confirmed in the occupational categories investigated. In all studies, class I met better criteria for suspicion of common mental disorders. Class II discriminated workers with intermediate probability of answers to the items belonging to anxiety, sadness, and energy decrease that configure common mental disorders. Class III was composed of subgroups of workers with low probability to respond positively to questions for screening common mental disorders. Conclusions. Three patterns of symptoms of common mental disorders were identified in the occupational groups investigated, ranging from distinctive features to low probabilities of occurrence. The SRQ-20 measurements showed stability in capturing nonpsychotic symptoms. PMID:27630999
Mediterranean Diet: Prevention of Colorectal Cancer
Donovan, Micah G.; Selmin, Ornella I.; Doetschman, Tom C.; Romagnolo, Donato F.
2017-01-01
Colorectal cancer (CRC) is the third most common cancer diagnosis and the second and third leading cause of cancer mortality in men and women, respectively. However, the majority of CRC cases are the result of sporadic tumorigenesis via the adenoma–carcinoma sequence. This process can take up to 20 years, suggesting an important window of opportunity exists for prevention such as switching toward healthier dietary patterns. The Mediterranean diet (MD) is a dietary pattern associated with various health benefits including protection against cardiovascular disease, diabetes, obesity, and various cancers. In this article, we review publications available in the PubMed database within the last 10 years that report on the impact of a MD eating pattern on prevention of CRC. To assist the reader with interpretation of the results and discussion, we first introduce indexes and scoring systems commonly used to experimentally determine adherence to a MD, followed by a brief introduction of the influence of the MD pattern on inflammatory bowel disease, which predisposes to CRC. Finally, we discuss key biological mechanisms through which specific bioactive food components commonly present in the MD are proposed to prevent or delay the development of CRC. We close with a discussion of future research frontiers in CRC prevention with particular reference to the role of epigenetic mechanisms and microbiome related to the MD eating pattern. PMID:29259973
Majerus, Steve; Cowan, Nelson; Péters, Frédéric; Van Calster, Laurens; Phillips, Christophe; Schrouff, Jessica
2016-01-01
Recent studies suggest common neural substrates involved in verbal and visual working memory (WM), interpreted as reflecting shared attention-based, short-term retention mechanisms. We used a machine-learning approach to determine more directly the extent to which common neural patterns characterize retention in verbal WM and visual WM. Verbal WM was assessed via a standard delayed probe recognition task for letter sequences of variable length. Visual WM was assessed via a visual array WM task involving the maintenance of variable amounts of visual information in the focus of attention. We trained a classifier to distinguish neural activation patterns associated with high- and low-visual WM load and tested the ability of this classifier to predict verbal WM load (high-low) from their associated neural activation patterns, and vice versa. We observed significant between-task prediction of load effects during WM maintenance, in posterior parietal and superior frontal regions of the dorsal attention network; in contrast, between-task prediction in sensory processing cortices was restricted to the encoding stage. Furthermore, between-task prediction of load effects was strongest in those participants presenting the highest capacity for the visual WM task. This study provides novel evidence for common, attention-based neural patterns supporting verbal and visual WM. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Hekmatmanesh, Amin; Jamaloo, Fatemeh; Wu, Huapeng; Handroos, Heikki; Kilpeläinen, Asko
2018-04-01
Brain Computer Interface (BCI) can be a challenge for developing of robotic, prosthesis and human-controlled systems. This work focuses on the implementation of a common spatial pattern (CSP) base algorithm to detect event related desynchronization patterns. Utilizing famous previous work in this area, features are extracted by filter bank with common spatial pattern (FBCSP) method, and then weighted by a sensitive learning vector quantization (SLVQ) algorithm. In the current work, application of the radial basis function (RBF) as a mapping kernel of linear discriminant analysis (KLDA) method on the weighted features, allows the transfer of data into a higher dimension for more discriminated data scattering by RBF kernel. Afterwards, support vector machine (SVM) with generalized radial basis function (GRBF) kernel is employed to improve the efficiency and robustness of the classification. Averagely, 89.60% accuracy and 74.19% robustness are achieved. BCI Competition III, Iva data set is used to evaluate the algorithm for detecting right hand and foot imagery movement patterns. Results show that combination of KLDA with SVM-GRBF classifier makes 8.9% and 14.19% improvements in accuracy and robustness, respectively. For all the subjects, it is concluded that mapping the CSP features into a higher dimension by RBF and utilization GRBF as a kernel of SVM, improve the accuracy and reliability of the proposed method.
NASA Astrophysics Data System (ADS)
Ozturk, Sercan; Gumus, Lokman; Abdelnasser, Amr; Yalçin, Cihan; Kumral, Mustafa; Hanilçi, Nurullah
2016-04-01
This study deals with the rare earth element (REE) geochemical behavior the alteration zonesassociated with the volcanic-hosted Cu-Femineralization at the northern part of Gökçedoǧan village, Çorum-Kargi region (N Turkey) which are Dedeninyurdu, Yergen and Fındıklıyar mineralization. The study areacomprises Bekirli Formation, Saraycık Formation, Beşpınar Formation, and Ilgaz Formation. Saraycık Formation consists ofUpper Cretaceous KargıOphiolites, pelagic limestone, siltstone, chert and spilitic volcanic rocks. Fe-Cu mineralization occurred in the spiliticvolcanic rocks of Saraycık Formation representing the host rockand is related with the silicification and sericitizationalteration zones. Dedeninyurdu and Yergen mineralization zone directed nearly N75-80oEis following structural a line but Fındıklıyar mineralization zone has nearly NW direction. The ore mineralogy in these zonesinclude pyrite, chalcopyrite, covellite, hematite with malachite, goethite and a limonite as a result of oxidation. The geochemical characteristics of REE of the least altered spiliticbasalt show flat light and heavy REE with slight positive Eu- and Sr-anomalies according to their chondrite-, N-type MORB, and primitive mantle-normalized REE patterns. While the REE geochemical features of the altered rocks collected from the different alteration zones show that there are negative Eu and Sr anomalies as a result of leaching during the alteration processes.There are positive and negative correlations between K2O index with LREE and HREE, respectively. This is due to the additions of K and La during the alteration processes referring to the pervasive sericitization alteration is the responsible for the Cu-Fe mineralization at the study area. Keywords: Cu-Fe mineralization, Spilitic volcanic rocks, alteration, Rare earth elements (REE) geochemistry.
NASA Astrophysics Data System (ADS)
Aissa, Wiem Ben; Aissa, Lassaâd Ben; Amara, Abdesslem Ben Haj; Tlig, Said; Alouani, Rabah
2017-03-01
Hydrothermal ore deposits at Aïn El Araâr-Oued Belif location are classified as epithermal deposits type. The ore bodies are hosted by upper Turonian (8-9 M.y) volcanic rhyodacitic complex. Polymetallic sulfide orebodies are mainly concentrated within intra-magmatic faults. Petrographic, XRD, and TEM-STEM investigations revealed that ore minerals are essentially, arsenopyrite, pyrite, chalcopyrite, pyrrhotite, hematite, goethite and magnetite with Au, Ag and Pt trace metals. Gangue minerals are mainly adularia, quartz, sericite, alunite, tridymite, chlorite, phlogopite and smectite. Epithermal alteration is well zoned with four successive characteristic zones: (1) zone of quartz-adularia-sericite and rare alunite; (2) zone of kaolinite and plagioclase albitization; (3) intermediate zone of illite-sericite; (4) sapropelic alteration type zone of chlorite-smectite and rare illite. This can be interpreted as a telescoping of two different acidity epithermal phases; low sulfidation (adularia-sericite) and high sulfidation (quartz-alunite), separated in time or due to a gradual increase of fluids acidity and oxicity within the same mineralization phase. Brecciated macroscopic facies with fragments hosting quartz-adularia-sericite minerals (low-sulfidation phase) without alunite, support the last hypothesis. Geodynamic context and mineral alteration patterns are closely similar to those of Maria Josefa gold mine at SE of Spain which exhibit a volcanic-hosted epithermal ore deposit in a similar vein system, within rhyolitic ignimbrites, altered to an argillic assemblage (illite-sericite abundant and subordinate kaolinite) that grades outwards into propylitic alteration (Sanger-von Oepen et al. (1990)). Mineralogical and lithologic study undertaken in the volcanic host rock at Aïn El Araâr-Oued Belif reveals a typical epithermal low-sulfidation and high-sulfidation ore deposits with dominance of low-sulfidation. Host rocks in these systems range from silicic to intermediate for adularia-sericite type (low sulfidation) to rhyodacite for quartz-alunite type (high sulfidation).
