Deconvolving the Nucleus of Centaurus A Using Chandra PSF Library
NASA Technical Reports Server (NTRS)
Karovska, Margarita
2000-01-01
Centaurus A (NGC 5128) is a giant early-type galaxy containing the nearest (at 3.5 Mpc) radio-bright Active Galactic Nucleus (AGN). Cen A was observed with the High Resolution Camera (HRC) on the Chandra X-ray Observatory on several occasions since the launch in July 1999. The high-angular resolution (less than 0.5 arcsecond) Chandra/HRC images reveal X ray multi-scale structures in this object with unprecedented detail and clarity, including the bright nucleus believed to be associated with a supermassive black hole. We explored the spatial extent of the Cen A nucleus using deconvolution techniques on the full resolution Chandra images. Model point spread functions (PSFs) were derived from the standard Chandra raytrace PSF library as well as unresolved point sources observed with Chandra. The deconvolved images show that the Cen A nucleus is resolved and asymmetric. We discuss several possible causes of this extended emission and of the asymmetries.
The Stability of Chandra Telescope Pointing and Spacial Resolution
NASA Astrophysics Data System (ADS)
Zhao, Ping
2018-01-01
Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond spacial resolution. Chandra is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. I will review the issues of telescope pointing stability, optical Axis, aimpoint and their impacts to the Chandra operation, and evaluate the integrity and stability of the telescope. I will show images taken from all four detectors since launch to demonstrate the quality and stability of the Chandra spacial resolution.
The Quality and Stability of Chandra Telescope Spacial Resolution
NASA Astrophysics Data System (ADS)
Zhao, Ping
2017-08-01
Chandra X-ray Observatory revolutionized the X-ray astronomy as being the first, and so far the only, X-ray telescope achieving sub-arcsecond spacial resolution. Chandra is comprised of three principal elements: the High Resolution Mirror Assembly (HRMA), Pointing Control and Aspect Determination (PCAD) system, and the Science Instrument Module (SIM), which is where the X-ray detectors mounted and is connected to the HRMA by a 10-meter long Optical Bench Assembly. To achieve and retain the unprecedented imaging quality, it is critical that these three principal elements to stay rigid and stable for the entire life time of the Chandra operation. I will review the issues of telescope pointing stability, optical Axis, aimpoint and their impacts to the Chandra operation, and evaluate the integrity and stability of the telescope. I will show images taken from all four detectors since launch to demonstrate the quality and stability of the Chandra spacial resolution.
Chandra High Resolution Imaging of NGC 1365 and NGC 4151
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mazzarella, J. M.; Lord, S.; Howell, J. H.; Mundell, C. G.
2010-07-01
We present Chandra high resolution imaging of the circumnuclear regions of two nearby active galaxies, namely the starburst/AGN composite Seyfert 1.8 NGC 1365 and the archetypal Seyfert 1 NGC 4151. In NGC 1365, the X-ray morphology shows a biconical soft X-ray-emission region extending ~5 kpc in projection from the nucleus, coincident with the optical high-excitation outflows. Chandra HRC imaging of the NGC 4151 nucleus resolves X-ray emission from the 4 arcsec radio jet and the narrow line region (NLR) clouds. Our results demonstrate the unique power of spatially resolved spectroscopy with Chandra, and support previous claims that frequent jet-ISM interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated.
What We Have Learned About Clusters From a Decade of Arcsecond Resolution X-ray Observations
NASA Technical Reports Server (NTRS)
Markevitch, Maxim
2012-01-01
This talk will briefly review the main findings from Chandra high angular resolution observations of galaxy clusters, emphasizing results on cluster astrophysics. Chandra has discovered shock fronts in merging systems, providing information on the shock Mach number and velocity, and for best-observed shocks, constraining the microphysical properties of the intracluster medium (ICM). Cold fronts, a Chandra discovery, are ubiquitous both in merging clusters and in the cool ccres of relaxed systems. They reveal the structure and strength of the intracluster magnetic fields and constrain the ICM viscosity a combined with radio data, these observations also shed light on the production of ultra-relativistic particles that are known to coexist with thermal plasma. Finally, in nearly all cool cores, Chandra observes cavities in the ICM that are produced by the central AGN. All these phenomena will be extremely interesting for high-resolution SZ studies.
The Chandra X-ray Observatory: An Astronomical Facility Available to the World
NASA Technical Reports Server (NTRS)
Smith, Randall K.
2006-01-01
The Chandra X-ray observatory, one of NASA's "Great Observatories," provides high angular and spectral resolution X-ray data which is freely available to all. In this review I describe the instruments on chandra along with their current calibration, as well as the chandra proposal system, the freely-available Chandra analysis software package CIAO, and the Chandra archive. As Chandra is in its 6th year of operation, the archive already contains calibrated observations of a large range of X-ray sources. The Chandra X-ray Center is committed to assisting astronomers from any country who wish to use data from the archive or propose for observations
High-Resolution Spectroscopy with the Chandra X-ray Observatory
Canizares, Claude R. [MIT, Cambridge, Massachusetts, United States
2017-12-09
The capabilities of the Chandra X-ray Observatory and XMM-Newton for high-resolution spectroscopy have brought tradition plasma diagnostic techniques to the study of cosmic plasma. Observations have probed nearly every class of astronomical object, from young proto-starts through massive O starts and black hole binaries, supernova remnants, active galactic nuclei, and the intergalactic medium. Many of these sources show remarkable rich spectra that reveal new physical information, such as emission measure distributions, elemental abundances, accretion disk and wind signatures, and time variability. This talk will present an overview of the Chandra instrumentaton and selected examples of spectral observations of astrophysical and cosmological importance.
The High Resolution Chandra X-Ray Spectrum of 3C273
NASA Technical Reports Server (NTRS)
Fruscione, Antonella; Lavoie, Anthony (Technical Monitor)
2000-01-01
The bright quasar 3C273 was observed by Chandra in January 2000 for 120 ksec as a calibration target. It was observed with all detector- plus-grating combinations (ACIS+HETG, ACIS+LETG, and HRC+LETG) yielding an X-ray spectrum across the entire 0.1-10 keV band with unprecedented spectral resolution. At about 10 arcsec from the nucleus, an X-ray jet is also clearly visible and resolved in the Oth order images. While the jet is much fainter than the nuclear source, the Chandra spatial resolution allows, for the first time, spectral analysis of both components separately. We will present detailed spectral analysis with particular emphasis on possible absorption features and comparison with simultaneous BeppoSAX data.
Distant Supernova Remnant Imaged by Chandra's High Resolution Camera
NASA Astrophysics Data System (ADS)
1999-09-01
The High Resolution Camera (HRC), one of the two X-ray cameras on NASA's Chandra X-ray Observatory, was placed into the focus for the first time on Monday, August 30. The first target was LMC X-1, a point-like source of X rays in the Large Magellanic Cloud. The Large Magellanic Cloud, a companion galaxy to the Milky Way, is 160,000 light years from Earth. After checking the focus with LMC X-1, Chandra observed N132D, a remnant of an exploded star in the Large Magellanic Cloud. "These were preliminary test observations," emphasized Dr. Stephen Murray, of the Harvard-Smithsonian Center for Astrophysics, principal investigator for the High Resolution Camera. "But we are very pleased with the results. All indications are that the HRC will produce X-ray images of unprecedented clarity." The N132D image shows a highly structured remnant, or shell, of 10-million-degree gas that is 80 light years across. Such a shell in the vicinity of the Sun would encompass more than fifty nearby stars. The amount of material in the N132D hot gas remnant is equal to that of 600 suns. The N132D supernova remnant appears to be colliding with a giant molecular cloud, which produces the brightening on the southern rim of the remnant. The molecular cloud, visible with a radio telescope, has the mass of 300,000 suns. The relatively weak x-radiation on the upper left shows that the shock wave is expanding into a less dense region on the edge of the molecular cloud. A number of small circular structures are visible in the central regions and a hint of a large circular loop can be seen in the upper part of the remnant. Whether the peculiar shape of the supernova remnant can be fully explained in terms of these effects, or whether they point to a peculiar cylindrically shaped explosion remains to be seen. -more- "The image is so rich in structure that it will take a while to sort out what is really going on," Murray said. "It could be multiple supernovas, or absorbing clouds in the vicinity of the supernova." The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing power of the mirrors. When used with the Chandra mirrors, the HRC will make images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a stop sign at a distance of twelve miles. The checkout period for the HRC will continue for the next few weeks, during which time the team expects to acquire images of other supernova remnants, star clusters, and starburst galaxies. To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages the Chandra science program and controls the observatory for NASA. TRW Space and Electronics Group of Redondo Beach, Calif., leads the contractor team that built Chandra. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0050/ or via links in: http://chandra.harvard.edu
X-ray Optics Development at MSFC
NASA Technical Reports Server (NTRS)
Sharma, Dharma P.
2017-01-01
Development of high resolution focusing telescopes has led to a tremendous leap in sensitivity, revolutionizing observational X-ray astronomy. High sensitivity and high spatial resolution X-ray observations have been possible due to use of grazing incidence optics (paraboloid/hyperboloid) coupled with high spatial resolution and high efficiency detectors/imagers. The best X-ray telescope flown so far is mounted onboard Chandra observatory launched on July 23,1999. The telescope has a spatial resolution of 0.5 arc seconds with compatible imaging instruments in the energy range of 0.1 to 10 keV. The Chandra observatory has been responsible for a large number of discoveries and has provided X-ray insights on a large number of celestial objects including stars, supernova remnants, pulsars, magnetars, black holes, active galactic nuclei, galaxies, clusters and our own solar system.
The X-Ray Surveyor Mission: A Concept Study
NASA Technical Reports Server (NTRS)
Gaskin, Jessica A.; Weisskopf, Martin C.; Vikhlinin, Alexey; Tananbaum, Harvey D.; Bandler, Simon R.; Bautz, Marshall W.; Burrows, David N.; Falcone, Abraham D.; Harrison, Fiona A.; Heilmann, Ralf K.;
2015-01-01
NASA's Chandra X-ray Observatory continues to provide an unparalleled means for exploring the high-energy universe. With its half-arcsecond angular resolution, Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, neutron stars, black holes, and solar system objects. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address ever more demanding science questions-such as the formation and growth of black hole seeds at very high redshifts; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, we initiated a concept study for such a mission, dubbed X-ray Surveyor. The X-ray Surveyor strawman payload is comprised of a high-resolution mirror assembly and an instrument set, which may include an X-ray microcalorimeter, a high-definition imager, and a dispersive grating spectrometer and its readout. The mirror assembly will consist of highly nested, thin, grazing-incidence mirrors, for which a number of technical approaches are currently under development-including adjustable X-ray optics, differential deposition, and new polishing techniques applied to a variety of substrates. This study benefits from previous studies of large missions carried out over the past two decades and, in most areas, points to mission requirements no more stringent than those of Chandra.
The CHANDRA HETGS X-ray Grating Spectrum of Eta Carinae
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Swank, J. H.; Petre, R.; Ishibashi, K.; Davidson, K.; Townsley, L.; Smith, R.; White, S.; Viotti, R.; Damineli, A.;
2001-01-01
Eta Carinae may be the most massive and luminous star in the Galaxy and is suspected to be a massive, colliding wind binary system. The CHANDRA X-ray observatory has obtained a calibrated, high-resolution X-ray spectrum of the star uncontaminated by the nearby extended soft X-ray emission. Our 89 ksec CHANDRA observation with the High Energy Transmission Grating Spectrometer (HETGS) shows that the hot gas near the star is non-isothermal. The temperature distribution may represent the emission on either side of the colliding wind bow shock, effectively 'resolving' the shock. If so, the pre-shock wind velocities are approximately 700 and 1800 km/s in our analysis, and these velocities may be interpreted as the terminal velocities of the winds from 71 Carinae and from the hidden companion star. The forbidden-to-intercombination line ratios for the He-like ions of S, Si, and Fe are large, indicating that the line forming region lies far from the stellar photosphere. The iron fluorescent line at 1.93 angstroms, first detected by ASCA, is clearly resolved from the thermal iron line in the CHANDRA grating spectrum. The Fe fluorescent line is weaker in our CHANDRA observation than in any of the ASCA spectra. The CHANDRA observation also provides the first high-time resolution lightcurve of the uncontaminated stellar X-ray emission from 77 Carinae and shows that there is no significant, coherent variability during the CHANDRA observation. The 77 Carinae CHANDRA grating spectrum is unlike recently published X-ray grating spectra of single massive stars in significant ways and is generally consistent with colliding wind emission in a massive binary.
A High-definition View Of The Circum-nuclear Regions In Nearby Seyferts With Chandra And HST
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Elvis, M.; Risaliti, G.; Karovska, M.; Zezas, A.; Mundell, C. G.
2011-09-01
To improve our understanding of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS), which aims to examine feedback in action in much greater detail than at high redshift. Findings from Chandra studies of the circum-nuclear region in the archetypal Seyfert 1 galaxy NGC 4151 will be discussed in detail. Exploiting Chandra's highest possible resolution, we find evidence for X-ray emission from interaction between radio outflow and the optical narrow-line region clouds, in addition to the emission from photoionized gas.
Absolute Effective Area of the Chandra High-Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.
2000-01-01
The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.
NASA Astrophysics Data System (ADS)
Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Raymond, John; Wang, Junfeng; Storchi-Bergmann, Thaisa
2017-07-01
The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O III], [S II], and Hα, as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc) across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ˜10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include Hα evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.
The Chandra X-Ray Observatory and its Role for the Study of Ionized Plasmas
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2010-01-01
NASA's Chandra X-Ray Observatory was launched in July of 1999. Featuring a 1000cm2-class X-ray telescope with sub-arcsecond angular resolution, the Observatory has observed targets from the solar system including the earth s moon, comets, and planets to the most distant galaxy clusters and active galactic nuclei. Capable of performing moderate energy resolution image-resolved spectroscopy using its CCD detectors, and high-resolution grating spectroscopy, the Observatory has produced, and continues to produce, valuable data and insights into the emission mechanisms of the ionized plasmas in which the X-rays originate. We present a brief overview of the Observatory to provide insight as to how to use it for your investigations. We also present an, admittedly brief and biased, overview of some of the results of investigations performed with Chandra that may be of interest to this audience.
Role of the Chandra X-Ray Observatory Observations for the Study of Ionized Plasmas
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2010-01-01
The Chandra X-Ray Observatory, launched in 1999, is now beginning its 12-th year of operation. Chandra, the X-ray component of NASA s Great Observatory program, continues to operate efficiently, somewhat remarkable considering that the Observatory was designed for three years of operation with a goal of five. The Observatory features X-ray optics with sub-arcsecond angular resolution and a small suite of instruments, including transmission gratings, which allow for high-resolution spectroscopy of point sources. We will detail the capabilities of the Observatory for making such spectroscopic measurements and discuss a number of examples of what has been learned about the astrophysical plasmas capable of producing bright X-ray emission.
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall K.; Carlstrom, John E.; LaRoque, Samuel J.
2004-01-01
X-ray and Sunyaev-Zeldovich Effect data ca,n be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from the Chandra Observatory, which provides both spatial and spectral information, and interferometric radio measurements of the Sunyam-Zeldovich Effect are available from the BIMA and 0VR.O arrays. We introduce a Monte Carlo Markov chain procedure for the joint analysis of X-ray and Sunyaev-Zeldovich Effect data. The advantages of this method are the high computational efficiency and the ability to measure the full probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and the cluster distance. We apply this technique to the Chandra X-ray data and the OVRO radio data for the galaxy cluster Abell 611. Comparisons with traditional likelihood-ratio methods reveal the robustness of the method. This method will be used in a follow-up paper to determine the distance of a large sample of galaxy clusters for which high-resolution Chandra X-ray and BIMA/OVRO radio data are available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin
The CHandra Extended Emission Line Region Survey (CHEERS) is an X-ray study of nearby active galactic nuclei (AGNs) designed to take full advantage of Chandra 's unique angular resolution by spatially resolving feedback signatures and effects. In the second paper of a series on CHEERS target NGC 3393, we examine deep high-resolution Chandra images and compare them with Hubble Space Telescope narrow-line images of [O iii], [S ii], and H α , as well as previously unpublished mid-ultraviolet (MUV) images. The X-rays provide unprecedented evidence that the S-shaped arms that envelope the nuclear radio outflows extend only ≲0.″2 (≲50 pc)more » across. The high-resolution multiwavelength data suggest that the extended narrow-line region is a complex multiphase structure in the circumnuclear interstellar medium (ISM). Its ionization structure is highly stratified with respect to outflow-driven bubbles in the bicone and varies dramatically on scales of ∼10 pc. Multiple findings show likely contributions from shocks to the feedback in regions where radio outflows from the AGN most directly influence the ISM. These findings include H α evidence for gas compression and extended MUV emission and are in agreement with existing STIS kinematics. Extended filamentary structure in the X-rays and optical suggests the presence of an undetected plasma component, whose existence could be tested with deeper radio observations.« less
Highlights and discoveries from the Chandra X-ray Observatory.
Tananbaum, H; Weisskopf, M C; Tucker, W; Wilkes, B; Edmonds, P
2014-06-01
Within 40 years of the detection of the first extra-solar x-ray source in 1962, NASA's Chandra X-ray Observatory has achieved an increase in sensitivity of 10 orders of magnitude, comparable to the gain in going from naked-eye observations to the most powerful optical telescopes over the past 400 years. Chandra is unique in its capabilities for producing sub-arcsecond x-ray images with 100-200 eV energy resolution for energies in the range 0.08 < E < 10 keV, locating x-ray sources to high precision, detecting extremely faint sources, and obtaining high-resolution spectra of selected cosmic phenomena. The extended Chandra mission provides a long observing baseline with stable and well-calibrated instruments, enabling temporal studies over timescales from milliseconds to years. In this report we present a selection of highlights that illustrate how observations using Chandra, sometimes alone, but often in conjunction with other telescopes, have deepened, and in some instances revolutionized, our understanding of topics as diverse as protoplanetary nebulae; massive stars; supernova explosions; pulsar wind nebulae; the superfluid interior of neutron stars; accretion flows around black holes; the growth of supermassive black holes and their role in the regulation of star formation and growth of galaxies; impacts of collisions, mergers, and feedback on growth and evolution of groups and clusters of galaxies; and properties of dark matter and dark energy.
Probing the X-ray Emission from the Massive Star Cluster Westerlund 2
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose a 300 ks Chandra ACIS-I observation of the massive star cluster Westerlund 2 (Wd2). This region is teeming with high-energy emission from a variety of sources: colliding wind binaries, OB and Wolf-Rayet stars, two young pulsars, and an unidentified source of very high-energy (VHE) gamma-rays. Our Chandra program is designed to achieve several goals: 1) to take a complete census of Wd2 X-ray point sources and monitor variability; 2) to probe the conditions of the colliding winds in the binary WR 20a; 3) to search for an X-ray counterpart of the VHE gamma-rays; 4) to identify diffuse X-ray emission; 5) to compare results to other massive star clusters observed by Chandra. Only Chandra has the spatial resolution and sensitivity necessary for our proposed analyses.
NASA Astrophysics Data System (ADS)
Yaqoob, T.
2005-12-01
We describe a public WWW archive (HotGAS) containing data products from Chandra observations using the High Energy Grating Spectrometer (HETGS). Spectral products are available from the archive in various formats and are suitable for use by non-experts and experts alike. Lightcurves and cross-dispersion profiles are also available. Easy and user-friendly access for non X-ray astronomers to reprocessed, publishable quality grating data products should help to promote inter-disciplinary and multi-wavelength research on active galactic nuclei (AGN). The archive will also be useful to X-ray astronomers who have not yet had experience with high resolution X-ray spectroscopy, as well as experienced X-ray astronomers who need quick access to clean and ready-to-go data products. Theoreticians may find the archive useful for testing their models without having to deal with the fine details of data processing and reduction. We also anticipate that the archive will be useful for training graduate students in high-resolution X-ray spectroscopy and for providing a resource for projects for high-school and graduate students. We plan to eventually expand the archive to include AGN data from the Chandra Low Energy Grating Spectrometer (LETGS), and the XMM-Newton Reflection-Grating Spectrometer (RGS). Further in the future we plan to extend the archive to include data from other astrophysical sources aside from AGN. The project thus far is funded by an archival Chandra grant.
Observations of the Crab Nebula with the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2012-01-01
The Crab Nebula and its pulsar has been the subject of a number of detailed observations with the Chandra X-ray Observatory. The superb angular resolution of Chandra s high-resolution telescope has made possible numerous remarkable results. Here we describe a number of specific studies of the Crab that I and my colleagues have undertaken. We discuss the geometry of the system, which indicates that the "inner X-ray ring", typically identified with the termination shock of the pulsar s particle wind, is most likely not in the equatorial plane of the pulsar. Other topics are the northern wisps and their evolution with time; the characterization of features in the jet to the southeast; pulse-phase spectroscopy and possible correlations with the features at other wavelengths, particularly the optical polarization; and a search for correlations of the X-ray flux with the recently-discovered gamma -ray flares.
Joint XMM-Newton, Chandra, and RXTE Observations of Cyg X-1 at Phase Zero
NASA Technical Reports Server (NTRS)
Pottschmidt, Katja
2008-01-01
We present first results of simultaneous observations of the high mass X-ray binary Cyg X-1 for 50 ks with XMM-Newton, Chandra-HETGS and RXTE in 2008 April. The observations are centered on phase 0 of the 5.6 d orbit when pronounced dips in the X-ray emission from the black hole are known to occur. The dips are due to highly variable absorption in the accretion stream from the O-star companion to the black hole. Compared to previous high resolution spectroscopy studies of the dip and non-dip emission with Chandra, the addition of XMM-Newton data allows for a better determination of the continuum, especially through the broad iron line region (with RXTE constraining the greater than 10 keV continuum).
Chandra Interactive Analysis of Observations (CIAO)
NASA Technical Reports Server (NTRS)
Dobrzycki, Adam
2000-01-01
The Chandra (formerly AXAF) telescope, launched on July 23, 1999, provides X-rays data with unprecedented spatial and spectral resolution. As part of the Chandra scientific support, the Chandra X-ray Observatory Center provides a new data analysis system, CIAO ("Chandra Interactive Analysis of Observations"). We will present the main components of the system: "First Look" analysis; SHERPA: a multi-dimensional, multi-mission modeling and fitting application; Chandra Imaging and Plotting System; Detect package-source detection algorithms; and DM package generic data manipulation tools, We will set up a demonstration of the portable version of the system and show examples of Chandra Data Analysis.
Chandra's Ultimate Angular Resolution: Studies of the HRC-I Point Spread Function
NASA Astrophysics Data System (ADS)
Juda, Michael; Karovska, M.
2010-03-01
The Chandra High Resolution Camera (HRC) should provide an ideal imaging match to the High-Resolution Mirror Assembly (HRMA). The laboratory-measured intrinsic resolution of the HRC is 20 microns FWHM. HRC event positions are determined via a centroiding method rather than by using discrete pixels. This event position reconstruction method and any non-ideal performance of the detector electronics can introduce distortions in event locations that, when combined with spacecraft dither, produce artifacts in source images. We compare ray-traces of the HRMA response to "on-axis" observations of AR Lac and Capella as they move through their dither patterns to images produced from filtered event lists to characterize the effective intrinsic PSF of the HRC-I. A two-dimensional Gaussian, which is often used to represent the detector response, is NOT a good representation of the intrinsic PSF of the HRC-I; the actual PSF has a sharper peak and additional structure which will be discussed. This work was supported under NASA contract NAS8-03060.
Resolving galaxy cluster gas properties at z ˜ 1 with XMM-Newton and Chandra
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Démoclès, J.; van der Burg, R. F. J.; Mazzotta, P.
2017-02-01
Massive, high-redshift, galaxy clusters are useful laboratories to test cosmological models and to probe structure formation and evolution, but observations are challenging due to cosmological dimming and angular distance effects. Here we present a pilot X-ray study of the five most massive (M500 > 5 × 1014M⊙), distant (z 1), clusters detected via the Sunyaev-Zel'Dovich effect. We optimally combine XMM-Newton and Chandra X-ray observations by leveraging the throughput of XMM-Newton to obtain spatially-resolved spectroscopy, and the spatial resolution of Chandra to probe the bright inner parts and to detect embedded point sources. Capitalising on the excellent agreement in flux-related measurements, we present a new method to derive the density profiles, which are constrained in the centre by Chandra and in the outskirts by XMM-Newton. We show that the Chandra-XMM-Newton combination is fundamental for morphological analysis at these redshifts, the Chandra resolution being required to remove point source contamination, and the XMM-Newton sensitivity allowing higher significance detection of faint substructures. Measuring the morphology using images from both instruments, we found that the sample is dominated by dynamically disturbed objects. We use the combined Chandra-XMM-Newton density profiles and spatially-resolved temperature profiles to investigate thermodynamic quantities including entropy and pressure. From comparison of the scaled profiles with the local REXCESS sample, we find no significant departure from standard self-similar evolution, within the dispersion, at any radius, except for the entropy beyond 0.7 R500. The baryon mass fraction tends towards the cosmic value, with a weaker dependence on mass than that observed in the local Universe. We make a comparison with the predictions from numerical simulations. The present pilot study demonstrates the utility and feasibility of spatially-resolved analysis of individual objects at high-redshift through the combination of XMM-Newton and Chandra observations. Observations of a larger sample will allow a fuller statistical analysis to be undertaken, in particular of the intrinsic scatter in the structural and scaling properties of the cluster population.
Delta Ori Phase-Dependent Variability from Chandra and MOST Campaign
NASA Astrophysics Data System (ADS)
Nichols, Joy; Naze, Yael; Moffatt, Anthony F. J.; Corcoran, Michael; Richardson, Noel; Williams, S.; Pollock, A. M. T.; Ignace, Richard; Hole, T.; Waldron, W.; Evans, Nancy Remage; MOST Collaboration
2013-06-01
We report preliminary results from variability analysis of delta Ori in Chandra high-resolution X-ray spectroscopy and concurrent MOST high-precision optical photometry. With nearly complete phase coverage of the 5-day eclipsing binary orbit, it is possible to measure directly radial velocity and flux variations as a function of phase, leading to a mapping of the stellar wind distribution for the massive primary star. The phase dependence of the X-ray overall intensity and the comparative behavior of the emission lines are also presented.
Chandra High Resolution Camera (HRC). Rev. 59
NASA Technical Reports Server (NTRS)
Murray, Stephen
2004-01-01
This monthly report discusses management and general status, mission support and operations, and science activities. A technical memorandum entitled "Failure Analysis of HRC Flight Relay" is included with the report.
NASA Astrophysics Data System (ADS)
Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.
2002-12-01
We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.
The Chandra X-Ray Observatory: Progress Report and Highlights
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2012-01-01
Over the past 13 years, the Chandra X-ray Observatory's ability to provide high resolution X-ray images and spectra have established it as one of the most versatile and powerful tools for astrophysical research in the 21st century. Chandra explores the hot, high-energy regions of the universe, observing X-ray sources with fluxes spanning more than 10 orders of magnitude, from the X-ray brightest, Sco X-1, to the faintest sources in the Chandra Deep Field South survey. Thanks to its continuing operational life, the Chandra mission now also provides a long observing baseline which, in and of itself, is opening new research opportunities. Observations in the past few years alone have deepened our understanding of the co-evolution of supermassive black holes and galaxies, the details of black hole accretion, the nature of dark energy and dark matter, the details of supernovae and their progenitors, the interiors of neutron stars, the evolution of massive stars, and the high-energy environment of protoplanetary nebulae and the interaction of an exo-planet with its star. Here we update the technical status, highlight some of the scientific results, and very briefly discuss future prospects. We fully expect that the Observatory will continue to provide outstanding scientific results for many years to come.
NASA Astrophysics Data System (ADS)
Juett, Adrienne M.; Chakrabarty, Deepto
2003-12-01
We present high-resolution spectroscopy of the neutron star/low-mass X-ray binaries 2S 0918-549 and 4U 1543-624 with the High Energy Transmission Grating Spectrometer on board the Chandra X-Ray Observatory and the Reflection Grating Spectrometer on board XMM-Newton. Previous low-resolution spectra of both sources showed a broad, linelike feature at 0.7 keV that was originally attributed to unresolved line emission. We recently showed that this feature could also be due to excess neutral Ne absorption, and this is confirmed by the new high-resolution Chandra and XMM spectra. The Chandra spectra are each well fitted by an absorbed-power-law+blackbody model with a modified Ne/O number ratio of 0.52+/-0.12 for 2S 0918-549 and 1.5+/-0.3 for 4U 1543-624, compared to the interstellar medium value of 0.18. The XMM spectrum of 2S 0918-549 is best fitted by an absorbed-power-law model with a Ne/O number ratio of 0.46+/-0.03, consistent with the Chandra result. On the other hand, the XMM spectrum of 4U 1543-624 is softer and less luminous than the Chandra spectrum and has a best-fit Ne/O number ratio of 0.54+/-0.03. The difference between the measured abundances and the expected interstellar ratio, as well as the variation of the column densities of O and Ne in 4U 1543-624, supports the suggestion that there is absorption local to these binaries. We propose that the variations in the O and Ne column densities of 4U 1543-624 are caused by changes in the ionization structure of the local absorbing material. It is important to understand the effect of ionization on the measured absorption columns before the abundance of the local material can be determined. This work supports our earlier suggestion that 2S 0918-549 and 4U 1543-624 are ultracompact binaries with Ne-rich companions.
Chandra/ACIS Observations of the 30 Doradus Star-Forming Complex
NASA Astrophysics Data System (ADS)
Townsley, Leisa; Broos, Patrick; Feigelson, Eric; Burrows, David; Chu, You-Hua; Garmire, Gordon; Griffiths, Richard; Maeda, Yoshitomo; Pavlov, George; Tsuboi, Yohko
2002-04-01
30 Doradus is the archetype giant extragalactic H II region, a massive star-forming complex in the Large Magellanic Cloud. We examine high-spatial-resolution X-ray images and spectra of the essential parts of 30 Doradus, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level, allowing spectral analysis of bright constituents; other OB/Wolf-Rayet binaries and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the composite SNR containing a 16-msec pulsar. The spectrally soft superbubble structures seen by ROSAT are dramatically imaged by Chandra; we explore the spectral differences they exhibit. Taken together, the components of 30 Doradus give us an excellent microscopic view of high-energy phenomena seen on larger scales in more distant galaxies as starbursts and galactic winds.
Recovering galaxy cluster gas density profiles with XMM-Newton and Chandra
NASA Astrophysics Data System (ADS)
Bartalucci, I.; Arnaud, M.; Pratt, G. W.; Vikhlinin, A.; Pointecouteau, E.; Forman, W. R.; Jones, C.; Mazzotta, P.; Andrade-Santos, F.
2017-12-01
We examined the reconstruction of galaxy cluster radial density profiles obtained from Chandra and XMM-Newton X-ray observations, using high quality data for a sample of twelve objects covering a range of morphologies and redshifts. By comparing the results obtained from the two observatories and by varying key aspects of the analysis procedure, we examined the impact of instrumental effects and of differences in the methodology used in the recovery of the density profiles. We find that the final density profile shape is particularly robust. We adapted the photon weighting vignetting correction method developed for XMM-Newton for use with Chandra data, and confirm that the resulting Chandra profiles are consistent with those corrected a posteriori for vignetting effects. Profiles obtained from direct deprojection and those derived using parametric models are consistent at the 1% level. At radii larger than 6″, the agreement between Chandra and XMM-Newton is better than 1%, confirming an excellent understanding of the XMM-Newton PSF. Furthermore, we find no significant energy dependence. The impact of the well-known offset between Chandra and XMM-Newton gas temperature determinations on the density profiles is found to be negligible. However, we find an overall normalisation offset in density profiles of the order of 2.5%, which is linked to absolute flux cross-calibration issues. As a final result, the weighted ratios of Chandra to XMM-Newton gas masses computed at R2500 and R500 are r = 1.03 ± 0.01 and r = 1.03 ± 0.03, respectively. Our study confirms that the radial density profiles are robustly recovered, and that any differences between Chandra and XMM-Newton can be constrained to the 2.5% level, regardless of the exact data analysis details. These encouraging results open the way for the true combination of X-ray observations of galaxy clusters, fully leveraging the high resolution of Chandra and the high throughput of XMM-Newton.
The most detailed high-energy picture of Proxima Centauri, our nearest extrasolar neighbor
NASA Astrophysics Data System (ADS)
Schneider, Christian
2016-10-01
Proxima Centauri b is the nearest exoplanet to the Sun. It orbits an M5.5 dwarf and is potentially habitable. The latter statement, however, depends sensitively on the high-energy irradiation on the planet. Ribas et al. (2016) estimated the high-energy flux of the host star by collecting archival data from the X-ray to the FUV regime, but explicitly state that one unavoidable complication of estimating XUV fluxes is [...] intrinsic [stellar] variability. Here, we propose to greatly improve upon this unavoidable complication by obtaining simultaneous X-ray and UV observations to measure a high-resolution irradiation spectrum and, thus, to assess the habitability of Proxima b.Our upcoming, very deep Chandra grating observation of Proxima Cen (175 ks, LETGS, PI: P. Predehl) provides a great opportunity to obtain simultaneous coverage at X-ray and UV wavelengths, i.e., to measure most of the stellar high-energy flux in a coherent way. The reason for proposing a HST DDT is that the Chandra observation is a GTO and, thus, could not be augmented by simultaneous HST observations directly as we would have proposedfor in a regular GO.Combining Chandra X-ray and HST UV data allows us to reconstruct a high-resolution spectral energy distribution (SED) including the EUV regime and, thus, a reference irradiation spectrum using the methods developed by us for the MUSCLES project.
Generation-X: An X-ray observatory designed to observe first light objects
NASA Astrophysics Data System (ADS)
Windhorst, Rogier A.; Cameron, R. A.; Brissenden, R. J.; Elvis, M. S.; Fabbiano, G.; Gorenstein, P.; Reid, P. B.; Schwartz, D. A.; Bautz, M. W.; Figueroa-Feliciano, E.; Petre, R.; White, N. E.; Zhang, W. W.
2006-03-01
The new cosmological frontier will be the study of the very first stars, galaxies and black holes in the early Universe. These objects are invisible to the current generation of X-ray telescopes, such as Chandra. In response, the Generation-X ("Gen-X") Vision Mission has been proposed as a future X-ray observatory which will be capable of detecting the earliest objects. X-ray imaging and spectroscopy of such faint objects demands a large collecting area and high angular resolution. The Gen-X mission plans 100 m 2 collecting area at 1 keV (1000× that of Chandra), and with an angular resolution of 0.1″. The Gen-X mission will operate at Sun-Earth L2, and might involve four 8 m diameter telescopes or even a single 20 m diameter telescope. To achieve the required effective area with reasonable mass, very lightweight grazing incidence X-ray optics must be developed, having an areal density 100× lower than in Chandra, with mirrors as thin as 0.1 mm requiring active on-orbit figure control. The suite of available detectors for Gen-X should include a large-area high resolution imager, a cryogenic imaging spectrometer, and a grating spectrometer. We discuss use of Gen-X to observe the birth of the first black holes, stars and galaxies, and trace their cosmic evolution.
