Sample records for challenging engineering problem

  1. Promoting Collaborative Problem-Solving Skills in a Course on Engineering Grand Challenges

    ERIC Educational Resources Information Center

    Zou, Tracy X. P.; Mickleborough, Neil C.

    2015-01-01

    The ability to solve problems with people of diverse backgrounds is essential for engineering graduates. A course on engineering grand challenges was designed to promote collaborative problem-solving (CPS) skills. One unique component is that students need to work both within their own team and collaborate with the other team to tackle engineering…

  2. Problem Decomposition and Recomposition in Engineering Design: A Comparison of Design Behavior between Professional Engineers, Engineering Seniors, and Engineering Freshmen

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt; Gero, John; DeBerard, Scott; DeBerard, Oenardi; Reeve, Edward

    2016-01-01

    The authors investigated the differences in using problem decomposition and problem recomposition between dyads of engineering experts, engineering seniors, and engineering freshmen. Participants worked in dyads to complete an engineering design challenge within 1 hour. The entire design process was video and audio recorded. After the design…

  3. Grand challenges for biological engineering

    PubMed Central

    Yoon, Jeong-Yeol; Riley, Mark R

    2009-01-01

    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society. PMID:19772647

  4. Challenges for Engineering Design, Construction, and Maintenance of Infrastructure in Afghanistan

    DTIC Science & Technology

    2010-11-01

    applied engineering expertise that collectively can solve challenging infra- structure problems. USACE-ERDC’s researchers and engineers are field...Development Center (ERDC) possesses a unique combination of basic research and applied engineering expertise that collectively can solve challenging...restoration, and other projects. The USACE Engineer Research and Development Center (ERDC) possesses a unique combination of basic research and applied

  5. Engineering Background: Modern Formats and Challenges of Conceptual Engineering

    NASA Astrophysics Data System (ADS)

    Khamidullina, A. F.; Kuzmina, M. A.; Khusnutdinova, E. M.; Konakhina, I. A.

    2017-09-01

    This paper describes the analysis of problems and development perspectives of engineering education in our and other countries. Special attention is given to modern formats of education that motivate creative efforts of engineers-to-be as well as issues of conceptual engineering taking the challenges of modernity into account.

  6. Designing Biomimetic Materials from Marine Organisms.

    PubMed

    Nichols, William T

    2015-01-01

    Two biomimetic design approaches that apply biological solutions to engineering problems are discussed. In the first case, motivation comes from an engineering problem and the key challenge is to find analogous biological functions and map them into engineering materials. We illustrate with an example of water pollution remediation through appropriate design of a biomimetic sponge. In the second case, a biological function is already known and the challenge is to identify the appropriate engineering problem. We demonstrate the biological approach with marine diatoms that control energy and materials at their surface providing inspiration for a number of engineering applications. In both cases, it is essential to select materials and structures at the nanoscale to control energy and materials flows at interfaces.

  7. Enabling Engineering Student Success: The Final Report for the Center for the Advancement of Engineering Education. CAEE-TR-10-02

    ERIC Educational Resources Information Center

    Atman, Cynthia J.; Sheppard, Sheri D.; Turns, Jennifer; Adams, Robin S.; Fleming, Lorraine N.; Stevens, Reed; Streveler, Ruth A.; Smith, Karl A.; Miller, Ronald L.; Leifer, Larry J.; Yasuhara, Ken; Lund, Dennis

    2010-01-01

    Today's engineering graduates will solve tomorrow's problems in a world that is advancing faster and facing more critical challenges than ever before. This situation creates significant demand for engineering education to evolve in order to effectively prepare a diverse community of engineers for these challenges. Such concerns have led to the…

  8. Problem-Based Learning in Biomechanics: Advantages, Challenges, and Implementation Strategies.

    PubMed

    Clyne, Alisa Morss; Billiar, Kristen L

    2016-07-01

    Problem-based learning (PBL) has been shown to be effective in biomedical engineering education, particularly in motivating student learning, increasing knowledge retention, and developing problem solving, communication, and teamwork skills. However, PBL adoption remains limited by real challenges in effective implementation. In this paper, we review the literature on advantages and challenges of PBL and present our own experiences. We also provide practical guidelines for implementing PBL, including two examples of PBL modules from biomechanics courses at two different institutions. Overall, we conclude that the benefits for both professors and students support the use of PBL in biomedical engineering education.

  9. Testing Scientific Software: A Systematic Literature Review.

    PubMed

    Kanewala, Upulee; Bieman, James M

    2014-10-01

    Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques.

  10. Ingenuity in Action: Connecting Tinkering to Engineering Design Processes

    ERIC Educational Resources Information Center

    Wang, Jennifer; Werner-Avidon, Maia; Newton, Lisa; Randol, Scott; Smith, Brooke; Walker, Gretchen

    2013-01-01

    The Lawrence Hall of Science, a science center, seeks to replicate real-world engineering at the "Ingenuity in Action" exhibit, which consists of three open-ended challenges. These problems encourage children to engage in engineering design processes and problem-solving techniques through tinkering. We observed and interviewed 112…

  11. Systems engineering for very large systems

    NASA Technical Reports Server (NTRS)

    Lewkowicz, Paul E.

    1993-01-01

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  12. Systems engineering for very large systems

    NASA Astrophysics Data System (ADS)

    Lewkowicz, Paul E.

    Very large integrated systems have always posed special problems for engineers. Whether they are power generation systems, computer networks or space vehicles, whenever there are multiple interfaces, complex technologies or just demanding customers, the challenges are unique. 'Systems engineering' has evolved as a discipline in order to meet these challenges by providing a structured, top-down design and development methodology for the engineer. This paper attempts to define the general class of problems requiring the complete systems engineering treatment and to show how systems engineering can be utilized to improve customer satisfaction and profit ability. Specifically, this work will focus on a design methodology for the largest of systems, not necessarily in terms of physical size, but in terms of complexity and interconnectivity.

  13. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    ERIC Educational Resources Information Center

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-01-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to…

  14. Testing Scientific Software: A Systematic Literature Review

    PubMed Central

    Kanewala, Upulee; Bieman, James M.

    2014-01-01

    Context Scientific software plays an important role in critical decision making, for example making weather predictions based on climate models, and computation of evidence for research publications. Recently, scientists have had to retract publications due to errors caused by software faults. Systematic testing can identify such faults in code. Objective This study aims to identify specific challenges, proposed solutions, and unsolved problems faced when testing scientific software. Method We conducted a systematic literature survey to identify and analyze relevant literature. We identified 62 studies that provided relevant information about testing scientific software. Results We found that challenges faced when testing scientific software fall into two main categories: (1) testing challenges that occur due to characteristics of scientific software such as oracle problems and (2) testing challenges that occur due to cultural differences between scientists and the software engineering community such as viewing the code and the model that it implements as inseparable entities. In addition, we identified methods to potentially overcome these challenges and their limitations. Finally we describe unsolved challenges and how software engineering researchers and practitioners can help to overcome them. Conclusions Scientific software presents special challenges for testing. Specifically, cultural differences between scientist developers and software engineers, along with the characteristics of the scientific software make testing more difficult. Existing techniques such as code clone detection can help to improve the testing process. Software engineers should consider special challenges posed by scientific software such as oracle problems when developing testing techniques. PMID:25125798

  15. Engineering design: A cognitive process approach

    NASA Astrophysics Data System (ADS)

    Strimel, Greg Joseph

    The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.

  16. The Transformative Potential of Engaging in Science Inquiry-Based Challenges: The ATSE Wonder of Science Challenge

    ERIC Educational Resources Information Center

    Tomas, Louisa; Jackson, Cliff; Carlisle, Karen

    2014-01-01

    In 2012, the Australian Academy of Technological Sciences and Engineering (ATSE) piloted the "Wonder of Science Challenge" with a view to enhance school students' interest in Science, Technology, Engineering and Mathematics (STEM). Students in 15 schools across northern Queensland were provided with an inquiry-based research problem and…

  17. Chemical Engineers Go to the Movies (Stimulating Problems for the Contemporary Undergraduate Student)

    ERIC Educational Resources Information Center

    Smart, Jimmy L.

    2007-01-01

    In this article, the author presents five problems that are representative of some of the "movie problems" that he has used on tests in various courses, including reactor design, heat transfer, mass transfer, engineering economics, and fluid mechanics. These problems tend to be open-ended. They can be challenging and can often be worked a variety…

  18. Control Engineering, System Theory and Mathematics: The Teacher's Challenge

    ERIC Educational Resources Information Center

    Zenger, K.

    2007-01-01

    The principles, difficulties and challenges in control education are discussed and compared to the similar problems in the teaching of mathematics and systems science in general. The difficulties of today's students to appreciate the classical teaching of engineering disciplines, which are based on rigorous and scientifically sound grounds, are…

  19. Software Past, Present, and Future: Views from Government, Industry and Academia

    NASA Technical Reports Server (NTRS)

    Holcomb, Lee; Page, Jerry; Evangelist, Michael

    2000-01-01

    Views from the NASA CIO NASA Software Engineering Workshop on software development from the past, present, and future are presented. The topics include: 1) Software Past; 2) Software Present; 3) NASA's Largest Software Challenges; 4) 8330 Software Projects in Industry Standish Groups 1994 Report; 5) Software Future; 6) Capability Maturity Model (CMM): Software Engineering Institute (SEI) levels; 7) System Engineering Quality Also Part of the Problem; 8) University Environment Trends Will Increase the Problem in Software Engineering; and 9) NASA Software Engineering Goals.

  20. Problem Definition as a Stimulus to the Creative Process: Analysis of a Classroom Exercise

    ERIC Educational Resources Information Center

    Vizioli, Renato; Kaminski, Paulo Carlos

    2017-01-01

    Dealing with problem-solving has been a growing challenge in teaching engineering and over the career of these professionals. To increase the ability to understand a problem and consequently improve the quality of the solutions, an exercise was proposed to students of an MBA program, and they have experienced some challenges on interpreting…

  1. Tracking Student Participants from a REU Site with NAE Grand Challenges as the Common Theme

    ERIC Educational Resources Information Center

    Burkett, Susan; Dye, Tabatha; Johnson, Pauline

    2015-01-01

    The National Academy of Engineering (NAE) Grand Challenges provides the theme for this NSFfunded Research Experience for Undergraduates (REU) site. Research topics, with their broad societal impact, allow undergraduate students from multiple engineering disciplines and computer science to work together on exciting and critical problems. The…

  2. Student Learning Outcomes from a Pilot Medical Innovations Course with Nursing, Engineering, and Biology Undergraduate Students

    ERIC Educational Resources Information Center

    Ludwig, Patrice M.; Nagel, Jacquelyn K.; Lewis, Erica J.

    2017-01-01

    Background: Preparing today's undergraduate students from science, technology, engineering, and math (STEM) and related health professions to solve wide-sweeping healthcare challenges is critical. Moreover, it is imperative that educators help students develop the capabilities needed to meet those challenges, including problem solving,…

  3. High School Student Modeling in the Engineering Design Process

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Huffman, Tanner; Thayer, Hilde

    2014-01-01

    A diverse group of 20 high school students from four states in the US were individually provided with an engineering design challenge. Students chosen were in capstone engineering courses and had taken multiple engineering courses. As students considered the problem and developed a solution, observational data were recorded and artifacts…

  4. Selective Guide to Literature on Mining Engineering. Engineering Literature Guides, Number 6.

    ERIC Educational Resources Information Center

    Erdmann, Charlotte A., Comp.

    The multidisciplinary field of mining engineering offers many challenges. Often, many sources must be used to solve a problem. This document is a survey of information sources in mining engineering and is intended to identify those core resources which can help engineers and librarians to find information about the discipline. Sections include:…

  5. Challenge of biomechanics.

    PubMed

    Volokh, K Y

    2013-06-01

    The application of mechanics to biology--biomechanics--bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or planning treatment to a disease. The notion of interpreting empirical data without theory is unscientific and unsound. This paper attempts to fortify the importance of biomechanics and invigorate research efforts for those engineers and mechanicians who are not yet involved in the field. It is not aimed here, however, to give an overview of biomechanics. Instead, three unsolved problems are formulated to challenge the readers. At the micro-scale, the problem of the structural organization and integrity of the living cell is presented. At the meso-scale, the enigma of fingerprint formation is discussed. At the macro-scale, the problem of predicting aneurysm ruptures is reviewed. It is aimed here to attract the attention of engineers and mechanicians to problems in biomechanics which, in the author's opinion, will dominate the development of engineering and mechanics in forthcoming years.

  6. Engineering Encounters: The Tightrope Challenge

    ERIC Educational Resources Information Center

    Burton, Bill

    2014-01-01

    In order to prepare students to become the next innovators, teachers need to provide real-world challenges that allow children to exercise their innovation muscles. Innovation starts with a problem and innovators work to solve a problem by planning, creating, and testing. The real-world innovation process does not happen on a worksheet, and it…

  7. Sustainable Development and Energy Geotechnology Potential Roles for Geotechnical Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FragaszyProgram Dire, Dr. R. J.; Santamarina, Carlos; Espinoza, N.

    2011-01-01

    The world is facing unprecedented challenges related to energy resources, global climate change, material use, and waste generation. Failure to address these challenges will inhibit the growth of the developing world and will negatively impact the standard of living and security of future generations in all nations. The solutions to these challenges will require multidisciplinary research across the social and physical sciences and engineering. Although perhaps not always recognized, geotechnical engineering expertise is critical to the solution of many energy and sustainability-related problems. Hence, geotechnical engineers and academicians have opportunity and responsibility to contribute to the solution of these worldwidemore » problems. Research will need to be extended to non-standard issues such as thermal properties of soils; sediment and rock response to extreme conditions and at very long time scales; coupled hydro-chemo-thermo-bio-mechanical processes; positive feedback systems; the development of discontinuities; biological modification of soil properties; spatial variability; and emergent phenomena. Clearly, the challenges facing geotechnical engineering in the future will require a much broader knowledge base than our traditional educational programs provide. The geotechnical engineering curricula, from undergraduate education through continuing professional education, must address the changing needs of a profession that will increasingly be engaged in alternative/renewable energy production; energy efficiency; sustainable design, enhanced and more efficient use of natural resources, waste management, and underground utilization.« less

  8. Get a Grip! A Middle School Engineering Challenge

    ERIC Educational Resources Information Center

    Olds, Suzanne A.; Harrell, Deborah A.; Valente, Michael E.

    2006-01-01

    Investigating the field of engineering offers the opportunity for interdisciplinary, hands-on, inquiry-based units that integrate real-world applications. However, many K-12 students are not exposed to engineering until they enter college. Get a Grip! is a problem-based unit that places middle school students in the role of engineers who are…

  9. EnviroTech: Enhancing Environmental Literacy and Technology Assessment Skills

    ERIC Educational Resources Information Center

    Rose, Mary Annette

    2010-01-01

    It is no coincidence that many of the "Grand Challenges for Engineering" (National Academy of Engineering, 2007-2010)--such as carbon sequestration--address environmental problems that were precipitated by human inventiveness and engineering achievements. Although people recognize their dependence upon environmental processes to provide…

  10. Robot-aided electrospinning toward intelligent biomedical engineering.

    PubMed

    Tan, Rong; Yang, Xiong; Shen, Yajing

    2017-01-01

    The rapid development of robotics offers new opportunities for the traditional biofabrication in higher accuracy and controllability, which provides great potentials for the intelligent biomedical engineering. This paper reviews the state of the art of robotics in a widely used biomaterial fabrication process, i.e., electrospinning, including its working principle, main applications, challenges, and prospects. First, the principle and technique of electrospinning are introduced by categorizing it to melt electrospinning, solution electrospinning, and near-field electrospinning. Then, the applications of electrospinning in biomedical engineering are introduced briefly from the aspects of drug delivery, tissue engineering, and wound dressing. After that, we conclude the existing problems in traditional electrospinning such as low production, rough nanofibers, and uncontrolled morphology, and then discuss how those problems are addressed by robotics via four case studies. Lastly, the challenges and outlooks of robotics in electrospinning are discussed and prospected.

  11. Collaborative Systems Thinking: A Response to the Problems Faced by Systems Engineering's 'Middle Tier'

    NASA Technical Reports Server (NTRS)

    Phfarr, Barbara B.; So, Maria M.; Lamb, Caroline Twomey; Rhodes, Donna H.

    2009-01-01

    Experienced systems engineers are adept at more than implementing systems engineering processes: they utilize systems thinking to solve complex engineering problems. Within the space industry demographics and economic pressures are reducing the number of experienced systems engineers that will be available in the future. Collaborative systems thinking within systems engineering teams is proposed as a way to integrate systems engineers of various experience levels to handle complex systems engineering challenges. This paper uses the GOES-R Program Systems Engineering team to illustrate the enablers and barriers to team level systems thinking and to identify ways in which performance could be improved. Ways NASA could expand its engineering training to promote team-level systems thinking are proposed.

  12. Limestone or Wax?

    ERIC Educational Resources Information Center

    Sargianis, Kristin; Lachapelle, Cathy P.; Cunningham, Christine M.; Facchiano, Jean; Sanderson, Cheryl; Slater, Patricia

    2012-01-01

    In this article, the authors focus on an Engineering is Elementary unit that emphasizes students' understanding and application of properties of materials in the context of an engineering design challenge. Students build understanding through a series of hands-on activities, then apply their knowledge to solve a materials engineering problem:…

  13. Engineering Design for Engineering Design: Benefits, Models, and Examples from Practice

    ERIC Educational Resources Information Center

    Turner, Ken L., Jr.; Kirby, Melissa; Bober, Sue

    2016-01-01

    Engineering design, a framework for studying and solving societal problems, is a key component of STEM education. It is also the area of greatest challenge within the Next Generation Science Standards, NGSS. Many teachers feel underprepared to teach or create activities that feature engineering design, and integrating a lesson plan of core content…

  14. Engineering the System and Technical Integration

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Ryan, R. S.; Schutzenhofer, L. A.

    2011-01-01

    Approximately 80% of the problems encountered in aerospace systems have been due to a breakdown in technical integration and/or systems engineering. One of the major challenges we face in designing, building, and operating space systems is: how is adequate integration achieved for the systems various functions, parts, and infrastructure? This Contractor Report (CR) deals with part of the problem of how we engineer the total system in order to achieve the best balanced design. We will discuss a key aspect of this question - the principle of Technical Integration and its components, along with management and decision making. The CR will first provide an introduction with a discussion of the Challenges in Space System Design and meeting the challenges. Next is an overview of Engineering the System including Technical Integration. Engineering the System is expanded to include key aspects of the Design Process, Lifecycle Considerations, etc. The basic information and figures used in this CR were presented in a NASA training program for Program and Project Managers Development (PPMD) in classes at Georgia Tech and at Marshall Space Flight Center (MSFC). Many of the principles and illustrations are extracted from the courses we teach for MSFC.

  15. Integration of Sustainability in Engineering Education: Why Is PBL an Answer?

    ERIC Educational Resources Information Center

    Guerra, Aida

    2017-01-01

    Purpose: Education for sustainable development (ESD) is one of the challenges engineering education currently faces. Engineering education needs to revise and change its curriculum to integrate ESD principles and knowledge. Problem based learning (PBL) has been one of the main learning pedagogies used to integrate sustainability in engineering…

  16. Engineering therapies in the CNS: what works and what can be translated.

    PubMed

    Shoffstall, Andrew J; Taylor, Dawn M; Lavik, Erin B

    2012-06-25

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Engineering Therapies in the CNS: What works and what can be translated

    PubMed Central

    Shoffstall, Andrew J.; Taylor, Dawn M.; Lavik, Erin B.

    2012-01-01

    Engineering is the art of taking what we know and using it to solve problems. As engineers, we build tool chests of approaches; we attempt to learn as much as possible about the problem at hand, and then we design, build, and test our approaches to see how they impact the system. The challenge of applying this approach to the central nervous system (CNS) is that we often do not know the details of what is needed from the biological side. New therapeutic options for treating the CNS range from new biomaterials to make scaffolds, to novel drug-delivery techniques, to functional electrical stimulation. However, the reality is that translating these new therapies and making them widely available to patients requires collaborations between scientists, engineers, clinicians, and patients to have the greatest chance of success. Here we discuss a variety of new treatment strategies and explore the pragmatic challenges involved with engineering therapies in the CNS. PMID:22330751

  18. Impact of Context-Rich, Multifaceted Problems on Students' Attitudes Towards Problem-Solving

    NASA Astrophysics Data System (ADS)

    Ogilvie, Craig

    2008-04-01

    Young scientists and engineers need strong problem-solving skills to enable them to address the broad challenges they will face in their careers. These challenges will likely be ill-defined and open-ended with either unclear goals, insufficient constraints, multiple possible solutions, and different criteria for evaluating solutions so that our young scientists and engineers must be able to make judgments and defend their proposed solutions. In contrast, many students believe that problem-solving is being able to apply set procedures or algorithms to tasks and that their job as students is to master an ever-increasing list of procedures. This gap between students' beliefs and the broader, deeper approaches of experts is a strong barrier to the educational challenge of preparing students to succeed in their future careers. To start to address this gap, we have used multi-faceted, context-rich problems in a sophomore calculus-based physics course. To assess whether there was any change in students' attitudes or beliefs towards problem-solving, students were asked to reflect on their problem-solving at the beginning and at the end of the semester. These reflections were coded as containing one or more problem-solving ideas. The change in students' beliefs will be shown in this talk.

  19. Virtual Bridge Design Challenge

    ERIC Educational Resources Information Center

    Mitts, Charles R.

    2013-01-01

    This design/problem-solving activity challenges students to design a replacement bridge for one that has been designated as either structurally deficient or functionally obsolete. The Aycock MS Technology/STEM Magnet Program Virtual Bridge Design Challenge is an authentic introduction to the engineering design process. It is a socially relevant…

  20. Representation and misrepresentation: Tufte and the Morton Thiokol engineers on the Challenger.

    PubMed

    Robison, Wade; Boisjoly, Roger; Hoeker, David; Young, Stefan

    2002-01-01

    This paper examines the role of the Morton Thiokol engineers in the decisions surrounding the launch of the Challenger, particularly with reference to an analysis of this event by Edward Tufte. The engineers at Morton Thiokol recommended against the launch of Challenger because the projected launch temperature between 26 degrees F to 29 degrees F was far outside their field database of successful launches. The engineers had asked for, but not received, data necessary to determine the cause of massive blow-by on the launch the previous January, and they had informed their managers and NASA that continuing flights could be catastrophic if the cause of the problems with the launches was not discovered. The authors conclude that the engineers thus did what they were ethically as well as professionally obligated to do.

  1. In-house welding studies supporting the prelaunch assessment of the STS-6 main engines

    NASA Technical Reports Server (NTRS)

    Hawkins, L. L.

    1983-01-01

    Welding studies were undertaken as a result of problems with the Challenger engines. The process used to perform these welds on heat exchanger coils, and sample test data, are described. Recommendations for process improvement are included. Effort to simulate problem welds, as well as good welds, test data, and conclusions for the high pressure fuel turbopump are also are discussed.

  2. Expert vs. novice: Problem decomposition/recomposition in engineering design

    NASA Astrophysics Data System (ADS)

    Song, Ting

    The purpose of this research was to investigate the differences of using problem decomposition and problem recomposition among dyads of engineering experts, dyads of engineering seniors, and dyads of engineering freshmen. Fifty participants took part in this study. Ten were engineering design experts, 20 were engineering seniors, and 20 were engineering freshmen. Participants worked in dyads to complete an engineering design challenge within an hour. The entire design process was video and audio recorded. After the design session, members participated in a group interview. This study used protocol analysis as the methodology. Video and audio data were transcribed, segmented, and coded. Two coding systems including the FBS ontology and "levels of the problem" were used in this study. A series of statistical techniques were used to analyze data. Interview data and participants' design sketches also worked as supplemental data to help answer the research questions. By analyzing the quantitative and qualitative data, it was found that students used less problem decomposition and problem recomposition than engineer experts in engineering design. This result implies that engineering education should place more importance on teaching problem decomposition and problem recomposition. Students were found to spend less cognitive effort when considering the problem as a whole and interactions between subsystems than engineer experts. In addition, students were also found to spend more cognitive effort when considering details of subsystems. These results showed that students tended to use dept-first decomposition and experts tended to use breadth-first decomposition in engineering design. The use of Function (F), Behavior (B), and Structure (S) among engineering experts, engineering seniors, and engineering freshmen was compared on three levels. Level 1 represents designers consider the problem as an integral whole, Level 2 represents designers consider interactions between subsystems, and Level 3 represents designers consider details of subsystems. The results showed that students used more S on Level 1 and 3 but they used less F on Level 1 than engineering experts. The results imply that engineering curriculum should improve the teaching of problem definition in engineering design because students need to understand the problem before solving it.

  3. Infusing Ethics into the Development of Engineers: Exemplary Education Activities and Programs

    ERIC Educational Resources Information Center

    National Academies Press, 2016

    2016-01-01

    Ethical practice in engineering is critical for ensuring public trust in the field and in its practitioners, especially as engineers increasingly tackle international and socially complex problems that combine technical and ethical challenges. This report aims to raise awareness of the variety of exceptional programs and strategies for improving…

  4. Engineering Education in K-12 Schools

    NASA Astrophysics Data System (ADS)

    Spence, Anne

    2013-03-01

    Engineers rely on physicists as well as other scientists and mathematicians to explain the world in which we live. Engineers take this knowledge of the world and use it to create the world that never was. The teaching of physics and other sciences as well as mathematics is critical to maintaining our national workforce. Science and mathematics education are inherently different, however, from engineering education. Engineering educators seek to enable students to develop the habits of mind critical for innovation. Through understanding of the engineering design process and how it differs from the scientific method, students can apply problem and project based learning to solve the challenges facing society today. In this talk, I will discuss the elements critical to a solid K-12 engineering education that integrates science and mathematics to solve challenges throughout the world.

  5. Eight-dimensional methodology for innovative thinking about the case and ethics of the Mount Graham, Large Binocular Telescope project.

    PubMed

    Berne, Rosalyn W; Raviv, Daniel

    2004-04-01

    This paper introduces the Eight Dimensional Methodology for Innovative Thinking (the Eight Dimensional Methodology), for innovative problem solving, as a unified approach to case analysis that builds on comprehensive problem solving knowledge from industry, business, marketing, math, science, engineering, technology, arts, and daily life. It is designed to stimulate innovation by quickly generating unique "out of the box" unexpected and high quality solutions. It gives new insights and thinking strategies to solve everyday problems faced in the workplace, by helping decision makers to see otherwise obscure alternatives and solutions. Daniel Raviv, the engineer who developed the Eight Dimensional Methodology, and paper co-author, technology ethicist Rosalyn Berne, suggest that this tool can be especially useful in identifying solutions and alternatives for particular problems of engineering, and for the ethical challenges which arise with them. First, the Eight Dimensional Methodology helps to elucidate how what may appear to be a basic engineering problem also has ethical dimensions. In addition, it offers to the engineer a methodology for penetrating and seeing new dimensions of those problems. To demonstrate the effectiveness of the Eight Dimensional Methodology as an analytical tool for thinking about ethical challenges to engineering, the paper presents the case of the construction of the Large Binocular Telescope (LBT) on Mount Graham in Arizona. Analysis of the case offers to decision makers the use of the Eight Dimensional Methodology in considering alternative solutions for how they can proceed in their goals of exploring space. It then follows that same process through the second stage of exploring the ethics of each of those different solutions. The LBT project pools resources from an international partnership of universities and research institutes for the construction and maintenance of a highly sophisticated, powerful new telescope. It will soon mark the erection of the world's largest and most powerful optical telescope, designed to see fine detail otherwise visible only from space. It also represents a controversial engineering project that is being undertaken on land considered to be sacred by the local, native Apache people. As presented, the case features the University of Virginia, and its challenges in consideration of whether and how to join the LBT project consortium.

  6. Iteration in Early-Elementary Engineering Design

    NASA Astrophysics Data System (ADS)

    McFarland Kendall, Amber Leigh

    K-12 standards and curricula are beginning to include engineering design as a key practice within Science Technology Engineering and Mathematics (STEM) education. However, there is little research on how the youngest students engage in engineering design within the elementary classroom. This dissertation focuses on iteration as an essential aspect of engineering design, and because research at the college and professional level suggests iteration improves the designer's understanding of problems and the quality of design solutions. My research presents qualitative case studies of students in kindergarten and third-grade as they engage in classroom engineering design challenges which integrate with traditional curricula standards in mathematics, science, and literature. I discuss my results through the lens of activity theory, emphasizing practices, goals, and mediating resources. Through three chapters, I provide insight into how early-elementary students iterate upon their designs by characterizing the ways in which lesson design impacts testing and revision, by analyzing the plan-driven and experimentation-driven approaches that student groups use when solving engineering design challenges, and by investigating how students attend to constraints within the challenge. I connect these findings to teacher practices and curriculum design in order to suggest methods of promoting iteration within open-ended, classroom-based engineering design challenges. This dissertation contributes to the field of engineering education by providing evidence of productive engineering practices in young students and support for the value of engineering design challenges in developing students' participation and agency in these practices.

  7. Creating Change in Engineering Education: A Model for Collaboration among Institutions

    ERIC Educational Resources Information Center

    Plumb, Carolyn; Reis, Richard M.

    2007-01-01

    The United States, as well as the rest of the world, will face critical civil, environmental, energy, communication, manufacturing, and health-care challenges in the coming decades, and more scientists and engineers will be needed to address those problems. The number of jobs in the U.S. labor force requiring science and engineering skills, in…

  8. High School Students' Use of Paper-Based and Internet-Based Information Sources in the Engineering Design Process

    ERIC Educational Resources Information Center

    Pieper, Jon; Mentzer, Nathan

    2013-01-01

    Mentzer and Becker (2011) and Becker and Mentzer (2012) demonstrated that high school students engaged in engineering design problems spent more time accessing information and spent more time designing when provided with Internet access. They studied high school students engaged in an engineering design challenge. The two studies attempted to…

  9. Engineering Ethics Education : Its Necessity, Objectives, Methods, Current State, and Challenges

    NASA Astrophysics Data System (ADS)

    Fudano, Jun

    The importance of engineering ethics education has become widely recognized in the industrialized countries including Japan. This paper examines the background against which engineering ethics education is required, and reviews its objectives, methods, and challenges, as well as its current state. In pointing out important issues associated with the apparent acceptance and quantitative development of ethics education, especially after the establishment of the Japan Accreditation Board for Engineering Education in 1999, the author stresses that the most serious problem is the lack of common understanding on the objectives of engineering ethics education. As a strategy to improve the situation, the so-called “Ethics-across-the-Curriculum” approach is introduced. The author also claims that business/organization ethics which is consistent with engineering ethics should be promoted in Japan.

  10. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization, existing CSE software may need to integrate other CSE software systems developed by different groups of experts. The coupling problem is one of the challenges...

  11. A Novel Coupling Pattern in Computational Science and Engineering Software

    EPA Science Inventory

    Computational science and engineering (CSE) software is written by experts of certain area(s). Due to the specialization,existing CSE software may need to integrate other CSE software systems developed by different groups of experts. Thecoupling problem is one of the challenges f...

  12. Clinical Immersion: An Approach for Fostering Cross-disciplinary Communication and Innovation in Nursing and Engineering Students.

    PubMed

    Geist, Melissa J; Sanders, Robby; Harris, Kevin; Arce-Trigatti, Andrea; Hitchcock-Cass, Cary

    2018-05-24

    A faculty team from nursing and chemical engineering developed a course that brought together students from each discipline for cross-disciplinary, team-based clinical immersion and collaboration. Health care processes and devices are rapidly changing, and nurses are uniquely positioned to be bedside innovators to improve patient care delivery. During each clinical immersion, the student teams rotated through various hospital units where they identified problems and worked together in the university's makerspace (iMaker Space) to design and build prototypes to improve health outcomes. Data from the Critical thinking Assessment Test provided evidence of gains in critical-thinking and problem-solving skills, while the problems identified in the clinical setting and prototypes developed demonstrated the impact of bringing nursing and engineering students together to design innovations. When challenged to identify authentic problems during their clinical immersion, the teams of nursing and engineering students proposed creative solutions and developed commercially viable prototypes.

  13. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    PubMed

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  14. Engineering Geodesy - Definition and Core Competencies

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Heiner; Schwieger, Volker; Wieser, Andreas; Niemeier, Wolfgang

    2014-11-01

    This article summarises discussions concerning the definition of "engineering geodesy" within the German Geodetic Commission. It is noted that engineering geodesy by means of its tasks, methods and characteristics is an application-oriented science whose research questions often arise from observed phenomena or from unsolved practical problems. In particular it is characterised by the professional handling of geometry-related problems in a cost-effective manner that includes comprehensive quality assessment at all phases of the problem solution - from planning through measurement to data processing and interpretation. The current methodical developments are primarily characterised by the increasing integration of the measurement and analysis into challenging construction, production and monitoring processes as well as by the transition to spatially continuous methods. A modern definition of engineering geodesy is proposed at the end of this article.

  15. The European Project Semester at ISEP: the challenge of educating global engineers

    NASA Astrophysics Data System (ADS)

    Malheiro, Benedita; Silva, Manuel; Ribeiro, Maria Cristina; Guedes, Pedro; Ferreira, Paulo

    2015-05-01

    Current engineering education challenges require approaches that promote scientific, technical, design and complementary skills while fostering autonomy, innovation and responsibility. The European Project Semester (EPS) at Instituto Superior de Engenharia do Porto (ISEP) (EPS@ISEP) is a one semester project-based learning programme (30 European Credit Transfer Units (ECTU)) for engineering students from diverse scientific backgrounds and nationalities that intends to address these goals. The students, organised in multidisciplinary and multicultural teams, are challenged to solve real multidisciplinary problems during one semester. The EPS package, although on project development (20 ECTU), includes a series of complementary seminars aimed at fostering soft, project-related and engineering transversal skills (10 ECTU). Hence, the students enrolled in this programme improve their transversal skills and learn, together and with the team of supervisors, subjects distinct from their core training. This paper presents the structure, implementation and results of the EPS@ISEP that was created in 2011 to apply the best engineering practices and promote internationalisation and engineering education innovation at ISEP.

  16. Socio-Technical Perspective on Interdisciplinary Interactions During the Development of Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Daly, Shanna; Baker, Wayne; Papalambros, panos; Seifert, Colleen

    2013-01-01

    This study investigates interdisciplinary interactions that take place during the research, development, and early conceptual design phases in the design of large-scale complex engineered systems (LaCES) such as aerospace vehicles. These interactions, that take place throughout a large engineering development organization, become the initial conditions of the systems engineering process that ultimately leads to the development of a viable system. This paper summarizes some of the challenges and opportunities regarding social and organizational issues that emerged from a qualitative study using ethnographic and survey data. The analysis reveals several socio-technical couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their benefits to the engineered system as well as substantial challenges in interdisciplinary interactions. Noted benefits included enhanced knowledge and problem mitigation and noted obstacles centered on organizational and human dynamics. Findings suggest that addressing the social challenges may be a critical need in enabling interdisciplinary interactions

  17. Joint Operating Environment: The Joint Force in a Contested and Disordered World

    DTIC Science & Technology

    2016-07-14

    spilling over borders, and creating wide-ranging international problems. The future of Science, Technology, and Engineering will see others reaching...10 Science, Technology, and Engineering and the Future Joint Force ..........................................15 Summary... Engineering – may lead to new and challenging conditions that will redefine the security environment of 2035.  Section 2: Contexts of Future Conflict

  18. The Fundamental Nature of Engineering Education in Russia and Belarus: A Challenge to Technological Development

    ERIC Educational Resources Information Center

    Kotlyarov, I. V.; Kostyukevich, S. V.; Yakovleva, N. I.

    2015-01-01

    In this article we investigate the problem of the balance of fundamental and applied training in technical colleges through the lens of a historical analysis of the development of the Soviet school of engineering. We demonstrate that the Soviet school of engineering became overreliant on fundamental education due to historical features of its…

  19. Building a Greener Future

    ERIC Educational Resources Information Center

    Baldwin, Blake; Koenig, Kathleen; Van der Bent, Andries

    2016-01-01

    Integrating engineering and science in the classroom can be challenging, and creating authentic experiences that address real-world problems is often even more difficult. "A Framework for K-12 Science Education" (NRC 2012), however, calls for high school graduates to be able to undertake more complex engineering design projects related…

  20. Teaching ethics to engineers: ethical decision making parallels the engineering design process.

    PubMed

    Bero, Bridget; Kuhlman, Alana

    2011-09-01

    In order to fulfill ABET requirements, Northern Arizona University's Civil and Environmental engineering programs incorporate professional ethics in several of its engineering courses. This paper discusses an ethics module in a 3rd year engineering design course that focuses on the design process and technical writing. Engineering students early in their student careers generally possess good black/white critical thinking skills on technical issues. Engineering design is the first time students are exposed to "grey" or multiple possible solution technical problems. To identify and solve these problems, the engineering design process is used. Ethical problems are also "grey" problems and present similar challenges to students. Students need a practical tool for solving these ethical problems. The step-wise engineering design process was used as a model to demonstrate a similar process for ethical situations. The ethical decision making process of Martin and Schinzinger was adapted for parallelism to the design process and presented to students as a step-wise technique for identification of the pertinent ethical issues, relevant moral theories, possible outcomes and a final decision. Students had greatest difficulty identifying the broader, global issues presented in an ethical situation, but by the end of the module, were better able to not only identify the broader issues, but also to more comprehensively assess specific issues, generate solutions and a desired response to the issue.

  1. Mathematics and its value for engineering students: what are the implications for teaching?

    NASA Astrophysics Data System (ADS)

    Harris, Diane; Black, Laura; Hernandez-Martinez, Paul; Pepin, Birgit; Williams, Julian; with the TransMaths Team

    2015-04-01

    Mathematics has long been known to be problematic for university engineering students and their teachers, for example, Scanlan.[1] This paper presents recent data gathered from interviews with engineering students who experienced problems with mathematics and their lecturers during their transition through the first year in different programme contexts. Our interviews with the students reveal how they understand the relation between engineering and mathematics and we draw on the concept of 'use- and exchange-value' to explore this relationship more fully. This paper challenges both the pedagogical practice of teaching non-contextualized mathematics and the lack of transparency regarding the significance of mathematics to engineering. We conclude that the value of mathematics in engineering remains a central problem, and argue that mathematics should be a fundamental concern in the design and practice of first-year engineering.

  2. AP233: An Information Model for Systems Engineering

    NASA Technical Reports Server (NTRS)

    Siebes, Georg

    2009-01-01

    In today's world, information is abundant. We have no problems generating it. But we are challenged to find, organize, and exchange information. center dot A standardized model of information can help. Such a model nearly completed its development for Systems Engineering. It is referred to as AP233 (AP = Application Protocol).

  3. Physics and nuclear power

    NASA Astrophysics Data System (ADS)

    Buttery, N. E.

    2008-03-01

    Nuclear power owes its origin to physicists. Fission was demonstrated by physicists and chemists and the first nuclear reactor project was led by physicists. However as nuclear power was harnessed to produce electricity the role of the engineer became stronger. Modern nuclear power reactors bring together the skills of physicists, chemists, chemical engineers, electrical engineers, mechanical engineers and civil engineers. The paper illustrates this by considering the Sizewell B project and the role played by physicists in this. This covers not only the roles in design and analysis but in problem solving during the commissioning of first of a kind plant. Looking forward to the challenges to provide sustainable and environmentally acceptable energy sources for the future illustrates the need for a continuing synergy between physics and engineering. This will be discussed in the context of the challenges posed by Generation IV reactors.

  4. Evolutionary engineering for industrial microbiology.

    PubMed

    Vanee, Niti; Fisher, Adam B; Fong, Stephen S

    2012-01-01

    Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.

  5. Reverse engineering and identification in systems biology: strategies, perspectives and challenges

    PubMed Central

    Villaverde, Alejandro F.; Banga, Julio R.

    2014-01-01

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? PMID:24307566

  6. 2010 NASA Exploration Systems Mission Directorate: Lunabotics Mining Competition Systems Engineering Paper

    NASA Technical Reports Server (NTRS)

    2010-01-01

    A fast growing approach in determining the best design concept for a problem is to hold a competition in which the rules are based on requirements similar to the actual problem. By going public with such competitions, sponsoring entities receive some of the most innovative engineering solutions in a fraction of the time and cost it would have taken to develop such concepts internally. Space exploration is a large benefactor of such design competitions as seen by the results of X-Prize Foundation and NASA lunar excavation competitions [1]. The results of NASA's past lunar excavator challenges has led to the need for an effective means of collecting lunar regolith in the absence of human beings. The 2010 Exploration Systems Mission Directorate (ESMD) Lunar Excavation Challenge was created "to engage and retain students in science, technology, engineering, and mathematics, or STEM, in a competitive environment that may result in innovative ideas and solutions, which could be applied to actual lunar excavation for NASA." [2]. The ESMD Challenge calls for "teams to use telerobotics or autonomous operations to excavate at least 10kg of lunar regolith simulant in a 15 minute time limit" [2]. The Systems Engineering approach was used in accordance with Auburn University's mechanical engineering senior design course (MECH 4240-50) to develop a telerobotic lunar excavator, seen in Fig. 1, that fulfilled requirements imposed by the NASA ESMD Competition Rules. The goal of the senior design project was to have a validated lunar excavator that would be used in the NASA ESMD lunar excavation challenge.

  7. Bayesian-information-gap decision theory with an application to CO 2 sequestration

    DOE PAGES

    O'Malley, D.; Vesselinov, V. V.

    2015-09-04

    Decisions related to subsurface engineering problems such as groundwater management, fossil fuel production, and geologic carbon sequestration are frequently challenging because of an overabundance of uncertainties (related to conceptualizations, parameters, observations, etc.). Because of the importance of these problems to agriculture, energy, and the climate (respectively), good decisions that are scientifically defensible must be made despite the uncertainties. We describe a general approach to making decisions for challenging problems such as these in the presence of severe uncertainties that combines probabilistic and non-probabilistic methods. The approach uses Bayesian sampling to assess parametric uncertainty and Information-Gap Decision Theory (IGDT) to addressmore » model inadequacy. The combined approach also resolves an issue that frequently arises when applying Bayesian methods to real-world engineering problems related to the enumeration of possible outcomes. In the case of zero non-probabilistic uncertainty, the method reduces to a Bayesian method. Lastly, to illustrate the approach, we apply it to a site-selection decision for geologic CO 2 sequestration.« less

  8. Key Concepts for and Assessment of an Undergraduate Class that Engages Engineering Students in Climate Change Grand Challenge

    NASA Astrophysics Data System (ADS)

    Powers, S. E.; DeWaters, J.; Dhaniyala, S.

    2015-12-01

    Engineers must take a leading role in addressing the challenges of mitigating climate change and adapting to the inevitable changes that our world is facing. Yet climate change classes targeting engineering students are scarce. Technical education must focus on the problem formulation and solutions that consider multiple, complex interactions between engineered systems and the Earth's climate system and recognize that transformation raises societal challenges, including trade-offs among benefits, costs, and risks. Moreover, improving engineering students' climate science literacy will require strategies that also inspire students' motivation to work toward their solution. A climate science course for engineers has been taught 5 semesters as part of a NASA Innovations in Climate Education program grant (NNXlOAB57A). The basic premise of this project was that effective instruction must incorporate scientifically-based knowledge and observations and foster critical thinking, problem solving, and decision-making skills. Lecture, in-class cooperative and computer-based learning and a semester project provide the basis for engaging students in evaluating effective mitigation and adaptation solutions. Policy and social issues are integrated throughout many of the units. The objective of this presentation is to highlight the content and pedagogical approach used in this class that helped to contribute to significant gains in engineering students' climate literacy and critical thinking competencies. A total of 89 students fully participated in a pre/post climate literacy questionnaire. As a whole, students demonstrated significant gains in climate-related content knowledge (p<0.001), affect (p<0.001), and behavior (p=0.002). Mean post scores were above a 'passing' cutoff (70%) for all three subscales. Assessment of semester project reports with a critical thinking rubric showed that the students did an excellent job of formulating problem statements and solutions in a manner that incorporated a multidimensional systems perspective. These skills are sometimes foreign to technically focused, number crunching engineering students, but are critical for using their engineering skills and profession to address climate change mitigation and adaptation strategies.

  9. Industrial Adoption of Model-Based Systems Engineering: Challenges and Strategies

    NASA Astrophysics Data System (ADS)

    Maheshwari, Apoorv

    As design teams are becoming more globally integrated, one of the biggest challenges is to efficiently communicate across the team. The increasing complexity and multi-disciplinary nature of the products are also making it difficult to keep track of all the information generated during the design process by these global team members. System engineers have identified Model-based Systems Engineering (MBSE) as a possible solution where the emphasis is placed on the application of visual modeling methods and best practices to systems engineering (SE) activities right from the beginning of the conceptual design phases through to the end of the product lifecycle. Despite several advantages, there are multiple challenges restricting the adoption of MBSE by industry. We mainly consider the following two challenges: a) Industry perceives MBSE just as a diagramming tool and does not see too much value in MBSE; b) Industrial adopters are skeptical if the products developed using MBSE approach will be accepted by the regulatory bodies. To provide counter evidence to the former challenge, we developed a generic framework for translation from an MBSE tool (Systems Modeling Language, SysML) to an analysis tool (Agent-Based Modeling, ABM). The translation is demonstrated using a simplified air traffic management problem and provides an example of a potential quite significant value: the ability to use MBSE representations directly in an analysis setting. For the latter challenge, we are developing a reference model that uses SysML to represent a generic infusion pump and SE process for planning, developing, and obtaining regulatory approval of a medical device. This reference model demonstrates how regulatory requirements can be captured effectively through model-based representations. We will present another case study at the end where we will apply the knowledge gained from both case studies to a UAV design problem.

  10. Alternative Method to Simulate a Sub-idle Engine Operation in Order to Synthesize Its Control System

    NASA Astrophysics Data System (ADS)

    Sukhovii, Sergii I.; Sirenko, Feliks F.; Yepifanov, Sergiy V.; Loboda, Igor

    2016-09-01

    The steady-state and transient engine performances in control systems are usually evaluated by applying thermodynamic engine models. Most models operate between the idle and maximum power points, only recently, they sometimes address a sub-idle operating range. The lack of information about the component maps at the sub-idle modes presents a challenging problem. A common method to cope with the problem is to extrapolate the component performances to the sub-idle range. Precise extrapolation is also a challenge. As a rule, many scientists concern only particular aspects of the problem such as the lighting combustion chamber or the turbine operation under the turned-off conditions of the combustion chamber. However, there are no reports about a model that considers all of these aspects and simulates the engine starting. The proposed paper addresses a new method to simulate the starting. The method substitutes the non-linear thermodynamic model with a linear dynamic model, which is supplemented with a simplified static model. The latter model is the set of direct relations between parameters that are used in the control algorithms instead of commonly used component performances. Specifically, this model consists of simplified relations between the gas path parameters and the corrected rotational speed.

  11. Challenger

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2002-01-01

    The events that led to the spectacular destruction of the Space Shuttle "Challenger" in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy. (Contains 4 figures and 2 footnotes.)

  12. The Applied Mathematics for Power Systems (AMPS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chertkov, Michael

    2012-07-24

    Increased deployment of new technologies, e.g., renewable generation and electric vehicles, is rapidly transforming electrical power networks by crossing previously distinct spatiotemporal scales and invalidating many traditional approaches for designing, analyzing, and operating power grids. This trend is expected to accelerate over the coming years, bringing the disruptive challenge of complexity, but also opportunities to deliver unprecedented efficiency and reliability. Our Applied Mathematics for Power Systems (AMPS) Center will discover, enable, and solve emerging mathematics challenges arising in power systems and, more generally, in complex engineered networks. We will develop foundational applied mathematics resulting in rigorous algorithms and simulation toolboxesmore » for modern and future engineered networks. The AMPS Center deconstruction/reconstruction approach 'deconstructs' complex networks into sub-problems within non-separable spatiotemporal scales, a missing step in 20th century modeling of engineered networks. These sub-problems are addressed within the appropriate AMPS foundational pillar - complex systems, control theory, and optimization theory - and merged or 'reconstructed' at their boundaries into more general mathematical descriptions of complex engineered networks where important new questions are formulated and attacked. These two steps, iterated multiple times, will bridge the growing chasm between the legacy power grid and its future as a complex engineered network.« less

  13. Volterra-series-based nonlinear system modeling and its engineering applications: A state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Cheng, C. M.; Peng, Z. K.; Zhang, W. M.; Meng, G.

    2017-03-01

    Nonlinear problems have drawn great interest and extensive attention from engineers, physicists and mathematicians and many other scientists because most real systems are inherently nonlinear in nature. To model and analyze nonlinear systems, many mathematical theories and methods have been developed, including Volterra series. In this paper, the basic definition of the Volterra series is recapitulated, together with some frequency domain concepts which are derived from the Volterra series, including the general frequency response function (GFRF), the nonlinear output frequency response function (NOFRF), output frequency response function (OFRF) and associated frequency response function (AFRF). The relationship between the Volterra series and other nonlinear system models and nonlinear problem solving methods are discussed, including the Taylor series, Wiener series, NARMAX model, Hammerstein model, Wiener model, Wiener-Hammerstein model, harmonic balance method, perturbation method and Adomian decomposition. The challenging problems and their state of arts in the series convergence study and the kernel identification study are comprehensively introduced. In addition, a detailed review is then given on the applications of Volterra series in mechanical engineering, aeroelasticity problem, control engineering, electronic and electrical engineering.

  14. Designing a Better Experience: A Qualitative Investigation of Student Engineering Internships

    ERIC Educational Resources Information Center

    Paknejad, Mohammad R.

    2016-01-01

    Science, Technology, Engineering and Mathematics (STEM) education play a very important role in preparing students with skills necessary to obtain better jobs, solve real-world challenges, and compete in the global economy. STEM education develops critical thinking and the ability to solve complex problems. Research showed that 8 out of 10 most…

  15. Advancing Diagnostic Skills for Technology and Engineering Undergraduates: A Summary of the Validation Data

    ERIC Educational Resources Information Center

    Foster, W. Tad; Shahhosseini, A. Mehran; Maughan, George

    2016-01-01

    Facilitating student growth and development in diagnosing and solving technical problems remains a challenge for technology and engineering educators. With funding from the National Science Foundation, this team of researchers developed a self-guided, computer-based instructional program to experiment with conceptual mapping as a treatment to…

  16. Benchmarking Gas Path Diagnostic Methods: A Public Approach

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Bird, Jeff; Davison, Craig; Volponi, Al; Iverson, R. Eugene

    2008-01-01

    Recent technology reviews have identified the need for objective assessments of engine health management (EHM) technology. The need is two-fold: technology developers require relevant data and problems to design and validate new algorithms and techniques while engine system integrators and operators need practical tools to direct development and then evaluate the effectiveness of proposed solutions. This paper presents a publicly available gas path diagnostic benchmark problem that has been developed by the Propulsion and Power Systems Panel of The Technical Cooperation Program (TTCP) to help address these needs. The problem is coded in MATLAB (The MathWorks, Inc.) and coupled with a non-linear turbofan engine simulation to produce "snap-shot" measurements, with relevant noise levels, as if collected from a fleet of engines over their lifetime of use. Each engine within the fleet will experience unique operating and deterioration profiles, and may encounter randomly occurring relevant gas path faults including sensor, actuator and component faults. The challenge to the EHM community is to develop gas path diagnostic algorithms to reliably perform fault detection and isolation. An example solution to the benchmark problem is provided along with associated evaluation metrics. A plan is presented to disseminate this benchmark problem to the engine health management technical community and invite technology solutions.

  17. Challenges in translating vascular tissue engineering to the pediatric clinic.

    PubMed

    Duncan, Daniel R; Breuer, Christopher K

    2011-10-14

    The development of tissue-engineered vascular grafts for use in cardiovascular surgery holds great promise for improving outcomes in pediatric patients with complex congenital cardiac anomalies. Currently used synthetic grafts have a number of shortcomings in this setting but a tissue engineering approach has emerged in the past decade as a way to address these limitations. The first clinical trial of this technology showed that it is safe and effective but the primary mode of graft failure is stenosis. A variety of murine and large animal models have been developed to study and improve tissue engineering approaches with the hope of translating this technology into routine clinical use, but challenges remain. The purpose of this report is to address the clinical problem and review recent advances in vascular tissue engineering for pediatric applications. A deeper understanding of the mechanisms of neovessel formation and stenosis will enable rational design of improved tissue-engineered vascular grafts.

  18. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.

  19. Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Korte, John J.

    2003-01-01

    NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.

  20. Global challenges as inspiration: a classroom strategy to foster social responsibility.

    PubMed

    Vanasupa, Linda; Slivovsky, Lynn; Chen, Katherine C

    2006-04-01

    Social responsibility is at the heart of the Engineer's Creed embodied in the pledge that we will dedicate [our] professional knowledge and skill to the advancement and betterment of human welfare... [placing] public welfare above all other considerations. However, half century after the original creed was written, we find ourselves in a world with great technological advances and great global-scale technologically-enabled peril. These issues can be naturally integrated into the engineering curriculum in a way that enhances the development of the technological skill set. We have found that these global challenges create a natural opportunity to foster social responsibility within the engineering students whom we educate. In freshman through senior-level materials engineering courses, we used five guiding principles to shape several different classroom activities and assignments. Upon testing an initial cohort of 28 students had classroom experiences based on these five principles, we saw a shift in attitude: before the experience, 18% of the cohort viewed engineers as playing an active role in solving global problems; after the experiences, 79% recognized the engineer's role in solving global-scale problems. In this paper, we present how global issues can be used to stimulate thinking for socially-responsible engineering solutions. We set forth five guiding principles that can foster the mindset for socially responsible actions along with examples of how these principles translate into classroom activities.