NASA Astrophysics Data System (ADS)
Alirezaei, Saeed; Einali, Morteza; Jones, Peter; Hassanpour, Shohreh; Arjmandzadeh, Reza
2016-04-01
An Upper Miocene (9.12 ± 0.19 Ma; biotite 40Ar/39Ar) shallow pluton and numerous dykes and sills of felsic-intermediate compositions intruded the Upper Cretaceous, flysch-type sediments in the Mivehrood area, northwest Iran. The intrusions caused extensive thermal metamorphism and metasomatism, leading to the formation of hornfels and skarn. A massive skarn, 1-10 m thick, immediate to the intrusive contact, is bordered by a banded skarn, 100-400 m thick, that grades outward into hornfels and original sediments. The Mivehrood pluton is characterized by steep REE pattern, high Al2O3 (14.64-16.4 wt%) and Sr (380-786 ppm), and low MgO (1.3-3.4 wt%), Y (4.8-10.7 ppm), and Yb (0.35-0.95 ppm), characteristics typical of high-silica adakites. Skarn formation started with thermal metamorphism, followed by anhydrous prograde and hydrous retrograde stages. Prograde and retrograde mineral assemblages are developed in both skarns, represented by garnet-clinopyroxene-wollastonite and epidote-actinolite-scapolite-chlorite, respectively. Granditic F-bearing garnet dominates clinopyroxene in both skarns. The banded skarn contains minor scapolite of marialite composition. The calc-silicate mineral assemblages and the mineral chemistry allow the Mivehrood skarn to be classified as a calcic, oxidized skarn. Mass balance assessments suggest that Fe, Si, and S were significantly enriched, and Na, LILEs, and LREEs were strongly depleted, in the massive skarn. In the banded skarn, Na, K, Si, and S were enriched. Significant dehydration and carbon degassing occurred in both skarns. Stockworks, veins, and replacement bodies of pyrite ± chalcopyrite locally occur in the pluton and the dykes and in the skarns. The δ34SCDT values for the sulfides fall in a narrow range around 0.0 ‰, suggesting a magmatic source for sulfur and possibly the hydrothermal water and solutes involved in the skarn formation.
Dermoscopy of Melanomas on the Trunk and Extremities in Asians
Mun, Je-Ho; Ohn, Jungyoon; Kim, Woo-Il; Park, Sung-Min; Kim, Moon-Bum
2016-01-01
The incidence of melanoma among the Asian population is lower compared to that among the Western European population. These populations differed in their most common histopathologic subtypes, acral lentiginous melanoma being the most common in the Asian population. Although the dermoscopic features of the melanomas on the acral skin have been thoroughly investigated in the Asian population, studies concerning the dermoscopic patterns of melanomas on the non-acral skin have been scarce. The aim of this study was to investigate the dermoscopic patterns of melanomas on the trunk and extremities in the Asian population. To achieve this, we evaluated the dermoscopic patterns of 22 primary melanomas diagnosed at two university hospitals in Korea. In addition, 100 benign melanocytic lesions were included as the control group for comparative analysis. A P value less than 0.05 was regarded as statistically significant. Melanoma-associated dermoscopic features such as asymmetry (odds ratio [OR], 30.00), multicolor pattern (OR, 30.12), blotches (OR, 13.50), blue white veils (OR, 15.75), atypical pigment networks (OR, 9.71), irregular peripheral streaks (OR, 6.30), atypical vascular patterns (OR, 11.50), ulcers (OR, 15.83), atypical dots/globules (OR, 3.15), shiny white lines (OR, 5.88), and regression structures (OR, 7.06) were more commonly observed in patients with melanomas than in patients of the control group. The mean dermoscopic scores obtained on the 7-point checklist, revised 7-point checklist, 3-point checklist, ABCD rule, and CASH algorithm were 5.36, 3.41, 2.05, 6.89, and 9.68, respectively, in the primary melanomas, and 1.33, 0.93, 0.46, 2.45, and 3.60, respectively, in the control group (all, P < 0.001). The present study showed that melanoma-related dermoscopic patterns were common in Asian patients. Dermoscopy is a reliable diagnostic tool for the melanomas of the trunk and extremities in the Asian populations. PMID:27391775
Hung, Chen-Yi; Lin, Yan; Zhang, Meng; Pollock, Susan; David Marks, M.; Schiefelbein, John
1998-01-01
A position-dependent pattern of epidermal cell types is produced during root development in Arabidopsis thaliana. This pattern is reflected in the expression pattern of GLABRA2 (GL2), a homeobox gene that regulates cell differentiation in the root epidermis. GL2 promoter::GUS fusions were used to show that the TTG gene, a regulator of root epidermis development, is necessary for maximal GL2 activity but is not required for the pattern of GL2 expression. Furthermore, GL2-promoter activity is influenced by expression of the myc-like maize R gene (35S::R) in Arabidopsis but is not affected by gl2 mutations. A position-dependent pattern of cell differentiation and GL2-promoter activity was also discovered in the hypocotyl epidermis that was analogous to the pattern in the root. Non-GL2-expressing cell files in the hypocotyl epidermis located outside anticlinal cortical cell walls exhibit reduced cell length and form stomata. Like the root, the hypocotyl GL2 activity was shown to be influenced by ttg and 35S::R but not by gl2. The parallel pattern of cell differentiation in the root and hypocotyl indicates that TTG and GL2 participate in a common position-dependent mechanism to control cell-type patterning throughout the apical-basal axis of the Arabidopsis seedling. PMID:9576776
Design of a novel high efficiency antenna for helicon plasma sources
NASA Astrophysics Data System (ADS)
Fazelpour, S.; Chakhmachi, A.; Iraji, D.
2018-06-01
A new configuration for an antenna, which increases the absorption power and plasma density, is proposed for helicon plasma sources. The influence of the electromagnetic wave pattern symmetry on the plasma density and absorption power in a helicon plasma source with a common antenna (Nagoya) is analysed by using the standard COMSOL Multiphysics 5.3 software. In contrast to the theoretical model prediction, the electromagnetic wave does not represent a symmetric pattern for the common Nagoya antenna. In this work, a new configuration for an antenna is proposed which refines the asymmetries of the wave pattern in helicon plasma sources. The plasma parameters such as plasma density and absorption rate for a common Nagoya antenna and our proposed antenna under the same conditions are studied using simulations. In addition, the plasma density of seven operational helicon plasma source devices, having a common Nagoya antenna, is compared with the simulation results of our proposed antenna and the common Nagoya antenna. The simulation results show that the density of the plasma, which is produced by using our proposed antenna, is approximately twice in comparison to the plasma density produced by using the common Nagoya antenna. In fact, the simulation results indicate that the electric and magnetic fields symmetry of the helicon wave plays a vital role in increasing wave-particle coupling. As a result, wave-particle energy exchange and the plasma density of helicon plasma sources will be increased.
USDA-ARS?s Scientific Manuscript database
The interactive effects of five seasonal precipitation distribution patterns and two levels of N deposition (ambient and doubled) on phenological traits of six dominant plant species were studied in an alpine meadow of the Tibetan Plateau for two consecutive years. Seasonal precipitation patterns i...
USDA-ARS?s Scientific Manuscript database
Snacking is very common among Americans; the impact of variety of snacking patterns on nutrient intake and weight status is unclear. This study examined the associations of snacking patterns on nutrient intake and weight in U.S. children 2-18 years participating in the 2001-2008 National Health and ...
Complex emergence patterns in a bark beetle predator
John D. Reeve
2000-01-01
The emergence pattern of Thanasimus dubius (F.) (Coleoptera: Cleridae), a common predator of the southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolytidae), was studied under field conditions across different seasons. A simple statistical model was then developed...
Hyperkalemia masked by pseudo-stemi infarct pattern and cardiac arrest.
Peerbhai, Shareez; Masha, Luke; DaSilva-DeAbreu, Adrian; Dhoble, Abhijeet
2017-12-01
Hyperkalemia is a common electrolyte abnormality and has well-recognized early electrocardiographic manifestations including PR prolongation and symmetric T wave peaking. With severe increase in serum potassium, dysrhythmias and atrioventricular and bundle branch blocks can be seen on electrocardiogram. Although cardiac arrest is a worrisome consequence of untreated hyperkalemia, rarely does hyperkalemia electrocardiographically manifest as acute ischemia. We present a case of acute renal failure complicated by malignant hyperkalemia and eventual ventricular fibrillation cardiac arrest. Recognition of this disorder was delayed secondary to an initial ECG pattern suggesting an acute ST segment elevation myocardial infarction (STEMI). Emergent coronary angiography performed showed no evidence of coronary artery disease. Pseudo-STEMI patterns are rarely seen in association with acute hyperkalemia and are most commonly described with patient without acute cardiac symptomatology. This is the first such case presenting concurrently with cardiac arrest. A brief review of this rare pseudo-infarct pattern is also given.
Behavioral and catastrophic drift of invertebrates in two streams in northeastern Wyoming
Wangsness, David J.; Peterson, David A.