Chandra Images Provide New Vision of Cosmic Explosions
NASA Astrophysics Data System (ADS)
1999-09-01
Images from NASA's Chandra X-ray Observatory released today reveal previously unobserved features in the remnants of three different supernova explosions. Two of the remnants G21.5-0.9 and PSR 0540-69 show dramatic details of the prodigious production of energetic particles by a rapidly rotating, highly magnetized neutron star, as well as the enormous shell structures produced by the explosions. The image of the third remnant, E0102-72, reveals puzzling spoke-like structures in its interior. G21.5-0.9, in the constellation of Scutum, is about 16,000 light years (1 light year = 6 trillion miles) from Earth. Chandra's image shows a bright nebula surrounded by a much larger diffuse cloud. Inside the inner nebula is a bright central source that is thought to be a rapidly rotating highly magnetized neutron star. A rotating neutron star acts like a powerful generator, creating intense electric voltages that accelerate electrons to speeds close to the speed of light. The total output of this generator is greater than a thousand suns. The fluffy appearance of the central nebula is thought to be due to magnetic field lines which constrain the motions of the high-energy electrons. "It's a remarkable image," said Dr. Patrick Slane of the Harvard-Smithsonian Center for Astrophysics. "Neither the inner core nor the outer shell has ever been seen before." "It is as though we have a set of Russian dolls, with structures embedded within structures," said Professor Gordon Garmire of Penn State University, and principal investigator of the Advanced CCD Imaging Spectrometer, the X-ray camera that was used to make two of the images. NASA's project scientist, Dr. Martin Weisskopf of the Marshall Space Flight Center said, "Chandra's capability to provide surprises and insights continues." PSR 0540-69 PSR 0540-69 The existence of a rotating neutron star, or pulsar, in the center of G21.5-0.9 is inferred from the appearance of the nebula and the energy distribution of X-rays and radio waves from the nebula. This distribution, called non-thermal radiation is characteristic of radiation produced by high-energy electrons in a magnetic field. A previously known pulsar is observed directly in the Chandra image of PSR 0540-69. This pulsar, located in a satellite galaxy to the Milky Way that is 180,000 light years distant, emits pulses of radio, optical, and X radiation at a rate of 50 per sec. These pulses which come from a neutron star rotating at this incredible rate, comprise only a few percent of the total energy output of the neutron star powerhouse. "The Chandra image gives us a much better idea of how this energy source works," said Dr. Stephen Murray, principal investigator for the High Resolution Camera, the X-ray camera used to make PSR 0540-69 image. "You can see X-ray jets blasting out from the pulsar in both directions." The third Chandra supernova image is E0102-72. Located in the Small Magellanic Cloud, another satellite galaxy of the Milky Way, E0102-72 is 190,000 light years from Earth. This object, like G21.5-0.9 and PSR 0540-69, is believed to have resulted from the explosion of a massive star several thousand years ago. Stretching across 40 light years of space, the multi-million degree source resembles a flaming cosmic wheel. "Chandra's gallery of supernova remnants is giving us a lot to think about," said Dr. Fred Seward, of Harvard-Smithsonian, who with his colleagues discovered E0102-72 and PSR 0540-69 with the Einstein Observatory over a decade ago. "We're seeing many things we thought should be there, and many others that we never expected. It's great!" To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra X-ray Observatory for NASA's Office of Space Science, NASA Headquarters, Washington, D.C. The Smithsonian Astrophysical Observatory's Chandra X-ray Center in Cambridge, Mass., manages the Chandra science program and controls the observatory for NASA. TRW Space and Electronics Group of Redondo Beach, Calif., leads the contractor team that built Chandra. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/snrg/index.html or via links in: http://chandra.harvard.edu An animation of a supernova explosion and the formation of a supernova remnant can be found at: http://chandra.harvard.edu/resources/animations/pulsar.html
NASA Astrophysics Data System (ADS)
Reid, Paul B.; Allured, Ryan; ben-Ami, Sagi; Cotroneo, Vincenzo; Schwartz, Daniel A.; Tananbaum, Harvey; Vikhlinin, Alexey; Trolier-McKinstry, Susan; Wallace, Margeaux L.; Jackson, Tom
2016-04-01
The X-ray Surveyor mission concept is designed as a successor to the Chandra X-ray Observatory. As currently envisioned, it will have as much as 30-50 times the collecting area of Chandra with the same 0.5 arcsec imaging resolution. This combination of telescope area and imaging resolution, along with a detector suite for imaging and dispersive and non-dispersive imaging spectroscopy, will enable a wide range of astrophysical observations. These observations will include studies of the growth of large scale structure, early black holes and the growth of SMBHs, and high resolution spectroscopy with arcsec resolution, among many others. We describe the development of adjustable grazing incidence X-ray optics, a potential technology for the high resolution, thin, lightweight mirrors. We discuss recent advancements including the demonstration of deterministic figure correction via the use of the adjusters, the successful demonstration of integrating control electronics directly on the actuator cells to enable row-column addressing, and discuss the feasibility of on-orbit piezoelectric performance and figure monitoring via integrated semiconductor strain gauges. We also present the telescope point design and progress in determining the telescope thermal sensitivities and achieving alignment and mounting requirements.
Extended X-Ray Jet in Nearby Galaxy Reveals Energy Source
NASA Astrophysics Data System (ADS)
1999-10-01
NASA's Chandra X-ray Observatory has made an extraordinary image of Centaurus A, a nearby galaxy noted for its explosive activity. The image shows X-ray jets erupting from the center of the galaxy over a distance of 25,000 light years. Also detected are a group of X-ray sources clustered around the nucleus, which is believed to harbor a supermassive black hole. The X-ray jets and the cluster of sources may be a byproduct of a titanic collision between galaxies several hundred million years ago. "This image is great," said Dr. Ethan Schreier of the Space Telescope Science Institute, "For twenty years we have been trying to understand what produced the X rays seen in the Centaurus A jet. Now we at last know that the X-ray emission is produced by extremely high-energy electrons spiraling around a magnetic field." Schreier explained that the length and shape of the X-ray jet pinned down the source of the radiation. The entire length of the X-ray jet is comparable to the diameter of the Milky Way Galaxy. Other features of the image excite scientists. "Besides the jets, one of the first things I noticed about the image was the new population of sources in the center of the galaxy," said Dr. Christine Jones from the Harvard-Smithsonian Center for Astrophysics . "They are grouped in a sphere around the nucleus, which must be telling us something very fundamental about how the galaxy, and the supermassive black hole in the center, were formed." Astronomers have accumulated evidence with optical and infrared telescopes that Centaurus A collided with a small spiral galaxy several hundred million years ago. This collision is believed to have triggered a burst of star formation and supplied gas to fuel the activity of the central black hole. more - According to Dr. Giuseppina Fabbiano, of Harvard-Smithsonian, "The Chandra image is like having a whole new laboratory to work in. Now we can see the main jet, the counter jet, and the extension of the jets beyond the galaxy. It is gorgeous in the detail it reveals," she said. Dr. Allyn Tennnant of NASA's Marshall Space Flight Center agreed. "It's incredible, being able to see all that structure in the jet," he said. "We have one fine X-ray telescope." Indeed at a distance of eleven million light years from Earth, Centaurus A has long been a favorite target of astronomers because it is the nearest example of a class of galaxies called active galaxies. Active galaxies are noted for their explosive activity, which is presumed to be due to a supermassive black hole in their center. The energy output due to the huge central black hole can in many cases affect the appearance of the entire galaxy. The Chandra X-ray image of Cen A, made with the High Resolution Camera, shows a bright source in the nucleus of the galaxy at the location of the suspected supermassive black hole. The bright jet extending out from the nucleus to the upper left is due to explosive activity around the black hole which ejects matter at high speeds from the vicinity of the black hole. A "counter jet" extending to the lower right can also be seen. This jet is probably pointing away from us, which accounts for its faint appearance. One of the most intriguing features of supermassive black holes is that they do not suck up all the matter that falls within their sphere of influence. Some of the matter falls inexorably toward the black hole, and some explodes away from the black hole in high-energy jets that move at near the speed of light. The presence of bright X-ray jets in the Chandra image means that electric fields are continually accelerating electrons to extremely high energies over enormous distances. Exactly how this happens is a major puzzle that Chandra may help to solve. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov Dr. Stephen Murray of the Harvard-Smithsonian Center for Astrophysics is the principal investigator for the High Resolution Camera. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0157/index.html or via links in: http://chandra.harvard.edu
M31 in the Chandra Era: A High Definition Movie of a Nearby Galaxy
NASA Astrophysics Data System (ADS)
Kong, Albert; di Stefano, Rosanne
2009-09-01
M31 has been a prime targets for all X-ray missions since the first detection in 1974. With its superb spatial resolution, Chandra is unique in resolving dense source regions and detecting faint sources. Since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec. The X-ray skies of M31 not only consist of many transients and variables, globular cluster X-ray sources in M31 are also different from our Milky Way. They are in general more luminous and one of them may even host an intermediate-mass black hole. Supersoft and quasi-soft X-ray sources in M31 are the best kept secret to unlock the nature of the progenitor of Type Ia supernova. In this talk, I will review some of the important Chandra discoveries in M31 in the past 10 years.
Chandra/ACIS Observations of Rosette: Diffuse X-rays Discovered in a Galactic H II Region
NASA Astrophysics Data System (ADS)
Townsley, L. K.; Feigelson, E. D.; Broos, P. S.; Chu, Y.-H.; Montmerle, T.
2001-12-01
We present the first high-spatial-resolution X-ray images of the Rosette Nebula and Rosette Molecular Cloud (RMC), obtained in a series of 4 20-ksec snapshots with the Advanced CCD Imaging Spectrometer aboard the Chandra X-ray Observatory in January 2001. These images form a striking 1-degree X-ray panorama of a rich high-mass star formation region. The OB association is resolved at the arcsecond level into >300 sources. The other 3 pointings step across the RMC, with >100 X-ray sources in each. Soft diffuse emission is seen at the center of the H II region and is resolved from the point source population. This extended emission is most likely from the fast O-star winds, which thermalize and shock the surrounding media. Support for this effort was provided by the Chandra X-ray Observatory GO2 grant G01-2008X.
Implications from XMM and Chandra Source Catalogs for Future Studies with Lynx
NASA Astrophysics Data System (ADS)
Ptak, Andrew
2018-01-01
Lynx will perform extremely sensitive X-ray surveys by combining very high-resolution imaging over a large field of view with a high effective area. These will include deep planned surveys and serendipitous source surveys. Here we discuss implications that can be gleaned from current Chandra and XMM-Newton serendipitous source surveys. These current surveys have discovered novel sources such as tidal disruption events, binary AGN, and ULX pulsars. In addition these surveys have detected large samples of normal galaxies, low-luminosity AGN and quasars due to the wide-area coverage of the Chandra and XMM-Newton source catalogs, allowing the evolution of these phenonema to be explored. The wide area Lynx surveys will probe down further in flux and will be coupled with very sensitive wide-area surveys such as LSST and SKA, allowing for detailed modeling of their SEDs and the discovery of rare, exotic sources and transient events.
A Chandra High-Resolution X-ray Image of Centaurus A.
Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin
2000-03-01
We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.
Chandra X-Ray Observatory High Resolution Mirror Assembly
NASA Technical Reports Server (NTRS)
1997-01-01
This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical 'telescope' portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.
2001-01-01
The Chandra X-Ray Observatory observed the Crab pulsar using the Low-Energy Transmission Grating with the High-Resolution Camera. Time-resolved zeroth-order images reveal that the pulsar emits X-rays at all pulse phases. Analysis of the flux at minimum - most likely non-thermal in origin - places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile establishes that the error in the Chandra-determined absolute time is quite small, -0.2 +/- 0.1 ms.
NASA Astrophysics Data System (ADS)
Huenemoerder, David; Bautz, M. W.; Davis, J. E.; Heilmann, R. K.; Houck, J. C.; Marshall, H. L.; Neilsen, J.; Nicastro, F.; Nowak, M. A.; Schattenburg, M. L.; Schulz, N. S.; Smith, R. K.; Wolk, S.; AEGIS Team
2012-01-01
AEGIS is a concept for a high-resolution soft X-ray spectroscopic observatory developed in response to NASA's request for definitions of the next X-ray astronomy mission. At a small fraction of the cost of the once-planned International X-ray Observatory (IXO), AEGIS has capabilities that surpass IXO grating spectrometer requirements, and which are far superior to those of existing soft X-ray spectrometers. AEGIS incorporates innovative technology in X-ray optics, diffraction gratings and detectors. The mirror uses high area-to-mass ratio segmented glass architecture developed for IXO, but with smaller aperture and larger graze angles optimized for high-throughput grating spectroscopy with low mass and cost. The unique Critical Angle Transmission gratings combine low mass and relaxed figure and alignment tolerances of Chandra transmission gratings but with high diffraction efficiency and resolving power of blazed reflection gratings. With more than an order of magnitude better performance over Chandra and XMM grating spectrometers, AEGIS can obtain high quality spectra of bright AGN in a few hours rather than 10 days. Such high resolving power allows detailed kinematic studies of galactic outflows, hot gas in galactic haloes, and stellar accretion flows. Absorption line spectroscopy will be used to study large scale structure, cosmic feedback, and growth of black holes in thousands of sources to great distances. AEGIS will enable powerful multi-wavelength investigations, for example with Hubble/COS in the UV to characterize the intergalactic medium. AEGIS will be the first observatory with sufficient resolution below 1 keV to resolve thermally-broadened lines in hot ( 10 MK) plasmas. Here we describe key science investigations enable by Aegis, its scientific payload and mission plan. Acknowledgements: Support was provided in part by: NASA SAO contract SV3-73016 to MIT for the Chandra X-ray Center and Science Instruments; NASA grant NNX08AI62G; and the MKI Instrumentation Development Fund.
Chandra Images the Seething Cauldron of Starburst Galaxy
NASA Astrophysics Data System (ADS)
2000-01-01
NASA's Chandra X-ray Observatory has imaged the core of the nearest starburst galaxy, Messier 82 (M82). The observatory has revealed a seething cauldron of exploding stars, neutron stars, black holes, 100 million degree gas, and a powerful galactic wind. The discovery will be presented by a team of scientists from Carnegie Mellon University, Pittsburgh, Penn., Pennsylvania State University, University Park, and the University of Michigan, Ann Arbor, on January 14 at the 195th national meeting of the American Astronomical Society. "In the disk of our Milky Way Galaxy, stars form and die in a relatively calm fashion like burning embers in a campfire," said Richard Griffiths, Professor of Astrophysics at Carnegie Mellon University. "But in a starburst galaxy, star birth and death are more like explosions in a fireworks factory." Short-lived massive stars in a starburst galaxy produce supernova explosions, which heat the interstellar gas to millions of degrees, and leave behind neutron stars and black holes. These explosions emit light in the X rays rather than in visible light. Because the superhot components inside starburst galaxies are complex and sometimes confusing, astronomers need an X-ray-detecting telescope with the highest focusing power (spatial resolution) to clearly discriminate the various structures. "NASA's Chandra X-ray Observatory is the perfect tool for studying starburst galaxies since it has the critical combination of high-resolution optics and good sensitivity to penetrating X rays," said Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Pennsylvania State University, and head of the team that conceived and built Chandra's Advanced CCD Imaging Spectrograph (ACIS) X-ray camera, which acquired the data. Many intricate structures missed by earlier satellite observatories are now visible in the ACIS image, including more than twenty powerful X-ray binary systems that contain a normal star in a close orbit around a neutron star or a black hole. "Several sources are so bright that they are probably black holes, perhaps left over from past starburst episodes," Garmire explained. The astronomers report that the X-ray emitting gas in the galaxy's core region has a surprisingly hot temperature. "Determining the source of high-energy X rays from M82 may elucidate whether starburst galaxies throughout the universe contribute significantly to the X-ray background radiation that pervades intergalactic space," said Griffiths."The image also shows a chimney-like structure at the base of the galactic wind, which may help us understand how metal-rich starburst gas is dispersed into intergalactic space." "What we don't see may be as important as what we do see," said Garmire. "There is no indication of a single, high luminosity, compact X-ray source from a supermassive black hole at the very center of the galaxy, although considerable evidence exists that such central black holes are present in many or most galaxies.". The astronomers note that recent optical and infrared data suggest most galaxies were starbursts when the universe was young and that their galactic winds may have distributed carbon, oxygen, iron and other heavy atoms that now pervade the Universe. The starburst in M82 is thought to have been caused by a near collision with a large spiral galaxy, M81, about 100 million years ago. At a distance of 11 million light years, M82 is the closest starburst galaxy to our Milky Way Galaxy and provides the best view of this type of galactic structure, which may have played a critical role in the early history of the Universe. The Chandra image was taken with the Advanced CCD Imaging Spectrometer (ACIS) on September 20, 1999 in an observation that lasted about 13 ½ hours. ACIS was built by Penn State Univ. and Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at: http://chandra.harvard.edu/photo/2000/0094/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet site listed above.
A High Definition View of AGN Feedback: Chandra Imaging of Nearby Seyfert Galaxies
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Risaliti, G.; Elvis, M.; Karovska, M.; Zezas, A.; Mundell, C. G.
2010-03-01
To improve the physics of AGN feedback, it is crucial to evaluate the true role of outflows on galaxy evolution observationally. I will present new results from Chandra spectral imaging of nearby Seyfert galaxies, which offer unique opportunities to examine feedback in action in much greater detail than at high redshift. Exploiting Chandra's highest possible resolution, we are able to study structures in NGC 4151 on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the optical NLR. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.
Chandra/ACIS Spectra of the 30 Doradus Star Forming Region
NASA Astrophysics Data System (ADS)
Townsley, L.; Broos, P.; Feigelson, E.; Burrows, D.; Chu, Y.-H.; Garmire, G.; Griffiths, R.; Maeda, Y.; Tsuboi, Y.
2000-12-01
We present the first high-spatial-resolution X-ray spectra of constituents of the 30 Doradus star-forming region in the Large Magellanic Cloud, obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Our continuing efforts to remove the spectral effects of CCD charge transfer inefficiency (CTI) due to radiation damage are described. The central cluster of young high-mass stars, R136, is resolved at the arcsecond level by ACIS, allowing spectral analysis of several constituents. Other Wolf-Rayet stars and multiple systems (e.g. R139, R140) are also detected. Spatially-resolved spectra are presented for N157B, the plerion SNR recently shown by X-ray observations to contain a 16-msec pulsar (Marshall et al., ApJ 499, L179). The spectrally soft superbubble structures seen by ROSAT are visible in the Chandra image; a composite spectrum, improved with CTI correction, is presented. Support for this effort was provided by NASA contract NAS8-38252 to Gordon Garmire, the ACIS Principal Investigator.
Chandra Reads the Cosmic Bar Code of Gas Around a Black Hole
NASA Astrophysics Data System (ADS)
2000-02-01
An international team of astronomers has used NASA's Chandra X-ray Observatory to make an energy bar code of hot gas in the vicinity of a giant black hole. These measurements, the most precise of their kind ever made with an X-ray telescope, demonstrate the existence of a blanket of warm gas that is expanding rapidly away from the black hole. The team consists of Jelle Kaastra, Rolf Mewe and Albert Brinkman of Space Research Organization Netherlands (SRON) in Utrecht, Duane Liedahl of Lawrence Livermore National Laboratory in Livermore, Calif., and Stefanie Komossa of Max Planck Institute in Garching, Germany. A report of their findings will be published in the March issue of the European journal Astronomy & Astrophysics. Kaastra and colleagues used the Low Energy Transmission Grating in conjunction with the High Resolution Camera to measure the number of X rays present at each energy. With this information they constructed an X-ray spectrum of the source. Their target was the central region, or nucleus of the galaxy NGC 5548, which they observed for 24 hours. This galaxy is one of a class of galaxies known to have unusually bright nuclei that are associated with gas flowing around and into giant black holes. This inflow produces an enormous outpouring of energy that blows some of the matter away from the black hole. Astronomers have used optical, ultraviolet, and X-ray telescopes in an effort to disentangle the complex nature of inflowing and outflowing gas at different distances from the black hole in NGC 5548. X-ray observations provide a ringside seat to the action around the black hole. By using the Low Energy Transmission Grating, the Dutch-US-German team concentrated on gas that forms a warm blanket that partially covers the innermost region where the highest energy X-rays are produced. As the high-energy X rays stream away from the vicinity of the black hole, they heat the blanketing gas to temperatures of a few million degrees, and the blanket absorbs some of the X rays from the central source. This produces dark stripes, or absorption lines in the X-ray spectrum. Bright stripes or emission lines due to emission from the blanketing gas are also present. Since each element has its own unique structure, these lines can be read like a cosmic bar code to take inventory of the gas. The team was able to determine what atoms the gas contains and how many, the number of electrons each atom has retained in the hostile environment of the black hole, and how the gas is moving there. They found lines from eight different elements including carbon, nitrogen, oxygen, and iron. The amount of this gas was found to be about 100 times greater than that found with optical and ultraviolet observations. The Low Energy Transmission Grating was built by the SRON. and the Max Planck Institute under the direction of Albert Brinkman. The High Resolution Camera was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass. under the direction of Stephen Murray. To follow Chandra's progress or download images visit the Chandra sites at: http://chandra.harvard.edu/photo/2000/0170/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray spectrum (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu
VizieR Online Data Catalog: Chemical analysis of CH stars. II. (Karinkuzhi+, 2015)
NASA Astrophysics Data System (ADS)
Karinkuzhi, D.; Goswami, A.
2017-10-01
Low-resolution spectra of these objects obtained from 2m Himalayan Chandra Telescope at the Indian Astronomical Observatory, Hanle using HFOSC clearly show strong features due to carbon. HFOSC is an optical imager cum spectrograph for conducting low- and medium-resolution grism spectroscopy (http://www.iiap.res.in/iao/hfosc.html). High-resolution spectra necessary for abundance analyses of the programme stars are taken from the ELODIE archive (Moultaka et al. 2004PASP..116..693M). (7 data files).
Active x-ray optics for Generation-X, the next high resolution x-ray observatory
NASA Astrophysics Data System (ADS)
Elvis, Martin; Brissenden, R. J.; Fabbiano, G.; Schwartz, D. A.; Reid, P.; Podgorski, W.; Eisenhower, M.; Juda, M.; Phillips, J.; Cohen, L.; Wolk, S.
2006-06-01
X-rays provide one of the few bands through which we can study the epoch of reionization, when the first galaxies, black holes and stars were born. To reach the sensitivity required to image these first discrete objects in the universe needs a major advance in X-ray optics. Generation-X (Gen-X) is currently the only X-ray astronomy mission concept that addresses this goal. Gen-X aims to improve substantially on the Chandra angular resolution and to do so with substantially larger effective area. These two goals can only be met if a mirror technology can be developed that yields high angular resolution at much lower mass/unit area than the Chandra optics, matching that of Constellation-X (Con-X). We describe an approach to this goal based on active X-ray optics that correct the mid-frequency departures from an ideal Wolter optic on-orbit. We concentrate on the problems of sensing figure errors, calculating the corrections required, and applying those corrections. The time needed to make this in-flight calibration is reasonable. A laboratory version of these optics has already been developed by others and is successfully operating at synchrotron light sources. With only a moderate investment in these optics the goals of Gen-X resolution can be realized.
Chandra Discovers X-Ray Ring Around Cosmic Powerhouse in Crab Nebula
NASA Astrophysics Data System (ADS)
1999-09-01
After barely two months in space, NASA's Chandra X-ray Observatory has taken a stunning image of the Crab Nebula, the spectacular remains of a stellar explosion, and has revealed something never seen before: a brilliant ring around the nebula's heart. Combined with observations from the Hubble Space Telescope, the image provides important clues to the puzzle of how the cosmic "generator," a pulsing neutron star, energizes the nebula, which still glows brightly almost 1,000 years after the explosion. "The inner ring is unique," said Professor Jeff Hester of Arizona State University, Tempe, AZ. "It has never been seen before, and it should tell us a lot about how the energy from the pulsar gets into the nebula. It's like finding the transmission lines between the power plant and the light bulb." Professor Mal Ruderman of Columbia University, New York, NY, agreed. "The X-rays Chandra sees are the best tracer of where the energy is. With images such as these, we can directly diagnose what is going on." What is going on, according to Dr. Martin Weisskopf, Chandra Project Scientist from NASA's Marshall Space Flight Center, Huntsville, AL, is awesome. "The Crab pulsar is accelerating particles up to the speed of light and flinging them out into interstellar space at an incredible rate." The image shows tilted rings or waves of high-energy particles that appear to have been flung outward over the distance of a light year from the central star, and high-energy jets of particles blasting away from the neutron star in a direction perpendicular to the spiral. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous X-ray images have shown the outer parts of the jet and hinted at the ring structure. With Chandra's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with Chandra's Advanced CCD Imaging Spectrometer and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, is the remnant of a star that was observed to explode in 1054 A.D. Chinese astronomers in that year reported a "guest star" that appeared suddenly and remained visible for weeks, even during daytime. From gamma-ray telescopes to radio telescopes, the Crab has been observed using virtually every astronomical instrument that could see that part of the sky. Unraveling the mysteries of the Crab has proven to be the door to insight after insight into the workings of the universe. The Crab convincingly tied the origin of enigmatic "pulsars" to the stellar cataclysms known as supernovas. Observations of the expanding cloud of filaments in the Crab were instrumental in confirming the cosmic origin of the chemical elements from which planets (and people) are made. The nebula is located 6,000 light years from Earth in the constellation Taurus. The Crab pulsar, which was discovered by radio astronomers in 1968, is a neutron star rotating 30 times per second. Neutron stars are formed in the seconds before a supernova explosion when gravity crushes the central core of the star to densities 50 trillion times that of lead and a diameter of only 12 miles. Another consequence of the dramatic collapse is that neutron stars are rapidly rotating and highly magnetized. Like a gigantic cosmic generator, the rotating magnet generates 10 quadrillion volts of electricity, 30 million times that of a typical lightning bolt. "It is an incredibly efficient generator," Ruderman explained. "More than ninety-five percent efficient. There's nothing like it on Earth." Press: Fact Sheet To follow Chandra's progress, visit the Chandra News Web site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. High resolution digital versions of the X-ray image (300 dpi JPG, TIFF) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/0052/index.html or via links in: http://chandra.harvard.edu An animation of a supernova explosion and the formation of a supernova remnant can be found at: http://chandra.harvard.edu/resources/animations/pulsar.html
Coronal Structures in Cool Stars
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Dupree, Andrea K.
2004-01-01
Many papers have been published that further elucidate the structure of coronas in cool stars as determined from EUVE, HST, FUSE, Chandra, and XMM-Newton observations. In addition we are exploring the effects of coronas on the He I 1083081 transition that is observed in the infrared. Highlights of these are summarized below including publications during this reporting period and presentations. Ground-based magnetic Doppler imaging of cool stars suggests that active stars have active regions located at high latitudes on their surface. We have performed similar imaging in X-ray to locate the sites of enhanced activity using Chandra spectra. Chandra HETG observations of the bright eclipsing contact binary 44i Boo and Chandra LETG observations for the eclipsing binary VW Cep show X-ray line profiles that are Doppler-shifted by orbital motion. After careful analysis of the spectrum of each binary, a composite line-profile is constructed by adding the individual spectral lines. This high signal-to-noise ratio composite line-profile yields orbital velocities for these binaries that are accurate to 30 km/sec and allows their orbital motion to be studied at higher time resolutions. In conjunction with X-ray lightcurves, the phase-binned composite line-profiles constrain coronal structures to be small and located at high latitudes. These observations and techniques show the power of the Doppler Imaging Technique applied to X-ray line emission.
Laboratory Measurements of the K-Shell Transition Energies in L-Shell Ions of Si and S
NASA Technical Reports Server (NTRS)
Hell, N.; Brown, G.V.; Wilms, J.; Grinberg, V.; Clementson, J.; Liedahl, D.; Porter, F. S.; Kelley, R. L.; Kilbourne, C. A.; Beiersrdorfer, P.
2016-01-01
We have measured the energies of the strongest 1s-2 l (azimuthal quantum number) (l = s, p (s, p are angular momentum states)) transitions in He- through Ne-like silicon and sulfur ions to an accuracy of less than 1 electronvolt using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree-Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of 100 kilometers per second. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's 100 kilometers per second limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. We show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.
Chandra and XMM observations of cluster mergers and what we can learn from them
NASA Astrophysics Data System (ADS)
Markevitch, M.
Chandra and XMM are now routinely producing high-resolution maps of the density and temperature of the intracluster gas. These maps tell us a lot about the hydrodynamical and other processes occurring during cluster mergers. While most mergers are complicated and their interpretation requires the help of simulations, there is a number of interesting things we can learn directly from the data. I will review such results, including cold fronts and shock fronts, limits on thermal conductivity of the intracluster plasma, limits on the dark matter self-interaction cross-section, and insights into the origin of the cluster synchrotron radio halos.
Dynamic Evolution in the Symbiotic R Aquarii
NASA Technical Reports Server (NTRS)
DePasquale, J. M.; Nichols, J. S.; Kellogg, E. M.
2007-01-01
We report on multiple Chandra observations spanning a period of 5 years as well as a more recent XMM observation of the nearby symbiotic binary R Aqr. Spectral analysis of these four observations reveals considerable variability in hardness ratios and in the strength and ionization levels of emission lines which provides insight into white dwarf accretion processes as well as continuum and line formation mechanisms. Chandra imaging of the central source also shows the formation and evolution of a new south west jet. This growing body of high-resolution X-ray data of R Aqr provides a unique glimpse into white dwarf wind-accretion processes and jet formation.
High-Resolution EUV Spectroscopy of White Dwarfs
NASA Astrophysics Data System (ADS)
Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.
2014-01-01
We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.
Optics Developments for X-Ray Astronomy
NASA Technical Reports Server (NTRS)
Ramsey, Brian
2014-01-01
X-ray optics has revolutionized x-ray astronomy. The degree of background suppression that these afford, have led to a tremendous increase in sensitivity. The current Chandra observatory has the same collecting area (approx. 10(exp 3)sq cm) as the non-imaging UHURU observatory, the first x-ray observatory which launched in 1970, but has 5 orders of magnitude more sensitivity due to its focusing optics. In addition, its 0.5 arcsec angular resolution has revealed a wealth of structure in many cosmic x-ray sources. The Chandra observatory achieved its resolution by using relatively thick pieces of Zerodur glass, which were meticulously figured and polished to form the four-shell nested array. The resulting optical assembly weighed around 1600 kg, and cost approximately $0.5B. The challenge for future x-ray astronomy missions is to greatly increase the collecting area (by one or more orders of magnitude) while maintaining high angular resolution, and all within realistic mass and budget constraints. A review of the current status of US optics for x-ray astronomy will be provided along with the challenges for future developments.
X-ray imaging and spectroscopic study of the SNR Kes 73 hosting the magnetar 1E 1841-045
NASA Astrophysics Data System (ADS)
Kumar, H. S.; Safi-Harb, S.; Slane, P. O.; Gotthelf, E. V.
2014-01-01
We present the first detailed Chandra and XMM-Newton study of the young Galactic supernova remnant (SNR) Kes 73 associated with the anomalous X-ray pulsar (AXP) 1E 1841-045. Images of the remnant in the radio (20 cm), infrared (24 μm), and X-rays (0.5-7 keV) reveal a spherical morphology with a bright western limb. High-resolution Chandra images show bright diffuse emission across the remnant, with several small-scale clumpy and knotty structures filling the SNR interior. The overall Chandra and XMM-Newton spectrum of the SNR is best described by a two-component thermal model with the hard component characterized by a low ionization timescale, suggesting that the hot plasma has not yet reached ionization equilibrium. The soft component is characterized by enhanced metal abundances from Mg, Si, and S, suggesting the presence of metal-rich supernova ejecta. We discuss the explosion properties of the supernova and infer the mass of its progenitor star. Such studies shed light on our understanding of SNRs associated with highly magnetized neutron stars.
NASA Technical Reports Server (NTRS)
Bonamente, Massimillano; Joy, Marshall K.; Carlstrom, John E.; Reese, Erik D.; LaRoque, Samuel J.
2004-01-01
X-ray and Sunyaev-Zel'dovich effect data can be combined to determine the distance to galaxy clusters. High-resolution X-ray data are now available from Chandra, which provides both spatial and spectral information, and Sunyaev-Zel'dovich effect data were obtained from the BIMA and Owens Valley Radio Observatory (OVRO) arrays. We introduce a Markov Chain Monte Carlo procedure for the joint analysis of X-ray and Sunyaev- Zel'dovich effect data. The advantages of this method are the high computational efficiency and the ability to measure simultaneously the probability distribution of all parameters of interest, such as the spatial and spectral properties of the cluster gas and also for derivative quantities such as the distance to the cluster. We demonstrate this technique by applying it to the Chandra X-ray data and the OVRO radio data for the galaxy cluster A611. Comparisons with traditional likelihood ratio methods reveal the robustness of the method. This method will be used in follow-up paper to determine the distances to a large sample of galaxy cluster.
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2013-01-01
The most important next step is the development of X-ray optics comparable to (or better than) Chandra in angular resolution that far exceed Chandra s effective area. Use the long delay to establish an adequately funded, competitive technology program along the lines I have recommended. Don't be diverted from this objective, except for Explorer-class missions. Progress in X-ray optics, with emphasis on the angular resolution, is central to the paradigm-shifting discoveries and the contributions of X-ray astronomy to multiwavelength astrophysics over the past 51 years.
Chandra enables study of x-ray jets
Schwartz, Daniel
2010-01-01
The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839
Detecting Multi-scale Structures in Chandra Images of Centaurus A
NASA Astrophysics Data System (ADS)
Karovska, M.; Fabbiano, G.; Elvis, M. S.; Evans, I. N.; Kim, D. W.; Prestwich, A. H.; Schwartz, D. A.; Murray, S. S.; Forman, W.; Jones, C.; Kraft, R. P.; Isobe, T.; Cui, W.; Schreier, E. J.
1999-12-01
Centaurus A (NGC 5128) is a giant early-type galaxy with a merger history, containing the nearest radio-bright AGN. Recent Chandra High Resolution Camera (HRC) observations of Cen A reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. We show the results of an analysis of the Chandra data with smoothing and edge enhancement techniques that allow us to enhance and quantify the multi-scale structures present in the HRC images. These techniques include an adaptive smoothing algorithm (Ebeling et al 1999), and a multi-directional gradient detection algorithm (Karovska et al 1994). The Ebeling et al adaptive smoothing algorithm, which is incorporated in the CXC analysis s/w package, is a powerful tool for smoothing images containing complex structures at various spatial scales. The adaptively smoothed images of Centaurus A show simultaneously the high-angular resolution bright structures at scales as small as an arcsecond and the extended faint structures as large as several arc minutes. The large scale structures suggest complex symmetry, including a component possibly associated with the inner radio lobes (as suggested by the ROSAT HRI data, Dobereiner et al 1996), and a separate component with an orthogonal symmetry that may be associated with the galaxy as a whole. The dust lane and the x-ray ridges are very clearly visible. The adaptively smoothed images and the edge-enhanced images also suggest several filamentary features including a large filament-like structure extending as far as about 5 arcminutes to North-West.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chia-Ying; Cackett, Edward M.; Miller, Jon M.
Broad Fe K emission lines have been widely observed in the X-ray spectra of black hole systems as well as in neutron star systems. The intrinsically narrow Fe K fluorescent line is generally believed to be part of the reflection spectrum originating in an illuminated accretion disk which is broadened by strong relativistic effects. However, the nature of the lines in neutron star low-mass X-ray binaries (LMXBs) has been a matter of debate. We therefore obtained the longest, high-resolution X-ray spectrum of a neutron star LMXB to date with a 300 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observationmore » of Serpens X-1. The observation was taken under the “continuous clocking” mode, and thus was free of photon pile-up effects. We carry out a systematic analysis and find that the blurred reflection model fits the Fe line of Serpens X-1 significantly better than a broad Gaussian component does, implying that the relativistic reflection scenario is much preferred. Chandra HETGS also provides a highest spectral resolution view of the Fe K region and we find no strong evidence for additional narrow lines.« less
Second Chandra Instrument Activated August 28
NASA Astrophysics Data System (ADS)
1999-08-01
Cambridge, MA--NASA's Chandra X-ray Observatory opened a new era in astronomy Saturday, August 28, by making the most precise measurements ever recorded of the energy output from the 10 million degree corona of a star. Last weekend's observations came after the successful activation of an instrument developed by MIT that will allow a one-thousand-fold improvement in the capability to measure X-ray spectra from space. The new measurements, made with the High Energy Transmission Grating Spectrometer, join spectacular images taken last week by Chandra of the aftermath of a gigantic stellar explosion. The spectrometer is one of four key instruments aboard Chandra, and the second to be activated. The others will be turned on over the next two weeks. The spectrometer activated yesterday spreads the X-rays from Chandra's mirrors into a spectrum, much as a prism spreads light into its colors. The spectrum then can be read by Chandra's imaging detectors like a kind of cosmic bar code from which scientists can deduce the chemical composition and temperature of the corona. A corona is a region of hot gas and magnetic loops that extend hundreds of thousands of miles above the star's visible surface and is best studied with X-rays. "The success of the new spectrometer is definitely a major milestone for modern astronomy," said MIT Professor Claude R. Canizares, principal investigator for the instrument and associate director of the Chandra X-ray Observatory Center (CXC). "Within the first hour we had obtained the best X-ray spectrum ever recorded for a celestial source. We can already see unexpected features that will teach us new things about stars and about matter at high temperatures." The spectrometer measured X-rays from the star Capella, which is 40 light years away in the constellation Auriga. Capella is actually two stars orbiting one another and possibly interacting in ways that pump extra heat into the corona, which appears more active than that of the Sun. How a star manages to heat its corona to temperatures a thousand times higher than its own surface is still a puzzle, which astronomers hope can be solved by observations like this one. Other prime targets for Chandra's spectrometers over the next few months include black holes, quasars and supernova explosions. The grating spectrometer consists of hundreds of gold gratings, each about the size of a postage stamp. The surface of each grating resembles a precise picket fence, with microscopic gold pickets 500 times thinner than a human hair. These are spaced every 2000 angstroms, or less than half the wavelength of visible light. The instrument was developed at MIT's Center for Space Research, which Professor Canizares directs, by adapting techniques usually used to make computer chips. Some of these adaptations have found their way back as improvements in the chip-making industry. The grating spectrometer is one of two such devices carried by Chandra. The other, a low-energy grating built by a Dutch-German team, will be activated next week. Chandra also contains two detectors. One, built by researchers at Pennsylvania State University and MIT, was turned on two weeks ago and has recorded all the images and spectra seen so far. The second, built by the Smithsonian Astrophysical Observatory, is being activated this week. Dr. Stephen Murray of the Harvard-Smithsonian Center for Astrophysics summarized the expected impact of Chandra's high resolution X-ray spectroscopy with these words: "A picture is worth a thousand words, a spectrum is worth a million." Capella's spectrum and further information about Chandra's High Energy Transmission Grating Spectrometer may be found at: http://space.mit.edu/CSR/hetg_info.html The Chandra X-ray Observatory Center was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science and flight operations from Cambridge, MA. The first Chandra images and more information on the Chandra X-ray Observatory Center are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hell, Natalie; Brown, G. V.; Wilms, J.