  1. FlowGo: An Educational Kit for Fluid Dynamics and Heat Transfer

    NASA Astrophysics Data System (ADS)

    Guri, Dominic; Portsmore, Merredith; Kemmerling, Erica

    2015-11-01

    The authors have designed and prototyped an educational toolkit that will help middle-school-aged students learn fundamental fluid mechanics and heat transfer concepts in a hands-on play environment. The kit allows kids to build arbitrary flow rigs to solve fluid mechanics and heat transfer challenge problems. Similar kits for other engineering fields, such as structural and electrical engineering, have resulted in pedagogical improvements, particularly in early engineering education, where visual demonstrations have a significant impact. Using the FlowGo kit, students will be able to conduct experiments and develop new design ideas to solve challenge problems such as building plant watering systems or modeling water and sewage reticulation. The toolkit consists of components such as tubes, junctions, and reservoirs that easily snap together via a modular, universal connector. Designed with the Massachusetts K-12 science standards in mind, this kit is intended to be affordable and suitable for classroom use. Results and user feedback from students conducting preliminary tests of the kit will be presented.

  2. The Electric Power Exhibit Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    A design challenge is all about planning first and understanding the problem before diving in and looking frantically for a solution. Any experienced engineer or designer will tell one to think first and plan the steps before acting. An experienced carpenter friend of the author always said to "take many measurements and cut once." There is great…

  3. Grand Challenges and Chemical Engineering Curriculum--Developments at TU Dortmund University

    ERIC Educational Resources Information Center

    Kockmann, Norbert; Lutze, Philip; Gorak, Andrzej

    2016-01-01

    Chemical processing industry is progressively focusing their research activities and product placements in the areas of Grand Challenges (or Global Megatrends) such as mobility, energy, communication, or health care and food. Innovation in all these fields requires solving high complex problems, rapid product development as well as dealing with…

  4. Students Inspiring Students: An Online Tool for Science Fair Participants

    ERIC Educational Resources Information Center

    Seeman, Jeffrey I.; Lawrence, Tom

    2011-01-01

    One goal of 21st-century education is to develop mature citizens who can identify issues, solve problems, and communicate solutions. What better way for students to learn these skills than by participating in a science and engineering fair? Fair participants face the same challenges as professional scientists and engineers, even Nobel laureates.…

  5. Motivating Computer Engineering Freshmen through Mathematical and Logical Puzzles

    ERIC Educational Resources Information Center

    Parhami, B.

    2009-01-01

    As in many other fields of science and technology, college students in computer engineering do not come into full contact with the key ideas and challenges of their chosen discipline until the third year of their studies. This situation poses a problem in terms of keeping the students motivated as they labor through their foundational, basic…

  6. The prospect of using large eddy and detached eddy simulations in engineering design, and the research required to get there

    PubMed Central

    Larsson, Johan; Wang, Qiqi

    2014-01-01

    In this paper, we try to look into the future to envision how large eddy and detached eddy simulations will be used in the engineering design process about 20–30 years from now. Some key challenges specific to the engineering design process are identified, and some of the critical outstanding problems and promising research directions are discussed. PMID:25024421

  7. Flame Acceleration and Transition to Detonation in High-Speed Turbulent Combustion

    DTIC Science & Technology

    2016-12-21

    Turbulent Combustion 1. Introduction to the Challenge Problem The importance of high-speed t urbulent combustion of gas mixtures and sprays is dif...engines, gas turbines, various types of jet engines, and some rocket engines . On the other hand , preventing high-speed combustion is critical for...the safety of any human activities that involve handling of po- t entially explosive gases or volatile liquids . Thus, the development of more fuel

  8. Happy software developers solve problems better: psychological measurements in empirical software engineering

    PubMed Central

    Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers’ productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states—emotions and moods—deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint. PMID:24688866

  9. Happy software developers solve problems better: psychological measurements in empirical software engineering.

    PubMed

    Graziotin, Daniel; Wang, Xiaofeng; Abrahamsson, Pekka

    2014-01-01

    For more than thirty years, it has been claimed that a way to improve software developers' productivity and software quality is to focus on people and to provide incentives to make developers satisfied and happy. This claim has rarely been verified in software engineering research, which faces an additional challenge in comparison to more traditional engineering fields: software development is an intellectual activity and is dominated by often-neglected human factors (called human aspects in software engineering research). Among the many skills required for software development, developers must possess high analytical problem-solving skills and creativity for the software construction process. According to psychology research, affective states-emotions and moods-deeply influence the cognitive processing abilities and performance of workers, including creativity and analytical problem solving. Nonetheless, little research has investigated the correlation between the affective states, creativity, and analytical problem-solving performance of programmers. This article echoes the call to employ psychological measurements in software engineering research. We report a study with 42 participants to investigate the relationship between the affective states, creativity, and analytical problem-solving skills of software developers. The results offer support for the claim that happy developers are indeed better problem solvers in terms of their analytical abilities. The following contributions are made by this study: (1) providing a better understanding of the impact of affective states on the creativity and analytical problem-solving capacities of developers, (2) introducing and validating psychological measurements, theories, and concepts of affective states, creativity, and analytical-problem-solving skills in empirical software engineering, and (3) raising the need for studying the human factors of software engineering by employing a multidisciplinary viewpoint.

  10. Scientific Computing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fermilab

    2017-09-01

    Scientists, engineers and programmers at Fermilab are tackling today’s most challenging computational problems. Their solutions, motivated by the needs of worldwide research in particle physics and accelerators, help America stay at the forefront of innovation.

  11. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2013-01-01

    This paper provides an overview of the aircraft turbine engine control research at the NASA Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. With the increased emphasis on aircraft safety, enhanced performance, and affordability, as well as the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA Aeronautics Research Mission programs. The rest of the paper provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges, and the key progress to date are summarized.

  12. Generic E-Assessment Process Development Based on Reverse Engineering

    ERIC Educational Resources Information Center

    Hajjej, Fahima; Hlaoui, Yousra Bendaly; Ben Ayed, Leila Jemni

    2017-01-01

    The e-assessment, as an important part of any e-learning system, faces the same challenges and problems such as problems related to portability, reusability, adaptability, integration and interoperability. Therefore, we need an approach aiming to generate a general process of the e-assessment. The present study consists of the development of a…

  13. Nonlinear Multidimensional Assignment Problems Efficient Conic Optimization Methods and Applications

    DTIC Science & Technology

    2015-06-24

    WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Arizona State University School of Mathematical & Statistical Sciences 901 S...SUPPLEMENTARY NOTES 14. ABSTRACT The major goals of this project were completed: the exact solution of previously unsolved challenging combinatorial optimization... combinatorial optimization problem, the Directional Sensor Problem, was solved in two ways. First, heuristically in an engineering fashion and second, exactly

  14. Engineering Challenges for Closed Ecological System facilities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Nelson, Mark; Allen, John P.

    2012-07-01

    Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  15. Lessons Learned During Solutions of Multidisciplinary Design Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Suna N.; Coroneos, Rula M.; Hopkins, Dale A.; Lavelle, Thomas M.

    2000-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. During solution of the multidisciplinary problems several issues were encountered. This paper lists four issues and discusses the strategies adapted for their resolution: (1) The optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. (2) Optimum solutions obtained were infeasible for aircraft and air-breathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. (3) Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. (4) The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through six problems: (1) design of an engine component, (2) synthesis of a subsonic aircraft, (3) operation optimization of a supersonic engine, (4) design of a wave-rotor-topping device, (5) profile optimization of a cantilever beam, and (6) design of a cvlindrical shell. The combined effort of designers and researchers can bring the optimization method from academia to industry.

  16. Engineering ethics in Puerto Rico: issues and narratives.

    PubMed

    Frey, William J; O'Neill-Carrillo, Efraín

    2008-09-01

    This essay discusses engineering ethics in Puerto Rico by examining the impact of the Colegio de Ingenieros y Agrimensores de Puerto Rico (CIAPR) and by outlining the constellation of problems and issues identified in workshops and retreats held with Puerto Rican engineers. Three cases developed and discussed in these workshops will help outline movements in engineering ethics beyond the compliance perspective of the CIAPR. These include the Town Z case, Copper Mining in Puerto Rico, and a hypothetical case researched by UPRM students on laptop disposal. The last section outlines four future challenges in engineering ethics pertinent to the Puerto Rican situation.

  17. Constellation Program Design Challenges as Opportunities for Educational Outreach and Workforce Development for Senior Design Classes

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2009-01-01

    The Texas Space Grant Consortium (TSGC) and the Exploration Systems Mission Directorate (ESMD) both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and researchers as real design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, results and metrics are presented on the NASA Design Challenge Program.

  18. Constellation Program Design Challenges as Opportunities for Educational Outreach- Lessons Learned

    NASA Technical Reports Server (NTRS)

    Trevino, Robert C.

    2010-01-01

    The Texas Space Grant Consortium (TSGC) and the NASA Exploration Systems Mission Directorate (ESMD) Education Office both have programs that present design challenges for university senior design classes that offer great opportunities for educational outreach and workforce development. These design challenges have been identified by NASA engineers and scientists as actual design problems faced by the Constellation Program in its exploration missions and architecture. Student teams formed in their senior design class select and then work on a design challenge for one or two semesters. The senior design class follows the requirements set by their university, but it must also comply with the Accreditation Board for Engineering and Technology (ABET) in order to meet the class academic requirements. Based on a one year fellowship at a TSGC university under the NASA Administrator's Fellowship Program (NAFP) and several years of experience, lessons learned are presented on the NASA Design Challenge Program.

  19. Volumetric change of silts following cyclic loading.

    DOT National Transportation Integrated Search

    2013-06-01

    Estimating the settlement of adjacent structures during pile installation in silts is a challenging problem for : practicing engineers. The current state-of-practice relies primarily on local case studies and monitoring efforts, such as : inclinomete...

  20. Public health engineering education in India: current scenario, opportunities and challenges.

    PubMed

    Hussain, Mohammad Akhtar; Sharma, Kavya; Zodpey, Sanjay

    2011-01-01

    Public health engineering can play an important and significant role in solving environmental health issues. In order to confront public health challenges emerging out of environmental problems we need adequately trained public health engineers / environmental engineers. Considering the current burden of disease attributable to environmental factors and expansion in scope of applications of public health / environmental engineering science, it is essential to understand the present scenario of teaching, training and capacity building programs in these areas. Against this background the present research was carried out to know the current teaching and training programs in public health engineering and related disciplines in India and to understand the potential opportunities and challenges available. A systematic, predefined approach was used to collect and assemble the data related to various teaching and training programs in public health engineering / environmental engineering in India. Public health engineering / environmental engineering education and training in the country is mainly offered through engineering institutions, as pre-service and in-service training. Pre-service programs include diploma, degree (graduate) and post-graduate courses affiliated to various state technical boards, institutes and universities, whereas in-service training is mainly provided by Government of India recognized engineering and public health training institutes. Though trainees of these programs acquire skills related to engineering sciences, they significantly lack in public health skills. The teaching and training of public health engineering / environmental engineering is limited as a part of public health programs (MD Community Medicine, MPH, DPH) in India. There is need for developing teaching and training of public health engineering or environmental engineering as an interdisciplinary subject. Public health institutes can play an important and significant role in this regard by engaging themselves in initiating specialized programs in this domain.

  1. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE PAGES

    Robino, Charles V.

    2016-01-15

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  2. Engineering approximations in welding: Bridging the gap between the speculation and simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robino, Charles V.

    During the course of their careers, welding engineers and welding metallurgists are often confronted with questions regarding welding process and properties that on the surface appear to be simple and direct, but are in fact quite challenging. These questions generally mask an underlying complexity whose underpinnings in scientific and applied research predate even the founding of the American Welding Society, and previous Comfort A. Adams lectures provide ample and fascinating evidence of the breadth and depth of this complexity. Using these studies or their own experiences and investigations as a basis, most welding and materials engineers have developed engineering toolsmore » to provide working approaches to these day-to-day questions and problems. In this article several examples of research into developing working approaches to welding problems are presented.« less

  3. INVENTION IS NOT AN OPTION

    PubMed Central

    Comedy, Yolanda L.; Gilbert, Juan E.; Pun, Suzie H.

    2017-01-01

    Inventors help solve all kinds of problems. The AAAS-Lemelson Invention Ambassador program celebrates inventors who have an impact on global challenges, making our communities and the globe better, one invention at a time. In this paper, we introduce two of these invention ambassadors: Dr. Suzie Pun and Dr. Juan Gilbert. Dr. Suzie Pun is the Robert F. Rushmer Professor of Bioengineering, an adjunct professor of chemical engineering, and a member of the Molecular Engineering and Sciences Institute at the University of Washington. Dr. Juan Gilbert is the Andrew Banks Family Preeminence Endowed Professor and chair of the Computer & Information Science & Engineering Department at the University of Florida. Both have a passion for solving problems and are dedicated to teaching their students to change the world. PMID:29527271

  4. Rehabilitation engineering training for the future: influence of trends in academics, technology, and health reform.

    PubMed

    Winters, J M

    1995-01-01

    A perspective is offered on rehabilitation engineering educational strategies, with a focus on the bachelor's and master's levels. Ongoing changes in engineering education are summarized, especially as related to the integration of design and computers throughout the curriculum; most positively affect rehabilitation engineering training. The challenge of identifying long-term "niches" for rehabilitation engineers within a changing rehabilitation service delivery process is addressed. Five key training components are identified and developed: core science and engineering knowledge, synthesized open-ended problem-solving skill development, hands-on design experience, rehabilitation breadth exposure, and a clinical internship. Two unique abilities are identified that help demarcate the engineer from other providers: open-ended problem-solving skills that include quantitative analysis when appropriate, and objective quantitative evaluation of human performance. Educational strategies for developing these abilities are addressed. Finally, a case is made for training "hybrid" engineers/therapists, in particular bachelor-level engineers who go directly to graduate school to become certified orthotists/prosthetists or physical/occupational therapists, pass the RESNA-sponsored assistive technology service provision exam along the way, then later in life obtain a professional engineer's license and an engineering master's degree.

  5. Bioengineering approaches to study multidrug resistance in tumor cells

    PubMed Central

    Fallica, Brian; Makin, Guy

    2015-01-01

    The ability of cancer cells to become resistant to chemotherapeutic agents is a major challenge for the treatment of malignant tumors. Several strategies have emerged to attempt to inhibit chemoresistance, but the fact remains that resistance is a problem for every effective anticancer drug. The first part of this review will focus on the mechanisms of chemoresistance. It is important to understand the environmental cues, transport limitations and the cellular signaling pathways associated with chemoresistance before we can hope to effectively combat it. The second part of this review focuses on the work that needs to be done moving forward. Specifically, this section focuses on the necessity of translational research and interdisciplinary directives. It is critical that the expertise of oncologists, biologists, and engineers be brought together to attempt to tackle the problem. This discussion is from an engineering perspective, as the dialogue between engineers and other cancer researchers is the most challenging due to non-overlapping background knowledge. Chemoresistance is a complex and devastating process, meaning that we urgently need sophisticated methods to study the process of how cells become resistant. PMID:21387035

  6. Challenges in Construction Over Soft Soil - Case Studies in Malaysia

    NASA Astrophysics Data System (ADS)

    Mohamad, N. O.; Razali, C. E.; Hadi, A. A. A.; Som, P. P.; Eng, B. C.; Rusli, M. B.; Mohamad, F. R.

    2016-07-01

    Construction on soft ground area is a great challenge in the field of geotechnical engineering. Many engineering problems in the form of slope instability, bearing capacity failure or excessive settlement could occur either during or after the construction phase due to low shear strength and high compressibility of this soil. As main technical agencies responsible for implementation of development projects for Government of Malaysia, Public Works Department has vast experience in dealing with this problematic soil over the years. This paper discussed and elaborate on the engineering problems encountered in construction projects that have been carried out by PWD, namely Core Facilities Building of Polytechnic Kota Kinabalu in Sabah and Hospital Tengku Ampuan Rahimah Integration Quarters in Klang, Selangor. Instability of the ground during construction works had caused delay and cost overrun in completion of the project in Selangor, whereas occurrence of continuous post construction settlement had affected the integrity and serviceability of the building in Sabah. The causes of failure and proposed rehabilitation work for both projects also will be discussed in brief.

  7. Biomedical engineering strategies in system design space.

    PubMed

    Savageau, Michael A

    2011-04-01

    Modern systems biology and synthetic bioengineering face two major challenges in relating properties of the genetic components of a natural or engineered system to its integrated behavior. The first is the fundamental unsolved problem of relating the digital representation of the genotype to the analog representation of the parameters for the molecular components. For example, knowing the DNA sequence does not allow one to determine the kinetic parameters of an enzyme. The second is the fundamental unsolved problem of relating the parameters of the components and the environment to the phenotype of the global system. For example, knowing the parameters does not tell one how many qualitatively distinct phenotypes are in the organism's repertoire or the relative fitness of the phenotypes in different environments. These also are challenges for biomedical engineers as they attempt to develop therapeutic strategies to treat pathology or to redirect normal cellular functions for biotechnological purposes. In this article, the second of these fundamental challenges will be addressed, and the notion of a "system design space" for relating the parameter space of components to the phenotype space of bioengineering systems will be focused upon. First, the concept of a system design space will be motivated by introducing one of its key components from an intuitive perspective. Second, a simple linear example will be used to illustrate a generic method for constructing the design space in which qualitatively distinct phenotypes can be identified and counted, their fitness analyzed and compared, and their tolerance to change measured. Third, two examples of nonlinear systems from different areas of biomedical engineering will be presented. Finally, after giving reference to a few other applications that have made use of the system design space approach to reveal important design principles, some concluding remarks concerning challenges and opportunities for further development will be made.

  8. Acoustical consulting-Reflections on a challenging career

    NASA Astrophysics Data System (ADS)

    Braslau, David

    2004-05-01

    The acoustical consulting profession can be entered in a number of ways. The most direct approach is to obtain a degree in acoustics and join a large consulting firm immediately after graduation. Acoustical consulting can also be entered indirectly from various fields of engineering or physics which can provide a somewhat broader background. These disciplines might include, for example, structural engineering and structural dynamics, mechanics of materials, dynamic behavior of solids or geophysics. Acoustical consulting specialization can be very broad or very narrow as seen from the National Council of Acoustical Consultants capability listing. As an acoustical consultant, one must address a wide range of problems which provides both the challenges and joys of this profession. Technical capabilities and professional judgment are constantly developed from exposure to these problems and through interaction with other members of the profession. Selected case studies including sound isolation in buildings, noise and vibration from blasting, control of noise from environmental sources, acoustical design of classrooms and performing spaces, and product design demonstrate the variety of challenges faced by an acoustical consultant.

  9. The Pursuit of Chronically Reliable Neural Interfaces: A Materials Perspective.

    PubMed

    Guo, Liang

    2016-01-01

    Brain-computer interfaces represent one of the most astonishing technologies in our era. However, the grand challenge of chronic instability and limited throughput of the electrode-tissue interface has significantly hindered the further development and ultimate deployment of such exciting technologies. A multidisciplinary research workforce has been called upon to respond to this engineering need. In this paper, I briefly review this multidisciplinary pursuit of chronically reliable neural interfaces from a materials perspective by analyzing the problem, abstracting the engineering principles, and summarizing the corresponding engineering strategies. I further draw my future perspectives by extending the proposed engineering principles.

  10. Shuttle avionics software trials, tribulations and success

    NASA Technical Reports Server (NTRS)

    Henderson, O. L.

    1985-01-01

    The early problems and the solutions developed to provide the required quality software needed to support the space shuttle engine development program are described. The decision to use a programmable digital control system on the space shuttle engine was primarily based upon the need for a flexible control system capable of supporting the total engine mission on a large complex pump fed engine. The mission definition included all control phases from ground checkout through post shutdown propellant dumping. The flexibility of the controller through reprogrammable software allowed the system to respond to the technical challenges and innovation required to develop both the engine and controller hardware. This same flexibility, however, placed a severe strain on the capability of the software development and verification organization. The overall development program required that the software facility accommodate significant growth in both the software requirements and the number of software packages delivered. This challenge was met by reorganization and evolution in the process of developing and verifying software.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dinh, Nam; Athe, Paridhi; Jones, Christopher

    The Virtual Environment for Reactor Applications (VERA) code suite is assessed in terms of capability and credibility against the Consortium for Advanced Simulation of Light Water Reactors (CASL) Verification and Validation Plan (presented herein) in the context of three selected challenge problems: CRUD-Induced Power Shift (CIPS), Departure from Nucleate Boiling (DNB), and Pellet-Clad Interaction (PCI). Capability refers to evidence of required functionality for capturing phenomena of interest while capability refers to the evidence that provides confidence in the calculated results. For this assessment, each challenge problem defines a set of phenomenological requirements against which the VERA software is assessed. Thismore » approach, in turn, enables the focused assessment of only those capabilities relevant to the challenge problem. The evaluation of VERA against the challenge problem requirements represents a capability assessment. The mechanism for assessment is the Sandia-developed Predictive Capability Maturity Model (PCMM) that, for this assessment, evaluates VERA on 8 major criteria: (1) Representation and Geometric Fidelity, (2) Physics and Material Model Fidelity, (3) Software Quality Assurance and Engineering, (4) Code Verification, (5) Solution Verification, (6) Separate Effects Model Validation, (7) Integral Effects Model Validation, and (8) Uncertainty Quantification. For each attribute, a maturity score from zero to three is assigned in the context of each challenge problem. The evaluation of these eight elements constitutes the credibility assessment for VERA.« less

  12. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface, interfacing directly with the flight management system to determine its mode of operation, and providing personalized engine control to optimize its performance given the current condition and mission objectives.

  13. Achieving Closure for Bioregenerative Life Support Systems: Engineering and Ecological Challenges, Research Opportunities

    NASA Astrophysics Data System (ADS)

    Dempster, William; Allen, John P.

    Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.

  14. Annual Research Briefs - 2006

    DTIC Science & Technology

    2006-12-01

    IACCARINO AND Q. WANG 3 Strain and stress analysis of uncertain engineering systems . D. GHOSH, C. FARHAT AND P. AVERY 17 Separated flow in a three...research in predictive science in complex systems , CTR has strived to maintain a critical mass in numerical analysis , computer science and physics based... analysis for a linear problem: heat conduction The design and analysis of complex engineering systems is challenging not only be- cause of the physical

  15. Cryptography and the Internet: lessons and challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCurley, K.S.

    1996-12-31

    The popularization of the Internet has brought fundamental changes to the world, because it allows a universal method of communication between computers. This carries enormous benefits with it, but also raises many security considerations. Cryptography is a fundamental technology used to provide security of computer networks, and there is currently a widespread engineering effort to incorporate cryptography into various aspects of the Internet. The system-level engineering required to provide security services for the Internet carries some important lessons for researchers whose study is focused on narrowly defined problems. It also offers challenges to the cryptographic research community by raising newmore » questions not adequately addressed by the existing body of knowledge. This paper attempts to summarize some of these lessons and challenges for the cryptographic research community.« less

  16. SSME lifetime prediction and verification, integrating environments, structures, materials: The challenge

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.; Salter, L. D.; Young, G. M., III; Munafo, P. M.

    1985-01-01

    The planned missions for the space shuttle dictated a unique and technology-extending rocket engine. The high specific impulse requirements in conjunction with a 55-mission lifetime, plus volume and weight constraints, produced unique structural design, manufacturing, and verification requirements. Operations from Earth to orbit produce severe dynamic environments, which couple with the extreme pressure and thermal environments associated with the high performance, creating large low cycle loads and high alternating stresses above endurance limit which result in high sensitivity to alternating stresses. Combining all of these effects resulted in the requirements for exotic materials, which are more susceptible to manufacturing problems, and the use of an all-welded structure. The challenge of integrating environments, dynamics, structures, and materials into a verified SSME structure is discussed. The verification program and developmental flight results are included. The first six shuttle flights had engine performance as predicted with no failures. The engine system has met the basic design challenges.

  17. Weaving a Formal Methods Education with Problem-Based Learning

    NASA Astrophysics Data System (ADS)

    Gibson, J. Paul

    The idea of weaving formal methods through computing (or software engineering) degrees is not a new one. However, there has been little success in developing and implementing such a curriculum. Formal methods continue to be taught as stand-alone modules and students, in general, fail to see how fundamental these methods are to the engineering of software. A major problem is one of motivation — how can the students be expected to enthusiastically embrace a challenging subject when the learning benefits, beyond passing an exam and achieving curriculum credits, are not clear? Problem-based learning has gradually moved from being an innovative pedagogique technique, commonly used to better-motivate students, to being widely adopted in the teaching of many different disciplines, including computer science and software engineering. Our experience shows that a good problem can be re-used throughout a student's academic life. In fact, the best computing problems can be used with children (young and old), undergraduates and postgraduates. In this paper we present a process for weaving formal methods through a University curriculum that is founded on the application of problem-based learning and a library of good software engineering problems, where students learn about formal methods without sitting a traditional formal methods module. The process of constructing good problems and integrating them into the curriculum is shown to be analagous to the process of engineering software. This approach is not intended to replace more traditional formal methods modules: it will better prepare students for such specialised modules and ensure that all students have an understanding and appreciation for formal methods even if they do not go on to specialise in them.

  18. Linking engineering and medicine: fostering collaboration skills in interdisciplinary teams.

    PubMed

    Khoo, Michael C K

    2012-07-01

    Biomedical engineering embodies the spirit of combining disciplines. The engineer's pragmatic approach to--and appetite for--solving problems is matched by a bounty of technical challenges generated in medical domains. From nanoscale diagnostics to the redesign of systems of health-care delivery, engineers have been connecting advances in basic and applied science with applications that have helped to improve medical care and outcomes. Increasingly, however, integrating these areas of knowledge and application is less individualistic and more of a team sport. Success increasingly relies on a direct focus on practicing and developing collaboration skills in interdisciplinary teams. Such an approach does not fit easily into individual-focused, discipline-based programs. Biomedical engineering has done its fair share of silo busting, but new approaches are needed to inspire interdisciplinary teams to form around challenges in particular areas. Health care offers a wide variety of complex challenges across an array of delivery settings that can call for new interdisciplinary approaches. This was recognized by the deans of the University of Southern California's (USC's) Medical and Engineering Schools when they began the planning process, leading to the creation of the Health, Technology, and Engineering (HTE@USC or HTE for short) program. “Health care and technology are changing rapidly, and future physicians and engineers need intellectual tools to stay ahead of this change,” says Carmen A. Puliafito, dean of the Keck School of Medicine. His goal is to train national leaders in the quest for devices and processes to improve health care.

  19. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2017-03-01

    PAC-3 MSE) 81 Warfighter Information Network-Tactical (WIN-T) Increment 2 83 Improved Turbine Engine Program (ITEP) 85 Long Range Precision Fires...incorporated certain 2010 acquisition reform initiatives. DOD and Congress have previously addressed some of the challenges and problems in the defense...additional quantities. While that does represent a cost increase, it does not necessarily indicate acquisition problems or a loss of buying power

  20. Managing Complexity in the MSL/Curiosity Entry, Descent, and Landing Flight Software and Avionics Verification and Validation Campaign

    NASA Technical Reports Server (NTRS)

    Stehura, Aaron; Rozek, Matthew

    2013-01-01

    The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.

  1. Sandia National Laboratories focus issue: introduction.

    PubMed

    Boye, Robert

    2014-08-20

    For more than six decades, Sandia has provided the critical science and technology to address the nation's most challenging issues. Our original nuclear weapons mission has been complemented with work in defense systems, energy and climate, as well as international and homeland security. Our vision is to be a premier science and engineering laboratory for technology solutions to the most challenging problems that threaten peace and freedom for our nation and the globe.

  2. The case for applying an early-lifecycle technology evaluation methodology to comparative evaluation of requirements engineering research

    NASA Technical Reports Server (NTRS)

    Feather, Martin S.

    2003-01-01

    The premise of this paper is taht there is a useful analogy between evaluation of proposed problem solutions and evaluation of requirements engineering research itself. Both of these application areas face the challenges of evaluation early in the lifecycle, of the need to consider a wide variety of factors, and of the need to combine inputs from multiple stakeholders in making thse evaluation and subsequent decisions.

  3. Factors Related to Successful Engineering Team Design

    NASA Technical Reports Server (NTRS)

    Nowaczyk, Ronald H.; Zang, Thomas A.

    1998-01-01

    The perceptions of a sample of 49 engineers and scientists from NASA Langley Research Center toward engineering design teams were evaluated. The respondents rated 60 team behaviors in terms of their relative importance for team success. They also completed a profile of their own perceptions of their strengths and weaknesses as team members. Behaviors related to team success are discussed in terms of those involving the organizational culture and commitment to the team and those dealing with internal team dynamics. The latter behaviors included the level and extent of debate and discussion regarding methods for completing the team task and the efficient use of team time to explore and discuss methodologies critical to the problem. Successful engineering teams may find their greatest challenges occurring during the early stages of their existence. In contrast to the prototypical business team, members on an engineering design share expertise and knowledge which allows them to deal with task issues sooner. However, discipline differences among team members can lead to conflicts regarding the best method or approach to solving the engineering problem.

  4. Dealing with complex and ill-structured problems: results of a Plan-Do-Check-Act experiment in a business engineering semester

    NASA Astrophysics Data System (ADS)

    Riis, Jens Ove; Achenbach, Marlies; Israelsen, Poul; Kyvsgaard Hansen, Poul; Johansen, John; Deuse, Jochen

    2017-07-01

    Challenged by increased globalisation and fast technological development, we carried out an experiment in the third semester of a global business engineering programme aimed at identifying conditions for training student in dealing with complex and ill-structured problems of forming a new business. As this includes a fuzzy front end, learning cannot be measured in traditional, quantitative terms; therefore, we have explored the use of reflection to convert tacit knowledge to explicit knowledge. The experiment adopted a Plan-Do-Check-Act approach and concluded with developing a plan for new learning initiatives in the subsequent year's semester. The findings conclude that (1) problem-based learning develops more competencies than ordinarily measured at the examination, especially, the social/communication and personal competencies are developed; (2) students are capable of dealing with a complex and ambiguous problem, if properly guided. Four conditions were identified; (3) most students are not conscious of their learning, but are able to reflect if properly encouraged; and (4) improving engineering education should be considered as an organisational learning process.

  5. SOLAR LIGHTING FOR REMOTE RURAL COMMUNITIES

    EPA Science Inventory

    The 132 students enrolled in the fall 2007 freshman course, “Engineering Design and Problem Solving”, were presented with a choice of five projects; one was a challenge to “Design, build and evaluate – a portable, rechargeable lantern that can be used &...

  6. A New Approach to Teaching Biomechanics Through Active, Adaptive, and Experiential Learning.

    PubMed

    Singh, Anita

    2017-07-01

    Demand of biomedical engineers continues to rise to meet the needs of healthcare industry. Current training of bioengineers follows the traditional and dominant model of theory-focused curricula. However, the unmet needs of the healthcare industry warrant newer skill sets in these engineers. Translational training strategies such as solving real world problems through active, adaptive, and experiential learning hold promise. In this paper, we report our findings of adding a real-world 4-week problem-based learning unit into a biomechanics capstone course for engineering students. Surveys assessed student perceptions of the activity and learning experience. While students, across three cohorts, felt challenged to solve a real-world problem identified during the simulation lab visit, they felt more confident in utilizing knowledge learned in the biomechanics course and self-directed research. Instructor evaluations indicated that the active and experiential learning approach fostered their technical knowledge and life-long learning skills while exposing them to the components of adaptive learning and innovation.

  7. How Mockups, a Key Engineering Tool, Help to Promote Science, Technology, Engineering, and Mathematics Education

    NASA Technical Reports Server (NTRS)

    McDonald, Harry E.

    2010-01-01

    The United States ranking among the world in science, technology, engineering, and mathematics (STEM) education is decreasing. To counteract this problem NASA has made it part of its mission to promote STEM education among the nation s youth. Mockups can serve as a great tool when promoting STEM education in America. The Orion Cockpit Working Group has created a new program called Students Shaping America s Next Space Craft (SSANS) to outfit the Medium Fidelity Orion Mockup. SSANS will challenge the students to come up with unique designs to represent the flight design hardware. There are two main types of project packages created by SSANS, those for high school students and those for university students. The high school projects will challenge wood shop, metal shop and pre-engineering classes. The university projects are created mainly for senior design projects and will require the students to perform finite element analysis. These projects will also challenge the undergraduate students in material selection and safety requirements. The SSANS program will help NASA in its mission to promote STEM education, and will help to shape our nations youth into the next generation of STEM leaders.

  8. Engineering empty space between Si nanoparticles for lithium-ion battery anodes.

    PubMed

    Wu, Hui; Zheng, Guangyuan; Liu, Nian; Carney, Thomas J; Yang, Yuan; Cui, Yi

    2012-02-08

    Silicon is a promising high-capacity anode material for lithium-ion batteries yet attaining long cycle life remains a significant challenge due to pulverization of the silicon and unstable solid-electrolyte interphase (SEI) formation during the electrochemical cycles. Despite significant advances in nanostructured Si electrodes, challenges including short cycle life and scalability hinder its widespread implementation. To address these challenges, we engineered an empty space between Si nanoparticles by encapsulating them in hollow carbon tubes. The synthesis process used low-cost Si nanoparticles and electrospinning methods, both of which can be easily scaled. The empty space around the Si nanoparticles allowed the electrode to successfully overcome these problems Our anode demonstrated a high gravimetric capacity (~1000 mAh/g based on the total mass) and long cycle life (200 cycles with 90% capacity retention). © 2012 American Chemical Society

  9. Evaluation of drainage pipe by field experimentation and supplemental laboratory experimentation : final report.

    DOT National Transportation Integrated Search

    1985-03-01

    Louisiana's Office of Highways reacts to a major problem when it attempts to shape and control drainage patterns along its right-of-ways. The Office's design engineers meet this challenge through proper section design and appropriate application of d...

  10. Evaluation of drainage pipe by field experimentation and supplemental laboratory experimentation : interim report No. 3.

    DOT National Transportation Integrated Search

    1981-11-01

    The Louisiana Department of Transportation and Development reacts to a major problem when it attempts to shape and control drainage patterns along its right-of-ways. The Department's design engineers meet this challenge through proper section design ...

  11. The Application of System Dynamics to the Integration of National Laboratory Research and K-12 Education

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, James Ignatius; Zounar Harbour, Elda D

    2001-08-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) is dedicated to finding solutions to problems related to the environment, energy, economic competitiveness, and national security. In an effort to attract and retain the expertise needed to accomplish these challenges, the INEEL is developing a program of broad educational opportunities that makes continuing education readily available to all laboratory employees, beginning in the K–12 environment and progressing through post-graduate education and beyond. One of the most innovative educational approaches being implemented at the laboratory is the application of STELLA© dynamic learning environments, which facilitate captivating K–12 introductions to the complex energymore » and environmental challenges faced by global societies. These simulations are integrated into lesson plans developed by teachers in collaboration with INEEL scientists and engineers. This approach results in an enjoyable and involved learning experience, and an especially positive introduction to the application of science to emerging problems of great social and environmental consequence.« less

  12. Air pollution engineering

    NASA Astrophysics Data System (ADS)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  13. The Challenges of Human-Autonomy Teaming

    NASA Technical Reports Server (NTRS)

    Vera, Alonso

    2017-01-01

    Machine intelligence is improving rapidly based on advances in big data analytics, deep learning algorithms, networked operations, and continuing exponential growth in computing power (Moores Law). This growth in the power and applicability of increasingly intelligent systems will change the roles humans, shifting them to tasks where adaptive problem solving, reasoning and decision-making is required. This talk will address the challenges involved in engineering autonomous systems that function effectively with humans in aeronautics domains.

  14. Avoid, Control, Succumb, or Balance: Engineering Students' Approaches to a Wicked Sustainability Problem

    NASA Astrophysics Data System (ADS)

    Lönngren, Johanna; Ingerman, Åke; Svanström, Magdalena

    2017-08-01

    Wicked sustainability problems (WSPs) are an important and particularly challenging type of problem. Science and engineering education can play an important role in preparing students to deal with such problems, but current educational practice may not adequately prepare students to do so. We address this gap by providing insights related to students' abilities to address WSPs. Specifically, we aim to (I) describe key constituents of engineering students' approaches to a WSP, (II) evaluate these approaches in relation to the normative context of education for sustainable development (ESD), and (III) identify relevant aspects of learning related to WSPs. Aim I is addressed through a phenomenographic study, while aims II and III are addressed by relating the results to research literature about human problem solving, sustainable development, and ESD. We describe four qualitatively different ways of approaching a specific WSP, as the outcome of the phenomenographic study: A. Simplify and avoid, B. Divide and control, C. Isolate and succumb, and D. Integrate and balance. We identify approach D as the most appropriate approach in the context of ESD, while A and C are not. On this basis, we identify three learning objectives related to students' abilities to address WSPs: learn to use a fully integrative approach, distinguish WSPs from tame and well-structured problems, and understand and consider the normative context of SD. Finally, we provide recommendations for how these learning objectives can be used to guide the design of science and engineering educational activities.

  15. The use of genetically-engineered animals in science: perspectives of Canadian Animal Care Committee members.

    PubMed

    Ormandy, Elisabeth H; Dale, Julie; Griffin, Gilly

    2013-05-01

    The genetic engineering of animals for their use in science challenges the implementation of refinement and reduction in several areas, including the invasiveness of the procedures involved, unanticipated welfare concerns, and the numbers of animals required. Additionally, the creation of genetically-engineered animals raises problems with the Canadian system of reporting animal numbers per Category of Invasiveness, as well as raising issues of whether ethical limits can, or should, be placed on genetic engineering. A workshop was held with the aim of bringing together Canadian animal care committee members to discuss these issues, to reflect on progress that has been made in addressing them, and to propose ways of overcoming any challenges. Although previous literature has made recommendations with regard to refinement and reduction when creating new genetically-engineered animals, the perception of the workshop participants was that some key opportunities are being missed. The participants identified the main roadblocks to the implementation of refinement and reduction alternatives as confidentiality, cost and competition. If the scientific community is to make progress concerning the implementation of refinement and reduction, particularly in the creation and use of genetically-engineered animals, addressing these roadblocks needs to be a priority. 2013 FRAME.

  16. Key Barriers for Academic Institutions Seeking to Retain Female Scientists and Engineers: Family-Unfriendly Policies. Low Numbers, Stereotypes, and Harassment

    NASA Astrophysics Data System (ADS)

    Rosser, Sue V.; Lane, Eliesh O'neil

    At the end of a special meeting held at the Massachusetts Institute of Technology in January 2001, a statement released on behalf of the most prestigious U. S. research universities suggested that institutional harriers have prevented viomen from having a level playing field in science and engineering. In 2001, the National Science Foundation initiated a new awards program, ADVANCE, focusing on institutional rather than individual solutions to empower women to participate fully in science and technology. In this study, the authors evaluate survey responses from almost 400 Professional Opportunities for Women in Research and Education awardees from fiscal years 1997 to 2000 to elucidate problems and opportunities identified by female scientists and engineers. Besides other issues, the respondents identified balancing a career and a family as the most significant challenge facing female scientists and engineers today. Institutions must seek to remove or at least lower these and other harriers to attract and retain female scientists and engineers. Grouping the survey responses into four categories forms the basis for four corresponding policy areas, which could be addressed at the institutional level to mitigate the difficulties and challenges currently experienced by female scientists and engineers.

  17. Investigating the Impact of Using a CAD Simulation Tool on Students' Learning of Design Thinking

    NASA Astrophysics Data System (ADS)

    Taleyarkhan, Manaz; Dasgupta, Chandan; Garcia, John Mendoza; Magana, Alejandra J.

    2018-02-01

    Engineering design thinking is hard to teach and still harder to learn by novices primarily due to the undetermined nature of engineering problems that often results in multiple solutions. In this paper, we investigate the effect of teaching engineering design thinking to freshmen students by using a computer-aided Design (CAD) simulation software. We present a framework for characterizing different levels of engineering design thinking displayed by students who interacted with the CAD simulation software in the context of a collaborative assignment. This framework describes the presence of four levels of engineering design thinking—beginning designer, adept beginning designer, informed designer, adept informed designer. We present the characteristics associated with each of these four levels as they pertain to four engineering design strategies that students pursued in this study—understanding the design challenge, building knowledge, weighing options and making tradeoffs, and reflecting on the process. Students demonstrated significant improvements in two strategies—understanding the design challenge and building knowledge. We discuss the affordances of the CAD simulation tool along with the learning environment that potentially helped students move towards Adept informed designers while pursuing these design strategies.

  18. Cluster-Based Query Expansion Using Language Modeling for Biomedical Literature Retrieval

    ERIC Educational Resources Information Center

    Xu, Xuheng

    2011-01-01

    The tremendously huge volume of biomedical literature, scientists' specific information needs, long terms of multiples words, and fundamental problems of synonym and polysemy have been challenging issues facing the biomedical information retrieval community researchers. Search engines have significantly improved the efficiency and effectiveness of…

  19. Egg Bungee Jump!

    ERIC Educational Resources Information Center

    Fitzgerald, Mike; Brand, Lance

    2004-01-01

    In this article, the authors present an egg bungee jumping activity. This activity introduces students to ways that engineers might apply calculations of failure to meet a challenge. Students are required to use common, everyday materials such as rubber bands, string, plastic bags, and eggs. They will apply technological problem solving, material…

  20. Evaluation of drainage pipe by field experimentation and supplemental laboratory experimentation : interim report No. 2.

    DOT National Transportation Integrated Search

    1978-03-01

    Louisiana's Office of Highways reacts to a major problem when it attempts to shape and control drainage patterns along its right-of-ways. The Office's design engineers meet this challenge through proper section design and appropriate application of d...

  1. Evaluation of drainage pipe by field experimentation and supplemental laboratory experimentation : interim report No. 1.

    DOT National Transportation Integrated Search

    1977-03-01

    Louisiana's Office of Highways reacts to a major problem when it attempts to shape and control drainage patterns along its right-of-ways. The Office's design engineers meet this challenge through proper section design and appropriate application of d...

  2. The clinical engineer: a ghost hunter or manager of EMI.

    PubMed

    Paperman, W D; David, Y

    1998-01-01

    The management of EMI and risk control in the clinical environment presents the clinical engineer with new challenges and responsibilities. The keys to successfully meeting these challenges and responsibilities are education, cooperation, and the ability to be creative in the quest for solutions to problems of ever-increasing complexity. Experience in detecting and analyzing test results, which is gained over time, enhances the skills that clinical engineering professionals bring to this challenge. Attention to EMI risks has been influenced by a number of factors, including a spirit of cooperation between manufacturers and users, concerns over patient care and perceived product efficacy, and an increasing number of regulations by European and U.S. regulatory agencies. As a result, device emissions are being reduced and device immunity to EMI is improving. Further improvements in device immunity are still needed. The radio spectrum with regard to intentional radiators is in a continual state of flux. As industry attempts to improve labor efficiency through the use of radio communications, new and higher-powered sources of RF--both internal and external to the physical plant--appear each day in the clinical environment. Since the distance between intentional radiators and potentially susceptible devices is usually beyond the control of an institution, industry must continue to reduce device susceptibility. There should be a stronger dialogue between institutions (even if they do not have proactive EMI reduction programs) and manufacturers to identify ways to improve device immunity to EMI and to increase product designers' and users' awareness of potential problems.

  3. Preparing to understand and use science in the real world: interdisciplinary study concentrations at the Technical University of Darmstadt.

    PubMed

    Liebert, Wolfgang J

    2013-12-01

    In order to raise awareness of the ambiguous nature of scientific-technological progress, and of the challenging problems it raises, problems which are not easily addressed by courses in a single discipline and cannot be projected onto disciplinary curricula, Technical University of Darmstadt has established three interdisciplinary study concentrations: "Technology and International Development", "Environmental Sciences", and "Sustainable Shaping of Technology and Science". These three programmes seek to overcome the limitations of strictly disciplinary research and teaching by developing an integrated, problem-oriented approach. For example, one course considers fundamental nuclear dilemmas and uses role-playing techniques to address a controversy in the area of nuclear security. At the same time, incorporating interdisciplinary teaching into a university that is organized around mono- or multi-disciplinary faculties also poses a number of challenges. Recognition in disciplinary curricula, and appropriate organizational support and funding are examples of those challenges. It is expected that science and engineering students, empowered by such interdisciplinary study programmes, will be better prepared to act responsibly with regard to scientific and technological challenges.

  4. Application of artificial intelligence to pharmacy and medicine.

    PubMed

    Dasta, J F

    1992-04-01

    Artificial intelligence (AI) is a branch of computer science dealing with solving problems using symbolic programming. It has evolved into a problem solving science with applications in business, engineering, and health care. One application of AI is expert system development. An expert system consists of a knowledge base and inference engine, coupled with a user interface. A crucial aspect of expert system development is knowledge acquisition and implementing computable ways to solve problems. There have been several expert systems developed in medicine to assist physicians with medical diagnosis. Recently, several programs focusing on drug therapy have been described. They provide guidance on drug interactions, drug therapy monitoring, and drug formulary selection. There are many aspects of pharmacy that AI can have an impact on and the reader is challenged to consider these possibilities because they may some day become a reality in pharmacy.

  5. Understanding Innovation Engines: Automated Creativity and Improved Stochastic Optimization via Deep Learning.

    PubMed

    Nguyen, A; Yosinski, J; Clune, J

    2016-01-01

    The Achilles Heel of stochastic optimization algorithms is getting trapped on local optima. Novelty Search mitigates this problem by encouraging exploration in all interesting directions by replacing the performance objective with a reward for novel behaviors. This reward for novel behaviors has traditionally required a human-crafted, behavioral distance function. While Novelty Search is a major conceptual breakthrough and outperforms traditional stochastic optimization on certain problems, it is not clear how to apply it to challenging, high-dimensional problems where specifying a useful behavioral distance function is difficult. For example, in the space of images, how do you encourage novelty to produce hawks and heroes instead of endless pixel static? Here we propose a new algorithm, the Innovation Engine, that builds on Novelty Search by replacing the human-crafted behavioral distance with a Deep Neural Network (DNN) that can recognize interesting differences between phenotypes. The key insight is that DNNs can recognize similarities and differences between phenotypes at an abstract level, wherein novelty means interesting novelty. For example, a DNN-based novelty search in the image space does not explore in the low-level pixel space, but instead creates a pressure to create new types of images (e.g., churches, mosques, obelisks, etc.). Here, we describe the long-term vision for the Innovation Engine algorithm, which involves many technical challenges that remain to be solved. We then implement a simplified version of the algorithm that enables us to explore some of the algorithm's key motivations. Our initial results, in the domain of images, suggest that Innovation Engines could ultimately automate the production of endless streams of interesting solutions in any domain: for example, producing intelligent software, robot controllers, optimized physical components, and art.

  6. Pervasive Sensing: Addressing the Heterogeneity Problem

    NASA Astrophysics Data System (ADS)

    O'Grady, Michael J.; Murdoch, Olga; Kroon, Barnard; Lillis, David; Carr, Dominic; Collier, Rem W.; O'Hare, Gregory M. P.

    2013-06-01

    Pervasive sensing is characterized by heterogeneity across a number of dimensions. This raises significant problems for those designing, implementing and deploying sensor networks, irrespective of application domain. Such problems include for example, issues of data provenance and integrity, security, and privacy amongst others. Thus engineering a network that is fit-for-purpose represents a significant challenge. In this paper, the issue of heterogeneity is explored from the perspective of those who seek to harness a pervasive sensing element in their applications. A initial solution is proposed based on the middleware construct.

  7. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2008-01-01

    In 2008, NASA was embarking on its Exploration Vision, knowing that many technical challenges would be encountered. For lunar exploration missions, one challenge was to learn to manage lunar dust. References to problems associated with lunar dust during the Apollo Program were found on many of pages of the mission reports and technical debriefs. All engineers designing hardware that would come into contact with lunar dust had to mitigate its effects in the design.

  8. A Novel Interdisciplinary Science Experience for Undergraduates across Introductory Biology, Chemistry, and Physics Courses

    ERIC Educational Resources Information Center

    Murray, Joelle L.; Atkinson, Elizabeth J. O.; Gilbert, Brian D.; Kruchten, Anne E.

    2014-01-01

    Successfully creating and implementing interdisciplinary curricula in introductory science, technology, engineering, and mathematics (STEM) courses is challenging, but doing so is increasingly more important as current problems in science become more interdisciplinary. Opening up the silos between science disciplines and overcoming common…

  9. Developing Knowledge Intensive Ideas in Engineering Education: The Application of Camp Methodology

    ERIC Educational Resources Information Center

    Lassen, Astrid Heidemann; Nielsen, Suna Lowe

    2011-01-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in…

  10. The LAILAPS search engine: a feature model for relevance ranking in life science databases.

    PubMed

    Lange, Matthias; Spies, Karl; Colmsee, Christian; Flemming, Steffen; Klapperstück, Matthias; Scholz, Uwe

    2010-03-25

    Efficient and effective information retrieval in life sciences is one of the most pressing challenge in bioinformatics. The incredible growth of life science databases to a vast network of interconnected information systems is to the same extent a big challenge and a great chance for life science research. The knowledge found in the Web, in particular in life-science databases, are a valuable major resource. In order to bring it to the scientist desktop, it is essential to have well performing search engines. Thereby, not the response time nor the number of results is important. The most crucial factor for millions of query results is the relevance ranking. In this paper, we present a feature model for relevance ranking in life science databases and its implementation in the LAILAPS search engine. Motivated by the observation of user behavior during their inspection of search engine result, we condensed a set of 9 relevance discriminating features. These features are intuitively used by scientists, who briefly screen database entries for potential relevance. The features are both sufficient to estimate the potential relevance, and efficiently quantifiable. The derivation of a relevance prediction function that computes the relevance from this features constitutes a regression problem. To solve this problem, we used artificial neural networks that have been trained with a reference set of relevant database entries for 19 protein queries. Supporting a flexible text index and a simple data import format, this concepts are implemented in the LAILAPS search engine. It can easily be used both as search engine for comprehensive integrated life science databases and for small in-house project databases. LAILAPS is publicly available for SWISSPROT data at http://lailaps.ipk-gatersleben.de.

  11. ARPA-E: Creating Practical, Affordable Natural Gas Storage Solutions

    ScienceCinema

    Boysen, Dane; Loukus, Josh; Hansen, Rita

    2018-05-11

    Allowing people to refuel natural gas vehicles at home could revolutionize the way we power our cars and trucks. Currently, our nation faces two challenges in enabling natural gas for transportation. The first is improving the way gas tanks are built for natural gas vehicles; they need to be conformable, allowing them to fit tightly into the vehicle. The second challenge is improving the way those tanks are refueled while maintaining cost-effectiveness, safety, and reliability. This video highlights two ARPA-E project teams with innovative solutions to these challenges. REL is addressing the first challenge by developing a low-cost, conformable natural gas tank with an interconnected core structure. Oregon State University and OnBoard Dynamics are addressing the second challenge by developing a self-refueling natural gas vehicle that integrates a compressor into its engine-using one of the engine's cylinders to compress gas eliminates the need for an expensive at-home refueling system. These two distinct technologies from ARPA-E's MOVE program illustrate how the Agency takes a multi-pronged approach to problem solving and innovation.

  12. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis.

    PubMed

    Wernick, David G; Pontrelli, Sammy P; Pollock, Alexander W; Liao, James C

    2016-02-01

    Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater.

  13. Educational NASA Computational and Scientific Studies (enCOMPASS)

    NASA Technical Reports Server (NTRS)

    Memarsadeghi, Nargess

    2013-01-01

    Educational NASA Computational and Scientific Studies (enCOMPASS) is an educational project of NASA Goddard Space Flight Center aimed at bridging the gap between computational objectives and needs of NASA's scientific research, missions, and projects, and academia's latest advances in applied mathematics and computer science. enCOMPASS achieves this goal via bidirectional collaboration and communication between NASA and academia. Using developed NASA Computational Case Studies in university computer science/engineering and applied mathematics classes is a way of addressing NASA's goals of contributing to the Science, Technology, Education, and Math (STEM) National Objective. The enCOMPASS Web site at http://encompass.gsfc.nasa.gov provides additional information. There are currently nine enCOMPASS case studies developed in areas of earth sciences, planetary sciences, and astrophysics. Some of these case studies have been published in AIP and IEEE's Computing in Science and Engineering magazines. A few university professors have used enCOMPASS case studies in their computational classes and contributed their findings to NASA scientists. In these case studies, after introducing the science area, the specific problem, and related NASA missions, students are first asked to solve a known problem using NASA data and past approaches used and often published in a scientific/research paper. Then, after learning about the NASA application and related computational tools and approaches for solving the proposed problem, students are given a harder problem as a challenge for them to research and develop solutions for. This project provides a model for NASA scientists and engineers on one side, and university students, faculty, and researchers in computer science and applied mathematics on the other side, to learn from each other's areas of work, computational needs and solutions, and the latest advances in research and development. This innovation takes NASA science and engineering applications to computer science and applied mathematics university classes, and makes NASA objectives part of the university curricula. There is great potential for growth and return on investment of this program to the point where every major university in the U.S. would use at least one of these case studies in one of their computational courses, and where every NASA scientist and engineer facing a computational challenge (without having resources or expertise to solve it) would use enCOMPASS to formulate the problem as a case study, provide it to a university, and get back their solutions and ideas.