1980-01-01
Invertebrate drift samples were collected in August 1977 from two streams in the Powder River structural basin in northeastern Wyoming. The streams are Clear Creek, a mountain stream, and the Little Powder River, a plains stream. Two major patterns of drift were recognized. Clear Creek was sampled during a period of normal seasonal conditions. High drift rates occurred during the night indicating a behavioral drift pattern that is related to the benthic invertebrate density and carrying capacity of the stream substrates. The mayfly genes Baetis, a common drift organism, dominated the peak periods of drift in Clear Creek. The Little Powder River has a high discharge during the study period. Midge larvae of the families Chironomidae and Ceratopogonidae, ususally not common in drift, dominated the drift community. The dominance of midge larvae, the presence of several other organisms not common in drift, and the high discharge during the study period caused a catastrophic drift pattern. (USGS)
Hald, Gert Martin; Mulya, Teguh Wijaya
2013-01-01
Using a sample of Indonesian university students and a cross sectional design, this study investigated prevalence rates and patterns of pornography consumption in Indonesia, a religious, sexually conservative, Muslim-majority nation with strict anti-pornography laws. Further, the association between pornography consumption and common non-marital sexual behaviours was explored. The study found that in this sample, pornography is as widely and readily consumed as in comparable international studies predominantly utilising Western background samples from more sexually liberal and less religious countries with very few laws on pornography. Gender differences in patterns of pornography consumption were pronounced and comparable with findings in international counterpart studies. For men only, pornography consumption was found to significantly predict common sexual behaviours in non-marital relations. The study is the first to provide insights into prevalence rates and patterns of pornography consumption and its association with common non-marital sexual behaviours in a sexually conservative, Muslim-majority nation with strict anti-pornography laws.
Allès, Benjamin; Samieri, Cécilia; Lorrain, Simon; Jutand, Marthe-Aline; Carmichael, Pierre-Hugues; Shatenstein, Bryna; Gaudreau, Pierrette; Payette, Hélène; Laurin, Danielle; Barberger-Gateau, Pascale
2016-04-19
Dietary and nutrient patterns have been linked to health outcomes related to aging. Food intake is influenced by environmental and genetic factors. The aim of the present study was to compare nutrient patterns across two elderly populations sharing a common ancestral cultural background, but living in different environments. The diet quality, lifestyle and socioeconomic characteristics of participants from the Three-City Study (3C, France, n = 1712) and the Québec Longitudinal Study on Nutrition and Successful Aging (NuAge, Quebec, Canada, n = 1596) were analyzed. Nutrient patterns and their food sources were identified in the two samples using principal component analysis. Diet quality was compared across sample-specific patterns by describing weekly food intake and associations with the Canadian Healthy Eating Index (C-HEI). Three nutrient patterns were retained in each study: a healthy, a Western and a more traditional pattern. These patterns accounted for 50.1% and 53.5% of the total variance in 3C and NuAge, respectively. Higher education and non-physical occupations over lifetime were associated with healthy patterns in both studies. Other characteristics such as living alone, having a body mass index lower than 25 and being an ex-smoker were associated with the healthy pattern in NuAge. No association between these characteristics and the nutrient patterns was noted in 3C. The healthy and Western patterns from each sample also showed an inverse association with C-HEI. The two healthy patterns showed important similarities: adequate food variety, consumption of healthy foods and associations with common sociodemographic factors. This work highlights that nutrient patterns derived using a posteriori methods may be useful to compare the nutritional quality of the diet of distinct populations.
Mahendra, M; Jayaraj, BS; Lokesh, KS; Chaya, SK; Veerapaneni, Vivek Vardhan; Limaye, Sneha; Dhar, Raja; Swarnakar, Rajesh; Ambalkar, Shrikant; Mahesh, PA
2018-01-01
Aim of Study: Respiratory infections account for significant morbidity, mortality and expenses to patients getting admitted to ICU. Antibiotic resistance is a major worldwide concern in ICU, including India. It is important to know the antibiotic prescribing pattern in ICU, organisms and its resistance pattern as there is sparse data on Indian ICUs. Materials and Methods: We conducted a prospective study from August 2015 to February 2016. All patients getting admitted to RICU with respiratory infection who were treated with antibiotics were included into study. Demographic details, comorbidities, Clinco-pathological score (CPI) on day1 and 2 of admission, duration of ICU admission, number of antibiotics used, antibiotic prescription, antimicrobial resistance pattern of patients were collected using APRISE questionnaire. Results: During study period 352 patients were screened and 303 patients were included into study. Mean age was 56.05±16.37 and 190 (62.70%) were men. Most common diagnosis was Pneumonia (66%). Piperacillin-tazobactam was most common empirical antibiotic used. We found 60% resistance to piperacillin-tazobactam. Acinetobacter baumanii was the most common organism isolated (29.2%) and was highly resistant to Carbapenem (60%). Klebsiella pneumoniae was resistant to Amikacin (45%), piperacillin (55%) and Ceftazidime (50%). Conclusion: Piperacillin-tazobactam was the most common antibiotic prescribed to patients with respiratory infection admitted to ICU. More than half of patients (60%) had resistance to the empirical antibiotic used in our ICU, highlighting the need for antibiogram for each ICU. Thirty six percent of patient had prior antibiotic use and had mainly gram negative organisms with high resistance to commonly used antibiotics. PMID:29743760
Tuchscherer, Rhianna M; Nair, Kavita; Ghushchyan, Vahram; Saseen, Joseph J
2015-02-01
Muscle-related events, or myopathies, are a commonly reported adverse event associated with statin use. In June 2011, the US FDA released a Drug Safety Communication that provided updated product labeling with dosing restrictions for simvastatin to minimize the risk of myopathies. Our objective was to describe prescribing patterns of simvastatin in combination with medications known to increase the risk of myopathies following updated product labeling dosing restrictions in June 2011. A retrospective observational analysis was carried out, in which administrative claims data were utilized to identify prescribing patterns of simvastatin in combination with calcium channel blockers (CCBs) and other pre-specified drug therapies. Prescribing patterns were analyzed on a monthly basis 24 months prior to and 9 months following product label changes. Incidence of muscle-related events was also analyzed. In June 2011, a total of 60% of patients with overlapping simvastatin-CCB claims and 94% of patients with overlapping simvastatin-non-CCB claims were prescribed an against-label combination. As of March 2012, a total of 41% and 93% of patients continued to be prescribed against-label simvastatin-CCB and simvastatin-non-CCB combinations, respectively. The most commonly prescribed dose of simvastatin was 20 mg (39%). Against-label combinations were most commonly prescribed at a simvastatin dose of 40 mg (56%). Amlodipine was the most commonly prescribed CCB in combination with simvastatin (70%) and the most common CCB prescribed against-label (67%). Despite improvements in prescribing practices, many patients are still exposed to potentially harmful simvastatin combinations. Aggressive changes in simvastatin prescribing systems and processes are needed to improve compliance with FDA labeling to improve medication and patient safety.
General method of pattern classification using the two-domain theory
NASA Technical Reports Server (NTRS)
Rorvig, Mark E. (Inventor)
1993-01-01
Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.
General method of pattern classification using the two-domain theory
NASA Technical Reports Server (NTRS)
Rorvig, Mark E. (Inventor)
1990-01-01
Human beings judge patterns (such as images) by complex mental processes, some of which may not be known, while computing machines extract features. By representing the human judgements with simple measurements and reducing them and the machine extracted features to a common metric space and fitting them by regression, the judgements of human experts rendered on a sample of patterns may be imposed on a pattern population to provide automatic classification.
Soto, Fabian A.; Waldschmidt, Jennifer G.; Helie, Sebastien; Ashby, F. Gregory
2013-01-01
Previous evidence suggests that relatively separate neural networks underlie initial learning of rule-based and information-integration categorization tasks. With the development of automaticity, categorization behavior in both tasks becomes increasingly similar and exclusively related to activity in cortical regions. The present study uses multi-voxel pattern analysis to directly compare the development of automaticity in different categorization tasks. Each of three groups of participants received extensive training in a different categorization task: either an information-integration task, or one of two rule-based tasks. Four training sessions were performed inside an MRI scanner. Three different analyses were performed on the imaging data from a number of regions of interest (ROIs). The common patterns analysis had the goal of revealing ROIs with similar patterns of activation across tasks. The unique patterns analysis had the goal of revealing ROIs with dissimilar patterns of activation across tasks. The representational similarity analysis aimed at exploring (1) the similarity of category representations across ROIs and (2) how those patterns of similarities compared across tasks. The results showed that common patterns of activation were present in motor areas and basal ganglia early in training, but only in the former later on. Unique patterns were found in a variety of cortical and subcortical areas early in training, but they were dramatically reduced with training. Finally, patterns of representational similarity between brain regions became increasingly similar across tasks with the development of automaticity. PMID:23333700
An RNA-Seq based gene expression atlas of the common bean.