We have measured the energies of the strongest 1s–2more » $${\\ell }\\ ({\\ell }={\\rm{s}},{\\rm{p}})$$ transitions in He- through Ne-like silicon and sulfur ions to an accuracy of $$\\lt 1\\,\\mathrm{eV}$$ using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree–Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. Finally, we show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.« less
Hell, Natalie; Brown, G. V.; Wilms, J.; ...
2016-10-04
We have measured the energies of the strongest 1s–2more » $${\\ell }\\ ({\\ell }={\\rm{s}},{\\rm{p}})$$ transitions in He- through Ne-like silicon and sulfur ions to an accuracy of $$\\lt 1\\,\\mathrm{eV}$$ using the Lawrence Livermore National Laboratory's electron beam ion traps, EBIT-I and SuperEBIT, and the NASA/GSFC EBIT Calorimeter Spectrometer (ECS). We identify and measure the energies of 18 and 21 X-ray features from silicon and sulfur, respectively. The results are compared to new Flexible Atomic Code calculations and to semi-relativistic Hartree–Fock calculations by Palmeri et al. (2008). These results will be especially useful for wind diagnostics in high-mass X-ray binaries, such as Vela X-1 and Cygnus X-1, where high-resolution spectral measurements using Chandra's high-energy transmission grating has made it possible to measure Doppler shifts of $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$. The accuracy of our measurements is consistent with that needed to analyze Chandra observations, exceeding Chandra's $$100\\,\\mathrm{km}\\,{{\\rm{s}}}^{-1}$$ limit. Hence, the results presented here not only provide benchmarks for theory, but also accurate rest energies that can be used to determine the bulk motion of material in astrophysical sources. Finally, we show the usefulness of our results by applying them to redetermine Doppler shifts from Chandra observations of Vela X-1.« less
Synchrotron Radiation from Outer Space and the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, M. C.
2006-01-01
The universe provides numerous extremely interesting astrophysical sources of synchrotron X radiation. The Chandra X-ray Observatory and other X-ray missions provide powerful probes of these and other cosmic X-ray sources. Chandra is the X-ray component of NASA's Great Observatory Program which also includes the Hubble Space telescope, the Spitzer Infrared Telescope Facility, and the now defunct Compton Gamma-Ray Observatory. The Chandra X-Ray Observatory provides the best angular resolution (sub-arcsecond) of any previous, current, or planned (for the foreseeable near future) space-based X-ray instrumentation. We present here a brief overview of the technical capability of this X-Ray observatory and some of the remarkable discoveries involving cosmic synchrotron sources.
NASA Astrophysics Data System (ADS)
Principe, David; Huenemoerder, David P.; Schulz, Norbert; Kastner, Joel H.; Weintraub, David; Preibisch, Thomas
2018-01-01
We present Chandra High Energy Transmission Grating (HETG) observations of the ∼3 Myr old pre-main sequence (pre-MS) stellar cluster IC 348. With 400-500 cluster members at a distance of ∼300 pc, IC 348 is an ideal target to observe a large number of X-ray sources in a single pointing and is thus an extremely efficient use of Chandra-HETG. High resolution X-ray spectroscopy offers a means to investigate detailed spectral characteristic of X-ray emitting plasmas and their surrounding environments. We present preliminary results where we compare X-ray spectral signatures (e.g., luminosity, temperature, column density, abundance) of the X-ray brightest pre-MS stars in IC 348 with spectral type, multiwavelength signatures of accretion, and the presence of circumstellar disks at multiple stages of pre-MS stellar evolution. Assuming all IC 348 members formed from the same primordial molecular cloud, any disparity between coronal abundances of individual members, as constrained by the identification and strength of emission lines, will constrain the source(s) of coronal chemical evolution at a stage of pre-MS evolution vital to the formation of planets.
2MASS J00423991+3017515: An AGN On The Run?
NASA Astrophysics Data System (ADS)
Hogg, James
2016-10-01
We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). Gravitational-wave recoil kicks result from the coalescence of two SMBHs and have implications for the early growth of high-redshift quasars and SMBH-galaxy co-evolution. We propose high-resolution imaging in the NIR, optical, and UV with the WFC3 camera on Hubble and high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. We request 3 orbits with Hubble and 8 ksec with Chandra to conduct these follow-up observations. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date, providing a new, indirect constraint on SMBH spin evolution and merger rates.
NGC 3393: multi-component AGN feedback as seen by CHEERS
NASA Astrophysics Data System (ADS)
Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Raymond, John C.; Storchi-Bergmann, Thaisa; Paggi, Alessandro; Wang, Junfeng; Risaliti, Guido
2017-01-01
Due to its low density, moderate ionization, and weak kinematics, the narrow line region (NLR) of active galactic nuclei (AGN) provides poweful diagnostics for investigating AGN feedback. The CHandra Extended Emission line Region Survey (CHEERS) is the ultimate investigation into resolved feedback in the NLR. We present results from our CHEERS investigations of NGC 3393. By imaging extended X-ray line emission of NGC 3393 with Chandra and optical line emission with Hubble's narrow-band filters, we are able to map out the simultaneous impact of photoionization, jets and an AGN disk-wind. When resolved on scales of ~10s of parsecs, the NLR of NGC 3393 shows a complex multi-component medium. Diagnostic line mapping indicates a Low-ionization Emmision Line Region (LINER) cocoon surrounding the outflow-evacuated cavities (in optical) and surrounding the supports the presence of collisional plasma (in X-rays). These physically distinct constituent regions can only be resolved by the high-resolution imaging that Chandra and HST enable.
The Wide Field X-ray Telescope Mission
NASA Astrophysics Data System (ADS)
Murray, Stephen S.; WFXT Team
2010-01-01
To explore the high-redshift Universe to the era of galaxy formation requires an X-ray survey that is both sensitive and extensive, which complements deep wide-field surveys at other wavelengths. The Wide-Field X-ray Telescope (WFXT) is designed to be two orders of magnitude more effective than previous and planned X-ray missions for surveys. WFXT consists of three co-aligned wide-field X-ray telescopes with a 1 sq. deg. field of view and <10 arc sec (goal of 5 arc sec) angular resolution over the full field. With nearly ten times Chandra's collecting area and more than ten times Chandra's field of view, WFXT will perform sensitive deep surveys that will discover and characterize extremely large populations of high redshift AGN and galaxy clusters. In five years, WFXT will perform three extragalactic surveys: 1) 20,000 sq. deg. of extragalactic sky at 100-1000 times the sensitivity, and twenty times better angular resolution than the ROSAT All Sky Survey; 2) 3000 sq.deg. to deep Chandra sensitivity; and 3) 100 sq.deg. to the deepest Chandra sensitivity. WFXT will generate a legacy dataset of >500,000 galaxy clusters to redshifts about 2, measuring redshift, gas abundance and temperature for a significant fraction of them, and a sample of more than 10 million AGN to redshifts > 6, many with X-ray spectra sufficient to distinguish obscured from unobscured quasars. These surveys will address fundamental questions of how supermassive black holes grow and influence the evolution of the host galaxy and how clusters form and evolve, as well as providing large samples of massive clusters that can be used in cosmological studies. WFXT surveys will map systems spanning many square degrees including Galactic star forming regions, the Magellanic Clouds and the Virgo Cluster. WFXT data will become public through annual Data Releases that will constitute a vast scientific legacy.
NASA Astrophysics Data System (ADS)
2000-06-01
The Chandra X-ray Observatory, NASA's newest and most powerful X-ray space telescope, has been selected as the winner of the Editor's Choice category of the 2000 Discover Magazine Awards for Technological Innovation. The team of government, industry, university and research institutions that designed, built and deployed Chandra for NASA's Marshall Space Flight Center, Huntsville, Ala, will be formally recognized June 24 at a gala awards celebration at Epcot at the Walt Disney World Resort in Orlando, Fl. Dr. Harvey Tananbaum, director of the Smithsonian Astrophysical Observatory's Chandra X-ray Science Center, Cambridge, Mass., which conducts the Chandra science mission for NASA, will receive the award on behalf of the team. "Chandra has opened a new window for astronomers into the universe of high-energy cosmic events such as pulsars, supernova remnants and black holes," said Tananbaum. "We're now able to create spectacularly detailed images of celestial phenomena whose mere existence we could only hypothesize before." Among Chandra's most significant discoveries to date, he lists the detection of a giant ring around the heart of the Crab Nebula, details of the shock wave created by an exploding star and resolution of the high-energy X-ray "glow" in the universe into millions of specific light sources. "The successful launch, deployment and on-orbit operations of NASA's Chandra X-ray Observatory is a testament to the solid partnership between TRW, NASA and the science community that has been enabling NASA's most important space science missions for the past 40 years," said Timothy W. Hannemann, executive vice president and general manager, TRW Space & Electronics Group. "The extraordinary images that Chandra is delivering daily speaks loudly not only to the quality of the science instruments on board, but also to the engineering talents and dedication to mission success exhibited by every member of NASA's Chandra mission team." Chandra, named in honor of Nobel laureate Subrahmanyan Chandrasekhar, was launched in July 1999 aboard the Space Shuttle Columbia and deployed to a highly elliptical Earth orbit. Over the next five years, it will use the world's most powerful X-ray telescope to probe the mysteries of a universe that cannot be seen by the human eye or conventional optical telescopes. Its array of exquisite mirrors, ground and polished by Raytheon Optical Systems, Inc., and assembled and aligned by Eastman Kodak, will allow Chandra to gather and focus X-rays from celestial sources billions of light years away. Chandra's science instrument module was designed and built by Ball Aerospace & Technologies Corp., then integrated with instruments provided by the Smithsonian Astrophysical Observatory, Penn State University, Massachusetts Institute of Technology, Space Research Organization of The Netherlands, and the Max Planck Institute in Germany. Ball Aerospace also produced Chandra's aspect camera. The Discover Awards for Technological Innovation, now in their 11th year, are designed to acknowledge the creativity of men, women, corporations and institutions who have reached superior levels of ingenuity. Each year, Discover Magazine's editorial staff reviews thousands of new products and ideas presented in the scientific literature or nominated by leading technology-based companies and research organizations. The editorial staff selects semi-finalists in each of eight technology categories, then submits the nominations to an independent panel of experts. The panel then selects the finalists and the winner in each area of technology. The Editor's choice category is reserved for innovations so unique or promising that they go beyond the magazine's established innovation categories by providing a marked advance in their field. Chandra's powerful X-ray telescope can resolve distant images eight times sharper and detect X-ray sources 20 times fainter than any previous X-ray space telescope. Chandra, along with the rest of the winners, will be listed in the July issue of Discover Magazine, scheduled for delivery to newsstands on June 19. The 2000 award winners will also be featured at the magazine's Web site: www.discover.com. To follow Chandra's progress visit the Chandra websites at http://chandra.harvard.edu AND http://chandra.nasa.gov
Chandra Takes on Heavy Jets and Massive Winds in 4U 1630-47
NASA Astrophysics Data System (ADS)
Neilsen, Joey
2014-11-01
Recently, Díaz Trigo et al. reported the discovery of relativistic baryons in a jet in XMM/ATCA observations of the 2012 outburst of the black hole 4U 1630-47. We present a search for a similarly massive jet earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. Despite a detection of radio emission with ATCA, we find no evidence of a heavy jet in the X-ray spectrum, with tight upper limits on the relativistic emission lines seen by Díaz Trigo eight months later. Instead, we find deep absorption lines from a massive, highly ionized disk wind, whose properties can be probed with detailed photoionization models. We explore several scenarios to explain the two modes of massive outflow in this remarkable black hole system.
Coronal Physics and the Chandra Emission Line Project
NASA Technical Reports Server (NTRS)
Brickhouse, N. S.; Drake, J. J.
2000-01-01
With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources Capella, Procyon, and HR 1099 are providing not only invaluable calibration data, but also benchmarks for plasma spectral models. These models are needed to interpret data from stellar coronae, galaxies and clusters of galaxies, supernova, remnants and other astrophysical sources. They have been called into question in recent years as problems with understanding low resolution ASCA and moderate resolution Extreme Ultraviolet Explorer Satellite (EUVE) data have arisen. The Emission Line Project is a collaborative effort, to improve the models, with Phase I being the comparison of models with observed spectra of Capella, Procyon, and HR 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent, to which common simplifying assumptions (coronal equilibrium, negligible optical depth) apply. We will discuss recent, advances in our understanding of stellar coronae, in this context.
NASA Astrophysics Data System (ADS)
Yang, Lilan; Tozzi, Paolo; Yu, Heng; Lusso, Elisabeta; Gaspari, Massimo; Gilli, Roberto; Nardini, Emanuele; Risaliti, Guido
2018-05-01
We present a search for nuclear X-ray emission in the brightest cluster galaxies (BCGs) of a sample of groups and clusters of galaxies extracted from the Chandra archive. The exquisite angular resolution of Chandra allows us to obtain robust photometry at the position of the BCG, and to firmly identify unresolved X-ray emission when present, thanks to an accurate characterization of the extended emission at the BCG position. We consider two redshift bins (0.2 < z < 0.3 and 0.55 < z < 0.75) and analyze all the clusters observed by Chandra with exposure time larger than 20 ks. Our samples have 81 BCGs in 73 clusters and 51 BCGs in 49 clusters in the low- and high-redshift bins, respectively. X-ray emission in the soft (0.5–2 keV) or hard (2–7 keV) band is detected only in 14 and 9 BCGs (∼18% of the total samples), respectively. The X-ray photometry shows that at least half of the BCGs have a high hardness ratio, compatible with significant intrinsic absorption. This is confirmed by the spectral analysis with a power-law model plus intrinsic absorption. We compute the fraction of X-ray bright BCGs above a given hard X-ray luminosity, considering only sources with positive photometry in the hard band (12/5 sources in the low/high-z sample).
Astronomical Honeymoon Continues as X-Ray Observatory Marks First Anniversary
NASA Astrophysics Data System (ADS)
2000-08-01
NASA's Chandra X-ray Observatory celebrates its initial year in orbit with an impressive list of firsts. Through Chandra's unique X-ray vision, scientists have seen for the first time the full impact of a blast wave from an exploding star, a flare from a brown dwarf, and a small galaxy being cannibalized by a larger one. Chandra is the third in NASA's family of great observatories, complementing the Hubble Space Telescope and the Compton Gamma Ray Observatory. "Our goal is to identify never-before-seen phenomena, whether they're new or millions of years old. All this leads to a better understanding of our universe, " said Martin Weisskopf, chief project scientist for the Chandra program at NASA's Marshall Space Flight Center, Huntsville, AL. "Indeed, Chandra has changed the way we look at the universe." Chandra was launched in July 1999. After only two months in space, the observatory revealed a brilliant ring around the heart of the Crab Pulsar in the Crab Nebula the remains of a stellar explosion providing clues about how the nebula is energized by a pulsing neutron, or collapsed, star. Chandra also detected a faint X-ray source in the Milky Way galaxy, which may be the long-sought X-ray emission from the known massive black hole at the galaxy's center. A black hole is a region of space with so much concentrated mass there is no way for a nearby object, even light, to escape its gravitational pull. The observatory captured as well an image that revealed gas funneling into a massive black hole in the heart of a galaxy, two million light years from our own Milky Way, is much cooler than expected. "Chandra is teaching us to expect the unexpected about all sorts of objects ranging from comets in our solar system and relatively nearby brown dwarfs to distant black holes billions of light years away," said Harvey Tananbaum, director of the Chandra X-ray Center in Cambridge, MA. Perhaps one of Chandra's greatest contributions to X-ray astronomy is the resolution of the X-ray background, a glow throughout the universe whose source or sources are unknown. Astronomers are now pinpointing the various sources of the X-ray glow because Chandra has resolution eight times better than that of previous X-ray telescopes, and is able to detect sources more than 20 times fainter. "The Chandra team had to develop technologies and processes never tried before," said Tony Lavoie, Chandra program manager at Marshall. "One example is that we built and validated a measurement system to make sure the huge cylindrical mirrors of the telescope were ground correctly and polished to the right shape." The polishing effort resulted in an ultra-smooth surface for all eight of Chandra's mirrors. If the state of Colorado were as smooth as the surface of Chandra's mirrors, Pike's Peak would be less than an inch tall. "Chandra has experienced a great first year of discovery and we look forward to many more tantalizing science results as the mission continues," said Alan Bunner, program director, Structure and Evolution of the universe, NASA Headquarters, Washington, DC. Marshall manages the Chandra program for the Office of Space Science, NASA Headquarters. TRW Space and Electronics Group, Redondo Beach, CA, is the prime contractor. Using glass purchased from Schott Glaswerke, Mainz, Germany, the telescope's mirrors were built by Raytheon Optical Systems Inc., Danbury, CT, coated by Optical Coating Laboratory, Inc., Santa Rosa, CA, and assembled and inserted into the telescope portion of Chandra by Eastman Kodak Co., Rochester, NY. The scientific instruments were supplied by collaborations led by Pennsylvania State University, University Park; Smithsonian Astrophysical Observatory, Cambridge, MA; Massachusetts Institute of Technology, Cambridge; and the Space Research Organization Netherlands, Utrecht. The Smithsonian's Chandra X-ray Center controls science and operations from Cambridge, working with astronomers around the globe to record the activities of the universe. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Chandra Clinches Case for Missing Link Black Hole
NASA Astrophysics Data System (ADS)
2000-09-01
The strongest evidence yet that the universe is home to a new type of black hole was reported by several groups of scientists today Using NASA's Chandra X-ray Observatory, scientists have zeroed in on a mid-mass black hole in the galaxy M82. This black hole - located 600 light years away from the center of a galaxy - may represent the missing link between smaller stellar black holes and the supermassive variety found at the centers of galaxies. "This opens a whole new field of research," said Martin Ward of the University of Leicester, UK, a lead author involved with the observations. "No one was sure that such black holes existed, especially outside the centers of galaxies." The black hole in M82 packs the mass of at least 500 suns into a region about the size of the Moon. Such a black hole would require extreme conditions for its creation, such as the collapse of a "hyperstar" or the merger of scores of black holes. The result comes as Chandra starts its second year of operation and is testimony to how Chandra's power and precision is changing the field of astronomy. "This black hole might eventually sink to the center of the galaxy," said Dr. Hironori Matsumoto of the Massachusetts Institute of Technology, the lead author on one of three Chandra papers scheduled to be published on the mid-mass black hole, "where it could grow to become a supermassive black hole." Although previous X-ray data from the German-U.S. Roentgen Satellite and the Japan-U.S. ASCA Satellite suggested that a mid-mass black hole might exist in M82, the crucial breakthrough came when astronomers compared the new high resolution Chandra data with optical, radio, and infrared maps of the region. They determined that most of the X-rays were coming from a single bright source. Repeated observations of M82 over a period of eight months showed the bright X-ray source gradually peaking in X-ray brightness before dimming. Another critical discovery was that the intensity of the X rays was rising and falling every 600 seconds. "This flickering of the X-ray intensity is similar to the well-studied characteristics of black holes swallowing gas from a nearby star or cloud. Explanations other than a massive black hole for this object are implausible," said Dr. Philip Kaaret of the Harvard-Smithsonian Center for Astrophysics, lead author on the paper reporting the 10 minute variations. "The brightness of the source requires that the black hole have a mass greater than 500 suns." Possible explanations for the object include the merger of stars to form a hyperstar that collapsed, or growth of a black hole through mergers with other nearby black holes and neutron stars. Observations with the Japan Nobeyama Millimeter Array by Dr. Satoki Matsushita of Harvard-Smithsonian and colleagues have revealed a large expanding superbubble of gas centered on the mid-mass black hole in M82. The energy of several thousand supernovas would be required to produce the expanding superbubble. In the past, our Milky Way galaxy could have produced mid-mass black holes during periods of vigorous star formation. Hundreds of these massive black holes may exist unseen in our galaxy, in addition to the dozen or so known stellar black holes and the supermassive black hole that is safely confined to the galaxy's nucleus. Other scientists involved with the Chandra observations include: Drs. A. H. Prestwich, A. Zezas, and S.S.Murray of Harvard-Smithsonian; C. Canizares of MIT; T. G. Tsuru and K. Koyama of Kyoto University, Japan; H. Awaki of Ehime University, Japan; N. Kawai of RIKEN (The Institute of Chemical & Physical Research) Japan; R. Kawabe of the Nobeyama Radio Observatory, Japan. M82 was observed by Chandra 6 times for approximately 30 hours total. The observations were made with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). The HRC was built for NASA by the Smithsonian Astrophysical Observatory, Cambridge, MA. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.
The Generation-X X-ray Observatory Vision Mission and Technology Study
NASA Technical Reports Server (NTRS)
Figueroa-Feliciano, Enectali
2004-01-01
The new frontier in astrophysics is the study of the birth and evolution of the first stars, galaxies and black holes in the early Universe. X-ray astronomy opens a window into these objects by studying the emission from black holes, supernova explosions and the gamma-ray burst afterglows of massive stars. However, such objects are beyond the grasp of current or near-future observatories. X-ray imaging and spectroscopy of such distant objects will require an X-ray telescope with large collecting area and high angular resolution. Our team has conceived the Generation-X Vision Mission based on an X-ray observatory with 100 sq m collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such an observatory would be capable of detecting the earliest black holes and galaxies in the Universe, and will also study extremes of density, gravity, magnetic fields, and kinetic energy which cannot be created in laboratories. NASA has selected the Generation-X mission for study under its Vision Mission Program. We describe the studies being performed to develop the mission concept and define candidate technologies and performance requirements for Generation-X. The baseline Generation-X mission involves four 8m diameter X-ray telescopes operating at Sun-Earth L2. We trade against an alternate concept of a single 26m diameter telescope with focal plane instruments on a separate spacecraft. A telescope of this size will require either robotic or human-assisted in-flight assembly. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required aerial density of at least 100 times lower than in Chandra, we will study 0.1mm thick mirrors which have active on-orbit figure control. We discuss the suite of required detectors, including a large FOV high angular resolution imager, a cryogenic imaging spectrometer and a grating spectrometer. We outline the development roadmap to confront the many technological challenges far implementing the Generation-X mission.
NASA Astrophysics Data System (ADS)
Pareschi, Giovanni; Citterio, Oberto; Civitani, Marta M; Basso, Stefano; Campana, Sergio; Conconi, Paolo; Ghigo, Mauro; Mattaini, Enrico; Moretti, Alberto; Parodi, Giancarlo; Tagliaferri, Gianpiero
2014-08-01
The implementation of an X-ray mission with high imaging capabilities, similar to those achieved with Chandra (<1 arcsec Half Energy Width, HEW), but with a much larger throughput is very attractive, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. Initially the ESA-led XEUS mission was proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a mission is the SMART-X project, led by CfA together with other US institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area >2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. This paper deals with the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1o in diameter).
Fifteen Years of Chandra Operation: Scientific Highlights and Lessons Learned
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2014-01-01
NASA's Chandra X-Ray Observatory, designed for three years of operation with a goal of five years is now entering its 15-th year of operation. Thanks to its superb angular resolution, the Observatory continues to yield new and exciting results, many of which were totally unanticipated prior to launch. We will review some scientific highlights and present "lessons learned" from the experience of operating this great observatory.
Supernova Remnant Science with AXIS
NASA Astrophysics Data System (ADS)
Williams, Brian J.; Yamaguchi, Hiroya; AXIS Science Team
2018-01-01
We present an overview of the supernova remnant (SNR) science that will be achieved with the Advanced X-ray Imaging Satellite (AXIS). AXIS follows in the footsteps of the spectacularly successful Chandra X-ray Observatory with similar or higher angular resolution and an order of magnitude more collecting area in the 0.3-10 keV band. These capabilities enable major advances in several areas of SNR science. These include, but are not limited to: 1) a more thorough spatial mapping of the ejecta products of both intermediate-mass and iron-group elements in core-collapse and Type Ia SNRs, particularly in remnants with a small diameter. The iron-group elements, specifically Cr, Mn, and Ni, are extremely important for constraining the explosion mechanism for SNe, but are generally weak and difficult to detect with Chandra, XMM-Newton, and Suzaku. 2) Studying the interface of a shock wave with the ambient ISM/CSM to constrain the degree of particle heating and acceleration at shock fronts. Chandra has only provided upper limits on shock precursor emission, and a detailed study of the thermal and nonthermal emission at the shock with greatly increased photon count rates will constrain the properties of the immediate post-shock plasma. 3) A high spatial resolution X-ray observatory will continue to build on the legacy begun by Chandra of studying the proper motion of young remnants. Directly measuring the dynamics of an SNR's evolution is crucial for understanding the explosion mechanism, and with the order of magnitude increase collecting area, we can measure the expansion of individual elemental species in the ejecta. 4) We will greatly increase the statistics of SNRs in nearby galaxies, going much faster and deeper than Chandra's observations. The increased depth of coverage would allow us to do spectroscopy in places where it was previously possible only to do rudimentary statistics. We can compare the local SNR population with the local star-formation rates for galaxies, important for supernova progenitor models. Finally, there is significant ancillary science that can be achieved by surveying nearby galaxies.
New insights into the X-ray properties of nearby barred spiral galaxy NGC 1672
NASA Astrophysics Data System (ADS)
Jenkins, L. P.; Brnadt, W. N.; Colbert, E. J. M.; Levan, A. J.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2008-02-01
We present some preliminary results from new Chandra and XMM-Newton X-ray observations of the nearby barred spiral galaxy NGC1672. It shows dramatic nuclear and extra-nuclear star formation activity, including starburst regions located near each end of its strong bar, both of which host ultraluminous X-ray sources (ULXs). With the new high-spatial-resolution Chandra imaging, we show for the first time that NGC1672 possesses a faint ($L(X)~10^39 erg/s), hard central X-ray source surrounded by an X-ray bright circumnuclear starburst ring that dominates the X-ray emission in the region. The central source may represent low-level AGN activity, or alternatively the emission from X-ray binaries associated with star-formation in the nucleus.
Time-domain Astronomy with the Advanced X-ray Imaging Satellite
NASA Astrophysics Data System (ADS)
Winter, Lisa M.; Vestrand, Tom; Smith, Karl; Kippen, Marc; Schirato, Richard
2018-01-01
The Advanced X-ray Imaging Satellite (AXIS) is a concept NASA Probe class mission that will enable time-domain X-ray observations after the conclusion of the successful Swift Gamma-ray burst mission. AXIS will achieve rapid response, like Swift, with an improved X-ray monitoring capability through high angular resolution (similar to the 0.5 arc sec resolution of the Chandra X-ray Observatory) and high sensitivity (ten times the Chandra count rate) observations in the 0.3-10 keV band. In the up-coming decades, AXIS’s fast slew rate will provide the only rapid X-ray capability to study explosive transient events. Increased ground-based monitoring with next-generation survey telescopes like the Large Synoptic Survey Telescope will provide a revolution in transient science through the discovery of many new known and unknown phenomena – requiring AXIS follow-ups to establish the highest energy emission from these events. This synergy between AXIS and ground-based detections will constrain the rapid rise through decline in energetic emission from numerous transients including: supernova shock breakout winds, gamma-ray burst X-ray afterglows, ionized gas resulting from the activation of a hidden massive black hole in tidal disruption events, and intense flares from magnetic reconnection processes in stellar coronae. Additionally, the combination of high sensitivity and angular resolution will allow deeper and more precise monitoring for prompt X-ray signatures associated with gravitational wave detections. We present a summary of time-domain science with AXIS, highlighting its capabilities and expected scientific gains from rapid high quality X-ray imaging of transient phenomena.
Towards A Complete Census of the Compton-thick AGN Population in our Cosmic Backyard
NASA Astrophysics Data System (ADS)
Annuar, Ady
2016-09-01
We propose for Chandra and NuSTAR observations of two local AGNs to characterise their obscuring properties. We are using Chandra and NuSTAR to form the first complete measurement of the column density (N_H) distribution of AGN at D<15 Mpc. Even at this distance the distribution was only 50% complete. We have recently improved this, and found a Compton-thick (CT) AGN fraction of >35%. We also found that Chandra resolution is key in resolving the AGN from off-nuclear X-ray sources. When combined with NuSTAR, this allow us to accurately characterise the broadband spectrum of the AGN, and identify it as CT. These new observations will provide Chandra data for all D<15Mpc AGNs and boost up the N_H distribution up to 85% complete. This will be fully completed with future NuSTAR observations.
NASA Technical Reports Server (NTRS)
Mushotzky, Richard
2004-01-01
In the last 5 years the first high quality moderate resolution spectra of AGN in the x-ray band have become available thanks to the gratings on Chandra and XMM. Next year this type of data will be extended to E > 3 keV with the launch of Astro-E2. I will summarize some of the outstanding results from these new data and what we may expect from Astro-E2.
Probing disk wind and other properties of 4U 1630-47
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sudip
2015-09-01
The accreting Galactic black hole transient 4U 1630-47, which is currently in outburst, is an ideal source to probe two types of accreted matter ejection: (1) via disk wind and (2) via jet, both using the observed narrow spectral lines (Diaz Trigo et al., 2013, Nature, 504, 206; Neilsen et al. 2014; Diaz Trigo et al. 2014). Chandra gratings are ideal to study such lines. The source also showed indications of high-frequency (HF) quasi-periodic oscillations (QPOs) in a rather high (150-450 Hz) frequency range, which can be extremely useful to probe the strong gravity regime. The AstroSat satellite, because of its large area and high timing resolution in a broad energy band, can potentially detect and measure HF QPOs and probe the source broadband spectrum and state. Hence, our proposed 30 ks Chandra exposure, nearly contemporaneous with complementary AstroSat observations, will provide an excellent way to probe the accretion and ejection mechanism in the strong gravity regime.
NASA Technical Reports Server (NTRS)
Brissenden, Roger
2005-01-01
In this report we provide a summary of the technical progress achieved during the last year Generation-X Vision Mission Study. In addition, we provide a brief programmatic status. The Generation-X (Gen-X) Vision Mission Study investigates the science requirements, mission concepts and technology drivers for an X-ray telescope designed to study the new frontier of astrophysics: the birth and evolution of the first stars, galaxies and black holes in the early Universe. X-ray astronomy offers an opportunity to detect these via the activity of the black holes, and the supernova explosions and gamma-ray burst afterglows of the massive stars. However, such objects are beyond the grasp of current missions which are operating or even under development. Our team has conceived a Gen-X Vision Mission based on an X-ray observatory with 100 m2 collecting area at 1 keV (1000 times larger than Chandra) and 0.1 arcsecond angular resolution (several times better than Chandra and 50 times better than the Constellation-X resolution goal). Such a high energy observatory will be capable of detecting the earliest black holes and galaxies in the Universe, and will also study extremes of density, gravity, magnetic fields, and kinetic energy which cannot be created in laboratories. In our study we develop the mission concept and define candidate technologies and performance requirements for Gen-X. The baseline Gen-X mission involves four 8 m diameter X-ray telescopes operating at Sun-Earth L2. We trade against an alternate concept of a single 26 m diameter telescope with focal plane instruments on a separate spacecraft. A telescope of this size will require either robotic or human-assisted in-flight assembly. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than for Chandra, we study 0.2 mm thick mirrors which have active on-orbit figure control. We also study the suite of required detectors, including a large FOV high angular resolution imager, a cryogenic imaging spectrometer and a reflection grating spectrometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weeren, R. J. van; Ogrean, G. A.; Jones, C.
We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less
Weeren, R. J. van; Ogrean, G. A.; Jones, C.; ...
2016-01-27
We report on high-resolution JVLA and Chandra observations of the Hubble Space Telescope (HST) Frontier Cluster MACS J0717.5+3745. MACS J0717.5+3745 offers the largest contiguous magnified area of any known cluster, making it a promising target to search for lensed radio and X-ray sources. With the high-resolution 1.0–6.5 GHz JVLA imaging in A and B configuration, we detect a total of 51 compact radio sources within the area covered by the HST imaging. Within this sample, we find seven lensed sources with amplification factors larger than two. None of these sources are identified as multiply lensed. Based on the radio luminosities,more » the majority of these sources are likely star-forming galaxies with star-formation rates (SFRs) of 10–50 M ⊙ yr -1 located at 1≲ z ≲ 2. Two of the lensed radio sources are also detected in the Chandra image of the cluster. These two sources are likely active galactic nuclei, given their 2–10 keV X-ray luminosities of ~ 10 43-44 erg s -1. From the derived radio luminosity function, we find evidence for an increase in the number density of radio sources at 0.6 < z < 2.0, compared to a z < 0.3 sample. Lastly, our observations indicate that deep radio imaging of lensing clusters can be used to study star-forming galaxies, with SFRs as low as ~10M ⊙ yr -1, at the peak of cosmic star formation history.« less
Chandra Observations of the Nuclei of Radio Galaxies: 3C 295 and Hydra A
NASA Technical Reports Server (NTRS)
Harris, D. E.; McNamara, B. R.; David, L. P.; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
The angular resolution available with Chandra allows us to isolate the X-ray emission from the nucleus of many radio galaxies and obtain their spectra. As expected from unification schemes, spectra so far obtained can best be interpreted as heavily absorbed power laws. We present the spectral parameters so derived for 3C 295 and Hydra A and compare them to data obtained at other wavelengths.
The CHANDRA X-Ray Observatory: Thermal Design, Verification, and Early Orbit Experience
NASA Technical Reports Server (NTRS)
Boyd, David A.; Freeman, Mark D.; Lynch, Nicolie; Lavois, Anthony R. (Technical Monitor)
2000-01-01
The CHANDRA X-ray Observatory (formerly AXAF), one of NASA's "Great Observatories" was launched aboard the Shuttle in July 1999. CHANDRA comprises a grazing-incidence X-ray telescope of unprecedented focal-length, collecting area and angular resolution -- better than two orders of magnitude improvement in imaging performance over any previous soft X-ray (0.1-10 keV) mission. Two focal-plane instruments, one with a 150 K passively-cooled detector, provide celestial X-ray images and spectra. Thermal control of CHANDRA includes active systems for the telescope mirror and environment and the optical bench, and largely passive systems for the focal plans instruments. Performance testing of these thermal control systems required 1-1/2 years at increasing levels of integration, culminating in thermal-balance testing of the fully-configured observatory during the summer of 1998. This paper outlines details of thermal design tradeoffs and methods for both the Observatory and the two focal-plane instruments, the thermal verification philosophy of the Chandra program (what to test and at what level), and summarizes the results of the instrument, optical system and observatory testing.