  14. First-year engineering students' views of the nature of engineering

    NASA Astrophysics Data System (ADS)

    Karatas, Faik O.

    The changing nature of engineering problems and new challenges that result from globalization and new ways of doing business have triggered calls for a revolutionary shift in engineering education. To respond to these challenges, the engineering education paradigm has been revised by adding more design and humanities/social sciences components to it. Philosophy, sociology, and history of engineering are more often cited as a major part of engineering education in this movement. Research on the nature of engineering (NOE), which is derived from philosophy, sociology, and the history of engineering, could have as much potential impact on engineering education as research on the nature of science (NOS) has had on science education. Thus, it is surprising that there has been no noteworthy research on this topic. The purpose of this study is to describe and determine first-year engineering students' views of the NOE and how these students differentiate engineering from science. In this research, an open-ended Views of the Nature of Engineering questionnaire (VNOE) was employed to collect baseline data. Semi-structured interviews based on the VNOE questionnaire were conducted with the second cohort of the participants. Data analysis was guided by a traditional phenomenographic approach, which is a branch of the hermeneutic tradition, coupled to constant comparison technique. The results of this study indicated that the participants' overall views of the nature of engineering were not ill-developed, but rather unarticulated. Moreover, the relationship between engineering and science was considered unidirectional rather than bidirectional. The results of this study could be used to inform engineering educators, first-year engineering coordinators, and policy makers as well as serving as the base for further research and potential implications for future first-year and K-12 engineering education.

  15. Challenges in the Verification of Reinforcement Learning Algorithms

    NASA Technical Reports Server (NTRS)

    Van Wesel, Perry; Goodloe, Alwyn E.

    2017-01-01

    Machine learning (ML) is increasingly being applied to a wide array of domains from search engines to autonomous vehicles. These algorithms, however, are notoriously complex and hard to verify. This work looks at the assumptions underlying machine learning algorithms as well as some of the challenges in trying to verify ML algorithms. Furthermore, we focus on the specific challenges of verifying reinforcement learning algorithms. These are highlighted using a specific example. Ultimately, we do not offer a solution to the complex problem of ML verification, but point out possible approaches for verification and interesting research opportunities.

  16. Fundamentals of diffusion MRI physics.

    PubMed

    Kiselev, Valerij G

    2017-03-01

    Diffusion MRI is commonly considered the "engine" for probing the cellular structure of living biological tissues. The difficulty of this task is threefold. First, in structurally heterogeneous media, diffusion is related to structure in quite a complicated way. The challenge of finding diffusion metrics for a given structure is equivalent to other problems in physics that have been known for over a century. Second, in most cases the MRI signal is related to diffusion in an indirect way dependent on the measurement technique used. Third, finding the cellular structure given the MRI signal is an ill-posed inverse problem. This paper reviews well-established knowledge that forms the basis for responding to the first two challenges. The inverse problem is briefly discussed and the reader is warned about a number of pitfalls on the way. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Engine-start Control Strategy of P2 Parallel Hybrid Electric Vehicle

    NASA Astrophysics Data System (ADS)

    Xiangyang, Xu; Siqi, Zhao; Peng, Dong

    2017-12-01

    A smooth and fast engine-start process is important to parallel hybrid electric vehicles with an electric motor mounted in front of the transmission. However, there are some challenges during the engine-start control. Firstly, the electric motor must simultaneously provide a stable driving torque to ensure the drivability and a compensative torque to drag the engine before ignition. Secondly, engine-start time is a trade-off control objective because both fast start and smooth start have to be considered. To solve these problems, this paper first analyzed the resistance of the engine start process, and established a physic model in MATLAB/Simulink. Then a model-based coordinated control strategy among engine, motor and clutch was developed. Two basic control strategy during fast start and smooth start process were studied. Simulation results showed that the control objectives were realized by applying given control strategies, which can meet different requirement from the driver.

  18. Computing in Hydraulic Engineering Education

    NASA Astrophysics Data System (ADS)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  19. Contentious problems in bioscience and biotechnology: a pilot study of an approach to ethics education.

    PubMed

    Berry, Roberta M; Borenstein, Jason; Butera, Robert J

    2013-06-01

    This manuscript describes a pilot study in ethics education employing a problem-based learning approach to the study of novel, complex, ethically fraught, unavoidably public, and unavoidably divisive policy problems, called "fractious problems," in bioscience and biotechnology. Diverse graduate and professional students from four US institutions and disciplines spanning science, engineering, humanities, social science, law, and medicine analyzed fractious problems employing "navigational skills" tailored to the distinctive features of these problems. The students presented their results to policymakers, stakeholders, experts, and members of the public. This approach may provide a model for educating future bioscientists and bioengineers so that they can meaningfully contribute to the social understanding and resolution of challenging policy problems generated by their work.

  20. Innovative Techniques Simplify Vibration Analysis

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In the early years of development, Marshall Space Flight Center engineers encountered challenges related to components in the space shuttle main engine. To assess the problems, they evaluated the effects of vibration and oscillation. To enhance the method of vibration signal analysis, Marshall awarded Small Business Innovation Research (SBIR) contracts to AI Signal Research, Inc. (ASRI), in Huntsville, Alabama. ASRI developed a software package called PC-SIGNAL that NASA now employs on a daily basis, and in 2009, the PKP-Module won Marshall s Software of the Year award. The technology is also used in many industries: aircraft and helicopter, rocket engine manufacturing, transportation, and nuclear power."

  1. Complexity in Nature and Society: Complexity Management in the Age of Globalization

    NASA Astrophysics Data System (ADS)

    Mainzer, Klaus

    The theory of nonlinear complex systems has become a proven problem-solving approach in the natural sciences from cosmic and quantum systems to cellular organisms and the brain. Even in modern engineering science self-organizing systems are developed to manage complex networks and processes. It is now recognized that many of our ecological, social, economic, and political problems are also of a global, complex, and nonlinear nature. What are the laws of sociodynamics? Is there a socio-engineering of nonlinear problem solving? What can we learn from nonlinear dynamics for complexity management in social, economic, financial and political systems? Is self-organization an acceptable strategy to handle the challenges of complexity in firms, institutions and other organizations? It is a main thesis of the talk that nature and society are basically governed by nonlinear and complex information dynamics. How computational is sociodynamics? What can we hope for social, economic and political problem solving in the age of globalization?.

  2. A Model-Based Approach to Engineering Behavior of Complex Aerospace Systems

    NASA Technical Reports Server (NTRS)

    Ingham, Michel; Day, John; Donahue, Kenneth; Kadesch, Alex; Kennedy, Andrew; Khan, Mohammed Omair; Post, Ethan; Standley, Shaun

    2012-01-01

    One of the most challenging yet poorly defined aspects of engineering a complex aerospace system is behavior engineering, including definition, specification, design, implementation, and verification and validation of the system's behaviors. This is especially true for behaviors of highly autonomous and intelligent systems. Behavior engineering is more of an art than a science. As a process it is generally ad-hoc, poorly specified, and inconsistently applied from one project to the next. It uses largely informal representations, and results in system behavior being documented in a wide variety of disparate documents. To address this problem, JPL has undertaken a pilot project to apply its institutional capabilities in Model-Based Systems Engineering to the challenge of specifying complex spacecraft system behavior. This paper describes the results of the work in progress on this project. In particular, we discuss our approach to modeling spacecraft behavior including 1) requirements and design flowdown from system-level to subsystem-level, 2) patterns for behavior decomposition, 3) allocation of behaviors to physical elements in the system, and 4) patterns for capturing V&V activities associated with behavioral requirements. We provide examples of interesting behavior specification patterns, and discuss findings from the pilot project.

  3. An engineering design approach to systems biology.

    PubMed

    Janes, Kevin A; Chandran, Preethi L; Ford, Roseanne M; Lazzara, Matthew J; Papin, Jason A; Peirce, Shayn M; Saucerman, Jeffrey J; Lauffenburger, Douglas A

    2017-07-17

    Measuring and modeling the integrated behavior of biomolecular-cellular networks is central to systems biology. Over several decades, systems biology has been shaped by quantitative biologists, physicists, mathematicians, and engineers in different ways. However, the basic and applied versions of systems biology are not typically distinguished, which blurs the separate aspirations of the field and its potential for real-world impact. Here, we articulate an engineering approach to systems biology, which applies educational philosophy, engineering design, and predictive models to solve contemporary problems in an age of biomedical Big Data. A concerted effort to train systems bioengineers will provide a versatile workforce capable of tackling the diverse challenges faced by the biotechnological and pharmaceutical sectors in a modern, information-dense economy.

  4. Students' Perceptions of and Responses to Teaching Assistant and Peer Feedback

    ERIC Educational Resources Information Center

    Rodgers, Kelsey J.; Horvath, Aladar K.; Jung, Hyunyi; Fry, Amanda S.; Diefes-Dux, Heidi A.; Cardella, Monica E.

    2015-01-01

    Authentic open-ended problems are increasingly appearing in university classrooms at all levels. Formative feedback that leads to learning and improved student work products is a challenge, particularly in large enrollment courses. This is a case study of one first-year engineering student team's experience with teaching assistant and peer…

  5. CASE: A Configurable Argumentation Support Engine

    ERIC Educational Resources Information Center

    Scheuer, O.; McLaren, B. M.

    2013-01-01

    One of the main challenges in tapping the full potential of modern educational software is to devise mechanisms to automatically analyze and adaptively support students' problem solving and learning. A number of such approaches have been developed to teach argumentation skills in domains as diverse as science, the Law, and ethics. Yet,…

  6. 3D Pit Stop Printing

    ERIC Educational Resources Information Center

    Wright, Lael; Shaw, Daniel; Gaidds, Kimberly; Lyman, Gregory; Sorey, Timothy

    2018-01-01

    Although solving an engineering design project problem with limited resources or structural capabilities of materials can be part of the challenge, students making their own parts can support creativity. The authors of this article found an exciting solution: 3D printers are not only one of several tools for making but also facilitate a creative…

  7. From Evidence to Impact: Recommendations for a Dissemination Support System

    ERIC Educational Resources Information Center

    Kreuter, Matthew W.; Wang, Monica L.

    2015-01-01

    While finding effective solutions to child and adolescent health problems is very much a scientific endeavor, getting those solutions into widespread practice largely is not. This paper applies lessons from business and engineering to highlight the shortcomings of current approaches to science translation. In challenging the status quo, the paper…

  8. What Makes Your Wheels Turn?

    ERIC Educational Resources Information Center

    DiJulio, Betsy

    2010-01-01

    In the author's ongoing attempt to design creative challenges that are relevant, based on observational drawing, and that place students squarely in the creative problem-solving driver's seat, she chose cars and engines as subjects. After all, they have a parking lot full of them and their administrative staff members, who park side-by-side, were…

  9. Challenging Disciplinary Boundaries in the First Year: A New Introductory Integrated Science Course for STEM Majors

    ERIC Educational Resources Information Center

    Gentile, Lisa; Caudill, Lester; Fetea, Mirela; Hill, April; Hoke, Kathy; Lawson, Barry; Lipan, Ovidiu; Kerckhove, Michael; Parish, Carol; Stenger, Krista; Szajda, Doug

    2012-01-01

    To help undergraduates make connections among disciplines so they are able to approach, evaluate, and contribute to the solutions of important global problems, our campus has been focused on interdisciplinary research and education opportunities across the science, technology, engineering, and mathematics (STEM) disciplines. This paper describes…

  10. Envisioning a Career in Science, Technology, Engineering and Mathematics: Some Challenges and Possibilities

    ERIC Educational Resources Information Center

    Sharkawy, Azza

    2015-01-01

    In "How High School Students Envision Their STEM Career Pathways", Lin Zhang and Michael Barnett attempt to shed light on the problem of underrepresented students (e.g., Aboriginals, Hispanics, African Americans, urban, females) in STEM higher education and related careers by exploring, in general terms, five high school students' career…

  11. Analyzing privacy requirements: A case study of healthcare in Saudi Arabia.

    PubMed

    Ebad, Shouki A; Jaha, Emad S; Al-Qadhi, Mohammed A

    2016-01-01

    Developing legally compliant systems is a challenging software engineering problem, especially in systems that are governed by law, such as healthcare information systems. This challenge comes from the ambiguities and domain-specific definitions that are found in governmental rules. Therefore, there is a significant business need to automatically analyze privacy texts, extract rules and subsequently enforce them throughout the supply chain. The existing works that analyze health regulations use the U.S. Health Insurance Portability and Accountability Act as a case study. In this article, we applied the Breaux and Antón approach to the text of the Saudi Arabian healthcare privacy regulations; in Saudi Arabia, privacy is among the top dilemmas for public and private healthcare practitioners. As a result, we extracted and analyzed 2 rights, 4 obligations, 22 constraints, and 6 rules. Our analysis can assist requirements engineers, standards organizations, compliance officers and stakeholders by ensuring that their systems conform to Saudi policy. In addition, this article discusses the threats to the study validity and suggests open problems for future research.

  12. Application of soft computing based hybrid models in hydrological variables modeling: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Fahimi, Farzad; Yaseen, Zaher Mundher; El-shafie, Ahmed

    2017-05-01

    Since the middle of the twentieth century, artificial intelligence (AI) models have been used widely in engineering and science problems. Water resource variable modeling and prediction are the most challenging issues in water engineering. Artificial neural network (ANN) is a common approach used to tackle this problem by using viable and efficient models. Numerous ANN models have been successfully developed to achieve more accurate results. In the current review, different ANN models in water resource applications and hydrological variable predictions are reviewed and outlined. In addition, recent hybrid models and their structures, input preprocessing, and optimization techniques are discussed and the results are compared with similar previous studies. Moreover, to achieve a comprehensive view of the literature, many articles that applied ANN models together with other techniques are included. Consequently, coupling procedure, model evaluation, and performance comparison of hybrid models with conventional ANN models are assessed, as well as, taxonomy and hybrid ANN models structures. Finally, current challenges and recommendations for future researches are indicated and new hybrid approaches are proposed.

  13. Engineering Risk Assessment of Space Thruster Challenge Problem

    NASA Technical Reports Server (NTRS)

    Mathias, Donovan L.; Mattenberger, Christopher J.; Go, Susie

    2014-01-01

    The Engineering Risk Assessment (ERA) team at NASA Ames Research Center utilizes dynamic models with linked physics-of-failure analyses to produce quantitative risk assessments of space exploration missions. This paper applies the ERA approach to the baseline and extended versions of the PSAM Space Thruster Challenge Problem, which investigates mission risk for a deep space ion propulsion system with time-varying thruster requirements and operations schedules. The dynamic mission is modeled using a combination of discrete and continuous-time reliability elements within the commercially available GoldSim software. Loss-of-mission (LOM) probability results are generated via Monte Carlo sampling performed by the integrated model. Model convergence studies are presented to illustrate the sensitivity of integrated LOM results to the number of Monte Carlo trials. A deterministic risk model was also built for the three baseline and extended missions using the Ames Reliability Tool (ART), and results are compared to the simulation results to evaluate the relative importance of mission dynamics. The ART model did a reasonable job of matching the simulation models for the baseline case, while a hybrid approach using offline dynamic models was required for the extended missions. This study highlighted that state-of-the-art techniques can adequately adapt to a range of dynamic problems.

  14. Aerospace Measurements: Challenges and Opportunities

    NASA Technical Reports Server (NTRS)

    Conway, Bruce A.

    1992-01-01

    New aerospace research initiatives offer both challenges and opportunities to rapidly-emerging electronics and electro-optics technology. Defining and implementing appropriate measurement technology development programs in response to the aeronautical ground facility research and testing needs of the new initiatives poses some particularly important problems. This paper discusses today's measurement challenges along with some of the technological opportunities which offer some hope for meeting the challenges, and describes measurement technology activities currently underway in the Langley Research Center's Instrument Research Division to address modern aerospace research and design engineering requirements. Projected and realized benefits and payoffs from the ongoing measurement and instrumentation efforts will be emphasized. A discussion of future trends in the aerospace measurement technology field will be included.

  15. Problem formulation and option assessment (PFOA) linking governance and environmental risk assessment for technologies: a methodology for problem analysis of nanotechnologies and genetically engineered organisms.

    PubMed

    Nelson, Kristen C; Andow, David A; Banker, Michael J

    2009-01-01

    Societal evaluation of new technologies, specifically nanotechnology and genetically engineered organisms (GEOs), challenges current practices of governance and science. Employing environmental risk assessment (ERA) for governance and oversight assumes we have a reasonable ability to understand consequences and predict adverse effects. However, traditional ERA has come under considerable criticism for its many shortcomings and current governance institutions have demonstrated limitations in transparency, public input, and capacity. Problem Formulation and Options Assessment (PFOA) is a methodology founded on three key concepts in risk assessment (science-based consideration, deliberation, and multi-criteria analysis) and three in governance (participation, transparency, and accountability). Developed through a series of international workshops, the PFOA process emphasizes engagement with stakeholders in iterative stages, from identification of the problem(s) through comparison of multiple technology solutions that could be used in the future with their relative benefits, harms, and risk. It provides "upstream public engagement" in a deliberation informed by science that identifies values for improved decision making.

  16. DoD HPC Insights Fall 2016A publication of the Department of Defense High Performance Computing Modernization Program

    DTIC Science & Technology

    2016-09-01

    HPCMP will continue to be a key resource in solving challenging problems for the Department of Defense . 1 Fall 2016 High-F idel i ty Simulat ions of...laser interactions. The group had studied plasma expansion experimentally, but this wasn’t sufficient to understand the problem . Feister adapted and...focused on increasing the efficiency of jet turbine engines and extending aircraft flight ranges by changing the shape (articulation) of the turbine

  17. The Apollo Expericence Lessons Learned for Constellation Lunar Dust Management

    NASA Astrophysics Data System (ADS)

    Wagner, Sandra

    2006-09-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  18. The Apollo Experience Lessons Learned for Constellation Lunar Dust Management

    NASA Technical Reports Server (NTRS)

    Wagner, Sandra

    2006-01-01

    Lunar dust will present significant challenges to NASA's Lunar Exploration Missions. The challenges can be overcome by using best practices in system engineering design. For successful lunar surface missions, all systems that come into contact with lunar dust must consider the effects throughout the entire design process. Interfaces between all these systems with other systems also must be considered. Incorporating dust management into Concept of Operations and Requirements development are the best place to begin to mitigate the risks presented by lunar dust. However, that is only the beginning. To be successful, every person who works on NASA's Constellation lunar missions must be mindful of this problem. Success will also require fiscal responsibility. NASA must learn from Apollo the root cause of problems caused by dust, and then find the most cost-effective solutions to address each challenge. This will require a combination of common sense existing technologies and promising, innovative technical solutions

  19. Tissue Engineering of Blood Vessels: Functional Requirements, Progress, and Future Challenges.

    PubMed

    Kumar, Vivek A; Brewster, Luke P; Caves, Jeffrey M; Chaikof, Elliot L

    2011-09-01

    Vascular disease results in the decreased utility and decreased availability of autologus vascular tissue for small diameter (< 6 mm) vessel replacements. While synthetic polymer alternatives to date have failed to meet the performance of autogenous conduits, tissue-engineered replacement vessels represent an ideal solution to this clinical problem. Ongoing progress requires combined approaches from biomaterials science, cell biology, and translational medicine to develop feasible solutions with the requisite mechanical support, a non-fouling surface for blood flow, and tissue regeneration. Over the past two decades interest in blood vessel tissue engineering has soared on a global scale, resulting in the first clinical implants of multiple technologies, steady progress with several other systems, and critical lessons-learned. This review will highlight the current inadequacies of autologus and synthetic grafts, the engineering requirements for implantation of tissue-engineered grafts, and the current status of tissue-engineered blood vessel research.

  20. Systems metabolic engineering of microorganisms for natural and non-natural chemicals.

    PubMed

    Lee, Jeong Wook; Na, Dokyun; Park, Jong Myoung; Lee, Joungmin; Choi, Sol; Lee, Sang Yup

    2012-05-17

    Growing concerns over limited fossil resources and associated environmental problems are motivating the development of sustainable processes for the production of chemicals, fuels and materials from renewable resources. Metabolic engineering is a key enabling technology for transforming microorganisms into efficient cell factories for these compounds. Systems metabolic engineering, which incorporates the concepts and techniques of systems biology, synthetic biology and evolutionary engineering at the systems level, offers a conceptual and technological framework to speed the creation of new metabolic enzymes and pathways or the modification of existing pathways for the optimal production of desired products. Here we discuss the general strategies of systems metabolic engineering and examples of its application and offer insights as to when and how each of the different strategies should be used. Finally, we highlight the limitations and challenges to be overcome for the systems metabolic engineering of microorganisms at more advanced levels.

  1. Blended Wing Body Concept Development with Open Rotor Engine Intergration

    NASA Technical Reports Server (NTRS)

    Pitera, David M.; DeHaan, Mark; Brown, Derrell; Kawai, Ronald T.; Hollowell, Steve; Camacho, Peter; Bruns, David; Rawden, Blaine K.

    2011-01-01

    The purpose of this study is to perform a systems analysis of a Blended Wing Body (BWB) open rotor concept at the conceptual design level. This concept will be utilized to estimate overall noise and fuel burn performance, leveraging recent test data. This study will also investigate the challenge of propulsion airframe installation of an open rotor engine on a BWB configuration. Open rotor engines have unique problems relative to turbofans. The rotors are open, exposed to flow conditions outside of the engine. The flow field that the rotors are immersed in may be higher than the free stream flow and it may not be uniform, both of these characteristics could increase noise and decrease performance. The rotors sometimes cause changes in the flow conditions imposed on aircraft surfaces. At high power conditions such as takeoff and climb out, the stream tube of air that goes through the rotors contracts rapidly causing the boundary layer on the body upper surface to go through an adverse pressure gradient which could result with separated airflow. The BWB / Open Rotor configuration must be designed to mitigate these problems.

  2. Modeling Primary Atomization of Liquid Fuels using a Multiphase DNS/LES Approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arienti, Marco; Oefelein, Joe; Doisneau, Francois

    2016-08-01

    As part of a Laboratory Directed Research and Development project, we are developing a modeling-and-simulation capability to study fuel direct injection in automotive engines. Predicting mixing and combustion at realistic conditions remains a challenging objective of energy science. And it is a research priority in Sandia’s mission-critical area of energy security, being also relevant to many flows in defense and climate. High-performance computing applied to this non-linear multi-scale problem is key to engine calculations with increased scientific reliability.

  3. Automatic building information model query generation

    DOE PAGES

    Jiang, Yufei; Yu, Nan; Ming, Jiang; ...

    2015-12-01

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  4. Automatic building information model query generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Yufei; Yu, Nan; Ming, Jiang

    Energy efficient building design and construction calls for extensive collaboration between different subfields of the Architecture, Engineering and Construction (AEC) community. Performing building design and construction engineering raises challenges on data integration and software interoperability. Using Building Information Modeling (BIM) data hub to host and integrate building models is a promising solution to address those challenges, which can ease building design information management. However, the partial model query mechanism of current BIM data hub collaboration model has several limitations, which prevents designers and engineers to take advantage of BIM. To address this problem, we propose a general and effective approachmore » to generate query code based on a Model View Definition (MVD). This approach is demonstrated through a software prototype called QueryGenerator. In conclusion, by demonstrating a case study using multi-zone air flow analysis, we show how our approach and tool can help domain experts to use BIM to drive building design with less labour and lower overhead cost.« less

  5. Translational Challenges in Cardiovascular Tissue Engineering.

    PubMed

    Emmert, Maximilian Y; Fioretta, Emanuela S; Hoerstrup, Simon P

    2017-04-01

    Valvular heart disease and congenital heart defects represent a major cause of death around the globe. Although current therapy strategies have rapidly evolved over the decades and are nowadays safe, effective, and applicable to many affected patients, the currently used artificial prostheses are still suboptimal. They do not promote regeneration, physiological remodeling, or growth (particularly important aspects for children) as their native counterparts. This results in the continuous degeneration and subsequent failure of these prostheses which is often associated with an increased morbidity and mortality as well as the need for multiple re-interventions. To overcome this problem, the concept of tissue engineering (TE) has been repeatedly suggested as a potential technology to enable native-like cardiovascular replacements with regenerative and growth capacities, suitable for young adults and children. However, despite promising data from pre-clinical and first clinical pilot trials, the translation and clinical relevance of such TE technologies is still very limited. The reasons that currently limit broad clinical adoption are multifaceted and comprise of scientific, clinical, logistical, technical, and regulatory challenges which need to be overcome. The aim of this review is to provide an overview about the translational problems and challenges in current TE approaches. It further suggests directions and potential solutions on how these issues may be efficiently addressed in the future to accelerate clinical translation. In addition, a particular focus is put on the current regulatory guidelines and the associated challenges for these promising TE technologies.

  6. Managing bioengineering complexity with AI techniques.

    PubMed

    Beal, Jacob; Adler, Aaron; Yaman, Fusun

    2016-10-01

    Our capabilities for systematic design and engineering of biological systems are rapidly increasing. Effectively engineering such systems, however, requires the synthesis of a rapidly expanding and changing complex body of knowledge, protocols, and methodologies. Many of the problems in managing this complexity, however, appear susceptible to being addressed by artificial intelligence (AI) techniques, i.e., methods enabling computers to represent, acquire, and employ knowledge. Such methods can be employed to automate physical and informational "routine" work and thus better allow humans to focus their attention on the deeper scientific and engineering issues. This paper examines the potential impact of AI on the engineering of biological organisms through the lens of a typical organism engineering workflow. We identify a number of key opportunities for significant impact, as well as challenges that must be overcome. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Design Process for High Speed Civil Transport Aircraft Improved by Neural Network and Regression Methods

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale A.

    1998-01-01

    A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).

  8. Assessing problem-solving skills in construction education with the virtual construction simulator

    NASA Astrophysics Data System (ADS)

    Castronovo, Fadi

    The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.

  9. Research Ethics Education in the STEM Disciplines: The Promises and Challenges of a Gaming Approach.

    PubMed

    Briggle, Adam; Holbrook, J Britt; Oppong, Joseph; Hoffmann, Joesph; Larsen, Elizabeth K; Pluscht, Patrick

    2016-02-01

    While education in ethics and the responsible conduct of research (RCR) is widely acknowledged as an essential component of graduate education, particularly in the STEM disciplines (science, technology, engineering, and math), little consensus exists on how best to accomplish this goal. Recent years have witnessed a turn toward the use of games in this context. Drawing from two NSF-funded grants (one completed and one on-going), this paper takes a critical look at the use of games in ethics and RCR education. It does so by: (a) setting the development of research and engineering ethics games in wider historical and theoretical contexts, which highlights their promise to solve important pedagogical problems; (b) reporting on some initial results from our own efforts to develop a game; and (c) reflecting on the challenges that arise in using games for ethics education. In our discussion of the challenges, we draw out lessons to improve this nascent approach to ethics education in the STEM disciplines .

  10. Addressing the STEM Workforce Challenge: Missouri. BHEF Research Brief

    ERIC Educational Resources Information Center

    Business-Higher Education Forum (NJ1), 2012

    2012-01-01

    While states and the federal government have put efforts in place to increase the size of the workforce trained in science, technology, engineering, and math (STEM) to meet innovation demands, there continues to be a nationwide shortage of students who are interested in and prepared for such careers. Missouri is no exception to this problem, one…

  11. Gathering Design References from Nature

    ERIC Educational Resources Information Center

    Debs, Luciana; Kelley, Todd

    2015-01-01

    Teaching design to middle and high school students can be challenging. One of the first procedures in teaching design is to help students gather information that will be useful in the design phase. An early stage of engineering design as described by Lewis (2005), calls for the designer to establish the state of the art of the problem. During this…

  12. Using LEGO Kits to Teach Higher Level Problem Solving Skills in System Dynamics: A Case Study

    ERIC Educational Resources Information Center

    Wu, Yi; de Vries, Charlotte; Dunsworth, Qi

    2018-01-01

    System Dynamics is a required course offered to junior Mechanical Engineering students at Penn State Erie, the Behrend College. It addresses the intercoupling dynamics of a wide range of dynamic systems: including mechanical, electrical, fluid, hydraulic, electromechanical, and biomedical systems. This course is challenging for students due to the…

  13. Ornithologists by Design: Kindergarteners Design, Construct, and Evaluate Bird Feeders

    ERIC Educational Resources Information Center

    Shorter, Angela; Segers, Marcia

    2016-01-01

    How can an engineer design a bird feeder that attracts many birds? This question resulted from kindergarten students' observations of the bird feeders in their school's bird sanctuary. The challenging question is the heart of project-based learning (PBL), a teaching strategy in which students tackle real-world problems and design projects to solve…

  14. Trash + Creativity = Problem Solved: Award Winners Give Plastic Bottles Second Life

    ERIC Educational Resources Information Center

    Tech Directions, 2007

    2007-01-01

    Judge Harry T. Roman, an electrical engineer and inventor, has selected the best of the crop in the 2006/2007 Tech Directions Inventors Award Competition. The challenge this year called on students to slow the filling of landfills by devising uses for discarded plastic water, juice, soda, and sports-drink bottles. Judge Roman noted "many common…

  15. Teaching Media Design by Using Scrum. A Qualitative Study within a Media Informatics Elective Course

    ERIC Educational Resources Information Center

    Herrmann, Ines; Münster, Sander; Tietz, Vincent; Uhlemann, Rainer

    2017-01-01

    Cross-disciplinary skills are today's key skills for media informatics students to gain employment after graduation. However, such problem-based learning projects almost never take place due to organizational struggles. The authors suggest Scrum, a framework that is increasingly used in software engineering, as a solution for the challenges. Scrum…

  16. 75 FR 5634 - Grand Challenges of the 21st Century; Request for Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-03

    ... sustainable growth and the creation of high-quality jobs. One of the goals of the President's strategy is to..., etc.) that are interested in collaborating with each other and the Administration to achieve one or.... Some define important problems in a particular field of science and engineering. For example, in 1900...

  17. Bringing the Unidata IDV to the Cloud

    NASA Astrophysics Data System (ADS)

    Fisher, W. I.; Oxelson Ganter, J.

    2015-12-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While traditional software engineering provides a suite of tools and methodologies which may mitigate this issue, they are typically ignored by developers lacking a background in software engineering. Causing further problems, these methodologies are best applied at the start of project; trying to apply them to an existing, mature project can require an immense effort. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. As a result of these issues, there exists a large body of software which is simultaneously critical to the scientists who are dependent upon it, and yet increasingly difficult to maintain.The solution to this problem was partially provided with the advent of Cloud Computing; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. When coupled with containerization technology such as Docker, we are able to easily bring the same visualization software to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be.Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved.

  18. Organizational Influences on Interdisciplinary Interactions during Research and Design of Large-Scale Complex Engineered Systems

    NASA Technical Reports Server (NTRS)

    McGowan, Anna-Maria R.; Seifert, Colleen M.; Papalambros, Panos Y.

    2012-01-01

    The design of large-scale complex engineered systems (LaCES) such as an aircraft is inherently interdisciplinary. Multiple engineering disciplines, drawing from a team of hundreds to thousands of engineers and scientists, are woven together throughout the research, development, and systems engineering processes to realize one system. Though research and development (R&D) is typically focused in single disciplines, the interdependencies involved in LaCES require interdisciplinary R&D efforts. This study investigates the interdisciplinary interactions that take place during the R&D and early conceptual design phases in the design of LaCES. Our theoretical framework is informed by both engineering practices and social science research on complex organizations. This paper provides preliminary perspective on some of the organizational influences on interdisciplinary interactions based on organization theory (specifically sensemaking), data from a survey of LaCES experts, and the authors experience in the research and design. The analysis reveals couplings between the engineered system and the organization that creates it. Survey respondents noted the importance of interdisciplinary interactions and their significant benefit to the engineered system, such as innovation and problem mitigation. Substantial obstacles to interdisciplinarity are uncovered beyond engineering that include communication and organizational challenges. Addressing these challenges may ultimately foster greater efficiencies in the design and development of LaCES and improved system performance by assisting with the collective integration of interdependent knowledge bases early in the R&D effort. This research suggests that organizational and human dynamics heavily influence and even constrain the engineering effort for large-scale complex systems.

  19. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  20. Sustainable biorefining in wastewater by engineered extreme alkaliphile Bacillus marmarensis

    PubMed Central

    Wernick, David G.; Pontrelli, Sammy P.; Pollock, Alexander W.; Liao, James C.

    2016-01-01

    Contamination susceptibility, water usage, and inability to utilize 5-carbon sugars and disaccharides are among the major obstacles in industrialization of sustainable biorefining. Extremophilic thermophiles and acidophiles are being researched to combat these problems, but organisms which answer all the above problems have yet to emerge. Here, we present engineering of the unexplored, extreme alkaliphile Bacillus marmarensis as a platform for new bioprocesses which meet all these challenges. With a newly developed transformation protocol and genetic tools, along with optimized RBSs and antisense RNA, we engineered B. marmarensis to produce ethanol at titers of 38 g/l and 65% yields from glucose in unsterilized media. Furthermore, ethanol titers and yields of 12 g/l and 50%, respectively, were produced from cellobiose and xylose in unsterilized seawater and algal-contaminated wastewater. As such, B. marmarensis presents a promising approach for the contamination-resistant biorefining of a wide range of carbohydrates in unsterilized, non-potable seawater. PMID:26831574

  1. Selecting the Best: Evolutionary Engineering of Chemical Production in Microbes.

    PubMed

    Shepelin, Denis; Hansen, Anne Sofie Lærke; Lennen, Rebecca; Luo, Hao; Herrgård, Markus J

    2018-05-11

    Microbial cell factories have proven to be an economical means of production for many bulk, specialty, and fine chemical products. However, we still lack both a holistic understanding of organism physiology and the ability to predictively tune enzyme activities in vivo, thus slowing down rational engineering of industrially relevant strains. An alternative concept to rational engineering is to use evolution as the driving force to select for desired changes, an approach often described as evolutionary engineering. In evolutionary engineering, in vivo selections for a desired phenotype are combined with either generation of spontaneous mutations or some form of targeted or random mutagenesis. Evolutionary engineering has been used to successfully engineer easily selectable phenotypes, such as utilization of a suboptimal nutrient source or tolerance to inhibitory substrates or products. In this review, we focus primarily on a more challenging problem-the use of evolutionary engineering for improving the production of chemicals in microbes directly. We describe recent developments in evolutionary engineering strategies, in general, and discuss, in detail, case studies where production of a chemical has been successfully achieved through evolutionary engineering by coupling production to cellular growth.

  2. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community

    PubMed Central

    Clarens, Andres F.; Peters, Catherine A.

    2016-01-01

    Abstract Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on “The science and innovation of emerging subsurface energy technologies,” provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others. PMID:28031695

  3. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    PubMed

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  4. Challenges in the Japan Beyond-Brittle Project (JBBP) for EGS development beyond the brittle-ductile transition

    NASA Astrophysics Data System (ADS)

    Asanuma, H.; Muraoka, H.; Tsuchiya, N.; Ito, H.

    2013-12-01

    Development using Engineered Geothermal System (EGS) technologies is considered to be the best solution to the problems of the localized distribution of geothermal resources. However, it is considered that a number of problems, including low water recovery rate, difficulty in design of the reservoir, and induced earthquake, would appear in Japanese EGS. These problems in the development of EGS reservoirs cannot be readily solved in Japan because they are intrinsically related to the physical characteristics and tectonic setting of the brittle rock mass. Therefore, we have initiated the Japan Beyond-Brittle Project (JBBP), which will take a multidisciplinary scientific approach, including geology, geochemistry, geophysics, water-rock interactions, rock mechanics, seismology, drilling technology, well-logging technology, and reservoir engineering. The science and technology required for the creation and control of geothermal reservoirs in superheated rocks in the ductile zone is at the frontier of modern research in most of the related disciplines. Solutions to the associated problems will not easily be found without international collaboration among researchers and engineers. For this reason, in March, 2013 we held a five-day ICDP-supported workshop in Japan to review and discuss various scientific and technological issues related to the JBBP. Throughout the discussions at the workshop on characteristics of the beyond-brittle rock mass and creation and control of EGS reservoirs in the ductile zone, it has concluded that there are two end-member reservoir models that should be considered (Fig. 1). The JBBP reservoir type-1 would be created near the top of the brittle-ductile transition (BDT) and connected to pre-existing hydrothermal systems, which would increase productivity and provide sustainability. The JBBP reservoir type-2 would be hydraulically or thermally created beyond the BDT, where pre-existing fractures are less permeable, and would be hydraulically isolated from the hydrothermal system. Discussions on exploration/monitoring of the BDT rock mass and JBBP reservoirs, and engineering development have been also made in the workshop. We finally identified scientific/technological challenges for the JBBP and established roadmap and implementation plan. The workshop report is available at http://jbbp.kankyo.tohoku.ac.jp/jbbp Conceptual model of the JBBP

  5. Crowdsourcing for Challenging Technical Problems - It Works!

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2011-01-01

    The NASA Johnson Space Center Space Life Sciences Directorate (SLSD) and Wyle Integrated Science and Engineering (Wyle) will conduct a one-day business cluster at the 62nd IAC so that IAC attendees will understand the benefits of open innovation (crowdsourcing), review successful results of conducting technical challenges in various open innovation projects, and learn how an organization can effectively deploy these new problem solving tools to innovate more efficiently and effectively. Results from both the SLSD open innovation pilot program and the open innovation workshop conducted by the NASA Human Health and Performance Center will be discussed. NHHPC members will be recruited to participate in the business cluster (see membership http://nhhpc.nasa.gov) and as IAF members. Crowdsourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by the organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the SLSD, with the support of Wyle, established and implemented pilot projects in open innovation (crowdsourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, called Challenges by some open innovation service providers, and were then posted externally to seek solutions to these problems. In addition, an open call was issued internally to NASA employees Agency wide (11 Field Centers and NASA HQ) using an open innovation service provider crowdsourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowdsourcing platform designed for use internal to an organization and customized for NASA use, and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging.

  6. X-33 Attitude Control Using the XRS-2200 Linear Aerospike Engine

    NASA Technical Reports Server (NTRS)

    Hall, Charles E.; Panossian, Hagop V.

    1999-01-01

    The Vehicle Control Systems Team at Marshall Space Flight Center, Structures and Dynamics Laboratory, Guidance and Control Systems Division is designing, under a cooperative agreement with Lockheed Martin Skunkworks, the Ascent, Transition, and Entry flight attitude control systems for the X-33 experimental vehicle. Test flights, while suborbital, will achieve sufficient altitudes and Mach numbers to test Single Stage To Orbit, Reusable Launch Vehicle technologies. Ascent flight control phase, the focus of this paper, begins at liftoff and ends at linear aerospike main engine cutoff (MECO). The X-33 attitude control system design is confronted by a myriad of design challenges: a short design cycle, the X-33 incremental test philosophy, the concurrent design philosophy chosen for the X-33 program, and the fact that the attitude control system design is, as usual, closely linked to many other subsystems and must deal with constraints and requirements from these subsystems. Additionally, however, and of special interest, the use of the linear aerospike engine is a departure from the gimbaled engines traditionally used for thrust vector control (TVC) in launch vehicles and poses certain design challenges. This paper discusses the unique problem of designing the X-33 attitude control system with the linear aerospike engine, requirements development, modeling and analyses that verify the design.

  7. Engineering Pre-vascularized Scaffolds for Bone Regeneration.

    PubMed

    Barabaschi, Giada D G; Manoharan, Vijayan; Li, Qing; Bertassoni, Luiz E

    2015-01-01

    Survival of functional tissue constructs of clinically relevant size depends on the formation of an organized and uniformly distributed network of blood vessels and capillaries. The lack of such vasculature leads to spatio-temporal gradients in oxygen, nutrients and accumulation of waste products inside engineered tissue constructs resulting in negative biological events at the core of the scaffold. Unavailability of a well-defined vasculature also results in ineffective integration of scaffolds to the host vasculature upon implantation. Arguably, one of the greatest challenges in engineering clinically relevant bone substitutes, therefore, has been the development of vascularized bone scaffolds. Various approaches ranging from peptide and growth factor functionalized biomaterials to hyper-porous scaffolds have been proposed to address this problem with reasonable success. An emerging alternative to address this challenge has been the fabrication of pre-vascularized scaffolds by taking advantage of biomanufacturing techniques, such as soft- and photo-lithography or 3D bioprinting, and cell-based approaches, where functional capillaries are engineered in cell-laden scaffolds prior to implantation. These strategies seek to engineer pre-vascularized tissues in vitro, allowing for improved anastomosis with the host vasculature upon implantation, while also improving cell viability and tissue development in vitro. This book chapter provides an overview of recent methods to engineer pre-vascularized scaffolds for bone regeneration. We first review the development of functional blood capillaries in bony structures and discuss controlled delivery of growth factors, co-culture systems, and on-chip studies to engineer vascularized cell-laden biomaterials. Lastly, we review recent studies using microfabrication techniques and 3D printing to engineer pre-vascularized scaffolds for bone tissue engineering.

  8. The Cloud-Based Integrated Data Viewer (IDV)

    NASA Astrophysics Data System (ADS)

    Fisher, Ward

    2015-04-01

    Maintaining software compatibility across new computing environments and the associated underlying hardware is a common problem for software engineers and scientific programmers. While there are a suite of tools and methodologies used in traditional software engineering environments to mitigate this issue, they are typically ignored by developers lacking a background in software engineering. The result is a large body of software which is simultaneously critical and difficult to maintain. Visualization software is particularly vulnerable to this problem, given the inherent dependency on particular graphics hardware and software API's. The advent of cloud computing has provided a solution to this problem, which was not previously practical on a large scale; Application Streaming. This technology allows a program to run entirely on a remote virtual machine while still allowing for interactivity and dynamic visualizations, with little-to-no re-engineering required. Through application streaming we are able to bring the same visualization to a desktop, a netbook, a smartphone, and the next generation of hardware, whatever it may be. Unidata has been able to harness Application Streaming to provide a tablet-compatible version of our visualization software, the Integrated Data Viewer (IDV). This work will examine the challenges associated with adapting the IDV to an application streaming platform, and include a brief discussion of the underlying technologies involved. We will also discuss the differences between local software and software-as-a-service.

  9. From Numerical Problem Solving to Model-Based Experimentation Incorporating Computer-Based Tools of Various Scales into the ChE Curriculum

    ERIC Educational Resources Information Center

    Shacham, Mordechai; Cutlip, Michael B.; Brauner, Neima

    2009-01-01

    A continuing challenge to the undergraduate chemical engineering curriculum is the time-effective incorporation and use of computer-based tools throughout the educational program. Computing skills in academia and industry require some proficiency in programming and effective use of software packages for solving 1) single-model, single-algorithm…

  10. Using Simplified English to Identify Potential Problems for Non-Native Speakers in the Language of Engineering Examination Papers

    ERIC Educational Resources Information Center

    Harrison, Sandra; Morgan, Roger

    2012-01-01

    There is an increasing sensitivity to the challenges posed by the language of examination papers and of instruction in scientific subjects, especially for non-native speakers of English. It has been observed that in addition to technical subject-specific vocabulary, non-technical words such as instructional verbs have been sources of difficulty,…

  11. Ethics, Engineering and the Challenge of Racial Reform in Education

    ERIC Educational Resources Information Center

    Tate, William F., IV

    2005-01-01

    The articles in this issue represent the growing body of literature in the field of education focused on problems of race. More specifically, these articles draw on the theoretical tenets of the New Race Group of Legal Studies or what is more commonly referred to as the critical race theory (CRT) movement. The author's goals in this article are…

  12. Engineering Encounters: No, David! but Yes, Design! Kindergarten Students Are Introduced to a Design Way of Thinking

    ERIC Educational Resources Information Center

    Douglass, Helen

    2016-01-01

    This column presents ideas and techniques to enhance science teaching. In today's classrooms, teachers face numerous challenges. They are preparing students for jobs and careers that are not even conceived of yet. Assessments are being used to address students' college and career readiness and to promote critical thinking and problem solving.…

  13. SOFIA Program SE and I Lessons Learned

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Fobel, Laura J.; Brignola, Michael P.

    2011-01-01

    Once a "Troubled Project" threatened with cancellation, the Stratospheric Observatory for Infrared Astronomy (SOFIA) Program has overcome many difficult challenges and recently achieved its first light images. To achieve success, SOFIA had to overcome significant deficiencies in fundamental Systems Engineering identified during a major Program restructuring. This presentation will summarize the lessons learn in Systems Engineering on the SOFIA Program. After the Program was reformulated, an initial assessment of Systems Engineering established the scope of the problem and helped to set a list of priorities that needed to be work. A revised Systems Engineering Management Plan (SEMP) was written to address the new Program structure and requirements established in the approved NPR7123.1A. An important result of the "Technical Planning" effort was the decision by the Program and Technical Leadership team to re-phasing the lifecycle into increments. The reformed SOFIA Program Office had to quickly develop and establish several new System Engineering core processes including; Requirements Management, Risk Management, Configuration Management and Data Management. Implementing these processes had to consider the physical and cultural diversity of the SOFIA Program team which includes two Projects spanning two NASA Centers, a major German partnership, and sub-contractors located across the United States and Europe. The SOFIA Program experience represents a creative approach to doing "System Engineering in the middle" while a Program is well established. Many challenges were identified and overcome. The SOFIA example demonstrates it is never too late to benefit from fixing deficiencies in the System Engineering processes.

  14. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils.

    PubMed

    Sikirzhytski, Vitali; Topilina, Natalya I; Higashiya, Seiichiro; Welch, John T; Lednev, Igor K

    2008-05-07

    Elucidating the structure of the cross-beta core in large amyloid fibrils is a challenging problem in modern structural biology. For the first time, a set of de novo polypeptides was genetically engineered to form amyloid-like fibrils with similar morphology and yet different strand length. Differential ultraviolet Raman spectroscopy allowed for separation of the spectroscopic signatures of the highly ordered beta-sheet strands and turns of the fibril core. The relationship between Raman frequencies and Ramachandran dihedral angles of the polypeptide backbone indicates the nature of the beta-sheet and turn structural elements.

  15. How NASA Expanded its Innovation Framework to Find New Solutions to Old Problems

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2010-01-01

    A radio frequency engineer from rural New Hampshire contributed the best solution to a public challenge issued by NASA's Space Life Sciences Directorate. This is a clear example of what Aneesh Chopra, the US Federal Chief Technology Officer, describes as the notion that in our society, knowledge is widely dispersed. And if it s widely dispersed, how do we capture the insights from the American people?" Chopra later said, to a live audience at the 2010 Rethinking Government event: "A semi-retired radio frequency engineer was able to share his idea about how to solve this problem, and it so blew away other ideas that NASA said it exceeded their requirements! No complicated RFP, the need for lobbyists, some convoluted processes, etc. Just a smart person who was paid a modest fee for his insight."

  16. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  17. Educating the Engineer for Sustainable Community Development

    NASA Astrophysics Data System (ADS)

    Munoz, D. R.

    2008-12-01

    More than ever before, we are confronting the challenges of limited resources (water, food, energy and mineral), while also facing complex challenges with the environment and related social unrest. Resource access problems are exacerbated by multi-scale geopolitical instability. We seek a balance that will allow profit but also leave a world fit for our children to inherit. Many are working with small groups to make positive change through finding solutions that address these challenges. In fact, some say that in sum, it is the largest human movement that has ever existed. In this talk I will share our experiences to alleviate vulnerabilities for populations of humans in need while working with students, corporate entities and non governmental organizations. Our main focus is to educate a new cadre of engineers that have an enhanced awareness of and better communication skills for a different cultural environment than the one in which they were raised and are hungry to seek new opportunities to serve humanity at a basic level. The results of a few of the more than forty humanitarian engineering projects completed since 2003 will be superimposed on a theoretical framework for sustainable community development. This will be useful information to those seeking a social corporate position of responsibility and a world that more closely approaches a sustainable equilibrium.

  18. Angiogenesis in tissue engineering: from concept to the vascularization of scaffold construct

    NASA Astrophysics Data System (ADS)

    Amirah Ishak, Siti; Pangestu Djuansjah, J. R.; Kadir, M. R. Abdul; Sukmana, Irza

    2014-06-01

    Angiogenesis, the formation of micro-vascular network from the preexisting vascular vessels, has been studied in the connection to the normal developmental process as well as numerous diseases. In tissue engineering research, angiogenesis is also essential to promote micro-vascular network inside engineered tissue constructs, mimicking a functional blood vessel in vivo. Micro-vascular network can be used to maintain adequate tissue oxygenation, nutrient transfer and waste removal. One of the problems faced by angiogenesis researchers is to find suitable in vitro assays and methods for assessing the effect of regulators on angiogenesis and micro-vessel formation. The assay would be reliable and repeatable with easily quantifiable with physiologically relevant. This review aims to highlights recent advanced and future challenges in developing and using an in vitro angiogenesis assay for the application on biomedical and tissue engineering research.

  19. Cardiovascular Bio-Engineering: Current State of the Art.

    PubMed

    Simon-Yarza, Teresa; Bataille, Isabelle; Letourneur, Didier

    2017-04-01

    Despite the introduction of new drugs and innovative devices contributing in the last years to improve patients' quality of life, morbidity and mortality from cardiovascular diseases remain high. There is an urgent need for addressing the underlying problem of the loss of cardiac or vascular tissues and therefore developing new therapies. Autologous vascular transplants are often limited by poor quality of donor sites and heart organ transplantation by donor shortage. Vascular and cardiac tissue engineering, whose aim is to repair or replace cardiovascular tissues by the use of cells, engineering and materials, as well as biochemical and physicochemical factors, appears in this scenario as a promising tool to repair the damaged hearts and vessels. We will present a general overview on the fundamentals in the area of cardiac and vascular tissue engineering as well as on the latest progresses and challenges.

  20. Advanced therapies of skin injuries.

    PubMed

    Maver, Tina; Maver, Uroš; Kleinschek, Karin Stana; Raščan, Irena Mlinarič; Smrke, Dragica Maja

    2015-12-01

    The loss of tissue is still one of the most challenging problems in healthcare. Efficient laboratory expansion of skin tissue to reproduce the skins barrier function can make the difference between life and death for patients with extensive full-thickness burns, chronic wounds, or genetic disorders such as bullous conditions. This engineering has been initiated based on the acute need in the 1980s and today, tissue-engineered skin is the reality. The human skin equivalents are available not only as models for permeation and toxicity screening, but are frequently applied in vivo as clinical skin substitutes. This review aims to introduce the most important recent development in the extensive field of tissue engineering and to describe already approved, commercially available skin substitutes in clinical use.

  1. Engineering Students: Enhancing Employability Skills through PBL

    NASA Astrophysics Data System (ADS)

    H, Othman; Mat Daud K., A.; U, Ewon; Salleh B, Mohd; Omar N., H.; Baser J, Abd; Ismail M., E.; A, Sulaiman

    2017-05-01

    As a developing country, Malaysia faces challenging tasks to develop her economy just like many other countries. Nowadays, change involves many aspects like the economy from agriculture to manufacturing, technology from modern to more advanced ones; mindset from traditional to advanced and so on. Previous studies show that one of the major issues facing local graduates is the lack of employability skills. This problem concerns not only the government but undergraduates and institutions alike. From the pedagogical aspect, one of the more effective ways to improve this is through instructional delivery and in this case the use of Problem-based Learning (PBL). The need to adopt PBL should involved applied subjects undertaken by engineering students. Studies have shown that the use of PBL has been proven to make learning more attractive and effective. In this research, we studied the effectiveness of PBL towards enhancing employability skills among engineering undergraduates. This study adopted a combination of qualitative and quantitative approaches. Data was collected using documents analysis. Student samples comprised manufacturing engineering undergraduates from public institutions of higher learning in Malaysia. The results show that student’s employability skills can be enhanced using PBL. In addition, students become more competitive towards making them more relevance with the needs of the industry with regard to employability skills. In conclusion, PBL is a very effective catalyst towards raising the employability skills among engineering undergraduates and should be adopted in all engineering education.

  2. Civil engineering at the crossroads in the twenty-first century.

    PubMed

    Ramírez, Francisco; Seco, Andres

    2012-12-01

    The twenty-first century presents a major challenge for civil engineering. The magnitude and future importance of some of the problems perceived by society are directly related to the field of the civil engineer, implying an inescapable burden of responsibility for a group whose technical soundness, rational approach and efficiency is highly valued and respected by the citizen. However, the substantial changes in society and in the way it perceives the problems that it considers important call for a thorough review of our structures, both professional and educational; so that our profession, with its undeniable historical prestige, may modernize certain approaches and attitudes in order to continue to be a reliable instrument in the service of society, giving priority from an ethical standpoint to its actions in pursuit of "the public good". It possesses important tools to facilitate this work (new technologies, the development of communications, the transmission of scientific thought.···); but there is nevertheless a need for deep reflection on the very essence of civil engineering: what we want it to be in the future, and the ability and willingness to take the lead at a time when society needs disinterested messages, technically supported, reasonably presented and dispassionately transmitted.