O'Rourke, Jamie A; Iniguez, Luis P; Fu, Fengli; Bucciarelli, Bruna; Miller, Susan S; Jackson, Scott A; McClean, Philip E; Li, Jun; Dai, Xinbin; Zhao, Patrick X; Hernandez, Georgina; Vance, Carroll P
2014-10-06
Common bean (Phaseolus vulgaris) is grown throughout the world and comprises roughly 50% of the grain legumes consumed worldwide. Despite this, genetic resources for common beans have been lacking. Next generation sequencing, has facilitated our investigation of the gene expression profiles associated with biologically important traits in common bean. An increased understanding of gene expression in common bean will improve our understanding of gene expression patterns in other legume species. Combining recently developed genomic resources for Phaseolus vulgaris, including predicted gene calls, with RNA-Seq technology, we measured the gene expression patterns from 24 samples collected from seven tissues at developmentally important stages and from three nitrogen treatments. Gene expression patterns throughout the plant were analyzed to better understand changes due to nodulation, seed development, and nitrogen utilization. We have identified 11,010 genes differentially expressed with a fold change ≥ 2 and a P-value < 0.05 between different tissues at the same time point, 15,752 genes differentially expressed within a tissue due to changes in development, and 2,315 genes expressed only in a single tissue. These analyses identified 2,970 genes with expression patterns that appear to be directly dependent on the source of available nitrogen. Finally, we have assembled this data in a publicly available database, The Phaseolus vulgaris Gene Expression Atlas (Pv GEA), http://plantgrn.noble.org/PvGEA/ . Using the website, researchers can query gene expression profiles of their gene of interest, search for genes expressed in different tissues, or download the dataset in a tabular form. These data provide the basis for a gene expression atlas, which will facilitate functional genomic studies in common bean. Analysis of this dataset has identified genes important in regulating seed composition and has increased our understanding of nodulation and impact of the nitrogen source on assimilation and distribution throughout the plant.
Calculating cellulose diffraction patterns
USDA-ARS?s Scientific Manuscript database
Although powder diffraction of cellulose is a common experiment, the patterns are not widely understood. The theory is mathematical, there are numerous different crystal forms, and the conventions are not standardized. Experience with IR spectroscopy is not directly transferable. An awful error, tha...
... Category: Share: Yes No, Keep Private Female Pattern Hair Loss Share | The most common type of hair loss seen in women is androgenetic alopecia, also ... men, it does not have to be complete hair loss. This is seen as hair thinning predominantly ...
... susceptible women, but is most commonly seen after menopause. In female pattern hair loss some excess loss of hair is noted, but ... all. Spironolactone pills help many women, especially whose hair loss starts before menopause but takes many months. Hormone replacement pills, such ...
Nettleton, Jennifer A; Steffen, Lyn M; Schulze, Matthias B; Jenny, Nancy S; Barr, R Graham; Bertoni, Alain G; Jacobs, David R
2010-01-01
Background The association between diet and cardiovascular disease (CVD) may be mediated partly through inflammatory processes and reflected by markers of subclinical atherosclerosis. Objective We investigated whether empirically derived dietary patterns are associated with coronary artery calcium (CAC) and common and internal carotid artery intima media thickness (IMT) and whether prior information about inflammatory processes would increase the strength of the associations. Design At baseline, dietary patterns were derived with the use of a food-frequency questionnaire, and inflammatory biomarkers, CAC, and IMT were measured in 5089 participants aged 45–84 y, who had no clinical CVD or diabetes, in the Multi-Ethnic Study of Atherosclerosis. Dietary patterns based on variations in C-reactive protein, interleukin-6, homocysteine, and fibrinogen concentrations were created with reduced rank regression (RRR). Dietary patterns based on variations in food group intake were created with principal components analysis (PCA). Results The primary RRR(RRR 1) and PCA(PCA factor 1) dietary patterns were high in total and saturated fat and low in fiber and micronutrients. However, the food sources of these nutrients differed between the dietary patterns. RRR 1 was positively associated with CAC [Agatston score >0: OR(95% CI) for quartile 5 compared with quartile 1 = 1.34 (1.05, 1.71); ln(Agatston score = 1): P for trend = 0.023] and with common carotid IMT [≥1.0 mm: OR (95% CI) for quartile 5 compared with quartile 1 = 1.33 (0.99, 1.79); ln(common carotid IMT): P for trend = 0.006]. PCA 1 was not associated with CAC or IMT. Conclusion The results suggest that subtle differences in dietary pattern composition, realized by incorporating measures of inflammatory processes, affect associations with markers of subclinical atherosclerosis. PMID:17556701
Chapter4 - Drought patterns in the conterminous United States and Hawaii.
Frank H. Koch; William D. Smith; John W. Coulston
2014-01-01
Droughts are common in virtually all U.S. forests, but their frequency and intensity vary widely both between and within forest ecosystems (Hanson and Weltzin 2000). Forests in the Western United States generally exhibit a pattern of annual seasonal droughts. Forests in the Eastern United States tend to exhibit one of two prevailing patterns: random occasional droughts...
ERIC Educational Resources Information Center
Uddin, MD Emaj
2008-01-01
Arrack is produced from palm and date juice which is commonly consumed by the lower class of all religious communities in rural Bangladesh. Previous studies could not cross-culturally investigate arrack drinking patterns. The present study examined and compared arrack drinking patterns among the Muslim, Hindu, Santal, and Oraon communities'…
A factor analysis of landscape pattern and structure metrics
Kurt H. Riitters; R.V. O' Neill; C.T. Hunsaker; James D. Wickham; D.H. Yankee; S.P. Timmins; K.B. Jones; B.L. Jackson
1995-01-01
Fifty-five metrics of landscape pattern and structure were calculated for 85 maps of land use and land cover. A multivariate factor analysis was used to identify the common axes (or dimensions) of pattern and structure which were measured by a reduced set of 26 metrics. The first six factors explained about 87% of the variation in the 26 landscape metrics. These...
Patterning of Indium Tin Oxide Films
NASA Technical Reports Server (NTRS)
Immer, Christopher
2008-01-01
A relatively rapid, economical process has been devised for patterning a thin film of indium tin oxide (ITO) that has been deposited on a polyester film. ITO is a transparent, electrically conductive substance made from a mixture of indium oxide and tin oxide that is commonly used in touch panels, liquid-crystal and plasma display devices, gas sensors, and solar photovoltaic panels. In a typical application, the ITO film must be patterned to form electrodes, current collectors, and the like. Heretofore it has been common practice to pattern an ITO film by means of either a laser ablation process or a photolithography/etching process. The laser ablation process includes the use of expensive equipment to precisely position and focus a laser. The photolithography/etching process is time-consuming. The present process is a variant of the direct toner process an inexpensive but often highly effective process for patterning conductors for printed circuits. Relative to a conventional photolithography/ etching process, this process is simpler, takes less time, and is less expensive. This process involves equipment that costs less than $500 (at 2005 prices) and enables patterning of an ITO film in a process time of less than about a half hour.
Not just black and white: pigment pattern development and evolution in vertebrates
Mills, Margaret G.; Patterson, Larissa B.
2009-01-01
Animals display diverse colors and patterns that vary within and between species. Similar phenotypes appear in both closely related and widely divergent taxa. Pigment patterns thus provide an opportunity to explore how development is altered to produce differences in form and whether similar phenotypes share a common genetic basis. Understanding the development and evolution of pigment patterns requires knowledge of the cellular interactions and signaling pathways that produce those patterns. These complex traits provide unparalleled opportunities for integrating studies from ecology and behavior to molecular biology and biophysics. PMID:19073271
U.S. Army noncombat munitions injuries.
Kopchinski, B; Lein, B
2001-02-01
The object of this study was to determine the types of noncombat injuries secondary to munitions sustained by U.S. Army soldiers. A retrospective review of all noncombat munitions injuries reported to the U.S. Army Safety Center from August 1989 to September 1996 was conducted. There were 742 incidents reported, resulting in 894 injured soldiers. The most common types of injuries were thermal burns, puncture wounds, and lacerations. The extremities were the most common anatomical location injured. The most common activities associated with injuries were combat training exercises, munitions firing, and rendering munitions safe. This study demonstrates a distinctive injury pattern for each category of munitions. Military readiness will be improved if we train all personnel to be familiar with the injury patterns and the most common situations associated with injury. By informing unit commanders which activities are associated with increased risk of injury, they may better prepare preventive measures to decrease the number of noncombat injuries.
COREPA-M: NEW MULTI-DIMENSIONAL FUNCTIONALITY OF THE COREPA METHOD
The COmmon REactivity PAttern (COREPA) method is a recently developed pattern recognition technique accounting for conformational flexibility of chemicals in 3-D quantitative structure-activity relationships (QSARs). The method is based on the assumption that non-congeneric chemi...
Mimickers of generalized spike and wave discharges.
Azzam, Raed; Bhatt, Amar B
2014-06-01
Overinterpretation of benign EEG variants is a common problem that can lead to the misdiagnosis of epilepsy. We review four normal patterns that mimic generalized spike and wave discharges: phantom spike-and-wave, hyperventilation hypersynchrony, hypnagogic/ hypnopompic hypersynchrony, and mitten patterns.
Histological pattern of paediatric renal diseases in northern Pakistan.