Chandra Phase-Resolved Spectroscopy of the High-Magnetic-Field Pulsar B1509-58
NASA Astrophysics Data System (ADS)
Hu, Chin-Ping; Ng, Chi-Yung
2016-04-01
We report on timing and spectral analysis of the young, high-magnetic-field pulsar B1509-58 using Chandra continuous-clocking mode observation. The on-pulsed X-ray spectrum can be described by a power law with a photon index of 1.16(2), which is flatter than those determined with RXTE/PCA and NuSTAR. This result supports the log-parabolic model for the broadband X-ray spectrum. With the unprecedented angular resolution of Chandra, we clearly identified off-pulsed X-ray emission from the pulsar. The spectrum is best fitted by a power law plus blackbody model. The latter component has a temperature of ~0.14 keV, which is similar to those of other young and high-magnetic-field pulsars, and lies between those of magnetars and typical rotational-powered pulsars. For the non-thermal emission of PSR B1509-58, we found that the power law component of the off-pulsed emission is significantly steeper than that of the on-pulsed one. We further divided the data into 24 phase bins and found that the photon index varies between 1.0 and 2.0 and anti-correlating with the flux. A similar correlation was also found in the Crab Pulsar, and this requires further theoretical interpretations. This work is supported by a GRF grant of Hong Kong Government under 17300215.
A high spectral resolution map of the nuclear emitting regions of NGC 7582
NASA Astrophysics Data System (ADS)
Braito, Valentina; Reeves, J. N.; Bianchi, S.; Nardini, E.; Piconcelli, E.
2017-04-01
We present the results of the spatial and spectral analysis of the deep ( 200 ks) Chandra HETG observation of the changing look AGN NGC 7582. During this long Chandra observation, NGC 7582 was in a highly obscured state. Therefore, we also consider a short ( 24 ks) Suzaku observation, which caught NGC 7582 in a Compton thick state. This allows us to determine the underlying continuum model and the amount of absorption [NH = (1.2 ± 0.2) × 1024 cm-2]. A wealth of emission lines (from Mg, Si, S, and Fe) are detected in the Chandra data, which allows us to map the structure of the circumnuclear emitters. The high resolution spectrum reveals that the soft X-ray emission originates in a hybrid gas, which is ionized in part by the strong circumnuclear star-forming activity and in part by the central AGN. The high resolution images confirm that the emitting region is highly inhomogeneous and extends up to a few hundred pc from the nuclear source. The X-ray images are more extended in the lower energy lines (Ne and Mg) than in the higher energy lines (Si, Fe); the former are dominated by the collisionally ionized gas from the starburst and the latter by the photoionized AGN emission. This is supported by the analysis of the He-like triplets in the grating spectra. We deduce that a low density (ne 0.3-1 cm-3) photoionized gas is responsible for the strong forbidden components, which is likely to originate from extended AGN narrow line region gas at distances of 200-300 pc from the black hole. We also detect an absorption feature at 6.7 keV that is consistent with the rest frame energy of the resonance absorption line from Fe xxv (Elab = 6.7 keV), which traces the presence of a sub-parsec scale ionized circumnuclear absorber. The emerging picture is in agreement with our new view of the circumnuclear gas in AGN, where the medium is clumpy and stratified in both density and ionization. These absorbers and emitters are located on different scales, from the sub-pc broad line region gas out to the kpc scale of the galactic absorber.
Chandra Resolves Cosmic X-ray Glow and Finds Mysterious New Sources
NASA Astrophysics Data System (ADS)
2000-01-01
While taking a giant leap towards solving one of the greatest mysteries of X-ray astronomy, NASA's Chandra X-ray Observatory also may have revealed the most distant objects ever seen in the universe and discovered two puzzling new types of cosmic objects. Not bad for being on the job only five months. Chandra has resolved most of the X-ray background, a pervasive glow of X-rays throughout the universe, first discovered in the early days of space exploration. Before now, scientists have not been able to discern the background's origin, because no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. "This is a major discovery," said Dr. Alan Bunner, Director of NASA's Structure andEvolution of the universe science theme. "Since it was first observed thirty-seven years ago, understanding the source of the X-ray background has been aHoly Grail of X-ray astronomy. Now, it is within reach." The results of the observation will be discussed today at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. An article describing this work has been submitted to the journal Nature by Dr. Richard Mushotzky, of NASA Goddard Space Flight Center, Greenbelt, Md., Drs. Lennox Cowie and Amy Barger at the University of Hawaii, Honolulu, and Dr. Keith Arnaud of the University of Maryland, College Park. "We are all very excited by this finding," said Mushotzky. "The resolution of most of the hard X-ray background during the first few months of the Chandra mission is a tribute to the power of this observatory and bodes extremely well for its scientific future," Scientists have known about the X-ray glow, called the X-ray background, since the dawn of X-ray astronomy in the early 1960s. They have been unable to discern its origin, however, for no X-ray telescope until Chandra has had both the angular resolution and sensitivity to resolve it. The German-led ROSAT mission, now completed, resolved much of the lower-energy X-ray background, showing that it arose in very faraway galaxies with extremely bright cores, called quasars or Active Galactic Nuclei (AGN). The Chandra team sampled a region of the sky about one-fifth the angular area of a full moon and resolved about 80 percent of the more-energetic X-ray background into discrete sources. Stretched across the entire sky, this would account for approximately 70 million sources, most of which would be identified with galaxies. Their analysis confirms that a significant fraction of the X-ray background cannot be due to diffuse radiation from hot, intergalactic gas. Combined X-ray and optical observations showed that nearly one third of the sources are galaxies whose cores are very bright in X rays yet emit virtually no optical light from the core. The observation suggests that these "veiled galactic nuclei" galaxies may number in the tens of millions over the whole sky. They almost certainly harbor a massive black hole at their core that produces X rays as the gas is pulled toward it at nearly the speed of light. Their bright X-ray cores place these galaxies in the AGN family. Because these numerous AGN are bright in X rays, but optically dim, the Chandra observation implies that optical surveys of AGN are very incomplete. A second new class of objects, comprising approximately one-third of the background, is assumed to be "ultra-faint galaxies." Mushotzky said that these sources may emit little or no optical light, either because the dust around the galaxy blocks the light totally or because the optical light is eventually absorbed by relatively cool gas during its long journey across the universe. In the latter scenario, Mushotzky said that these sources would have a redshift of 6 or higher, meaning that they are well over 14 billion light years away and thus the earliest, most distant objects ever identified. "This is a very exciting discovery," said Dr. Alan Bunner, Director of NASA's Structure and Evolution of the universe science theme. "Since it was first observedthirty-seven years ago, understanding the source of the X-ray background has been the Holy Grail of X-ray astronomy. Now, it is within reach." Drs. Cowie and Barger are searching for the optical counterparts to the newly discovered X-ray sources with the powerful Keck telescope atop Mauna Kea in hopes of determining their distance. However, these sources are very faint optically: They show up as a dim blue smudge or not at all. Further observations with the Hubble Space Telescope or Keck will be extremely difficult, and the power of the Next Generation Space Telescope and Constellation-X may be required to fully understand these sources. Resolution of the X-ray background relied on a 27.7-hour Chandra observation using the Advanced CCD Imaging Spectrometer (ACIS) in early December 1999, and also utilized data from the Japan-U.S. Advanced Satellite for Cosmology and Astrophysics (ASCA). The Chandra team has also reproduced the ROSAT lower-energy X-ray background observation with a factor of 2-5 times the resolution and sensitivity. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/bg/index.html AND http://chandra.nasa.gov The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
NASA Astrophysics Data System (ADS)
Jee, Myungkook James
2006-06-01
Clusters of galaxies, the largest gravitationally bound objects in the Universe, are useful tracers of cosmic evolution, and particularly detailed studies of still-forming clusters at high-redshifts can considerably enhance our understanding of the structure formation. We use two powerful methods that have become recently available for the study of these distant clusters: spaced- based gravitational weak-lensing and high-resolution X-ray observations. Detailed analyses of five high-redshift (0.8 < z < 1.3) clusters are presented based on the deep Advanced Camera for Surveys (ACS) and Chandra X-ray images. We show that, when the instrumental characteristics are properly understood, the newly installed ACS on the Hubble Space Telescope (HST) can detect subtle shape distortions of background galaxies down to the limiting magnitudes of the observations, which enables the mapping of the cluster dark matter in unprecedented high-resolution. The cluster masses derived from this HST /ACS weak-lensing study have been compared with those from the re-analyses of the archival Chandra X-ray data. We find that there are interesting offsets between the cluster galaxy, intracluster medium (ICM), and dark matter centroids, and possible scenarios are discussed. If the offset is confirmed to be uniquitous in other clusters, the explanation may necessitate major refinements in our current understanding of the nature of dark matter, as well as the cluster galaxy dynamics. CL0848+4452, the highest-redshift ( z = 1.27) cluster yet detected in weak-lensing, has a significant discrepancy between the weak- lensing and X-ray masses. If this trend is found to be severe and common also for other X-ray weak clusters at redshifts beyond the unity, the conventional X-ray determination of cluster mass functions, often inferred from their immediate X-ray properties such as the X-ray luminosity and temperature via the so-called mass-luminosity (M-L) and mass-temperature (M-T) relations, will become highly unstable in this redshift regime. Therefore, the relatively unbiased weak-lensing measurements of the cluster mass properties can be used to adequately calibrate the scaling relations in future high-redshift cluster investigations.
A quadruple quasar coincident with a giant Ly-alpha nebula and a protocluster at z=2
NASA Astrophysics Data System (ADS)
Vignali, Cristian
2016-09-01
We propose to observe the only known quadruple AGN system in the Universe, embedded in a giant Ly-alpha nebula at z 2. These active nuclei and the large number of Ly-alpha emitting galaxies at the same redshift are clear indications that this is one of the most overdense protoclusters known z 2. We request a 140 ks Chandra exposure to (a) define the basic X-ray properties of all the AGN and then their bolometric luminosities and Eddington ratios, and compare these with those of "isolated" quasars at similar redshifts/luminosities; (b) detect the hot gas emission in the protocluster. Chandra is unique for this investigation: the close (few arcsec) distance of some of the AGN needs high spatial resolution, and the extended emission requires low background contribution.
The Chandra HRC View of the Subarcsecond Structures in the Nuclear Region of NGC 1068
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, Giuseppina; Karovska, Margarita; Elvis, Martin; Risaliti, Guido
2012-09-01
We have obtained a high spatial resolution X-ray image of the nucleus of NGC 1068 using the High Resolution Camera (HRC-I) on board the Chandra X-ray Observatory, which provides an unprecedented view of the innermost 1 arcsec radius region of this galaxy. The HRC image resolves the narrow-line region into X-ray emission clumps matching bright emission-line clouds in the HST [OIII] λ5007 images and allows comparison with subarcsecond-scale radio jet for the first time. Two distinct X-ray knots are revealed at 1.3-1.4 arcsec northeast and southwest of the nucleus. Based on the combined X-ray, [O III], and radio continuum morphology, we identify the locations of intense radio jet-cloud interaction. The [O III] to soft X-ray ratios show that some of these clouds are strongly affected by shock heating, whereas in other locations the jet simply thrusts through with no signs of strong interaction. This is further strengthened by the presence of a kT ~ 1 keV collisionally ionized component in the ACIS spectrum of a shock-heated cloud HST-G. We estimate that the kinematic luminosity of the jet-driven shocks is 6 × 1038 erg s-1, a negligible fraction (10-4) of the estimated total jet power.
High spatial resolution spectroscopy of Tycho’s SNR with Chandra
NASA Astrophysics Data System (ADS)
Guo, Yun-Dong; Yang, Xue-Juan
2017-02-01
We present high spatial resolution X-ray spectroscopy of Tycho’s supernova remnant (SNR) using observational data from Chandra. The whole remnant was divided into 26 × 27 regions, with each of them covering 20\\prime\\prime × 20\\prime\\prime. We selected 536 pixels with enough events to generate spectra and fit them with an absorbed two component non-equilibrium ionization model. We obtained maps of absorbing column density, weight-averaged temperature, ionization age and abundances for O, Ne, Mg, Si, S and Fe, with emission used to determine the weight. The abundance maps and the finding that Fe abundance is not correlated with any other element suggest that Fe is located at a smaller radius than other elements, supporting the onion shell model with emission from more massive elements peaking more toward the center. A tight correlation between Si and S abundances support both Si and S coming from explosive O-burning and/or incomplete Si-burning. O and Ne abundances show no correlation with any other element. Considering that O, Ne and Mg are all synthesized in the same process (C/Ne-burning), we suggest that O/Ne/Mg might mix well with other elements during the explosion of the supernova and the expansion of the SNR.
NASA Technical Reports Server (NTRS)
Wilkes, Belinda; Lavoie, Anthony R. (Technical Monitor)
2000-01-01
The launch of the Chandra X-ray Observatory in July 2000 opened a new era in X-ray astronomy. Its unprecedented, < 1" spatial resolution and low background is providing views of the X-ray sky 10-100 times fainter than previously possible. We have begun to carry out a serendipitous survey of the X-ray sky using Chandra archival data to flux limits covering the range between those reached by current satellites and those of the small area Chandra deep surveys. We estimate the survey will cover about 8 sq.deg. per year to X-ray fluxes (2-10 keV) in the range 10(exp -13) - 6(exp -16) erg cm2/s and include about 3000 sources per year, roughly two thirds of which are expected to be active galactic nuclei (AGN). Optical imaging of the ChaMP fields is underway at NOAO and SAO telescopes using g',r',z' colors with which we will be able to classify the X-ray sources into object types and, in some cases, estimate their redshifts. We are also planning to obtain optical spectroscopy of a well-defined subset to allow confirmation of classification and redshift determination. All X-ray and optical results and supporting optical data will be place in the ChaMP archive within a year of the completion of our data analysis. Over the five years of Chandra operations, ChaMP will provide both a major resource for Chandra observers and a key research tool for the study of the cosmic X-ray background and the individual source populations which comprise it. ChaMP promises profoundly new science return on a number of key questions at the current frontier of many areas of astronomy including solving the spectral paradox by resolving the CXRB, locating and studying high redshift clusters and so constraining cosmological parameters, defining the true, possibly absorbed, population of quasars and studying coronal emission from late-type stars as their cores become fully convective. The current status and initial results from the ChaMP will be presented.
The Chandra Source Catalog: X-ray Aperture Photometry
NASA Astrophysics Data System (ADS)
Kashyap, Vinay; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E. C.; Gibbs, D. G., II; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-09-01
The Chandra Source Catalog (CSC) represents a reanalysis of the entire ACIS and HRC imaging observations over the 9-year Chandra mission. We describe here the method by which fluxes are measured for detected sources. Source detection is carried out on a uniform basis, using the CIAO tool wavdetect. Source fluxes are estimated post-facto using a Bayesian method that accounts for background, spatial resolution effects, and contamination from nearby sources. We use gamma-function prior distributions, which could be either non-informative, or in case there exist previous observations of the same source, strongly informative. The current implementation is however limited to non-informative priors. The resulting posterior probability density functions allow us to report the flux and a robust credible range on it.
History of Chandra X-Ray Observatory
1997-01-01
This photograph shows the mirrors of the High Resolution Mirror Assembly (HRMA) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being assembled in the Eastman Kodak Company in Rochester, New York. The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. TRW, Inc. was the prime contractor for the development of the CXO and NASA's Marshall Space Flight Center was responsible for its project management. The Observatory was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission.
Shocks and cold fronts in merging and massive galaxy clusters: new detections with Chandra
NASA Astrophysics Data System (ADS)
Botteon, A.; Gastaldello, F.; Brunetti, G.
2018-06-01
A number of merging galaxy clusters show the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intracluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts, and eight with uncertain origin. All the six shocks detected have M< 2 derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.
X-Ray Observations of VY Scl-Type Nova-Like Binaries in the High and Low State
NASA Technical Reports Server (NTRS)
Zemko, P.; Orio, M.; Mukai, K.; Shugarov, S.
2014-01-01
Four VY Scl-type nova-like systems were observed in X-rays during both the low- and the high-optical states. We examined Chandra, ROSAT, Swift and Suzaku archival observations of BZ Cam, MV Lyr, TT Ari and V794 Aql. The X-ray flux of BZ Cam is higher during the low state, but there is no supersoft X-ray source (SSS) as hypothesized in previous articles. No SSS was detected in the low state of the any of the other systems, with the X-ray flux decreasing by a factor between 2 and 50. The best fit to the Swift X-ray spectra is obtained with a multicomponent model of plasma in collisional ionization equilibrium. The high-state high-resolution spectra of TT Ari taken with Chandra Advanced CCD Imaging Spectrometer (ACIS-S) and the Chandra High Energy Transmission Grating (HETG) shows a rich emission line spectrum, with prominent lines of Mg, Si, Ne and S. The complexity of this spectrum seems to have origin in more than one region, or more than one single physical mechanism. While several emission lines are consistent with a cooling flow in an accretion stream, there is at least an additional component. We discuss the origin of this component, which is probably arising in a wind from the system. We also examine the possibility that the VY Scl systems may be intermediate polars, and that while the boundary layer of the accretion disc emits only in the extreme ultraviolet, part of the X-ray flux may be due to magnetically driven accretion.
X-Ray Probes of Jupiter's Auroral Zones, Galilean Moons, and the Io Plasma Torus
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Swartz, D. A.; Rehak, P.; Waite, J. H., Jr.; Cooper, J. F.; Johnson, R. E.
2005-01-01
Remote observations from the Earth orbiting Chandra X-ray Observatory and the XMM-Newton Observatory have shown the the Jovian system is a rich and complex source of x-ray emission. The planet's auroral zones and its disk are powerful sources of x-ray emission, though with different origins. Chandra observations discovered x-ray emission from the Io plasma torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from the moons is due to bombardment of their surfaces by highly energetic magnetospheric protons, and oxygen and sulfur ions, producing fluorescent x-ray emission lines from the elements in their surfaces against an intense background continuum. Although very faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around the icy Galilean moons would provide a detail mapping of the elemental composition in their surfaces. Here we review the results of Chandra and XMM-Newton observations of the Jovian system and describe the characteristics of X-MIME, an imaging x-ray spectrometer undergoing study for possible application to future missions to Jupiter such as JIMO. X-MIME has the ultimate goal of providing detailed high-resolution maps of the elemental abundances of the surfaces of Jupiter's icy moons and Io, as well as detailed study of the x-ray mission from the Io plasma torus, Jupiter's auroral zones, and the planetary disk.
A Chandra grating observation of the dusty Wolf-Rayet star WR 48a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhekov, Svetozar A.; Gagné, Marc; Skinner, Stephen L., E-mail: szhekov@space.bas.bg, E-mail: mgagne@wcupa.edu, E-mail: stephen.skinner@colorado.edu
We present results of a Chandra High-Energy Transmission Grating (HETG) observation of the carbon-rich Wolf-Rayet (WR) star WR 48a. These are the first high-resolution spectra of this object in X-ray. Blueshifted centroids of the spectral lines of ∼ – 360 km s{sup –1} and line widths of 1000-1500 km s{sup –1} (FWHM) were deduced from the analysis of the line profiles of strong emission lines. The forbidden line of Si XIII is strong and not suppressed, indicating that the rarified 10-30 MK plasma forms far from strong sources of far-ultraviolet emission, most likely in a wind collision zone. Global spectralmore » modeling showed that the X-ray spectrum of WR 48a suffered higher absorption in the 2012 October Chandra observation compared with a previous 2008 January XMM-Newton observation. The emission measure of the hot plasma in WR 48a decreased by a factor ∼3 over the same period of time. The most likely physical picture that emerges from the analysis of the available X-ray data is that of colliding stellar winds in a wide binary system with an elliptical orbit. We propose that the unseen secondary star in the system is another WR star or perhaps a luminous blue variable.« less
Coronal Physics and the Chandra Emission Line Project
NASA Technical Reports Server (NTRS)
Brickhouse, Nancy
1999-01-01
With the launch of the Chandra X-ray Observatory, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for plasma spectral modeling codes. These codes are to interpret data from stellar coronae, galaxies and clusters of galaxies. supernova remnants and other astrophysical sources, but they have been called into question in recent years as problems with understanding moderate resolution ASCA and EUVE data have arisen. The Emission Line Project is a collaborative effort to improve the models, with Phase 1 being the comparison of models with observed spectra of Capella, Procyon, and HR, 1099. Goals of these comparisons are (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. A critical issue in exploiting the coronal data for these purposes is to understand the extent to which common simplifying assumptions (coronal equilibrium, time-independence, negligible optical depth) apply. We will discuss recent advances in our understanding of stellar coronae in this context.
The Chandra Source Catalog: X-ray Aperture Photometry
NASA Astrophysics Data System (ADS)
Kashyap, Vinay; Primini, F. A.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, I. N.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hain, R.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-01-01
The Chandra Source Catalog represents a reanalysis of the entire ACIS and HRC imaging observations over the 9-year Chandra mission. Source detection is carried out on a uniform basis, using the CIAO tool wavdetect, and source fluxes are estimated post-facto using a Bayesian method that accounts for background, spatial resolution effects, and contamination from nearby sources. We use gamma-function prior distributions, which could be either non-informative, or in case there exist previous observations of the same source, strongly informative. The resulting posterior probability density functions allow us to report the flux and a robust credible range on it. We also determine limiting sensitivities at arbitrary locations in the field using the same formulation. This work was supported by CXC NASA contracts NAS8-39073 (VK) and NAS8-03060 (CSC).
Simultaneous Chandra/EHT/NuSTAR Monitoring of Sgr A* Flares
NASA Astrophysics Data System (ADS)
Garmire, Gordon
2017-09-01
EHT will observe SgrA* at 0.85 mm during the period 2017 April 5-14 UT. These will be the first mm VLBI observations with sufficient effective area and angular resolution to produce time-resolved images of the event horizon of a black hole, enabling tests of general relativity in the strong gravity regime and a search for structural variability, especially during flares. Chandra Flight Ops has identified windows on four dates when Chandra can observe SgrA* uninterrupted for 33 ks simultaneous with EHT. NuSTAR will coordinate to observe simultaneously in these windows. This Cycle 19 observation will cover one of the four windows. The other three will be covered by splitting 100 ks of Cycle 18 time currently in ObsIDs 19726 and 19727 into three observations (Proposal 18620742).
History of Chandra X-Ray Observatory
1999-09-01
After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky
Telescope Scientist on the Advanced X-ray Astrophysics Observatory
NASA Technical Reports Server (NTRS)
VanSpeybroeck, L.; Smith, Carl M. (Technical Monitor)
2002-01-01
This period included many scientific observations made with the Chandra Observatory. The results, as is well known, are spectacular. Fortunately, the High Resolution Mirror Assembly (HRMA) performance continues to be essentially identical to that predicted from ground calibration data. The Telescope Scientist Team has improved the mirror model to provide a more accurate description to the Chandra observers and enable them to reduce the systematic errors and uncertainties in their data reduction. We also have made considerable progress in improving the scattering model. There also has been progress in the scientific program. At this time 58 distant clusters of galaxies have been observed. We are performing a systematic analysis of this rather large data set for the purpose of determining absolute distances utilizing the Sunyaev Zel'dovich effect. These observations also have been used to study the evolution of the cluster baryon mass function and the cosmological constraints which result from this evolution.
Chandra's Darkest Bright Star: not so Dark after All?
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
2008-11-01
The Chandra High Resolution camera (HRC) has obtained numerous short exposures of the ultraviolet (UV)-bright star Vega (α Lyrae; HD 172167: A0 V), to calibrate the response of the detector to out-of-band (non-X-ray) radiation. A new analysis uncovered a stronger "blue leak" in the imaging section (HRC-I) than reported in an earlier study of Vega based on a subset of the pointings. The higher count rate—a factor of nearly 2 above prelaunch estimates—raised the possibility that genuine coronal X-rays might lurk among the out-of-band events. Exploiting the broader point-spread function of the UV leak compared with soft X-rays identified an excess of counts centered on the target, technically at 3σ significance. A number of uncertainties, however, prevent a clear declaration of a Vegan corona. A more secure result would be within reach of a deep uninterrupted HRC-I pointing.
T-ReX Spies the Stars of 30 Doradus
NASA Astrophysics Data System (ADS)
Broos, Patrick; Townsley, Leisa K.; Pollock, Andrew; Crowther, Paul
2017-08-01
30 Doradus (the Tarantula Nebula) is the Local Group's most massive young star-forming complex. At its heart is R136, the most massive resolved stellar cluster; R136 contains, in turn, the most massive stars known. The Chandra X-ray Observatory has recently observed 30 Dor for the 2-megasecond X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX). This deep observation exploits Chandra's fine spatial resolution to study the full complement of massive stars and the brightest pre-main sequence stars that trace 25 Myrs of star formation in this incomparable nearby starburst. Here we give preliminary results from the ongoing analyses of the data, focusing on the massive stars. While many remain undetected even in this deep ACIS-I observation, a few show dramatic X-ray lightcurves and/or high luminosities befitting this amazing starburst cluster.
Lightweight and High-Resolution Single Crystal Silicon Optics for X-ray Astronomy
NASA Technical Reports Server (NTRS)
Zhang, William W.; Biskach, Michael P.; Chan, Kai-Wing; Mazzarella, James R.; McClelland, Ryan S.; Riveros, Raul E.; Saha, Timo T.; Solly, Peter M.
2016-01-01
We describe an approach to building mirror assemblies for next generation X-ray telescopes. It incorporates knowledge and lessons learned from building existing telescopes, including Chandra, XMM-Newton, Suzaku, and NuSTAR, as well as from our direct experience of the last 15 years developing mirror technology for the Constellation-X and International X-ray Observatory mission concepts. This approach combines single crystal silicon and precision polishing, thus has the potential of achieving the highest possible angular resolution with the least possible mass. Moreover, it is simple, consisting of several technical elements that can be developed independently in parallel. Lastly, it is highly amenable to mass production, therefore enabling the making of telescopes of very large photon collecting areas.
Cosmic Pressure Fronts Mapped by Chandra
NASA Astrophysics Data System (ADS)
2000-03-01
A colossal cosmic "weather system" produced by the collision of two giant clusters of galaxies has been imaged by NASA's Chandra X-ray Observatory. For the first time, the pressure fronts in the system can be traced in detail, and they show a bright, but relatively cool 50 million degree Celsius central region embedded in large elongated cloud of 70 million degree Celsius gas, all of which is roiling in a faint "atmosphere"of 100 million degree Celsius gas. "We can compare this to an intergalactic cold front," said Maxim Markevitch of the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass. and leader of the international team involved in the analysis of the observations. "A major difference is that in this case, cold means 70 million degree Celsius." The gas clouds are in the core of a galaxy cluster known as Abell 2142. The cluster is six million light years across and contains hundreds of galaxies and enough gas to make a thousand more. It is one of the most massive objects in the universe. Galaxy clusters grow to vast sizes as smaller clusters are pulled inward under the influence of gravity. They collide and merge over the course of billions of years, releasing tremendous amounts of energy that heats the cluster gas to 100 million degrees Celsius. The Chandra data provides the first detailed look at the late stages of this merger process. Previously, scientists had used the German-US Roentgensatellite to produce a broad brush picture of the cluster. The elongated shape of the bright cloud suggested that two clouds were in the process of coalescing into one, but the details remained unclear. Chandra is able to measure variations of temperature, density, and pressure with unprecedented resolution. "Now we can begin to understand the physics of these mergers, which are among the most energetic events in the universe," said Markevitch. "The pressure and density maps of the cluster show a sharp boundary that can only exist in the moving environment of a merger." With this information scientists can make a comparison with computer simulations of cosmic mergers. This comparison, which is in the early stages, shows that this merger has progressed to an advanced stage. Strong shock waves predicted by the theory for the initial collision of clusters are not observed. It appears likely that these sub-clusters have collided two or three times in a billion years or more, and have nearly completed their merger. The observations were made on August 20, 1999 using the Advanced CCD Imaging Spectrometer (ACIS). The team involved scientists from Harvard-Smithsonian; the Massachusetts Institute of Technology, Cambridge; NASA's Marshall Space Flight Center, Huntsville, Ala.; the University of Hawaii, Honolulu; the University of Birmingham, U.K.; the University of Wollongong, Australia; the Space Research Organization Netherlands; the University of Rome, Italy; and the Russian Academy of Sciences. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/a2142/index.html AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.
Imaging AGN Feedback in NGC 3393 with CHEERS
NASA Astrophysics Data System (ADS)
Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Paggi, Alessandro; Wang, Junfeng; Storchi-Bergmann, Thaisa
2016-01-01
The CHandra Extended Emission-line Region Survey (CHEERS) is the 'ultimate' resolution X-ray imaging survey of nearby far-IR selected AGN. By comparing deep Chandra observations with complementary HST and radio data, we investigate the morphology of the extended narrow-line region on scales of <100 pc. We present new results on the gas surrounding the compton-thick AGN NGC 3393. The luminous extended narrow-line X-ray emission from this gas allows us to study the role and extent of AGN feedback as sub-kpc jets interact with the surrounding ISM.
Imaging AGN Feedback in NGC 3393 with CHEERS
NASA Astrophysics Data System (ADS)
Paggi, Alessandro; Maksym, W. Peter; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita; Wang, Junfeng; Storchi-Bergmann, Thaisa
2016-04-01
The CHandra Extended Emission-line Region Survey (CHEERS) is the 'ultimate' resolution X-ray imaging survey of nearby far-IR selected AGN. By comparing deep Chandra observations with complementary HST and radio data, we investigate the morphology of the extended narrow-line region on scales of <100 pc. We present new results on the gas surrounding the compton-thick AGN NGC 3393. The luminous extended narrow-line X-ray emission from this gas allows us to study the role and extent of AGN feedback as sub-kpc jets interact with the surrounding ISM.
Chandra Observations of Neutron Stars: An Overview
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Karovska, M.; Pavlov, G. G.; Zavlin, V. E.; Clarke, Tracy
2006-01-01
We present a brief review of Chandra X-ray Observatory observations of neutron stars. The outstanding spatial and spectral resolution of this great observatory have allowed for observations of unprecedented clarity and accuracy. Many of these observations have provided new insights into neutron star physics. We present an admittedly biased and overly brief overview of these observations, highlighting some new discoveries made possible by the Observatory's unique capabilities. We also include our analysis of recent multiwavelength observations of the putative pulsar and its pulsar-wind nebula in the IC 443 SNR.
NASA Astrophysics Data System (ADS)
Grant, Catherine E.; Prigozhin, Gregory Y.; LaMarr, Beverly; Bautz, Mark W.
2003-03-01
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The ACIS team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate charge transfer inefficiency (CTI) and spectral resolution degradation. A post-facto CTI corrector has been developed which can effectively recover much of the lost resolution. Any further improvements in performance will require knowledge of the location and amount of sacrificial charge - charge deposited along the readout path of an event which fills electron traps and changes CTI. We report on efforts by the ACIS Instrument team to characterize which charge traps cause performance degradation and the properties of the sacrificial charge seen on-orbit. We also report on attempts to correct X-ray pulseheights for the presence of sacrificial charge.
NASA Technical Reports Server (NTRS)
Aldcroft, T.; Karovska, M.; Cresitello-Dittmar, M.; Cameron, R.
2000-01-01
The aspect system of the Chandra Observatory plays a key role in realizing the full potential of Chandra's x-ray optics and detectors. To achieve the highest spatial and spectral resolution (for grating observations), an accurate post-facto time history of the spacecraft attitude and internal alignment is needed. The CXC has developed a suite of tools which process sensor data from the aspect camera assembly and gyroscopes, and produce the spacecraft aspect solution. In this poster, the design of the aspect pipeline software is briefly described, followed by details of aspect system performance during the first eight months of flight. The two key metrics of aspect performance are: image reconstruction accuracy, which measures the x-ray image blurring introduced by aspect; and celestial location, which is the accuracy of detected source positions in absolute sky coordinates.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Miller, J. Scott; Minow, Joseph I.; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz, Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (less than 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
Real Time Space Weather Support for Chandra X-Ray Observatory Operations
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Minow, Joseph I.; Miller, J. Scott; Wolk, Scott J.; Aldcroft, Thomas L.; Spitzbart, Bradley D.; Swartz. Douglas A.
2012-01-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ( soft , 100 500 keV) protons as Chandra passed through the Earth s radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth s magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra s high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA s Space Weather Prediction Center. This presentation describes the radiation mitigation strategies to minimize the proton damage in the ACIS CCD detectors and the importance of real-time data sources that are used to protect the ACIS detector system from space weather events.
Real Time Space Weather Support for Chandra X-ray Observatory Operations
NASA Astrophysics Data System (ADS)
O'Dell, S. L.; Miller, S.; Minow, J. I.; Wolk, S.; Aldcroft, T. L.; Spitzbart, B. D.; Swartz, D. A.
2012-12-01
NASA launched the Chandra X-ray Observatory in July 1999. Soon after first light in August 1999, however, degradation in the energy resolution and charge transfer efficiency of the Advanced CCD Imaging Spectrometer (ACIS) x-ray detectors was observed. The source of the degradation was quickly identified as radiation damage in the charge-transfer channel of the front-illuminated CCDs, by weakly penetrating ("soft", 100-500 keV) protons as Chandra passed through the Earth's radiation belts and ring currents. As soft protons were not considered a risk to spacecraft health before launch, the only on-board radiation monitoring system is the Electron, Proton, and Helium Instrument (EPHIN) which was included on Chandra with the primary purpose of monitoring energetic solar particle events. Further damage to the ACIS detector has been successfully mitigated through a combination of careful mission planning, autonomous on-board radiation protection, and manual intervention based upon real-time monitoring of the soft-proton environment. The AE-8 and AP-8 trapped radiation models and Chandra Radiation Models are used to schedule science operations in regions of low proton flux. EPHIN has been used as the primary autonomous in-situ radiation trigger; but, it is not sensitive to the soft protons that damage the front-illuminated CCDs. Monitoring of near-real-time space weather data sources provides critical information on the proton environment outside the Earth's magnetosphere due to solar proton events and other phenomena. The operations team uses data from the Geostationary Operational Environmental Satellites (GOES) to provide near-real-time monitoring of the proton environment; however, these data do not give a representative measure of the soft-proton (< 1 MeV) flux in Chandra's high elliptical orbit. The only source of relevant measurements of sub-MeV protons is the Electron, Proton, and Alpha Monitor (EPAM) aboard the Advanced Composition Explorer (ACE) satellite at L1, with real-time data provided by NOAA's Space Weather Prediction Center. This presentation will discuss radiation mitigation against proton damage, including models and real-time data sources used to protect the ACIS detector system.
NASA Technical Reports Server (NTRS)
Immler, Stefan; Kuntz, K. D.
2005-01-01
We report the discovery of X-ray emission from SN 1970G in M101, 35 yr after its outburst, using deep X-ray imaging with the Chundra X-Ray Observatory. The Chandra ACIS spectrum shows that the emission is soft (52 keV) and characteristic of the reverse-shock region. The X-ray luminosity, Lo,,, = (1.1 3 0.2) x lo3# ergs s-1, is likely caused by the interaction of the supernova shock with dense circumstellar matter. If the material was deposited by the stellar wind from the progenitor, a mass-loss rate of M = (2.6 ? 0.4) x M, yr-I (v,/lO km s-I) is inferred. Utilizing the high-resolution Chandra ACIS data of SN 1970G and its environment, we reconstruct the X-ray lightcurve from previous ROSAT HRI, PSPC, and XMM-Newton EPIC observations, and find a best-fit linear rate of decline of L cc t-# with index s = 2.7 t 0.9 over a period of -20-35 yr after the outburst. As the oldest supernova detected in X-rays, SN 1970G allows, for the first time, direct observation of the transition from a supenova to its supernova remnant phase.
NASA Astrophysics Data System (ADS)
Walker, S. A.; Sanders, J. S.; Fabian, A. C.
2016-09-01
The unrivalled spatial resolution of the Chandra X-ray observatory has allowed many breakthroughs to be made in high-energy astrophysics. Here we explore applications of Gaussian gradient magnitude (GGM) filtering to X-ray data, which dramatically improves the clarity of surface brightness edges in X-ray observations, and maps gradients in X-ray surface brightness over a range of spatial scales. In galaxy clusters, we find that this method is able to reveal remarkable substructure behind the cold fronts in Abell 2142 and Abell 496, possibly the result of Kelvin-Helmholtz instabilities. In Abell 2319 and Abell 3667, we demonstrate that the GGM filter can provide a straightforward way of mapping variations in the widths and jump ratios along the lengths of cold fronts. We present results from our ongoing programme of analysing the Chandra and XMM-Newton archives with the GGM filter. In the Perseus cluster, we identify a previously unseen edge around 850 kpc from the core to the east, lying outside a known large-scale cold front, which is possibly a bow shock. In MKW 3s we find an unusual `V' shape surface brightness enhancement starting at the cluster core, which may be linked to the AGN jet. In the Crab nebula a new, moving feature in the outer part of the torus is identified which moves across the plane of the sky at a speed of ˜0.1c, and lies much further from the central pulsar than the previous motions seen by Chandra.