  3. Engineering the path to higher-order thinking in elementary education: A problem-based learning approach for STEM integration

    NASA Astrophysics Data System (ADS)

    Rehmat, Abeera Parvaiz

    As we progress into the 21st century, higher-order thinking skills and achievement in science and math are essential to meet the educational requirement of STEM careers. Educators need to think of innovative ways to engage and prepare students for current and future challenges while cultivating an interest among students in STEM disciplines. An instructional pedagogy that can capture students' attention, support interdisciplinary STEM practices, and foster higher-order thinking skills is problem-based learning. Problem-based learning embedded in the social constructivist view of teaching and learning (Savery & Duffy, 1995) promotes self-regulated learning that is enhanced through exploration, cooperative social activity, and discourse (Fosnot, 1996). This quasi-experimental mixed methods study was conducted with 98 fourth grade students. The study utilized STEM content assessments, a standardized critical thinking test, STEM attitude survey, PBL questionnaire, and field notes from classroom observations to investigate the impact of problem-based learning on students' content knowledge, critical thinking, and their attitude towards STEM. Subsequently, it explored students' experiences of STEM integration in a PBL environment. The quantitative results revealed a significant difference between groups in regards to their content knowledge, critical thinking skills, and STEM attitude. From the qualitative results, three themes emerged: learning approaches, increased interaction, and design and engineering implementation. From the overall data set, students described the PBL environment to be highly interactive that prompted them to employ multiple approaches, including design and engineering to solve the problem.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    The Second SIAM Conference on Computational Science and Engineering was held in San Diego from February 10-12, 2003. Total conference attendance was 553. This is a 23% increase in attendance over the first conference. The focus of this conference was to draw attention to the tremendous range of major computational efforts on large problems in science and engineering, to promote the interdisciplinary culture required to meet these large-scale challenges, and to encourage the training of the next generation of computational scientists. Computational Science & Engineering (CS&E) is now widely accepted, along with theory and experiment, as a crucial third modemore » of scientific investigation and engineering design. Aerospace, automotive, biological, chemical, semiconductor, and other industrial sectors now rely on simulation for technical decision support. For federal agencies also, CS&E has become an essential support for decisions on resources, transportation, and defense. CS&E is, by nature, interdisciplinary. It grows out of physical applications and it depends on computer architecture, but at its heart are powerful numerical algorithms and sophisticated computer science techniques. From an applied mathematics perspective, much of CS&E has involved analysis, but the future surely includes optimization and design, especially in the presence of uncertainty. Another mathematical frontier is the assimilation of very large data sets through such techniques as adaptive multi-resolution, automated feature search, and low-dimensional parameterization. The themes of the 2003 conference included, but were not limited to: Advanced Discretization Methods; Computational Biology and Bioinformatics; Computational Chemistry and Chemical Engineering; Computational Earth and Atmospheric Sciences; Computational Electromagnetics; Computational Fluid Dynamics; Computational Medicine and Bioengineering; Computational Physics and Astrophysics; Computational Solid Mechanics and Materials; CS&E Education; Meshing and Adaptivity; Multiscale and Multiphysics Problems; Numerical Algorithms for CS&E; Discrete and Combinatorial Algorithms for CS&E; Inverse Problems; Optimal Design, Optimal Control, and Inverse Problems; Parallel and Distributed Computing; Problem-Solving Environments; Software and Wddleware Systems; Uncertainty Estimation and Sensitivity Analysis; and Visualization and Computer Graphics.« less

  5. Space-Time Conservation Element and Solution Element Method Being Developed

    NASA Technical Reports Server (NTRS)

    Chang, Sin-Chung; Himansu, Ananda; Jorgenson, Philip C. E.; Loh, Ching-Yuen; Wang, Xiao-Yen; Yu, Sheng-Tao

    1999-01-01

    The engineering research and design requirements of today pose great computer-simulation challenges to engineers and scientists who are called on to analyze phenomena in continuum mechanics. The future will bring even more daunting challenges, when increasingly complex phenomena must be analyzed with increased accuracy. Traditionally used numerical simulation methods have evolved to their present state by repeated incremental extensions to broaden their scope. They are reaching the limits of their applicability and will need to be radically revised, at the very least, to meet future simulation challenges. At the NASA Lewis Research Center, researchers have been developing a new numerical framework for solving conservation laws in continuum mechanics, namely, the Space-Time Conservation Element and Solution Element Method, or the CE/SE method. This method has been built from fundamentals and is not a modification of any previously existing method. It has been designed with generality, simplicity, robustness, and accuracy as cornerstones. The CE/SE method has thus far been applied in the fields of computational fluid dynamics, computational aeroacoustics, and computational electromagnetics. Computer programs based on the CE/SE method have been developed for calculating flows in one, two, and three spatial dimensions. Results have been obtained for numerous problems and phenomena, including various shock-tube problems, ZND detonation waves, an implosion and explosion problem, shocks over a forward-facing step, a blast wave discharging from a nozzle, various acoustic waves, and shock/acoustic-wave interactions. The method can clearly resolve shock/acoustic-wave interactions, wherein the difference of the magnitude between the acoustic wave and shock could be up to six orders. In two-dimensional flows, the reflected shock is as crisp as the leading shock. CE/SE schemes are currently being used for advanced applications to jet and fan noise prediction and to chemically reacting flows.

  6. Microfluidics: Science and Engineering at the Edge of the Continuum

    NASA Astrophysics Data System (ADS)

    Breuer, Kenny

    2002-11-01

    The widespread growth of microengineering and the development of a new generation of micron- and nanometer scale diagnostic techniques has focussed much recent attention on the mechanics of fluids at the micron and sub-micron scale. Challenges with both scientific and engineering relevance have been raised by this activity, ranging from the prediction of viscous damping and lubrication effects in MEMS to the design of microengines to the understanding of bacterial propulsion. Identifying and addressing these challenges form the basis of this talk. >From a scientific perspective, a question that refuses to die is that of the applicability of the continuum hypothesis, and the possible existence of new physical phenomena only observable in small systems. To be brief, the reports of the demise of the Navier-Stokes equations are greatly exaggerated and to illustrate this we will review the more recent work on near-continuum fluid mechanics in micron and sub-micron scale devices with an emphasis on our own experiments on the breakdown of the continuum description in both gaseous and liquid flows. From an engineering perspective, the tight coupling between fluids, structures and manufacturing result in flows characterized by unfamiliar parameter regimes and unconventional geometries. We will look at several examples of such microfluidic engineering, drawn from MEMS (inertial instruments, microengines) and biology (bacterial propulsion) that illustrate the the unique design challenges that we encounter in microfluidic devices and the solutions (and lack of solutions) to these problems.

  7. Second-Guessing Scientists and Engineers: Post Hoc Criticism and the Reform of Practice in Green Chemistry and Engineering.

    PubMed

    Lynch, William T

    2015-10-01

    The article examines and extends work bringing together engineering ethics and Science and Technology Studies, which had built upon Diane Vaughan's analysis of the Challenger shuttle accident as a test case. Reconsidering the use of her term "normalization of deviance," the article argues for a middle path between moralizing against and excusing away engineering practices contributing to engineering disaster. To explore an illustrative pedagogical case and to suggest avenues for constructive research developing this middle path, it examines the emergence of green chemistry and green engineering. Green chemistry began when Paul Anastas and John Warner developed a set of new rules for chemical synthesis that sought to learn from missed opportunities to avoid environmental damage in the twentieth century, an approach that was soon extended to engineering as well. Examination of tacit assumptions about historical counterfactuals in recent, interdisciplinary discussions of green chemistry illuminate competing views about the field's prospects. An integrated perspective is sought, addressing how both technical practice within chemistry and engineering and the influence of a wider "social movement" can play a role in remedying environmental problems.

  8. Understanding immunology via engineering design: the role of mathematical prototyping.

    PubMed

    Klinke, David J; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and "fitness for use," can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans.

  9. Engineering Rugged Field Assays to Detect Hazardous Chemicals Using Spore-Based Bacterial Biosensors.

    PubMed

    Wynn, Daniel; Deo, Sapna; Daunert, Sylvia

    2017-01-01

    Bacterial whole cell-based biosensors have been genetically engineered to achieve selective and reliable detection of a wide range of hazardous chemicals. Although whole-cell biosensors demonstrate many advantages for field-based detection of target analytes, there are still some challenges that need to be addressed. Most notably, their often modest shelf life and need for special handling and storage make them challenging to use in situations where access to reagents, instrumentation, and expertise are limited. These problems can be circumvented by developing biosensors in Bacillus spores, which can be engineered to address all of these concerns. In its sporulated state, a whole cell-based biosensor has a remarkably long life span and is exceptionally resistant to environmental insult. When these spores are germinated for use in analytical techniques, they show no loss in performance, even after long periods of storage under harsh conditions. In this chapter, we will discuss the development and use of whole cell-based sensors, their adaptation to spore-based biosensors, their current applications, and future directions in the field. © 2017 Elsevier Inc. All rights reserved.

  10. Towards Engineering Biological Systems in a Broader Context.

    PubMed

    Venturelli, Ophelia S; Egbert, Robert G; Arkin, Adam P

    2016-02-27

    Significant advances have been made in synthetic biology to program information processing capabilities in cells. While these designs can function predictably in controlled laboratory environments, the reliability of these devices in complex, temporally changing environments has not yet been characterized. As human society faces global challenges in agriculture, human health and energy, synthetic biology should develop predictive design principles for biological systems operating in complex environments. Natural biological systems have evolved mechanisms to overcome innumerable and diverse environmental challenges. Evolutionary design rules should be extracted and adapted to engineer stable and predictable ecological function. We highlight examples of natural biological responses spanning the cellular, population and microbial community levels that show promise in synthetic biology contexts. We argue that synthetic circuits embedded in host organisms or designed ecologies informed by suitable measurement of biotic and abiotic environmental parameters could be used as engineering substrates to achieve target functions in complex environments. Successful implementation of these methods will broaden the context in which synthetic biological systems can be applied to solve important problems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Crowd Sourcing for Challenging Technical Problems and Business Model

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.; Richard, Elizabeth

    2011-01-01

    Crowd sourcing may be defined as the act of outsourcing tasks that are traditionally performed by an employee or contractor to an undefined, generally large group of people or community (a crowd) in the form of an open call. The open call may be issued by an organization wishing to find a solution to a particular problem or complete a task, or by an open innovation service provider on behalf of that organization. In 2008, the Space Life Sciences Directorate (SLSD), with the support of Wyle Integrated Science and Engineering, established and implemented pilot projects in open innovation (crowd sourcing) to determine if these new internet-based platforms could indeed find solutions to difficult technical challenges. These unsolved technical problems were converted to problem statements, also called "Challenges" or "Technical Needs" by the various open innovation service providers, and were then posted externally to seek solutions. In addition, an open call was issued internally to NASA employees Agency wide (10 Field Centers and NASA HQ) using an open innovation service provider crowd sourcing platform to post NASA challenges from each Center for the others to propose solutions). From 2008 to 2010, the SLSD issued 34 challenges, 14 externally and 20 internally. The 14 external problems or challenges were posted through three different vendors: InnoCentive, Yet2.com and TopCoder. The 20 internal challenges were conducted using the InnoCentive crowd sourcing platform designed for internal use by an organization. This platform was customized for NASA use and promoted as NASA@Work. The results were significant. Of the seven InnoCentive external challenges, two full and five partial awards were made in complex technical areas such as predicting solar flares and long-duration food packaging. Similarly, the TopCoder challenge yielded an optimization algorithm for designing a lunar medical kit. The Yet2.com challenges yielded many new industry and academic contacts in bone imaging, microbial detection and even the use of pharmaceuticals for radiation protection. The internal challenges through NASA@Work drew over 6000 participants across all NASA centers. Challenges conducted by each NASA center elicited ideas and solutions from several other NASA centers and demonstrated rapid and efficient participation from employees at multiple centers to contribute to problem solving. Finally, on January 19, 2011, the SLSD conducted a workshop on open collaboration and innovation strategies and best practices through the newly established NASA Human Health and Performance Center (NHHPC). Initial projects will be described leading to a new business model for SLSD.

  12. Synthetic biology between technoscience and thing knowledge.

    PubMed

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Problem reporting and tracking system: a systems engineering challenge

    NASA Astrophysics Data System (ADS)

    Cortez, Vasco; Lopez, Bernhard; Whyborn, Nicholas; Price, Roberto; Hernandez, Octavio; Gairing, Stefan; Barrios, Emilio; Alarcon, Hector

    2016-08-01

    The problem reporting and tracking system (PRTS) is the ALMA system to register operational problems, track unplanned corrective operational maintenance activities and follow the investigations of all problems or possible issues arisen in operation activities. After the PRTS implementation appeared several issues that finally produced a lack in the management of the investigations, problems to produce KPIs, loss of information, among others. In order to improve PRTS, we carried out a process to review the status of system, define a set of modifications and implement a solution; all according to the stakeholder requirements. In this work, we shall present the methodology applied to define a set of concrete actions at the basis of understanding the complexity of the problem, which finally got to improve the interactions between different subsystems and enhance the communication at different levels.

  14. [A strategy of constructing the technological system for quality control of Chinese medicine based on process control and management].

    PubMed

    Cheng, Yi-Yu; Qian, Zhong-Zhi; Zhang, Bo-Li

    2017-01-01

    The current situation, bottleneck problems and severe challenges in quality control technology of Chinese Medicine (CM) are briefly described. It is presented to change the phenomenon related to the post-test as the main means and contempt for process control in drug regulation, reverse the situation of neglecting the development of process control and management technology for pharmaceutical manufacture and reconstruct the technological system for quality control of CM products. The regulation and technology system based on process control and management for controlling CM quality should be established to solve weighty realistic problems of CM industry from the root causes, including backwardness of quality control technology, weakness of quality risk control measures, poor reputation of product quality and so on. By this way, the obstacles from poor controllability of CM product quality could be broken. Concentrating on those difficult problems and weak links in the technical field of CM quality control, it is proposed to build CMC (Chemistry, Manufacturing and Controls) regulation for CM products with Chinese characteristics and promote the regulation international recognition as soon as possible. The CMC technical framework, which is clinical efficacy-oriented, manufacturing manner-centered and process control-focused, was designed. To address the clinical characteristics of traditional Chinese medicine (TCM) and the production feature of CM manufacture, it is suggested to establish quality control engineering for CM manufacturing by integrating pharmaceutical analysis, TCM chemistry, TCM pharmacology, pharmaceutical engineering, control engineering, management engineering and other disciplines. Further, a theoretical model of quality control engineering for CM manufacturing and the methodology of digital pharmaceutical engineering are proposed. A technology pathway for promoting CM standard and realizing the strategic goal of CM internationalization is elaborated. Copyright© by the Chinese Pharmaceutical Association.

  15. Ability evaluation by binary tests: Problems, challenges & recent advances

    NASA Astrophysics Data System (ADS)

    Bashkansky, E.; Turetsky, V.

    2016-11-01

    Binary tests designed to measure abilities of objects under test (OUTs) are widely used in different fields of measurement theory and practice. The number of test items in such tests is usually very limited. The response to each test item provides only one bit of information per OUT. The problem of correct ability assessment is even more complicated, when the levels of difficulty of the test items are unknown beforehand. This fact makes the search for effective ways of planning and processing the results of such tests highly relevant. In recent years, there has been some progress in this direction, generated by both the development of computational tools and the emergence of new ideas. The latter are associated with the use of so-called “scale invariant item response models”. Together with maximum likelihood estimation (MLE) approach, they helped to solve some problems of engineering and proficiency testing. However, several issues related to the assessment of uncertainties, replications scheduling, the use of placebo, as well as evaluation of multidimensional abilities still present a challenge for researchers. The authors attempt to outline the ways to solve the above problems.

  16. Economic analysis of model validation for a challenge problem

    DOE PAGES

    Paez, Paul J.; Paez, Thomas L.; Hasselman, Timothy K.

    2016-02-19

    It is now commonplace for engineers to build mathematical models of the systems they are designing, building, or testing. And, it is nearly universally accepted that phenomenological models of physical systems must be validated prior to use for prediction in consequential scenarios. Yet, there are certain situations in which testing only or no testing and no modeling may be economically viable alternatives to modeling and its associated testing. This paper develops an economic framework within which benefit–cost can be evaluated for modeling and model validation relative to other options. The development is presented in terms of a challenge problem. Asmore » a result, we provide a numerical example that quantifies when modeling, calibration, and validation yield higher benefit–cost than a testing only or no modeling and no testing option.« less

  17. A History of Aerospace Problems, Their Solutions, Their Lessons

    NASA Technical Reports Server (NTRS)

    Ryan, R. S.

    1996-01-01

    The positive aspect of problem occurrences is the opportunity for learning and a challenge for innovation. The learning aspect is not restricted to the solution period of the problem occurrence, but can become the beacon for problem prevention on future programs. Problems/failures serve as a point of departure for scaling to new designs. To ensure that problems/failures and their solutions guide the future programs, a concerted effort has been expended to study these problems, their solutions, their derived lessons learned, and projections for future programs. This includes identification of technology thrusts, process changes, codes development, etc. However, they must not become an excuse for adding layers upon layers of standards, criteria, and requirements, but must serve as guidelines that assist instead of stifling engineers. This report is an extension of prior efforts to accomplish this task. Although these efforts only scratch the surface, it is a beginning that others must complete.

  18. CrossTalk: The Journal of Defense Software Engineering. Volume 20, Number 7

    DTIC Science & Technology

    2007-07-01

    away from the current Global Command and Control System family of systems, this effort will also require a significant change in both mindset and...which complicate the already significant logistic problems in austere environ- ments. Several efforts are beginning to produce rapidly deployable...currency, and applicability to keep pace with the changing environment and address significant challenges they face. Defense Information Systems Agency

  19. Class and Home Problems. Identify-Solve-Broadcast Your Own Transport Phenomenon: Student-Created YouTube Videos to Foster Active Learning in Mass and Heat Transfer

    ERIC Educational Resources Information Center

    Wen, Fei; Khera, Eshita

    2016-01-01

    Despite the instinctive perception of mass and heat transfer principles in daily life, productive learning in this course continues to be one of the greatest challenges for undergraduate students in chemical engineering. In an effort to enhance student learning in classroom, we initiated an innovative active-learning method titled…

  20. Towards organ printing: engineering an intra-organ branched vascular tree.

    PubMed

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2010-03-01

    Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a 'built in' intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a 'built in' intra-organ branched vascular tree.

  1. Design considerations and challenges for mechanical stretch bioreactors in tissue engineering.

    PubMed

    Lei, Ying; Ferdous, Zannatul

    2016-05-01

    With the increase in average life expectancy and growing aging population, lack of functional grafts for replacement surgeries has become a severe problem. Engineered tissues are a promising alternative to this problem because they can mimic the physiological function of the native tissues and be cultured on demand. Cyclic stretch is important for developing many engineered tissues such as hearts, heart valves, muscles, and bones. Thus a variety of stretch bioreactors and corresponding scaffolds have been designed and tested to study the underlying mechanism of tissue formation and to optimize the mechanical conditions applied to the engineered tissues. In this review, we look at various designs of stretch bioreactors and common scaffolds and offer insights for future improvements in tissue engineering applications. First, we summarize the requirements and common configuration of stretch bioreactors. Next, we present the features of different actuating and motion transforming systems and their applications. Since most bioreactors must measure detailed distributions of loads and deformations on engineered tissues, techniques with high accuracy, precision, and frequency have been developed. We also cover the key points in designing culture chambers, nutrition exchanging systems, and regimens used for specific tissues. Since scaffolds are essential for providing biophysical microenvironments for residing cells, we discuss materials and technologies used in fabricating scaffolds to mimic anisotropic native tissues, including decellularized tissues, hydrogels, biocompatible polymers, electrospinning, and 3D bioprinting techniques. Finally, we present the potential future directions for improving stretch bioreactors and scaffolds. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:543-553, 2016. © 2016 American Institute of Chemical Engineers.

  2. iSTEM: The Aerospace Engineering Challenge

    ERIC Educational Resources Information Center

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  3. Optical projects in the Clinic program at Harvey Mudd College

    NASA Astrophysics Data System (ADS)

    Yang, Q.

    2017-08-01

    Clinic program is the senior capstone program at Harvey Mudd College (HMC). Multidisciplinary and industry-sponsored projects allow a team of students to solve a real-world problem over one academic year. Over its 50 plus years, Clinic program has completed numerous optics related projects. This report gives an overview of the Clinic program, reviews recent optical projects and discusses how this program supports the learning of the HMC engineering students. A few sample optical projects with more details are presented to provide an insight of what challenges that undergraduates can overcome. Students achieve learning within the optics discipline and the related engineering disciplines. The experiences in these optical projects indicate the great potential to bringing optical hands-on projects into the undergraduate level. Because of the general engineering curriculum at HMC, these projects often work the best with a multidisciplinary nature even if the core of the project is optically focused. Students gain leadership training, oral and written communication skills and experiences in team work. Close relationship with the sponsor liaisons allows for the students to gain skills in professional conduct, management of tight schedule and a specified budget, and it well prepares the students to their engineering practice. Optical projects have their own sets of specific challenges, so it needs to be chosen properly to match the undergraduate skill sets such as those of HMC engineering students.

  4. Adaptation of MSC/NASTRAN to a supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gloudeman, J.F.; Hodge, J.C.

    1982-01-01

    MSC/NASTRAN is a large-scale general purpose digital computer program which solves a wider variety of engineering analysis problems by the finite element method. The program capabilities include static and dynamic structural analysis (linear and nonlinear), heat transfer, acoustics, electromagnetism and other types of field problems. It is used worldwide by large and small companies in such diverse fields as automotive, aerospace, civil engineering, shipbuilding, offshore oil, industrial equipment, chemical engineering, biomedical research, optics and government research. The paper presents the significant aspects of the adaptation of MSC/NASTRAN to the Cray-1. First, the general architecture and predominant functional use of MSC/NASTRANmore » are discussed to help explain the imperatives and the challenges of this undertaking. The key characteristics of the Cray-1 which influenced the decision to undertake this effort are then reviewed to help identify performance targets. An overview of the MSC/NASTRAN adaptation effort is then given to help define the scope of the project. Finally, some measures of MSC/NASTRAN's operational performance on the Cray-1 are given, along with a few guidelines to help avoid improper interpretation. 17 references.« less

  5. Materials towards carbon-free, emission-free and oil-free mobility: hydrogen fuel-cell vehicles--now and in the future.

    PubMed

    Hirose, Katsuhiko

    2010-07-28

    In the past, material innovation has changed society through new material-induced technologies, adding a new value to society. In the present world, engineers and scientists are expected to invent new materials to solve the global problem of climate change. For the transport sector, the challenge for material engineers is to change the oil-based world into a sustainable world. After witnessing the recent high oil price and its adverse impact on the global economy, it is time to accelerate our efforts towards this change. Industries are tackling global energy issues such as oil and CO2, as well as local environmental problems, such as NO(x) and particulate matter. Hydrogen is the most promising candidate to provide carbon-free, emission-free and oil-free mobility. As such, engineers are working very hard to bring this technology into the real society. This paper describes recent progress of vehicle technologies, as well as hydrogen-storage technologies to extend the cruise range and ensure the easiness of refuelling and requesting material scientists to collaborate with industry to fight against global warming.

  6. Lessons learned for composite structures

    NASA Technical Reports Server (NTRS)

    Whitehead, R. S.

    1991-01-01

    Lessons learned for composite structures are presented in three technology areas: materials, manufacturing, and design. In addition, future challenges for composite structures are presented. Composite materials have long gestation periods from the developmental stage to fully matured production status. Many examples exist of unsuccessful attempts to accelerate this gestation period. Experience has shown that technology transition of a new material system to fully matured production status is time consuming, involves risk, is expensive and should not be undertaken lightly. The future challenges for composite materials require an intensification of the science based approach to material development, extension of the vendor/customer interaction process to include all engineering disciplines of the end user, reduced material costs because they are a significant factor in overall part cost, and improved batch-to-batch pre-preg physical property control. Historical manufacturing lessons learned are presented using current in-service production structure as examples. Most producibility problems for these structures can be traced to their sequential engineering design. This caused an excessive emphasis on design-to-weight and schedule at the expense of design-to-cost. This resulted in expensive performance originated designs, which required costly tooling and led to non-producible parts. Historically these problems have been allowed to persist throughout the production run. The current/future approach for the production of affordable composite structures mandates concurrent engineering design where equal emphasis is placed on product and process design. Design for simplified assembly is also emphasized, since assembly costs account for a major portion of total airframe costs. The future challenge for composite manufacturing is, therefore, to utilize concurrent engineering in conjunction with automated manufacturing techniques to build affordable composite structures. Composite design experience has shown that significant weight savings have been achieved, outstanding fatigue and corrosion resistance have been demonstrated, and in-service performance has been very successful. Currently no structural design show stoppers exist for composite structures. A major lesson learned is that the full scale static test is the key test for composites, since it is the primary structural 'hot spot' indicator. The major durability issue is supportability of thin skinned structure. Impact damage has been identified as the most significant issue for the damage tolerance control of composite structures. However, delaminations induced during assembly operations have demonstrated a significant nuisance value. The future challenges for composite structures are threefold. Firstly, composite airframe weight fraction should increase to 60 percent. At the same time, the cost of composite structures must be reduced by 50 percent to attain the goal of affordability. To support these challenges it is essential to develop lower cost materials and processes.

  7. Improving monoclonal antibody selection and engineering using measurements of colloidal protein interactions

    PubMed Central

    Geng, Steven B.; Cheung, Jason K.; Narasimhan, Chakravarthy; Shameem, Mohammed; Tessier, Peter M.

    2014-01-01

    A limitation of using monoclonal antibodies as therapeutic molecules is their propensity to associate with themselves and/or with other molecules via non-affinity (colloidal) interactions. This can lead to a variety of problems ranging from low solubility and high viscosity to off-target binding and fast antibody clearance. Measuring such colloidal interactions is challenging given that they are weak and potentially involve diverse target molecules. Nevertheless, assessing these weak interactions – especially during early antibody discovery and lead candidate optimization – is critical to preventing problems that can arise later in the development process. Here we review advances in developing and implementing sensitive methods for measuring antibody colloidal interactions as well as using these measurements for guiding antibody selection and engineering. These systematic efforts to minimize non-affinity interactions are expected to yield more effective and stable monoclonal antibodies for diverse therapeutic applications. PMID:25209466

  8. Uncertainty Reduction using Bayesian Inference and Sensitivity Analysis: A Sequential Approach to the NASA Langley Uncertainty Quantification Challenge

    NASA Technical Reports Server (NTRS)

    Sankararaman, Shankar

    2016-01-01

    This paper presents a computational framework for uncertainty characterization and propagation, and sensitivity analysis under the presence of aleatory and epistemic un- certainty, and develops a rigorous methodology for efficient refinement of epistemic un- certainty by identifying important epistemic variables that significantly affect the overall performance of an engineering system. The proposed methodology is illustrated using the NASA Langley Uncertainty Quantification Challenge (NASA-LUQC) problem that deals with uncertainty analysis of a generic transport model (GTM). First, Bayesian inference is used to infer subsystem-level epistemic quantities using the subsystem-level model and corresponding data. Second, tools of variance-based global sensitivity analysis are used to identify four important epistemic variables (this limitation specified in the NASA-LUQC is reflective of practical engineering situations where not all epistemic variables can be refined due to time/budget constraints) that significantly affect system-level performance. The most significant contribution of this paper is the development of the sequential refine- ment methodology, where epistemic variables for refinement are not identified all-at-once. Instead, only one variable is first identified, and then, Bayesian inference and global sensi- tivity calculations are repeated to identify the next important variable. This procedure is continued until all 4 variables are identified and the refinement in the system-level perfor- mance is computed. The advantages of the proposed sequential refinement methodology over the all-at-once uncertainty refinement approach are explained, and then applied to the NASA Langley Uncertainty Quantification Challenge problem.

  9. Efficient Reverse-Engineering of a Developmental Gene Regulatory Network

    PubMed Central

    Cicin-Sain, Damjan; Ashyraliyev, Maksat; Jaeger, Johannes

    2012-01-01

    Understanding the complex regulatory networks underlying development and evolution of multi-cellular organisms is a major problem in biology. Computational models can be used as tools to extract the regulatory structure and dynamics of such networks from gene expression data. This approach is called reverse engineering. It has been successfully applied to many gene networks in various biological systems. However, to reconstitute the structure and non-linear dynamics of a developmental gene network in its spatial context remains a considerable challenge. Here, we address this challenge using a case study: the gap gene network involved in segment determination during early development of Drosophila melanogaster. A major problem for reverse-engineering pattern-forming networks is the significant amount of time and effort required to acquire and quantify spatial gene expression data. We have developed a simplified data processing pipeline that considerably increases the throughput of the method, but results in data of reduced accuracy compared to those previously used for gap gene network inference. We demonstrate that we can infer the correct network structure using our reduced data set, and investigate minimal data requirements for successful reverse engineering. Our results show that timing and position of expression domain boundaries are the crucial features for determining regulatory network structure from data, while it is less important to precisely measure expression levels. Based on this, we define minimal data requirements for gap gene network inference. Our results demonstrate the feasibility of reverse-engineering with much reduced experimental effort. This enables more widespread use of the method in different developmental contexts and organisms. Such systematic application of data-driven models to real-world networks has enormous potential. Only the quantitative investigation of a large number of developmental gene regulatory networks will allow us to discover whether there are rules or regularities governing development and evolution of complex multi-cellular organisms. PMID:22807664

  10. Computational Experiments for Science and Engineering Education

    NASA Technical Reports Server (NTRS)

    Xie, Charles

    2011-01-01

    How to integrate simulation-based engineering and science (SBES) into the science curriculum smoothly is a challenging question. For the importance of SBES to be appreciated, the core value of simulations-that they help people understand natural phenomena and solve engineering problems-must be taught. A strategy to achieve this goal is to introduce computational experiments to the science curriculum to replace or supplement textbook illustrations and exercises and to complement or frame hands-on or wet lab experiments. In this way, students will have an opportunity to learn about SBES without compromising other learning goals required by the standards and teachers will welcome these tools as they strengthen what they are already teaching. This paper demonstrates this idea using a number of examples in physics, chemistry, and engineering. These exemplary computational experiments show that it is possible to create a curriculum that is both deeper and wider.

  11. [Research progress of genetic engineering on medicinal plants].

    PubMed

    Teng, Zhong-qiu; Shen, Ye

    2015-02-01

    The application of genetic engineering technology in modern agriculture shows its outstanding role in dealing with food shortage. Traditional medicinal plant cultivation and collection have also faced with challenges, such as lack of resources, deterioration of environment, germplasm of recession and a series of problems. Genetic engineering can be used to improve the disease resistance, insect resistance, herbicides resistant ability of medicinal plant, also can improve the medicinal plant yield and increase the content of active substances in medicinal plants. Thus, the potent biotechnology can play an important role in protection and large area planting of medicinal plants. In the development of medicinal plant genetic engineering, the safety of transgenic medicinal plants should also be paid attention to. A set of scientific safety evaluation and judgment standard which is suitable for transgenic medicinal plants should be established based on the recognition of the particularity of medicinal plants.

  12. Using Self-Determination Theory to build communities of support to aid in the retention of women in engineering

    NASA Astrophysics Data System (ADS)

    Dell, Elizabeth M.; Verhoeven, Yen; Christman, Jeanne W.; Garrick, Robert D.

    2018-05-01

    Diverse perspectives are required to address the technological problems facing our world. Although women perform as well as their male counterparts in math and science prior to entering college, the numbers of women students entering and completing engineering programmes are far below their representation in the workforce. This paper reports on a qualitative, multiyear study of the experiences of women students in an Engineering Technology programme. The project addressed some of the unique, fundamental challenges that female students face within their programmes, and the authors describe a programmatic framework based on Self-Determination Theory as an intervention for the recruitment and retention of female engineering students. Data from focus groups and interviews show how students were supported in their undergraduate experiences and how inclusive learning environments are needed to further improve outcomes. Conceptual issues and methodological considerations of our outcomes are presented.

  13. The MetSkill Program — Rapidly Developing Effective Young Engineers in the Workplace

    NASA Astrophysics Data System (ADS)

    Drinkwater, Diana; Bianco, Nina

    MetSkill is a professional development program for metallurgical engineers that integrates with normal duties in their first one or two years of service. Graduates work together on a structured technical project, facilitated by specialists and supported by formal learning, and ultimately reported to their technical managers. The program enables graduates to "fill the gaps" in their undergraduate education, which is increasingly pertinent as engineering degrees become more general. Participants report that they enjoy the focus on more challenging (rewarding) aspects of their jobs and feel more confident about problem solving. Sponsor companies add that the relationships developed with external technical specialists enhances opportunities for innovation and development. MetSkill was delivered to two major resource companies in Australia in 2012. This paper provides an outline of the program and the reasons for its success, and demonstrates how the learning model could be applied to groups of graduates in other engineering disciplines.

  14. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  15. Knowledge Preservation for Design of Rocket Systems

    NASA Technical Reports Server (NTRS)

    Moreman, Douglas

    2002-01-01

    An engineer at NASA Lewis RC presented a challenge to us at Southern University. Our response to that challenge, stated circa 1993, has evolved into the Knowledge Preservation Project which is here reported. The stated problem was to capture some of the knowledge of retiring NASA engineers and make it useful to younger engineers via computers. We evolved that initial challenge to this - design a system of tools such that, with this system, people might efficiently capture and make available via commonplace computers, deep knowledge of retiring NASA engineers. In the process of proving some of the concepts of this system, we would (and did) capture knowledge from some specific engineers and, so, meet the original challenge along the way to meeting the new. Some of the specific knowledge acquired, particularly that on the RL- 10 engine, was directly relevant to design of rocket engines. We considered and rejected some of the techniques popular in the days we began - specifically "expert systems" and "oral histories". We judged that these old methods had too high a cost per sentence preserved. That cost could be measured in hours of labor of a "knowledge professional". We did spend, particularly in the grant preceding this one, some time creating a couple of "concept maps", one of the latest ideas of the day, but judged this also to be costly in time of a specially trained knowledge-professional. We reasoned that the cost in specialized labor could be lowered if less time were spent being selective about sentences from the engineers and in crafting replacements for those sentences. The trade-off would seem to be that our set of sentences would be less dense in information, but we found a computer-based way around this seeming defect. Our plan, details of which we have been carrying out, was to find methods of extracting information from experts which would be capable of gaining cooperation, and interest, of senior engineers and using their time in a way they would find worthy (and, so, they would give more of their time and recruit time of other engineers as well). We studied these four ways of creating text: 1) the old way, via interviews and discussions - one of our team working with one expert, 2) a group-discussion led by one of the experts themselves and on a topic which inspires interaction of the experts, 3) a spoken dissertation by one expert practiced in giving talks, 4) expropriating, and modifying for our system, some existing reports (such as "oral histories" from the Smithsonian Institution).

  16. Molecular and chemical engineering of bacteriophages for potential medical applications.

    PubMed

    Hodyra, Katarzyna; Dąbrowska, Krystyna

    2015-04-01

    Recent progress in molecular engineering has contributed to the great progress of medicine. However, there are still difficult problems constituting a challenge for molecular biology and biotechnology, e.g. new generation of anticancer agents, alternative biosensors or vaccines. As a biotechnological tool, bacteriophages (phages) offer a promising alternative to traditional approaches. They can be applied as anticancer agents, novel platforms in vaccine design, or as target carriers in drug discovery. Phages also offer solutions for modern cell imaging, biosensor construction or food pathogen detection. Here we present a review of bacteriophage research as a dynamically developing field with promising prospects for further development of medicine and biotechnology.

  17. Controls and guidance research

    NASA Technical Reports Server (NTRS)

    Homaifar, Abdollah; Dunn, Derome; Song, Yong-Duan; Lai, Steven H.-Y.

    1992-01-01

    The objectives of the control group are concentrated on research and education. The control problem of the hypersonic space vehicle represents an important and challenging issue in aerospace engineering. The work described in this report is part of our effort in developing advanced control strategies for such a system. In order to achieve the objectives stated in the NASA-CORE proposal, the tasks were divided among the group based upon their educational expertise. Within the educational component we are offering a Linear Systems and Control course for students in electrical and mechanical engineering. Also, we are proposing a new course in Digital Control Systems with a corresponding laboratory.

  18. Issues and Strategies in Solving Multidisciplinary Optimization Problems

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya

    2013-01-01

    Optimization research at NASA Glenn Research Center has addressed the design of structures, aircraft and airbreathing propulsion engines. The accumulated multidisciplinary design activity is collected under a testbed entitled COMETBOARDS. Several issues were encountered during the solution of the problems. Four issues and the strategies adapted for their resolution are discussed. This is followed by a discussion on analytical methods that is limited to structural design application. An optimization process can lead to an inefficient local solution. This deficiency was encountered during design of an engine component. The limitation was overcome through an augmentation of animation into optimization. Optimum solutions obtained were infeasible for aircraft and airbreathing propulsion engine problems. Alleviation of this deficiency required a cascading of multiple algorithms. Profile optimization of a beam produced an irregular shape. Engineering intuition restored the regular shape for the beam. The solution obtained for a cylindrical shell by a subproblem strategy converged to a design that can be difficult to manufacture. Resolution of this issue remains a challenge. The issues and resolutions are illustrated through a set of problems: Design of an engine component, Synthesis of a subsonic aircraft, Operation optimization of a supersonic engine, Design of a wave-rotor-topping device, Profile optimization of a cantilever beam, and Design of a cylindrical shell. This chapter provides a cursory account of the issues. Cited references provide detailed discussion on the topics. Design of a structure can also be generated by traditional method and the stochastic design concept. Merits and limitations of the three methods (traditional method, optimization method and stochastic concept) are illustrated. In the traditional method, the constraints are manipulated to obtain the design and weight is back calculated. In design optimization, the weight of a structure becomes the merit function with constraints imposed on failure modes and an optimization algorithm is used to generate the solution. Stochastic design concept accounts for uncertainties in loads, material properties, and other parameters and solution is obtained by solving a design optimization problem for a specified reliability. Acceptable solutions can be produced by all the three methods. The variation in the weight calculated by the methods was found to be modest. Some variation was noticed in designs calculated by the methods. The variation may be attributed to structural indeterminacy. It is prudent to develop design by all three methods prior to its fabrication. The traditional design method can be improved when the simplified sensitivities of the behavior constraint is used. Such sensitivity can reduce design calculations and may have a potential to unify the traditional and optimization methods. Weight versus reliability traced out an inverted-S-shaped graph. The center of the graph corresponded to mean valued design. A heavy design with weight approaching infinity could be produced for a near-zero rate of failure. Weight can be reduced to a small value for a most failure-prone design. Probabilistic modeling of load and material properties remained a challenge.

  19. An osteoconductive, osteoinductive, and osteogenic tissue-engineered product for trauma and orthopaedic surgery: how far are we?

    PubMed

    Khan, Wasim S; Rayan, Faizal; Dhinsa, Baljinder S; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery.

  20. An Osteoconductive, Osteoinductive, and Osteogenic Tissue-Engineered Product for Trauma and Orthopaedic Surgery: How Far Are We?

    PubMed Central

    Khan, Wasim S.; Rayan, Faizal; Dhinsa, Baljinder S.; Marsh, David

    2012-01-01

    The management of large bone defects due to trauma, degenerative disease, congenital deformities, and tumor resection remains a complex issue for the orthopaedic reconstructive surgeons. The requirement is for an ideal bone replacement which is osteoconductive, osteoinductive, and osteogenic. Autologous bone grafts are still considered the gold standard for reconstruction of bone defects, but donor site morbidity and size limitations are major concern. The use of bioartificial bone tissues may help to overcome these problems. The reconstruction of large volume defects remains a challenge despite the success of reconstruction of small-to-moderate-sized bone defects using engineered bone tissues. The aim of this paper is to understand the principles of tissue engineering of bone and its clinical applications in reconstructive surgery. PMID:25098363

  1. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology

    PubMed Central

    Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R.

    2017-01-01

    Background We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). Methods We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. Results We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). Conclusions These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling. PMID:28813442

  2. A parallel metaheuristic for large mixed-integer dynamic optimization problems, with applications in computational biology.

    PubMed

    Penas, David R; Henriques, David; González, Patricia; Doallo, Ramón; Saez-Rodriguez, Julio; Banga, Julio R

    2017-01-01

    We consider a general class of global optimization problems dealing with nonlinear dynamic models. Although this class is relevant to many areas of science and engineering, here we are interested in applying this framework to the reverse engineering problem in computational systems biology, which yields very large mixed-integer dynamic optimization (MIDO) problems. In particular, we consider the framework of logic-based ordinary differential equations (ODEs). We present saCeSS2, a parallel method for the solution of this class of problems. This method is based on an parallel cooperative scatter search metaheuristic, with new mechanisms of self-adaptation and specific extensions to handle large mixed-integer problems. We have paid special attention to the avoidance of convergence stagnation using adaptive cooperation strategies tailored to this class of problems. We illustrate its performance with a set of three very challenging case studies from the domain of dynamic modelling of cell signaling. The simpler case study considers a synthetic signaling pathway and has 84 continuous and 34 binary decision variables. A second case study considers the dynamic modeling of signaling in liver cancer using high-throughput data, and has 135 continuous and 109 binaries decision variables. The third case study is an extremely difficult problem related with breast cancer, involving 690 continuous and 138 binary decision variables. We report computational results obtained in different infrastructures, including a local cluster, a large supercomputer and a public cloud platform. Interestingly, the results show how the cooperation of individual parallel searches modifies the systemic properties of the sequential algorithm, achieving superlinear speedups compared to an individual search (e.g. speedups of 15 with 10 cores), and significantly improving (above a 60%) the performance with respect to a non-cooperative parallel scheme. The scalability of the method is also good (tests were performed using up to 300 cores). These results demonstrate that saCeSS2 can be used to successfully reverse engineer large dynamic models of complex biological pathways. Further, these results open up new possibilities for other MIDO-based large-scale applications in the life sciences such as metabolic engineering, synthetic biology, drug scheduling.

  3. Inspiring engineering minds to advance human health: the Henry Samueli School of Engineering's Department of BME.

    PubMed

    Lee, Abraham; Wirtanen, Erik

    2012-07-01

    The growth of biomedical engineering at The Henry Samueli School of Engineering at the University of California, Irvine (UCI) has been rapid since the Center for Biomedical Engineering was first formed in 1998 [and was later renamed as the Department of Biomedical Engineering (BME) in 2002]. Our current mission statement, “Inspiring Engineering Minds to Advance Human Health,” serves as a reminder of why we exist, what we do, and the core principles that we value and by which we abide. BME exists to advance the state of human health via engineering innovation and practices. To attain our goal, we are empowering our faculty to inspire and mobilize our students to address health problems. We treasure the human being, particularly the human mind and health. We believe that BME is where minds are nurtured, challenged, and disciplined, and it is also where the health of the human is held as a core mission value that deserves our utmost priority (Figure 1). Advancing human health is not a theoretical practice; it requires bridging between disciplines (engineering and medicine) and between communities (academic and industry).

  4. Experience in the Education of Engineers from Vietnam in the Faculty of Mining and Geoengineering AGH

    NASA Astrophysics Data System (ADS)

    Cała, Marek; Borowski, Marek

    2018-03-01

    The AGH University of Science and Technology collaborates closely with other universities, economic units, governmental and local administrative bodies. International cooperation plays a very important role in the academic research. The AGH University of Science and Technology has signed many collaboration agreements. They aim at multidimensional cooperation in the fields of education and academic research. AGH UST has always focused on collaboration with business and industry. In recent years, the global economy is undergoing massive transformations, what creates new challenges to companies and educational institutions that cater to the needs of industry. The expansion of business enterprises is largely dependent on their employees' expertise, skills and levels of competence. Certified engineers are provided by universities. Therefore, the qualifications of the graduates are determined by the curriculum and teaching methods, as well as the available educational and research facilities. Of equal importance is the qualified academic staff. Human activities in the field of engineering require finding solutions to problems of various nature and magnitude. An engineer's work consists in the design, construction, modification and maintenance of useful devices, processes and systems, using scientific and technical knowledge. In order to design complex engineering solutions, an engineer uses his imagination, experience, analytical skills, logical reasoning and makes conscious use of his knowledge. At the Faculty of Mining and Geoengineering of the AGH University of Science and Technology in Cracow, 15 engineers from Vietnam are studying Mining and Geology at the second-cycle studies (specialization: mine ventilation). The solutions proposed in the field of the engineers' education guarantee that foreign students gain both engineering knowledge and problem-solving skills. Therefore, the study programme was complemented by a series of practical aspects.

  5. Reconstruction of Craniomaxillofacial Bone Defects Using Tissue-Engineering Strategies with Injectable and Non-Injectable Scaffolds

    PubMed Central

    Gaihre, Bipin; Uswatta, Suren; Jayasuriya, Ambalangodage C.

    2017-01-01

    Engineering craniofacial bone tissues is challenging due to their complex structures. Current standard autografts and allografts have many drawbacks for craniofacial bone tissue reconstruction; including donor site morbidity and the ability to reinstate the aesthetic characteristics of the host tissue. To overcome these problems; tissue engineering and regenerative medicine strategies have been developed as a potential way to reconstruct damaged bone tissue. Different types of new biomaterials; including natural polymers; synthetic polymers and bioceramics; have emerged to treat these damaged craniofacial bone tissues in the form of injectable and non-injectable scaffolds; which are examined in this review. Injectable scaffolds can be considered a better approach to craniofacial tissue engineering as they can be inserted with minimally invasive surgery; thus protecting the aesthetic characteristics. In this review; we also focus on recent research innovations with different types of stem-cell sources harvested from oral tissue and growth factors used to develop craniofacial bone tissue-engineering strategies. PMID:29156629

  6. Building better bone: The weaving of biologic and engineering strategies for managing bone loss.

    PubMed

    Schwartz, Andrew M; Schenker, Mara L; Ahn, Jaimo; Willett, Nick J

    2017-09-01

    Segmental bone loss remains a challenging clinical problem for orthopaedic trauma surgeons. In addition to the missing bone itself, the local tissues (soft tissue, vascular) are often highly traumatized as well, resulting in a less than ideal environment for bone regeneration. As a result, attempts at limb salvage become a highly expensive endeavor, often requiring multiple operations and necessitating the use of every available strategy (autograft, allograft, bone graft substitution, Masquelet, bone transport, etc.) to achieve bony union. A cost-sensitive, functionally appropriate, and volumetrically adequate engineered substitute would be practice-changing for orthopaedic trauma surgeons and these patients with difficult clinical problems. In tissue engineering and bone regeneration fields, numerous research efforts continue to make progress toward new therapeutic interventions for segmental bone loss, including novel biomaterial development as well as cell-based strategies. Despite an ever-evolving literature base of these new therapeutic and engineered options, there remains a disconnect with the clinical practice, with very few translating into clinical use. A symposium entitled "Building better bone: The weaving of biologic and engineering strategies for managing bone loss," was presented at the 2016 Orthopaedic Research Society Conference to further explore this engineering-clinical disconnect, by surveying basic, translational, and clinical researchers along with orthopaedic surgeons and proposing ideas for pushing the bar forward in the field of segmental bone loss. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1855-1864, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Multifunctional Collaborative Modeling and Analysis Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.; Broduer, Steve (Technical Monitor)

    2001-01-01

    Engineers are challenged to produce better designs in less time and for less cost. Hence, to investigate novel and revolutionary design concepts, accurate, high-fidelity results must be assimilated rapidly into the design, analysis, and simulation process. This assimilation should consider diverse mathematical modeling and multi-discipline interactions necessitated by concepts exploiting advanced materials and structures. Integrated high-fidelity methods with diverse engineering applications provide the enabling technologies to assimilate these high-fidelity, multi-disciplinary results rapidly at an early stage in the design. These integrated methods must be multifunctional, collaborative, and applicable to the general field of engineering science and mechanics. Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple-method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized. The multifunctional methodology presented provides an effective mechanism by which domains with diverse idealizations are interfaced. This capability rapidly provides the high-fidelity results needed in the early design phase. Moreover, the capability is applicable to the general field of engineering science and mechanics. Hence, it provides a collaborative capability that accounts for interactions among engineering analysis methods.

  8. Optimal Tuner Selection for Kalman-Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2011-01-01

    An emerging approach in the field of aircraft engine controls and system health management is the inclusion of real-time, onboard models for the inflight estimation of engine performance variations. This technology, typically based on Kalman-filter concepts, enables the estimation of unmeasured engine performance parameters that can be directly utilized by controls, prognostics, and health-management applications. A challenge that complicates this practice is the fact that an aircraft engine s performance is affected by its level of degradation, generally described in terms of unmeasurable health parameters such as efficiencies and flow capacities related to each major engine module. Through Kalman-filter-based estimation techniques, the level of engine performance degradation can be estimated, given that there are at least as many sensors as health parameters to be estimated. However, in an aircraft engine, the number of sensors available is typically less than the number of health parameters, presenting an under-determined estimation problem. A common approach to address this shortcoming is to estimate a subset of the health parameters, referred to as model tuning parameters. The problem/objective is to optimally select the model tuning parameters to minimize Kalman-filterbased estimation error. A tuner selection technique has been developed that specifically addresses the under-determined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine that seeks to minimize the theoretical mean-squared estimation error of the Kalman filter. This approach can significantly reduce the error in onboard aircraft engine parameter estimation applications such as model-based diagnostic, controls, and life usage calculations. The advantage of the innovation is the significant reduction in estimation errors that it can provide relative to the conventional approach of selecting a subset of health parameters to serve as the model tuning parameter vector. Because this technique needs only to be performed during the system design process, it places no additional computation burden on the onboard Kalman filter implementation. The technique has been developed for aircraft engine onboard estimation applications, as this application typically presents an under-determined estimation problem. However, this generic technique could be applied to other industries using gas turbine engine technology.

  9. A Dynamic Security Framework for Ambient Intelligent Systems: A Smart-Home Based eHealth Application

    NASA Astrophysics Data System (ADS)

    Compagna, Luca; El Khoury, Paul; Massacci, Fabio; Saidane, Ayda

    Providing context-dependent security services is an important challenge for ambient intelligent systems. The complexity and the unbounded nature of such systems make it difficult even for the most experienced and knowledgeable security engineers, to foresee all possible situations and interactions when developing the system. In order to solve this problem context based self- diagnosis and reconfiguration at runtime should be provided.

  10. A Comparison of Approximation Modeling Techniques: Polynomial Versus Interpolating Models

    NASA Technical Reports Server (NTRS)

    Giunta, Anthony A.; Watson, Layne T.

    1998-01-01

    Two methods of creating approximation models are compared through the calculation of the modeling accuracy on test problems involving one, five, and ten independent variables. Here, the test problems are representative of the modeling challenges typically encountered in realistic engineering optimization problems. The first approximation model is a quadratic polynomial created using the method of least squares. This type of polynomial model has seen considerable use in recent engineering optimization studies due to its computational simplicity and ease of use. However, quadratic polynomial models may be of limited accuracy when the response data to be modeled have multiple local extrema. The second approximation model employs an interpolation scheme known as kriging developed in the fields of spatial statistics and geostatistics. This class of interpolating model has the flexibility to model response data with multiple local extrema. However, this flexibility is obtained at an increase in computational expense and a decrease in ease of use. The intent of this study is to provide an initial exploration of the accuracy and modeling capabilities of these two approximation methods.

  11. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    PubMed Central

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems. PMID:28079187

  12. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems.

    PubMed

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-12

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  13. A spiking neural network model of 3D perception for event-based neuromorphic stereo vision systems

    NASA Astrophysics Data System (ADS)

    Osswald, Marc; Ieng, Sio-Hoi; Benosman, Ryad; Indiveri, Giacomo

    2017-01-01

    Stereo vision is an important feature that enables machine vision systems to perceive their environment in 3D. While machine vision has spawned a variety of software algorithms to solve the stereo-correspondence problem, their implementation and integration in small, fast, and efficient hardware vision systems remains a difficult challenge. Recent advances made in neuromorphic engineering offer a possible solution to this problem, with the use of a new class of event-based vision sensors and neural processing devices inspired by the organizing principles of the brain. Here we propose a radically novel model that solves the stereo-correspondence problem with a spiking neural network that can be directly implemented with massively parallel, compact, low-latency and low-power neuromorphic engineering devices. We validate the model with experimental results, highlighting features that are in agreement with both computational neuroscience stereo vision theories and experimental findings. We demonstrate its features with a prototype neuromorphic hardware system and provide testable predictions on the role of spike-based representations and temporal dynamics in biological stereo vision processing systems.

  14. Career Opportunities for Physicists in the Micro Electronics Industry

    NASA Astrophysics Data System (ADS)

    Bourianoff, George

    1997-10-01

    The US micro electronics industry anticipates growth of 20 to 30 percent per year for the next five years. The need for engineers and scientists poses a critical problem for the industry but conversely presents great opportunities for those in closely related fields such as physics where career opportunities may be more limited. There is no shortage of important and challenging problems on the Semiconductor Institute of America (SIA) roadmap which will require solution in the next 10 years and which require expertise in the physical sciences. However, significant cultural differences exist between the physics community and the engineering oriented semiconductor community which must be understood and addressed in order for a physicist to successfully contribute in this environment. This talk will identify some of those cultural differences and describe some of the critical physics related problems which must be solved. Critical roadblocks include lithographic patterning below 0.18m. and design of Very Large Scale Integrated (VLSI) circuits in the deep submicron regime. The former will require developing radiation sources and optical elements for the EUV or XRAY part of the spectrum. The latter will require incorporating electromagnetic field equations with traditional lumped element circuit design methods. The cultural barriers alluded to earlier involve the manner in which engineering detail is approached. A physicist's basic instinct is to strip off the detail in order to make a problem mathematically tractable. This enables understanding of the underlying physical relationships but does not yield the quantitative detail necessary in semiconductor production.