Ali, Akhtar; Ali, Mohammad Usman; Akhtar, Sultan Zafar
2011-07-01
To determine histological spectrum of renal diseases among the paediatric population in the province Khyber Pukhtunkhwa, and to note any change in histological pattern with age and serum creatinine. This is a retrospective analysis of 415 paediatric renal biopsies performed at the department of nephrology, Lady Reading Hospital Peshawar from 1998-2005. Children from 3 to 15 years of age, having renal disease and indications for biopsy, underwent ultrasound guided percutaneous renal biopsy. Indications included nephrotic syndrome, nephritic/nephrotic syndrome with renal insufficiency and nephrotic syndrome with steroid resistance. Patients with acute or chronic renal failure were not included. The specimens were examined without immunoflorescence, under light microscopy using different staining techniques, Results were analyzed for different age groups, serum creatinine levels and for both male and females with renal disease. The overall male to female ratio in the study was 1.6: 1. Nephrotic syndrome was most common indication for renal biopsy in 50% of the cases, followed by renal insufficiency (26%) and steroid resistance (24%). In children with primary glomerulonephritis, minimal change disease (MCD) was found to be the most common histological pattern (24.09%), followed by focal segmental glomerulosclerosis (FSGS), 18.30%; mesangioproliferative glomerulonephritis (GN) (MsePGN), 17.83%; mesangiocapillary GN (MPGN), 11.08%; post streptococcal proliferative GN (Post. strep GN), 10.60%; membranous GN (MGN), 4.82%; crescentic GN (Cres.GN), 4.34%. Among children with secondary GN, chronic sclerosing GN was found to be most common (1.93%), followed by chronic tubulo interstitial nephritis (Chr.TIN), 1.69% and hypertensive nephropathy (H.Neph), 1.69%; Renal Amyloidosis, 0.96% and Lupus Nephritis III, 0.96%; acute tubular necrosis (ATN), 0.72%; Alport's Syndrome (0.48%). Overall, MCD was the most common histological pattern in all age groups and among children with serum creatinine < 1.2 mg/dll. However, that with serum creatinine between 1.3 to 3 mg/dl, MsePGN was found to be more common. Age turned out to be significant factor, in contrast to serum creatinine, in determining various histological patterns. This study highlighted the histological patterns of renal disease among pediatric population from northern part of Pakistan. MCD was on the top followed by FSGS, but frequency of MCD was less than cited in earlier studies.
Classification of mineral deposits into types using mineralogy with a probabilistic neural network
Singer, Donald A.; Kouda, Ryoichi
1997-01-01
In order to determine whether it is desirable to quantify mineral-deposit models further, a test of the ability of a probabilistic neural network to classify deposits into types based on mineralogy was conducted. Presence or absence of ore and alteration mineralogy in well-typed deposits were used to train the network. To reduce the number of minerals considered, the analyzed data were restricted to minerals present in at least 20% of at least one deposit type. An advantage of this restriction is that single or rare occurrences of minerals did not dominate the results. Probabilistic neural networks can provide mathematically sound confidence measures based on Bayes theorem and are relatively insensitive to outliers. Founded on Parzen density estimation, they require no assumptions about distributions of random variables used for classification, even handling multimodal distributions. They train quickly and work as well as, or better than, multiple-layer feedforward networks. Tests were performed with a probabilistic neural network employing a Gaussian kernel and separate sigma weights for each class and each variable. The training set was reduced to the presence or absence of 58 reported minerals in eight deposit types. The training set included: 49 Cyprus massive sulfide deposits; 200 kuroko massive sulfide deposits; 59 Comstock epithermal vein gold districts; 17 quartzalunite epithermal gold deposits; 25 Creede epithermal gold deposits; 28 sedimentary-exhalative zinc-lead deposits; 28 Sado epithermal vein gold deposits; and 100 porphyry copper deposits. The most common training problem was the error of classifying about 27% of Cyprus-type deposits in the training set as kuroko. In independent tests with deposits not used in the training set, 88% of 224 kuroko massive sulfide deposits were classed correctly, 92% of 25 porphyry copper deposits, 78% of 9 Comstock epithermal gold-silver districts, and 83% of six quartzalunite epithermal gold deposits were classed correctly. Across all deposit types, 88% of deposits in the validation dataset were correctly classed. Misclassifications were most common if a deposit was characterized by only a few minerals, e.g., pyrite, chalcopyrite,and sphalerite. The success rate jumped to 98% correctly classed deposits when just two rock types were added. Such a high success rate of the probabilistic neural network suggests that not only should this preliminary test be expanded to include other deposit types, but that other deposit features should be added.
The blue globular pattern in dermoscopy.
Roberti, V; Devirgiliis, V; Curzio, M; Gobbi, S; Coppola, R; Calvieri, S; Panasiti, V
2013-01-01
Seborrheic keratosis (SK) is a frequent benign epithelial skin tumor. Generally its diagnosis is clinical, however SK can sometimes clinically simulate a melanocytic lesion; therefore we need dermoscopy to reach a correct diagnosis. Milia-like cysts and comedo-like openings are the common dermoscopic features of SK, but it is not a rare finding that SK can display one or more dermoscopic patterns suggestive of a melanocytic origin. We describe a case series of SKs with a blue globular pattern simulating a melanocytic lesion. We retrospectively evaluated 224 SKs seen during 2011 at the Dermatoscopy Unit of the Department of Dermatology, University of Rome 'Sapienza'. Five SKs showed a blue globular pattern, without the SK main features generally seen in dermoscopy; globules were multiple, round or oval, well-demarcated, small and medium-sized, blue-colored and equally distributed within the lesion. Histopathologic examination was consistent with acanthotic SK. Identification of the blue globular pattern can be helpful for the dermoscopic diagnosis of SK, especially when its common dermoscopic features are absent. Copyright © 2013 S. Karger AG, Basel.
Imaging in laser spectroscopy by a single-pixel camera based on speckle patterns
NASA Astrophysics Data System (ADS)
Žídek, K.; Václavík, J.
2016-11-01
Compressed sensing (CS) is a branch of computational optics able to reconstruct an image (or any other information) from a reduced number of measurements - thus significantly saving measurement time. It relies on encoding the detected information by a random pattern and consequent mathematical reconstruction. CS can be the enabling step to carry out imaging in many time-consuming measurements. The critical step in CS experiments is the method to invoke encoding by a random mask. Complex devices and relay optics are commonly used for the purpose. We present a new approach of creating the random mask by using laser speckles from coherent laser light passing through a diffusor. This concept is especially powerful in laser spectroscopy, where it does not require any complicated modification of the current techniques. The main advantage consist in the unmatched simplicity of the random pattern generation and a versatility of the pattern resolution. Unlike in the case of commonly used random masks, here the pattern fineness can be adjusted by changing the laser spot size being diffused. We demonstrate the pattern tuning together with the connected changes in the pattern statistics. In particular, the issue of patterns orthogonality, which is important for the CS applications, is discussed. Finally, we demonstrate on a set of 200 acquired speckle patterns that the concept can be successfully employed for single-pixel camera imaging. We discuss requirements on detector noise for the image reconstruction.
Kuo, Hung-Chih; Lauderdale, Tsai-Ling; Lo, Dan-Yuan; Chen, Chiou-Lin; Chen, Pei-Chen; Liang, Shiu-Yun; Kuo, Jung-Che; Liao, Ying-Shu; Liao, Chun-Hsing; Tsao, Chi-Sen; Chiou, Chien-Shun
2014-01-01
We collected 110 Salmonella enterica isolates from sick pigs and determined their serotypes, genotypes using pulsed-field gel electrophoresis (PFGE), and antimicrobial susceptibility to 12 antimicrobials and compared the data with a collection of 18,280 isolates obtained from humans. The pig isolates fell into 12 common serovars for human salmonellosis in Taiwan; S. Typhimurium, S. Choleraesuis, S. Derby, S. Livingstone, and S. Schwarzengrund were the 5 most common serovars and accounted for a total of 84% of the collection. Of the 110 isolates, 106 (96%) were multidrug resistant (MDR) and 48 (44%) had PFGE patterns found in human isolates. S. Typhimurium, S. Choleraesuis, and S. Schwarzengrund were among the most highly resistant serovars. The majority of the 3 serovars were resistant to 8-11 of the tested antimicrobials. The isolates from pigs and humans sharing a common PFGE pattern displayed identical or very similar resistance patterns and Salmonella strains that caused severe infection in pigs were also capable of causing infections in humans. The results indicate that pigs are one of the major reservoirs to human salmonellosis in Taiwan. Almost all of the pig isolates were MDR, which highlights the necessity of strictly regulating the use of antimicrobials in the agriculture sector in Taiwan.
Antibacterial resistance patterns of pediatric community-acquired urinary infection: Overview.