X-Ray Spectroscopy of Optically Bright Planets using the Chandra Observatory
NASA Technical Reports Server (NTRS)
Ford, P. G.; Elsner, R. F.
2005-01-01
Since its launch in July 1999, Chandra's Advanced CCD Imaging Spectrometer (ACIS) has observed several planets (Venus, Mars, Jupiter and Saturn) and 6 comets. At 0.5 arc-second spatial resolution, ACIS detects individual x-ray photons with good quantum efficiency (25% at 0.6 KeV) and energy resolution (20% FWHM at 0.6 KeV). However, the ACIS CCDs are also sensitive to optical and near-infrared light, which is absorbed by optical blocking filters (OBFs) that eliminate optical contamination from all but the brightest extended sources, e.g., planets. .Jupiter at opposition subseconds approx.45 arc-seconds (90 CCD pixels.) Since Chandra is incapable of tracking a moving target, the planet takes 10 - 20 kiloseconds to move across the most sensitive ACIS CCD, after which the observatory must be re-pointed. Meanwhile, the OBF covering that CCD adds an opt,ical signal equivalent to approx.110 eV to each pixel that lies within thc outline of the Jovian disk. This has three consequences: (1) the observatory must be pointed away from Jupiter while CCD bias maps are constructed; (2) most x-rays from within the optical image will be misidentified as charged-particle background and ignored; and (3) those x-rays that are reported will bc assigned anomalously high energies. The same also applies to thc other planets, but is less serious since they are either dimmer at optical wavelengths, or they show less apparent motion across the sky, permitting reduced CCD exposure times: the optical contamination from Saturn acids approx.15 eV per pixel, and from Mars and Venus approx.31 eV. After analyzing a series of short .Jupiter observations in December 2000, ACIS parameters were optimized for the February 2003 opposition. CCD bias maps were constructed while Chandra pointed away from Jupiter, and the subsequent observations employed on-board software to ignore any pixel that contained less charge than that expected from optical leakage. In addition, ACIS was commanded to report 5 x 5 arrays of pixel values surrounding each x-ray event, and the outlying values were employed during ground processing to correct for the optical contamination.
NASA Astrophysics Data System (ADS)
Vikhlinin, Alexey
2018-01-01
Lynx is an observatory-class mission, featuring high throughput, exquisite angular resolution over a substantial field of view, and high spectral resolution for point and extended X-ray sources. The design requirements provide a tremendous leap in capabilities relative to missions such as Chandra and Athena. Lynx will observe the dawn of supermassive black holes through detection of very faint X-ray sources in the early universe and will reveal the "invisible drivers" of galaxy and structure formation through observations of hot, diffuse baryons in and around the galaxies. Lynx will enable breakthroughs across all of astrophysics, ranging from detailed understanding of stellar activity including effects on habitability of associated planets to population statistics of neutron stars and black holes in the Local Group galaxies, to earliest groups and clusters of galaxies, and to cosmology
The role of Chandra in ten years from now and for the next few decades of astrophysical research
NASA Astrophysics Data System (ADS)
D'Abrusco, Raffaele; Becker, Glenn E.; McCollough, Michael L.; Rots, Arnold H.; Thong, Sinh A.; Van Stone, David; Winkelman, Sherry
2018-06-01
For almost twenty years, Chandra has advanced our understanding of the X-ray Universe by allowing astronomers to peer into a previously unexplored region of the high-energy observational parameters space. Thanks to its longevity,the mission has accumulated a large, unique body of observations whose legacy value, already tangible at this point, will only increase with time, and whose long-lasting influence extends well beyond the energy interval probed by Chandra. The Chandra archive, through the extensive characterization of the links between observations and literature, has measured the impact of Chandra on the astrophysical literature at a high level of granularity, providing striking evidence of how deeply and widely Chandra has impacted the advancement of both high-energy astrophysics and astronomical research from a multi-wavelength perspective. In this talk, based on the missions that have been submitted for recommendation at the next decadal survey and the possible outcomes of the evaluation process, I will discuss how Chandra archival data can be used to anticipate the projected scientific success and long-lasting effects of a X-ray mission like Lynx or, differently, how they will become instrumental to maximize the scientific output of a new generation of facilities that will observe in different energies. I will argue that, in either scenario, the centrality of Chandra will extend well after the final demise of the mission, and its data will continue serving the community in many different ways for the foreseeable future.
Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster
NASA Astrophysics Data System (ADS)
Hughes, John
2011-09-01
We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift (z=0.870) counterpart to the famous ``bullet'' cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.
Chandra Discovery of a Binary Active Galactic Nucleus in Mrk 739
NASA Astrophysics Data System (ADS)
Koss, Michael; Mushotzky, Richard; Treister, Ezequiel; Veilleux, Sylvain; Vasudevan, Ranjan; Miller, Neal; Sanders, D. B.; Schawinski, Kevin; Trippe, Margaret
2011-07-01
We have discovered a binary active galactic nucleus (AGN) in the galaxy Mrk 739 using Chandra and Swift BAT. We find two luminous (L 2-10 keV = 1.1 × 1043 and 1.0 × 1042 erg s-1), unresolved nuclei with a projected separation of 3.4 kpc (5farcs8 ± 0farcs1) coincident with two bulge components in the optical image. The western X-ray source (Mrk 739W) is highly variable (× 2.5) during the 4 hr Chandra observation and has a very hard spectrum consistent with an AGN. While the eastern component was already known to be an AGN based on the presence of broad optical recombination lines, Mrk 739W shows no evidence of being an AGN in optical, UV, and radio observations, suggesting the critical importance of high spatial resolution hard X-ray observations (>2 keV) in finding these binary AGNs. A high level of star formation combined with a very low L [O III]/L 2-10 keV ratio cause the AGN to be missed in optical observations. 12CO observations of the (3-2) and (2-1) lines indicate large amounts of molecular gas in the system that could be driven toward the black holes during the violent galaxy collision and be key to fueling the binary AGN. Mrk 739E has a high Eddington ratio of 0.71 and a small black hole (log M BH = 7.05 ± 0.3) consistent with an efficiently accreting AGN. Other than NGC 6240, this stands as the nearest case of a binary AGN discovered to date.
Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672
NASA Astrophysics Data System (ADS)
Jenkins, L. P.; Brandt, W. N.; Colbert, E. J. M.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2011-06-01
We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST), infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D 25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX > 5 × 1039 erg s-1) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (Γ ~ 1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 × 1038 erg s-1. This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.
Investigating the Nuclear Activity of Barred Spiral Galaxies: The Case of NGC 1672
NASA Technical Reports Server (NTRS)
Jenkins, L. P.; Brandt, W. N.; Colbert, E. J.; Koribalski, B.; Kuntz, K. D.; Levan, A. J.; Ojha, R.; Roberts, T. P.; Ward, M. J.; Zezas, A.
2011-01-01
We have performed an X-ray study of the nearby barred spiral galaxy NGC 1672, primarily to ascertain the effect of the bar on its nuclear activity. We use both Chandra and XMM-Newton observations to investigate its X-ray properties, together with supporting high-resolution optical imaging data from the Hubble Space Telescope (HST) infrared imaging from the Spitzer Space Telescope, and Australia Telescope Compact Array ground-based radio data. We detect 28 X-ray sources within the D25 area of the galaxy; many are spatially correlated with star formation in the bar and spiral arms, and two are identified as background galaxies in the HST images. Nine of the X-ray sources are ultraluminous X-ray sources, with the three brightest (LX 5 * 10(exp 39) erg s(exp -1)) located at the ends of the bar. With the spatial resolution of Chandra, we are able to show for the first time that NGC 1672 possesses a hard (1.5) nuclear X-ray source with a 2-10 keV luminosity of 4 * 10(exp 38) erg s(exp -1). This is surrounded by an X-ray-bright circumnuclear star-forming ring, comprised of point sources and hot gas, which dominates the 2-10 keV emission in the central region of the galaxy. The spatially resolved multiwavelength photometry indicates that the nuclear source is a low-luminosity active galactic nucleus (LLAGN), but with star formation activity close to the central black hole. A high-resolution multiwavelength survey is required to fully assess the impact of both large-scale bars and smaller-scale phenomena such as nuclear bars, rings, and nuclear spirals on the fueling of LLAGN.
Active x-ray optics for high resolution space telescopes
NASA Astrophysics Data System (ADS)
Doel, Peter; Atkins, Carolyn; Brooks, D.; Feldman, Charlotte; Willingale, Richard; Button, Tim; Rodriguez Sanmartin, Daniel; Meggs, Carl; James, Ady; Willis, Graham; Smith, Andy
2017-11-01
The Smart X-ray Optics (SXO) Basic Technology project started in April 2006 and will end in October 2010. The aim is to develop new technologies in the field of X-ray focusing, in particular the application of active and adaptive optics. While very major advances have been made in active/adaptive astronomical optics for visible light, little was previously achieved for X-ray optics where the technological challenges differ because of the much shorter wavelengths involved. The field of X-ray astronomy has been characterized by the development and launch of ever larger observatories with the culmination in the European Space Agency's XMM-Newton and NASA's Chandra missions which are currently operational. XMM-Newton uses a multi-nested structure to provide modest angular resolution ( 10 arcsec) but large effective area, while Chandra sacrifices effective area to achieve the optical stability necessary to provide sub-arc second resolution. Currently the European Space Agency (ESA) is engaged in studies of the next generation of X-ray space observatories, with the aim of producing telescopes with increased sensitivity and resolution. To achieve these aims several telescopes have been proposed, for example ESA and NASA's combined International X-ray Observatory (IXO), aimed at spectroscopy, and NASA's Generation-X. In the field of X-ray astronomy sub 0.2 arcsecond resolution with high efficiency would be very exciting. Such resolution is unlikely to be achieved by anything other than an active system. The benefits of a such a high resolution would be important for a range of astrophysics subjects, for example the potential angular resolution offered by active X-ray optics could provide unprecedented structural imaging detail of the Solar Wind bowshock interaction of comets, planets and similar objects and auroral phenomena throughout the Solar system using an observing platform in low Earth orbit. A major aim of the SXO project was to investigate the production of thin actively controlled grazing incident optics for the next generation of X-ray space telescopes. Currently telescope systems are limited in the resolution and sensitivity by the optical quality of the thin shell optics used. As part of its research programme an actively controlled prototype X-ray thin shell telescope optic of dimensions 30x10cm has been developed to bench test the technology. The design is based on thin nickel shells bonded to shaped piezo-electric unimorph actuators made from lead zirconate titanate (PZT).
Chandra X-Ray Observatory Image of Crab Nebula
NASA Technical Reports Server (NTRS)
1999-01-01
After barely 2 months in space, the Chandra X-Ray Observatory (CXO) took this sturning image of the Crab Nebula, the spectacular remains of a stellar explosion, revealing something never seen before, a brilliant ring around the nebula's heart. The image shows the central pulsar surrounded by tilted rings of high-energy particles that appear to have been flung outward over a distance of more than a light-year from the pulsar. Perpendicular to the rings, jet-like structures produced by high-energy particles blast away from the pulsar. Hubble Space Telescope images have shown moving knots and wisps around the neutron star, and previous x-ray images have shown the outer parts of the jet and hinted at the ring structure. With CXO's exceptional resolution, the jet can be traced all the way in to the neutron star, and the ring pattern clearly appears. The image was made with CXO's Advanced Charge-Coupled Device (CCD) Imaging Spectrometer (ACIS) and High Energy Transmission Grating. The Crab Nebula, easily the most intensively studied object beyond our solar system, has been observed using virtually every astronomical instrument that could see that part of the sky
Chandra Shows New Way to Measure Cosmic Distances
NASA Astrophysics Data System (ADS)
2000-04-01
Using NASA's Chandra X-ray Observatory, a team of scientists has attacked one of astronomy's oldest and thorniest problems, determining the distance to a cosmic object. Through measuring the distance to an X-ray source by observing the delay and smearing out of X-ray signals traversing 30,000 light years of interstellar gas and dust, Chandra "opened a new world," said Peter Predehl of the Max-Planck Institute, Garching, Germany, the lead author on a report to be published in the European journal, Astronomy and Astrophysics. "Geometrical distance measurements are of particular importance for astronomy. Now we have a new method that works for distant sources," Predehl said. One of the most crucial pieces of information needed in astronomy is the distance to the stars and galaxies. They are also among the most difficult to obtain because, with rare exceptions, astronomers cannot measure distance directly and must use a variety of ingenious but uncertain techniques. This new method relies on the scattering of X-rays by interstellar dust grains between a source and the Earth. Although the scattering material is different, the dust produces a halo, much like the halo around a traffic light on a foggy night. "When the light switches from red to green (or vice versa), the halo around the light is also slightly delayed," Predehl explained. "No one would use this delay for determining the distance to the traffic light, of course, (the delay is only a few billionths of a second). But if the 'traffic light' is 30,000 light years away, the delay is on the order 15 minutes. Using the excellent and unprecedented resolution of the Chandra observatory, we can distinguish between light which was 30,000 years on its way and other light which needed only a few minutes more. " Other members of the team included Vadim Burwitz and Joachim Trumper, also of the Max-Planck Institute, and Frits Paerels of Columbia University, New York. Trumper and a colleague proposed using this method 27 years ago, but it could not be applied until an X-ray observatory with Chandra's unique capability was available. The X-ray source Cygnus X-3 acts like a cosmic traffic light, or more appropriately, lighthouse. Its X-ray emission varies regularly with a 4.8 hour period, as a neutron star or black hole circles a nearby companion star. The radiation from the halo is delayed and smeared out, so the variations are damped. For the inner part of the halo, the damping is small, whereas for the outer part, the periodic variation is completely washed out. By observing the time delay and variations at different parts of the halo, the distance to the source can be determined. Seismologists use a similar method based on the propagation of sound waves through the Earth to determine the epicenters of earthquakes or to locate unusual geological formations. Predehl and colleagues observed Cygnus X-3 for 3.5 hours with Chandra using the Advanced CCD Imaging Spectrometer (ACIS). By analyzing the time variations in the halo, the astronomers determined that the distance to Cygnus X-3 is 30,000 light years, within about 20 percent accuracy. The accuracy was limited by the short observing time, which was less than the full 4.8 hour period of variation. The team hopes to refine this estimate in the near future as data from a longer observation of the source becomes available. The X-ray scattering method of measuring cosmic distances depends on the fact that X-rays, because of their high energies, are scattered through small angles by dust grains. It cannot be used with optical telescopes because visible light photons have lower energy and are scattered through much larger angles by the dust grains. In principle, the method could also work for nearby galaxies, such as the Small and Large Magellanic Clouds and the Andromeda Nebula. If so, it would help astronomers in their quest to understand the size and age of the universe, since it would provide an independent estimate of the size of the first steps on the cosmic distance ladder. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. For images connected to this release, and to follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/cygx399/index.html AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.
Chandra Observations of the Brightest Sunyaev-Zeldovich Effect Cluster
NASA Astrophysics Data System (ADS)
Hughes, John
2011-10-01
We propose deep Chandra observations of ACT-CL J0102-4915, the brightest Sunyaev-Zeldovich effect cluster discovered by the Atacama Cosmology Telescope and South Pole Telescope surveys. These surveys covered approximately 3000 square degrees and are essentially complete to high redshift. Our recent Chandra and VLT optical data reveal ACL-CL J0102-4915 to be undergoing a major merger. It is likely a high redshift {z=0.870} counterpart to the famous A?A?bulletA?A? cluster. New Chandra data will determine the properties of the merger shock and the HST/ACS data will provide a weak lensing mass map.
NASA Astrophysics Data System (ADS)
Reeves, J. N.; Braito, V.; Behar, E.; Fischer, T. C.; Kraemer, S. B.; Lobban, A.; Nardini, E.; Porquet, D.; Turner, T. J.
2017-03-01
High-resolution X-ray spectroscopy of the warm absorber in the nearby X-ray bright Seyfert 1 galaxy Mrk 1040 is presented. The observations were carried out in the 2013-2014 timeframe using the Chandra High Energy Transmission Grating with a total exposure of 200 ks. A multitude of absorption lines from Ne, Mg, and Si are detected from a wide variety of ionization states. In particular, the detection of inner K-shell absorption lines from Ne, Mg, and Si, from charge states ranging from F-like to Li-like ions, suggests the presence of a substantial amount of low-ionization absorbing gas, illuminated by a steep soft X-ray continuum. The observations reveal at least three warm absorbing components ranging in ionization parameter from {log}(ξ /{erg} {cm} {{{s}}}-1)=0{--}2 and with column densities of {N}{{H}}=1.5{--}4.0× {10}21 cm-2. The velocity profiles imply that the outflow velocities of the absorbing gas are low and within ±100 km s-1 of the systemic velocity of Mrk 1040, which suggests that any outflowing gas may have stalled in this AGN on large enough scales. The warm absorber is likely located far from the black hole, within 300 pc of the nucleus, and is spatially coincident with emission from an extended narrow-line region as seen in the Hubble Space Telescope images. The iron K-band spectrum reveals only narrow emission lines, with Fe Kα at 6.4 keV consistent with originating from reflection off Compton-thick pc-scale reprocessing gas.
History of Chandra X-Ray Observatory
1997-03-16
This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most poweful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components relatedto x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-03-16
This photo shows the High Resolution Camera (HRC) for the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), being integrated with the High Resolution Mirror Assembly (HRMA) in Marshall Space Flight Center's (MSFC's) 24-foot Vacuum Chamber at the X-Ray Calibration Facility (XRCF). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRC is one of the two instruments used at the focus of CXO, where it will detect x-rays reflected from an assembly of eight mirrors. The unique capabilities of the HRC stem from the close match of its imaging capability to the focusing of the mirrors. When used with CXO mirrors, the HRC makes images that reveal detail as small as one-half an arc second. This is equivalent to the ability to read a newspaper at a distance of 1 kilometer. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
NASA Astrophysics Data System (ADS)
Long, Min; Sun, Wei; Niu, Shu; Zhou, Xin; Ji, Li
2017-08-01
We investigate the physical properties of stellar winds launched in super stellar clusters (SSCs). Chandra observations have detected the presence of diffuse X-ray emission caused by hot gas from such winds in SSCs, and provide the best probe for understanding interactions between the stellar winds and the complex nursery regions. However, the details of the origin of cluster winds, the mass and energy ejection, the formation of diffuse X-ray emission, the fraction of winds contribution to the distribution of diffuse X-ray emission still remain unclear. We developed a multiphysics hydrodynamic model including self-gravity, head conduction and performed 3D simulations with an unprecedented grid resolution due to adaptive mesh refinement (AMR) capability in a case study of NGC 3603, as a supplement to the analysis of the archived 500 ks Chandra observations. The synthetic emission will be computed by assuming the gas in a non-equilibrium ionization (NEI) state indicated by Chandra observation, not coronal ionization equilibrium (CIE) that most works assumed, by using a customized NEI calculation module based on AtomDB. The results will be compared to the Chandra observations.
The End of Days -- Chandra Catches X-ray Glow From Supernova
NASA Astrophysics Data System (ADS)
1999-12-01
Through a combination of serendipity and skill, scientists have used NASA's Chandra X-ray Observatory to capture a rare glimpse of X-radiation from the early phases of a supernova, one of the most violent events in nature. Although more than a thousand supernovas have been observed by optical astronomers, the early X-ray glow from the explosions has been detected in less than a dozen cases. The Chandra observations were made under the direction of a team of scientists from the Massachusetts Institute of Technology (MIT) in Cambridge, led by Walter Lewin and his graduate student, Derek Fox. When combined with simultaneous observations by radio and optical telescopes, the X-ray observations tell about the thickness of the shell that was blown off, its density, its speed, and how much material was shed by the star before it exploded. Chandra observed an X-ray glow from SN1999em with the total power of 50,000 suns. Ten days later it observed the supernova for another nine hours, and found that the X rays had faded to half their previous intensity. The optical luminosity, which had the brightness of 200 million suns, had faded somewhat less. No radio emission was detected at any time. With this information, the MIT group and their colleagues are already piecing together a picture of the catastrophic explosion. Observations by optical astronomers showed that SN1999em was a Type II supernova produced by the collapse of the core of a star ten or more times as massive as the Sun. The intense heat generated in the collapse produces a cataclysmic rebound that sends high speed debris flying outward at speeds in excess of 20 million miles per hour. The debris crashes into matter shed by the former star before the explosion. This awesome collision generates shock waves that heat expanding debris to three million degrees. The X-ray glow from this hot gas was detected by Chandra and gives astrophysicists a better understanding of the dynamics of the explosion, as well as the behavior of the doomed star in the years before the explosion. "The combination of X-ray detection and radio non-detection is unusual, but may have less to do with the supernova and more to do with the great sensitivity of Chandra," said Roger Chevalier of University of Virginia, Charlottesville. Chevalier explained that the combined observations indicate that SN1999em shed a relatively small amount of matter before it exploded, compared to other supernovas observed in X rays. The Chandra observation is important because it may represent a more common type of supernova. The Chandra observation also provides an inside look at the hectic, exciting world of the international "quick response" network that scientists have set up to track and investigate supernovas. On Friday, October 29, Alex Fillipenko of the University of California, Berkeley notified Bob Kirshner at Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., that his automated supernova search project had a good candidate in a relatively nearby spiral galaxy, NGC 1637. Nearby in this case means about 25 million light years from Earth. Wei Dong Li, who is visiting Fillipenko's group from the Beijing Astronomical Observatory in China, called his colleagues in Beijing, who confirmed the supernova when the Earth rotated into a position to make viewing from China possible. The astronomers also notified the International Astronomical Union's central bureau for astronomical telegrams in Cambridge, Mass., from which the discovery was broadcast worldwide. Radio astronomers Christina Lacey and Kurt Weiler at the Naval Research Laboratory in Washington, D.C., Schuyler van Dyk at the California Institute of Technology, Pasadena and Richard Sramek at the National Radio Astronomy Observatory's Very Large Array, Socorro, N.M. were alerted. Kirshner then got in touch via e-mail with Harvey Tananbaum, director of the Chandra X-ray Center at Harvard-Smithsonian a little before 11 p.m. on Saturday night. The Chandra operations team replanned the telescope's observation activities and by Monday morning, and by Monday morning, Chandra was pointed at the supernova and observed it for about nine hours. Lewin, who had been awarded the rights to Chandra's first observation of a nearby supernova, was ecstatic. "This is a unique chance that we have been hoping for!!!!" he wrote in an e-mail to Tananbaum. "I was impressed by how rapid the Chandra response was, " said Kirshner. "Supernovae expand quickly and cool quickly, so each day we delay observing the supernova it has changed irretrievably," Filippenko said. "We caught this really early, only a day or two after the explosion. We were lucky." The Chandra observation was taken with the Advanced CCD Imaging Spectrometer (ACIS) on November 1 and 2, and 11 and 12, 1999 in two separate observations that lasted approximately nine hours each. ACIS was built by Pennsylvania State University, University Park. and MIT. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/photo/sn1999em/ or via links in: http://chandra.harvard.edu
A Chandra X-ray Mosaic of the Onsala 2 Star-Forming Region
NASA Astrophysics Data System (ADS)
Skinner, Steve L.; Sokal, Kimberly; Guedel, Manuel
2018-01-01
Multiple lines of evidence for active high-mass star-formation in the Onsala 2 (ON2) complex in Cygnus include masers, compact HII (cHII) regions, and massive outflows. ON2 is thought to be physically associated with the young stellar cluster Berkeley 87 which contains several optically-identified OB stars and the rare oxygen-type (WO) Wolf-Rayet star WR 142. WO stars are undergoing advanced nuclear core burning as they approach the end of their lives as supernovae, and only a few are known in the Galaxy. We present results of a sensitive 70 ks Chandra ACIS-I observation of the northern half of ON2 obtained in 2016. This new observation, when combined with our previous 70 ks ACIS-I observation of the southern half in 2009, provides a complete X-ray mosaic of ON2 at arcsecond spatial resolution and reveals several hundred X-ray sources. We will summarize key results emerging from our ongoing analysis including the detection of an embedded population of young stars revealed as a tight grouping of X-ray sources surrounding the cHII region G75.77+0.34, possible diffuse X-ray emission (or unresolved faint point sources) near the cHII region G75.84+0.40, and confirmation of hard heavily-absorbed X-ray emission from WR 142 that was seen in the previous 2009 Chandra observation.
NASA Astrophysics Data System (ADS)
Su, Yuanyuan; Kraft, Ralph P.; Roediger, Elke; Nulsen, Paul; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.
2017-01-01
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc) due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra, and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin-Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μG to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is revealed with its protective cover removed. Chandra is ready for mating with the Inertial Upper Stage (IUS) beneath it, to be followed by testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
High Energy (X-ray/UV) Radiation Fields of Young, Low-Mass Stars Observed with Chandra and HST
NASA Astrophysics Data System (ADS)
Brown, Alexander; Brown, J. M.; Herczeg, G.; Bary, J.; Walter, F. M.; Ayres, T. R.
2010-01-01
Pre-main-sequence (PMS) stars are strong UV and X-ray emitters and the high energy (UV/X-ray) radiation from the central stars directly influences the physical and chemical processes in their protoplanetary disks. Gas and dust in protoplanetary systems are excited by these photons, which are the dominant ionization source for hundreds of AU around the star. X-rays penetrate deep into disks and power complex chemistry on grain surfaces. ``Transitional disks'' are a crucial and important evolutionary stage for PMS stars and protoplanetary systems. These disks have transformed most of the dust and gas in their inner regions into planetesimals or larger solid bodies. The disks show clear inner ``holes'' that almost certainly harbor infant planetary systems, given the very sharp gap boundaries inferred. Transitional disks are rare and represent a short-lived phase of PMS disk evolution. We have observed a sample of PMS stars at a variety of evolutionary stages, including the transitional disk stars GM Aur (K5) and HD135344B (F4). Chandra ACIS CCD-resolution X-ray spectra and HST STIS and COS FUV spectra are being used to reconstruct the full high energy (X-ray/EUV/FUV/NUV) spectra of these young stars, so as to allow detailed modeling of the physics and chemistry of their circumstellar environments, thereby providing constraints on the formation process of planetary systems. This work is supported by Chandra grants GO8-9024X, GO9-0015X and GO9-0020B and HST grants for GO projects 11336, 11828, and 11616 to the University of Colorado.
Arevalo, P.; Bauer, F. E.; Puccetti, S.; ...
2014-07-30
Here, the Circinus galaxy is one of the closest obscured active galactic nuclei (AGNs), making it an ideal target for detailed study. Combining archival Chandra and XMM-Newton data with new NuSTAR observations, we model the 2-79 keV spectrum to constrain the primary AGN continuum and to derive physical parameters for the obscuring material. Chandra's high angular resolution allows a separation of nuclear and off-nuclear galactic emission. In the off-nuclear diffuse emission, we find signatures of strong cold reflection, including high equivalent-width neutral Fe lines. This Compton-scattered off-nuclear emission amounts to 18% of the nuclear flux in the Fe line region,more » but becomes comparable to the nuclear emission above 30 keV. The new analysis no longer supports a prominent transmitted AGN component in the observed band. We find that the nuclear spectrum is consistent with Compton scattering by an optically thick torus, where the intrinsic spectrum is a power law of photon index Γ = 2.2-2.4, the torus has an equatorial column density of N H = (6-10) × 10 24 cm –2, and the intrinsic AGN 2-10 keV luminosity is (2.3-5.1) × 10 42 erg s –1. These values place Circinus along the same relations as unobscured AGNs in accretion rate versus Γ and L X versus L IR phase space. NuSTAR's high sensitivity and low background allow us to study the short timescale variability of Circinus at X-ray energies above 10 keV for the first time. Here, the lack of detected variability favors a Compton-thick absorber, in line with the spectral fitting results.« less
Flight Results of the Chandra X-ray Observatory Inertial Upper Stage Space Mission
NASA Technical Reports Server (NTRS)
Tillotson, R.; Walter, R.
2000-01-01
Under contract to NASA, a specially configured version of the Boeing developed Inertial Upper Stage (IUS) booster was provided by Boeing to deliver NASA's 1.5 billion dollar Chandra X-Ray Observatory satellite into a highly elliptical transfer orbit from a Shuttle provided circular park orbit. Subsequently, the final orbit of the Chandra satellite was to be achieved using the Chandra Integral Propulsion System (IPS) through a series of IPS burns. On 23 July 1999 the Shuttle Columbia (STS-93) was launched with the IUS/Chandra stack in the Shuttle payload bay. Unfortunately, the Shuttle Orbiter was unexpectantly inserted into an off-nominal park orbit due to a Shuttle propulsion anomaly occurring during ascent. Following the IUS/Chandra on-orbit deployment from the Shuttle, at seven hours from liftoff, the flight proven IUS GN&C system successfully injected Chandra into the targeted transfer orbit, in spite of the off-nominal park orbit. This paper describes the IUS GN&C system, discusses the specific IUS GN&C mission data load development, analyses and testing for the Chandra mission, and concludes with a summary of flight results for the IUS part of the Chandra mission.
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Huenemoerder, D. P.; Hamann, W.-R.; Shenar, T.; Sander, A. A. C.; Ignace, R.; Todt, H.; Hainich, R.
2017-08-01
The blue hypergiant Cyg OB2 12 (B3Ia+) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oskinova, L. M.; Hamann, W.-R.; Shenar, T.
The blue hypergiant Cyg OB2 12 (B3Ia{sup +}) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si xiv and Mg xii. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only atmore » the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions.« less
Chandra Finds Oxygen and Neon Ring in Ashes of Exploded Star
NASA Astrophysics Data System (ADS)
2000-01-01
NASA's Chandra X-ray Observatory has revealed an expanding ring-like structure of oxygen and neon that was hurled into space by the explosion of a massive star. The image of E0102-72 provides unprecedented details about the creation and dispersal of heavy elements necessary to form planets like Earth. The results were reported by Professor Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. Drs. Kathryn Flanagan, David Davis, and John Houck of MIT collaborated with Canizares in this investigation. E0102-72 is the remnant of a supernova explosion located in our neighbor galaxy, the Small Magellanic Cloud, nearly 200,000 light years away. It was created by the explosion of a star that was more than ten times as massive as our Sun. We are seeing the aftermath of the explosion a thousand or more years after the outburst. Shock waves are heating gas to temperatures of nearly 10 million degrees, so it glows with X-rays that are detected by Chandra's instruments. By using the High Energy Transmission Grating Spectrometer (HETG), astronomers were able to pinpoint the distribution of each chemical element individually and measure the velocities of different parts of the expanding ring. They also show the shock wave in a kind of "freeze-frame," revealing the progressive heating of the stellar matter as it plows into the surrounding gas. This is the first time such detailed X-ray information has ever been obtained for a supernova remnant, and should provide critical clues to the nature of supernovas. The grating spectrometer, which was built by an MIT team led by Canizares, spreads the X-rays according to their wavelength, giving distinct images of the object at specific wavelengths characteristic of each chemical element. Small wavelength shifts caused by the Doppler effect are used to measure the expansion velocities of each element independently. "We've been studying these supernova remnants for decades, but now we're getting the kind of information we need to really test the theories," said Canizares. "Understanding supernovas helps us to learn about the processes that formed chemical elements like those which are found on Earth and are necessary for life," said Flanagan. Most of the oxygen in the universe, for example, is synthesized in the interiors of relatively few massive stars like the one being studied here. When they explode, they expel the newly manufactured elements which become part of the raw material for new stars and planets. The amount of oxygen in the E0102-72 ring is enough for thousands of solar systems. By measuring the expansion velocity of the ring, the team can estimate the amount of energy liberated in the explosion. The expansion energy would be enough to power the Sun for 3 billion years. The ring has more complex structure and motion than can be explained by current simplified theories, suggesting complexity in the explosion itself or in the surrounding interstellar matter. The supernova remnant also provides a laboratory for atomic physics. The observations show how the atoms in the expelled matter behave when heated to such high temperatures. The images reveal the progressive stripping of electrons from the atoms after the super-sonic shock wave has passed. The Chandra observation was taken using the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on September 28 and October 10, 1999. ACIS was built by Pennsylvania State University, University Park, and the Massachusetts Institute of Technology, Cambridge. To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0015/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu Further information on the HETG may be found at: http://space.mit.edu/CSR/hetg_info.html
Chandra Observations of Associates of η Carinae. II. Spectra
NASA Astrophysics Data System (ADS)
Evans, Nancy Remage; Schlegel, Eric M.; Waldron, Wayne L.; Seward, Frederick D.; Krauss, Miriam I.; Nichols, Joy; Wolk, Scott J.
2004-09-01
The low-resolution X-ray spectra around η Car covering Trumpler 16 and part of Trumpler 14 have been extracted from a Chandra CCD ACIS image. Various analysis techniques have been applied to the spectra based on their count rates. The spectra with the greatest number of counts (HD 93162 = WR 25, HD 93129 AB, and HD 93250) have been fitted with a wind model, which uses several components with different temperatures and depths in the wind. Weaker spectra have been fitted with Raymond-Smith models. The weakest spectra are simply intercompared with strong spectra. In general, fits produce reasonable parameters based on knowledge of the extinction from optical studies and on the range of temperatures for high- and low-mass stars. Direct comparisons of spectra confirm the consistency of the fitting results and also hardness ratios for cases of unusually large extinction in the clusters. The spectra of the low-mass stars are harder than the more massive stars. Stars in the sequence evolving from the main sequence (HD 93250) through the system containing the O supergiant (HD 93129 AB) and then through the Wolf-Rayet stage (HD 93162), presumably ending in the extreme example of η Car, share the property of being unusually luminous and hard in X-rays. For these X-ray-luminous stars, their high mass and evolutionary status (from the very last stages of the main sequence and beyond) is the common feature. Their binary status is mixed, and their magnetic status is still uncertain. Based on observations made with the Chandra X-Ray Observatory.
NASA Astrophysics Data System (ADS)
Hornschemeier, A. E.; Heckman, T. M.; Ptak, A. F.; Tremonti, C. A.; Colbert, E. J. M.
2005-01-01
We have cross-correlated X-ray catalogs derived from archival Chandra X-Ray Observatory ACIS observations with a Sloan Digital Sky Survey Data Release 2 (DR2) galaxy catalog to form a sample of 42 serendipitously X-ray-detected galaxies over the redshift interval 0.03
Meta-shell Approach for Constructing Lightweight and High Resolution X-Ray Optics
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.
2016-01-01
Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low thermal distortion. Recent results are discussed including Structural Thermal Optical Performance (STOP) analysis as well as vibration and shock testing of prototype meta-shells.
Multiwavelength Study of Powerful New Jet Activity in the Symbiotic Binary System R Aqr
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2016-09-01
We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of multi-scale components of the powerful jet; from near the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond , and especially of the recently discovered inner jet, to gain insight on early jet formation and propagation, such as jet kinematics and precession.