  15. Damage prognosis: the future of structural health monitoring.

    PubMed

    Farrar, Charles R; Lieven, Nick A J

    2007-02-15

    This paper concludes the theme issue on structural health monitoring (SHM) by discussing the concept of damage prognosis (DP). DP attempts to forecast system performance by assessing the current damage state of the system (i.e. SHM), estimating the future loading environments for that system, and predicting through simulation and past experience the remaining useful life of the system. The successful development of a DP capability will require the further development and integration of many technology areas including both measurement/processing/telemetry hardware and a variety of deterministic and probabilistic predictive modelling capabilities, as well as the ability to quantify the uncertainty in these predictions. The multidisciplinary and challenging nature of the DP problem, its current embryonic state of development, and its tremendous potential for life-safety and economic benefits qualify DP as a 'grand challenge' problem for engineers in the twenty-first century.

  16. Teacher in a problem-based learning environment - Jack of all trades?

    NASA Astrophysics Data System (ADS)

    Dahms, Mona Lisa; Spliid, Claus Monrad; Nielsen, Jens Frederik Dalsgaard

    2017-11-01

    Problem-based learning (PBL) is one among several approaches to active learning. Being a teacher in a PBL environment can, however, be a challenge because of the need to support students' learning within a broad 'landscape of learning'. In this article we will analyse the landscape of learning by use of the study activity model (SAM) developed by the Danish University Colleges, with the aim of investigating to which extent this may lead to explication and clarification concerning the challenges faced by teachers in a PBL environment. In the case study, the SAM is applied to the first semester of an engineering programme at Aalborg University, a university setting where the PBL approach to teaching and learning is dominant. The results of the analysis are presented and discussed, and the conclusion is that the model, in spite of some shortcomings, is useful in clarifying the role of the teacher in a PBL environment.

  17. Navigating Transitions: Challenges for Engineering Students

    ERIC Educational Resources Information Center

    Moore-Russo, Deborah; Wilsey, Jillian N.; Parthum, Michael J., Sr.; Lewis, Kemper

    2017-01-01

    As college students enter engineering, they face challenges when they navigate across various transitions. These challenges impact whether a student can successfully adapt to the rigorous curricular requirements of an engineering degree and to the norms and expectations that are particular to engineering. This article focuses on the transitions…

  18. Rational Solutions for Challenges of the New Mellennium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gover, J.; Guray, P.G.

    We have reviewed ten major public problems challenging our Nation as it enters the new millennium. These are defense, healthcare costs, education, aging population, energy and environment, crime, low productivity growth services, income distribution, regulations, and infrastructure. These problems share several features. First, each is so large, if it were soIved; it would have major impact on the U.S. economy. Second, each is resident in a socioeconomic system containing non-linear feedback loops and an adaptive human element. Third, each can only be solved by our political system, yet these problems are not responsive to piecemeal problem solving, the approach traditionallymore » used by policy makers. However, unless each problem is addressed in the context of the system in which it resides, the solution maybe worse than the problem. Our political system is immersed in reams of disconnected, unintelligible information skewed by various special interests to suggest policies favoring their particular needs. Help is needed, if rational solutions that serve public interests are to be forged for these ten probIems, The simulation and modeIing tools of physical scientists, engineers, economists, social scientists, public policy experts, and others, bolstered by the recent explosive growth in massively parallel computing power, must be blended together to synthesize models of the complex systems in which these problems are resident. These models must simulate the seemingly chaotic human element inherent in these systems and support policymakers in making informed decKlons about the future. We propose altering the policy development process by incorporating more modeling, simulation and analysis to bring about a revolution in policy making that takes advantage of the revolution in engineering emerging from simulation and modeling. While we recommend major research efforts to address each of these problems, we also observe these to be very complex, highly interdependent, multi-disciplinary problems; it will challenge the U.S. community of individual investigator researchers to make the cultural transformation necessary to address these problems in a team environment. Furthermore, models that simulate future behavior of these complex systems will not be exacq therefore, researchers must be prepared to use the modeling and simulation tools they develop to propose experiments to Congress. We recommend that ten laboratories owned by the American public be selected in an interagency competition to each manage and host a $1 billion/yertr National effort, each focused on one of these ten problems. Much of the supporting research and subsystem modeling work will be conducted at U.S. universities and at private firms with relevant expertise. Success of the Manhattan Project at the middle of the 20th century provides evidence this leadership model works.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Terry Alan; Hogan, Roy E., Jr.; McDaniel, Anthony H.

    Two of the most daunting problems facing humankind in the twenty-first century are energy security and climate change. This report summarizes work accomplished towards addressing these problems through the execution of a Grand Challenge LDRD project (FY09-11). The vision of Sunshine to Petrol is captured in one deceptively simple chemical equation: Solar Energy + xCO{sub 2} + (x+1)H{sub 2}O {yields} C{sub x}H{sub 2x+2}(liquid fuel) + (1.5x+.5)O{sub 2} Practical implementation of this equation may seem far-fetched, since it effectively describes the use of solar energy to reverse combustion. However, it is also representative of the photosynthetic processes responsible for much ofmore » life on earth and, as such, summarizes the biomass approach to fuels production. It is our contention that an alternative approach, one that is not limited by efficiency of photosynthesis and more directly leads to a liquid fuel, is desirable. The development of a process that efficiently, cost effectively, and sustainably reenergizes thermodynamically spent feedstocks to create reactive fuel intermediates would be an unparalleled achievement and is the key challenge that must be surmounted to solve the intertwined problems of accelerating energy demand and climate change. We proposed that the direct thermochemical conversion of CO{sub 2} and H{sub 2}O to CO and H{sub 2}, which are the universal building blocks for synthetic fuels, serve as the basis for this revolutionary process. To realize this concept, we addressed complex chemical, materials science, and engineering problems associated with thermochemical heat engines and the crucial metal-oxide working-materials deployed therein. By project's end, we had demonstrated solar-driven conversion of CO{sub 2} to CO, a key energetic synthetic fuel intermediate, at 1.7% efficiency.« less

  20. Harnessing biomechanics to develop cartilage regeneration strategies.

    PubMed

    Athanasiou, Kyriacos A; Responte, Donald J; Brown, Wendy E; Hu, Jerry C

    2015-02-01

    As this review was prepared specifically for the American Society of Mechanical Engineers H.R. Lissner Medal, it primarily discusses work toward cartilage regeneration performed in Dr. Kyriacos A. Athanasiou's laboratory over the past 25 years. The prevalence and severity of degeneration of articular cartilage, a tissue whose main function is largely biomechanical, have motivated the development of cartilage tissue engineering approaches informed by biomechanics. This article provides a review of important steps toward regeneration of articular cartilage with suitable biomechanical properties. As a first step, biomechanical and biochemical characterization studies at the tissue level were used to provide design criteria for engineering neotissues. Extending this work to the single cell and subcellular levels has helped to develop biochemical and mechanical stimuli for tissue engineering studies. This strong mechanobiological foundation guided studies on regenerating hyaline articular cartilage, the knee meniscus, and temporomandibular joint (TMJ) fibrocartilage. Initial tissue engineering efforts centered on developing biodegradable scaffolds for cartilage regeneration. After many years of studying scaffold-based cartilage engineering, scaffoldless approaches were developed to address deficiencies of scaffold-based systems, resulting in the self-assembling process. This process was further improved by employing exogenous stimuli, such as hydrostatic pressure, growth factors, and matrix-modifying and catabolic agents, both singly and in synergistic combination to enhance neocartilage functional properties. Due to the high cell needs for tissue engineering and the limited supply of native articular chondrocytes, costochondral cells are emerging as a suitable cell source. Looking forward, additional cell sources are investigated to render these technologies more translatable. For example, dermis isolated adult stem (DIAS) cells show potential as a source of chondrogenic cells. The challenging problem of enhanced integration of engineered cartilage with native cartilage is approached with both familiar and novel methods, such as lysyl oxidase (LOX). These diverse tissue engineering strategies all aim to build upon thorough biomechanical characterizations to produce functional neotissue that ultimately will help combat the pressing problem of cartilage degeneration. As our prior research is reviewed, we look to establish new pathways to comprehensively and effectively address the complex problems of musculoskeletal cartilage regeneration.

  1. Engineering students' experiences and perceptions of workplace problem solving

    NASA Astrophysics Data System (ADS)

    Pan, Rui

    In this study, I interviewed 22 engineering Co-Op students about their workplace problem solving experiences and reflections and explored: 1) Of Co-Op students who experienced workplace problem solving, what are the different ways in which students experience workplace problem solving? 2) How do students perceive a) the differences between workplace problem solving and classroom problem solving and b) in what areas are they prepared by their college education to solve workplace problems? To answer my first research question, I analyzed data through the lens of phenomenography and I conducted thematic analysis to answer my second research question. The results of this study have implications for engineering education and engineering practice. Specifically, the results reveal the different ways students experience workplace problem solving, which provide engineering educators and practicing engineers a better understanding of the nature of workplace engineering. In addition, the results indicate that there is still a gap between classroom engineering and workplace engineering. For engineering educators who aspire to prepare students to be future engineers, it is imperative to design problem solving experiences that can better prepare students with workplace competency.

  2. A preliminary study on the integral relationship between critical thinking and mathematical thinking among practicing civil engineers

    NASA Astrophysics Data System (ADS)

    Osman, Sharifah; Mohammad, Shahrin; Abu, Mohd Salleh

    2015-05-01

    Mathematics and engineering are inexorably and significantly linked and essentially required in analyzing and accessing thought to make good judgment when dealing in complex and varied engineering problems. A study in the current engineering education curriculum to explore how the critical thinking and mathematical thinking relates to one another, is therefore timely crucial. Unfortunately, there is not much information available explicating about the link. This paper aims to report findings of a critical review as well as to provide brief description of an on-going research aimed to investigate the dispositions of critical thinking and the relationship and integration between critical thinking and mathematical thinking during the execution of civil engineering tasks. The first part of the paper reports an in-depth review on these matters based on rather limited resources. The review showed a considerable form of congruency between these two perspectives of thinking, with some prevalent trends of engineering workplace tasks, problems and challenges. The second part describes an on-going research to be conducted by the researcher to investigate rigorously the relationship and integration between these two types of thinking within the perspective of civil engineering tasks. A reasonably close non-participant observations and semi-structured interviews will be executed for the pilot and main stages of the study. The data will be analyzed using constant comparative analysis in which the grounded theory methodology will be adopted. The findings will serve as a useful grounding for constructing a substantive theory revealing the integral relationship between critical thinking and mathematical thinking in the real civil engineering practice context. The substantive theory, from an angle of view, is expected to contribute some additional useful information to the engineering program outcomes and engineering education instructions, aligns with the expectations of engineering program outcomes set by the Engineering Accreditation Council.

  3. Data Integration for Dynamic and Sustainable Systems Biology Resources: Challenges and Lessons Learned

    PubMed Central

    Gabbard, Joseph L.; Shukla, Maulik; Sobral, Bruno

    2010-01-01

    Systems biology and infectious disease (host-pathogen-environment) research and development is becoming increasingly dependent on integrating data from diverse and dynamic sources. Maintaining integrated resources over long periods of time presents distinct challenges. This paper describes experiences and lessons learned from integrating data in two five-year projects focused on pathosystems biology: the Pathosystems Resource Integration Center (PATRIC, http://patric.vbi.vt.edu/), with a goal of developing bioinformatics resources for the research and countermeasures development communities based on genomics data, and the Resource Center for Biodefense Proteomics Research (RCBPR, http://www.proteomicsresource.org/), with a goal of developing resources based on the experiment data such as microarray and proteomics data from diverse sources and technologies. Some challenges include integrating genomic sequence and experiment data, data synchronization, data quality control, and usability engineering. We present examples of a variety of data integration problems drawn from our experiences with PATRIC and RBPRC, as well as open research questions related to long term sustainability, and describe the next steps to meeting these challenges. Novel contributions of this work include (1) an approach for addressing discrepancies between experiment results and interpreted results and (2) expanding the range of data integration techniques to include usability engineering at the presentation level. PMID:20491070

  4. Crowdsourcing biomedical research: leveraging communities as innovation engines

    PubMed Central

    Saez-Rodriguez, Julio; Costello, James C.; Friend, Stephen H.; Kellen, Michael R.; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2018-01-01

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories. PMID:27418159

  5. (Extreme) Core-collapse Supernova Simulations

    NASA Astrophysics Data System (ADS)

    Mösta, Philipp

    2017-01-01

    In this talk I will present recent progress on modeling core-collapse supernovae with massively parallel simulations on the largest supercomputers available. I will discuss the unique challenges in both input physics and computational modeling that come with a problem involving all four fundamental forces and relativistic effects and will highlight recent breakthroughs overcoming these challenges in full 3D simulations. I will pay particular attention to how these simulations can be used to reveal the engines driving some of the most extreme explosions and conclude by discussing what remains to be done in simulation work to maximize what we can learn from current and future time-domain astronomy transient surveys.

  6. Crowdsourcing biomedical research: leveraging communities as innovation engines.

    PubMed

    Saez-Rodriguez, Julio; Costello, James C; Friend, Stephen H; Kellen, Michael R; Mangravite, Lara; Meyer, Pablo; Norman, Thea; Stolovitzky, Gustavo

    2016-07-15

    The generation of large-scale biomedical data is creating unprecedented opportunities for basic and translational science. Typically, the data producers perform initial analyses, but it is very likely that the most informative methods may reside with other groups. Crowdsourcing the analysis of complex and massive data has emerged as a framework to find robust methodologies. When the crowdsourcing is done in the form of collaborative scientific competitions, known as Challenges, the validation of the methods is inherently addressed. Challenges also encourage open innovation, create collaborative communities to solve diverse and important biomedical problems, and foster the creation and dissemination of well-curated data repositories.

  7. An overview of current approaches and future challenges in physiological monitoring

    NASA Technical Reports Server (NTRS)

    Horst, Richard L.

    1988-01-01

    Sufficient evidence exists from laboratory studies to suggest that physiological measures can be useful as an adjunct to behavioral and subjective measures of human performance and capabilities. Thus it is reasonable to address the conceptual and engineering challenges that arise in applying this technology in operational settings. Issues reviewed include the advantages and disadvantages of constructs such as mental states, the need for physiological measures of performance, areas of application for physiological measures in operational settings, which measures appear to be most useful, problem areas that arise in the use of these measures in operational settings, and directions for future development.

  8. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a Systems Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must trade between time and cost for analysis quality and quantity. The quality often correlates with greater run time in multidisciplinary models and the quantity is associated with the number of alternatives that can be analyzed. The trade-off is due to the resource intensive process of creating a cohesive multidisciplinary systems model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than hand-written translation scripts between multi-disciplinary models and their analyses. The key is to work from a core systems model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query/View/Transformation (QVT), from the OMG community. SysML was designed to model multidisciplinary systems. The QVT standard was designed to transform SysML models into other models, including those leveraged by engineering analyses. The Europa Habitability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, symbolic analysis (supported by Wolfram Mathematica) is coordinated by data objects transformed from the systems model, enabling extremely flexible and powerful design exploration and analytical investigations of expected system performance.

  9. Examining the Critical Thinking Dispositions and the Problem Solving Skills of Computer Engineering Students

    ERIC Educational Resources Information Center

    Özyurt, Özcan

    2015-01-01

    Problem solving is an indispensable part of engineering. Improving critical thinking dispositions for solving engineering problems is one of the objectives of engineering education. In this sense, knowing critical thinking and problem solving skills of engineering students is of importance for engineering education. This study aims to determine…

  10. Understanding Immunology via Engineering Design: The Role of Mathematical Prototyping

    PubMed Central

    Klinke, David J.; Wang, Qing

    2012-01-01

    A major challenge in immunology is how to translate data into knowledge given the inherent complexity and dynamics of human physiology. Both the physiology and engineering communities have rich histories in applying computational approaches to translate data obtained from complex systems into knowledge of system behavior. However, there are some differences in how disciplines approach problems. By referring to mathematical models as mathematical prototypes, we aim to highlight aspects related to the process (i.e., prototyping) rather than the product (i.e., the model). The objective of this paper is to review how two related engineering concepts, specifically prototyping and “fitness for use,” can be applied to overcome the pressing challenge in translating data into improved knowledge of basic immunology that can be used to improve therapies for disease. These concepts are illustrated using two immunology-related examples. The prototypes presented focus on the beta cell mass at the onset of type 1 diabetes and the dynamics of dendritic cells in the lung. This paper is intended to illustrate some of the nuances associated with applying mathematical modeling to improve understanding of the dynamics of disease progression in humans. PMID:22973412

  11. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.

    1996-01-01

    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.

  12. Towards organ printing: engineering an intra-organ branched vascular tree

    PubMed Central

    Visconti, Richard P; Kasyanov, Vladimir; Gentile, Carmine; Zhang, Jing; Markwald, Roger R; Mironov, Vladimir

    2013-01-01

    Importance of the field Effective vascularization of thick three-dimensional engineered tissue constructs is a problem in tissue engineering. As in native organs, a tissue-engineered intra-organ vascular tree must be comprised of a network of hierarchically branched vascular segments. Despite this requirement, current tissue-engineering efforts are still focused predominantly on engineering either large-diameter macrovessels or microvascular networks. Areas covered in this review We present the emerging concept of organ printing or robotic additive biofabrication of an intra-organ branched vascular tree, based on the ability of vascular tissue spheroids to undergo self-assembly. What the reader will gain The feasibility and challenges of this robotic biofabrication approach to intra-organ vascularization for tissue engineering based on organ-printing technology using self-assembling vascular tissue spheroids including clinically relevantly vascular cell sources are analyzed. Take home message It is not possible to engineer 3D thick tissue or organ constructs without effective vascularization. An effective intra-organ vascular system cannot be built by the simple connection of large-diameter vessels and microvessels. Successful engineering of functional human organs suitable for surgical implantation will require concomitant engineering of a ‘built in’ intra-organ branched vascular system. Organ printing enables biofabrication of human organ constructs with a ‘built in’ intra-organ branched vascular tree. PMID:20132061

  13. Effective Usability Engineering in Healthcare: A Vision of Usable and Safer Healthcare IT.

    PubMed

    Kushniruk, Andre; Senathirajah, Yalini; Borycki, Elizabeth

    2017-01-01

    Persistent problems with healthcare IT that is unusable and unsafe have been reported worldwide. In this paper we present our vision for deploying usability engineering in healthcare in a more substantive way in order to improve the current situation. The argument will be made that stronger and more substantial efforts need to be made to bring multiple usability engineering methods to bear on points in both system design and deployment (and not just as a one-time effort restricted to software product development). In addition, improved processes for ensuring the usability of commercial vendor-based systems being implemented in healthcare organizations need to be addressed. A discussion will also be provided on challenges and barriers that will need to be overcome to ensure that the heatlhcare IT that is released is both usable and safe.

  14. Impact of the macroeconomic factors on university budgeting the US and Russia

    NASA Astrophysics Data System (ADS)

    Bogomolova, Arina; Balk, Igor; Ivachenko, Natalya; Temkin, Anatoly

    2017-10-01

    This paper discuses impact of macroeconomics factor on the university budgeting. Modern developments in the area of data science and machine learning made it possible to utilise automated techniques to address several problems of humankind ranging from genetic engineering and particle physics to sociology and economics. This paper is the first step to create a robust toolkit which will help universities sustain macroeconomic challenges utilising modern predictive analytics techniques.

  15. Robust Tensioned Kevlar Suspension Design

    NASA Technical Reports Server (NTRS)

    Young, Joseph B.; Naylor, Bret J.; Holmes, Warren A.

    2012-01-01

    One common but challenging problem in cryogenic engineering is to produce a mount that has excellent thermal isolation but is also rigid. Such mounts can be achieved by suspending the load from a network of fibers or strings held in tension. Kevlar fibers are often used for this purpose owing to their high strength and low thermal conductivity. A suite of compact design elements has been developed to improve the reliability of suspension systems made of Kevlar.

  16. Semantic Web Services Challenge, Results from the First Year. Series: Semantic Web And Beyond, Volume 8.

    NASA Astrophysics Data System (ADS)

    Petrie, C.; Margaria, T.; Lausen, H.; Zaremba, M.

    Explores trade-offs among existing approaches. Reveals strengths and weaknesses of proposed approaches, as well as which aspects of the problem are not yet covered. Introduces software engineering approach to evaluating semantic web services. Service-Oriented Computing is one of the most promising software engineering trends because of the potential to reduce the programming effort for future distributed industrial systems. However, only a small part of this potential rests on the standardization of tools offered by the web services stack. The larger part of this potential rests upon the development of sufficient semantics to automate service orchestration. Currently there are many different approaches to semantic web service descriptions and many frameworks built around them. A common understanding, evaluation scheme, and test bed to compare and classify these frameworks in terms of their capabilities and shortcomings, is necessary to make progress in developing the full potential of Service-Oriented Computing. The Semantic Web Services Challenge is an open source initiative that provides a public evaluation and certification of multiple frameworks on common industrially-relevant problem sets. This edited volume reports on the first results in developing common understanding of the various technologies intended to facilitate the automation of mediation, choreography and discovery for Web Services using semantic annotations. Semantic Web Services Challenge: Results from the First Year is designed for a professional audience composed of practitioners and researchers in industry. Professionals can use this book to evaluate SWS technology for their potential practical use. The book is also suitable for advanced-level students in computer science.

  17. Identifying the challenging factors in the transition from colleges of engineering to employment

    NASA Astrophysics Data System (ADS)

    Baytiyeh, Hoda; Naja, Mohamad

    2012-03-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their current employment situations and their attitudes toward their academic preparation. Factor analysis revealed three main challenges facing engineering graduates: communication; responsibility; self-confidence. Seventeen interviews were conducted to gather information on ways to facilitate this transition. Comments reflected the need for better collaboration between engineering schools and engineering firms. The results will provide insight for engineering colleges, faculty members and administrators into the challenges faced by graduates and their aspirations for a smoother transition into employment.

  18. Expert Opinion Editorial Tissue Engineered Blood Vessels as Promising Tools for Testing Drug Toxicity

    PubMed Central

    Truskey, George A.; Fernandez, Cristina E.

    2015-01-01

    Drug-induced vascular injury (DIVI) is a serious problem in preclinical studies of vasoactive molecules and for survivors of pediatric cancers. DIVI is often observed in rodents and some larger animals, primarily with drugs affecting vascular tone, but not in humans; however, DIVI observed in animal studies often precludes a drug candidate from continuing along the development pipeline. Thus, there is great interest by the pharmaceutical industry to identify quantifiable human biomarkers of DIVI. Small scale endothelialized tissue-engineered blood vessels using human cells represent a promising approach to screen drug candidates and developed alternatives to cancer therapeutics in vitro. We identify several technical challenges that remain to be addressed, including high throughput systems to screen large numbers of candidates, identification of suitable cell sources, and establishing and maintaining a differentiated state of the vessel wall cells. Adequately addressing these challenges should yield novel platforms to screen drugs and develop new therapeutics to treat cardiovascular disease. PMID:26028128

  19. Rapid prototyping for biomedical engineering: current capabilities and challenges.

    PubMed

    Lantada, Andrés Díaz; Morgado, Pilar Lafont

    2012-01-01

    A new set of manufacturing technologies has emerged in the past decades to address market requirements in a customized way and to provide support for research tasks that require prototypes. These new techniques and technologies are usually referred to as rapid prototyping and manufacturing technologies, and they allow prototypes to be produced in a wide range of materials with remarkable precision in a couple of hours. Although they have been rapidly incorporated into product development methodologies, they are still under development, and their applications in bioengineering are continuously evolving. Rapid prototyping and manufacturing technologies can be of assistance in every stage of the development process of novel biodevices, to address various problems that can arise in the devices' interactions with biological systems and the fact that the design decisions must be tested carefully. This review focuses on the main fields of application for rapid prototyping in biomedical engineering and health sciences, as well as on the most remarkable challenges and research trends.

  20. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus

    PubMed Central

    Cucchiarini, M.; McNulty, A.L.; Mauck, R.L.; Setton, L.A.; Guilak, F.; Madry, H.

    2017-01-01

    SUMMARY Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis. Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. PMID:27063441

  1. A cross-disciplinary introduction to quantum annealing-based algorithms

    NASA Astrophysics Data System (ADS)

    Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco

    2018-04-01

    A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.

  2. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility to be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  3. A Novel Approach for Engaging Academia in Collaborative Projects with NASA through the X-Hab Academic Innovation Challenge

    NASA Technical Reports Server (NTRS)

    Gill, Tracy R.; Gattuso, Kelly J.

    2015-01-01

    The X-Hab Academic Innovation Challenge, currently in its sixth year of execution, provides university students with the opportunity to be on the forefront of innovation. The X-Hab Challenge, for short, is designed to engage and retain students in Science, Technology, Engineering and Math (STEM). NASA identifies necessary technologies and studies for deep space missions and invites universities from around the country to develop concepts, prototypes, and lessons learned that will help shape future space missions and awards seed funds to design and produce functional products of interest as proposed by university teams according to their interests and expertise. Universities propose on a variety of projects suggested by NASA and are then judged on technical merit, academic integration, leveraged funding, and outreach. The universities assemble a multi-discipline team of students and advisors that invest months working together, developing concepts, and frequently producing working prototypes. Not only are students able to gain quality experience, working real world problems that have the possibility of be implemented, but they work closely with subject matter experts from NASA who guide them through an official engineering development process.

  4. 'Unknown' proteins and 'orphan' enzymes: the missing half of the engineering parts list--and how to find it.

    PubMed

    Hanson, Andrew D; Pribat, Anne; Waller, Jeffrey C; de Crécy-Lagard, Valérie

    2009-12-14

    Like other forms of engineering, metabolic engineering requires knowledge of the components (the 'parts list') of the target system. Lack of such knowledge impairs both rational engineering design and diagnosis of the reasons for failures; it also poses problems for the related field of metabolic reconstruction, which uses a cell's parts list to recreate its metabolic activities in silico. Despite spectacular progress in genome sequencing, the parts lists for most organisms that we seek to manipulate remain highly incomplete, due to the dual problem of 'unknown' proteins and 'orphan' enzymes. The former are all the proteins deduced from genome sequence that have no known function, and the latter are all the enzymes described in the literature (and often catalogued in the EC database) for which no corresponding gene has been reported. Unknown proteins constitute up to about half of the proteins in prokaryotic genomes, and much more than this in higher plants and animals. Orphan enzymes make up more than a third of the EC database. Attacking the 'missing parts list' problem is accordingly one of the great challenges for post-genomic biology, and a tremendous opportunity to discover new facets of life's machinery. Success will require a co-ordinated community-wide attack, sustained over years. In this attack, comparative genomics is probably the single most effective strategy, for it can reliably predict functions for unknown proteins and genes for orphan enzymes. Furthermore, it is cost-efficient and increasingly straightforward to deploy owing to a proliferation of databases and associated tools.

  5. Curricular Reform: Systems Modeling and Sustainability in Civil and Environmental Engineering at the University of Vermont

    NASA Astrophysics Data System (ADS)

    Rizzo, D. M.; Hayden, N. J.; Dewoolkar, M.; Neumann, M.; Lathem, S.

    2009-12-01

    Researchers at the University of Vermont were awarded a NSF-sponsored Department Level Reform (DLR) grant to incorporate a systems approach to engineering problem solving within the civil and environmental engineering programs. A systems approach challenges students to consider the environmental, social, and economic aspects within engineering solutions. Likewise, sustainability requires a holistic approach to problem solving that includes economic, social and environmental factors. Our reform has taken a multi-pronged approach in two main areas that include implementing: a) a sequence of three systems courses related to environmental and transportation systems that introduce systems thinking, sustainability, and systems analysis and modeling; and b) service-learning (SL) projects as a means of practicing the systems approach. Our SL projects are good examples of inquiry-based learning that allow students to emphasize research and learning in areas of most interest to them. The SL projects address real-world open-ended problems. Activities that enhance IT and soft skills for students are incorporated throughout the curricula. Likewise, sustainability has been a central piece of the reform. We present examples of sustainability in the SL and modeling projects within the systems courses (e.g., students have used STELLA™ systems modeling software to address the impact of different carbon sequestration strategies on global climate change). Sustainability in SL projects include mentoring home schooled children in biomimicry projects, developing ECHO exhibits and the design of green roofs, bioretention ponds and porous pavement solutions. Assessment includes formative and summative methods involving student surveys and focus groups, faculty interviews and observations, and evaluation of student work.

  6. Parallel methodology to capture cyclic variability in motored engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ameen, Muhsin M.; Yang, Xiaofeng; Kuo, Tang-Wei

    2016-07-28

    Numerical prediction of of cycle-to-cycle variability (CCV) in SI engines is extremely challenging for two key reasons: (i) high-fidelity methods such as large eddy simulation (LES) are require to accurately capture the in-cylinder turbulent flowfield, and (ii) CCV is experienced over long timescales and hence the simulations need to be performed for hundreds of consecutive cycles. In this study, a new methodology is proposed to dissociate this long time-scale problem into several shorter time-scale problems, which can considerably reduce the computational time without sacrificing the fidelity of the simulations. The strategy is to perform multiple single-cycle simulations in parallel bymore » effectively perturbing the simulation parameters such as the initial and boundary conditions. It is shown that by perturbing the initial velocity field effectively based on the intensity of the in-cylinder turbulence, the mean and variance of the in-cylinder flowfield is captured reasonably well. Adding perturbations in the initial pressure field and the boundary pressure improves the predictions. It is shown that this new approach is able to give accurate predictions of the flowfield statistics in less than one-tenth of time required for the conventional approach of simulating consecutive engine cycles.« less

  7. System Engineering for J-2X Development: The Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William M.; Greasley, Paul; Greene, William D.; Ackerman, Peter

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt and Whitney Rocketdyne Company (PWR) as the upper stage engine (USE). The J-2X is an improved higher power version of the original J-2 engine used for Apollo. System Engineering (SE) facilitates direct and open discussions of issues and problems. This simple idea is often overlooked in large, complex engineering development programs. Definition and distribution of requirements from the engine level to the component level is controlled by Allocation Reports which breaks down numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements help eliminate redundancy and potential mistakes inherent in separated systems. Another tool, the Architecture Design Description (ADD), is used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof of an effective process is in successful program accomplishment. SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. This paper describes the simple, better SE tools and techniques used to achieve this success.

  8. The Roles of Engineering Notebooks in Shaping Elementary Engineering Student Discourse and Practice

    ERIC Educational Resources Information Center

    Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.

    2017-01-01

    Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum "Engineering is Elementary" (EiE) support student work during design challenges. Through educational ethnography and…

  9. Advancing Cyberinfrastructure to support high resolution water resources modeling

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Ogden, F. L.; Jones, N.; Horsburgh, J. S.

    2012-12-01

    Addressing the problem of how the availability and quality of water resources at large scales are sensitive to climate variability, watershed alterations and management activities requires computational resources that combine data from multiple sources and support integrated modeling. Related cyberinfrastructure challenges include: 1) how can we best structure data and computer models to address this scientific problem through the use of high-performance and data-intensive computing, and 2) how can we do this in a way that discipline scientists without extensive computational and algorithmic knowledge and experience can take advantage of advances in cyberinfrastructure? This presentation will describe a new system called CI-WATER that is being developed to address these challenges and advance high resolution water resources modeling in the Western U.S. We are building on existing tools that enable collaboration to develop model and data interfaces that link integrated system models running within an HPC environment to multiple data sources. Our goal is to enhance the use of computational simulation and data-intensive modeling to better understand water resources. Addressing water resource problems in the Western U.S. requires simulation of natural and engineered systems, as well as representation of legal (water rights) and institutional constraints alongside the representation of physical processes. We are establishing data services to represent the engineered infrastructure and legal and institutional systems in a way that they can be used with high resolution multi-physics watershed modeling at high spatial resolution. These services will enable incorporation of location-specific information on water management infrastructure and systems into the assessment of regional water availability in the face of growing demands, uncertain future meteorological forcings, and existing prior-appropriations water rights. This presentation will discuss the informatics challenges involved with data management and easy-to-use access to high performance computing being tackled in this project.

  10. A probabilistic approach to randomness in geometric configuration of scalable origami structures

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Paulino, Glaucio; Gardoni, Paolo

    2015-03-01

    Origami, an ancient paper folding art, has inspired many solutions to modern engineering challenges. The demand for actual engineering applications motivates further investigation in this field. Although rooted from the historic art form, many applications of origami are based on newly designed origami patterns to match the specific requirenments of an engineering problem. The application of origami to structural design problems ranges from micro-structure of materials to large scale deployable shells. For instance, some origami-inspired designs have unique properties such as negative Poisson ratio and flat foldability. However, origami structures are typically constrained by strict mathematical geometric relationships, which in reality, can be easily violated, due to, for example, random imperfections introduced during manufacturing, or non-uniform deformations under working conditions (e.g. due to non-uniform thermal effects). Therefore, the effects of uncertainties in origami-like structures need to be studied in further detail in order to provide a practical guide for scalable origami-inspired engineering designs. Through reliability and probabilistic analysis, we investigate the effect of randomness in origami structures on their mechanical properties. Dislocations of vertices of an origami structure have different impacts on different mechanical properties, and different origami designs could have different sensitivities to imperfections. Thus we aim to provide a preliminary understanding of the structural behavior of some common scalable origami structures subject to randomness in their geometric configurations in order to help transition the technology toward practical applications of origami engineering.

  11. Applying an innovative educational program for the education of today's engineers

    NASA Astrophysics Data System (ADS)

    Kans, M.

    2012-05-01

    Engineers require a broad spectrum of knowledge and skills: basic skills in mathematics and physics, skills and competencies within the major subject area as well as more general knowledge about business and enterprise contexts, society regulations and understanding of the future professions' characteristics. In addition, social, intercultural, analytical and managing competencies are desired. The CDIO educational program was initiated as a means to come closer to practice and to assure the training of engineering skills that are required of today's engineers. CDIO is short for Conceive-Design-Implement-Operate and describes the full life cycle understanding of a system or asset that engineering students should reach during education. The CDIO initiative is formulated in a program consisting of two important documents: the CDIO standards and the CDIO syllabus. The standards describe a holistic approach on education, from knowledge and skills to be trained, how to train and assess them, to how to develop the teaching staff and the work places for enabling the goals. The specific knowledge and skills to be achieved are accounted for in the syllabus. In this paper we share our more than 15 years of experiences in problem and project based learning from the perspective of the CDIO standards. For each standard, examples of how to set up the education and overcome challenges connected to the standard are given. The paper concludes with recommendations to others wishing to work toward problem and real-life based education without compromising the requirements of a scientific approach.

  12. Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms.

    PubMed

    Helms, Lucas; Clune, Jeff

    2017-01-01

    Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding.

  13. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    NASA Astrophysics Data System (ADS)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents the problem. Under both outlined scenarios, scientists and mathematicians are provided with an opportunity to challenge themselves with real-world problems and to work together in a team on important industrial issues. This issue is a result of selected contributions by participants of the meeting that took place in the Sønderborg area of Denmark, one of the most important centers for information technology, telecommunication and electronics in the country. The meeting was hosted by the University of Southern Denmark in a picturesque area of Southern Jutland. It brought together about 65 participants, among whom were professional mathematicians, engineers, physicists, and industrial participants. The meeting was a truly international one, with delegates from four major Danish Universities, the UK, Norway, Italy, Czech Republic, Turkey, China, Germany, Latvia, Canada, the United States, and Finland. Five challenging projects were presented by leading industrial companies, including Grundfos, Danfoss Industrial Control, Unisensor, and Danfoss Flow Division (now Siemens). The meeting featured also the Mathematics for Industry Workshop with several distinguished international speakers. This volume of Journal of Physics: Conference Series on `Methods of Mathematical and Computational Physics for Industry, Science, and Technology' contains contributions from some of the participants of the workshop as well as the papers produced as a result of collaborative efforts with the above mentioned industrial companies. We would like to thank all authors and participants for their contributions and for bearing with us during the review process and preparation of this issue. We thank also all our referees for their timely and detailed reports. The publication of the proceedings of this meeting in Denmark was delayed due to problems with a previous publisher. We are very grateful that Journal of Physics: Conference Series kindly agreed to publish the proceedings rapidly at this late stage. As industrial problems become increasingly multidisciplinary, their successful solutions are often contingent on effective collaborative efforts between scientists, mathematicians, industrialists, and engineers. This volume has provided several examples of such collaborative efforts in the context of real-world industrial problems along with the analysis of important physics-based mathematical models applicable in a range of industrial contexts. Roderick V N Melnik, Professor of Mathematical Modelling, Syddansk Universitet (Denmark) and Professor and Canada Research Chair, Wilfrid Laurier University, Waterloo, Canada E-mail: rmelnik@wlu.ca Frands Voss, Director of the Mads Clausen Institute, Syddansk Universitet (Denmark)

  14. A General Tool for Engineering the NAD/NADP Cofactor Preference of Oxidoreductases.

    PubMed

    Cahn, Jackson K B; Werlang, Caroline A; Baumschlager, Armin; Brinkmann-Chen, Sabine; Mayo, Stephen L; Arnold, Frances H

    2017-02-17

    The ability to control enzymatic nicotinamide cofactor utilization is critical for engineering efficient metabolic pathways. However, the complex interactions that determine cofactor-binding preference render this engineering particularly challenging. Physics-based models have been insufficiently accurate and blind directed evolution methods too inefficient to be widely adopted. Building on a comprehensive survey of previous studies and our own prior engineering successes, we present a structure-guided, semirational strategy for reversing enzymatic nicotinamide cofactor specificity. This heuristic-based approach leverages the diversity and sensitivity of catalytically productive cofactor binding geometries to limit the problem to an experimentally tractable scale. We demonstrate the efficacy of this strategy by inverting the cofactor specificity of four structurally diverse NADP-dependent enzymes: glyoxylate reductase, cinnamyl alcohol dehydrogenase, xylose reductase, and iron-containing alcohol dehydrogenase. The analytical components of this approach have been fully automated and are available in the form of an easy-to-use web tool: Cofactor Specificity Reversal-Structural Analysis and Library Design (CSR-SALAD).

  15. A Multidisciplinary Approach to Mixer-Ejector Analysis and Design

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric, S.; Seidel, Jonathan, A.

    2012-01-01

    The design of an engine for a civil supersonic aircraft presents a difficult multidisciplinary problem to propulsion system engineers. There are numerous competing requirements for the engine, such as to be efficient during cruise while yet quiet enough at takeoff to meet airport noise regulations. The use of mixer-ejector nozzles presents one possible solution to this challenge. However, designing a mixer-ejector which will successfully address both of these concerns is a difficult proposition. Presented in this paper is an integrated multidisciplinary approach to the analysis and design of these systems. A process that uses several low-fidelity tools to evaluate both the performance and acoustics of mixer-ejectors nozzles is described. This process is further expanded to include system-level modeling of engines and aircraft to determine the effects on mission performance and noise near airports. The overall process is developed in the OpenMDAO framework currently being developed by NASA. From the developed process, sample results are given for a notional mixer-ejector design, thereby demonstrating the capabilities of the method.

  16. Poetry for physicists

    NASA Astrophysics Data System (ADS)

    Tobias, Sheila; Abel, Lynne S.

    1990-09-01

    In an effort to discover what makes the humanities difficult and unpopular with some science and engineering students, 14 Cornell faculty from the disciplines of chemistry, physics, applied mathematics, geology, materials science, and engineering were invited to become ``surrogate learners'' in a junior/senior level poetry seminar designed expressly for them. Their encounter with humanistic pedagogy and scholarship was meant to be an extension of ``Peer Perspectives on Science'' [see S. Tobias and R. R. Hake, ``Professors as physics students: What can they teach us?'' Am. J. Phys. 56, 786 (1988)]. The results challenge certain assumptions about differences between scholarship and pedagogy in the humanities and science (as regards ``certainty'' and models). But the experiment uncovered other problems that affect ``marketing'' the humanities to science and engineering students. Results are some additional insights into what makes science ``hard'' for humanities students and why physical science and engineering students have difficulty with and tend to avoid courses in literature, as well as into what can make humanities courses valuable for science students.

  17. Clarity of objectives and working principles enhances the success of biomimetic programs.

    PubMed

    Wolff, Jonas O; Wells, David; Reid, Chris R; Blamires, Sean J

    2017-09-26

    Biomimetics, the transfer of functional principles from living systems into product designs, is increasingly being utilized by engineers. Nevertheless, recurring problems must be overcome if it is to avoid becoming a short-lived fad. Here we assess the efficiency and suitability of methods typically employed by examining three flagship examples of biomimetic design approaches from different disciplines: (1) the creation of gecko-inspired adhesives; (2) the synthesis of spider silk, and (3) the derivation of computer algorithms from natural self-organizing systems. We find that identification of the elemental working principles is the most crucial step in the biomimetic design process. It bears the highest risk of failure (e.g. losing the target function) due to false assumptions about the working principle. Common problems that hamper successful implementation are: (i) a discrepancy between biological functions and the desired properties of the product, (ii) uncertainty about objectives and applications, (iii) inherent limits in methodologies, and (iv) false assumptions about the biology of the models. Projects that aim for multi-functional products are particularly challenging to accomplish. We suggest a simplification, modularisation and specification of objectives, and a critical assessment of the suitability of the model. Comparative analyses, experimental manipulation, and numerical simulations followed by tests of artificial models have led to the successful extraction of working principles. A searchable database of biological systems would optimize the choice of a model system in top-down approaches that start at an engineering problem. Only when biomimetic projects become more predictable will there be wider acceptance of biomimetics as an innovative problem-solving tool among engineers and industry.

  18. Integrating Global Hydrology Into Graduate Engineering Education and Research

    NASA Astrophysics Data System (ADS)

    Griffis, V. W.

    2007-12-01

    Worldwide, polluted water affects the health of 1.2 billion people and contributes to the death of 15 million children under five every year. In addition poor environmental quality contributes to 25 per cent of all preventable ill health in the world. To address some of these problems, at the 2002 World Summit on Sustainable Development, the world community set the goal of halving, by the year 2015, the proportion of people without access to safe drinking water and basic sanitation. Solving sanitation and water resource management problems in any part of the world presents an interdisciplinary, complex challenge. However, when we attempt to solve these problems in an international context, our technical approaches must be tempered with cultural sensitivity and extraordinary management strategies. To meet this challenge, Michigan Tech has developed a unique global partnership with the U.S. Peace Corps to address our acknowledgement of the importance of placing engineering solutions in a global context. The program has graduated 30 students. Program enrollment is now over 30 and over 20 countries have hosted our students. The objective of this presentation is to demonstrate how this unique partnership can be integrated with graduate engineering education and research and also show how such a program may attract a more diverse student population into engineering. All graduate students enrolled in our Master's International Program in Civil and Environmental Engineering must complete specific coursework requirements before departing for their international experience. In CE5993 (Field Engineering in the Developing World) students learn to apply concepts of sustainable development and appropriate technology in the developing world. In FW5770 (Rural Community Development Planning and Analysis) students learn how one involves a community in the decision making process. A common theme in both courses is the role of woman in successful development projects. Technical specialization allows a student to take coursework in hydrology, water planning and management, and water quality engineering. The 2-3 semester residence on campus is then followed by three months of cultural, language, and technical training with the Peace Corps. After training students complete two years of service in the Peace Corps, typically working as a water/sanitation engineer while also completing a research project related to their Peace Corps experience. Some unique aspects of the Peace Corps experience is that it provides students with cultural awareness, language proficiency, community organizing skills, skills in consensus building and sustainable development, appreciation for technology that is economically and culturally sensitive, and a long-term field experience to develop an indepth overseas research project. Perhaps one of the greatest aspects of the Peace Corps experience is it provides students a basis to consider the social, economic, and environmental limitations of water projects in the developing world. Some examples of research projects that have been integrated into this program are: (a) culturally appropriate watershed planning and management, (b) technical capacity building of water supply systems, and (c) life cycle thinking approach applied to water and sanitation projects.

  19. An insight into burns in a developing country: a Sri Lankan experience.

    PubMed

    Lau, Y S

    2006-10-01

    Burn injuries represent a diverse and varied challenge to medical and paramedical staff. The management of burns and their sequelae in a well-equipped, modern burns unit remains demanding despite advances in surgical techniques and development of tissue-engineered biomaterials; in a developing country, these difficulties are amplified many times. Sri Lanka has a high incidence of burn-related injuries annually due to a combination of adverse social, economic and cultural factors. The management of burn injuries remains a formidable public health problem. The epidemiology of burns, challenges faced in their management and effective strategies specific to Sri Lanka, such as the Safe Bottle Lamp campaign, are highlighted in this paper.

  20. Statistical Teleodynamics: Toward a Theory of Emergence.

    PubMed

    Venkatasubramanian, Venkat

    2017-10-24

    The central scientific challenge of the 21st century is developing a mathematical theory of emergence that can explain and predict phenomena such as consciousness and self-awareness. The most successful research program of the 20th century, reductionism, which goes from the whole to parts, seems unable to address this challenge. This is because addressing this challenge inherently requires an opposite approach, going from parts to the whole. In addition, reductionism, by the very nature of its inquiry, typically does not concern itself with teleology or purposeful behavior. Modeling emergence, in contrast, requires the addressing of teleology. Together, these two requirements present a formidable challenge in developing a successful mathematical theory of emergence. In this article, I describe a new theory of emergence, called statistical teleodynamics, that addresses certain aspects of the general problem. Statistical teleodynamics is a mathematical framework that unifies three seemingly disparate domains-purpose-free entities in statistical mechanics, human engineered teleological systems in systems engineering, and nature-evolved teleological systems in biology and sociology-within the same conceptual formalism. This theory rests on several key conceptual insights, the most important one being the recognition that entropy mathematically models the concept of fairness in economics and philosophy and, equivalently, the concept of robustness in systems engineering. These insights help prove that the fairest inequality of income is a log-normal distribution, which will emerge naturally at equilibrium in an ideal free market society. Similarly, the theory predicts the emergence of the three classes of network organization-exponential, scale-free, and Poisson-seen widely in a variety of domains. Statistical teleodynamics is the natural generalization of statistical thermodynamics, the most successful parts-to-whole systems theory to date, but this generalization is only a modest step toward a more comprehensive mathematical theory of emergence.

  1. Biomedical engineering education--status and perspectives.

    PubMed

    Magjarevic, Ratko; Zequera Diaz, Martha L

    2014-01-01

    Biomedical Engineering programs are present at a large number of universities all over the world with an increasing trend. New generations of biomedical engineers have to face the challenges of health care systems round the world which need a large number of professionals not only to support the present technology in the health care system but to develop new devices and services. Health care stakeholders would like to have innovative solutions directed towards solving problems of the world growing incidence of chronic disease and ageing population. These new solutions have to meet the requirements for continuous monitoring, support or care outside clinical settlements. Presence of these needs can be tracked through data from the Labor Organization in the U.S. showing that biomedical engineering jobs have the largest growth at the engineering labor market with expected 72% growth rate in the period from 2008-2018. In European Union the number of patents (i.e. innovation) is the highest in the category of biomedical technology. Biomedical engineering curricula have to adopt to the new needs and for expectations of the future. In this paper we want to give an overview of engineering professions in related to engineering in medicine and biology and the current status of BME education in some regions, as a base for further discussions.

  2. The Need and Challenges for Distributed Engine Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2013-01-01

    The presentation describes the challenges facing the turbine engine control system. These challenges are primarily driven by a dependence on commercial electronics and an increasingly severe environment on board the turbine engine. The need for distributed control is driven by the need to overcome these system constraints and develop a new growth path for control technology and, as a result, improved turbine engine performance.

  3. Hands on Education Through Student-Industry Partnerships

    NASA Astrophysics Data System (ADS)

    Brown, J.; Wolfson, M.; Morris, K.

    2013-09-01

    Lockheed Martin Space Systems Company has invested in the future generation of engineers by partially funding and mentoring CubeSat projects around the country. One CubeSat in particular, ALL-STAR, has shown how this industry/university partnership benefits both the students and their mentors. Students gain valuable insight into aspects of spacecraft design that aren't taught in classes. They also start learning about industry processes for designing, building, and testing satellites before ever working in that environment. Because of this experience, industry is getting more qualified engineers starting fresh out of college. In addition Lockheed Martin's partnership with the university will allow them to use the students to help build affordable CubeSats for internal and customer's research and development projects. The mentoring also challenges the engineers to think differently about similar problems they face every day with their larger programs in order to make the solution simple and affordable.

  4. Accelerating scientific discovery : 2007 annual report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckman, P.; Dave, P.; Drugan, C.

    2008-11-14

    As a gateway for scientific discovery, the Argonne Leadership Computing Facility (ALCF) works hand in hand with the world's best computational scientists to advance research in a diverse span of scientific domains, ranging from chemistry, applied mathematics, and materials science to engineering physics and life sciences. Sponsored by the U.S. Department of Energy's (DOE) Office of Science, researchers are using the IBM Blue Gene/L supercomputer at the ALCF to study and explore key scientific problems that underlie important challenges facing our society. For instance, a research team at the University of California-San Diego/ SDSC is studying the molecular basis ofmore » Parkinson's disease. The researchers plan to use the knowledge they gain to discover new drugs to treat the disease and to identify risk factors for other diseases that are equally prevalent. Likewise, scientists from Pratt & Whitney are using the Blue Gene to understand the complex processes within aircraft engines. Expanding our understanding of jet engine combustors is the secret to improved fuel efficiency and reduced emissions. Lessons learned from the scientific simulations of jet engine combustors have already led Pratt & Whitney to newer designs with unprecedented reductions in emissions, noise, and cost of ownership. ALCF staff members provide in-depth expertise and assistance to those using the Blue Gene/L and optimizing user applications. Both the Catalyst and Applications Performance Engineering and Data Analytics (APEDA) teams support the users projects. In addition to working with scientists running experiments on the Blue Gene/L, we have become a nexus for the broader global community. In partnership with the Mathematics and Computer Science Division at Argonne National Laboratory, we have created an environment where the world's most challenging computational science problems can be addressed. Our expertise in high-end scientific computing enables us to provide guidance for applications that are transitioning to petascale as well as to produce software that facilitates their development, such as the MPICH library, which provides a portable and efficient implementation of the MPI standard--the prevalent programming model for large-scale scientific applications--and the PETSc toolkit that provides a programming paradigm that eases the development of many scientific applications on high-end computers.« less

  5. Building community partnerships to implement the new Science and Engineering component of the NGSS

    NASA Astrophysics Data System (ADS)

    Burke, M. P.; Linn, F.

    2013-12-01

    Partnerships between science professionals in the community and professional educators can help facilitate the adoption of the Next Generation Science Standards (NGSS). Classroom teachers have been trained in content areas but may be less familiar with the new required Science and Engineering component of the NGSS. This presentation will offer a successful model for building classroom and community partnerships and highlight the particulars of a collaborative lesson taught to Rapid City High School students. Local environmental issues provided a framework for learning activities that encompassed several Crosscutting Concepts and Science and Engineering Practices for a lesson focused on Life Science Ecosystems: Interactions, Energy, and Dynamics. Specifically, students studied local water quality impairments, collected and measured stream samples, and analyzed their data. A visiting hydrologist supplied additional water quality data from ongoing studies to extend the students' datasets both temporally and spatially, helping students to identify patterns and draw conclusions based on their findings. Context was provided through discussions of how science professionals collect and analyze data and communicate results to the public, using an example of a recent bacterial contamination of a local stream. Working with Rapid City High School students added additional challenges due to their high truancy and poverty rates. Creating a relevant classroom experience was especially critical for engaging these at-risk youth and demonstrating that science is a viable career path for them. Connecting science in the community with the problem-solving nature of engineering is a critical component of NGSS, and this presentation will elucidate strategies to help prospective partners maneuver through the challenges that we've encountered. We recognize that the successful implementation of the NGSS is a challenge that requires the support of the scientific community. This partnership represents one model of science and education professionals collaborating to incorporate science and engineering activities into the curriculum.

  6. Regeneration of Tissues and Organs Using Autologous Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anthony Atala, M D

    2012-10-11

    The proposed work aims to address three major challenges to the field of regenerative medicine: 1) the growth and expansion of regenerative cells outside the body in controlled in vitro environments, 2) supportive vascular supply for large tissue engineered constructs, and 3) interactive biomaterials that can orchestrate tissue development in vivo. Toward this goal, we have engaged a team of scientists with expertise in cell and molecular biology, physiology, biomaterials, controlled release, nanomaterials, tissue engineering, bioengineering, and clinical medicine to address all three challenges. This combination of resources, combined with the vast infrastructure of the WFIRM, have brought to bearmore » on projects to discover and test new sources of autologous cells that can be used therapeutically, novel methods to improve vascular support for engineered tissues in vivo, and to develop intelligent biomaterials and bioreactor systems that interact favorably with stem and progenitor cells to drive tissue maturation. The Institute's ongoing programs are aimed at developing regenerative medicine technologies that employ a patient's own cells to help restore or replace tissue and organ function. This DOE program has provided a means to solve some of the vexing problems that are germane to many tissue engineering applications, regardless of tissue type or target disease. By providing new methods that are the underpinning of tissue engineering, this program facilitated advances that can be applied to conditions including heart disease, diabetes, renal failure, nerve damage, vascular disease, and cancer, to name a few. These types of conditions affect millions of Americans at a cost of more than $400 billion annually. Regenerative medicine holds the promise of harnessing the body's own power to heal itself. By addressing the fundamental challenges of this field in a comprehensive and focused fashion, this DOE program has opened new opportunities to treat conditions where other approaches have failed.« less

  7. Adjusting process count on demand for petascale global optimization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sosonkina, Masha; Watson, Layne T.; Radcliffe, Nicholas R.