Konca, Capan; Tekin, Mehmet; Uckardes, Fatih; Akgun, Sadik; Almis, Habip; Bucak, Ibrahim Hakan; Genc, Yeliz; Turgut, Mehmet
2017-03-01
Urinary tract infection (UTI) is common in children. The aim of this study was therefor to construct a guide for the empirical antibiotic treatment of community-acquired UTI by investigating the etiology and antimicrobial resistance patterns of uropathogens and analyzing the epidemiological and clinical patient characteristics. A total of 158 children with positive urine culture were included in the study. Antibiotic susceptibility testing was performed with Vitek 2 Compact for 28 commonly used antimicrobials. Mean age was 3.36 ± 3.38 years (range, 45 days-15 years). Escherichia coli (60.1%), and Klebsiella spp. (16.5%) were the most common uropathogens. For all Gram-negative isolates, a high level of resistance was found against ampicillin/sulbactam (60.1%), trimethoprim/sulfamethoxazole (44.2%), cefazolin (36.2%), cefuroxime sodium (33.5%), and amoxicillin/clavulanate (31.5%). A low level of resistance was noted against cefepime (8.7%), ertapenem (4.6%), norfloxacin (1.3%), and meropenem (0.7%). There was no resistance against amikacin. There is high antibiotic resistance in children with UTI. The patterns of uropathogen antimicrobial resistance vary in susceptibility to antimicrobials depending on region and time. Thus, the trends of antibiotic susceptibility patterns should be analyzed periodically to select the appropriate regimen for UTI treatment. © 2016 Japan Pediatric Society.
Mino-León, Dolores; Reyes-Morales, Hortensia; Doubova, Svetlana V; Pérez-Cuevas, Ricardo; Giraldo-Rodríguez, Liliana; Agudelo-Botero, Marcela
2017-01-01
There is a growing need for evidence based answers to multimorbidity, especially in primary care settings. The aim was estimate the prevalence and patterns of multimorbidity in a Mexican population of public health institution users ≥60 years old. Observational and multicenter study was carried out in four family medicine units in Mexico City; included older men and women who attended at least one consultation with their family doctor during 2013. The most common diseases were grouped into 11 domains. The observed and expected rates, as well as the prevalence ratios, were calculated for the pairs of the more common domains. Logistic regression models were developed to estimate the magnitude of the association. Cluster and principal components analyses were performed to identify multimorbidity patterns. Half of all of the patients who were ≥60 years old and treated by a family doctor had multimorbidity. The most common disease domains were hypertensive and endocrine diseases. The highest prevalence of multimorbidity concerned the renal domain. The domain pairs with the strongest associations were endocrine + renal and hypertension + cardiac. The cluster and principal components analyses revealed five consistent patterns of multimorbidity. The domains grouped into five patterns could establish the framework for developing treatment guides, deepen the knowledge of multimorbidity, develop strategies to prevent it, decrease its burden, and align health services to the care needs that doctors face in daily practice. Copyright © 2017 IMSS. Published by Elsevier Inc. All rights reserved.
Temporal Links in Daily Activity Patterns between Coral Reef Predators and Their Prey
Bosiger, Yoland J.; McCormick, Mark I.
2014-01-01
Few studies have documented the activity patterns of both predators and their common prey over 24 h diel cycles. This study documents the temporal periodicity of two common resident predators of juvenile reef fishes, Cephalopholis cyanostigma (rockcod) and Pseudochromis fuscus (dottyback) and compares these to the activity and foraging pattern of a common prey species, juvenile Pomacentrus moluccensis (lemon damselfish). Detailed observations of activity in the field and using 24 h infrared video in the laboratory revealed that the two predators had very different activity patterns. C. cyanostigma was active over the whole 24 h period, with a peak in feeding strikes at dusk and increased activity at both dawn and dusk, while P. fuscus was not active at night and had its highest strike rates at midday. The activity and foraging pattern of P. moluccensis directly opposes that of C. cyanostigma with individuals reducing strike rate and intraspecific aggression at both dawn and dusk, and reducing distance from shelter and boldness at dusk only. Juveniles examined were just outside the size-selection window of P. fuscus. We suggest that the relatively predictable diel behaviour of coral reef predators results from physiological factors such as visual sensory abilities, circadian rhythmicity, variation in hunting profitability, and predation risk at different times of the day. Our study suggests that the diel periodicity of P. moluccensis behaviour may represent a response to increased predation risk at times when both the ability to efficiently capture food and visually detect predators is reduced. PMID:25354096
[Angiographic evaluation of branching pattern and anatomy of the aortic arch].
Ergun, Onur; Tatar, İdil Güneş; Birgi, Erdem; Durmaz, Hasan Ali; Akçalar, Seray; Kurt, Aydın; Hekimoğlu, Baki
2015-04-01
The study aimed to investigate anatomical variations in branching pattern and anatomy of the aortic arch, and the prevalence of each type. Between September 2011 and November 2013, angiographic studies of 270 patients (144 male, 126 female) were analyzed retrospectively for variations in branching pattern and anatomy of the aortic arch. Patient mean age was 59.8 years (range, 13-88). Branching variations were found and divided into subtypes. Patients were also classified according to arch anatomy. Incidence of variations and types of aortic arch were statistically analysed. Analysis of the 270 patients revealed six types of branching pattern. Type I, classical pattern arch with three branches (TB, LCC, LS), was observed in 198 cases (73.3%). Type II (bovine arch), the most commonly observed variation, in which LCC originates from TB, was observed in 58 cases (21.5%). Type III, in which the left vertebral artery arises from the arch, was seen in seven cases (2.6%). Type IV, a combination of types II and III, was observed in three cases (1.1%). Type V, common origin of common carotids, LS and aberrant RS, was found in three cases (1.1%). Type VI (avian type), arch with only two branches, was observed in one case (0.4%). When patients were classified according to aortic arch anatomy, Type 1, Type 2 and Type 3 were observed in 195, 40 and 35 patients respectively. Knowledge of the variations and anatomy of the aortic arch is essential during interventional procedures and neck-thorax surgery.
Rosen, Tony; Bloemen, Elizabeth M.; LoFaso, Veronica M.; Clark, Sunday; Flomenbaum, Neal; Lachs, Mark S.
2015-01-01
Background Elder abuse is under-recognized by Emergency Department (ED) providers, largely due to challenges distinguishing between abuse and accidental trauma. Objective To describe patterns and circumstances surrounding elder abuse-related and potentially abuse-related injuries in ED patients independently known to be physical elder abuse victims. Methods ED utilization of community-dwelling victims of physical elder abuse in New Haven, CT from 1981-1994 was analyzed previously. Cases were identified using Elderly Protective Services data matched to ED records. 66 ED visits were judged to have high probability of being related to elder abuse and 244 of indeterminate probability. We re-examined these visits to assess whether they occurred due to injury. We identified and analyzed in detail 31 injury-associated ED visits from 26 patients with high probability of being related to elder abuse and 108 visits from 57 patients with intermediate probability and accidental injury. Results Abuse-related injuries were most common on upper extremities (45% of visits) and lower extremities (32%), with injuries on head or neck noted in 13 visits (42%). Bruising was observed in 39% of visits, most commonly on upper extremities. 42% of purportedly accidental injuries had suspicious characteristics, with the most common suspicious circumstance being injury occurring >1 day prior to presentation and the most common suspicious injury pattern being maxillofacial injuries. Conclusion Victims of physical elder abuse commonly have injuries on upper extremities, head, and neck. Suspicious circumstances and injury patterns may be identified and are commonly present when victims of physical elder abuse present with purportedly accidental injuries. PMID:26810019
Leaving A Mark: A Comparison Arthropod Protein Marking Protocols
USDA-ARS?s Scientific Manuscript database
Knowledge of arthropod pest and natural enemy disperal patterns is needed for effective and environmentally benign pest control. The most common tactics used to monitor arthropod dispersal patterns include mark-release-recapture (MRR) and mark-capture methodologies. Both methods require the applica...
Ipsilateral intact fibula as a predictor of tibial plafond fracture pattern and severity.
Luk, Pamela C; Charlton, Timothy P; Lee, Jackson; Thordarson, David B
2013-10-01
The objective of this study was to determine whether there is a difference in fracture pattern and severity of comminution between tibial plafond fractures with and without associated fibular fractures using computed tomography (CT). We hypothesized that the presence of an intact fibula was predictive of increased tibial plafond fracture severity. This was a case control, radiographic review performed at a single level I university trauma center. Between November 2007 and July 2011, 104 patients with 107 operatively treated tibial pilon fractures and preoperative CT scans were identified: 70 patients with 71 tibial plafond fractures had associated fibular fractures, and 34 patients with 36 tibial plafond fractures had intact fibulas. Four criteria were compared between the 2 groups: AO/OTA classification of distal tibia fractures, Topliss coronal and sagittal fracture pattern classification, plafond region of greatest comminution, and degree of proximal extension of fracture line. The intact fibula group had greater percentages of AO/OTA classification B2 type (5.5 vs 0, P = .046) and B3 type (52.8 vs 28.2, P = .013). Conversely, the percentage of AO/OTA classification C3 type was greater in the fractured fibula group (53.5 vs 30.6, P = .025). Evaluation using the Topliss sagittal and coronal classifications revealed no difference between the 2 groups (P = .226). Central and lateral regions of the plafond were the most common areas of comminution in fractured fibula pilons (32% and 31%, respectively). The lateral region of the plafond was the most common area of comminution in intact fibula pilon fractures (42%). There was no statistically significant difference (P = .71) in degree of proximal extension of fracture line between the 2 groups. Tibial plafond fractures with intact fibulas were more commonly associated with AO/OTA classification B-type patterns, whereas those with fractured fibulas were more commonly associated with C-type patterns. An intact fibula may be predictive of less comminution of the plafond. The lateral and central regions of the plafond were the most common areas of comminution in tibial plafond fractures, regardless of fibular status. Level III, case control study.