Energetic Ring Shows Way To Discovery Of Pulsar "Bulls-Eye"
NASA Astrophysics Data System (ADS)
2002-06-01
Astronomers from the University of Massachusetts and Columbia University have found the "bulls-eye" pulsar in a bright ring of high-energy particles in a distant supernova remnant. This discovery, made with NASA's Chandra X-ray Observatory and the Arecibo Radio Telescope, will help scientists better understand how neutron stars channel enormous amounts of energy into particles moving near the speed of light. Chandra's image of the supernova remnant SNR G54.1+0.3 reveals a bright, point-like central source, which is surrounded by a ring and two jet-like structures in an extended nebula of high-energy particles. The radio data show that this bright central source is a neutron star, or pulsar, that is rotating 7 times per second. "The features Chandra found appear to be due to the energetic flow of radiation and particles from a rapidly spinning neutron star formed during a supernova event," said Fangjun Lu of the University of Massachusetts at Amherst who led the X-ray research. Lu and colleagues informed Fernando Camilo of Columbia University in New York of this detection. Camilo and his collaborators then used the powerful Arecibo telescope to look for the tell-tale radio pulsations from a neutron star at the center of the ring. After a search in August 2001 was aborted by radio-frequency interference, they observed the source again in April 2002 and found a weak, pulsating radio source. Further observations indicate the pulsar (and hence the supernova remnant) has an age of approximately 3000 years. Analysis of 1997 ASCA satellite data confirmed that the source is pulsing in X-rays as well. "This discovery is an excellent example of how the superb resolution of Chandra and the improved capabilities of Arecibo worked together to quickly resolve an outstanding scientific question," said Camilo. "We look forward to continued substantial progress in understanding the properties of young neutron stars." Intense electric fields around the neutron star accelerate particles to form jets blasting away from the poles and a disk of matter and anti-matter flowing away from the equator at high speeds. As the equatorial flow rams into particles and magnetic fields in the nebula, a shock wave forms. The shock wave then boosts the particles to extremely high energies causing them to glow in X-rays and produce the bright ring. The particles continue to stream outward from the ring and the jets to supply the extended nebula, which spans approximately 6 light years. The features observed in SNR G54.1+0.3 are very similar to other "pulsar wind nebulas" found by Chandra in the Crab Nebula, the Vela supernova remnant, and B1509-58. By analyzing the similarities and differences between these objects, scientists hope to better understand the fascinating process of transforming the rotational energy of the neutron star into extremely high-energy particles with very little frictional heat loss. Chandra observed SNR G54.1+0.3 on June 6-7, 2001, using the Advanced CCD Imaging Spectrometer instrument. The radio data on the central pulsar, known as PSR J1930+1852, were gathered at Arecibo on April 29, 2002. The results from this work appear in two separate papers in the March 20 and July 20, 2002 issues of the Astrophysical Journal Letters. The Arecibo Observatory is part of the National Astronomy and Ionosphere Center (NAIC), operated by Cornell University under a cooperative agreement with the National Science Foundation (NSF). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
1999-06-04
STS-93 Mission Specialists Catherine Coleman (left) and Michel Tognini of France (right), representing the Centre National d'Etudes Spatiales (CNES), look over material on the mission payload behind them, the Chandra X-ray Observatory. Chandra is being mated with the Inertial Upper Stage (IUS) before testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-04
STS-93 Mission Specialists Catherine Coleman (left) and Michel Tognini of France (right), who represents the Centre National d'Etudes Spatiales (CNES), look over the controls for the Chandra X-ray Observatory. Chandra is being mated with the Inertial Upper Stage (IUS) before testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
Spectacular X-ray Jet Points Toward Cosmic Energy Booster
NASA Astrophysics Data System (ADS)
2000-06-01
NASA's Chandra X-ray Observatory has revealed a spectacular luminous spike of X rays that emanates from the vicinity of a giant black hole in the center of the radio galaxy Pictor A. The spike, or jet, is due to a beam of particles that streaks across hundreds of thousands of light years of intergalactic space toward a brilliant X-ray hot spot that marks its end point. Pictor A Image Press Image and Caption The hot spot is at least 800 thousand light years (8 times the diameter of our Milky Way galaxy) away from where the jet originates. It is thought to represent the advancing head of the jet, which brightens conspicuously where it plows into the tenuous gas of intergalactic space. The jet, powered by the giant black hole, originates from a region of space no bigger than the solar system. "Both the brightness and the spectrum of the X rays are very different from what theory predicts," Professor Andrew Wilson reported today at the 196th national meeting of the American Astronomical Society in Rochester, New York. Wilson, of the University of Maryland, College Park, along with Dr. Patrick Shopbell and Dr. Andrew Young, also of the University of Maryland, are submitting an article on this research to the Astrophysical Journal. "The Chandra observations are telling us that something out there is producing many more high-energy particles than we expected," said Wilson. One possible explanation for the X rays is that shock waves along the side and head of the X-ray jet are accelerating electrons and possibly protons to speeds close to that of light. In the process the electrons are boosted to energies as high as 100 million times their own rest mass energy. These electrons lose their energy rapidly as they produce X rays, so this could be the first direct evidence of this process so far outside a galaxy. The hot spot has been seen with optical and radio telescopes. Radio telescopes have also observed a faint jet. Jets are thought to be produced by the extreme electromagnetic forces created by magnetized gas swirling toward a black hole. Although most of the material falls into the black hole, some can be ejected at extremely high speeds. Magnetic fields spun out by these forces can extend over vast distances and may help explain the narrowness of the jet. The Chandra observation of Pictor A was made on January 18, 2000 for eight hours using the Advanced CCD Imaging Spectrometer (ACIS). The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above. This image will be available on NASA Video File which airs at noon, 3:00 p.m., 6:00 p.m., 9:00 p.m. and midnight Eastern Time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz.
The 3 Ms Chandra campaign on Sgr A*: a census of X-ray flaring activity from the Galactic center
NASA Astrophysics Data System (ADS)
Neilsen, J.; Nowak, M. A.; Gammie, C.; Dexter, J.; Markoff, S.; Haggard, D.; Nayakshin, S.; Wang, Q. D.; Grosso, N.; Porquet, D.; Tomsick, J. A.; Degenaar, N.; Fragile, P. C.; Houck, J. C.; Wijnands, R.; Miller, J. M.; Baganoff, F. K.
2014-05-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of the closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares and the quiescent emission, we discuss the physical implications of X-ray variability in the Galactic center.
NASA Astrophysics Data System (ADS)
Neilsen, Joey
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief flares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including the brightest flare ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, N.; Porquet, D.; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Houck, John C.; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2014-08-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
Astronomers Find New Evidence for the Violent Demise of Sun-like Stars
NASA Astrophysics Data System (ADS)
2005-06-01
Two astronomers have used NASA's Chandra X-ray Observatory to discover a shell of superheated gas around a dying star in the Milky Way galaxy. Joel Kastner, professor of imaging science at the Rochester Institute of Technology, and Rodolpho Montez, a graduate student in physics and astronomy at the University of Rochester, will present their results today at the American Astronomical Society meeting in Minneapolis. Their discovery shows how material ejected at two million miles per hour during the final, dying stages of sun-like stars can heat previously ejected gas to the point where it will emit X-rays. The study also offers new insight into how long the ejected gas around dying stars can persist in such a superheated state. According to Kastner, the hot gas shows up in high-resolution Chandra X-ray images of the planetary nebula NGC 40, which is located about 3,000 light years away from Earth in the direction of the constellation Cepheus. Chandra X-ray & NOAO Optical Composite of NGC 40 Chandra X-ray & NOAO Optical Composite of NGC 40 "Planetary nebulae are shells of gas ejected by dying stars," Kastner explains. "They offer astronomers a 'forecast' of what could happen to our own sun about five billion years from now - when it finally exhausts the reservoir of hydrogen gas at its core that presently provides its source of nuclear power." In his research, Montez discovered the X-ray emitting shell in NGC 40 by generating an image that uses only specific energy-selected X-rays - revealing a ring of superheated gas that lies just within the portions of the nebula that appear in optical and infrared images. "This hot bubble of gas vividly demonstrates how, as a planetary nebula forms, the gas ejection process of the central, dying star becomes increasingly energetic," Kastner notes. "Mass ejection during stellar death can result in violent collisions that can heat the ejected gas up to temperatures of more than a million degrees." The detection of X-rays from NGC 40 adds to a growing list of such discoveries by Chandra and its European counterpart, the XMM-Newton X-ray satellite observatory. Kastner and Montez (along with collaborators Orsola de Marco, of the American Museum of Natural History in New York, and Noam Soker, of the Technion Institute in Haifa, Israel) have studied these previous X-ray observations of planetary nebulae, and find that the X-ray and infrared output of such objects is closely coupled. "The connection between X-ray and infrared emission seems to show that the hot bubble phase is restricted to early times in stellar death, when a planetary nebula is quite young and the dust within it is still relatively warm," says Montez about his observations. The correspondence indicates that the production of superheated gas is a short-lived phase in the life of a planetary nebula, although Kastner cautions that additional Chandra and XMM-Newton observations are required to test this idea. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Chandra Discovers Elusive "Hot Bubble" in Planetary Nebula
NASA Astrophysics Data System (ADS)
2000-06-01
NASA's Chandra X-ray Observatory has imaged for the first time a "hot bubble" of gas surrounding a dying, Sun-like star. This large region of very hot gas in the planetary nebula BD+30 3639 has a peculiar shape and contains elements produced in the core of the dying star. "The new Chandra image offers conclusive proof for the existence of the "hot bubble" that theorists have long predicted," said Professor Joel Kastner, of the Chester F. Carlson Center of Imaging Science at the Rochester Institute of Technology. Kastner leads a team of scientists who reported on this observation at the 196th national meeting of the American Astronomical Society in Rochester, New York. The Chandra image shows a region of 3 million degree Celsius gas that appears to fit inside the shell of ionized gas seen by the Hubble Space Telescope. The optical and X-ray emitting regions of BD+30 3639, which lies between 5000 and 8000 light years away, are roughly one million times the volume of our solar system. A planetary nebula (so called because it looks like a planet when viewed with a small telescope) is formed when a dying red giant star puffs off its outer layer, leaving behind a hot core that will eventually collapse to form a dense star called a white dwarf. According to theory, a "hot bubble" is formed when a new, two million mile per hour wind emanating from the hot core rams into the ejected atmosphere, producing energetic shocks and heating the interaction region to temperatures of millions of degrees. Previous X-ray observations hinted that X rays might be coming from a region larger than the central star but it remained for Chandra to provide definite proof. The shape of the X-ray emission was a surprise to the researchers. "This suggests that the red giant atmosphere was not ejected symmetrically,"said Kastner. "It might be pointing to an unseen companion star," The spectrum shows a large abundance of neon in the X-ray-emitting gas. This indicates that gas contained in the hot bubble gas was dredged up from the deepest layers of the central star, where nuclear fusion altered the chemical composition of the gas prior to its being ejected. Thus the Chandra data may offer new insight into the process whereby dying stars enrich the Milky Way in fusion products. The observation was made in March 2000 using the Advanced CCD Imaging Spectrometer (ACIS). Kastner's collaborators on the project are Prof. Noam Soker of the University of Haifa, Israel; Prof. Saul Rappaport of MIT; Dr. Ruth Knill-Dgani of the University of Texas, Austin; and Dr. Saeqa Vrtilek of the Harvard-Smithsonian Center for Astrophysics. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Chandra follow up analysis on HESS J1841-055
NASA Astrophysics Data System (ADS)
Wilbert, Sven
2012-07-01
State of the art Imaging Atmospheric Cherenkow Telescopes (IACTs) like the Very Energetic Radiation Imaging Telescope Array System (VERITAS) and the High Energy Stereoscopic System (H.E.S.S) made surveys of the sky in order to discover new sources. The first and most famous is the H.E.S.S survey of the inner Galactic plane. So far more than 50 Galactic TeV Gamma-ray sources have been detected, a large number of which remain unidentified. HESS J1841-055 is one of the largest and most complex among these unidentified sources with an extension of approximately 1°. Follow up observations of the HESS J1841-055 region with Chandra, which is due to its high resolution good suited for searching for X-Ray counterparts and add-on analysis have revealed several X-ray sources spatially coincident with the multiple TeV emission peaks. The search for counterparts brought out the fact that not a single source itself but a bunch of sources of different nature, could be indeed the creators of this complex diffuse emission region; among them the SNR Kes 73, the pulsar within Kes 73, 1E 1841-45 and also the High Mass X-Ray Binary AX 184100.4-0536 and others.
Workers in the VPF observe the lower end of the IUS to be mated to the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
Workers in the Vertical Processing Facility observe the lower end of the Inertial Upper Stage (IUS) that will be mated with the Chandra X-ray Observatory (out of sight above it). After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93.
The Kinematic and Plasma Properties of X-Ray Knots in Cassiopeia A from the Chandra HETGS
NASA Astrophysics Data System (ADS)
Lazendic, J. S.; Dewey, D.; Schulz, N. S.; Canizares, C. R.
2006-11-01
We present high-resolution X-ray spectra from the young supernova remnant Cas A using a 70 ks observation taken by the Chandra High Energy Transmission Grating Spectrometer (HETGS). Line emission, dominated by Si and S ions, is used for high-resolution spectral analysis of many bright, narrow regions of Cas A to examine their kinematics and plasma state. These data allow a three-dimensional (3D) reconstruction using the unprecedented X-ray kinematic results: we derive unambiguous Doppler shifts for these selected regions, with values ranging between -2500 and +4000 km s-1 and the typical velocity error less than 200 km s-1. Plasma diagnostics of these regions, derived from line ratios of resolved He-like triplet lines and H-like lines of Si, indicate temperatures largely around 1 keV, which we model as O-rich reverse-shocked ejecta. The ionization age also does not vary considerably over these regions of the remnant. The gratings analysis was complemented by the nondispersed spectra from the same data set, which provided information on emission measure and elemental abundances for the selected Cas A regions. The derived electron density of X-ray emitting ejecta varies from 20 to 200 cm-3. The measured abundances of Mg, Si, S, and Ca are consistent with O being the dominant element in the Cas A plasma. With a diameter of 5', Cas A is the largest source observed with the HETGS to date. We therefore describe the technique we use and some of the challenges we face in the HETGS data reduction from such an extended, complex object.
X-ray diagnostics of massive star winds
NASA Astrophysics Data System (ADS)
Oskinova, L. M.; Ignace, R.; Huenemoerder, D. P.
2017-11-01
Observations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.
Orbital Verification of the CXO High-Resolution Mirror Assembly Alignment and Vignetting
NASA Technical Reports Server (NTRS)
Gaetz, T. J.; Jerius, D.; Edgar, R. J.; VanSpeybroeck, L. P.; Schwartz, D. A.; Markevitch, M.; Schulz, N. S.
2000-01-01
Prior to launch, the High Resolution Mirror Assembly (HRMA) of the Chandra X-ray Observatory underwent extensive ground testing at the X-ray Calibration Facility (XRCF) at the Marshall Space Flight Center in Huntsville. Observations made during the post-launch Orbital Activation and Calibration period, allow the on-orbit condition of the X-ray optics to be assessed. Based on these ground-based and on-orbit data, we examine the alignment of the x-ray optics based on the PSF, and the boresight and alignment of the optical axis alignment relative to the detectors. We examine the vignetting and the single reflection ghost suppression properties of the telescope. Slight imperfections in alignment lead to a small azimuthal dependence of the off-axis area; the morphology of off-axis images also shows an additional small azimuthal dependence varying as 1/2 the off-axis azimuth angle.
NASA Astrophysics Data System (ADS)
Caballero, J. A.; Montes, D.; Alonso-Floriano, F. J.; Cortés-Contreras, M.; González-Álvarez, E.; Hidalgo, D.; Holgado, G.; Martínez-Rodríguez, H.; Sanz-Forcada, J.; López-Santiago, J.
2015-05-01
We are compiling the most comprehensive database of M dwarfs ever built, CARMENCITA, the CARMENES Cool dwarf Information and daTa Archive, which will be the CARMENES 'input catalogue'. In addition to the science preparation with low- and high-resolution spectrographs and lucky imagers, we compile a huge pile of public data on over 2200 M dwarfs, and analyse them, mostly using virtual-observatory tools. Here we describe four specific actions carried out by master students. They mine public archives for additional high-resolution spectroscopy (UVES, FEROS and HARPS), multi-band photometry (FUV-NUV-u-B-g-V-r-R-i-J-H-Ks-W1-W2-W3-W4), X-ray data (ROSAT, XMM-Newton and Chandra), and periods, rotational velocities and Hα pseudo-equivalent widths. As described, there are many interdependences between all these data.
1999-06-01
The Inertial Upper Stage (IUS) booster is lowered toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lowered onto the Inertial Upper Stage (IUS) beneath it. After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
The Inertial Upper Stage (IUS) booster is moved toward a workstand in Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
The Outer Limits of Galaxy Clusters: Observations to the Virial Radius with Suzaku, XMM,and Chandra
NASA Technical Reports Server (NTRS)
Miller, Eric D.; Bautz, Marshall; George, Jithin; Mushotzky, Richard; Davis, David; Henry, J. Patrick
2012-01-01
The outskirts of galaxy clusters, near the virial radius, remain relatively unexplored territory and yet are vital to our understanding of cluster growth, structure, and mass. In this presentation, we show the first results from a program to constrain the sate of the outer intra-cluster medium (ICM) in a large sample of galaxy clusters, exploiting the strengths of three complementary X-ray observatories: Suzaku (low, stable background), XMM-Newton (high sensitivity),and Chandra (good spatial resolution). By carefully combining observations from the cluster core to beyond r200, we are able to identify and reduce systematic uncertainties that would impede our spatial and spectral analysis using a single telescope. Our sample comprises nine clusters at z is approximately 0.1-0.2 fully covered in azimuth to beyond r200, and our analysis indicates that the ICM is not in hydrostatic equilibrium in the cluster outskirts, where we see clear azimuthal variations in temperature and surface brightness. In one of the clusters, we are able to measure the diffuse X-ray emission well beyond r200, and we find that the entropy profile and the gas fraction are consistent with expectations from theory and numerical simulations. These results stand in contrast to recent studies which point to gas clumping in the outskirts; the extent to which differences of cluster environment or instrumental effects factor in this difference remains unclear. From a broader perspective, this project will produce a sizeable fiducial data set for detailed comparison with high-resolution numerical simulations.
Finite element analyses of thin film active grazing incidence x-ray optics
NASA Astrophysics Data System (ADS)
Davis, William N.; Reid, Paul B.; Schwartz, Daniel A.
2010-09-01
The Chandra X-ray Observatory, with its sub-arc second resolution, has revolutionized X-ray astronomy by revealing an extremely complex X-ray sky and demonstrating the power of the X-ray window in exploring fundamental astrophysical problems. Larger area telescopes of still higher angular resolution promise further advances. We are engaged in the development of a mission concept, Generation-X, a 0.1 arc second resolution x-ray telescope with tens of square meters of collecting area, 500 times that of Chandra. To achieve these two requirements of imaging and area, we are developing a grazing incidence telescope comprised of many mirror segments. Each segment is an adjustable mirror that is a section of a paraboloid or hyperboloid, aligned and figure corrected in situ on-orbit. To that end, finite element analyses of thin glass mirrors are performed to determine influence functions for each actuator on the mirrors, in order to develop algorithms for correction of mirror deformations. The effects of several mirror mounting schemes are also studied. The finite element analysis results, combined with measurements made on prototype mirrors, will be used to further refine the correction algorithms.
CIAO: CHANDRA/X-RAY DATA ANALYSIS FOR EVERYONE
NASA Astrophysics Data System (ADS)
McDowell, Jonathan; CIAO Team
2018-01-01
Eighteen years after the launch of Chandra, the archive is full of scientifically rich data and new observations continue. Improvements in recent years to the data analysis package CIAO (Chandra Interactive Analysis of Observations) and its extensive accompanying documentation make it easier for astronomers without a specialist background in high energy astrophysics to take advantage of this resource.The CXC supports hundreds of CIAO users around the world at all levels of training from high school and undergraduate students to the most experienced X-ray astronomers. In general, we strive to provide a software system which is easy for beginners, yet powerful for advanced users.Chandra data cover a range of instrument configurations and types of target (pointlike, extended and moving), requiring a flexible data analysis system. In addition to CIAO tools using the familiar FTOOLS/IRAF-style parameter interface, CIAO includes applications such as the Sherpa fitting engine which provide access to the data via Python scripting.In this poster we point prospective (and existing!) users to the high level Python scripts now provided to reprocess Chandra or other X-ray mission data, determine source fluxes and upper limits, and estimate backgrounds; and to the latest documentation including the CIAO Gallery, a new entry point featuring the system's different capabilities.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
Simultaneous Chandra/Swift Observations of the RT Cru Symbiotic System
NASA Astrophysics Data System (ADS)
Kashyap, Vinay; Kennea, J. A.; Karovska, M.; Calibration, Chandra
2013-04-01
The symbiotic star RT Cru was observed simultaneously by the Chandra/HRC-I and Swift/XRT in Dec 2012. The observations were carried out as part of a program to calibrate the Chandra PSF. The Chandra light curve shows a number of brightenings by factors of 2, with strong indications of a softening of the spectrum at these times. Swift observations cover a brief part of the Chandra light curve, and the intensities over this duration are tightly correlated. The Swift spectral data confirm the anticorrelation between intensity and spectral hardness. However, there are differences in the correlations at different periods that are not understood. We report on our analysis of the data, with emphasis on the spectral modeling at different times and intensity levels, and discuss the implications of the results on the emission mechanisms on symbiotic stars. We also report our inferences on the structure and energy dependence of the Chandra PSF anomaly, and on the high-energy cross-calibration between the HRC-I and XRT. This work is supported by the NASA contract NAS8-03060 to the Chandra X-ray Center.
Young Pulsar Reveals Clues to Supernova
NASA Astrophysics Data System (ADS)
2001-09-01
Astronomers examined the remnants of a stellar explosion with NASA's Chandra X-ray Observatory and discovered one of the youngest known pulsars. The properties of this pulsar, a neutron star rotating 15 times a second, will enable scientists to better understand how neutron stars are formed in the seconds just before a supernova explosion, and how they pump energy into the space around them for thousands of years after the explosion. A team led by Stephen Murray of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA studied 3C58, the remains of a supernova observed on Earth in 1181 AD in the constellation Cassiopeia. In addition to a pulsating central source they observed an extended X-ray source surrounding the pulsar thought to be produced by a cloud of high-energy particles about 20 light years across. These results were presented at the "Two Years of Science with Chandra" symposium in Washington, D.C. According to Murray, "Our discovery shows that all pulsars are not born equal. This pulsar is about the same age as the Crab Nebula pulsar, but there is little family resemblance." Murray explained that the 3C58 pulsar, which is now rotating at about half the rate of the Crab pulsar, is rotating almost as fast as it was when it was formed. In contrast, the Crab pulsar was formed spinning much more rapidly and has slowed to about half its initial speed. Conventional theory has assumed that all pulsars were like the Crab, born with rapid rotation and then have spun down considerably. The observations of 3C58, along with Chandra observations by another group of scientists of a pulsar associated with the supernova of 386 AD have cast doubt on that assumption, however. Furthermore, the X-ray power of 3C58 and its surrounding nebula are 20,000 and 1,000 times weaker than the Crab pulsar and its surrounding nebula respectively. One possibility for the low power of 3C58 is that the energy flow from its pulsar is primarily in the form of electromagnetic fields, so the energy is transported to much greater distances from the pulsar, where it has yet to be detected. Another possibility is that the association of 3C58 with the supernova of 1181 AD is spurious, in which case 3C58 would be much older. In view of the lack of other radio and X-ray sources that could be the remnant of Supernova 1181 AD, this is considered unlikely. The team also used X-ray data taken by NASA's Rossi X-ray Timing Explorer satellite in 1997 to confirm the existence of the pulsar and to measure its present slow-down rate. The Chandra observations were made on November 30, 1999, and December 23, 2000, using the High Resolution Camera (HRC), which was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass. under the direction of Stephen Murray. NASA's Marshall Space Flight Center, Huntsville, AL, manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
1999-03-26
Viewed from above in the Vertical Processing Facility, the Chandra X-ray Observatory is seen with one of its solar panel arrays attached, at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-25
In the Vertical Processing Facility, TRW workers continue checking the deployment of the solar panel array (right) after attaching it to the Chandra X-ray Observatory (left). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW technicians in the Vertical Processing Facility check the fitting of the solar panel array being attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
TRW workers in the Vertical Processing Facility check equipment after deployment of the solar panel array above them, attached to the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, the Chandra X-ray Observatory is observed after deployment of the solar panel array (near the bottom and to the right). Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul
The intracluster medium (ICM), as a magnetized and highly ionized fluid, provides an ideal laboratory to study plasma physics under extreme conditions that cannot be achieved on Earth. NGC 1404 is a bright elliptical galaxy that is being gas stripped as it falls through the ICM of the Fornax Cluster. We use the new Chandra X-ray observations of NGC 1404 to study ICM microphysics. The interstellar medium of NGC 1404 is characterized by a sharp leading edge, 8 kpc from the Galaxy center, and a short downstream gaseous tail. Contact discontinuities are resolved on unprecedented spatial scales (0.″5 = 45 pc)more » due to the combination of the proximity of NGC 1404, the superb spatial resolution of Chandra , and the very deep (670 ks) exposure. At the leading edge, we observe sub-kiloparsec-scale eddies generated by Kelvin–Helmholtz instability (KHI) and put an upper limit of 5% Spitzer on the isotropic viscosity of the hot cluster plasma. We also observe mixing between the hot cluster gas and the cooler galaxy gas in the downstream stripped tail, which provides further evidence of a low viscosity plasma. The assumed ordered magnetic fields in the ICM ought to be smaller than 5 μ G to allow KHI to develop. The lack of an evident magnetic draping layer just outside the contact edge is consistent with such an upper limit.« less
Infrared and X-ray study of the Galactic SNR G15.9+0.2
NASA Astrophysics Data System (ADS)
Sasaki, Manami; Mäkelä, Minja M.; Klochkov, Dmitry; Santangelo, Andrea; Suleimanov, Valery
2018-06-01
G15.9+0.2 is a Galactic shell-type supernova remnant (SNR), which was detected in radio and has been confirmed in X-rays based on Chandra observations. An X-ray point source CXOUJ181852.0-150213 has been detected and suggested to be an associated neutron star. In a recent study, we have confirmed the source to be a central compact object (CCO). We have studied the SNR using high-resolution X-ray data taken with Chandra in combination with infrared (IR) data in order to understand its emission and to derive its physical parameters. This will also help to constrain, e.g., the age of the CCO and the environment in which it was born. The spectral analysis of the X-ray emission using the new Chandra data and the comparison to the IR data have shown that the SNR is relatively young with an age of a few thousand years and that its emission is dominated by that of shocked interstellar medium (ISM). However, the analysis of the spectrum of the bright eastern shell shows that there is an additional emission component with enhanced abundances of α elements and Fe, suggesting ejecta emission. The multi-wavelength emission is consistent with SNR G15.9+0.2 expanding in an ISM with a density gradient, while there is also colder material located in front of the SNR, which absorbs its thermal X-ray emission in the softer bands.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
This photo (rear view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
2003-04-09
This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Chandra Observatory Uncovers Hot Stars In The Making
NASA Astrophysics Data System (ADS)
2000-11-01
Cambridge, Mass.--In resolving the hot core of one of the Earth's closest and most massive star-forming regions, the Chandra X-ray Observatory showed that almost all the young stars' temperatures are more extreme than expected. Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on October 31st UT 05:47:21 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT Orion Trapezium JPEG, TIFF, PS The Orion Trapezium as observed on November 24th UT 05:37:54 1999. The colors represent energy, where blue and white indicate very high energies and therefore exterme temperatures. The size of the X-ray source in the image also reflects its brightness, i.e. more bright sources appear larger in size. The is an artifact caused by the limiting blur of the telescope optics. The projected diameter of the field of view is about 80 light days. Credit: NASA/MIT The Orion Trapezium Cluster, only a few hundred thousand years old, offers a prime view into a stellar nursery. Its X-ray sources detected by Chandra include several externally illuminated protoplanetary disks ("proplyds") and several very massive stars, which burn so fast that they will die before the low mass stars even fully mature. One of the major highlights of the Chandra observations are identification of proplyds as X-ray point source in the near vicinity of the most massive star in the Trapezium. Previous observations did not have the ability to separate the contributions of the different objects. "We've seen high temperatures in stars before, but what clearly surprised us was that nearly all the stars we see appear at rather extreme temperatures in X-rays, independent of their type," said Norbert S. Schulz, MIT research scientist at the Chandra X-ray Center, who leads the Orion Project. "And by extreme, we mean temperatures which are in some cases well above 60 million degrees." The hottest massive star known so far has been around 25 million degrees. The great Orion Nebula harbors the Orion Nebula Cluster (ONC), a loose association of around 2,000 mostly very young stars of a wide range of mass confined within a radius of less than 10 light years. The Orion Trapezium Cluster is a younger subgroup of stars at the core of the ONC confined within a radius of about 1.5 light years. Its median age is around 300,000 years. The constant bright light of the Trapezium and its surrounding stars at the heart of the Orion nebula (M42) are visible to the naked eye on clear nights. In X-rays, these young stars are constantly active and changing in brightness, sometimes within half a day, sometimes over weeks. "Never before Chandra have we seen images of stellar activity with such brilliance," said Joel Kastner, professor at the Chester F. Carlson Center for Imaging Science at the Rochester Institute of Technology. "Here the combination of very high angular resolution, with high quality spectra that Chandra offers, clearly pays off." The observation was performed using the High Energy Transmission Grating Spectrometer (HETGS) and the X-ray spectra were recorded with the spectroscopic array of the Advanced CCD Imaging Spectrometer (ACIS). The ACIS detector is a sophisticated version of the CCD detectors commonly used in video cameras or digital cameras. The orion stars are so bright in X-rays that they easily saturate the ccds. Here the team used the gratings as a blocking filter. Orion Trapezium - X-ray & Optical JPEG, TIFF, PS X-ray contours of the Chandra observation overlaid onto the optical Hubble image (courtesy of J. Bally, CASA Colorado). The field of view is 30"x30". Besides the bright main Trapezium stars, which were found to be extremely hot massive stars, several externally illuminated objects are also X-ray emitters. Some of them with temperatures up to 100 Million degrees. The ones that do not show X-ray contours are probably too faint to be detected in these particular Chandra observations. Credit: J. Bally, CASA Colorad It is generally assumed that low-mass stars like our Sun, when they are young, are more than 1,000 times more luminous in X-rays. The X-ray emission here is thought to arise from magnetic activity in connection with stellar rotation. Consequently, high temperatures would be observed in very violent and giant flares. Here temperatures as high as 60 million degrees have been observed in very few cases. The absence of many strong flares in the light curves, as well as temperatures in the Chandra ACIS spectra wich exceed the ones in giant flares, could mean that they are either young protostars (i.e stars in the making), or a special class of more evolved, hot young stars. Schulz concedes that although astronomers have gathered many clues in recent years about the X-ray behavior of very young stellar objects, "we are far from being able to uniquely classify evolutionary stages of their X-ray emission." The five main young and massive Trapezium stars are responsible for the illumination of the entire Orion Nebula. These stars are born with masses 15 to 30 times larger than the mass of our Sun. X-rays in such stars are thought to be produced by shocks that occur when high velocity stellar winds ram into slower dense material. The Chandra spectra show a temperature component of about 5 million to 10 million degrees, which is consistent with this model. However, four of these five stars also show additional components between 30 million and 60 million degrees. "The fact that some of these massive stars show such a hot component and some not, and that a hot component seems to be more common than previously assumed, is an important new aspect in the spectral behavior of these stars," said David Huenemoerder, research physicist at the MIT Center for Space Research. Standard shock models cannot explain such high temperatures, which may be caused by magnetically confined plasmas, which are generally only attributed to stars like the Sun. Such an effect would support the suspicion that some aspects in the X-ray emission of massive stars may not be different from our Sun, which also has a hot corona. More study is needed to confirm this conclusion. The latest in NASA's series of Great Observatories. Chandra is the "X-ray Hubble," launched in July 1999 into a deep-space orbit around the Earth. Chandra carries a large X-ray telescope to focus X-rays from objects in the sky. An X-ray telescope cannot work on the ground because the X-rays are absorbed by the Earth's atmosphere. The HETGS was built by the Massachusetts Institute of Technology with Bruno Rossi Professor Claude Canizares as Principal Investigator. The ACIS X-ray camera was conceived and developed for NASA by Penn State and the Massachusetts Institute of Technology under the leadership of Gordon Garmire, Evan Pugh Professor of Astronomy and Astrophysics at Penn State. The Orion observation was part of Prof. Canizares guaranteed observing time during the first round of Chandra observations. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. Orion Trapezium Handout Constellation Orion To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov Various Images for this release and a postscript version of a preprint of the accepted science paper (The Astrophysical Main Journal) can be downloaded from http://space.mit.edu/~nss/orion/orion.html
1999-06-01
The Inertial Upper Stage (IUS) booster (right) is lifted out of its container after arriving at Kennedy Space Center's Vertical Processing Facility. The IUS will be mated with the Chandra X-ray Observatory (at left) and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is moved toward the Inertial Upper Stage (IUS) in a workstand at right. There it will be mated with the IUS and then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lowered toward the Inertial Upper Stage (IUS) in a workstand beneath it. There it will be mated with the IUS and then undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-04
Workers in the Vertical Processing Facility observe the lower end of the Inertial Upper Stage (IUS) that will be mated with the Chandra X-ray Observatory (out of sight above it). After the two components are mated, they will undergo testing to validate the IUS/Chandra connections and to check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
1999-06-01
In the Vertical Processing Facility, the Chandra X-ray Observatory is lifted from its workstand in order to move it to the Inertial Upper Stage (IUS) nearby. After being mated, the two components will then undergo testing to validate the IUS/Chandra connections and check the orbiter avionics interfaces. Following that, an end-to-end test (ETE) will be conducted to verify the communications path to Chandra, commanding it as if it were in space. With the world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 22 aboard Space Shuttle Columbia, on mission STS-93
An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline
2010-01-01
High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.
Motions in Nearby Galaxy Cluster Reveal Presence of Hidden Superstructure
NASA Astrophysics Data System (ADS)
2004-09-01
A nearby galaxy cluster is facing an intergalactic headwind as it is pulled by an underlying superstructure of dark matter, according to new evidence from NASA's Chandra X-ray Observatory. Astronomers think that most of the matter in the universe is concentrated in long large filaments of dark matter and that galaxy clusters are formed where these filaments intersect. A Chandra survey of the Fornax galaxy cluster revealed a vast, swept-back cloud of hot gas near the center of the cluster. This geometry indicates that the hot gas cloud, which is several hundred thousand light years in length, is moving rapidly through a larger, less dense cloud of gas. The motion of the core gas cloud, together with optical observations of a group of galaxies racing inward on a collision course with it, suggests that an unseen, large structure is collapsing and drawing everything toward a common center of gravity. X-ray Image of Fornax with labels X-ray Image of Fornax with labels "At a relatively nearby distance of about 60 million light years, the Fornax cluster represents a crucial laboratory for studying the interplay of galaxies, hot gas and dark matter as the cluster evolves." said Caleb Scharf of Columbia University in New York, NY, lead author of a paper describing the Chandra survey that was presented at an American Astronomical Society meeting in New Orleans, LA. "What we are seeing could be associated directly with the intergalactic gas surrounding a very large scale structure that stretches over millions of light years." The infalling galaxy group, whose motion was detected by Michael Drinkwater of the University of Melbourne in Australia, and colleagues, is about 3 million light years from the cluster core, so a collision with the core will not occur for a few billion years. Insight as to how this collision will look is provided by the elliptical galaxy NGC 1404 that is plunging into the core of the cluster for the first time. As discussed by Scharf and another group led by Marie Machacek of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., the hot gas cloud surrounding this galaxy has a sharp leading edge and a trailing tail of gas being stripped from the galaxy. Illustration of Fornax Cluster Illustration of Fornax Cluster "One thing that makes what we see in Fornax rather compelling is that it looks a lot like some of the latest computer simulations," added Scharf. "The Fornax picture, with infalling galaxies, and the swept back geometry of the cluster gas - seen only with the Chandra resolution and the proximity of Fornax - is one of the best matches to date with these high-resolution simulations." Over the course of hundreds of millions of years, NGC 1404's orbit will take it through the cluster core several times, most of the gas it contains will be stripped away, and the formation of new stars will cease. In contrast, galaxies that remain outside the core will retain their gas, and new stars can continue to form. Indeed, Scharf and colleagues found that galaxies located in regions outside the core were more likely to show X-ray activity which could be associated with active star formation. Dissolve from Optical to X-ray View of Fornax Animation Dissolve from Optical to X-ray View of Fornax Animation The wide-field and deep X-ray view around Fornax was obtained through ten Chandra pointings, each lasting about 14 hours. Other members of the research team were David Zurek of the American Museum of Natural History, New York, NY, and Martin Bureau, a Hubble Fellow currently at Columbia. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
STS-93: Columbia / Chandra Mission Overview (from JSC)
NASA Technical Reports Server (NTRS)
1999-01-01
A press briefing held on July 7, 1999 reviews the progress of the Chandra X ray Observatory project. The tape begins with an animated view of the launch of the Chandra X ray Observatory from the shuttle, as it was planned. Next is a press briefing. Bryan Austin, the Lead Flight Director, discusses the five day mission, and the reason for the shortened length, due to the added weight from the Chandra Observatory. He also reviews the other payloads, and activities that will take place during the mission. Kenneth Ledbetter, Science Director Mission Development, discusses the 4 great observatories and the role of each. They are the Hubble, which observed visible light; Compton Gamma Ray Observatory, the Chandra, and the Space Infrared Telescope Facility. A time line of the expected operational lifetime of each of the 4 great observatories is shown. Specific information about the Chandra Telescope is reviewed. The last press briefing presenter is Fred Wojtalik, who is the Chandra Program Manager. He reviews the Chandra's components, and acknowledges a few of the many companies that contributed to its building. He also reviews the orbital activation and checkout sequences. Question that follows, center around contingency plans if some part of the planned sequence is not successful. The costs are reviewed, and concerns about the Initial Upper Stage, the propulsion unit required to take the Chandra to its high orbit are addressed. The Chandra is planned to take an eliptical orbit, which is higher than the other space telescopes, thus far launched due to the requirement to avoid Earth generated X rays.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-10-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra High Resolution Camera (HRC) observation. The HRC image resolves the emission on spatial scales of 0farcs5, ~30 pc, showing an extended X-ray morphology overall consistent with the narrow-line region (NLR) seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution techniques both reveal X-ray enhancements that closely match the substructures seen in the Hubble Space Telescope [O III] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [O III]/soft X-ray ratio ~10, despite the distance of the clouds from the nucleus. This ratio is consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density decreasing as r -2 as expected for a nuclear wind scenario. The [O III]/X-ray ratios at the location of radio knots show an excess of X-ray emission, suggesting shock heating in addition to photoionization. We examine various mechanisms for the X-ray emission and find that, in contrast to jet-related X-ray emission in more powerful active galactic nucleus, the observed jet parameters in NGC 4151 are inconsistent with synchrotron emission, synchrotron self-Compton, inverse Compton of cosmic microwave background photons or galaxy optical light. Instead, our results favor thermal emission from the interaction between radio outflow and NLR gas clouds as the origin for the X-ray emission associated with the jet. This supports previous claims that frequent jet-interstellar medium interaction may explain why jets in Seyfert galaxies appear small, slow, and thermally dominated, distinct from those kpc-scale jets in the radio galaxies.