    2012-11-23

    There are many challenges that need to be met before efficient and reliable computation at the petascale is possible. Many scientific and engineering codes running at the petascale are likely to be memory intensive, which makes thrashing a serious problem for many petascale applications. One way to overcome this challenge is to use a dynamic number of processes, so that the total amount of memory available for the computation can be increased on demand. This paper describes modifications made to the massively parallel global optimization code pVTdirect in order to allow for a dynamic number of processes. In particular, themore » modified version of the code monitors memory use and spawns new processes if the amount of available memory is determined to be insufficient. The primary design challenges are discussed, and performance results are presented and analyzed.« less

  8. A national collaboration process: Finnish engineering education for the benefit of people and environment.

    PubMed

    Takala, A; Korhonen-Yrjänheikki, K

    2013-12-01

    The key stakeholders of the Finnish engineering education collaborated during 2006-09 to reform the system of education, to face the challenges of the changing business environment and to create a national strategy for the Finnish engineering education. The work process was carried out using participatory work methods. Impacts of sustainable development (SD) on engineering education were analysed in one of the subprojects. In addition to participatory workshops, the core part of the work on SD consisted of a research with more than 60 interviews and an extensive literature survey. This paper discusses the results of the research and the work process of the Collaboration Group in the subproject of SD. It is suggested that enhancing systematic dialogue among key stakeholders using participatory work methods is crucial in increasing motivation and commitment in incorporating SD in engineering education. Development of the context of learning is essential for improving skills of engineering graduates in some of the key abilities related to SD: systemic- and life-cycle thinking, ethical understanding, collaborative learning and critical reflection skills. This requires changing of the educational paradigm from teacher-centred to learner-centred applying problem- and project-oriented active learning methods.

  9. Genome and metabolic engineering in non-conventional yeasts: Current advances and applications.

    PubMed

    Löbs, Ann-Kathrin; Schwartz, Cory; Wheeldon, Ian

    2017-09-01

    Microbial production of chemicals and proteins from biomass-derived and waste sugar streams is a rapidly growing area of research and development. While the model yeast Saccharomyces cerevisia e is an excellent host for the conversion of glucose to ethanol, production of other chemicals from alternative substrates often requires extensive strain engineering. To avoid complex and intensive engineering of S. cerevisiae, other yeasts are often selected as hosts for bioprocessing based on their natural capacity to produce a desired product: for example, the efficient production and secretion of proteins, lipids, and primary metabolites that have value as commodity chemicals. Even when using yeasts with beneficial native phenotypes, metabolic engineering to increase yield, titer, and production rate is essential. The non-conventional yeasts Kluyveromyces lactis, K. marxianus, Scheffersomyces stipitis, Yarrowia lipolytica, Hansenula polymorpha and Pichia pastoris have been developed as eukaryotic hosts because of their desirable phenotypes, including thermotolerance, assimilation of diverse carbon sources, and high protein secretion. However, advanced metabolic engineering in these yeasts has been limited. This review outlines the challenges of using non-conventional yeasts for strain and pathway engineering, and discusses the developed solutions to these problems and the resulting applications in industrial biotechnology.

  10. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies.

    PubMed

    Rickert, Keith W; Grinberg, Luba; Woods, Robert M; Wilson, Susan; Bowen, Michael A; Baca, Manuel

    2016-01-01

    The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3-5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material.

  11. Combining phage display with de novo protein sequencing for reverse engineering of monoclonal antibodies

    PubMed Central

    Rickert, Keith W.; Grinberg, Luba; Woods, Robert M.; Wilson, Susan; Bowen, Michael A.; Baca, Manuel

    2016-01-01

    ABSTRACT The enormous diversity created by gene recombination and somatic hypermutation makes de novo protein sequencing of monoclonal antibodies a uniquely challenging problem. Modern mass spectrometry-based sequencing will rarely, if ever, provide a single unambiguous sequence for the variable domains. A more likely outcome is computation of an ensemble of highly similar sequences that can satisfy the experimental data. This outcome can result in the need for empirical testing of many candidate sequences, sometimes iteratively, to identity one which can replicate the activity of the parental antibody. Here we describe an improved approach to antibody protein sequencing by using phage display technology to generate a combinatorial library of sequences that satisfy the mass spectrometry data, and selecting for functional candidates that bind antigen. This approach was used to reverse engineer 2 commercially-obtained monoclonal antibodies against murine CD137. Proteomic data enabled us to assign the majority of the variable domain sequences, with the exception of 3–5% of the sequence located within or adjacent to complementarity-determining regions. To efficiently resolve the sequence in these regions, small phage-displayed libraries were generated and subjected to antigen binding selection. Following enrichment of antigen-binding clones, 2 clones were selected for each antibody and recombinantly expressed as antigen-binding fragments (Fabs). In both cases, the reverse-engineered Fabs exhibited identical antigen binding affinity, within error, as Fabs produced from the commercial IgGs. This combination of proteomic and protein engineering techniques provides a useful approach to simplifying the technically challenging process of reverse engineering monoclonal antibodies from protein material. PMID:26852694

  12. Providing a Turn for the Better

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Engineers are tasked with designing new systems every day to meet changing or unexpected technical requirements. After the tragic explosion of the Space Shuttle Challenger on January 28, 1986, NASA engineers embarked on a complete overhaul of many of their long-standing quality systems and procedures. When the official cause of the accident was determined to be an O-ring failure in the right Solid Rocket Booster, NASA's Shuttle Program initiated a thorough redesign of the rocket boosters' clevis ends, which are the O-ring's mating surfaces. One of the unique systems that NASA engineers developed as a result of this effort included a heating assembly that is coupled to the outside of the rocket boosters. When the assembly is affixed to the external surface of the boosters, the very nature of its design allows for the warming of the O-rings prior to launch. After the engineers completed the assembly's design, however, they found that it was nearly impossible to tighten the spanner nuts required for attaching the system, given the minimum amount of clearance they had in the limited and confined space. Under these circumstances, the standard wrenches typically used for tightening these types of nuts did not work, and there were no other existing devices to solve the problem. NASA engineers embraced the challenge, developing a torque wrench tool adapter that allowed for a full rotation of spanner nuts in confined spaces. The tool, which is similar to an open-ended crowfoot wrench and a fixed-face spanner wrench, contains two dowel pins that center and lock the wrench onto the nut.

  13. Examining Young Students' Problem Scoping in Engineering Design

    ERIC Educational Resources Information Center

    Watkins, Jessica; Spencer, Kathleen; Hammer, David

    2014-01-01

    Problem scoping--determining the nature and boundaries of a problem--is an essential aspect of the engineering design process. Some studies from engineering education suggest that beginning students tend to skip problem scoping or oversimplify a problem. However, the ways these studies often characterize students' problem scoping often do not…

  14. High-Fidelity Simulation in Biomedical and Aerospace Engineering

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2005-01-01

    Contents include the following: Introduction / Background. Modeling and Simulation Challenges in Aerospace Engineering. Modeling and Simulation Challenges in Biomedical Engineering. Digital Astronaut. Project Columbia. Summary and Discussion.

  15. International Space Station: Transitional Platform for Moon and Mars

    NASA Technical Reports Server (NTRS)

    Greeniesen, Michael C.

    2006-01-01

    Humans on the path to Mars are employing the Space Station to better understand the Life Sciences issues during long duration space flight. In this phase the problems, for example, of bone loss, skeletal muscle atrophy and radiation will be prioritized for countermeasure development. This presentation will feature NASA's critical path to the Moon and Mars as the initial blueprint for addressing these Human Life Sciences challenges necessary to accomplish a successful Mars transit, surface exploration and return to Earth. A Moon base will be the test bed for resolving the engineering obstacles for later establishment of the Mars Crew Habitat. Current engineering concept scenarios for Moon and Mars bases plus Mars transit vehicles will receive the final focus.

  16. Advances in combining gene therapy with cell and tissue engineering-based approaches to enhance healing of the meniscus.

    PubMed

    Cucchiarini, M; McNulty, A L; Mauck, R L; Setton, L A; Guilak, F; Madry, H

    2016-08-01

    Meniscal lesions are common problems in orthopaedic surgery and sports medicine, and injury or loss of the meniscus accelerates the onset of knee osteoarthritis (OA). Despite a variety of therapeutic options in the clinics, there is a critical need for improved treatments to enhance meniscal repair. In this regard, combining gene-, cell-, and tissue engineering-based approaches is an attractive strategy to generate novel, effective therapies to treat meniscal lesions. In the present work, we provide an overview of the tools currently available to improve meniscal repair and discuss the progress and remaining challenges for potential future translation in patients. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  17. Novel Multidisciplinary Models Assess the Capabilities of Smart Structures to Manage Vibration, Sound, and Thermal Distortion in Aeropropulsion Components

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1997-01-01

    The development of aeropropulsion components that incorporate "smart" composite laminates with embedded piezoelectric actuators and sensors is expected to ameliorate critical problems in advanced aircraft engines related to vibration, noise emission, and thermal stability. To facilitate the analytical needs of this effort, the NASA Lewis Research Center has developed mechanics and multidisciplinary computational models to analyze the complicated electromechanical behavior of realistic smart-structure configurations operating in combined mechanical, thermal, and acoustic environments. The models have been developed to accommodate the particular geometries, environments, and technical challenges encountered in advanced aircraft engines, yet their unique analytical features are expected to facilitate application of this new technology in a variety of commercial applications.

  18. Activist engineering: changing engineering practice by deploying praxis.

    PubMed

    Karwat, Darshan M A; Eagle, Walter E; Wooldridge, Margaret S; Princen, Thomas E

    2015-02-01

    In this paper, we reflect on current notions of engineering practice by examining some of the motives for engineered solutions to the problem of climate change. We draw on fields such as science and technology studies, the philosophy of technology, and environmental ethics to highlight how dominant notions of apoliticism and ahistoricity are ingrained in contemporary engineering practice. We argue that a solely technological response to climate change does not question the social, political, and cultural tenet of infinite material growth, one of the root causes of climate change. In response to the contemporary engineering practice, we define an activist engineer as someone who not only can provide specific engineered solutions, but who also steps back from their work and tackles the question, What is the real problem and does this problem "require" an engineering intervention? Solving complex problems like climate change requires radical cultural change, and a significant obstacle is educating engineers about how to conceive of and create "authentic alternatives," that is, solutions that differ from the paradigm of "technologically improving" our way out of problems. As a means to realize radically new solutions, we investigate how engineers might (re)deploy the concept of praxis, which raises awareness in engineers of the inherent politics of technological design. Praxis empowers engineers with a more comprehensive understanding of problems, and thus transforms technologies, when appropriate, into more socially just and ecologically sensitive interventions. Most importantly, praxis also raises a radical alternative rarely considered-not "engineering a solution." Activist engineering offers a contrasting method to contemporary engineering practice and leads toward social justice and ecological protection through problem solving by asking not, How will we technologize our way out of the problems we face? but instead, What really needs to be done?

  19. Increasing student confidence in technical and professional skills through project based learning

    NASA Astrophysics Data System (ADS)

    Robinson, Alice L.

    This work focuses on developing undergraduate students' technical and professional skills through a project-based spiral curriculum in the Agricultural & Biological Engineering department at Purdue that can be implemented campus wide. Through this curriculum, Purdue engineers will be prepared for leadership roles in responding to the global technological, economic, and societal challenges of the 21st century by exposure to the relationships between engineering and its impacts on real world needs and challenges. Project-based learning uses projects as the focus of instruction and has shown increased understanding, motivation, and confidence through application of engineering principles to real-world problems. The strength of a spiral curriculum is that it continually revisits basic ideas and themes with increasing complexity and sophistication. The proposed spiral curriculum incorporates the target attributes of the Purdue Engineer of 2020 through project based courses during sophomore, junior, and senior year. These courses will build on concepts taught during first year engineering as well. The Engineer of 2020 (NAE and Purdue) target attributes include strong technical and professional skills to solve societal and technological burdens. A prototype course has been developed, taught, and evaluated during the previous two fall semesters in the sophomore level of the Biological and Food Process Engineering curriculum. The target students met 3 hours a week in a traditional lecture setting plus 2 hours a week in a project based lab setting. The control group met only 3 hours a week in a traditional lecture setting. Peer and self assessment results from student surveys show increased confidence in every area surveyed. Focus groups revealed student reactions to the course. Students enjoyed the course but felt it difficult to handle ambiguity with project work. Future work includes course revisions to the content, assessment, and pedagogy of the prototype class, development of the remaining project courses in the curriculum, and increasing graduate student instruction in the courses to gain teaching and leadership experience.

  20. V-TECS Guide for Automobile Engine Performance Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide is intended to assist teachers responsible for instructing future auto engine performance technicians. The following topics are covered: diagnosing engine performance problems, ignition system problems, fuel system problems, mechanically related performance problems, emission control system problems, and electronic control systems;…

  1. Women's decision to major in STEM fields

    NASA Astrophysics Data System (ADS)

    Conklin, Stephanie

    This paper explores the lived experiences of high school female students who choose to enter into STEM fields, and describes the influencing factors which steered these women towards majors in computer science, engineering and biology. Utilizing phenomenological methodology, this study seeks to understand the essence of women's decisions to enter into STEM fields and further describe how the decision-making process varies for women in high female enrollment fields, like biology, as compared with low enrollment fields like, computer science and engineering. Using Bloom's 3-Stage Theory, this study analyzes how relationships, experiences and barriers influenced women towards, and possibly away, from STEM fields. An analysis of women's experiences highlight that support of family, sustained experience in a STEM program during high school as well as the presence of an influential teacher were all salient factors in steering women towards STEM fields. Participants explained that influential teacher worked individually with them, modified and extended assignments and also steered participants towards coursework and experiences. This study also identifies factors, like guidance counselors as well as personal challenges, which inhibited participant's path to STEM fields. Further, through analyzing all six participants' experiences, it is clear that a linear model, like Bloom's 3-Stage Model, with limited ability to include potential barriers inhibited the ability to capture the essence of each participant's decision-making process. Therefore, a revised model with no linear progression which allows for emerging factors, like personal challenges, has been proposed; this model focuses on how interest in STEM fields begins to develop and is honed and then mastered. This study also sought to identify key differences in the paths of female students pursuing different majors. The findings of this study suggest that the path to computer science and engineering is limited. Computer science majors faced few, if any, challenges, hoped to use computers as a tool to innovate and also participated in the same computer science program. For female engineering students, the essence of their experience focused on interaction at a young age with an expert in an engineering-related field as well as a strong desire to help solve world problems using engineering. These participants were able to articulate clearly future careers. In contrast, biology majors, faced more challenges and were undecided about their future career goals. These results suggest that a longitudinal study focused on women pursuing engineering and computer science fields is warranted; this will hopefully allow these findings to be substantiated and also for refinement of the revised theoretical model.

  2. A TAPS Interactive Multimedia Package to Solve Engineering Dynamics Problem

    ERIC Educational Resources Information Center

    Sidhu, S. Manjit; Selvanathan, N.

    2005-01-01

    Purpose: To expose engineering students to using modern technologies, such as multimedia packages, to learn, visualize and solve engineering problems, such as in mechanics dynamics. Design/methodology/approach: A multimedia problem-solving prototype package is developed to help students solve an engineering problem in a step-by-step approach. A…

  3. Pendulum rides, rotations and the Coriolis effect

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie; Modig, Conny

    2018-07-01

    An amusement park is full of examples that can be made into challenging problems for students, combining mathematical modelling with video analysis, as well as measurements in the rides. Traditional amusement ride related textbook problems include free-fall, circular motion, pendula and energy conservation in roller coasters, where the moving bodies are typically considered point-like. However, an amusement park can offer many more examples that are useful in physics and engineering education, many of them with strong mathematical content. This paper analyses forces on riders in a large rotating pendulum ride, where the Coriolis effect is sufficiently large to be visible in accelerometer data from the rides and leads to different ride experiences in different positions.

  4. A novel architecture for information retrieval system based on semantic web

    NASA Astrophysics Data System (ADS)

    Zhang, Hui

    2011-12-01

    Nowadays, the web has enabled an explosive growth of information sharing (there are currently over 4 billion pages covering most areas of human endeavor) so that the web has faced a new challenge of information overhead. The challenge that is now before us is not only to help people locating relevant information precisely but also to access and aggregate a variety of information from different resources automatically. Current web document are in human-oriented formats and they are suitable for the presentation, but machines cannot understand the meaning of document. To address this issue, Berners-Lee proposed a concept of semantic web. With semantic web technology, web information can be understood and processed by machine. It provides new possibilities for automatic web information processing. A main problem of semantic web information retrieval is that when these is not enough knowledge to such information retrieval system, the system will return to a large of no sense result to uses due to a huge amount of information results. In this paper, we present the architecture of information based on semantic web. In addiction, our systems employ the inference Engine to check whether the query should pose to Keyword-based Search Engine or should pose to the Semantic Search Engine.

  5. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects

    PubMed Central

    2011-01-01

    Background With the increasing use of nanomaterials, the need for methods and assays to examine their immunosafety is becoming urgent, in particular for nanomaterials that are deliberately administered to human subjects (as in the case of nanomedicines). To obtain reliable results, standardised in vitro immunotoxicological tests should be used to determine the effects of engineered nanoparticles on human immune responses. However, before assays can be standardised, it is important that suitable methods are established and validated. Results In a collaborative work between European laboratories, existing immunological and toxicological in vitro assays were tested and compared for their suitability to test effects of nanoparticles on immune responses. The prototypical nanoparticles used were metal (oxide) particles, either custom-generated by wet synthesis or commercially available as powders. Several problems and challenges were encountered during assay validation, ranging from particle agglomeration in biological media and optical interference with assay systems, to chemical immunotoxicity of solvents and contamination with endotoxin. Conclusion The problems that were encountered in the immunological assay systems used in this study, such as chemical or endotoxin contamination and optical interference caused by the dense material, significantly affected the data obtained. These problems have to be solved to enable the development of reliable assays for the assessment of nano-immunosafety. PMID:21306632

  6. Projects for People: An International Exchange Focused on Drinking Water Quality in Rural Peru

    NASA Astrophysics Data System (ADS)

    Weathers, T. S.; Tarazona Vasquez, F.; Bailey, E.; Duong, V.; Gonzales Vera, R.; LaPorte, D.; Rojas Cala, B.; Torres Atencia, S.; Vasquez Auqui, J.

    2016-12-01

    The integration of human-centered design with technical engineering in a classroom setting can be challenging but immensely rewarding if coupled with a community-focused experience. Undergraduate students participated in an international exchange to address drinking water quality in the community of Huamancaca, located in the Junin region of Peru. Technical research and experimentation often comes easily to students in undergraduate engineering programs, however, implementation within a community requires a social license to operate. The objectives of this study were to address the technical challenges of designing a sustainable and effective water filtration system while also ensuring community support and education, coupled with user ownership of the process. In tandem with filter media experimentation with biochar and activated carbon produced using locally available agricultural waste from potatoes and carrots, we visited the people of Huamancaca to understand their needs and concerns. This direct communication with the community was invaluable; we observed that many of the residents' water quality problems could be solved with education. For example, proper sanitation techniques and appropriate addition of bleach or sufficient boiling time may make up for inconsistent water quality provided by the local distribution system. An education plan may also be developed for water treatment plant operators covering chlorine dosage for effective residual treatment within the distribution network in addition to filtration. Upon site visitation and sample collection, we realized that open communication with city officials, operators, business owners, and residents in both technical and social settings is essential for continued collaboration within this community. Solving a tangible problem or designing a product that can be effectively adopted is not a concept that is rigorously addressed in undergraduate education, however the setbacks, challenges, and triumphs experienced when interacting with a community can provide valuable lessons for career development.­

  7. Cell-laden hydrogels for osteochondral and cartilage tissue engineering.

    PubMed

    Yang, Jingzhou; Zhang, Yu Shrike; Yue, Kan; Khademhosseini, Ali

    2017-07-15

    Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered artificial matrices that can replace the damaged regions and promote tissue regeneration. Hydrogels are emerging as a promising class of biomaterials for both soft and hard tissue regeneration. Many critical properties of hydrogels, such as mechanical stiffness, elasticity, water content, bioactivity, and degradation, can be rationally designed and conveniently tuned by proper selection of the material and chemistry. Particularly, advances in the development of cell-laden hydrogels have opened up new possibilities for cell therapy. In this article, we describe the problems encountered in this field and review recent progress in designing cell-hydrogel hybrid constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel type, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation matrices with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing technologies (e.g. molding, bioprinting, and assembly) for fabrication of hydrogel-based osteochondral and cartilage constructs with complex compositions and microarchitectures to mimic their native counterparts. Despite tremendous advances in the field of regenerative medicine, it still remains challenging to repair the osteochondral interface and full-thickness articular cartilage defects. This inefficiency largely originates from the lack of appropriate tissue-engineered biomaterials that replace the damaged regions and promote tissue regeneration. Cell-laden hydrogel systems have emerged as a promising tissue-engineering platform to address this issue. In this article, we describe the fundamental problems encountered in this field and review recent progress in designing cell-hydrogel constructs for promoting the reestablishment of osteochondral/cartilage tissues. Our focus centers on the effects of hydrogel composition, cell type, and growth factor delivery on achieving efficient chondrogenesis and osteogenesis. We give our perspective on developing next-generation hydrogel/inorganic particle/stem cell hybrid composites with improved physical and biological properties for osteochondral/cartilage tissue engineering. We also highlight recent advances in biomanufacturing and bioengineering technologies (e.g. 3D bioprinting) for fabrication of hydrogel-based osteochondral and cartilage constructs. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  8. Natural Hazard Resilience - A Large-scale Transdisciplinary "National Science Challenge" for New Zealand

    NASA Astrophysics Data System (ADS)

    Cronin, S. J.

    2017-12-01

    The National Science Challenges are initiatives to address the most important public science issues that face New Zealand with long-term funding and the combined strength of a coordinated science-sector behind them. Eleven major topics are tackled, across our human, natural and built environments. In the "Resilience Challenge" we address New Zealand's natural hazards. Alongside severe metrological threats, New Zealand also faces one of the highest levels of earthquake and volcanic hazard in the world. Resilience is a hotly discussed concept, here, we take the view: Resilience encapsulates the features of a system to anticipate threats, acknowledge there will be impacts (no matter how prepared we are), quickly pick up the pieces, as well as learn and adapt from the experience to better absorb and rebound from future shocks. Our research must encompass innovation in building and lifelines engineering, planning and regulation, emergency management practice, alongside understanding how our natural hazard systems work, how we monitor them and how our communities/governance/industries can be influenced and encouraged (e.g., via economic incentives) to develop and implement resilience practice. This is a complex interwoven mix of areas and is best addressed through case-study areas where researchers and the users of the research can jointly identify problems and co-develop science solutions. I will highlight some of the strengths and weaknesses of this coordinated approach to an all-hazard, all-country problem, using the example of the Resilience Challenge approach after its first two and a half years of operation. Key issues include balancing investment into high-profile (and often high consequence), but rare hazards against the frequent "monthly" hazards that collectively occupy regional and local governance. Also, it is clear that despite increasingly sophisticated hazard and hazard mitigation knowledge being generated in engineering and social areas, a range of policy, economic and knowledge barriers to adoption often lead to hazard mitigation practice lagging far behind its potential.

  9. First-Year Students' Attitudes towards the Grand Challenges and Nanotechnology

    ERIC Educational Resources Information Center

    Lakin, Joni M.; Han, Yi; Davis, Edward

    2016-01-01

    The "Grand Challenges" for Engineering are an effort to portray engineering as a field that has profound impacts on society. This study explores the level of interest first-year engineering students had in various "Grand Challenges" and in nanotechnology topics. We administered a survey to a large sample of students enrolled in…

  10. Academic Preparedness as a Predictor of Achievement in an Engineering Design Challenge

    ERIC Educational Resources Information Center

    Mentzer, Nathan; Becker, Kurt

    2010-01-01

    The purpose of this study was to determine if a student's academic success, measured by grade point average (GPA) in mathematics, science, and communication courses, is correlated with student change in achievement during an engineering design challenge. Engineering design challenges have been implemented and researched in K-16 environments where…

  11. A predictive machine learning approach for microstructure optimization and materials design

    NASA Astrophysics Data System (ADS)

    Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; Agrawal, Ankit; Sundararaghavan, Veera; Choudhary, Alok

    2015-06-01

    This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.

  12. Biological approaches for addressing the grand challenge of providing access to clean drinking water.

    PubMed

    Riley, Mark R; Gerba, Charles P; Elimelech, Menachem

    2011-03-31

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms.

  13. Biological approaches for addressing the grand challenge of providing access to clean drinking water

    PubMed Central

    2011-01-01

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms. PMID:21453515

  14. Human Factors Research for Space Exploration: Measurement, Modeling, and Mitigation

    NASA Technical Reports Server (NTRS)

    Kaiser, Mary K.; Allen, Christopher S.; Barshi, Immanuel; Billman, Dorrit; Holden, Kritina L.

    2010-01-01

    As part of NASA's Human Research Program, the Space Human Factors Engineering Project serves as the bridge between Human Factors research and Human Spaceflight applications. Our goal is to be responsive to the operational community while addressing issues at a sufficient level of abstraction to ensure that our tools and solutions generalize beyond the point design. In this panel, representatives from four of our research domains will discuss the challenges they face in solving current problems while also enabling future capabilities.

  15. Mathematical methods in systems biology.

    PubMed

    Kashdan, Eugene; Duncan, Dominique; Parnell, Andrew; Schattler, Heinz

    2016-12-01

    The editors of this Special Issue of Mathematical Biosciences and Engineering were the organizers for the Third International Workshop "Mathematical Methods in System Biology" that took place on June 15-18, 2015 at the University College Dublin in Ireland. As stated in the workshop goals, we managed to attract a good mix of mathematicians and statisticians working on biological and medical applications with biologists and clinicians interested in presenting their challenging problems and looking to find mathematical and statistical tools for their solutions.

  16. Status and Direction of Tribology as a Science in the 80's. Understanding and Prediction

    NASA Technical Reports Server (NTRS)

    Tabor, D.

    1984-01-01

    The most challenging research problems in tribology for the next decade or beyond are classified horizontally into two categories: (1) understanding of basic mechanisms and (2) prediction of practical performance. Vertical classifications are in terms of particular themes or fields of interest. Areas where more fundamental work is required are: adhesion and friction of clean and contaminated surfaces; lubrication; new materials; surface characterization at the engineering level (topography) and at the atomic levels (various spectroscopies); and wear.

  17. Public goods and procreation.

    PubMed

    Anomaly, Jonathan

    2014-01-01

    Procreation is the ultimate public goods problem. Each new child affects the welfare of many other people, and some (but not all) children produce uncompensated value that future people will enjoy. This essay addresses challenges that arise if we think of procreation and parenting as public goods. These include whether individual choices are likely to lead to a socially desirable outcome, and whether changes in laws, social norms, or access to genetic engineering and embryo selection might improve the aggregate outcome of our reproductive choices.

  18. Improving HybrID: How to best combine indirect and direct encoding in evolutionary algorithms

    PubMed Central

    Helms, Lucas; Clune, Jeff

    2017-01-01

    Many challenging engineering problems are regular, meaning solutions to one part of a problem can be reused to solve other parts. Evolutionary algorithms with indirect encoding perform better on regular problems because they reuse genomic information to create regular phenotypes. However, on problems that are mostly regular, but contain some irregularities, which describes most real-world problems, indirect encodings struggle to handle the irregularities, hurting performance. Direct encodings are better at producing irregular phenotypes, but cannot exploit regularity. An algorithm called HybrID combines the best of both: it first evolves with indirect encoding to exploit problem regularity, then switches to direct encoding to handle problem irregularity. While HybrID has been shown to outperform both indirect and direct encoding, its initial implementation required the manual specification of when to switch from indirect to direct encoding. In this paper, we test two new methods to improve HybrID by eliminating the need to manually specify this parameter. Auto-Switch-HybrID automatically switches from indirect to direct encoding when fitness stagnates. Offset-HybrID simultaneously evolves an indirect encoding with directly encoded offsets, eliminating the need to switch. We compare the original HybrID to these alternatives on three different problems with adjustable regularity. The results show that both Auto-Switch-HybrID and Offset-HybrID outperform the original HybrID on different types of problems, and thus offer more tools for researchers to solve challenging problems. The Offset-HybrID algorithm is particularly interesting because it suggests a path forward for automatically and simultaneously combining the best traits of indirect and direct encoding. PMID:28334002

  19. Making Recycled Paper: An Engineering Design Challenge

    ERIC Educational Resources Information Center

    Song, Ting; Becker, Kurt

    2013-01-01

    Science, technology, engineering, and mathematics (STEM) educators are facing the challenge of attracting more students. The disparity between the need for engineers and the enrollment of engineering students is growing (Genalo, Bruning, & Adams, 2000), and career aspirations of high school students are inconsistent with the employment…

  20. Human urinary bladder regeneration through tissue engineering - an analysis of 131 clinical cases.

    PubMed

    Pokrywczynska, Marta; Adamowicz, Jan; Sharma, Arun K; Drewa, Tomasz

    2014-03-01

    Replacement of urinary bladder tissue with functional equivalents remains one of the most challenging problems of reconstructive urology over the last several decades. The gold standard treatment for urinary diversion after radical cystectomy is the ileal conduit or neobladder; however, this technique is associated with numerous complications including electrolyte imbalances, mucus production, and the potential for malignant transformation. Tissue engineering techniques provide the impetus to construct functional bladder substitutes de novo. Within this review, we have thoroughly perused the literature utilizing PubMed in order to identify clinical studies involving bladder reconstruction utilizing tissue engineering methodologies. The idea of urinary bladder regeneration through tissue engineering dates back to the 1950s. Many natural and synthetic biomaterials such as plastic mold, gelatin sponge, Japanese paper, preserved dog bladder, lyophilized human dura, bovine pericardium, small intestinal submucosa, bladder acellular matrix, or composite of collagen and polyglycolic acid were used for urinary bladder regeneration with a wide range of outcomes. Recent progress in the tissue engineering field suggest that in vitro engineered bladder wall substitutes may have expanded clinical applicability in near future but preclinical investigations on large animal models with defective bladders are necessary to optimize the methods of bladder reconstruction by tissue engineering in humans.

  1. Development of Cryogenic Engine for GSLV MkIII: Technological Challenges

    NASA Astrophysics Data System (ADS)

    Praveen, RS; Jayan, N.; Bijukumar, KS; Jayaprakash, J.; Narayanan, V.; Ayyappan, G.

    2017-02-01

    Cryogenic engine capable of delivering 200 kN thrust is being developed for the first time in the country by ISRO for powering the upper stage of GSLV Mk-III, the next generation launch vehicle of ISRO capable of launching four tonne class satellites to Geo-synchronous Transfer Orbit(GTO). Development of this engine started a decade ago when various sub-systems development and testing were taken up. Starting with injector element development, the design, realization and testing of the major sub-systems viz the gas generator, turbopumps, start-up system and thrust chamber have been successfully done in a phased manner before conducting a series of developmental tests in the integrated engine mode. Apart from the major sub-systems, many critical components like the igniter, control components etc were independently developed and qualified. During the development program many challenges were faced in almost all areas of propulsion engineering. Systems engineering of the engine was another key challenge in the realization. This paper gives an outlook on various technological challenges faced in the key areas related to the engine development, insight to the solutions and measures taken to overcome the challenges.

  2. Computational Challenges in the Analysis of Petrophysics Using Microtomography and Upscaling

    NASA Astrophysics Data System (ADS)

    Liu, J.; Pereira, G.; Freij-Ayoub, R.; Regenauer-Lieb, K.

    2014-12-01

    Microtomography provides detailed 3D internal structures of rocks in micro- to tens of nano-meter resolution and is quickly turning into a new technology for studying petrophysical properties of materials. An important step is the upscaling of these properties as micron or sub-micron resolution can only be done on the sample-scale of millimeters or even less than a millimeter. We present here a recently developed computational workflow for the analysis of microstructures including the upscaling of material properties. Computations of properties are first performed using conventional material science simulations at micro to nano-scale. The subsequent upscaling of these properties is done by a novel renormalization procedure based on percolation theory. We have tested the workflow using different rock samples, biological and food science materials. We have also applied the technique on high-resolution time-lapse synchrotron CT scans. In this contribution we focus on the computational challenges that arise from the big data problem of analyzing petrophysical properties and its subsequent upscaling. We discuss the following challenges: 1) Characterization of microtomography for extremely large data sets - our current capability. 2) Computational fluid dynamics simulations at pore-scale for permeability estimation - methods, computing cost and accuracy. 3) Solid mechanical computations at pore-scale for estimating elasto-plastic properties - computational stability, cost, and efficiency. 4) Extracting critical exponents from derivative models for scaling laws - models, finite element meshing, and accuracy. Significant progress in each of these challenges is necessary to transform microtomography from the current research problem into a robust computational big data tool for multi-scale scientific and engineering problems.

  3. Opportunities and challenges in biological lignin valorization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which canmore » then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.« less

  4. Nonlinear static and dynamic analysis of beam structures using fully intrinsic equations

    NASA Astrophysics Data System (ADS)

    Sotoudeh, Zahra

    2011-07-01

    Beams are structural members with one dimension much larger than the other two. Examples of beams include propeller blades, helicopter rotor blades, and high aspect-ratio aircraft wings in aerospace engineering; shafts and wind turbine blades in mechanical engineering; towers, highways and bridges in civil engineering; and DNA modeling in biomedical engineering. Beam analysis includes two sets of equations: a generally linear two-dimensional problem over the cross-sectional plane and a nonlinear, global one-dimensional analysis. This research work deals with a relatively new set of equations for one-dimensional beam analysis, namely the so-called fully intrinsic equations. Fully intrinsic equations comprise a set of geometrically exact, nonlinear, first-order partial differential equations that is suitable for analyzing initially curved and twisted anisotropic beams. A fully intrinsic formulation is devoid of displacement and rotation variables, making it especially attractive because of the absence of singularities, infinite-degree nonlinearities, and other undesirable features associated with finite rotation variables. In spite of the advantages of these equations, using them with certain boundary conditions presents significant challenges. This research work will take a broad look at these challenges of modeling various boundary conditions when using the fully intrinsic equations. Hopefully it will clear the path for wider and easier use of the fully intrinsic equations in future research. This work also includes application of fully intrinsic equations in structural analysis of joined-wing aircraft, different rotor blade configuration and LCO analysis of HALE aircraft.

  5. Developing knowledge intensive ideas in engineering education: the application of camp methodology

    NASA Astrophysics Data System (ADS)

    Heidemann Lassen, Astrid; Løwe Nielsen, Suna

    2011-11-01

    Background: Globalization, technological advancement, environmental problems, etc. challenge organizations not just to consider cost-effectiveness, but also to develop new ideas in order to build competitive advantages. Hence, methods to deliberately enhance creativity and facilitate its processes of development must also play a central role in engineering education. However, so far the engineering education literature provides little attention to the important discussion of how to develop knowledge intensive ideas based on creativity methods and concepts. Purpose: The purpose of this article is to investigate how to design creative camps from which knowledge intensive ideas can unfold. Design/method/sample: A framework on integration of creativity and knowledge intensity is first developed, and then tested through the planning, execution and evaluation of a specialized creativity camp with focus on supply chain management. Detailed documentation of the learning processes of the participating 49 engineering and business students is developed through repeated interviews during the process as well as a survey. Results: The research illustrates the process of development of ideas, and how the participants through interdisciplinary collaboration, cognitive flexibility and joint ownership develop highly innovative and knowledge-intensive ideas, with direct relevance for the four companies whose problems they address. Conclusions: The article demonstrates how the creativity camp methodology holds the potential of combining advanced academic knowledge and creativity, to produce knowledge intensive ideas, when the design is based on ideas of experiential learning as well as creativity principles. This makes the method a highly relevant learning approach for engineering students in the search for skills to both develop and implement innovative ideas.

  6. Teaching Problem-Solving Skills to Nuclear Engineering Students

    ERIC Educational Resources Information Center

    Waller, E.; Kaye, M. H.

    2012-01-01

    Problem solving is an essential skill for nuclear engineering graduates entering the workforce. Training in qualitative and quantitative aspects of problem solving allows students to conceptualise and execute solutions to complex problems. Solutions to problems in high consequence fields of study such as nuclear engineering require rapid and…

  7. Incorporating Engineering Design Challenges into STEM Courses

    ERIC Educational Resources Information Center

    Householder, Daniel L., Ed.; Hailey, Christine E., Ed.

    2012-01-01

    Successful strategies for incorporating engineering design challenges into science, technology, engineering, and mathematics (STEM) courses in American high schools are presented in this paper. The developers have taken the position that engineering design experiences should be an important component of the high school education of all American…

  8. Investigation of finite element: ABC methods for electromagnetic field simulation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Volakis, John L.; Nguyen, J.

    1994-01-01

    The mechanics of wave propagation in the presence of obstacles is of great interest in many branches of engineering and applied mathematics like electromagnetics, fluid dynamics, geophysics, seismology, etc. Such problems can be broadly classified into two categories: the bounded domain or the closed problem and the unbounded domain or the open problem. Analytical techniques have been derived for the simpler problems; however, the need to model complicated geometrical features, complex material coatings and fillings, and to adapt the model to changing design parameters have inevitably tilted the balance in favor of numerical techniques. The modeling of closed problems presents difficulties primarily in proper meshing of the interior region. However, problems in unbounded domains pose a unique challenge to computation, since the exterior region is inappropriate for direct implementation of numerical techniques. A large number of solutions have been proposed but only a few have stood the test of time and experiment. The goal of this thesis is to develop an efficient and reliable partial differential equation technique to model large three dimensional scattering problems in electromagnetics.

  9. The New Global Responsibilities of Engineers Create Challenges for Engineering Education

    ERIC Educational Resources Information Center

    Fuchs, Willi

    2012-01-01

    Modern societies aim to solve the global challenges of the 21st century with sustainable solutions such as resource efficiency, use of renewable energy sources and recycling. Engineers are called upon to create the cutting edge technological solutions that can help to address these challenges. In developed as well as in developing countries,…

  10. Bulk Magnetization Effects in EMI-Based Classification and Discrimination

    DTIC Science & Technology

    2012-04-01

    response adds to classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation...response adds to classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation...classification performance and ( 2 ) develop a comprehensive understanding of the engineering challenges of primary field cancellation that can support a

  11. The littoral zone in the Three Gorges Reservoir, China: challenges and opportunities.

    PubMed

    Yuan, Xing-zhong; Zhang, Yue-wei; Liu, Hong; Xiong, Sen; Li, Bo; Deng, Wei

    2013-10-01

    For flood control purpose, the water level of the Three Gorges Reservoir (TGR) varies significantly. The annual reservoir surface elevation amplitude is about 30 m behind the dam. Filling of the reservoir has created about 349 km(2) of newly flooded riparian zone. The average flooding period lasts for more than 6 months, from mid-October to late April. The dam and its associated reservoir provide flood control, power generation, and navigation, but there are also many environmental challenges. The littoral zone is the important part of the TGR, once its eco-health and stability are damaged,which will directly endanger the ecological safety of the whole reservoir area and even the Yangtze River Basin. So, understanding the great ecological opportunities which are hidden in littoral zone of TGR (LZTGR) and putting forward approaches to solve the environmental problems are very important. LZTGR involves a wide field of problems, such as the landslides, potential water pollution, soil erosion, biodiversity loss, land cover changes, and other issues. The Three Gorges dam (TGD) is a major trigger of environmental change in the Yangtze River. The landslides, water quality, soil erosion, loss of biodiversity, dam operation, and challenge for land use are closely interrelated across spatial and temporal scales. Therefore, the ecological and environmental impacts caused by TGD are necessarily complex and uncertain. LZTGR is not only a great environmental challenge but also an ecological opportunity for us. In fact, LZTGR is an important structural unit of TGR ecosystem and has special ecosystem services function. Vegetation growing in LZTGR is therefore a valuable resource due to accumulation of carbon and nutrients. Everyone thinks that the ecological approach to the problem is needed. If properly designed, dike-pond systems, littoral woods systems, and re-created waterfowl habitats will have the capacity to capture nutrients from uplands and obstruct soil erosion. Ecological engineering approaches can therefore reduce environmental impacts of LZTGR and optimize ecological services. In view of the current situation and existing ecological problems of LZTGR, according to function demands such as environmental purification, biodiversity conservation, and vegetation carbon sink enhancement, we should explore the eco-friendly utilization mode of resources in LZTGR. Ecological engineering approaches might minimize the impacts or optimize the ecological services. Natural regeneration and ecological restoration in LZTGR are valuable for soil erosion decrease, pollutant purification, biodiversity conservation, carbon sink increase, and ecosystem health maintenance in TGR.

  12. A survey of the neuroscience resource landscape: perspectives from the neuroscience information framework.

    PubMed

    Cachat, Jonathan; Bandrowski, Anita; Grethe, Jeffery S; Gupta, Amarnath; Astakhov, Vadim; Imam, Fahim; Larson, Stephen D; Martone, Maryann E

    2012-01-01

    The number of available neuroscience resources (databases, tools, materials, and networks) available via the Web continues to expand, particularly in light of newly implemented data sharing policies required by funding agencies and journals. However, the nature of dense, multifaceted neuroscience data and the design of classic search engine systems make efficient, reliable, and relevant discovery of such resources a significant challenge. This challenge is especially pertinent for online databases, whose dynamic content is largely opaque to contemporary search engines. The Neuroscience Information Framework was initiated to address this problem of finding and utilizing neuroscience-relevant resources. Since its first production release in 2008, NIF has been surveying the resource landscape for the neurosciences, identifying relevant resources and working to make them easily discoverable by the neuroscience community. In this chapter, we provide a survey of the resource landscape for neuroscience: what types of resources are available, how many there are, what they contain, and most importantly, ways in which these resources can be utilized by the research community to advance neuroscience research. Copyright © 2012 Elsevier Inc. All rights reserved.

  13. The roles of engineering notebooks in shaping elementary engineering student discourse and practice

    NASA Astrophysics Data System (ADS)

    Hertel, Jonathan D.; Cunningham, Christine M.; Kelly, Gregory J.

    2017-06-01

    Engineering design challenges offer important opportunities for students to learn science and engineering knowledge and practices. This study examines how students' engineering notebooks across four units of the curriculum Engineering is Elementary (EiE) support student work during design challenges. Through educational ethnography and discourse analysis, transcripts of student talk and action were created and coded around the uses of notebooks in the accomplishment of engineering tasks. Our coding process identified two broad categories of roles of the notebooks: they scaffold student activity and support epistemic practices of engineering. The study showed the importance of prompts to engage students in effective uses of writing, the roles the notebook assumes in the students' small groups, and the ways design challenges motivate children to write and communicate.

  14. Data based identification and prediction of nonlinear and complex dynamical systems

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Xu; Lai, Ying-Cheng; Grebogi, Celso

    2016-07-01

    The problem of reconstructing nonlinear and complex dynamical systems from measured data or time series is central to many scientific disciplines including physical, biological, computer, and social sciences, as well as engineering and economics. The classic approach to phase-space reconstruction through the methodology of delay-coordinate embedding has been practiced for more than three decades, but the paradigm is effective mostly for low-dimensional dynamical systems. Often, the methodology yields only a topological correspondence of the original system. There are situations in various fields of science and engineering where the systems of interest are complex and high dimensional with many interacting components. A complex system typically exhibits a rich variety of collective dynamics, and it is of great interest to be able to detect, classify, understand, predict, and control the dynamics using data that are becoming increasingly accessible due to the advances of modern information technology. To accomplish these goals, especially prediction and control, an accurate reconstruction of the original system is required. Nonlinear and complex systems identification aims at inferring, from data, the mathematical equations that govern the dynamical evolution and the complex interaction patterns, or topology, among the various components of the system. With successful reconstruction of the system equations and the connecting topology, it may be possible to address challenging and significant problems such as identification of causal relations among the interacting components and detection of hidden nodes. The "inverse" problem thus presents a grand challenge, requiring new paradigms beyond the traditional delay-coordinate embedding methodology. The past fifteen years have witnessed rapid development of contemporary complex graph theory with broad applications in interdisciplinary science and engineering. The combination of graph, information, and nonlinear dynamical systems theories with tools from statistical physics, optimization, engineering control, applied mathematics, and scientific computing enables the development of a number of paradigms to address the problem of nonlinear and complex systems reconstruction. In this Review, we describe the recent advances in this forefront and rapidly evolving field, with a focus on compressive sensing based methods. In particular, compressive sensing is a paradigm developed in recent years in applied mathematics, electrical engineering, and nonlinear physics to reconstruct sparse signals using only limited data. It has broad applications ranging from image compression/reconstruction to the analysis of large-scale sensor networks, and it has become a powerful technique to obtain high-fidelity signals for applications where sufficient observations are not available. We will describe in detail how compressive sensing can be exploited to address a diverse array of problems in data based reconstruction of nonlinear and complex networked systems. The problems include identification of chaotic systems and prediction of catastrophic bifurcations, forecasting future attractors of time-varying nonlinear systems, reconstruction of complex networks with oscillatory and evolutionary game dynamics, detection of hidden nodes, identification of chaotic elements in neuronal networks, reconstruction of complex geospatial networks and nodal positioning, and reconstruction of complex spreading networks with binary data.. A number of alternative methods, such as those based on system response to external driving, synchronization, and noise-induced dynamical correlation, will also be discussed. Due to the high relevance of network reconstruction to biological sciences, a special section is devoted to a brief survey of the current methods to infer biological networks. Finally, a number of open problems including control and controllability of complex nonlinear dynamical networks are discussed. The methods outlined in this Review are principled on various concepts in complexity science and engineering such as phase transitions, bifurcations, stabilities, and robustness. The methodologies have the potential to significantly improve our ability to understand a variety of complex dynamical systems ranging from gene regulatory systems to social networks toward the ultimate goal of controlling such systems.

  15. Preparing Engineers for the Challenges of Community Engagement

    ERIC Educational Resources Information Center

    Harsh, Matthew; Bernstein, Michael J.; Wetmore, Jameson; Cozzens, Susan; Woodson, Thomas; Castillo, Rafael

    2017-01-01

    Despite calls to address global challenges through community engagement, engineers are not formally prepared to engage with communities. Little research has been done on means to address this "engagement gap" in engineering education. We examine the efficacy of an intensive, two-day Community Engagement Workshop for engineers, designed…

  16. The role of structural dynamics in the design and operations of space systems: The history, the lessons, the technical challenges of the future

    NASA Technical Reports Server (NTRS)

    Ryan, Robert S.

    1994-01-01

    Structural dynamics and its auxiliary fields are the most progressive and challenging areas space system engineering design and operations face. Aerospace systems are dependent on structural dynamicists for their success. Past experiences (history) are colored with many dynamic issues, some producing ground or flight test failures. The innovation and creativity that was brought to these issues and problems are the aura from the past that lights the path to the future. Using this illumination to guide understanding of the dynamic phenomena and designing for its potential occurrence are the keys to successful space systems. Our great paradox, or challenge, is how we remain in depth specialists, yet become generalists to the degree that we make good team members and set the right priorities. This paper will deal with how we performed with acclaim in the past, the basic characteristics of structural dynamics (loads cycle, for example), and the challenges of the future.

  17. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Tony; Sutherland, James C.

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  18. Wasatch: An architecture-proof multiphysics development environment using a Domain Specific Language and graph theory

    DOE PAGES

    Saad, Tony; Sutherland, James C.

    2016-05-04

    To address the coding and software challenges of modern hybrid architectures, we propose an approach to multiphysics code development for high-performance computing. This approach is based on using a Domain Specific Language (DSL) in tandem with a directed acyclic graph (DAG) representation of the problem to be solved that allows runtime algorithm generation. When coupled with a large-scale parallel framework, the result is a portable development framework capable of executing on hybrid platforms and handling the challenges of multiphysics applications. In addition, we share our experience developing a code in such an environment – an effort that spans an interdisciplinarymore » team of engineers and computer scientists.« less

  19. On a New Approach to Education about Ethics for Engineers at Meijou University

    NASA Astrophysics Data System (ADS)

    Fukaya, Minoru; Morimoto, Tsukasa; Kimura, Noritsugu

    We propose a new approach to education of so called “engineering ethics”. This approach has two important elements in its teaching system. One is “problem-solving learning”, and the other is “discussion ability”. So far, engineering ethics started at the ethical standpoint. But we put the viewpoint of problem-solving learning at the educational base of engineering ethics. Because many problems have complicated structures, so if we want to solve them, we should discuss each other. Problem-solving ability and discussion ability, they help engineers to solve the complex problems in their social everyday life. Therefore, Meijo University names engineering ethics “ethics for engineers”. At Meijou University about 1300 students take classes in both ethics for engineers and environmental ethics for one year.

  20. Biomimetics and the Development of Humanlike Robots as the Ultimate Challenge

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2011-01-01

    Evolution led to effective solutions to nature's challenges and they were improved over millions of years. Humans have always made efforts to use nature as a model for innovation and problems solving. These efforts became more intensive in recent years where systematic studies of nature are being made towards better understanding and applying more sophisticated capabilities. Making humanlike robots, including the appearance, functions and intelligence, poses the ultimate challenges to biomimetics. For many years, making such robots was considered science fiction, but as a result of significant advances in biologically inspired technologies, such robots are increasingly becoming an engineering reality. There are already humanlike robots that walk, talk, interpret speech, make eye-contact and facial expressions, as well as perform many other humanlike functions. In this paper, the state-of-the-art of humanlike robots, potential applications and issues of concern will be reviewed.

  1. Self-deconstructing algae biomass as feedstock for transportation fuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Ryan Wesley

    The potential for producing biofuels from algae has generated much excitement based on projections of large oil yields with relatively little land use. However, numerous technical challenges remain for achieving market parity with conventional non-renewable liquid fuel sources. Among these challenges, the energy intensive requirements of traditional cell rupture, lipid extraction, and residuals fractioning of microalgae biomass have posed significant challenges to the nascent field of algal biotechnology. Our novel approach to address these problems was to employ low cost solution-state methods and biochemical engineering to eliminate the need for extensive hardware and energy intensive methods for cell rupture, carbohydratemore » and protein solubilization and hydrolysis, and fuel product recovery using consolidated bioprocessing strategies. The outcome of the biochemical deconstruction and conversion process consists of an emulsion of algal lipids and mixed alcohol products from carbohydrate and protein fermentation for co-extraction or in situ transesterification.« less

  2. Challenges, issues and trends in fall detection systems

    PubMed Central

    2013-01-01

    Since falls are a major public health problem among older people, the number of systems aimed at detecting them has increased dramatically over recent years. This work presents an extensive literature review of fall detection systems, including comparisons among various kinds of studies. It aims to serve as a reference for both clinicians and biomedical engineers planning or conducting field investigations. Challenges, issues and trends in fall detection have been identified after the reviewing work. The number of studies using context-aware techniques is still increasing but there is a new trend towards the integration of fall detection into smartphones as well as the use of machine learning methods in the detection algorithm. We have also identified challenges regarding performance under real-life conditions, usability, and user acceptance as well as issues related to power consumption, real-time operations, sensing limitations, privacy and record of real-life falls. PMID:23829390

  3. Engaging Undergraduates to Solve Global Health Challenges: A New Approach Based on Bioengineering Design

    PubMed Central

    Oden, Maria; Mirabal, Yvette; Epstein, Marc

    2010-01-01

    Recent reports have highlighted the need for educational programs to prepare students for careers developing and disseminating new interventions that improve global public health. Because of its multi-disciplinary, design-centered nature, the field of Biomedical Engineering can play an important role in meeting this challenge. This article describes a new program at Rice University to give undergraduate students from all disciplines a broad background in bioengineering and global health and provides an initial assessment of program impact. Working in partnership with health care providers in developing countries, students in the Beyond Traditional Borders (BTB) initiative learn about health challenges of the poor and put this knowledge to work immediately, using the engineering design process as a framework to formulate solutions to complex global health challenges. Beginning with a freshman design project and continuing through a capstone senior design course, the BTB curriculum uses challenges provided by partners in the developing world to teach students to integrate perspectives from multiple disciplines, and to develop leadership, communication, and teamwork skills. Exceptional students implement their designs under the guidance of clinicians through summer international internships. Since 2006, 333 students have designed more than 40 technologies and educational programs; 28 have been implemented in sub-Saharan Africa, Latin America, the Caribbean, southeast Asia, and the United States. More than 18,000 people have benefited from these designs. 95% of alumni who completed an international internship reported that participation in the program changed or strengthened their career plans to include a focus on global health medicine, research, and/or policy. Empowering students to use bioengineering design to address real problems is an effective way to teach the new generation of leaders needed to solve global health challenges. PMID:20387116

  4. Challenges Faced by Female-Students in Engineering-Education

    ERIC Educational Resources Information Center

    Madara, Diana Starovoytova; Cherotich, Sharon

    2016-01-01

    Gender-related challenges in learning technical courses are universal phenomenon. These challenges could restrain female students from achieving their fullest potential. The main focus of this study, therefore, is to examine self-recognized challenges faced by undergraduate female students in pursuing engineering at the School of Engineering…

  5. Protein–Hydrogel Interactions in Tissue Engineering: Mechanisms and Applications

    PubMed Central

    Zustiak, Silviya P.; Wei, Yunqian

    2013-01-01

    Recent advances in our understanding of the sophistication of the cellular microenvironment and the dynamics of tissue remodeling during development, disease, and regeneration have increased our appreciation of the current challenges facing tissue engineering. As this appreciation advances, we are better equipped to approach problems in the biology and therapeutics of even more complex fields, such as stem cells and cancer. To aid in these studies, as well as the established areas of tissue engineering, including cardiovascular, musculoskeletal, and neural applications, biomaterials scientists have developed an extensive array of materials with specifically designed chemical, mechanical, and biological properties. Herein, we highlight an important topic within this area of biomaterials research, protein–hydrogel interactions. Due to inherent advantages of hydrated scaffolds for soft tissue engineering as well as specialized bioactivity of proteins and peptides, this field is well-posed to tackle major needs within emerging areas of tissue engineering. We provide an overview of the major modes of interactions between hydrogels and proteins (e.g., weak forces, covalent binding, affinity binding), examples of applications within growth factor delivery and three-dimensional scaffolds, and finally future directions within the area of hydrogel–protein interactions that will advance our ability to control the cell–biomaterial interface. PMID:23150926

  6. The acquisition and transfer of knowledge of electrokinetic-hydrodynamics (EKHD) fundamentals: an introductory graduate-level course

    NASA Astrophysics Data System (ADS)

    Pascal, Jennifer; Tíjaro-Rojas, Rocío; Oyanader, Mario A.; Arce, Pedro E.