ERIC Educational Resources Information Center
Warren, Elizabeth; Cooper, Tom
2007-01-01
In early years' (primary grade) classrooms in Australia repeated patterns are commonly explored as an early introductory activity to mathematics. Most young students have an extensive knowledge of and exhibit success in copying, continuing, creating and transferring patterns into other media. By contrast, research indicates one of the most…
Muris, P; Merckelbach, H; Gadet, B; Moulaert, V
2000-03-01
Investigated anxiety symptoms in normal school children 4 to 12 years of age (N = 190). The percentages of children reporting fears, worries, and scary dreams were 75.8, 67.4, and 80.5%, respectively, indicating that these anxiety symptoms are quite common among children. Inspection of the developmental pattern of these phenomena revealed that fears and scary dreams were common among 4- to 6-year-olds, became even more prominent in 7- to 9-year-olds, and then decreased in frequency in 10- to 12-year-olds. The developmental course of worry deviated from this pattern. This phenomenon was clearly more prevalent in older children (i.e., 7- to 12-year-olds) than in younger children. Furthermore, although the frequency of certain types of fears, worries, and dreams were found to change across age groups (e.g., the prevalence of fears and scary dreams pertaining to imaginary creatures decreased with age, whereas worry about test performance increased with age), the top intense fears, worries, and scary dreams remained relatively unchanged across age levels. An examination of the origins of these common anxiety phenomena showed that for fears and scary dreams, information was the most commonly reported pathway, whereas for worry, conditioning experiences were more prominent.
Slack, J.F.; Coad, P.R.
1989-01-01
The tourmalines and chlorites record a series of multiple hydrothermal and metamorphic events. Paragenetic studies suggest that tourmaline was deposited during several discrete stages of mineralization, as evidence by brecciation and cross-cutting relationships. Most of the tourmalines have two concentric growth zones defined by different colours (green, brown, blue, yellow). Some tourmalines also display pale discordant rims that cross-cut and embay the inner growth zones and polycrystalline, multiple-extinction domains. Late sulphide veinlets (chalcopyrite, pyrrhotite) transect the inner growth zones and pale discordant rims of many crystals. The concentric growth zones are interpreted as primary features developed by the main ore-forming hydrothermal system, whereas the discordant rims, polycrystalline domains, and cross-cutting sulphide veinlets reflect post-ore metamorphic processes. Variations in mineral proportions and mineral chemistry within the deposit mainly depend on fluctuations in temperature, pH, water/rock ratios, and amounts of entrained seawater. -from Authors
Interface engineering of Cu(In,Ga)Se2 and atomic layer deposited Zn(O,S) heterojunctions
NASA Astrophysics Data System (ADS)
Schmidt, Sebastian S.; Merdes, Saoussen; Steigert, Alexander; Klenk, Reiner; Kaufmann, Christian A.; Simsek Sanli, Ekin; van Aken, Peter A.; Oertel, Mike; Schneikart, Anja; Dimmler, Bernhard; Schlatmann, Rutger
2017-08-01
Atomic layer deposition of Zn(O,S) is an attractive dry and Cd-free process for the preparation of buffer layers for chalcopyrite solar modules. As we previously reported, excellent cell and module efficiencies were achieved using absorbers from industrial pilot production. These absorbers were grown using a selenization/sulfurization process. In this contribution we report on the interface engineering required to adapt the process to sulfur-free multi source evaporated absorbers. Different approaches to a local sulfur enrichment at the heterojunction have been studied by using surface analysis (XPS) and scanning transmission electron microscopy. We correlate the microstructure and element distribution at the interface with device properties obtained by electronic characterization. The optimized completely dry process yields cell efficiencies >16% and 30 × 30 cm2 minimodule efficiencies of up to 13.9% on industrial substrates. Any degradation observed in the dry heat stress test is fully reversible after light soaking.
NASA Astrophysics Data System (ADS)
Pati, J. K.; Panigrahi, M. K.; Chakarborty, M.
2014-06-01
The dominantly high-K, moderate to high SiO2 containing, variably fractionated, volcanic-arc granitoids (± sheared) from parts of Bundelkhand craton, northcentral India are observed to contain molybdenite (Mo) in widely separated 23 locations in the form of specks, pockets, clots and stringers along with quartz ± pyrite ± arsenopyrite ± chalcopyrite ± bornite ± covellite ± galena ± sphalerite and in invisible form as well. The molybdenite mineralization is predominantly associated with Bundelkhand Tectonic Zone, Raksa Shear Zone, and localized shear zones. The incidence of molybdenite is also observed within sheared quartz and tonalite-trondhjemite-granodiorite (TTG) gneisses. The fluid inclusion data show the presence of bi-phase (H2O-CO2), hypersaline and moderate temperature (100°-300°C) primary stretched fluid inclusions suggesting a possible hydrothermal origin for the Mo-bearing quartz occurring within variably deformed different granitoids variants of Archean Bundelkhand craton.
Michalski, T.C.
1984-01-01
Of the 20 or so amethyst localities reported in Colorado, four are described in some detail and comments are given on their geology. The Crystal Hill mine, near La Garita, Saguache County, contains rock crystal (long slender prisms with small rhombohedral terminations) and pale lavender amethyst (generally <3 in. in length). The deposit was worked as early as the 1800's as a gold mine and also contains abundant manganese oxides. Amethyst, associated with argentiferous galena, sphalerite and chalcopyrite, occurs in the Amethyst mine, in the Creede district, on West Willow Creek, Mineral County. The specimens here consist of small pale pinkish-purple crystals interlayered with milky quartz, some as banded forms ("sowbelly agate') and as geode-like vugs. Amethyst also occurs in Unaweep Canyon south of Grand Junction in Mesa County. Pale to very dark amethyst occurs as crystals dominated by large rhombohedra and small prisms (approx 1 in. across). At Red Feather Lakes, Larimer County, amethyst crystals are medium to dark purple and have prism and rhombohedral faces nearly equally developed; some are doubly terminated. -R.S.M.
Pathak, Ashish; Morrison, Liam; Healy, Mark Gerard
2017-04-01
Bioleaching is considered to be a low-cost, eco-friendly technique for leaching valuable metals from a variety of matrixes. However, the inherent slow dissolution kinetics and low metal leaching yields have restricted its wider commercial applicability. Recent advancements in bio-hydrometallurgy have suggested that these critical issues can be successfully alleviated through the addition of a catalyst. The catalyzing properties of a variety of metals ions (Ag + , Hg ++ , Bi +++ , Cu ++ , Co ++ etc.) during bioleaching have been successfully demonstrated. In this article, the role and mechanisms of these metal species in catalyzing bioleaching from different minerals (chalcopyrite, complex sulfides, etc.) and waste materials (spent batteries) are reviewed, techno-economic and environmental challenges associated with the use of metals ions as catalysts are identified, and future prospectives are discussed. Based on the analysis, it is suggested that metal ion-catalyzed bioleaching will play a key role in the development of future industrial bio-hydrometallurgical processes. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Soler, A.; Ayora, C.; Cardellach, E.; Delgado, J.
1990-12-01
Several varieties of skarn outcrop have been found to develop along the contact between the Andorra granite and the Devonian limestones. The skarns contain variable amounts of gold ranging up to 5 g/t, always associated with sulphides. The sulphides in the skarn include arsenopyrite and pyrrhotite with lesser amounts of chalcopyrite, galena, sphalerite and Bi-minerals. Geothermometric and geobarometric data indicate the skarns formed at about 2 kbar and temperatures ranging from 500 ° to 350 °C from CO2-free polysaline brines at a slightly acidic pH and oxygen fugacity which decreases with time from the pyrite-pyrrhotite-magnetite towards the QFM buffer. Available data on gold solubility suggest that sufficient quantities of gold to form an ore deposit could have been transported as AuCl{2/-}at the high temperatures and salinities under which the skarns formed. Both gold deposition and sulphide precipitation could have occurred due to a decrease in temperature and/or oxygen fugacity.
ISOLATION AND PROPERTIES OF AN IRON-OXIDIZING THIOBACILLUS
Razzell, W. E.; Trussell, P. C.