The U.S. Spectrum X Gamma Coordination Facility
NASA Astrophysics Data System (ADS)
Forman, William R.
1999-08-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
Discovery of X-Ray Emission from the Crab Pulsar at Pulse Minimum
NASA Technical Reports Server (NTRS)
Tennant, Allyn F.; Becker, Werner; Juda, Michael X.; Elsner, Ronald F.; Kolodziejczak, Jeffery J.; Murray, Stephen S.; ODell, Stephen L.; Paerels, Frits; Swartz, Douglas A.; Shibazaki, Noriaki;
1999-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar using the Low-Energy Transmission Grating (LETG) with the High-Resolution Camera (HRC). Time-resolved zeroth-order images reveal that the pulsar emits x rays at all pulse phases. Analysis of the flux at minimum -- most likely nonthermal in origin -- places an upper limit (T(sub infinity) < 2.1 MK) on the surface temperature of the underlying neutron star. In addition, analysis of the pulse profile appears to confirm the absolute timing of the Observatory to within about 0.2 ms.
The U.S. Spectrum X Gamma Coordination Facility
NASA Technical Reports Server (NTRS)
Forman, William R.
1999-01-01
Spectrum-X-Gamma (SXG) provides for US participation in a first-class international x-ray mission. Despite launch delays, SXG will provide unique scientific opportunities due to its capability for all-sky monitoring, polarimetry, high resolution spectroscopy, and broad wavelength range-from the ultraviolet (TAUVEX and FUVITA), through the x-ray (SODART and JET-X), to the hard x-ray (MART), and gamma-ray burst detectors. Before describing our completed work, we review the unique properties of SXG and provide some examples of the scientific importance of SXG in the Chandra, XMM, and ASTRO-E era.
Chandra Catches Early Phase of Cosmic Assembly
NASA Astrophysics Data System (ADS)
2004-08-01
A NASA Chandra X-ray Observatory image has revealed a complex of several intergalactic hot gas clouds in the process of merging. The superb Chandra spatial resolution made it possible to distinguish individual galaxies from the massive clouds of hot gas. One of the clouds, which that envelops hundreds of galaxies, has an extraordinarily low concentration of iron atoms, indicating that it is in the very early stages of cluster evolution. "We may be seeing hot intergalactic gas in a relatively pristine state before it has been polluted by gas from galaxies," said Q. Daniel Wang of the University of Massachusetts in Amherst, and lead author on an upcoming Astrophysical Journal article describing the study. "This discovery should provide valuable insight into how the most massive structures in the universe are assembled." 3-Panel Image of Abell 2125, Its Core & Galaxy C153 3-Panel Image of Abell 2125, Its Core & Galaxy C153 The complex, known as Abell 2125,is about 3 billion light years from Earth, and is seen at a time about 11 billion years after the Big Bang, when many galaxy clusters are believed to have formed. The Chandra Abell 2125 image shows several huge elongated clouds of multimillion degree gas coming together from different directions. These hot gas clouds, each of which contains hundreds of galaxies, appear to be in the process of merging to form a single massive galaxy cluster. Chandra, Hubble Space Telescope, and Very Large Array radio telescope data show that several galaxies in the Abell 2125 core cluster are being stripped of their gas as they fall through surrounding high-pressure hot gas. This stripping process has enriched the core cluster's gas in heavy elements such as iron. Abell 2125's Core & Galaxy C153 Abell 2125's Core & Galaxy C153 The gas in the pristine cloud, which is still several million light years away from the core cluster, is conspicuous for its lack of iron atoms. This anemic cloud must be in a very early evolutionary stage. The iron atoms produced by supernovas in the embedded galaxies must still be contained in and around the galaxies, perhaps in grains of dust not well mixed with the observed X-ray-emitting gas. Over time, as the cluster merges with the other clusters and the hot gas pressure increases, the dust grains will be driven from the galaxies, mixed with the hot gas, and destroyed, liberating the iron atoms. Building a massive galaxy cluster is a step-by-step enterprise that takes billions of years. Exactly how long it takes for such a cluster to form depends on many factors, such as the density of subclusters in the vicinity, the rate of the expansion of the universe, and the relative amounts of dark energy and dark matter. Chandra X-ray Image of Abell 2125, Low Energy Chandra X-ray Image of Abell 2125, Low Energy Cluster formation also involves complex interactions between the galaxies and the hot gas that may determine how large the galaxies in the cluster can ultimately become. These interactions determine how the galaxies maintain their gas content, the fuel for star formation. The observations of Abell 2125 provide a rare glimpse into the early steps in this process. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Chandra Detects Halo Of Hot Gas Around Milky Way-Like Galaxy
NASA Astrophysics Data System (ADS)
2001-07-01
The first unambiguous evidence for a giant halo of hot gas around a nearby, spiral galaxy much like our own Milky Way was found by astronomers using NASA's Chandra X-ray Observatory. This discovery may lead to a better understanding of our own Galaxy, as well the structure and evolution of galaxies in general. A team of astronomers, led by Professor Daniel Wang of the University of Massachusetts, Amherst, observed NGC 4631, a spiral galaxy approximately 25 million light years from Earth with both Chandra and NASA's Hubble Space Telescope. While previous X-ray satellites have detected extended X-ray emission from this and other spiral galaxies, because of Chandra's exceptional resolution this is the first time that astronomers were able to separate the individual X-ray sources from the diffuse halo. Chandra found the diffuse halo of X-ray gas to be radiating at a temperature of almost 3 million degrees and extending some 25,000 light years from the galactic plane. "Scientists have debated for over 40 years whether the Milky Way has an extended corona, or halo, of hot gas," said Wang, lead author of the paper which appeared this month in The Astrophysical Journal Letters. "Of course since we are within the Milky Way, we can't get outside and take a picture. However, by studying similar galaxies like NGC 4631, we can get an idea of what's going on within our own Galaxy." The Chandra image reveals a halo of hot gas that extends for approximately 25,000 light years above the disk of the galaxy. One important feature of the X-ray emission from NGC 4631 is that it closely resembles the overall size and shape seen in the radio emission from the galaxy. This indicates that there may be a close connection between the outflows of hot gas, seen in X-rays, and the galaxy's magnetic field, revealed by radio emission. The Hubble image of NGC 4631 shows filamentary, loop-like structures enclosing enhanced X-ray-emitting gas and emanating from regions of recent star formation in the galaxy's disk. These data clearly show the hot gas is heated by clusters of massive stars and is now expanding into the halo of the galaxy. NGC 4631 X-ray: NASA/CXC/UMass/D.Wang et al. UV: NASA/GSFC/UIT "What we see in NGC 4631 can be thought of as the bursting flames of a gigantic cosmic camp fire," said Wang. "Using Chandra and Hubble together, we really get a complete story of what is happening in this galaxy." NGC 4631 is a galaxy that has high amounts of star formation, possibly triggered by interaction with neighboring galaxies. Such star formation might have created the conditions necessary to heat the gas seen by Chandra, as vast amounts of energy are released from supernovas and massive stars in star-forming regions - enough to lift the gas out of the plane of the galaxy. These new results provide important clues about the cycling of energy and mass in a galaxy like our own Milky Way and about the evolutionary history of galaxies, which are thought to be more active in star formation in the past than at the present. Other members of the research team include: Stefan Immler, University of Massachusetts; Rene Walterbos, New Mexico State University; James Lauroesch, Northwestern University, Evanston, IL, and Dieter Breitschwerdt, Max Plank Institute, Germany. Chandra observed NGC 4631 with its Advanced CCD Imaging Spectrometer (ACIS) instrument, which was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program, and TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA.
NASA Astrophysics Data System (ADS)
2000-10-01
NASA's Chandra X-ray Observatory has found evidence that massive stars may be much more like the Sun than previously thought. Astronomers determined that magnetic loop structures, similar to those on the Sun, may exist on the surface of so-called O-type stars, some of the most luminous stars in the universe. "This result is quite surprising," says Wayne Waldron of Emergent Information Technologies, Inc., and co-author of a paper submitted to the Astrophysical Journal Letters. "This bucks conventional wisdom to find that these stars may really resemble our Sun." Zeta Orionis Press Image and Caption Using Chandra's High-Energy Transmission Grating Spectrometer (HETGS) in conjunction with a CCD X-ray camera, astronomers observed the star Zeta Orionis (one of the three belt stars in the constellation of Orion) and found strong X-ray line emission from ions of iron, oxygen, and other elements. The high-resolution X-ray spectrum enabled astronomers to determine that the X-ray emitting gas has a density 1000 times larger than predicted by current models, an amount comparable to the atmospheric density just above the surface of the star. For many years, solar astronomers have derived densities of X-ray producing plasmas on the Sun using emission lines of ions like helium, those with just two bound electrons remaining. Chandra allows this approach to be used for other stars and it has detected X-rays from silicon ions that have been stripped of 12 of their usual complement of 14 electrons. This ion is an especially useful diagnostic of plasma densities in the extremely ultraviolet-bright environment surrounding O-stars. Following the discovery of X-ray emission from O-class stars some 20 years ago, astronomers assumed that the X-rays were created in a hot corona near the star, similar to the Sun's corona. Those models were then abandoned in favor of the currently preferred explanation: the X-ray radiation is created by energetic shocks in the stellar winds (steady streams of matter ejected from many stars, including the Sun). However, these new Chandra spectral data reveal a much higher density for the hot, X-ray producing gas than predicted if such shock models were correct. The Chandra observations also contradict current understanding since the team of researchers found no evidence of expansion in the emission lines - a fundamental prediction for shock models. According to Waldron and co-author Joseph Cassinelli of the University of Wisconsin, Madison, their observations are best explained if the high density X-ray emission comes from confined structures of very hot plasma, similar to the magnetic loops found on the Sun. [For recent results on the Sun's magnetic loops, see the NASA HQ press release, "Fountains of Fire Illuminate Solar Mystery," issued September 26, 2000.] A challenge for scientists will be to explain how these magnetic loops are generated and maintained. Although O-type stars have inner convection zones in their core, they are believed to lack outer convection zones, an ingredient scientists considered necessary to create such hot and energetic plasmas confined in magnetic loops. Convection zones are regions where most of the energy is transported by fluid motions from hotter regions to cooler ones. Without these zones being located near the stellar surface, astronomers are currently unable to explain how such high-densities knots of X-rays could exist. O-type stars, often found in groups of similar stars known as "OB associations," are massive objects, which are typically 10 or more times the Sun's mass. These stars are known to have relatively short life spans, since they burn their nuclear fuel much faster than smaller stars. The star Waldron and Cassinelli observed with Chandra, Zeta Orionis, is classified as an O "supergiant," which is 30 times larger, 30 times more massive, and radiates one hundred thousand times more energy than the Sun. The binary system of Zeta Orionis can be seen with the unaided eye from both Hemispheres for much of the year. Viewing them east to west, Zeta Orionis is the first star in the belt of the famous constellation of Orion, the Hunter. The High Energy Transmission Grating Spectrometer was built by the Massachusetts Institute of Technology (MIT), Cambridge, MA. The Advanced CCD X-ray spectrometer (ACIS) X-ray camera was developed for NASA by Penn State and MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Chandra Grating Spectroscopy of Three Hot White Dwarfs
NASA Technical Reports Server (NTRS)
Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.
2013-01-01
High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region. The result is in accordance with predictions from nonadiabatic stellar pulsation models. Such models are therefore reliable tools to investigate the interior structure of GW Vir variables. Conclusions. Our soft X-ray study reveals that the understanding of metal abundances in hot DA white dwarf atmospheres is still incomplete. On the other hand, model atmospheres of hydrogen-deficient PG1159-type stars are reliable and reproduce well the observed spectra from soft X-ray to optical wavelengths.
Historical Remembrances of the Chandra X-ray Observatory: How Partnerships Created Success
NASA Astrophysics Data System (ADS)
Burke, Robert
2009-09-01
As the astronomy community plans for new ventures in space, we're forced to find creative solutions to operate within the ever increasing fiscal constraints of the current economic environment. The Chandra X-ray Observatory program offers an example of how missions can be successfully developed within manageable budget constraints. The ten year anniversary offers us the chance to look back at the Chandra team's special partnership between scientists, managers, and industry that led to our success.Chandra experienced many of the challenges common to major observatories: state-of-the-art technical requirements, budget-induced slips, and restructurings. Yet the Chandra team achieved excellent performance for dramatically lower cost. In fact, Chandra completed its prime mission for billions of dollars less than originally planned. In 1992, NASA MSFC and Northrop Grumman (then TRW) together led a major restructure that saved approximately 3.4B in program cost, while we improved the imaging capability and observing efficiency of Chandra. This was accomplished by a combination of team-work, systems engineering, advanced technology insertion, and effective approaches for program implementation, combined with a high performance culture that aligned goals and focused on mission success. Northrop Grumman is proud of our role in supporting the NASA Marshall Space Flight Center and our academic partners in advancing the frontiers of x-ray astronomy and scientific discovery with Chandra. As Chandra continues its extended mission, the observatory continues to provide superb scientific performance.
1999-03-26
In the Vertical Processing Facility, TRW technicians get ready to attach and deploy a solar panel array on the Chandra X-ray Observatory, which is sitting on a workstand. The panel is to the right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
1999-03-26
In the Vertical Processing Facility, a TRW technician checks the attachment of the solar panel array (out of sight to the right) to the Chandra X-ray Observatory, at left. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
Doing Science with the Chandra Source Catalog
NASA Astrophysics Data System (ADS)
Evans, Ian N.; Chandra Source Catalog Team
2018-01-01
The excellent spatial resolution (~1 arcsecond on-axis) of the Chandra X-ray Observatory, combined with a reasonable field of view and low instrumental backgrounds, allow detection of serendipitous X-ray sources with a high detectable-source density with low confusion. The aim of the Chandra Source Catalog (CSC) is to disseminate this wealth of information to the user community in a form that is immediately usable for scientific investigation, and the catalog is intended to satisfy the needs of a broad- based group of scientists, including those who may be less familiar with astronomical data analysis in the X-ray regime.The second major release of the catalog, CSC 2.0, will be made available to the user community in early 2018, and preliminary lists of detections and sources are available now. CSC 2.0 will roughly triple the size of the current version of the catalog to an estimated 375,000 detections, corresponding to ~315,000 unique X-ray sources on the sky. For each detected X-ray source, the catalog provides a detailed set of properties including the source position and associated position error ellipse, source extent, multi-band aperture photometry probability density functions, spectral fits using several source models, hardness ratios, and intra- and inter-observation temporal variability measures. All numerical measures have associated two-sided confidence intervals. In addition to tabular data, the catalog provides FITS data products that are immediately suitable for further user analysis, including per-field and per-source images, photon event lists, responses, spectra, and light curves.We describe the content and organization of the catalog in more detail, discuss the analyses that were performed to extract the measured source properties, and demonstrate how the catalog content can be immediately and effectively utilized for scientific investigations. This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory removed from its container in the Vertical Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
Chandra Observes Cloud Powered by Black Hole in Distant Galaxy
NASA Astrophysics Data System (ADS)
2000-06-01
NASA's Chandra X-ray Observatory has shown that a large gas cloud is being blasted by X rays from the vicinity of a giant black hole which lurks in its center. The observation is of special interest because it shows the disruptive effects that a massive black hole can have over thousands of light years. The results are being presented today by Drs. Patrick M. Ogle, Herman L. Marshall, Julia C. Lee, and Claude Canizares of the Massachusetts Institute of Technology (MIT), Cambridge, at the 196th national meeting of the American Astronomical Society in Rochester, NY. The observation also demonstrates that the searchlight beam of X rays from the black hole can be used to probe the environment around a black hole. The galaxy NGC 4151 is located at a distance of 50 million light years in a direction just south of the Big Dipper. It is a prominent example of a class of galaxies that show unusual energetic activity in their nucleus. This activity is now known to be due to the presence of a giant black hole in the nucleus with an estimated mass 10 million times that of the Sun. As matter swirls toward the black hole, it releases a prodigious amount of energy, much of it in X rays. Previous observations showed that X rays are also coming from an enormous cloud 3000 light years across that surrounds the black hole. The precise mirrors of Chandra allowed astronomers to make an X-ray image showing unprecedented detail of the massive cloud in the center of NGC 4151. The brightest regions in the cloud correspond to wisps that were previously observed in visible light by the Hubble Space Telescope. The shape of the cloud confirms that X rays from the black hole are collimated into a narrow beam, and illuminate only certain quadrants of the galaxy. "The black hole is shining an X-ray searchlight which illuminates the clouds in the night sky of NGC 4151" said Ogle. By using the High Energy Transmission Grating (HETG), astronomers were able to resolve the X-ray spectrum from the nebula surrounding the black hole into emission from its constituent elements. It was found that the gas cloud contains nitrogen, oxygen, neon, magnesium, aluminum, silicon, and iron. However, the atoms of these elements have been stripped of most of their electrons by energetic X rays coming from the center of NGC 4151. This provides direct evidence that the cloud is powered by the giant black hole which resides there. "The cloud is being thoroughly cooked by the powerful beam from the black hole," said Ogle. In addition, the Chandra HETG spectrum reveals that portions of the cloud are moving away from us at a velocity of 800,000 mph. "We're probably seeing gas that is being blown away from the far side of the black hole by the pressure of the radiation from the black hole," Ogle said. Chandra data were taken with the HETG in conjunction with the Advanced CCD Imaging Spectrometer (ACIS) on March 5-6, 2000. HETG was built by MIT and ACIS was built by Pennsylvania State University, University Park, and MIT. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu AND http://chandra.nasa.gov
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed from Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Such maps would provide important constraints on formation and evolution scenarios for the surfaces of these moons. Here we describe the characteristics of X-MIME, an imaging x-ray spectrometer under going a feasibility study for the JIMO mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
Gas distribution and clumpiness in the galaxy group NGC 2563
NASA Astrophysics Data System (ADS)
Morandi, Andrea; Sun, Ming; Mulchaey, John; Nagai, Daisuke; Bonamente, Massimiliano
2017-08-01
We present a Chandra study of the hot intragroup medium of the galaxy group NCG 2563. The Chandra mosaic observations, with a total exposure time of ˜430 ks, allow the gas density to be detected beyond R200 and the gas temperature out to 0.75 R200. This represents the first observational measurement of the physical properties of a poor groups beyond R500. By capitalizing on the exquisite spatial resolution of Chandra that is capable to remove unrelated emission from point sources and substructures, we are able to radially constrain the inhomogeneities of gas ('clumpiness'), gas fraction, temperature and entropy distribution. Although there is some uncertainty in the measurements, we find evidences of gas clumping in the virialization region, with clumping factor of about 2-3 at R200. The gas clumping-corrected gas fraction is significantly lower than the cosmological baryon budget. These results may indicate a larger impact of the gas inhomogeneities with respect to the prediction from hydrodynamic numerical simulations, and we discuss possible explanations for our findings.
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2016-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2017-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Chandra Observations of New X-ray Supernovae
NASA Astrophysics Data System (ADS)
Pooley, David
2015-09-01
We propose to continue our X-ray studies of all types of supernovae (SNe). The Swift satellite ushered in a new era of studying SNe in the X-rays, obtaining densely sampled observations for nearby SNe, both core collapse and thermonuclear (although no Type Ia has been conclusively detected in X-rays). However, the Swift XRT spatial resolution is often not good enough to definitively associate X-ray emission in the direction of the SN with the SN itself. We propose short Chandra observations to alleviate this. These observations will assess the X-ray environment of newly discovered X-ray SNe to determine any possible source confusion or contamination of the SN flux. Our strategy makes the best use of the capabilities of each observatory.
Observations of V694 Mon (MWC 560) requested for Chandra campaign
NASA Astrophysics Data System (ADS)
Waagen, Elizabeth O.
2016-02-01
Dr. Jeno Sokoloski (Columbia University) and Mr. Adrian Lucy (graduate student, Columbia University) have requested AAVSO observations of the jet-driving symbiotic star V694 Mon (MWC 560), which is in outburst, in support of upcoming Chandra observations to investigate the state of the inner accretion disk during this outburst. Beginning now and continuing through April 2016, Sokoloski writes, "multi-band photometry (UBVRI, but especially UBV), spectroscopy, and minute-time-resolution light curves of the optical flickering are requested. Series of exposures in B or V will be very interesting." Finder charts with sequence may be created using the AAVSO Variable Star Plotter (https://www.aavso.org/vsp). Observations should be submitted to the AAVSO International Database. See full Alert Notice for more details.
Resolving the Shell of the Superbubble 30 Doradus C with Chandra
NASA Astrophysics Data System (ADS)
Lopez, Laura
2017-09-01
We propose to observe the superbubble (SB) 30 Doradus C (30 Dor C) with ACIS-S for 100 ks to resolve and characterize the non-thermal shell, point sources, and the young supernova remnant (SNR) J0536 6913 at sub-arcsecond scales. 30 Dor C has been imaged off axis repeatedly by Chandra due to its proximity to SN 1987A, but the majority of the shell has only been observed <20 ks at off-axis distances of >10 arcminutes. The on-axis spatial resolution, sensitivity, and low background of ACIS-S are necessary to disentangle point sources from diffuse emission, to localize synchrotron filaments associated with accelerated electrons, and to investigate the SNR J0536 6913.
Recent Chandra/HETGS and NuSTAR observations of the quasar PDS 456 and its Ultra-Fast Outflow
NASA Astrophysics Data System (ADS)
Boissay Malaquin, Rozenn; Marshall, Herman L.; Nowak, Michael A.
2018-01-01
Evidence is growing that the interaction between outflows from active galactic nuclei (AGN) and their surrounding medium may play an important role in galaxy evolution, i.e. in the regulation of star formation in galaxies, through AGN feedback processes. Indeed, powerful outflows, such as the ultra-fast outflows (UFOs) that can reach mildly relativistic velocities of 0.2-0.4c, could blow away a galaxy’s reservoir of star-forming gas and hence quench the star formation in host galaxies. The low-redshift (z=0.184) radio-quiet quasar PDS 456 has showed the presence of a strong and blueshifted absorption trough in the Fe K band above 7 keV, that has been associated with the signature of such a fast and highly ionized accretion disk wind of a velocity of 0.25-0.3c. This persistent and variable feature has been detected in many observations of PDS 456, in particular by XMM-Newton, Suzaku and NuSTAR, together with other blueshifted absorption lines in the soft energy band (e.g. Nardini et al. 2015, Reeves et al. 2016). I will present here the results of the analysis of recent and contemporaneous high-resolution Chandra/HETGS and NuSTAR observations of PDS 456, and compare them with the previous findings.
High Performance Non-Dispersive X-Ray Spectrometers for Charge Exchange Measurements
NASA Technical Reports Server (NTRS)
Porter Frederick; Adams, J.; Beiersdorfer, P.; Brown, G. V.; Karkatoua, D.; Kelley, R. L.; Kilbourne, C. A.; Lautenagger, M.
2010-01-01
Currently, the only measurements of cosmological charge exchange have been made using low resolution, non-dispersive spectrometers like the PSPC on ROSAT and the CCD instruments on Chandra and XMM/Newton. However, upcoming cryogenic spectrometers on Astro-H and IXO will add vast new capabilities to investigate charge exchange in local objects such as comets and planetary atmospheres. They may also allow us to observe charge exchange in extra-solar objects such as galactic supernova remnants. With low spectral resolution instruments such as CCDs, x-ray emission due to charge exchange recombination really only provides information on the acceptor species, such as the solar wind. With the new breed of x-ray calorimeter instruments, emission from charge exchange becomes highly diagnostic allowing one to uniquely determine the acceptor species, ionization state, donor species and ionization state, and the relative velocity of the interaction. We will describe x-ray calorimeter instrumentation and its potential for charge exchange measurements in the near term. We will also touch on the instrumentation behind a decade of high resolution measurements of charge exchange using an x-ray calorimeter at the Lawrence Livermore National Laboratory.
High School Students Discover Neutron Star Using Chandra and VLA Data
NASA Astrophysics Data System (ADS)
2000-12-01
Three high school students, using data from NASA's Chandra X-ray Observatory and the National Science Foundation's Very Large Array (VLA), have found the first evidence of a neutron star in the nearby supernova remnant IC443, a system long studied by professional astronomers. This remarkable discovery has led the team to the national finals and a 1st place finish in the team competition at the Siemens-Westinghouse Science and Technology Competition held today in Washington, DC. Charles Olbert (age 18), Christopher Clearfield (age 18), and Nikolas Williams (age 16), all of the North Carolina School for Science and Mathematics (NCSSM) in Durham, NC, found a point-like source of X rays embedded in the remains of the stellar explosion, or supernova. Based on both the X-ray and radio data, the students determined that the central object in IC443 is most likely a young and rapidly rotating neutron star -- an object known as a "pulsar." "This is a really solid scientific finding," said Bryan Gaensler of the Massachusetts Institute of Technology, a noted pulsar expert who reviewed the paper for the team. "Everyone involved should be really proud of this accomplishment." Taking advantage of Chandra's superior angular resolution, the North Carolina students found the source embedded in IC443, a region known to be emitting particularly high-energy X rays. In a highly unusual situation, the students got access to the Chandra data from their science teacher, Dr. Jonathan Keohane. Keohane applied for the observation time while still associated with NASA's Goddard Space Flight Center. "The students really went through the whole analysis process themselves," said Keohane. "And, they even lived together all summer near the school to complete the research." In order to confirm the evidence from Chandra, the students turned to the National Radio Observatory's Dale Frail who gave the student team VLA data on IC443. While the radio data did not reveal any periodicity, the VLA strengthened the team's case that a pulsar powers the supernova remnant by confirming the existence of the point-like source and discovering a cloud, or nebula, of high-energy electrons around the central object. Such nebulas are a common characteristic of pulsars. "The experience of doing new and relevant science has been one of the most rewarding experiences I have ever had," said Olbert, a senior at NCSSM and lead author on the paper submitted to the Astrophysical Journal. "I never expected to publish a scientific paper while I was still in high school." The remnant of the IC443 supernova is a well-studied object. Astronomers have searched this region (roughly 5,000 light years from Earth) for the neutron star created in the explosion that they thought should be there, judging from the size and dynamics of the supernova remnant. The comet-shaped appearance of the cloud of high-energy particles indicates that the neutron star is moving through IC 443. Like the wake of a supersonic airplane, the swept-back shape of the nebula around the neutron star allowed the students to measure the speed it is traveling away from its origin. Using this result and the apparent distance that the neutron star has traveled from the center of the supernova remnant, the students calculated that the light from the initial explosion arrived at Earth about 30,000 years ago, thus addressing an outstanding question about IC 443. Neutron stars, such as the one found by the NCSSM team, are the compact hot embers of very massive stars that have exhausted their fuel and expelled their own shells. The remaining cores, often no more than 10 miles in diameter, are very dense objects that sometimes spin and release beams of particles along their magnetic poles. Created in 1998 by the non-profit Siemens Foundation, the Siemens-Westinghouse Science & Technology Competition promotes and advances science and mathematics education in America. The Competition is open to individuals and teams of high school students who develop independent research projects in the physical or biological sciences, or mathematics. The North Carolina School of Science and Mathematics is a free statewide residential high school for students with a strong aptitude and interest in math and science. The NCSSM was founded in 1980 as part of the University of North Carolina system. About 550 high school juniors and seniors reside on the school's campus. The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ang; Yu, Heng; Tozzi, Paolo
2016-04-10
We search for bulk motions in the intracluster medium (ICM) of massive clusters showing evidence of an ongoing or recent major merger with spatially resolved spectroscopy in Chandra CCD data. We identify a sample of six merging clusters with >150 ks Chandra exposure in the redshift range 0.1 < z < 0.3. By performing X-ray spectral analysis of projected ICM regions selected according to their surface brightness, we obtain the projected redshift maps for all of these clusters. After performing a robust analysis of the statistical and systematic uncertainties in the measured X-ray redshift z{sub X}, we check whether or not themore » global z{sub X} distribution differs from that expected when the ICM is at rest. We find evidence of significant bulk motions at more than 3σ in A2142 and A115, and less than 2σ in A2034 and A520. Focusing on single regions, we identify significant localized velocity differences in all of the merger clusters. We also perform the same analysis on two relaxed clusters with no signatures of recent mergers, finding no signs of bulk motions, as expected. Our results indicate that deep Chandra CCD data enable us to identify the presence of bulk motions at the level of v{sub BM} > 1000 km s{sup −1} in the ICM of massive merging clusters at 0.1 < z < 0.3. Although the CCD spectral resolution is not sufficient for a detailed analysis of the ICM dynamics, Chandra CCD data constitute a key diagnostic tool complementing X-ray bolometers on board future X-ray missions.« less
Design and Analysis of an X-Ray Mirror Assembly Using the Meta-Shell Approach
NASA Technical Reports Server (NTRS)
McClelland, Ryan S.; Bonafede, Joseph; Saha, Timo T.; Solly, Peter M.; Zhang, William W.
2016-01-01
Lightweight and high resolution optics are needed for future space-based x-ray telescopes to achieve advances in high-energy astrophysics. Past missions such as Chandra and XMM-Newton have achieved excellent angular resolution using a full shell mirror approach. Other missions such as Suzaku and NuSTAR have achieved lightweight mirrors using a segmented approach. This paper describes a new approach, called meta-shells, which combines the fabrication advantages of segmented optics with the alignment advantages of full shell optics. Meta-shells are built by layering overlapping mirror segments onto a central structural shell. The resulting optic has the stiffness and rotational symmetry of a full shell, but with an order of magnitude greater collecting area. Several meta-shells so constructed can be integrated into a large x-ray mirror assembly by proven methods used for Chandra and XMM-Newton. The mirror segments are mounted to the meta-shell using a novel four point semi-kinematic mount. The four point mount deterministically locates the segment in its most performance sensitive degrees of freedom. Extensive analysis has been performed to demonstrate the feasibility of the four point mount and meta-shell approach. A mathematical model of a meta-shell constructed with mirror segments bonded at four points and subject to launch loads has been developed to determine the optimal design parameters, namely bond size, mirror segment span, and number of layers per meta-shell. The parameters of an example 1.3 m diameter mirror assembly are given including the predicted effective area. To verify the mathematical model and support opto-mechanical analysis, a detailed finite element model of a meta-shell was created. Finite element analysis predicts low gravity distortion and low sensitivity to thermal gradients.
High-Resolution X-Ray Spectroscopy of the Seyfert 2 Galaxy Circinus with Chandra
NASA Technical Reports Server (NTRS)
Sambruna, Rita M.; Netzer, Hagai; Kaspi, Shai; Brandt, W. N.; Chartas, G.; Garmire, G. P.; Nousek, John A.; Weaver, K. A.
2000-01-01
Results from a 60 ks Chandra High Energy Transmission Grating Spectrometer (HETGS) observation of the nearby Seyfert 2 Circinus are presented. The spectrum shows a wealth of emission lines at both soft and hard X-rays, including lines of Ne, Mg, Si, S, Ar, Ca, and Fe, and a prominent Fe K(alpha) line at 6.4 keV. We identify several of the He-like components and measure several of the Lyman lines of the N-like ions. The lines' profiles are unresolved at the limited signal-to-noise ratio of the data. Our analysis of the zeroth-order image in a companion paper constrains the size of the emission region to be 20-60 pc, suggesting that emission within this volume is almost entirely due to the reprocessing of the obscured central source. Here we show that a model containing two distinct components can reproduce almost all the observed properties of this gas. The ionized component can explain the observed intensities of the ionized species, assuming twice-solar composition and an N is proportional r(exp -1.5) density distribution. The neutral component is highly concentrated, well within the 0.8" point source, and is responsible for almost all of the observed K(alpha) (6.4 keV) emission. Circinus seems to be different than Mkn 3 in terms of its gas distribution.
Predicting Chandra CCD Degradation with the Chandra Radiation Model
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, William C.; DePasquale, Joseph M.; Grant, Catherine E.; O'Dell, Stephen L.; Plucinsky, Paul P.; Schwartz, Daniel A.; Spitzbart, Bradley D.; Wolk, Scott J.
2008-01-01
Not long after launch of the Chandra X-Ray Observatory, it was discovered that the Advanced CCD Imaging Spectrometer (ACIS) detector was rapidly degrading due to radiation. Analysis by Chandra personnel showed that this degradation was due to 10w energy protons (100 - 200 keV) that scattered down the optical path onto the focal plane. In response to this unexpected problem, the Chandra Team developed a radiation-protection program that has been used to manage the radiation damage to the CCDs. This program consists of multiple approaches - scheduled sating of the ACIS detector from the radiation environment during passage through radiation belts, real-time monitoring of space weather conditions, on-board monitoring of radiation environment levels, and the creation of a radiation environment model for use in computing proton flux and fluence at energies that damage the ACIS detector. This radiation mitigation program has been very successful. The initial precipitous increase in the CCDs' charge transfer inefficiency (CTI) resulting from proton damage has been slowed dramatically, with the front-illuminated CCDS having an increase in CTI of only 2.3% per year, allowing the ASIS detector's expected lifetime to exceed requirements. This paper concentrates on one aspect of the Chandra radiation mitigation program, the creation of the Chandra Radiation Model (CRM). Because of Chandra's highly elliptical orbit, the spacecraft spends most of its time outside of the trapped radiation belts that present the severest risks to the ACIS detector. However, there is still a proton flux environment that must be accounted for in all parts of Chandra's orbit. At the time of Chandra's launch there was no engineering model of the radiation environment that could be used in the outer regions of the spacecraft's orbit, so the CRM was developed to provide the flux environment of 100 - 200 keV protons in the outer magnetosphere, magnetosheath, and solar wind regions of geospace. This presentation describes CRM, its role in Chandra operations, and its prediction of the ACIS CTI increase.