    2017-09-01

    Relevant engineering applications, such as bioseparation of proteins and DNA, soil-cleaning, motion of colloidal particles in different media, electrical field-based cancer treatments, and the cleaning of surfaces and coating flows, belongs to the family of 'Applied Field Sensitive Process Technologies' requiring an external field to move solutes in a fluid within a fibrous (or porous) domain. This field incorporates an additional variable that makes the analysis very challenging and can create for the student a number of new problems to solve. A graduate-level course, based on active-learning approaches and High Performance Learning Environments, where transfer of knowledge plays a key role, was designed by the Chemical Engineering Department at Tennessee Technological University. This course, where the fundamentals principles of EKHD were taught to science, engineering and technology students was designed by the Chemical Engineering Department at the Tennessee Technological University, Cookeville, TN. An important number of these students were able to grasp the tools required to advance their research projects that led to numerous technical presentations in professional society meetings and publications in peered-reviewed journals.

  7. The Grand Challenges Discourse: Transforming Identity Work in Science and Science Policy.

    PubMed

    Kaldewey, David

    2018-01-01

    This article analyzes the concept of "grand challenges" as part of a shift in how scientists and policymakers frame and communicate their respective agendas. The history of the grand challenges discourse helps to understand how identity work in science and science policy has been transformed in recent decades. Furthermore, the question is raised whether this discourse is only an indicator, or also a factor in this transformation. Building on conceptual history and historical semantics, the two parts of the article reconstruct two discursive shifts. First, the observation that in scientific communication references to "problems" are increasingly substituted by references to "challenges" indicates a broader cultural trend of how attitudes towards what is problematic have shifted in the last decades. Second, as the grand challenges discourse is rooted in the sphere of sports and competition, it introduces a specific new set of societal values and practices into the spheres of science and technology. The article concludes that this process can be characterized as the sportification of science, which contributes to self-mobilization and, ultimately, to self-optimization of the participating scientists, engineers, and policymakers.

  8. Identifying the Challenging Factors in the Transition from Colleges of Engineering to Employment

    ERIC Educational Resources Information Center

    Baytiyeh, Hoda; Naja, Mohamad

    2012-01-01

    The transition from university to a career in engineering is a challenging process. This study examined the perceptions of engineering graduates regarding the difficulties they encountered in their transition from the university to the workplace. Lebanese practising engineers (n=217), living around the world, were surveyed to identify their…

  9. New Developments of Computational Fluid Dynamics and Their Applications to Practical Engineering Problems

    NASA Astrophysics Data System (ADS)

    Chen, Hudong

    2001-06-01

    There have been considerable advances in Lattice Boltzmann (LB) based methods in the last decade. By now, the fundamental concept of using the approach as an alternative tool for computational fluid dynamics (CFD) has been substantially appreciated and validated in mainstream scientific research and in industrial engineering communities. Lattice Boltzmann based methods possess several major advantages: a) less numerical dissipation due to the linear Lagrange type advection operator in the Boltzmann equation; b) local dynamic interactions suitable for highly parallel processing; c) physical handling of boundary conditions for complicated geometries and accurate control of fluxes; d) microscopically consistent modeling of thermodynamics and of interface properties in complex multiphase flows. It provides a great opportunity to apply the method to practical engineering problems encountered in a wide range of industries from automotive, aerospace to chemical, biomedical, petroleum, nuclear, and others. One of the key challenges is to extend the applicability of this alternative approach to regimes of highly turbulent flows commonly encountered in practical engineering situations involving high Reynolds numbers. Over the past ten years, significant efforts have been made on this front at Exa Corporation in developing a lattice Boltzmann based commercial CFD software, PowerFLOW. It has become a useful computational tool for the simulation of turbulent aerodynamics in practical engineering problems involving extremely complex geometries and flow situations, such as in new automotive vehicle designs world wide. In this talk, we present an overall LB based algorithm concept along with certain key extensions in order to accurately handle turbulent flows involving extremely complex geometries. To demonstrate the accuracy of turbulent flow simulations, we provide a set of validation results for some well known academic benchmarks. These include straight channels, backward-facing steps, flows over a curved hill and typical NACA airfoils at various angles of attack including prediction of stall angle. We further provide numerous engineering cases, ranging from external aerodynamics around various car bodies to internal flows involved in various industrial devices. We conclude with a discussion of certain future extensions for complex fluids.

  10. Various advanced design projects promoting engineering education

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The Universities Space Research Association (USRA) Advanced Design Program (ADP) program promotes engineering education in the field of design by presenting students with challenging design projects drawn from actual NASA interests. In doing so, the program yields two very positive results. Firstly, the students gain a valuable experience that will prepare them for design problems with which they will be faced in their professional careers. Secondly, NASA is able to use the work done by students as an additional resource in meeting its own design objectives. The 1994 projects include: Universal Test Facility; Automated Protein Crystal Growth Facility; Stiffening of the ACES Deployable Space Boom; Launch System Design for Access to Space; LH2 Fuel Tank Design for SSTO Vehicle; and Feed System Design for a Reduced Pressure Tank.

  11. Space transportation propulsion application - A development challenge

    NASA Astrophysics Data System (ADS)

    Beichel, Rudi; O'Brien, Charles J.; Taylor, James P.

    1989-10-01

    This paper presents an approach to achieving a cost-effective vertical takeoff, horizontal landing earth-to-orbit vehicle. The key propulsion system problems are addressed. The approach leads to a near-term rocket-powered single-stage-to-orbit system. A flying test-bed vehicle development program is described which allows the orderly development of vital advanced propulsion system and vehicle structural technology within a reasonable cost. The experimental (X-n) vehicle approach also allows the development of operational procedures that result in airline-type costs to space, and permits concepts, such as heavy-lift flight configurations, to be tested in a stepwise manner. Thrust modulation, instead of gimballed engines, allows a significant weight reduction in the propulsion system. Air-breathing airturborocket engines are used for loiter and landing to ensure safe return to earth.

  12. Agile hardware and software systems engineering for critical military space applications

    NASA Astrophysics Data System (ADS)

    Huang, Philip M.; Knuth, Andrew A.; Krueger, Robert O.; Garrison-Darrin, Margaret A.

    2012-06-01

    The Multi Mission Bus Demonstrator (MBD) is a successful demonstration of agile program management and system engineering in a high risk technology application where utilizing and implementing new, untraditional development strategies were necessary. MBD produced two fully functioning spacecraft for a military/DOD application in a record breaking time frame and at dramatically reduced costs. This paper discloses the adaptation and application of concepts developed in agile software engineering to hardware product and system development for critical military applications. This challenging spacecraft did not use existing key technology (heritage hardware) and created a large paradigm shift from traditional spacecraft development. The insertion of new technologies and methods in space hardware has long been a problem due to long build times, the desire to use heritage hardware, and lack of effective process. The role of momentum in the innovative process can be exploited to tackle ongoing technology disruptions and allowing risk interactions to be mitigated in a disciplined manner. Examples of how these concepts were used during the MBD program will be delineated. Maintaining project momentum was essential to assess the constant non recurring technological challenges which needed to be retired rapidly from the engineering risk liens. Development never slowed due to tactical assessment of the hardware with the adoption of the SCRUM technique. We adapted this concept as a representation of mitigation of technical risk while allowing for design freeze later in the program's development cycle. By using Agile Systems Engineering and Management techniques which enabled decisive action, the product development momentum effectively was used to produce two novel space vehicles in a fraction of time with dramatically reduced cost.

  13. Women in engineering conference: capitalizing on today`s challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, S.S.; Martins, S.M.

    This document contains the conference proceedings of the Women in Engineering Conference: Capitalizing on Today`s Challenges, held June 1-4, 1996 in Denver, Colorado. Topics included engineering and science education, career paths, workplace issues, and affirmative action.

  14. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications

    NASA Astrophysics Data System (ADS)

    Fadakar Alghalandis, Younes

    2017-05-01

    Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents from diverse disciplines in academia and industry around the world to challenge difficult problems related to mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black box) distributions and hence limited programmability and tractability encouraged us to respond to this rising demand with a new solution. This paper introduces an open source comprehensive software package for stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics), simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g., fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in an easy and united way that is suitable for beginners, advanced and experienced users.

  15. The Tao of Microelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Yumin

    2014-12-01

    Microelectronics is a challenging course to many undergraduate students and is often described as very messy. Before taking this course, all the students have learned circuit analysis, where basically all the problems can be solved by applying Kirchhoff's laws. In addition, most engineering students have also learned engineering mechanics: statics and dynamics, where Newton's laws and related principles can be applied in solving all the problems. However, microelectronics is not as clean as these courses. There are hundreds of equations for different circuits, and it is impossible to remember which equation should be applied to which circuit. One of the common pitfalls in learning this course is over-focusing at the equation level and ignoring the ideas (Tao) behind it. Unfortunately, these ideas are not summarized and emphasized in most microelectronics textbooks, though they cover various electronic circuits comprehensively. Therefore, most undergraduate students feel at a loss when they start to learn this topic. This book tries to illustrate the major ideas and the basic analysis techniques, so that students can derive the right equations easily when facing an electronic circuit.

  16. Preface

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris; Witherspoon, Paul A.; Gale, John

    How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geoscientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.

  17. Optimal Sensor Layouts in Underwater Locomotory Systems

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Kanso, Eva

    2015-11-01

    Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.

  18. Distributed computation: the new wave of synthetic biology devices.

    PubMed

    Macía, Javier; Posas, Francesc; Solé, Ricard V

    2012-06-01

    Synthetic biology (SB) offers a unique opportunity for designing complex molecular circuits able to perform predefined functions. But the goal of achieving a flexible toolbox of reusable molecular components has been shown to be limited due to circuit unpredictability, incompatible parts or random fluctuations. Many of these problems arise from the challenges posed by engineering the molecular circuitry: multiple wires are usually difficult to implement reliably within one cell and the resulting systems cannot be reused in other modules. These problems are solved by means of a nonstandard approach to single cell devices, using cell consortia and allowing the output signal to be distributed among different cell types, which can be combined in multiple, reusable and scalable ways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The Problem of Ensuring Reliability of Gas Turbine Engines

    NASA Astrophysics Data System (ADS)

    Nozhnitsky, Yu A.

    2018-01-01

    Requirements to advanced engines for civil aviation are discussing. Some significant problems of ensuring reliability of advanced gas turbine engines are mentioned. Special attention is paid to successful utilization of new materials and critical technologies. Also the problem of excluding failure of engine part due to low cycle or high cycle fatigue is discussing.

  20. How To Solve Problems. For Success in Freshman Physics, Engineering, and Beyond. Third Edition.

    ERIC Educational Resources Information Center

    Scarl, Donald

    To expertly solve engineering and science problems one needs to know science and engineering as well as have a tool kit of problem-solving methods. This book is about problem-solving methods: it presents the methods professional problem solvers use, explains why these methods have evolved, and shows how a student can make these methods his/her…

  1. Engineering's Grand Challenges: Priorities and Integration Recommendations for Technology Education Curriculum Development

    ERIC Educational Resources Information Center

    Buelin, Jennifer; Clark, Aaron C.; Ernst, Jeremy V.

    2016-01-01

    In this study, the 14 Grand Challenges for Engineering in the 21st Century identified by the National Academy of Engineering were examined by a panel of experts in an effort to identify prospective curricular integration opportunities in the field of technology and engineering education. The study utilized a three-round modified Delphi methodology…

  2. The PBL projects: where we've been and where we are going

    NASA Astrophysics Data System (ADS)

    Donnelly, Judith F.; Massa, Nicholas M.

    2015-10-01

    Problem-based learning (PBL) is an instructional approach in which students learn course content by using a structured approach to collaboratively solving complex real-world problems. PBL addresses widespread industry concern that graduates of technician and engineering programs often have difficulty applying their technical knowledge to novel situations and working effectively in teams. Over the past 9 years, the PBL Projects of the New England Board of Higher Education (Boston, MA) have developed instructional strategies and materials that research shows address industry concerns by improving student learning, retention, critical thinking and problem-solving skills as well as the transfer of knowledge to new situations. In this paper we present a retrospective of the PBL Projects, three National Science Foundation Advanced Technology Education (NSF-ATE) projects that developed twenty interdisciplinary multi-media PBL case studies called "Challenges" in the topic areas of optics/photonics, sustainable technology and advanced manufacturing, provided faculty professional development in the use of PBL in the classroom to teachers across the U.S. and abroad, and conducted research on the efficacy of the PBL method. We will describe the resources built into the Challenges to scaffold the development of students' problem solving and critical thinking skills and the support provided to instructors who wish to create a student-centered classroom by incorporating PBL. Finally, we will discuss plans for next steps and examine strategies for taking PBL to the next level through actual industry-based problem solving experiences.

  3. Update - Concept of Operations for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Bennett, Matthew; Delp, Christopher L.; Dvorak, Daniel; Jenkins, Steven J.; Mandutianu, Sanda

    2011-01-01

    The increasingly ambitious requirements levied on JPL's space science missions, and the development pace of such missions, challenge our current engineering practices. All the engineering disciplines face this growth in complexity to some degree, but the challenges are greatest in systems engineering where numerous competing interests must be reconciled and where complex system level interactions must be identified and managed. Undesired system-level interactions are increasingly a major risk factor that cannot be reliably exposed by testing, and natural-language single-viewpoint specifications areinadequate to capture and expose system level interactions and characteristics. Systems engineering practices must improve to meet these challenges, and the most promising approach today is the movement toward a more integrated and model-centric approach to mission conception, design, implementation and operations. This approach elevates engineering models to a principal role in systems engineering, gradually replacing traditional document centric engineering practices.

  4. Engineering central metabolism - a grand challenge for plant biologists.

    PubMed

    Sweetlove, Lee J; Nielsen, Jens; Fernie, Alisdair R

    2017-05-01

    The goal of increasing crop productivity and nutrient-use efficiency is being addressed by a number of ambitious research projects seeking to re-engineer photosynthetic biochemistry. Many of these projects will require the engineering of substantial changes in fluxes of central metabolism. However, as has been amply demonstrated in simpler systems such as microbes, central metabolism is extremely difficult to rationally engineer. This is because of multiple layers of regulation that operate to maintain metabolic steady state and because of the highly connected nature of central metabolism. In this review we discuss new approaches for metabolic engineering that have the potential to address these problems and dramatically improve the success with which we can rationally engineer central metabolism in plants. In particular, we advocate the adoption of an iterative 'design-build-test-learn' cycle using fast-to-transform model plants as test beds. This approach can be realised by coupling new molecular tools to incorporate multiple transgenes in nuclear and plastid genomes with computational modelling to design the engineering strategy and to understand the metabolic phenotype of the engineered organism. We also envisage that mutagenesis could be used to fine-tune the balance between the endogenous metabolic network and the introduced enzymes. Finally, we emphasise the importance of considering the plant as a whole system and not isolated organs: the greatest increase in crop productivity will be achieved if both source and sink metabolism are engineered. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  5. Definition of the Engineering Method.

    ERIC Educational Resources Information Center

    Koen, Billy Vaughn

    In an effort to more clearly define the engineering method, this document attempts to draw distinctions between engineering and science. Part I, "Some Thoughts on Engineering," discusses strategies that engineers employ to solve problems, and the characteristics of the types of engineering problems. Part II, "The Principal Rule of the Engineering…

  6. Improving collaborative learning in online software engineering education

    NASA Astrophysics Data System (ADS)

    Neill, Colin J.; DeFranco, Joanna F.; Sangwan, Raghvinder S.

    2017-11-01

    Team projects are commonplace in software engineering education. They address a key educational objective, provide students critical experience relevant to their future careers, allow instructors to set problems of greater scale and complexity than could be tackled individually, and are a vehicle for socially constructed learning. While all student teams experience challenges, those in fully online programmes must also deal with remote working, asynchronous coordination, and computer-mediated communications all of which contribute to greater social distance between team members. We have developed a facilitation framework to aid team collaboration and have demonstrated its efficacy, in prior research, with respect to team performance and outcomes. Those studies indicated, however, that despite experiencing improved project outcomes, students working in effective software engineering teams did not experience significantly improved individual achievement. To address this deficiency we implemented theoretically grounded refinements to the collaboration model based upon peer-tutoring research. Our results indicate a modest, but statistically significant (p = .08), improvement in individual achievement using this refined model.

  7. Engineering in the 21st century. [aerospace technology prospects

    NASA Technical Reports Server (NTRS)

    Mccarthy, J. F., Jr.

    1978-01-01

    A description is presented of the nature of the aerospace technology system that might be expected by the 21st century from a reasonable evolution of the current resources and capabilities. An aerospace employment outlook is provided. The years 1977 and 1978 seem to be marking the beginning of a period of stability and moderate growth in the aerospace industry. Aerospace research and development employment increased to 70,000 in 1977 and is now occupying a near-constant 18% share of the total research and development work force. The changing job environment is considered along with the future of aerospace education. It is found that one trend is toward a more interdisciplinary education. Most trend setters in engineering education recognize that the really challenging engineering problems invariably require the judicious exercise of several disciplines for their solution. Some future trends in aerospace technology are discussed. By the year 2000 space technology will have achieved major advances in four areas, including management of information, transportation, space structures, and energy.

  8. Geomagnetically induced currents: Science, engineering, and applications readiness

    NASA Astrophysics Data System (ADS)

    Pulkkinen, A.; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P. J.; Welling, D.; Savani, N. P.; Weigel, R. S.; Love, J. J.; Balch, C.; Ngwira, C. M.; Crowley, G.; Schultz, A.; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J. J.; MacAlester, M.

    2017-07-01

    This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the "impact" aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.

  9. Geomagnetically induced currents: Science, engineering, and applications readiness

    USGS Publications Warehouse

    Pulkkinen, Antti; Bernabeu, E.; Thomson, A.; Viljanen, A.; Pirjola, R.; Boteler, D.; Eichner, J.; Cilliers, P.J.; Welling, D.; Savani, N.P.; Weigel, R.S.; Love, Jeffrey J.; Balch, Christopher; Ngwira, C.M.; Crowley, G.; Schultz, Adam; Kataoka, R.; Anderson, B.; Fugate, D.; Simpson, J.J.; MacAlester, M.

    2017-01-01

    This paper is the primary deliverable of the very first NASA Living With a Star Institute Working Group, Geomagnetically Induced Currents (GIC) Working Group. The paper provides a broad overview of the current status and future challenges pertaining to the science, engineering, and applications of the GIC problem. Science is understood here as the basic space and Earth sciences research that allows improved understanding and physics-based modeling of the physical processes behind GIC. Engineering, in turn, is understood here as the “impact” aspect of GIC. Applications are understood as the models, tools, and activities that can provide actionable information to entities such as power systems operators for mitigating the effects of GIC and government agencies for managing any potential consequences from GIC impact to critical infrastructure. Applications can be considered the ultimate goal of our GIC work. In assessing the status of the field, we quantify the readiness of various applications in the mitigation context. We use the Applications Readiness Level (ARL) concept to carry out the quantification.

  10. Ductile failure X-prize.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, James V.; Wellman, Gerald William; Emery, John M.

    2011-09-01

    Fracture or tearing of ductile metals is a pervasive engineering concern, yet accurate prediction of the critical conditions of fracture remains elusive. Sandia National Laboratories has been developing and implementing several new modeling methodologies to address problems in fracture, including both new physical models and new numerical schemes. The present study provides a double-blind quantitative assessment of several computational capabilities including tearing parameters embedded in a conventional finite element code, localization elements, extended finite elements (XFEM), and peridynamics. For this assessment, each of four teams reported blind predictions for three challenge problems spanning crack initiation and crack propagation. After predictionsmore » had been reported, the predictions were compared to experimentally observed behavior. The metal alloys for these three problems were aluminum alloy 2024-T3 and precipitation hardened stainless steel PH13-8Mo H950. The predictive accuracies of the various methods are demonstrated, and the potential sources of error are discussed.« less

  11. On the origin of synthetic life: attribution of output to a particular algorithm

    NASA Astrophysics Data System (ADS)

    Yampolskiy, Roman V.

    2017-01-01

    With unprecedented advances in genetic engineering we are starting to see progressively more original examples of synthetic life. As such organisms become more common it is desirable to gain an ability to distinguish between natural and artificial life forms. In this paper, we address this challenge as a generalized version of Darwin’s original problem, which he so brilliantly described in On the Origin of Species. After formalizing the problem of determining the samples’ origin, we demonstrate that the problem is in fact unsolvable. In the general case, if computational resources of considered originator algorithms have not been limited and priors for such algorithms are known to be equal, both explanations are equality likely. Our results should attract attention of astrobiologists and scientists interested in developing a more complete theory of life, as well as of AI-Safety researchers.

  12. System Engineering on the Use for Ares I,V - the Simpler, the Better

    NASA Technical Reports Server (NTRS)

    Kelly, William; Greene, William D.; Greasley, Paul; Ackerman, Peter C.

    2008-01-01

    The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt & Whitney Rocketdyne Company. The J-2X is an improved higher power version of the original J-2 engine used during the Apollo program. With higher power and updated requirements for safety and performance, the J-2X becomes a new engine using state-of-the-art design methodology, materials and manufacturing processes. The implementation of Systems Engineering (SE) principles enables the rapid J-2X development program to remain aligned with the ARES I and V vehicle programs, Meeting the aggressive development schedule is a challenge. Coordinating the best expertise thai NASA and PWR have to offer requires effectively utilizing resources at multiple sites. This presents formidable communication challenges. SE allows honest and open discussions of issues and problems. This simple idea is often overlooked in large and complex SE programs. Regular and effective meetings linking SE objectives to component designs are used to voice differences of opinions with customer and contractor in attendance so that the best mutual decisions can be made on the shortest possible schedule. Regular technical interchange meetings on secure program wide computer networks and CM processes are effective,in the "Controlled Change" process that exemplifies good SE. Good communication is a key effective SE implementation. The System of Systems approach is the vision of the Orion program which facilitates the establishment of dynamic SE processes at all levels including the engine. SE enables requirements evolution by facilitating organizational and process agility. Flow down and distribution of requirements is controlled by Allocation Reports which breakdown numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements helps eliminate redundancy and potential mistakes inherent m separated systems. Another tool, the Architecture Design Description, is being used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof is in successful program accomplishment. The SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. The Ares I SE system of systems has delivered according to expectations thus far. All major design reviews (SRR. PDR, CDR) have been successfully conducted to satisfy overall program objectives using SE as the basis for accomplishment. The paper describes SE tools and techniques utilized to achieve this success.

  13. Design and Implementation of High-Performance GIS Dynamic Objects Rendering Engine

    NASA Astrophysics Data System (ADS)

    Zhong, Y.; Wang, S.; Li, R.; Yun, W.; Song, G.

    2017-12-01

    Spatio-temporal dynamic visualization is more vivid than static visualization. It important to use dynamic visualization techniques to reveal the variation process and trend vividly and comprehensively for the geographical phenomenon. To deal with challenges caused by dynamic visualization of both 2D and 3D spatial dynamic targets, especially for different spatial data types require high-performance GIS dynamic objects rendering engine. The main approach for improving the rendering engine with vast dynamic targets relies on key technologies of high-performance GIS, including memory computing, parallel computing, GPU computing and high-performance algorisms. In this study, high-performance GIS dynamic objects rendering engine is designed and implemented for solving the problem based on hybrid accelerative techniques. The high-performance GIS rendering engine contains GPU computing, OpenGL technology, and high-performance algorism with the advantage of 64-bit memory computing. It processes 2D, 3D dynamic target data efficiently and runs smoothly with vast dynamic target data. The prototype system of high-performance GIS dynamic objects rendering engine is developed based SuperMap GIS iObjects. The experiments are designed for large-scale spatial data visualization, the results showed that the high-performance GIS dynamic objects rendering engine have the advantage of high performance. Rendering two-dimensional and three-dimensional dynamic objects achieve 20 times faster on GPU than on CPU.

  14. Engineering the LISA Project: Systems Engineering Challenges

    NASA Technical Reports Server (NTRS)

    Evans, Jordan P.

    2006-01-01

    The Laser Interferometer Space Antenna (LISA) is a joint NASA/ESA mission to detect and measure gravitational waves with periods from 1 s to 10000 s. The systems engineering challenges of developing a giant interferometer, 5 million kilometers on a side, an: numerous. Some of the key challenges are presented in this paper. The organizational challenges imposed by sharing the engineering function between three centers (ESA ESTEC, NASA GSFC, and JPL) across nine time zones are addressed. The issues and approaches to allocation of the acceleration noise and measurement sensitivity budget terms across a traditionally decomposed system are discussed. Additionally, using LISA to detect gravitational waves for the first time presents significant data analysis challenges, many of which drive the project system design. The approach to understanding the implications of science data analysis on the system is also addressed.

  15. New Approaches to HSCT Multidisciplinary Design and Optimization

    NASA Technical Reports Server (NTRS)

    Schrage, Daniel P.; Craig, James I.; Fulton, Robert E.; Mistree, Farrokh

    1999-01-01

    New approaches to MDO have been developed and demonstrated during this project on a particularly challenging aeronautics problem- HSCT Aeroelastic Wing Design. To tackle this problem required the integration of resources and collaboration from three Georgia Tech laboratories: ASDL, SDL, and PPRL, along with close coordination and participation from industry. Its success can also be contributed to the close interaction and involvement of fellows from the NASA Multidisciplinary Analysis and Optimization (MAO) program, which was going on in parallel, and provided additional resources to work the very complex, multidisciplinary problem, along with the methods being developed. The development of the Integrated Design Engineering Simulator (IDES) and its initial demonstration is a necessary first step in transitioning the methods and tools developed to larger industrial sized problems of interest. It also provides a framework for the implementation and demonstration of the methodology. Attachment: Appendix A - List of publications. Appendix B - Year 1 report. Appendix C - Year 2 report. Appendix D - Year 3 report. Appendix E - accompanying CDROM.

  16. A nonlinear bi-level programming approach for product portfolio management.

    PubMed

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  17. Emerging technologies for enabling proangiogenic therapy

    NASA Astrophysics Data System (ADS)

    Sinha Roy, Rituparna; Roy, Bhaskar; Sengupta, Shiladitya

    2011-12-01

    Ischemic disease causes a large number of deaths and significant clinical problems worldwide. Therapeutic angiogenesis, strengthened by advances in growth-factor-based therapies, is a promising solution to ischemic pathologies. Major challenges in therapeutic angiogenesis are the lack of stability of native angiogenic proteins and also providing sustained delivery of biologically active proteins at the ischemic sites. This paper will discuss various protein engineering strategies to develop stabilized proangiogenic proteins and several biomaterial technologies used to amplify the angiogenic outcome by delivering biologically active growth factors in a sustained manner.

  18. Engineering solutions of environmental problems in organic waste handling

    NASA Astrophysics Data System (ADS)

    Briukhanov, A. Y.; Vasilev, E. V.; Shalavina, E. V.; Kucheruk, O. N.

    2017-10-01

    This study shows the urgent need to consider modernization of agricultural production in terms of sustainable development, which takes into account environmental implications of intensive technologies in livestock farming. Some science-based approaches are offered to address related environmental challenges. High-end technologies of organic livestock waste processing were substantiated by the feasibility study and nutrient balance calculation. The technologies were assessed on the basis of best available techniques criteria, including measures such as specific capital and operational costs associated with nutrient conservation and their delivery to the plants.

  19. Future of the Pacific: Inspiring the Next Generation of Scientists and Engineers Through Place-Based Problem-Solving Using Innovative STEM Curriculum and Technology Tools

    DTIC Science & Technology

    2016-03-30

    lesson 8.4, " Wind Turbine Design Inquiry." 13 The goal of her project was to combine a1t and science in project-based learning. Although pmt of an...challenged to design, test, and redesign wind turbine blades, defining variables and measuring performance. Their goal was to optimize perfonnance through...hydroelectric. In each model there are more than one variable. For example, the wind farm activity enables the user to select number of turbines

  20. Angular Speed of a Compact Disc

    NASA Astrophysics Data System (ADS)

    Sawicki, Mikolaj ``Mik''

    2006-09-01

    A spinning motion of a compact disc in a CD player offers an interesting and challenging problem in rotational kinematics with a nonconstant angular acceleration that can be incorporated into a typical introductory physics class for engineers and scientists. It can be used either as an example presented during the lecture, emphasizing application of calculus, or as a homework assignment that could be handled easily with the help of a spreadsheet, thus eliminating the calculus aspect altogether. I tried both approaches, and the spreadsheet study was favored by my students.

  1. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts.

    PubMed

    Shah, Hemant; Allard, Raymond D; Enberg, Robert; Krishnan, Ganesh; Williams, Patricia; Nadkarni, Prakash M

    2012-03-09

    A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies.

  2. Requirements for guidelines systems: implementation challenges and lessons from existing software-engineering efforts

    PubMed Central

    2012-01-01

    Background A large body of work in the clinical guidelines field has identified requirements for guideline systems, but there are formidable challenges in translating such requirements into production-quality systems that can be used in routine patient care. Detailed analysis of requirements from an implementation perspective can be useful in helping define sub-requirements to the point where they are implementable. Further, additional requirements emerge as a result of such analysis. During such an analysis, study of examples of existing, software-engineering efforts in non-biomedical fields can provide useful signposts to the implementer of a clinical guideline system. Methods In addition to requirements described by guideline-system authors, comparative reviews of such systems, and publications discussing information needs for guideline systems and clinical decision support systems in general, we have incorporated additional requirements related to production-system robustness and functionality from publications in the business workflow domain, in addition to drawing on our own experience in the development of the Proteus guideline system (http://proteme.org). Results The sub-requirements are discussed by conveniently grouping them into the categories used by the review of Isern and Moreno 2008. We cite previous work under each category and then provide sub-requirements under each category, and provide example of similar work in software-engineering efforts that have addressed a similar problem in a non-biomedical context. Conclusions When analyzing requirements from the implementation viewpoint, knowledge of successes and failures in related software-engineering efforts can guide implementers in the choice of effective design and development strategies. PMID:22405400

  3. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    PubMed Central

    2011-01-01

    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501

  4. New Challenging Approaches to Engineering Education: Enhancing University-Industry Co-Operation

    ERIC Educational Resources Information Center

    Korhonen-Yrjanheikki, Kati; Tukiainen, Taina; Takala, Minna

    2007-01-01

    Globalization, accelerated time-based competition, qualitative dynamics, rapid development of technology and especially Information and Communications Technology (ICT) developments challenge engineering education and capability development of each engineer. The success and the competitiveness of companies are increasingly based on their employees.…

  5. Maintenance problems associated with the operation of the F402 /Pegasus/ engine in the AV-8A /Harrier/ aircraft

    NASA Technical Reports Server (NTRS)

    Stanley, C. W.; Hood, W. E.

    1981-01-01

    The U.S. Marine Corp (USMC) has been operating the only V/STOL attack aircraft in the western world since 1971. Some of the maintenance problems experienced are related to the unique V/STOL design criteria of the Pegasus engine. However, the major part of the required maintenance effort is found to involve the more conventional engine problems. A description of the aircraft engine is provided and the problems resulting from V/STOL design demands are examined. Attention is given to the fuel system control, the engine air bleed, foreign object damage to the hp compressor, and the engine exhaust system.

  6. International Approaches for Nuclear Waste Disposal in Geological Formations: Geological Challenges in Radioactive Waste Isolation—Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Sassani, David

    The overall objective of the Fifth Worldwide Review (WWR-5) is to document the current state-of-the-art of major developments in a number of nations throughout the World pursuing geological disposal programs, and to summarize challenging problems and experience that have been obtained in siting, preparing and reviewing cases for the operational and long-term safety of proposed and operating nuclear waste repositories. The scope of the Review is to address current specific technical issues and challenges in safety case development along with the interplay of technical feasibility, siting, engineering design issues, and operational and post-closure safety. In particular, the chapters included inmore » the report present the following types of information: the current status of the deep geological repository programs for high level nuclear waste and low- and intermediate level nuclear waste in each country, concepts of siting and radioactive waste and spent nuclear fuel management in different countries (with the emphasis of nuclear waste disposal under different climatic conditions and different geological formations), progress in repository site selection and site characterization, technology development, buffer/backfill materials studies and testing, support activities, programs, and projects, international cooperation, and future plans, as well as regulatory issues and transboundary problems.« less

  7. A predictive machine learning approach for microstructure optimization and materials design

    DOE PAGES

    Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; ...

    2015-06-23

    This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniquenessmore » of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. In conclusion, experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.« less

  8. Tendon Tissue Engineering: Progress, Challenges, and Translation to the Clinic

    PubMed Central

    Shearn, Jason T.; Kinneberg, Kirsten R.C.; Dyment, Nathaniel A.; Galloway, Marc T.; Kenter, Keith; Wylie, Christopher; Butler, David L.

    2013-01-01

    The tissue engineering field has made great strides in understanding how different aspects of tissue engineered constructs (TECs) and the culture process affect final tendon repair. However, there remain significant challenges in developing strategies that will lead to a clinically effective and commercially successful product. In an effort to increase repair quality, a better understanding of normal development, and how it differs from adult tendon healing, may provide strategies to improve tissue engineering. As tendon tissue engineering continues to improve, the field needs to employ more clinically relevant models of tendon injury such as degenerative tendons. We need to translate successes to larger animal models to begin exploring the clinical implications of our treatments. By advancing the models used to validate our TECs, we can help convince our toughest customer, the surgeon, that our products will be clinically efficacious. As we address these challenges in musculoskeletal tissue engineering, the field still needs to address the commercialization of products developed in the laboratory. TEC commercialization faces numerous challenges because each injury and patient is unique. This review aims to provide tissue engineers with a summary of important issues related to engineering tendon repairs and potential strategies for producing clinically successful products. PMID:21625053

  9. Perm State University HPC-hardware and software services: capabilities for aircraft engine aeroacoustics problems solving

    NASA Astrophysics Data System (ADS)

    Demenev, A. G.

    2018-02-01

    The present work is devoted to analyze high-performance computing (HPC) infrastructure capabilities for aircraft engine aeroacoustics problems solving at Perm State University. We explore here the ability to develop new computational aeroacoustics methods/solvers for computer-aided engineering (CAE) systems to handle complicated industrial problems of engine noise prediction. Leading aircraft engine engineering company, including “UEC-Aviadvigatel” JSC (our industrial partners in Perm, Russia), require that methods/solvers to optimize geometry of aircraft engine for fan noise reduction. We analysed Perm State University HPC-hardware resources and software services to use efficiently. The performed results demonstrate that Perm State University HPC-infrastructure are mature enough to face out industrial-like problems of development CAE-system with HPC-method and CFD-solvers.

  10. Reflections of a Faraday Challenge Day Leader

    ERIC Educational Resources Information Center

    Sewell, Keira

    2014-01-01

    Keira Sewell has just finished her second year as a Challenge Leader for the Faraday Challenge, a STEM-based scheme run by the Institution of Engineering and Technology. Aimed at 12-13 year-old students, its purpose is to engage students in future careers in engineering. Each year, a new challenge is held in over sixty schools and universities…

  11. Engineering craniofacial structures: facing the challenge.

    PubMed

    Zaky, S H; Cancedda, R

    2009-12-01

    The human innate regenerative ability is known to be limited by the intensity of the insult together with the availability of progenitor cells, which may cause certain irreparable damage. It is only recently that the paradigm of tissue engineering found its way to the treatment of irreversibly affected body structures with the challenge of reconstructing the lost part. In the current review, we underline recent trials that target engineering of human craniofacial structures, mainly bone, cartilage, and teeth. We analyze the applied engineering strategies relative to the selection of cell types to lay down a specific targeted tissue, together with their association with an escorting scaffold for a particular engineered site, and discuss their necessity to be sustained by growth factors. Challenges and expectations for facial skeletal engineering are discussed in the context of future treatment.

  12. The James Webb Space Telescope RealWorld-InWorld Design Challenge: Involving Professionals in a Virtual Classroom

    NASA Astrophysics Data System (ADS)

    Masetti, Margaret; Bowers, S.

    2011-01-01

    Students around the country are becoming experts on the James Webb Space Telescope by designing solutions to two of the design challenges presented by this complex mission. RealWorld-InWorld has two parts; the first (the Real World portion) has high-school students working face to face in their classroom as engineers and scientists. The InWorld phase starts December 15, 2010 as interested teachers and their teams of high school students register to move their work into a 3D multi-user virtual world environment. At the start of this phase, college students from all over the country choose a registered team to lead InWorld. Each InWorld team is also assigned an engineer or scientist mentor. In this virtual world setting, each team refines their design solutions and creates a 3D model of the Webb telescope. InWorld teams will use 21st century tools to collaborate and build in the virtual world environment. Each team will learn, not only from their own team members, but will have the opportunity to interact with James Webb Space Telescope researchers through the virtual world setting, which allows for synchronous interactions. Halfway through the challenge, design solutions will be critiqued and a mystery problem will be introduced for each team. The top five teams will be invited to present their work during a synchronous Education Forum April 14, 2011. The top team will earn scholarships and technology. This is an excellent opportunity for professionals in both astronomy and associated engineering disciplines to become involved with a unique educational program. Besides the chance to mentor a group of interested students, there are many opportunities to interact with the students as a guest, via chats and presentations.

  13. Multidisciplinary approaches to climate change questions

    USGS Publications Warehouse

    Middleton, Beth A.; LePage, Ben A.

    2011-01-01

    Multidisciplinary approaches are required to address the complex environmental problems of our time. Solutions to climate change problems are good examples of situations requiring complex syntheses of ideas from a vast set of disciplines including science, engineering, social science, and the humanities. Unfortunately, most ecologists have narrow training, and are not equipped to bring their environmental skills to the table with interdisciplinary teams to help solve multidisciplinary problems. To address this problem, new graduate training programs and workshops sponsored by various organizations are providing opportunities for scientists and others to learn to work together in multidisciplinary teams. Two examples of training in multidisciplinary thinking include those organized by the Santa Fe Institute and Dahlem Workshops. In addition, many interdisciplinary programs have had successes in providing insight into climate change problems including the International Panel on Climate Change, the Joint North American Carbon Program, the National Academy of Science Research Grand Challenges Initiatives, and the National Academy of Science. These programs and initiatives have had some notable success in outlining some of the problems and solutions to climate change. Scientists who can offer their specialized expertise to interdisciplinary teams will be more successful in helping to solve the complex problems related to climate change.

  14. Group Design Problems in Engineering Design Graphics.

    ERIC Educational Resources Information Center

    Kelley, David

    2001-01-01

    Describes group design techniques used within the engineering design graphics sequence at Western Washington University. Engineering and design philosophies such as concurrent engineering place an emphasis on group collaboration for the solving of design problems. (Author/DDR)

  15. The Radical Flank Effect and Cross-occupational Collaboration for Technology Development during a Power Shift.

    PubMed

    Truelove, Emily; Kellogg, Katherine C

    2016-12-01

    This 12-month ethnographic study of an early entrant into the U.S. car-sharing industry demonstrates that when an organization shifts its focus from developing radical new technology to incrementally improving this technology, the shift may spark an internal power struggle between the dominant engineering group and a challenger occupational group such as the marketing group. Analyzing 42 projects in two time periods that required collaboration between engineering and marketing during such a shift, we show how cross-occupational collaboration under these conditions can be facilitated by a radical flank threat, through which the bargaining power of moderates is strengthened by the presence of a more-radical group. In the face of a strong threat by radical members of a challenger occupational group, moderate members of the dominant engineering group may change their perceptions of their power to resist challengers' demands and begin to distinguish between the goals of radical versus more-moderate challengers. To maintain as much power as possible and prevent the more-dramatic change in engineering occupational goals demanded by radical challengers, moderate engineers may build a coalition with moderate challengers and collaborate for incremental technology development.

  16. The mGA1.0: A common LISP implementation of a messy genetic algorithm

    NASA Technical Reports Server (NTRS)

    Goldberg, David E.; Kerzic, Travis

    1990-01-01

    Genetic algorithms (GAs) are finding increased application in difficult search, optimization, and machine learning problems in science and engineering. Increasing demands are being placed on algorithm performance, and the remaining challenges of genetic algorithm theory and practice are becoming increasingly unavoidable. Perhaps the most difficult of these challenges is the so-called linkage problem. Messy GAs were created to overcome the linkage problem of simple genetic algorithms by combining variable-length strings, gene expression, messy operators, and a nonhomogeneous phasing of evolutionary processing. Results on a number of difficult deceptive test functions are encouraging with the mGA always finding global optima in a polynomial number of function evaluations. Theoretical and empirical studies are continuing, and a first version of a messy GA is ready for testing by others. A Common LISP implementation called mGA1.0 is documented and related to the basic principles and operators developed by Goldberg et. al. (1989, 1990). Although the code was prepared with care, it is not a general-purpose code, only a research version. Important data structures and global variations are described. Thereafter brief function descriptions are given, and sample input data are presented together with sample program output. A source listing with comments is also included.

  17. Distributed Parallel Processing and Dynamic Load Balancing Techniques for Multidisciplinary High Speed Aircraft Design

    NASA Technical Reports Server (NTRS)

    Krasteva, Denitza T.

    1998-01-01

    Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.

  18. NASA Perspective on Requirements for Development of Advanced Methods Predicting Unsteady Aerodynamics and Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Schuster, David M.

    2008-01-01

    Over the past three years, the National Aeronautics and Space Administration (NASA) has initiated design, development, and testing of a new human-rated space exploration system under the Constellation Program. Initial designs within the Constellation Program are scheduled to replace the present Space Shuttle, which is slated for retirement within the next three years. The development of vehicles for the Constellation system has encountered several unsteady aerodynamics challenges that have bearing on more traditional unsteady aerodynamic and aeroelastic analysis. This paper focuses on the synergy between the present NASA challenges and the ongoing challenges that have historically been the subject of research and method development. There are specific similarities in the flows required to be analyzed for the space exploration problems and those required for some of the more nonlinear unsteady aerodynamic and aeroelastic problems encountered on aircraft. The aggressive schedule, significant technical challenge, and high-priority status of the exploration system development is forcing engineers to implement existing tools and techniques in a design and application environment that is significantly stretching the capability of their methods. While these methods afford the users with the ability to rapidly turn around designs and analyses, their aggressive implementation comes at a price. The relative immaturity of the techniques for specific flow problems and the inexperience with their broad application to them, particularly on manned spacecraft flight system, has resulted in the implementation of an extensive wind tunnel and flight test program to reduce uncertainty and improve the experience base in the application of these methods. This provides a unique opportunity for unsteady aerodynamics and aeroelastic method developers to test and evaluate new analysis techniques on problems with high potential for acquisition of test and even flight data against which they can be evaluated. However, researchers may be required to alter the geometries typically used in their analyses, the types of flows analyzed, and even the techniques by which computational tools are verified and validated. This paper discusses these issues and provides some perspective on the potential for new and innovative approaches to the development of methods to attack problems in nonlinear unsteady aerodynamics.

  19. Problem Solving and Engineering Design, Introducing Bachelor Students to Engineering Practice at K. U. Leuven

    ERIC Educational Resources Information Center

    Heylen, Christel; Smet, Marc; Buelens, Hermans; Sloten, Jos Vander

    2007-01-01

    A present-day engineer has a large scientific knowledge; he is a team-player, eloquent communicator and life-long learner. At the Katholieke Universiteit Leuven, the course "Problem Solving and Engineering Design" introduces engineering students from the first semester onwards into real engineering practice and teamwork. Working in small…

  20. Engineering Education and Students' Challenges: Strategies toward Enhancing the Educational Environment in Engineering Colleges

    ERIC Educational Resources Information Center

    Alkandari, Nabila Y.

    2014-01-01

    The main goal of this research is to gain an understanding of the challenges which have to be confronted by the engineering students at the College of Engineering and Petroleum at Kuwait University. The college has a large number of students, of which three hundred and eighty five were selected on a random basis for study purposes. The results…

  1. Socio-Cultural Challenges in Global Software Engineering Education

    ERIC Educational Resources Information Center

    Hoda, Rashina; Babar, Muhammad Ali; Shastri, Yogeshwar; Yaqoob, Humaa

    2017-01-01

    Global software engineering education (GSEE) is aimed at providing software engineering (SE) students with knowledge, skills, and understanding of working in globally distributed arrangements so they can be prepared for the global SE (GSE) paradigm. It is important to understand the challenges involved in GSEE for improving the quality and…

  2. Implementing Inclusive Engineering Challenges for Elementary Students

    ERIC Educational Resources Information Center

    Silva Mangiante, Elaine; Moore, Adam

    2015-01-01

    The Next Generation Science Standards emphasize the need to promote equitable opportunities for all students to engage in science and engineering. This article offers eight tips that educators can use to support students of all abilities, including those with special learning needs, to engage in engineering challenges at the elementary level.

  3. Why Research-Informed Teaching in Engineering Education? A Review of the Evidence

    ERIC Educational Resources Information Center

    Bubou, Gordon Monday; Offor, Ibebietei Temple; Bappa, Abubakar Saddiq

    2017-01-01

    Challenges of today's engineering education (EE) are emergent, necessitating calls for its reformation to empower future engineers function optimally as innovative leaders, in both local and international contexts. These challenges: keeping pace with technological dynamism; high attrition; and most importantly, quality teaching/learning require…

  4. A heuristic approach to optimization of structural topology including self-weight

    NASA Astrophysics Data System (ADS)

    Tajs-Zielińska, Katarzyna; Bochenek, Bogdan

    2018-01-01

    Topology optimization of structures under a design-dependent self-weight load is investigated in this paper. The problem deserves attention because of its significant importance in the engineering practice, especially nowadays as topology optimization is more often applied when designing large engineering structures, for example, bridges or carrying systems of tall buildings. It is worth noting that well-known approaches of topology optimization which have been successfully applied to structures under fixed loads cannot be directly adapted to the case of design-dependent loads, so that topology generation can be a challenge also for numerical algorithms. The paper presents the application of a simple but efficient non-gradient method to topology optimization of elastic structures under self-weight loading. The algorithm is based on the Cellular Automata concept, the application of which can produce effective solutions with low computational cost.

  5. White House Science Fair

    NASA Image and Video Library

    2014-05-27

    Girl Scout troop 2612 members from Tulsa, OK take photos of one another with Google Glass at the White House Science Fair Tuesday, May 27, 2014. Avery Dodson, 6; Natalie Hurley, 8; Miriam Schaffer, 8; Claire Winton, 8; and Lucy Claire Sharp, 8 participated in the Junior FIRST Lego League's Disaster Blaster Challenge, which invites elementary-school-aged students from across the country to explore how simple machines, engineering, and math can help solve problems posed by natural disasters. The girls invented the "Flood Proof Bridge" and built a model mechanizing the bridge using motors and developing a computer program to automatically retract the bridge when flood conditions are detected. The fourth White House Science Fair was held at the White House and included 100 students from more than 30 different states who competed in science, technology, engineering, and math (STEM) competitions. (Photo Credit: NASA/Aubrey Gemignani)

  6. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  7. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  8. 40 CFR 89.102 - Effective dates, optional inclusion, flexibility for equipment manufacturers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... exemptions for technical or engineering hardship. You may request additional engine allowances under... technical or engineering problems that prevent you from meeting the requirements of this part. You must show... your engine supplier to design products. (iii) Describe the engineering or technical problems causing...

  9. Chemistry and the Internal Combustion Engine II: Pollution Problems.

    ERIC Educational Resources Information Center

    Hunt, C. B.

    1979-01-01

    Discusses pollution problems which arise from the use of internal combustion (IC) engines in the United Kingdom (UK). The IC engine exhaust emissions, controlling IC engine pollution in the UK, and some future developments are also included. (HM)

  10. Metabolic Engineering for Substrate Co-utilization

    NASA Astrophysics Data System (ADS)

    Gawand, Pratish

    Production of biofuels and bio-based chemicals is being increasingly pursued by chemical industry to reduce its dependence on petroleum. Lignocellulosic biomass (LCB) is an abundant source of sugars that can be used for producing biofuels and bio-based chemicals using fermentation. Hydrolysis of LCB results in a mixture of sugars mainly composed of glucose and xylose. Fermentation of such a sugar mixture presents multiple technical challenges at industrial scale. Most industrial microorganisms utilize sugars in a sequential manner due to the regulatory phenomenon of carbon catabolite repression (CCR). Due to sequential utilization of sugars, the LCB-based fermentation processes suffer low productivities and complicated operation. Performance of fermentation processes can be improved by metabolic engineering of microorganisms to obtain superior characteristics such as high product yield. With increased computational power and availability of complete genomes of microorganisms, use of model-based metabolic engineering is now a common practice. The problem of sequential sugar utilization, however, is a regulatory problem, and metabolic models have never been used to solve such regulatory problems. The focus of this thesis is to use model-guided metabolic engineering to construct industrial strains capable of co-utilizing sugars. First, we develop a novel bilevel optimization algorithm SimUp, that uses metabolic models to identify reaction deletion strategies to force co-utilization of two sugars. We then use SimUp to identify reaction deletion strategies to force glucose-xylose co-utilization in Escherichia coli. To validate SimUp predictions, we construct three mutants with multiple gene knockouts and test them for glucose-xylose utilization characteristics. Two mutants, designated as LMSE2 and LMSE5, are shown to co-utilize glucose and xylose in agreement with SimUp predictions. To understand the molecular mechanism involved in glucose-xylose co-utilization of the mutant LMSE2, the mutant is subjected to targeted and whole genome sequencing. Finally, we use the mutant LMSE2 to produce D-ribose from a mixture of glucose and xylose by overexpressing an endogenous phosphatase. The methods developed in this thesis are anticipated to provide a novel approach to solve sugar co-utilization problem in industrial microorganisms, and provide insights into microbial response to forced co-utilization of sugars.

  11. Environmental engineering education: examples of accreditation and quality assurance

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Catelani, M.; Manfrida, G.; Valdiserri, J.

    2013-12-01

    Environmental engineers respond to the challenges posed by a growing population, intensifying land-use pressures, natural resources exploitation as well as rapidly evolving technology. The environmental engineer must develop technically sound solutions within the framework of maintaining or improving environmental quality, complying with public policy, and optimizing the utilization of resources. The engineer provides system and component design, serves as a technical advisor in policy making and legal deliberations, develops management schemes for resources, and provides technical evaluations of systems. Through the current work of environmental engineers, individuals and businesses are able to understand how to coordinate society's interaction with the environment. There will always be a need for engineers who are able to integrate the latest technologies into systems to respond to the needs for food and energy while protecting natural resources. In general, the environment-related challenges and problems need to be faced at global level, leading to the globalization of the engineering profession which requires not only the capacity to communicate in a common technical language, but also the assurance of an adequate and common level of technical competences, knowledge and understanding. In this framework, the Europe-based EUR ACE (European Accreditation of Engineering Programmes) system, currently operated by ENAEE - European Network for Accreditation of Engineering Education can represent the proper framework and accreditation system in order to provide a set of measures to assess the quality of engineering degree programmes in Europe and abroad. The application of the accreditation model EUR-ACE, and of the National Italian Degree Courses Accreditation System, promoted by the Italian National Agency for the Evaluation of Universities and Research Institutes (ANVUR), to the Environmental Engineering Degree Courses at the University of Firenze is presented. In particular, the accreditation models of the multidisciplinary first cycle degree in Civil, Building and Environmental Engineering and the more specific second cycle degree in Environmental Engineering are discussed. The critical issues to assure the quality and the status of environmental engineering graduates, in terms of applying knowledge capacities and technical innovative competences, according to the more engineering focused EUR-ACE skill descriptors as well as with respect to the Dublin descriptors, at local and global scale are also compared. The involvement of the professional working world in the definition of goals in skills, of typical expectations of achievements and abilities is also described. The system for educating engineers in communicating knowledge and understanding, making informed judgments and choices, capacities to lifelong learning is in addition assessed. The promotion of innovative aspects related with the environmental engineering education, and of the role that science and technology could play in environmental engineering education is also taken into consideration.