1963-01-01
Razzell, W. E. (British Columbia Research Council, Vancouver, Canada) and P. C. Trussell. Isolation and properties of an iron-oxidizing Thiobacillus. J. Bacteriol. 85:595–603. 1963. — An organism isolated from acidic copper-leaching waters has been shown to oxidize ferrous ions, sulfur, and metallic sulfides but exhibit peculiar responses to thiosulfate. The name Thiobacillus ferrooxidans has been used to describe it. A pH of 2.5 is optimal for growth on iron, sulfur, and metallic sulfides, but cells free from iron can be obtained from growth at pH 1.6, and sulfur cultures adjusted to pH 5.5 readily attain a pH of 1.8. A stationary cultivation procedure appears superior to percolation techniques for studying the oxidation of finely divided metallic sulfides. Concentrations of soluble copper in excess of 1 g per liter were obtained from chalcopyrite in less than 4 weeks. Chalcocite oxidation proceeded in the absence of iron. Sodium chloride inhibits iron oxidation without preventing oxidation of metallic sulfides by the organism. PMID:14042937
Stowe, Ashley; Burger, Arnold
2016-05-10
A method for synthesizing I-III-VI.sub.2 compounds, including: melting a Group III element; adding a Group I element to the melted Group III element at a rate that allows the Group I and Group III elements to react thereby providing a single phase I-III compound; and adding a Group VI element to the single phase I-III compound under heat, with mixing, and/or via vapor transport. The Group III element is melted at a temperature of between about 200 degrees C. and about 700 degrees C. Preferably, the Group I element consists of a neutron absorber and the group III element consists of In or Ga. The Group VI element and the single phase I-III compound are heated to a temperature of between about 700 degrees C. and about 1000 degrees C. Preferably, the Group VI element consists of S, Se, or Te. Optionally, the method also includes doping with a Group IV element activator.
NASA Astrophysics Data System (ADS)
Brunner, Sebastian; Zajac, Kai; Nadler, Michael; Seifart, Klaus; Kaufmann, Christian A.; Caballero, Raquel; Schock, Hans-Werner; Hartmann, Lars; Otte, Karten; Rahm, Andreas; Scheit, Christian; Zachmann, Hendrick; Kessler, Friedrich; Wurz, Roland; Schulke, Peter
2011-10-01
A group of partners from an academic and industrial background are developing a flexible Cu(In,Ga)Se2 (CIGSe) thin film solar cell technology on a polyimide substrate that aims to be a future alternative to current rigid solar cell technologies for space applications. In particular on missions with high radiation volumes, the superior tolerance of chalcopyrite based thin film solar cell (TFSC) technologies with respect to electron and proton radiation, when compared to the established Si- or III-V based technologies, can be advantageous. Of all thin film technologies, those based on CIGSe have the highest potential to reach attractive photovoltaic conversion efficiencies and combine these with low weight in order to realize high power densities on solar cell and generator level. The use of a flexible substrate ensures a high packing density. A working demonstrator is scheduled for flight this year.
Normark, W.R.
1986-01-01
The submersible Alvin was used to investigate 3 active hydrothermal discharge sites along the S Juan de Fuca Ridge in September 1984. The hydrothermal zones occur within a 10-30m-deep, 30-50m-wide cleft marking the center of the axial valley. This cleft is the eruptive locus for the axial valley. The hydrothermal vents coincide with the main eruptive vents along the cleft. Each hydrothermal zone has multiple discharge sites extending as much as 500m along the cleft. Sulfide deposits occur as clusters (15-100m2 area) of small chimneys (= or <2m high) and as individual and clustered fields of large, branched chimneys (= or <10m high). Recovered sulfide samples are predominantly the tops of chimneys and spires and typically contain more than 80% sphalerite and wurtzite with minor pyrrhotite, pyrite, marcasite, isocubanite, chalcopyrite, anhydrite, anhydrite, and amorphous silica. The associated hydrothermal fluids have the highest chlorinity of any reported to date.-Authors
NASA Astrophysics Data System (ADS)
Bustos Rodríguez, H.; Rojas Martínez, Y.; Oyola Lozano, D.; Pérez Alcázar, G. A.; Fajardo, M.; Mojica, J.; Molano, Y. J. C.
2005-02-01
In this work a study on gold mineral samples is reported, using optical microscopy, X-ray diffraction (XRD) and Mössbauer spectroscopy (MS). The auriferous samples are from the El Diamante mine, located in Guachavez-Nariño (Colombia) and were prepared by means of polished thin sections. The petrography analysis registered the presence, in different percentages that depend on the sample, of pyrite, quartz, arsenopyirite, sphalerite, chalcopyrite and galena. The XRD analysis confirmed these findings through the calculated cell parameters. One typical Rietveld analysis showed the following weight percent of phases: 85.0% quartz, 14.5% pyrite and 0.5% sphalerite. In this sample, MS demonstrated the presence of two types of pyrite whose hyperfine parameters are δ 1 = 0.280 ± 0.002 mm/s and Δ 1 = 0.642 ± 0.002 mm/s, δ 2 = 0.379 ± 0.002 mm/s and Δ 2 = 0.613 ± 0.002 mm/s.
NASA Astrophysics Data System (ADS)
Al Tayyar, Jaffar; Jackson, Norman J.; Al-Yazidi, Saeed
The Jabalat post-tectonic granite pluton is composed of albite- and oligoclase-bearing, low-calcium, F-, Sn- and Rb-rich subsolvus granites. These granites display evidence of late-magmatic, granitophile- and metallic-element specialization, resulting ultimately in the development of post-magmatic, metalliferous hydrothermal systems characterized by a Mo sbnd Sn sbnd Cu sbnd Pb sbnd Zn sbnd Bi sbnd Ag sbnd F signature. Two main types of mineralization are present within the pluton and its environs: (1) weakly mineralized felsic and aplitic dikes and veins enhanced in Mo, Bi, Ag, Pb and Cu; and (2) pyrite—molybdenite—chalcopyrite-bearing quartz and quartz—feldspar veins rich in Mo, Sn, Bi, Cu, Zn and Ag. A satellite stock, 3 km north of the main intrusion, is composed of fine-grained, miarolitic, muscovite—albite—microcline (microperthite) granite. The flanks of this intrusion and adjacent dioritic rocks are greisenized and highly enriched in Sn, Bi and Ag. Quartz veins which transect the satellite stock contain molybdenite and stannite.
Progress in bioleaching: part B: applications of microbial processes by the minerals industries.
Brierley, Corale L; Brierley, James A
2013-09-01
This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249-257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation-reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation-heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.
Excitonic spectra in HgGa2Se4 crystals
NASA Astrophysics Data System (ADS)
Syrbu, N. N.; Zalamai, V. V.
2018-02-01
Ground and excited states of four excitonic series (A, B, C and D) were discovered in HgGa2Se4 crystals at 10 K. Parameters of excitons and bands were determined. An effective mass of electrons mc is equal to 0.26m0 and masses of holes mv1, mv2 and mv3 are equal to 2.48m0, 2.68m0 and 1.6m0 respectively in Γ point of Brilloin zone. Valence bands splitting by crystal field (Δcf = 70 meV) and spin-orbital interaction (Δso = 250 meV) were estimated in Brillouin zone center. Optical functions (n, ε1 and ε2) for polarizations E⊥c and E||c in electron transitions region (2-6 eV) were calculated by Kramers-Kronig method. The discovered features were discussed on a base of the existing theoretical energetical band structure calculations and excitonic bands symmetries in k = 0 Brillouin zone for chalcopyrite crystals. The resonance Raman scattering was investigated.
Wise, T; Radua, J; Via, E; Cardoner, N; Abe, O; Adams, T M; Amico, F; Cheng, Y; Cole, J H; de Azevedo Marques Périco, C; Dickstein, D P; Farrow, T F D; Frodl, T; Wagner, G; Gotlib, I H; Gruber, O; Ham, B J; Job, D E; Kempton, M J; Kim, M J; Koolschijn, P C M P; Malhi, G S; Mataix-Cols, D; McIntosh, A M; Nugent, A C; O'Brien, J T; Pezzoli, S; Phillips, M L; Sachdev, P S; Salvadore, G; Selvaraj, S; Stanfield, A C; Thomas, A J; van Tol, M J; van der Wee, N J A; Veltman, D J; Young, A H; Fu, C H; Cleare, A J; Arnone, D
2017-10-01
Finding robust brain substrates of mood disorders is an important target for research. The degree to which major depression (MDD) and bipolar disorder (BD) are associated with common and/or distinct patterns of volumetric changes is nevertheless unclear. Furthermore, the extant literature is heterogeneous with respect to the nature of these changes. We report a meta-analysis of voxel-based morphometry (VBM) studies in MDD and BD. We identified studies published up to January 2015 that compared grey matter in MDD (50 data sets including 4101 individuals) and BD (36 data sets including 2407 individuals) using whole-brain VBM. We used statistical maps from the studies included where available and reported peak coordinates otherwise. Group comparisons and conjunction analyses identified regions in which the disorders showed common and distinct patterns of volumetric alteration. Both disorders were associated with lower grey-matter volume relative to healthy individuals in a number of areas. Conjunction analysis showed smaller volumes in both disorders in clusters in the dorsomedial and ventromedial prefrontal cortex, including the anterior cingulate cortex and bilateral insula. Group comparisons indicated that findings of smaller grey-matter volumes relative to controls in the right dorsolateral prefrontal cortex and left hippocampus, along with cerebellar, temporal and parietal regions were more substantial in major depression. These results suggest that MDD and BD are characterised by both common and distinct patterns of grey-matter volume changes. This combination of differences and similarities has the potential to inform the development of diagnostic biomarkers for these conditions.