  12. New Mass Properties Engineers Aerospace Ballasting Challenge Facilitated by the SAWE Community

    NASA Technical Reports Server (NTRS)

    Cutright, Amanda; Shaughnessy, Brendan

    2010-01-01

    The discipline of Mass Properties Engineering tends to find the engineers; not typically vice versa. In this case, two engineers quickly found their new responsibilities deep in many aspects of mass properties engineering and required to meet technical challenges in a fast paced environment. As part of NASA's Constellation Program, a series of flight tests will be conducted to evaluate components of the new spacecraft launch vehicles. One of these tests is the Pad Abort 1 (PA-1) flight test which will test the Launch Abort System (LAS), a system designed to provide escape for astronauts in the event of an emergency. The Flight Test Articles (FTA) used in this flight test are required to match mass properties corresponding to the operational vehicle, which has a continually evolving design. Additionally, since the structure and subsystems for the Orion Crew Module (CM) FTA are simplified versions of the final product, thousands of pounds of ballast are necessary to achieve the desired mass properties. These new mass properties engineers are responsible for many mass properties aspects in support of the flight test, including meeting the ballasting challenge for the CM Boilerplate FTA. SAWE expert and experienced mass properties engineers, both those that are directly on the team and many that supported via a variety of Society venues, significantly contributed to facilitating the success of addressing this particular mass properties ballasting challenge, in addition to many other challenges along the way. This paper discusses the details regarding the technical aspects of this particular mass properties challenge, as well as identifies recommendations for new mass properties engineers that were learned from the SAWE community along the way.

  13. Engineering nanomaterials-based biosensors for food safety detection.

    PubMed

    Lv, Man; Liu, Yang; Geng, Jinhui; Kou, Xiaohong; Xin, Zhihong; Yang, Dayong

    2018-05-30

    Food safety always remains a grand global challenge to human health, especially in developing countries. To solve food safety pertained problems, numerous strategies have been developed to detect biological and chemical contaminants in food. Among these approaches, nanomaterials-based biosensors provide opportunity to realize rapid, sensitive, efficient and portable detection, overcoming the restrictions and limitations of traditional methods such as complicated sample pretreatment, long detection time, and relying on expensive instruments and well-trained personnel. In this review article, we provide a cross-disciplinary perspective to review the progress of nanomaterials-based biosensors for the detection of food contaminants. The review article is organized by the category of food contaminants including pathogens/toxins, heavy metals, pesticides, veterinary drugs and illegal additives. In each category of food contaminant, the biosensing strategies are summarized including optical, colorimetric, fluorescent, electrochemical, and immune- biosensors; the relevant analytes, nanomaterials and biosensors are analyzed comprehensively. Future perspectives and challenges are also discussed briefly. We envision that our review could bridge the gap between the fields of food science and nanotechnology, providing implications for the scientists or engineers in both areas to collaborate and promote the development of nanomaterials-based biosensors for food safety detection. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Recent advances in automated protein design and its future challenges.

    PubMed

    Setiawan, Dani; Brender, Jeffrey; Zhang, Yang

    2018-04-25

    Protein function is determined by protein structure which is in turn determined by the corresponding protein sequence. If the rules that cause a protein to adopt a particular structure are understood, it should be possible to refine or even redefine the function of a protein by working backwards from the desired structure to the sequence. Automated protein design attempts to calculate the effects of mutations computationally with the goal of more radical or complex transformations than are accessible by experimental techniques. Areas covered: The authors give a brief overview of the recent methodological advances in computer-aided protein design, showing how methodological choices affect final design and how automated protein design can be used to address problems considered beyond traditional protein engineering, including the creation of novel protein scaffolds for drug development. Also, the authors address specifically the future challenges in the development of automated protein design. Expert opinion: Automated protein design holds potential as a protein engineering technique, particularly in cases where screening by combinatorial mutagenesis is problematic. Considering solubility and immunogenicity issues, automated protein design is initially more likely to make an impact as a research tool for exploring basic biology in drug discovery than in the design of protein biologics.

  15. Design Patterns for Learning and Assessment: Facilitating the Introduction of a Complex Simulation-Based Learning Environment into a Community of Instructors

    NASA Astrophysics Data System (ADS)

    Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.

    2010-04-01

    Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.

  16. An investigation of difficulties experienced by students developing unified modelling language (UML) class and sequence diagrams

    NASA Astrophysics Data System (ADS)

    Sien, Ven Yu

    2011-12-01

    Object-oriented analysis and design (OOAD) is not an easy subject to learn. There are many challenges confronting students when studying OOAD. Students have particular difficulty abstracting real-world problems within the context of OOAD. They are unable to effectively build object-oriented (OO) models from the problem domain because they essentially do not know "what" to model. This article investigates the difficulties and misconceptions undergraduate students have with analysing systems using unified modelling language analysis class and sequence diagrams. These models were chosen because they represent important static and dynamic aspects of the software system under development. The results of this study will help students produce effective OO models, and facilitate software engineering lecturers design learning materials and approaches for introductory OOAD courses.

  17. Designing collective behavior in a termite-inspired robot construction team.

    PubMed

    Werfel, Justin; Petersen, Kirstin; Nagpal, Radhika

    2014-02-14

    Complex systems are characterized by many independent components whose low-level actions produce collective high-level results. Predicting high-level results given low-level rules is a key open challenge; the inverse problem, finding low-level rules that give specific outcomes, is in general still less understood. We present a multi-agent construction system inspired by mound-building termites, solving such an inverse problem. A user specifies a desired structure, and the system automatically generates low-level rules for independent climbing robots that guarantee production of that structure. Robots use only local sensing and coordinate their activity via the shared environment. We demonstrate the approach via a physical realization with three autonomous climbing robots limited to onboard sensing. This work advances the aim of engineering complex systems that achieve specific human-designed goals.

  18. The effect of Problem/Project-Based Learning on a desired skill set for construction professionals

    NASA Astrophysics Data System (ADS)

    Sirotiak, Todd L.

    The purpose of this study was to investigate if a Problem/Project-Based Learning (PBL) approach can affect certain non-technical, "soft" skills of construction engineers. Such skills include leadership, adaptability, and stress management. In mixed design research, quantitative and qualitative data are assembled and analyzed collectively. For this study, two separate assessment tools were used for the quantitative portion, while open-ended written reflections and a partially closed-ended senior questionnaire were implemented for the qualitative portion. A hypothetical model was used to investigate certain soft skills based on prior research documenting need. Skills investigated were confidence, stress coping, leadership, communication skills, adaptability, and management skills. Descriptive statistics, open-ended final written reflections, and a partially closed-ended senior questionnaire were used to analyze the data. PBL is a process in which the students are challenged to develop realistic solutions on open, less structured, real world type problems. The results of this study performed with the combined count of nearly 60 students suggest that PBL can influence several soft skills of senior construction engineers. Specifically, these findings demonstrate the following: (a) PBL appears to affect students' soft skills; (b) students appear to recognize the realism and "real world" applicability that PBL brings to their skill development; and (c) the data suggest that the experience is holistic and offers opportunities for balanced growth in several ways. Some key competencies such as communication and leadership indicated significant enhancements. Although this study was limited to one academic year of the university's construction engineering program, it provides interesting insight to changes within the time period investigated. This study should be replicated in other construction engineering environments to investigate a larger population sample. In addition, industry, professional consultants, and academic entities are encouraged to review current learning methods to ensure that they are implementing the findings and methodology offered in this study.

  19. Software-engineering challenges of building and deploying reusable problem solvers.

    PubMed

    O'Connor, Martin J; Nyulas, Csongor; Tu, Samson; Buckeridge, David L; Okhmatovskaia, Anna; Musen, Mark A

    2009-11-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task-method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach.

  20. Software-engineering challenges of building and deploying reusable problem solvers

    PubMed Central

    O’CONNOR, MARTIN J.; NYULAS, CSONGOR; TU, SAMSON; BUCKERIDGE, DAVID L.; OKHMATOVSKAIA, ANNA; MUSEN, MARK A.

    2012-01-01

    Problem solving methods (PSMs) are software components that represent and encode reusable algorithms. They can be combined with representations of domain knowledge to produce intelligent application systems. A goal of research on PSMs is to provide principled methods and tools for composing and reusing algorithms in knowledge-based systems. The ultimate objective is to produce libraries of methods that can be easily adapted for use in these systems. Despite the intuitive appeal of PSMs as conceptual building blocks, in practice, these goals are largely unmet. There are no widely available tools for building applications using PSMs and no public libraries of PSMs available for reuse. This paper analyzes some of the reasons for the lack of widespread adoptions of PSM techniques and illustrate our analysis by describing our experiences developing a complex, high-throughput software system based on PSM principles. We conclude that many fundamental principles in PSM research are useful for building knowledge-based systems. In particular, the task–method decomposition process, which provides a means for structuring knowledge-based tasks, is a powerful abstraction for building systems of analytic methods. However, despite the power of PSMs in the conceptual modeling of knowledge-based systems, software engineering challenges have been seriously underestimated. The complexity of integrating control knowledge modeled by developers using PSMs with the domain knowledge that they model using ontologies creates a barrier to widespread use of PSM-based systems. Nevertheless, the surge of recent interest in ontologies has led to the production of comprehensive domain ontologies and of robust ontology-authoring tools. These developments present new opportunities to leverage the PSM approach. PMID:23565031

  1. Getting a Cohesive Answer from a Common Start: Scalable Multidisciplinary Analysis through Transformation of a System Model

    NASA Technical Reports Server (NTRS)

    Cole, Bjorn; Chung, Seung H.

    2012-01-01

    One of the challenges of systems engineering is in working multidisciplinary problems in a cohesive manner. When planning analysis of these problems, system engineers must tradeoff time and cost for analysis quality and quantity. The quality is associated with the fidelity of the multidisciplinary models and the quantity is associated with the design space that can be analyzed. The tradeoff is due to the resource intensive process of creating a cohesive multidisciplinary system model and analysis. Furthermore, reuse or extension of the models used in one stage of a product life cycle for another is a major challenge. Recent developments have enabled a much less resource-intensive and more rigorous approach than handwritten translation scripts or codes of multidisciplinary models and their analyses. The key is to work from a core system model defined in a MOF-based language such as SysML and in leveraging the emerging tool ecosystem, such as Query-View- Transform (QVT), from the OMG community. SysML was designed to model multidisciplinary systems and analyses. The QVT standard was designed to transform SysML models. The Europa Hability Mission (EHM) team has begun to exploit these capabilities. In one case, a Matlab/Simulink model is generated on the fly from a system description for power analysis written in SysML. In a more general case, a symbolic mathematical framework (supported by Wolfram Mathematica) is coordinated by data objects transformed from the system model, enabling extremely flexible and powerful tradespace exploration and analytical investigations of expected system performance.

  2. Can modeling of HIV treatment processes improve outcomes? Capitalizing on an operations research approach to the global pandemic

    PubMed Central

    Xiong, Wei; Hupert, Nathaniel; Hollingsworth, Eric B; O'Brien, Megan E; Fast, Jessica; Rodriguez, William R

    2008-01-01

    Background Mathematical modeling has been applied to a range of policy-level decisions on resource allocation for HIV care and treatment. We describe the application of classic operations research (OR) techniques to address logistical and resource management challenges in HIV treatment scale-up activities in resource-limited countries. Methods We review and categorize several of the major logistical and operational problems encountered over the last decade in the global scale-up of HIV care and antiretroviral treatment for people with AIDS. While there are unique features of HIV care and treatment that pose significant challenges to effective modeling and service improvement, we identify several analogous OR-based solutions that have been developed in the service, industrial, and health sectors. Results HIV treatment scale-up includes many processes that are amenable to mathematical and simulation modeling, including forecasting future demand for services; locating and sizing facilities for maximal efficiency; and determining optimal staffing levels at clinical centers. Optimization of clinical and logistical processes through modeling may improve outcomes, but successful OR-based interventions will require contextualization of response strategies, including appreciation of both existing health care systems and limitations in local health workforces. Conclusion The modeling techniques developed in the engineering field of operations research have wide potential application to the variety of logistical problems encountered in HIV treatment scale-up in resource-limited settings. Increasing the number of cross-disciplinary collaborations between engineering and public health will help speed the appropriate development and application of these tools. PMID:18680594

  3. Introductory Level Problems Illustrating Concepts in Pharmaceutical Engineering

    ERIC Educational Resources Information Center

    McIver, Keith; Whitaker, Kathryn; De Delva, Vladimir; Farrell, Stephanie; Savelski, Mariano J.; Slater, C. Stewart

    2012-01-01

    Textbook style problems including detailed solutions introducing pharmaceutical topics at the level of an introductory chemical engineering course have been created. The problems illustrate and teach subjects which students would learn if they were to pursue a career in pharmaceutical engineering, including the unique terminology of the field,…

  4. Enhanced and Conventional Project-Based Learning in an Engineering Design Module

    ERIC Educational Resources Information Center

    Chua, K. J.; Yang, W. M.; Leo, H. L.

    2014-01-01

    Engineering education focuses chiefly on students' ability to solve problems. While most engineering students are proficient in solving paper questions, they may not be proficient at providing optimal solutions to pragmatic project-based problems that require systematic learning strategy, innovation, problem-solving, and execution. The…

  5. Undergraduate Research in Physics as a course for Engineering and Computer Science Majors

    NASA Astrophysics Data System (ADS)

    O'Brien, James; Rueckert, Franz; Sirokman, Greg

    2017-01-01

    Undergraduate research has become more and more integral to the functioning of higher educational institutions. At many institutions undergraduate research is conducted as capstone projects in the pure sciences, however, science faculty at some schools (including that of the authors) face the challenge of not having science majors. Even at these institutions, a select population of high achieving engineering students will often express a keen interest in conducting pure science research. Since a foray into science research provides the student the full exposure to the scientific method and scientific collaboration, the experience can be quite rewarding and beneficial to the development of the student as a professional. To this end, the authors have been working to find new contexts in which to offer research experiences to non- science majors, including a new undergraduate research class conducted by physics and chemistry faculty. An added benefit is that these courses are inherently interdisciplinary. Students in the engineering and computer science fields step into physics and chemistry labs to solve science problems, often invoking their own relevant expertise. In this paper we start by discussing the common themes and outcomes of the course. We then discuss three particular projects that were conducted with engineering students and focus on how the undergraduate research experience enhanced their already rigorous engineering curriculum.

  6. Gap Junction Intercellular Communication: A Review of a Potential Platform to Modulate Craniofacial Tissue Engineering

    PubMed Central

    Rossello, Ricardo A.; Kohn, David H.

    2009-01-01

    Defects in craniofacial tissues, resulting from trauma, congenital abnormalities, oncologic resection or progressive deforming diseases, may result in aesthetic deformity, pain and reduced function. Restoring the structure, function and aesthetics of craniofacial tissues represents a substantial clinical problem in need of new solutions. More biologically-interactive biomaterials could potentially improve the treatment of craniofacial defects, and an understanding of developmental processes may help identify strategies and materials that can be used in tissue engineering. One such strategy that can potentially advance tissue engineering is cell–cell communication. Gap junction intercellular communication is the most direct way of achieving such signaling. Gap junction communication through connexin-mediated junctions, in particular connexin 43 (Cx43), plays a major role bone development. Given the important role of Cx43 in controlling development and differentiation, especially in bone cells, controlling the expression of Cx43 may provide control over cell-to-cell communication and may help overcome some of the challenges in craniofacial tissue engineering. Following a review of gap junctions in bone cells, the ability to enhance cell–cell communication and osteogenic differentiation via control of gap junctions is discussed, as is the potential utility of this approach in craniofacial tissue engineering. PMID:18481782

  7. High-End Computing Challenges in Aerospace Design and Engineering

    NASA Technical Reports Server (NTRS)

    Bailey, F. Ronald

    2004-01-01

    High-End Computing (HEC) has had significant impact on aerospace design and engineering and is poised to make even more in the future. In this paper we describe four aerospace design and engineering challenges: Digital Flight, Launch Simulation, Rocket Fuel System and Digital Astronaut. The paper discusses modeling capabilities needed for each challenge and presents projections of future near and far-term HEC computing requirements. NASA's HEC Project Columbia is described and programming strategies presented that are necessary to achieve high real performance.

  8. Formal Abstraction in Engineering Education--Challenges and Technology Support

    ERIC Educational Resources Information Center

    Neuper, Walther A.

    2017-01-01

    This is a position paper in the field of Engineering Education, which is at the very beginning in Europe. It relates challenges in the new field to the emerging technology of (Computer) Theorem Proving (TP). Experience shows, that "teaching" abstract models, for instance the wave equation in mechanical engineering and in electrical…

  9. Embedding Enterprise in Science and Engineering Departments

    ERIC Educational Resources Information Center

    Handscombe, Robert D.; Rodriguez-Falcon, Elena; Patterson, Eann A.

    2008-01-01

    Purpose: This paper aims to focus on the attempts to implement the challenges of teaching enterprise to science and engineering students by the embedding approach chosen by the White Rose Centre for Enterprise (WRCE), one of the centres formed under the Science Engineering Challenge in the UK. Design/methodology/approach: WRCE's objective was to…

  10. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. © 2013 Published by Elsevier Ltd.

  11. Use of bioreactors in maxillofacial tissue engineering.

    PubMed

    Depprich, Rita; Handschel, Jörg; Wiesmann, Hans-Peter; Jäsche-Meyer, Janine; Meyer, Ulrich

    2008-07-01

    Engineering of various oral tissues is a challenging issue in contemporary maxillofacial reconstructive research. In contrast to the classic biomaterial approach, tissue engineering is based on the understanding of cell driven tissue formation, and aims to generate new functional tissues, rather than just to implant non-living space holders. Researchers hope to reach this goal by combining knowledge from biology, physics, materials science, engineering, and medicine in an integrated manner. Several major technical advances have been made in this field during the last decade, and clinical application is at the stage of first clinical trials. A recent limitation of extracorporally engineered cellular substitutes is the problem of growing enlarged tissues ex vivo. One of the main research topics is therefore to scale up artificial tissue constructs for use in extended defect situations. To overcome the monolayer inherent two-dimensional cell assembly, efforts have been made to grow cells in a three-dimensional space. Bioreactors have therefore been in focus for a considerable time to build up enlarged tissues. The shift from the ex vivo approach of cell multiplication to the generation of a real tissue growth is mirrored by the development of bioreactors, enabling scientists to grow more complex tissue constructs. This present review intends to provide an overview of the current state of art in maxillofacial tissue engineering by the use of bioreactors, its limitations and hopes, as well as the future research trends.

  12. Effects of mechanical loading on human mesenchymal stem cells for cartilage tissue engineering.

    PubMed

    Choi, Jane Ru; Yong, Kar Wey; Choi, Jean Yu

    2018-03-01

    Today, articular cartilage damage is a major health problem, affecting people of all ages. The existing conventional articular cartilage repair techniques, such as autologous chondrocyte implantation (ACI), microfracture, and mosaicplasty, have many shortcomings which negatively affect their clinical outcomes. Therefore, it is essential to develop an alternative and efficient articular repair technique that can address those shortcomings. Cartilage tissue engineering, which aims to create a tissue-engineered cartilage derived from human mesenchymal stem cells (MSCs), shows great promise for improving articular cartilage defect therapy. However, the use of tissue-engineered cartilage for the clinical therapy of articular cartilage defect still remains challenging. Despite the importance of mechanical loading to create a functional cartilage has been well demonstrated, the specific type of mechanical loading and its optimal loading regime is still under investigation. This review summarizes the most recent advances in the effects of mechanical loading on human MSCs. First, the existing conventional articular repair techniques and their shortcomings are highlighted. The important parameters for the evaluation of the tissue-engineered cartilage, including chondrogenic and hypertrophic differentiation of human MSCs are briefly discussed. The influence of mechanical loading on human MSCs is subsequently reviewed and the possible mechanotransduction signaling is highlighted. The development of non-hypertrophic chondrogenesis in response to the changing mechanical microenvironment will aid in the establishment of a tissue-engineered cartilage for efficient articular cartilage repair. © 2017 Wiley Periodicals, Inc.

  13. Designing Liquid Rocket Engine Injectors for Performance, Stability, and Cost

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.; West, Jeffrey S.

    2014-01-01

    NASA is developing the Space Launch System (SLS) for crewed exploration missions beyond low Earth orbit. Marshall Space Flight Center (MSFC) is designing rocket engines for the SLS Advanced Booster (AB) concepts being developed to replace the Shuttle-derived solid rocket boosters. One AB concept uses large, Rocket-Propellant (RP)-fueled engines that pose significant design challenges. The injectors for these engines require high performance and stable operation while still meeting aggressive cost reduction goals for access to space. Historically, combustion stability problems have been a critical issue for such injector designs. Traditional, empirical injector design tools and methodologies, however, lack the ability to reliably predict complex injector dynamics that often lead to combustion stability. Reliance on these tools alone would likely result in an unaffordable test-fail-fix cycle for injector development. Recently at MSFC, a massively parallel computational fluid dynamics (CFD) program was successfully applied in the SLS AB injector design process. High-fidelity reacting flow simulations were conducted for both single-element and seven-element representations of the full-scale injector. Data from the CFD simulations was then used to significantly augment and improve the empirical design tools, resulting in a high-performance, stable injector design.

  14. 1999 NASA Seal/Secondary Air System Workshop

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M.; Hendricks, Robert C.

    2000-01-01

    NASA Glenn hosted the Seals/Secondary Air System Workshop on October 2829, 1999. Each year NASA and our industry and university partners share their respective seal technology development. We use these workshops as a technical forum to exchange recent advancements and "lessons-learned" in advancing seal technology and solving problems of common interest. As in the past we are publishing two volumes. Volume 1 will be publicly available and will be made available on-line through the web page address listed at the end of this chapter. Volume 2 will be restricted under International Traffic and Arms Regulations (I.T.A.R.) In this conference participants gained an appreciation of NASA's new Ultra Efficient Engine Technology (UEET) program and how this program will be partnering with ongoing DOE -industrial power production and DOD- military aircraft engine programs. In addition to gaining a deeper understanding into sealing advancements and challenges that lie ahead, participants gained new working and personal relationships with the attendees. When the seals and secondary fluid management program was initiated, the emphasis was on rocket engines with spinoffs to gas turbines. Today, the opposite is true and we are, again building our involvement in the rocket engine and space vehicle demonstration programs.

  15. WaterBotics: Pooling Students to STEM

    NASA Astrophysics Data System (ADS)

    Stambaugh, Beverly

    2015-04-01

    The STEM workforce of the future is sitting in today's K-12 classrooms, attending summer camps, and participating in after-school programs. How do we attract more youth -- particularly those currently underrepresented in STEM fields such as girls and minorities -- to explore the marvels of engineering and science? How do we entice them to become active participants - not merely witnesses - in the creation of solutions for our global neighborhood's greatest challenges, from environmental cleanup, to safe and efficient energy production, to improvements in healthcare? The WaterBotics program is one vehicle that has demonstrated success in engaging young learners. This underwater robotics program is designed to provide hands-on experiences for middle and high school age youth to engineering design, information technology tools, and science concepts, and to increase awareness and interest in engineering and IT careers. Middle and high school participants demonstrate increased enjoyment in studying science and engineering and interest in STEM careers as a result of WaterBotics. Such results can be seen from a statewide initiative that reached more than 2,600 middle and high school students in New Jersey in 2006-09 where student learning of science concepts and programming increased (McGrath et al, 2009, 2008). These findings provide the impetus to expand the WaterBotics program nationally. The curriculum can be used either in traditional classroom settings or in after-school and summer-camp settings. This problem-based program requires teams of students to work together to design, build, test, and redesign underwater robots, or "bots" made of LEGO® and other components. Students use the NXT and LEGO Mindstorms® software to program their robots to maneuver in the water, thereby gaining valuable experience with computer programming, as well as 21st Century skills. Teams must complete a series of increasingly sophisticated challenges which culminates with a final challenge that integrates learning from the prior challenges. The nature of these challenges allows for easy adaptation to various real-world scenarios for students to engage in, such as developing a submarine for ocean floor study or designing a vehicle to explore and mine the ocean for mineral resources. First-hand experience with WaterBotics curriculum has shown the increased engagement and excitement for STEM. Starting with a peanut butter and jelly sandwich leads to amazing discovery as students work through the engineering design process, sketching and building their LEGO robots and learning the steps to simple programs that allow their robotic creations to complete various tasks. With LEGOs being so easy to use, students can easily revise their design over and over again until it looks and works as it should. Once the students have the opportunity to test their design in the water for the first time, they are hooked. They can see that something they designed and built actually completes the task, even if it takes multiple tries, and they want to try the next challenge.

  16. FY10 Engineering Innovations, Research and Technology Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, M A; Aceves, S M; Paulson, C N

    This report summarizes key research, development, and technology advancements in Lawrence Livermore National Laboratory's Engineering Directorate for FY2010. These efforts exemplify Engineering's nearly 60-year history of developing and applying the technology innovations needed for the Laboratory's national security missions, and embody Engineering's mission to ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Leading off the report is a section featuring compelling engineering innovations. These innovations range from advanced hydrogen storage that enables clean vehicles, to new nuclear material detection technologies, to a landmine detection system using ultra-wideband ground-penetrating radar. Many have been recognized with R&D Magazine's prestigious R&Dmore » 100 Award; all are examples of the forward-looking application of innovative engineering to pressing national problems and challenging customer requirements. Engineering's capability development strategy includes both fundamental research and technology development. Engineering research creates the competencies of the future where discovery-class groundwork is required. Our technology development (or reduction to practice) efforts enable many of the research breakthroughs across the Laboratory to translate from the world of basic research to the national security missions of the Laboratory. This portfolio approach produces new and advanced technological capabilities, and is a unique component of the value proposition of the Lawrence Livermore Laboratory. The balance of the report highlights this work in research and technology, organized into thematic technical areas: Computational Engineering; Micro/Nano-Devices and Structures; Measurement Technologies; Engineering Systems for Knowledge Discovery; and Energy Manipulation. Our investments in these areas serve not only known programmatic requirements of today and tomorrow, but also anticipate the breakthrough engineering innovations that will be needed in the future.« less

  17. Engineering Complex Tissues

    PubMed Central

    MIKOS, ANTONIOS G.; HERRING, SUSAN W.; OCHAREON, PANNEE; ELISSEEFF, JENNIFER; LU, HELEN H.; KANDEL, RITA; SCHOEN, FREDERICK J.; TONER, MEHMET; MOONEY, DAVID; ATALA, ANTHONY; VAN DYKE, MARK E.; KAPLAN, DAVID; VUNJAK-NOVAKOVIC, GORDANA

    2010-01-01

    This article summarizes the views expressed at the third session of the workshop “Tissue Engineering—The Next Generation,” which was devoted to the engineering of complex tissue structures. Antonios Mikos described the engineering of complex oral and craniofacial tissues as a “guided interplay” between biomaterial scaffolds, growth factors, and local cell populations toward the restoration of the original architecture and function of complex tissues. Susan Herring, reviewing osteogenesis and vasculogenesis, explained that the vascular arrangement precedes and dictates the architecture of the new bone, and proposed that engineering of osseous tissues might benefit from preconstruction of an appropriate vasculature. Jennifer Elisseeff explored the formation of complex tissue structures based on the example of stratified cartilage engineered using stem cells and hydrogels. Helen Lu discussed engineering of tissue interfaces, a problem critical for biological fixation of tendons and ligaments, and the development of a new generation of fixation devices. Rita Kandel discussed the challenges related to the re-creation of the cartilage-bone interface, in the context of tissue engineered joint repair. Frederick Schoen emphasized, in the context of heart valve engineering, the need for including the requirements derived from “adult biology” of tissue remodeling and establishing reliable early predictors of success or failure of tissue engineered implants. Mehmet Toner presented a review of biopreservation techniques and stressed that a new breakthrough in this field may be necessary to meet all the needs of tissue engineering. David Mooney described systems providing temporal and spatial regulation of growth factor availability, which may find utility in virtually all tissue engineering and regeneration applications, including directed in vitro and in vivo vascularization of tissues. Anthony Atala offered a clinician’s perspective for functional tissue regeneration, and discussed new biomaterials that can be used to develop new regenerative technologies. PMID:17518671

  18. Exploring Earth Systems Through STEM

    NASA Astrophysics Data System (ADS)

    Chen, Loris; Salmon, Jennifer; Burns, Courtney

    2015-04-01

    During the 2010 school year, grade 8 science teachers at Dwight D. Eisenhower Middle School in Wyckoff, New Jersey, began using the draft of A Framework for K-12 Science Education to transition to the Next Generation Science Standards. In an evolutionary process of testing and revising, teachers work collaboratively to develop problem-based science, technology, engineering, and mathematics (STEM) units that integrate earth science, physical science, and life science topics. Students explore the interconnections of Earth's atmosphere, lithosphere, hydrosphere, and biosphere through problem-based learning. Problem-based learning engages students in (1) direct observations in the field and classroom, (2) collection and analysis of data from remote sensors and hand-held sensors, and (3) analysis of physical, mathematical, and virtual models. Students use a variety of technologies and applications in their investigations, for example iPad apps, Google Classroom, and Vernier sensors. Data from NASA, NOAA, non-government organizations, and scientific research papers inspire student questions and spark investigations. Teachers create materials and websites to support student learning. Teachers curate reading, video, simulations, and other Internet resources for students. Because curriculum is standards-based as opposed to textbook-based, teacher participation in workshops and institutes frequently translates into new or improved study units. Recent programs include Toyota International Teacher Program to Costa Rica, Japan Society Going Global, Siemens STEM Academy, U.S. Naval Academy SET Sail, and NJSTA Maitland P. Simmons Memorial Award Summer Institute. Unit themes include weather and climate, introduction to general chemistry and biochemistry, and cells and heredity. Each if the three 12-week units has embedded engineering challenges inspired by current events, community needs, and/or the work of scientists. The unit segments begin with a problem, progress to observations and data collection, and end with an engineering application. English language arts and mathematics skills are developed through performance assessments that include written arguments that require students to state a claim and support the claim with evidence, analysis, and reasoning. Student selected capstone projects are completed during the final three weeks of the school year. Partnerships with universities, research scientists, and science centers are essential to the development of unit challenges. Collaborative projects have included studies of iron cycling in the Ross Sea with scientists from Rutgers University, climate and climate change using NASA data and resources from Liberty Science Center, human and natural impacts on endangered species with San Diego Zoo Institute for Conservation Research, and air quality monitoring with the University of Northern Iowa. Grant funds have supported student research projects involving air quality improvement, urban heat island mitigation, alternative energies, and sustainability.

  19. Effect of a "Look-Ahead" Problem on Undergraduate Engineering Students' Concept Comprehension

    ERIC Educational Resources Information Center

    Goodman, Kevin; Davis, Julian; McDonald, Thomas

    2016-01-01

    In an effort to motivate undergraduate engineering students to prepare for class by reviewing material before lectures, a "Look-Ahead" problem was utilized. Students from two undergraduate engineering courses; Statics and Electronic Circuits, were assigned problems from course material that had not yet been covered in class. These…

  20. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Technical Reports Server (NTRS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-01-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bi-propellant engines used in the Apollo program. A multi-use engine. one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, bum duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  1. Technology Challenges for Deep-Throttle Cryogenic Engines for Space Exploration

    NASA Astrophysics Data System (ADS)

    Brown, Kendall K.; Nelson, Karl W.

    2005-02-01

    Historically, cryogenic rocket engines have not been used for in-space applications due to their additional complexity, the mission need for high reliability, and the challenges of propellant boil-off. While the mission and vehicle architectures are not yet defined for the lunar and Martian robotic and human exploration objectives, cryogenic rocket engines offer the potential for higher performance and greater architecture/mission flexibility. In-situ cryogenic propellant production could enable a more robust exploration program by significantly reducing the propellant mass delivered to low earth orbit, thus warranting the evaluation of cryogenic rocket engines versus the hypergolic bipropellant engines used in the Apollo program. A multi-use engine, one which can provide the functionality that separate engines provided in the Apollo mission architecture, is desirable for lunar and Mars exploration missions because it increases overall architecture effectiveness through commonality and modularity. The engine requirement derivation process must address each unique mission application and each unique phase within each mission. The resulting requirements, such as thrust level, performance, packaging, burn duration, number of operations; required impulses for each trajectory phase; operation after extended space or surface exposure; availability for inspection and maintenance; throttle range for planetary descent, ascent, acceleration limits and many more must be addressed. Within engine system studies, the system and component technology, capability, and risks must be evaluated and a balance between the appropriate amount of technology-push and technology-pull must be addressed. This paper will summarize many of the key technology challenges associated with using high-performance cryogenic liquid propellant rocket engine systems and components in the exploration program architectures. The paper is divided into two areas. The first area describes how the mission requirements affect the engine system requirements and create system level technology challenges. An engine system architecture for multiple applications or a family of engines based upon a set of core technologies, design, and fabrication approaches may reduce overall programmatic cost and risk. The engine system discussion will also address the characterization of engine cycle figures of merit, configurations, and design approaches for some in-space vehicle alternatives under consideration. The second area evaluates the component-level technology challenges induced from the system requirements. Component technology issues are discussed addressing injector, thrust chamber, ignition system, turbopump assembly, and valve design for the challenging requirements of high reliability, robustness, fault tolerance, deep throttling, reasonable performance (with respect to weight and specific impulse).

  2. Hydrogel scaffolds for tissue engineering: Progress and challenges

    PubMed Central

    El-Sherbiny, Ibrahim M.; Yacoub, Magdi H.

    2013-01-01

    Designing of biologically active scaffolds with optimal characteristics is one of the key factors for successful tissue engineering. Recently, hydrogels have received a considerable interest as leading candidates for engineered tissue scaffolds due to their unique compositional and structural similarities to the natural extracellular matrix, in addition to their desirable framework for cellular proliferation and survival. More recently, the ability to control the shape, porosity, surface morphology, and size of hydrogel scaffolds has created new opportunities to overcome various challenges in tissue engineering such as vascularization, tissue architecture and simultaneous seeding of multiple cells. This review provides an overview of the different types of hydrogels, the approaches that can be used to fabricate hydrogel matrices with specific features and the recent applications of hydrogels in tissue engineering. Special attention was given to the various design considerations for an efficient hydrogel scaffold in tissue engineering. Also, the challenges associated with the use of hydrogel scaffolds were described. PMID:24689032

  3. Challenges of the English Teacher in the Engineering Faculty

    ERIC Educational Resources Information Center

    Astrid, Ramirez Valencia; Isabel, Borja-Alarcón; Alfonso, López-Vega

    2018-01-01

    Changes experienced in recent times focus their attention on new and multiple challenges that must be assumed by the English teacher, in the engineering context, which becomes a challenge against the demands by the current world from the English teacher in Colombia. This situation needs to be analyzed and studied. This article addresses the…

  4. Hard but Not Too Hard: Challenging Courses and Engineering Students

    ERIC Educational Resources Information Center

    Martin, Jason H.; Hands, Krista B.; Lancaster, Stephen M.; Trytten, Deborah A.; Murphy, Teri J.

    2008-01-01

    Some professors claim college students seek the easy way out and prefer classes that lack challenge. In a multidisciplinary and multi-institutional ethnographic research study of the attainment of gender parity in an engineering department, it emerged that student attitudes toward challenge did not support this perception. By far, the majority of…

  5. Evolutions of Advanced Stamping CAE — Technology Adventures and Business Impact on Automotive Dies and Stamping

    NASA Astrophysics Data System (ADS)

    Wang, Chuantao (C. T.)

    2005-08-01

    In the past decade, sheet metal forming and die development has been transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, has played a key role in this historical transition. The stamping simulation technology and its industrial applications have greatly impacted automotive sheet metal product design, die developments, die construction and tryout, and production stamping. The stamping CAE community has successfully resolved the traditional formability problems such as splits and wrinkles. The evolution of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of (1) continuously improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness), (2) resolving those historically difficult-to-resolve problems such as dimensional quality problems (springback and twist) and surface quality problems (distortion and skid/impact lines), (3) resolving total manufacturability problems in line die operations including blanking, draw/redraw, trim/piercing, and flanging, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of increasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements in automotive stamping.

  6. Systems Engineering and Point of Care Testing: Report from the NIBIB POCT/Systems Engineering Workshop

    PubMed Central

    Stahl, James E; McGowan, Heather; DiResta, Ellen; Gaydos, Charlotte A.; Klapperich, Catherine; Parrish, John; Korte, Brenda

    2015-01-01

    The first part of this manuscript is an introduction to systems engineering and how it may be applied to health care and point of care testing (POCT). Systems engineering is an interdisciplinary field that seeks to better understand and manage changes in complex systems and projects as whole. Systems are sets of interconnected elements which interact with each other, are dynamic, change over time and are subject to complex behaviors. The second part of this paper reports on the results of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) workshop exploring the future of point of care testing and technologies and the recognition that these new technologies do not exist in isolation. That they exist within ecosystems of other technologies and systems; and these systems influence their likelihood of success or failure and their effectiveness. In this workshop, a diverse group of individuals from around the country, from disciplines ranging from clinical care, engineering, regulatory affairs and many others to members of the three major National Institutes of Health (NIH) funded efforts in the areas the Centers for POCT for sexually transmitted disease, POCT for the future of Cancer Care, POCT primary care research network, gathered together for a modified deep dive workshop exploring the current state of the art, mapping probable future directions and developing longer term goals. The invitees were broken up into 4 thematic groups: Home, Outpatient, Public/shared space and Rural/global. Each group proceeded to explore the problem and solution space for point of care tests and technology within their theme. While each thematic area had specific challenges, many commonalities also emerged. This effort thus helped create a conceptual framework for POCT as well as identifying many of the challenges for POCT going forward. Four main dimensions were identified as defining the functional space for both point of care testing and treatment, these are: Time, Location, Interpretation and Tempo. A framework is presented in this paper. There were several current and future challenges identified through the workshop. These broadly fall into the categories of technology development and implementation. More specifically these are in the areas of: 1) Design, 2) Patient driven demand and technology, 3) Information Characteristics and Presentation, 4) Health Information Systems, 5) Connectivity, 6) Workflow and implementation, 7) Maintenance/Cost, and 8) Quality Control. Definitions of these challenge areas and recommendations to address them are provided. PMID:25750593

  7. Systems Engineering and Point of Care Testing: Report from the NIBIB POCT/Systems Engineering Workshop.

    PubMed

    Stahl, James E; McGowan, Heather; DiResta, Ellen; Gaydos, Charlotte A; Klapperich, Catherine; Parrish, John; Korte, Brenda

    2015-03-01

    The first part of this manuscript is an introduction to systems engineering and how it may be applied to health care and point of care testing (POCT). Systems engineering is an interdisciplinary field that seeks to better understand and manage changes in complex systems and projects as whole. Systems are sets of interconnected elements which interact with each other, are dynamic, change over time and are subject to complex behaviors. The second part of this paper reports on the results of the National Institute of Biomedical Imaging and Bioengineering (NIBIB) workshop exploring the future of point of care testing and technologies and the recognition that these new technologies do not exist in isolation. That they exist within ecosystems of other technologies and systems; and these systems influence their likelihood of success or failure and their effectiveness. In this workshop, a diverse group of individuals from around the country, from disciplines ranging from clinical care, engineering, regulatory affairs and many others to members of the three major National Institutes of Health (NIH) funded efforts in the areas the Centers for POCT for sexually transmitted disease, POCT for the future of Cancer Care, POCT primary care research network, gathered together for a modified deep dive workshop exploring the current state of the art, mapping probable future directions and developing longer term goals. The invitees were broken up into 4 thematic groups: Home, Outpatient, Public/shared space and Rural/global. Each group proceeded to explore the problem and solution space for point of care tests and technology within their theme. While each thematic area had specific challenges, many commonalities also emerged. This effort thus helped create a conceptual framework for POCT as well as identifying many of the challenges for POCT going forward. Four main dimensions were identified as defining the functional space for both point of care testing and treatment, these are: Time, Location, Interpretation and Tempo. A framework is presented in this paper. There were several current and future challenges identified through the workshop. These broadly fall into the categories of technology development and implementation. More specifically these are in the areas of: 1) Design, 2) Patient driven demand and technology, 3) Information Characteristics and Presentation, 4) Health Information Systems, 5) Connectivity, 6) Workflow and implementation, 7) Maintenance/Cost, and 8) Quality Control. Definitions of these challenge areas and recommendations to address them are provided.

  8. Dynamics of Fluids and Transport in Fractured Rock

    NASA Astrophysics Data System (ADS)

    Faybishenko, Boris; Witherspoon, Paul A.; Gale, John

    How to characterize fluid flow, heat, and chemical transport in geologic media remains a central challenge for geo-scientists and engineers worldwide. Investigations of fluid flow and transport within rock relate to such fundamental and applied problems as environmental remediation; nonaqueous phase liquid (NAPL) transport; exploitation of oil, gas, and geothermal resources; disposal of spent nuclear fuel; and geotechnical engineering. It is widely acknowledged that fractures in unsaturated-saturated rock can play a major role in solute transport from the land surface to underlying aquifers. It is also evident that general issues concerning flow and transport predictions in subsurface fractured zones can be resolved in a practical manner by integrating investigations into the physical nature of flow in fractures, developing relevant mathematical models and modeling approaches, and collecting site characterization data. Because of the complexity of flow and transport processes in most fractured rock flow problems, it is not yet possible to develop models directly from first principles. One reason for this is the presence of episodic, preferential water seepage and solute transport, which usually proceed more rapidly than expected from volume-averaged and time-averaged models. However, the physics of these processes is still known.

  9. A critical Action Research approach to curriculum development in a laboratory-based chemical engineering course

    NASA Astrophysics Data System (ADS)

    White, Scott R.

    This dissertation is a report of an attempt to critically evaluate a novel laboratory course from within the context of a chemical engineering curriculum. The research was done in a college classroom-laboratory setting, entrenched in the everydayness of classroom activities. All of the students, instructors, and educational researchers were knowing participants in this Action Research study. The students, a mixture of juniors, seniors, & graduate students, worked together on semester-long projects in groups that were mixed by age, gender and academic level. Qualitative techniques were used to gather different forms of representations of the students and instructors' experiences. Emergent patterns from the data gave strength to emergent knowledge claims that informed the instructors and the researcher about what the students were learning about performing experimental work and communicating results with their peers and instructor. The course challenged and in some cases changed the conceptions of instruction previously held by the students and the instructors. The course did not proceed without problems, yet the majority of these problems were overcome by the design of the course. Assertions and recommendations for improvement and application to other educational contexts are suggested.

  10. Navigating Bioethical Waters: Two Pilot Projects in Problem-Based Learning for Future Bioscience and Biotechnology Professionals.

    PubMed

    Berry, Roberta M; Levine, Aaron D; Kirkman, Robert; Blake, Laura Palucki; Drake, Matthew

    2016-12-01

    We believe that the professional responsibility of bioscience and biotechnology professionals includes a social responsibility to contribute to the resolution of ethically fraught policy problems generated by their work. It follows that educators have a professional responsibility to prepare future professionals to discharge this responsibility. This essay discusses two pilot projects in ethics pedagogy focused on particularly challenging policy problems, which we call "fractious problems". The projects aimed to advance future professionals' acquisition of "fractious problem navigational" skills, a set of skills designed to enable broad and deep understanding of fractious problems and the design of good policy resolutions for them. A secondary objective was to enhance future professionals' motivation to apply these skills to help their communities resolve these problems. The projects employed "problem based learning" courses to advance these learning objectives. A new assessment instrument, "Skills for Science/Engineering Ethics Test" (SkillSET), was designed and administered to measure the success of the courses in doing so. This essay first discusses the rationale for the pilot projects, and then describes the design of the pilot courses and presents the results of our assessment using SkillSET in the first pilot project and the revised SkillSET 2.0 in the second pilot project. The essay concludes with discussion of observations and results.

  11. Ineffective Healthcare Technology Management in Benin’s Public Health Sector: The Perceptions of Key Actors and Their Ability to Address the Main Problems

    PubMed Central

    Houngbo, P. Thierry; De Cock Buning, Tjard; Bunders, Joske; Coleman, Harry L. S.; Medenou, Daton; Dakpanon, Laurent; Zweekhorst, Marjolein

    2017-01-01

    Background: Low-income countries face many contextual challenges to manage healthcare technologies effectively, as the majority are imported and resources are constrained to a greater extent. Previous healthcare technology management (HTM) policies in Benin have failed to produce better quality of care for the population and costeffectiveness for the government. This study aims to identify and assess the main problems facing HTM in Benin’s public health sector, as well as the ability of key actors within the sector to address these problems. Methods: We conducted 2 surveys in 117 selected health facilities. The first survey was based on 377 questionnaires and 259 interviews, and the second involved observation and group interviews at health facilities. The Temple-Bird Healthcare Technology Package System (TBHTPS), tailored to the context of Benin’s health system, was used as a conceptual framework. Results: The findings of the first survey show that 85% of key actors in Benin’s HTM sector characterized the system as failing in components of the TBHTPS framework. Biomedical, clinical, healthcare technology engineers and technicians perceived problems most severely, followed by users of equipment, managers and hospital directors, international organization officers, local and foreign suppliers, and finally policy-makers, planners and administrators at the Ministry of Health (MoH). The 5 most important challenges to be addressed are policy, strategic management and planning, and technology needs assessment and selection – categorized as major enabling inputs (MEI) in HTM by the TBHTPS framework – and installation and commissioning, training and skill development and procurement, which are import and use activities (IUA). The ability of each key actor to address these problems (the degree of political or administrative power they possess) was inversely proportional to their perception of the severity of the problems. Observational data gathered during site visits described a different set of challenges including maintenance and repair, distribution, installation and commissioning, use and training and personnel skill development. Conclusion: The lack of experiential and technical knowledge in policy development processes could underpin many of the continuing problems in Benin’s HTM system. Before solutions can be devised to these problems, it is necessary to investigate their root causes, and which problems are most amenable to policy development. PMID:28949474

  12. The Near-Earth Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2012-01-01

    The near-Earth space environment has been gradually polluted with orbital debris (OD) since the beginning of space activities 55 years ago. Although this problem has been known to the research community for decades, the public was, in general, unaware of the issue until the anti-satellite test conducted by China in 2007 and the collision between Cosmos 2251 and the operational Iridium 33 in 2009. The latter also underlined the potential of an ongoing collision cascade effect (the "Kessler Syndrome") in the low Earth orbit (LEO, the region below 2000 km altitude). Recent modeling results have indicated that mitigation measures commonly adopted by the international space community will be insufficient to stabilize the LEO debris population. To better limit the OD population increase, more aggressive actions must be considered. There are three options for OD environment remediation-removal of large/massive intact objects to address the root cause of the OD population growth problem, removal of 5-mm-to-1 cm debris to mitigate the main mission-ending threats for the majority of operational spacecraft, and prevention of major debris-generating collisions as a temporary means to slow down the OD population increase. The technology, engineering, and cost challenges to carry out any of these three options are monumental. It will require innovative ideas, game-changing technologies, and major collaborations at the international level to address the OD problem and preserve the near-Earth environment for future generations.

  13. Sequential Reactions of Surface-Tethered Glycolytic Enzymes

    PubMed Central

    Mukai, Chinatsu; Bergkvist, Magnus; Nelson, Jacquelyn L.; Travis, Alexander J.

    2014-01-01

    SUMMARY The development of complex hybrid organic-inorganic devices faces several challenges, including how they can generate energy. Cells face similar challenges regarding local energy production. Mammalian sperm solve this problem by generating ATP down the flagellar principal piece by means of glycolytic enzymes, several of which are tethered to a cytoskeletal support via germ cell-specific targeting domains. Inspired by this design, we have produced recombinant hexokinase type 1 and glucose-6-phosphate isomerase capable of oriented immobilization on a nickel-nitrilotriacetic acid modified surface. Specific activities of enzymes tethered via this strategy were substantially higher than when randomly adsorbed. Furthermore, these enzymes showed sequential activities when tethered onto the same surface. This is the first demonstration of surface-tethered pathway components showing sequential enzymatic activities, and it provides a first step toward reconstitution of glycolysis on engineered hybrid devices. PMID:19778729

  14. Deployment Process, Mechanization, and Testing for the Mars Exploration Rovers

    NASA Technical Reports Server (NTRS)

    Iskenderian, Ted

    2004-01-01

    NASA's Mar Exploration Rover (MER) robotic prospectors were produced in an environment of unusually challenging schedule, volume, and mass restrictions. The technical challenges pushed the system s design towards extensive integration of function, which resulted in complex system engineering issues. One example of the system's integrated complexity can be found in the deployment process for the rover. Part of this process, rover "standup", is outlined in this paper. Particular attention is given to the Rover Lift Mechanism's (RLM) role and its design. Analysis methods are presented and compared to test results. It is shown that because prudent design principles were followed, a robust mechanism was created that minimized the duration of integration and test, and enabled recovery without perturbing related systems when reasonably foreseeable problems did occur. Examples of avoidable, unnecessary difficulty are also presented.

  15. Modernizing engine displays

    NASA Technical Reports Server (NTRS)

    Schneider, E. T.; Enevoldson, E. K.

    1984-01-01

    The introduction of electronic fuel control to modern turbine engines has a number of advantages, which are related to an increase in engine performance and to a reduction or elimination of the problems associated with high angle of attack engine operation from the surface to 50,000 feet. If the appropriate engine display devices are available to the pilot, the fuel control system can provide a great amount of information. Some of the wealth of information available from modern fuel controls are discussed in this paper. The considered electronic engine control systems in their most recent forms are known as the Full Authority Digital Engine Control (FADEC) and the Digital Electronic Engine Control (DEEC). Attention is given to some details regarding the control systems, typical engine problems, the solution of problems with the aid of displays, engine displays in normal operation, an example display format, a multipage format, flight strategies, and hardware considerations.

  16. Engineering cartilage substitute with a specific size and shape using porous high-density polyethylene (HDPE) as internal support.

    PubMed

    Wu, Yujia; Zhu, Lie; Jiang, Hua; Liu, Wei; Liu, Yu; Cao, Yilin; Zhou, Guangdong

    2010-04-01

    Despite the great advances in cartilage engineering, constructing cartilage of large sizes and appropriate shapes remains a great challenge, owing to limits in thickness of regenerated cartilage and to inferior mechanical properties of scaffolds. This study introduces a pre-shaped polyglycolic acid (PGA)-coated porous high-density polyethylene (HDPE) scaffold to overcome these challenges. HDPE was carved into cylindrical rods and wrapped around by PGA fibres to form PGA-HDPE scaffolds. Porcine chondrocytes were seeded into the scaffolds and the constructs were cultured in vitro for 2 weeks before subcutaneous implantation into nude mice. Scaffolds made purely of PGA with the same size and shape were used as a control. After 8 weeks of implantation, the construct formed cartilage-like tissue and retained its pre-designed shape and size. In addition, the regenerated cartilage grew and completely surrounded the HDPE core, which made the entire cartilage substitute biocompatible to its implanted environment as native cartilage similarly does. By contrast, the shape and size of the constructs in the control group seriously deformed and obvious hollow cavity and necrotic tissue were observed in the inner region. These results demonstrate that the use of HDPE as the internal support of a biodegradable scaffold has the potential to circumvent the problems of limitations in size and shape, with promising implications for the development of engineered cartilage appropriate for clinical applications. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  17. Cyber-Informed Engineering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, Robert S.; Benjamin, Jacob; Wright, Virginia L.

    A continuing challenge for engineers who utilize digital systems is to understand the impact of cyber-attacks across the entire product and program lifecycle. This is a challenge due to the evolving nature of cyber threats that may impact the design, development, deployment, and operational phases of all systems. Cyber Informed Engineering is the process by which engineers are made aware of both how to use their engineering knowledge to positively impact the cyber security in the processes by which they architect and design components and the services and security of the components themselves.

  18. The Radical Flank Effect and Cross-occupational Collaboration for Technology Development during a Power Shift

    PubMed Central

    Truelove, Emily; Kellogg, Katherine C.

    2016-01-01

    This 12-month ethnographic study of an early entrant into the U.S. car-sharing industry demonstrates that when an organization shifts its focus from developing radical new technology to incrementally improving this technology, the shift may spark an internal power struggle between the dominant engineering group and a challenger occupational group such as the marketing group. Analyzing 42 projects in two time periods that required collaboration between engineering and marketing during such a shift, we show how cross-occupational collaboration under these conditions can be facilitated by a radical flank threat, through which the bargaining power of moderates is strengthened by the presence of a more-radical group. In the face of a strong threat by radical members of a challenger occupational group, moderate members of the dominant engineering group may change their perceptions of their power to resist challengers’ demands and begin to distinguish between the goals of radical versus more-moderate challengers. To maintain as much power as possible and prevent the more-dramatic change in engineering occupational goals demanded by radical challengers, moderate engineers may build a coalition with moderate challengers and collaborate for incremental technology development. PMID:28424533

  19. Sensor placement in nuclear reactors based on the generalized empirical interpolation method

    NASA Astrophysics Data System (ADS)

    Argaud, J.-P.; Bouriquet, B.; de Caso, F.; Gong, H.; Maday, Y.; Mula, O.

    2018-06-01

    In this paper, we apply the so-called generalized empirical interpolation method (GEIM) to address the problem of sensor placement in nuclear reactors. This task is challenging due to the accumulation of a number of difficulties like the complexity of the underlying physics and the constraints in the admissible sensor locations and their number. As a result, the placement, still today, strongly relies on the know-how and experience of engineers from different areas of expertise. The present methodology contributes to making this process become more systematic and, in turn, simplify and accelerate the procedure.

  20. Social Significance of Fundamental Science Common to all Mankind

    NASA Astrophysics Data System (ADS)

    Zel'Dovich, Ya. B.

    It is a challenge of science to play a great role in solution of the problem of meeting material and spiritual human demands. The argument is known that science has become a productive force. When characterizing economy of one or another country or region, it is a practice to speak about science-intensive works, i.e., those where production and competitiveness are directly related to a science level. The science-intensive works include, for example, production of microelectronic circuits and their application in computer and information science or production of pharmaceutical preparations using gene engineering. This list could be continued indefinitely…

Top