1999-06-27
In this fish-eye view, the Chandra X-ray Observatory rests inside the payload bay of the orbiter Columbia. Chandra is the primary payload on mission STS-93, scheduled to launch no earlier than July 20 aboard Space Shuttle Columbia. The world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-06
Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory reaches the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-06
Cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, the Chandra X-ray Observatory waits to be moved inside the Vertical Processing Facility (VPF). Chandra arrived at the Shuttle Landing Facility on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers check the overhead cable that will lift the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), the Chandra X-ray Observatory (top) lies in its protective container while workers on the floor prepare the overhead cable that will remove it. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Chandra X-ray Observatory prepped for removal from its container in the Vertical Processing Faci
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the Vertical Processing Facility (VPF), workers attach the overhead cable to the Chandra X-ray Observatory to lift it out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
Chandra Discovers Eruption and Pulsation in Nova Outburst
NASA Astrophysics Data System (ADS)
2001-09-01
NASA's Chandra X-ray Observatory has discovered a giant outburst of X-rays and unusual cyclical pulsing from a white dwarf star that is closely orbiting another star -- the first time either of these phenomena has been seen in X-rays. The observations are helping scientists better understand the thermonuclear explosions that occur in certain binary star systems. The observations of Nova Aquilae were reported today at the "Two Years of Science with Chandra" symposium by an international team led by Sumner Starrfield of Arizona State University. "We found two important results in our Chandra observations. The first was an underlying pulsation every 40 minutes in the X-ray brightness, which we believe comes from the cyclical expansion and contraction of the outer layers of the white dwarf," said Starrfield. "The other result was an enormous flare of X-rays that lasted for 15 minutes. Nothing like this has been seen before from a nova, and we don't know how to explain it." Novas occur on a white dwarf (a star which used up all its nuclear fuel and shrank to roughly the size of the Earth) that is orbiting a normal size star. Strong gravity tides drag hydrogen gas off the normal star and onto the white dwarf, where it can take more than 100,000 years for enough hydrogen to accumulate to ignite nuclear fusion reactions. Gradually, these reactions intensify until a cosmic-sized hydrogen bomb blast results. The outer layers of the white dwarf are then blown away, producing a nova outburst that can be observed for a period of months to years as the material expands into space. "Chandra has allowed us to see deep into the gases ejected by this giant explosion and extract unparalleled information on the evolution of the white dwarf whose surface is exploding," said Jeremy Drake of the Harvard-Smithsonian Center for Astrophysics. The brightening of Nova Aquilae was first detected by optical astronomers in December 1999. "Although this star is at a distance of more than 6,000 light years, it could be seen with the naked eye for about a month, during which it was about 100,000 times brighter than our own Sun," said R. Mark Wagner of the University of Arizona. Nova Aquilae Chandra observed the nova, so-called because early astronomers believed they heralded the appearance of a new star, four times from April 2000 through October 2000. "Our first Chandra observations showed that the expanding gas around Nova Aquilae was hot and nearly opaque," said Joachim Krautter of the State Observatory in Heidelberg, Germany. "When we looked months later with Chandra, the expanding gases cleared enough for us to see through them to the underlying star on which the explosion occurred." The latter Chandra X-ray data revealed the cyclical changes in brightness are due to the white dwarf expanding and shrinking over a 40-minute period. They also showed that the temperature on the surface of the white dwarf was 300,000 degrees Celsius, making Nova Aquilae one of the hottest stars ever observed to undergo such pulsations. "The observations told us that thermonuclear fusion reactions were still occurring on the surface layers of the white dwarf - more than eight months after the explosion first began!" said Robert Gehrz of the University of Minnesota. Other members of the team are Howard Bond (Space Telescope Science Institute), Yousaf Butt (Harvard-Smithsonian Center for Astrophysics), Koji Mukai (Goddard Space Flight Center), Peter Hauschildt (University of Georgia), Margarida Hernanz (Institute for Space Studies, Catalonia, Spain), Marina Orio (University of Wisconsin and the Torino Observatory in Italy), and Charles Woodward (University of Minnesota). Chandra observed Nova Aquilae for a total of 10 hours with the High Resolution Camera (HRC) and the Advanced CCD Imaging Spectrometer (ACIS). The HRC was built for NASA by the Smithsonian Astrophysical Observatory, Cambridge, MA. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
1999-03-26
In the Vertical Processing Facility, TRW technicians look at the point of attachment on the Chandra X-ray Observatory, at left, for the solar panel array (behind them). They are getting ready to attach and deploy the solar panel. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
A JOINT CHANDRA AND SWIFT VIEW OF THE 2015 X-RAY DUST-SCATTERING ECHO OF V404 CYGNI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heinz, S.; Corrales, L.; Neilsen, J.
2016-07-01
We present a combined analysis of the Chandra and Swift observations of the 2015 X-ray echo of V404 Cygni. Using a stacking analysis, we identify eight separate rings in the echo. We reconstruct the soft X-ray light curve of the 2015 June outburst using the high-resolution Chandra images and cross-correlations of the radial intensity profiles, indicating that about 70% of the outburst fluence occurred during the bright flare at the end of the outburst on MJD 57199.8. By deconvolving the intensity profiles with the reconstructed outburst light curve, we show that the rings correspond to eight separate dust concentrations withmore » precise distance determinations. We further show that the column density of the clouds varies significantly across the field of view, with the centroid of most of the clouds shifted toward the Galactic plane, relative to the position of V404 Cyg, invalidating the assumption of uniform cloud column typically made in attempts to constrain dust properties from light echoes. We present a new XSPEC spectral dust-scattering model that calculates the differential dust-scattering cross section for a range of commonly used dust distributions and compositions and use it to jointly fit the entire set of Swift echo data. We find that a standard Mathis–Rumpl–Nordsieck model provides an adequate fit to the ensemble of echo data. The fit is improved by allowing steeper dust distributions, and models with simple silicate and graphite grains are preferred over models with more complex composition.« less
NASA Astrophysics Data System (ADS)
Tucker, Wallace H.
2017-03-01
On July 23, 1999, the Chandra X-Ray Observatory, the most powerful X-ray telescope ever built, was launched aboard the space shuttle Columbia. Since then, Chandra has given us a view of the universe that is largely hidden from telescopes sensitive only to visible light. In Chandra's Cosmos, the Smithsonian Astrophysical Observatory's Chandra science spokesperson Wallace H. Tucker uses a series of short, connected stories to describe the telescope's exploration of the hot, high-energy face of the universe. The book is organized in three parts: "The Big," covering the cosmic web, dark energy, dark matter, and massive clusters of galaxies; "The Bad," exploring neutron stars, stellar black holes, and supermassive black holes; and "The Beautiful," discussing stars, exoplanets, and life. Chandra has imaged the spectacular, glowing remains of exploded stars and taken spectra showing the dispersal of their elements. Chandra has observed the region around the supermassive black hole in the center of our Milky Way and traced the separation of dark matter from normal matter in the collision of galaxies, contributing to both dark matter and dark energy studies. Tucker explores the implications of these observations in an entertaining, informative narrative aimed at space buffs and general readers alike.
1999-06-27
STS093-S-013 (27 June 1999) --- In this fish-eye view, the Chandra X-ray Observatory rests inside the payload bay of the Space Shuttle Columbia at the Kennedy Space Center (KSC). Chandra is the primary payload on the STS-93 mission, scheduled to launch next month. The world's most powerful X-ray telescope, Chandra, will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of the universe.
1999-06-27
In this fish-eye view, a worker oversees the movement of the Chandra X-ray Observatory into the payload bay of the orbiter Columbia. Chandra is the primary payload on mission STS-93, scheduled to launch no earlier than July 20 aboard Space Shuttle Columbia. The world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
NASA Astrophysics Data System (ADS)
Montes, D.; Caballero, J. A.; Alonso-Floriano, F. J.; Cortes Contreras, M.; Gonzalez-Alvarez, E.; Hidalgo, D.; Holgado, G.; Llamas, M.; Martinez-Rodriguez, H.; Sanz-Forcada, J.
2015-01-01
We help compiling the most comprehensive database of M dwarfs ever built, CARMENCITA, the CARMENES Cool dwarf Information and daTa Archive, which will be the CARMENES `input catalogue'. In addition to the science preparation with low- and high-resolution spectrographs and lucky imagers (see the other contributions in this volume), we compile a huge pile of public data on over 2100 M dwarfs, and analyze them, mostly using virtual-observatory tools. Here we describe four specific actions carried out by master and grade students. They mine public archives for additional high-resolution spectroscopy (UVES, FEROS and HARPS), multi-band photometry (FUV-NUV-u-B-g-V-r-R-i-J-H-Ks-W1-W2-W3-W4), X-ray data (ROSAT, XMM-Newton and Chandra), periods, rotational velocities and Hα pseudo-equivalent widths. As described, there are many interdependences between all these data.
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Karovska, Margarita; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva
2011-03-01
We report on the imaging analysis of ~200 ks sub-arcsecond resolution Chandra Advanced CCD Imaging Spectrometer (ACIS-S) observations of the nearby Seyfert 1 galaxy NGC 4151. Bright, structured soft X-ray emission is observed to extend from 30 pc to 1.3 kpc in the southwest from the nucleus, much farther than seen in earlier X-ray studies. The terminus of the northeastern X-ray emission is spatially coincident with a CO gas lane, where the outflow likely encounters dense gas in the host galactic disk. X-ray emission is also detected outside the boundaries of the ionization cone, which indicates that the gas there is not completely shielded from the nuclear continuum, as would be the case for a molecular torus collimating the bicone. In the central r < 200 pc region, the subpixel processing of the ACIS data recovers the morphological details on scales of <30 pc (<0farcs5) first discovered in Chandra High Resolution Camera images. The X-ray emission is more absorbed toward the boundaries of the ionization cone, as well as perpendicular to the bicone along the direction of a putative torus in NGC 4151. The innermost region where X-ray emission shows the highest hardness ratio is spatially coincident with the near-infrared-resolved H2 emission and dusty spirals we find in an Hubble Space Telescope V - H color image. The agreement between the observed H2 line flux and the value predicted from X-ray-irradiated molecular cloud models supports photo-excitation by X-rays from the active nucleus as the origin of the H2 line, although contribution from UV fluorescence or collisional excitation cannot be ruled out with current data. The discrepancy between the mass of cold molecular gas inferred from recent CO and near-infrared H2 observations may be explained by the anomalous CO abundance in this X-ray-dominated region. The total H2 mass derived from the X-ray observation agrees with the recent measurement by Storchi-Bergmann et al.
History of Chandra X-Ray Observatory
1997-05-01
This photograph shows the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1996-12-16
This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-12-16
This is a photograph of the Chandra X-Ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) integration at the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSCF was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
History of Chandra X-Ray Observatory
1997-05-01
This photograph shows the Chandra X-ray Observatory (CXO), formerly Advanced X-Ray Astrophysics Facility (AXAF), High Resolution Mirror Assembly (HRMA) being removed from the test structure in the X-Ray Calibration Facility (XRCF) at the Marshall Space Flight Center (MSFC). The AXAF was renamed CXO in 1999. The CXO is the most sophisticated and the world's most powerful x-ray telescope ever built. It observes x-rays from high-energy regions of the universe, such as hot gas in the remnants of exploded stars. The HRMA, the heart of the telescope system, is contained in the cylindrical "telescope" portion of the observatory. Since high-energy x-rays would penetrate a normal mirror, special cylindrical mirrors were created. The two sets of four nested mirrors resemble tubes within tubes. Incoming x-rays graze off the highly polished mirror surface and are furneled to the instrument section for detection and study. MSFC's XRCF is the world's largest, most advanced laboratory for simulating x-ray emissions from distant celestial objects. It produces a space-like environment in which components related to x-ray telescope imaging are tested and the quality of their performances in space is predicted. TRW, Inc. was the prime contractor for the development of the CXO and NASA's MSFC was responsible for its project management. The Smithsonian Astrophysical Observatory controls science and flight operations of the CXO for NASA from Cambridge, Massachusetts. The CXO was launched July 22, 1999 aboard the Space Shuttle Columbia (STS-93).
A Search for Ram-pressure Stripping in the Hydra I Cluster
NASA Technical Reports Server (NTRS)
Brown, B.
2005-01-01
Ram-pressure stripping is a method by which hot interstellar gas can be removed from a galaxy moving through a group or cluster of galaxies. Indirect evidence of ram-pressure stripping includes lowered X-ray brightness in a galaxy due to less X-ray emitting gas remaining in the galaxy. Here we present the initial results of our program to determine whether cluster elliptical galaxies have lower hot gas masses than their counterparts in less rich environments. This test requires the use of the high-resolution imaging of the Chandra Observatory and we present our analysis of the galaxies in the nearby cluster Hydra I.
NASA Astrophysics Data System (ADS)
2003-09-01
Launched in 1999, NASA's Chandra X-ray Observatory promised to be one of the world's most powerful tools to better understand the structure and evolution of the universe - and it has lived up to expectations. "In four short years, Chandra has achieved numerous scientific firsts, revealing new details on all categories of astronomical objects including distant galaxies, planets, black holes and stars," said Chandra project scientist Dr. Martin C. Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "In the last year alone, Chandra has generated the most sensitive or 'deepest' X-ray exposure ever made, shed new light on the planet Mars, and made several new discoveries involving supermassive black holes," added Weisskopf, who has dedicated nearly 30 years to the Chandra program. The deepest X-ray exposure, Chandra Deep Field North, captured for 23 days an area of the sky one-fifth the size of the full moon. Even though the faintest sources detected produced only one X-ray photon every four days, Chandra found more than 600 X-ray sources -- most of them supermassive black holes in galaxy centers. If the number of black holes seen in that area of the sky were typical, 300 million supermassive black holes would be detectable over the whole sky. In our own solar system, another Chandra image offered scientists their first look at X-rays from Mars . Not only did Chandra detect X-rays in the sparse upper atmosphere 750 miles above the planet, it also offered evidence for a faint halo of X-rays extending out 4,350 miles above the Martian surface. "In its fourth year of operation, Chandra continues to prove itself an engineering marvel," said Chandra Program Manager Keith Hefner at NASA's Marshall Center. "At its highest point, it travels one-third of the way to the Moon, yet it consistently delivers breathtaking results gleaned from millions, sometimes billions, of light years away." Some of Chandra's most intriguing discoveries involved black holes. Building on previous achievements, including catching a supermassive black hole devouring material in our own Milky Way galaxy, Chandra accomplished even more during its fourth year. The observatory revealed new details about X-ray jets produced by black holes and discovered two black holes flourishing in a single galaxy 400 million light years from Earth. By tracking, for the first time, the life cycle of large-scale X-ray jets produced by a black hole, Chandra revealed that as the jets evolved, the material in them traveled near the speed of light for several years before slowing and fading. These jets - from a stellar-sized black hole about 10 or so times the mass of the Sun - were the first ones caught in the act of slowing down. This enabled astronomers, in just four years, to observe a process that could take a million years to unfold. By revealing two active black holes in the nucleus of the extraordinarily bright galaxy NGC 6240, another Chandra image proved for the first time that two supermassive black holes can co-exist in the same galaxy. Currently orbiting each other, in several hundred million years these black holes will merge to create an even larger black hole, resulting in a catastrophic event that will unleash intense radiation and gravitational waves. Also in Chandra's fourth year, the observatory offered new insights into pulsars - small and extremely dense stars. Generated by a series of Chandra observations, an X-ray movie of the Vela pulsar. revealed a spectacularly erratic jet that varied in a way never before seen. Whipping about like an untended firehose at about half the speed of light, the jet of high-energy particles offered new insight into the nature of jets from pulsars and black holes. Previous Chandra highlights include revealing the most distant X-ray cluster of galaxies, identifying a pulsating hot spot of X-rays in Jupiter's upper atmosphere, uncovering a ''cool'' black hole at the heart of the Andromeda Galaxy, and finding an X-ray ring around the Crab Nebula. "For the first four years, interest in the science community has been incredibly high with more than 3,000 different astronomers as investigators on one or more proposals to observe with Chandra,'' said Harvey Tananbaum, director of the Chandra X-ray Center in Cambridge Mass. ''And, it's produced results with several hundred scientific papers about Chandra discoveries in each of the past several years." About one-billion times more powerful than the first X-ray detector launched from a rocket more than four decades ago, Chandra's resolving power is equal to the ability to read the letters of a stop sign at a distance of 12 miles. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Images associated with this release are available at: http://chandra.harvard.edu - and - http://chandra.nasa.gov
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
This photo (a frontal view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
This photo (a side view) is of one of many segments of the Eastman-Kodak mirror assembly being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
2003-04-09
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, an MSFC employee is inspecting one of many segments of the mirror assembly for flaws. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
2003-04-09
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
Alpha Centauri at a Crossroads
NASA Astrophysics Data System (ADS)
Ayres, Thomas
2016-10-01
Nearby Alpha Centauri AB (G2V+K1V) contains the two best characterized solar-like dwarf stars, which also have the best studied multi-MK coronal X-ray activity cycles, extending back to the 1970's. Objective is to continue tracking the evolving multi-decadal high-energy narrative of Alpha Cen with semiannual X-ray pointings in Chandra Cycles 16-18, as the system reaches a coronal crossroads: solar twin A rising toward starspot cycle maximum, K-type companion B sinking into a minimum. HST/STIS UV spectra will support and leverage the X-ray measurements by probing chromospheric and subcoronal dynamics, with connection to the corona through the FUV Fe XII 1242 forbidden line. Only Chandra can resolve the AB X-ray pair as the Alpha Cen orbit also reaches a crossroads in 2016 (only 4 separation), and only HST/STIS can measure the bright Alpha Cen stars with sufficient UV spectral resolution and wavelength coherence. What's more, the recent validation of the STIS NDA,B,C long slits for echelle use now make feasible NUV E230H measurements (e.g., of key chromospheric tracers Mg II 2800 and Mg I 2852) which heretofore were not practical in a long-term program of this nature.
Chandra Observations of the Solar System
NASA Astrophysics Data System (ADS)
Lisse, Carey
2014-11-01
Many solar system objects are now known to emit X-rays due to charge-exchange between highly charged solar wind (SW) minor ions and neutrals in their extended atmospheres, including Earth, Venus, Mars, Jupiter, and the heliosphere, with total power outputs on the MW - GW scale. (Currently only upper limits exist for Saturn and Pluto.) Chandra observations of their morphology, spectra, and time dependence provide important information about the neutral atmosphere structure and the SW flux and charge state. Chandra observations of solar x-ray scattering from Earth, Venus, Mars, Jupiter, Saturn, and the Moon have also provided important clues for the scattering material and the solar radiation field at the body. We present here a 15 year summary of Chandra's solar system observations.
The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters
NASA Astrophysics Data System (ADS)
Bayliss, Matthew
2017-08-01
We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics |*| the infamous |*|gastrophysics|*| in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.
The Chandra Strong Lens Sample: Revealing Baryonic Physics In Strong Lensing Selected Clusters
NASA Astrophysics Data System (ADS)
Bayliss, Matthew
2017-09-01
We propose for Chandra imaging of the hot intra-cluster gas in a unique new sample of 29 galaxy clusters selected purely on their strong gravitational lensing signatures. This will be the first program targeting a purely strong lensing selected cluster sample, enabling new comparisons between the ICM properties and scaling relations of strong lensing and mass/ICM selected cluster samples. Chandra imaging, combined with high precision strong lens models, ensures powerful constraints on the distribution and state of matter in the cluster cores. This represents a novel angle from which we can address the role played by baryonic physics -- the infamous ``gastrophysics''-- in shaping the cores of massive clusters, and opens up an exciting new galaxy cluster discovery space with Chandra.
1999-02-10
In the Vertical Processing Facility (VPF), workers prepare the shrouded Chandra X-ray Observatory for its lift to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), the shrouded Chandra X-ray Observatory achieves a vertical position via the overhead crane. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Chandra/HETG Observations of NGC1275
NASA Astrophysics Data System (ADS)
Reynolds, Christopher
2017-09-01
NGC1275 is the active galactic nucleus (AGN) at the heart of the Perseus cluster of galaxies responsible for the mechanical heating of the intracluster medium (ICM) cool core. We propose a deep (500ks) HETG observation of NGC1275, allowing the first high-S/N, high resolution spectrum of this AGN free from contamination by the bright ICM. We will seek the signatures of powerful winds, answering the central question of whether galactic-scale quasar-mode feedback is occuring simultaneously with cluster-scale radio-mode feedback. We also probe circumnuclear gas (i.e. the fuel supply) through the 6.4keV line previously seen by XMM and Hitomi. These issues are crucial unknowns in our models for the evolution of the most massive galaxies and cluster cores.
NASA Technical Reports Server (NTRS)
Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.
2004-01-01
We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.
Going to Extremes: Pulsar Gives Insight on Ultra Dense Matter and Magnetic Fields
NASA Astrophysics Data System (ADS)
2004-12-01
A long look at a young pulsar with NASA's Chandra X-ray Observatory revealed unexpectedly rapid cooling, which suggests that it contains much denser matter than previously expected. The pulsar's cool temperature and the vast magnetic web of high-energy particles that surrounds it have implications for the theory of nuclear matter and the origin of magnetic fields in cosmic objects. Animation: Layers of Chandra's 3-Color Image Animation: Layers of Chandra's 3-Color Image An international team of scientists used the Chandra data to measure the temperature of the pulsar at the center of 3C58, the remains of a star observed to explode in the year 1181. Chandra's image of 3C58 also shows spectacular jets, rings and magnetized loops of high-energy particles generated by the pulsar. "We now have strong evidence that, in slightly more than 800 years, the surface of the 3C58 pulsar has cooled to a temperature of slightly less than a million degrees Celsius," said Patrick Slane of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author on a paper describing these results in the November 20, 2004 issue of The Astrophysical Journal. "A million degrees may sound pretty hot, but for a young neutron star that's like the frozen tundra in Green Bay, Wisconsin." Optical & Chandra X-ray Composite of 3C58 Optical & Chandra X-ray Composite of 3C58 Pulsars are formed when the central core of a massive star collapses to create a dense object about 15 miles across that is composed almost entirely of neutrons. Collisions between neutrons and other subatomic particles in the interior of the star produce neutrinos that carry away energy as they escape from the star. This cooling process depends critically on the density and type of particles in the interior, so measurements of the surface temperature of pulsars provide a way to probe extreme conditions where densities are so high that our current understanding of how particles interact with one another is limited. They represent the maximum densities that can be attained before the star collapses to form a black hole. The relatively cool temperature of the 3C58 pulsar, combined with evidence from the Vela pulsar and other young neutron stars, points to rapid cooling due to unexpected conditions in the neutron stars. One possibility is that more protons than expected survived the crush to neutron star densities, or perhaps an exotic form of sub-nuclear particles is responsible for more rapid cooling. Animation: Comparison of 3C58 and the Crab Nebula Animation: Comparison of 3C58 and the Crab Nebula Surrounding the pulsar is a bright doughnut-shaped, or toroidal, structure, with jet-like features extending in a perpendicular direction away from the torus. These features, which are due to radiation from extremely high energy particles produced by the pulsar, show a strong resemblance to the rings and jets around the Crab pulsar. Chandra images of the 3C58, Crab, and a growing list of other pulsars provide dramatic proof that strong electromagnetic fields around rapidly rotating neutron stars are powerful generators of high-energy particles. One of the more intriguing implications of these results is that pulsars can spin magnetic fields as well as high-energy particles far out into space. VLA Radio & Chandra X-ray Composite of 3C58 VLA Radio & Chandra X-ray Composite of 3C58 The intricate structure of X-ray loops visible in the Chandra image and radio images of 3C58 in the nebula that extends a dozen light years from the pulsar likely represents the complex magnetic field structure there. Detailed analysis and comparison of these structures with those seen in the Crab Nebula and other pulsars should help astrophysicists to better understand how magnetic fields are produced by pulsars, and on a much larger scale by disks of matter swirling into supermassive black holes in galaxies. Chandra observed 3C58, which is about 10,000 light years from Earth, for almost 100 hours between April 22-26, 2003, with its Advanced CCD Imaging Spectrometer instrument. Other members of the research team were David Helfand (Columbia University), Eric van der Swaluw (FOM Institute of Plasma Physics, the Netherlands), and Stephen Murray (Harvard-Smithsonian Center for Astrophysics). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Chandra Probes High-Voltage Auroras on Jupiter
NASA Astrophysics Data System (ADS)
2005-03-01
Scientists have obtained new insight into the unique power source for many of Jupiter's auroras, the most spectacular and active auroras in the Solar System. Extended monitoring of the giant planet with NASA's Chandra X-ray Observatory detected the presence of highly charged particles crashing into the atmosphere above its poles. X-ray spectra measured by Chandra showed that the auroral activity was produced by ions of oxygen and other elements that were stripped of most of their electrons. This implies that these particles were accelerated to high energies in a multimillion-volt environment above the planet's poles. The presence of these energetic ions indicates that the cause of many of Jupiter's auroras is different from auroras produced on Earth or Saturn. Chandra X-ray Image of Jupiter Chandra X-ray Image of Jupiter "Spacecraft have not explored the region above the poles of Jupiter, so X-ray observations provide one of the few ways to probe that environment," said Ron Elsner of the NASA Marshall Space Flight Center in Huntsville, Alabama, and lead author on a recently published paper describing these results in the Journal for Geophysical Research. "These results will help scientists to understand the mechanism for the power output from Jupiter's auroras, which are a thousand times more powerful than those on Earth." Electric voltages of about 10 million volts, and currents of 10 million amps - a hundred times greater than the most powerful lightning bolts - are required to explain the X-ray observations. These voltages would also explain the radio emission from energetic electrons observed near Jupiter by the Ulysses spacecraft. Schematic of Jupiter's Auroral Activity Production Schematic of Jupiter's Auroral Activity Production On Earth, auroras are triggered by solar storms of energetic particles, which disturb Earth's magnetic field. Gusts of particles from the Sun can also produce auroras on Jupiter, but unlike Earth, Jupiter has another way of producing auroras. Jupiter's rapid rotation, intense magnetic field, and an abundant source of particles from its volcanically active moon, Io, create a huge reservoir of electrons and ions. These charged particles, trapped in Jupiter's magnetic field, are continually accelerated down into the atmosphere above the polar regions where they collide with gases to produce the aurora, which are almost always active on Jupiter. If the particles responsible for the aurora came from the Sun, they should have been accompanied by large number of protons, which would have produced an intense ultraviolet aurora. Hubble ultraviolet observations made during the Chandra monitoring period showed relatively weak ultraviolet flaring. The combined Chandra and Hubble data indicate that this auroral activity was caused by the acceleration of charged ions of oxygen and other elements trapped in the polar magnetic field high above Jupiter's atmosphere. Hubble Ultraviolet Image of Jupiter Hubble Ultraviolet Image of Jupiter Chandra observed Jupiter in February 2003 for four rotations of the planet (approximately 40 hours) during intense auroral activity. These Chandra observations, taken with its Advanced CCD Imaging Spectrometer, were accompanied by one-and-a-half hours of Hubble Space Telescope observations at ultraviolet wavelengths. The research team also included Noe Lugaz, Hunter Waite, and Tariq Majeed (University of Michigan, Ann Arbor), Thomas Cravens (University of Kansas, Lawrence), Randy Gladstone (Southwest Research Institute, San Antonio, Texas), Peter Ford (Massachusetts Institute of Technology, Cambridge), Denis Grodent (University of Liege, Belgium), Anil Bhardwaj (Marshall Space Flight Center) and Robert MacDowell and Michael Desch (Goddard Space Flight Center, Greenbelt, Md.) NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Analysis of the 3C 445 soft X-ray spectrum as observed by Chandra high-energy gratings
NASA Astrophysics Data System (ADS)
Dong, Fu-Tong; Shao, Shu-Hua; Cheng, Yan; Zeng, Jiao-Long
2018-05-01
We present a detailed analysis of the soft X-ray emission of 3C 445 using an archival Chandra High Energy Transmission Grating (HETG) spectrum. Highly-ionized H- and He-like Mg, Si and S lines, as well as a resolved low-ionized Si Kα line, are detected in the high resolution spectrum. The He-like triplets of Mg and Si are resolved into individual lines, and the calculated R ratios indicate a high density for the emitter. The low values of G ratios indicate the lines originate from collisionally ionized plasmas. However, the detection of a resolved narrow Ne X radiative recombination continua (RRC) feature in the spectrum seems to prefer a photoionized environment. The spectrum is subsequently modeled with a photoionization model, and the results are compared with those of a collisional model. Through a detailed analysis of the spectrum, we exclude a collisional origin for these emission lines. A one-component photoionization model provides a great fit to the emission features. The best-fit parameters are {log} ξ ={3.3}-0.3+0.4 erg cm s‑1, {n}{{H}}={5}-4.5+15× {10}10 cm‑3 and {N}{{H}}={2.5}-1.7+3.8× {10}20 cm‑2. According to the calculated high density for the emitter, the measured velocity widths of the emission lines and the inferred radial distance (6 × 1014 – 8 × 1015 cm), we suggest the emission lines originating from matter are located in the broad line region (BLR).
Chandra Finds a "Cool" Black Hole at the Heart of the Andromeda Galaxy
NASA Astrophysics Data System (ADS)
2000-01-01
In its first look at the Andromeda Galaxy (M31), NASA's Chandra X-ray Observatory has found that the gas funneling into a supermassive black hole in the heart of this galaxy is a "cool" million degrees Celsius. This unexpected result adds one more quirk to the strange behavior previously observed at the center of M31. A team of scientists from the Harvard-Smithsonian Center for Astrophysics, Cambridge, Mass., reported on this observation at the 195th national meeting of the American Astronomical Society in Atlanta, Ga. The team is led by Drs. Stephen Murray and Michael Garcia, and includes Drs. Frank Primini, William Forman, Christine Jones, and Ralph Kraft. Chandra took its first X-ray picture of the Andromeda Galaxy with the Advanced CCD Imaging Spectrometer on October 13, 1999. More than100 individual X-ray sources were seen. One of these sources was at the previously determined position of the central supermassive black hole, which has the mass of 30 million suns. With many X-ray emitting stars in the center of M31 there was a slight chance that one of them might be at this position just by coincidence. The low temperature of the suspected central source, as compared to the other sources, gave the team the clue they needed. "When we found that what we suspected was the central object was also anomalously cool, we KNEW we had it- one coincidence might be believable, but two was too much to ignore!" said Garcia. While the gas falling into the central black hole is cool, it is only cool by comparison to the 100 other X-ray sources in the Andromeda Galaxy. To be detected by an X-ray telescope, the gas must have a temperature of more than a million degrees Celsius. The typical X-ray star in the Andromeda Galaxy has a temperature of several tens of millions of degrees. In contrast, the temperature of the supermassive black hole source is a few million degrees Celsius. The Andromeda Galaxy is our nearest neighbor spiral galaxy at a distance of two million light years. It is similar to our own Milky Way in size, shape, and also contains a supermassive black hole at the center. This central black hole has always been a bit odd when compared to central black holes in similar galaxies. Based on its X-ray luminosity, it is much fainter in radio waves than expected. Such behavior, coupled with Chandra's discovery of the low temperature gas, cannot be accommodated by standard models developed for supermassive black holes in galaxies like the Milky Way and Andromeda. "The Chandra observation is telling us that an entirely different flow pattern is operating around the Andromeda black hole," said Dr. Eliot Quataert, of the Institute for Advanced Study, Princeton, N.J. "This will require a different class of models than usually considered." One possibility is that the gas undergoes a large scale boiling motion which slows down the rate at which gas falls into the black hole. The best previous X-ray pictures were not sharp enough to clearly distinguish the X-ray source associated with the black hole in the center of the Andromeda Galaxy nor did they give information about the temperature of the source. "A good analogy might be to say that previous X-ray images were taken with a slightly out-of-focus black and white camera, while the Chandra image is taken with a sharp, color camera" said Murray. Another intriguing feature of this observation is the detection of a diffuse glow that extends for a thousand light years around the central region. It is not known if this is due to many individual sources, or to a hot wind expanding out from the center. "This is just a first, quick look at our nearest Milky Way analog," Murray emphasized. "I expect that our future pictures will lead to more exciting discoveries in the Andromeda Galaxy." The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu/photo/2000/0007/index.html AND http://chandra.nasa.gov NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF ) and other information associated with this release are available on the Internet at: http://chandra.harvard.edu/
Giant Black Hole Rips Apart Star
NASA Astrophysics Data System (ADS)
2004-02-01
Thanks to two orbiting X-ray observatories, astronomers have the first strong evidence of a supermassive black hole ripping apart a star and consuming a portion of it. The event, captured by NASA's Chandra and ESA's XMM-Newton X-ray Observatories, had long been predicted by theory, but never confirmed. Astronomers believe a doomed star came too close to a giant black hole after being thrown off course by a close encounter with another star. As it neared the enormous gravity of the black hole, the star was stretched by tidal forces until it was torn apart. This discovery provides crucial information about how these black holes grow and affect surrounding stars and gas. "Stars can survive being stretched a small amount, as they are in binary star systems, but this star was stretched beyond its breaking point," said Stefanie Komossa of the Max Planck Institute for Extraterrestrial Physics (MPE) in Germany, leader of the international team of researchers. "This unlucky star just wandered into the wrong neighborhood." While other observations have hinted stars are destroyed by black holes (events known as "stellar tidal disruptions"), these new results are the first strong evidence. Evidence already exists for supermassive black holes in many galaxies, but looking for tidal disruptions represents a completely independent way to search for black holes. Observations like these are urgently needed to determine how quickly black holes can grow by swallowing neighboring stars. Animation of Star Ripped Apart by Giant Black Hole Star Ripped Apart by Giant Black Hole Observations with Chandra and XMM-Newton, combined with earlier images from the German Roentgen satellite, detected a powerful X-ray outburst from the center of the galaxy RX J1242-11. This outburst, one of the most extreme ever detected in a galaxy, was caused by gas from the destroyed star that was heated to millions of degrees Celsius before being swallowed by the black hole. The energy liberated in the process was equivalent to a supernova. "Now, with all the data in hand, we have the smoking gun proof that this spectacular event has occurred," said coauthor Günther Hasinger, also of MPE. The black hole in the center of RX J1242-11 is estimated to have a mass of about 100 million times Earth's Sun. By contrast, the destroyed star probably had a mass about equal to the Sun, making it a lopsided battle of gravity. "This is the ultimate David versus Goliath battle, but here David loses," said Hasinger. The astronomers estimated about one percent of the star's mass was ultimately consumed, or accreted, by the black hole. This small amount is consistent with predictions that the momentum and energy of the accretion process will cause most of the destroyed star's gas to be flung away from the black hole. XMM-Newton Spectrum &Illustration of RX J1242-11 XMM-Newton Spectrum & Illustration of RX J1242-11 The force that disrupted the star in RX J1242-11 is an extreme example of the tidal force caused by differences in gravity acting on the front and back of an object. The tidal force from the Moon causes tides in Earth's oceans. A tidal force from Jupiter pulled Comet Shoemaker-Levy apart, before it plunged into the giant planet. The odds stellar tidal disruption will happen in a typical galaxy are low, about one in 10,000 annually. If it happened at the center of the Milky Way Galaxy, 26,000 light-years from Earth, the resulting X-ray outburst would be about 50,000 times brighter than the brightest X-ray source in our galaxy, beside the Sun, but it would not pose a threat to Earth. Other dramatic flares have been seen from galaxies, but this is the first studied with the high-spatial resolution of Chandra and the high-spectral resolution of XMM-Newton. Both instruments made a critical advance. Chandra showed the RX J1242-11 event occurred in the center of a galaxy, where the black hole lurks. The XMM-Newton spectrum revealed the fingerprints expected for the surroundings of a black hole, ruling out other possible astronomical explanations. In the future, searches using Chandra, XMM-Newton and survey instruments should find many other tidal disruptions. Detailed studies with future observatories like Constellation-X should teach us about the extreme physics around supermassive black holes. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. XMM-Newton is an ESA science mission managed at the European Space Research and Technology Centre (ESTEC) in the Netherlands for the Directorate of the Scientific Programme. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Names Premier X-Ray Observatory and Schedules Launch
NASA Astrophysics Data System (ADS)
1998-12-01
NASA's Advanced X-ray Astrophysics Facility has been renamed the Chandra X-ray Observatory in honor of the late Indian-American Nobel laureate, Subrahmanyan Chandrasekhar. The telescope is scheduled to be launched no earlier than April 8, 1999 aboard the Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins. Chandrasekhar, known to the world as Chandra, which means "moon" or "luminous" in Sanskrit, was a popular entry in a recent NASA contest to name the spacecraft. The contest drew more than six thousand entries from fifty states and sixty-one countries. The co-winners were a tenth grade student in Laclede, Idaho, and a high school teacher in Camarillo, CA. The Chandra X-ray Observatory Center (CXC), operated by the Smithsonian Astrophysical Observatory, will control science and flight operations of the Chandra X-ray Observatory for NASA from Cambridge, Mass. "Chandra is a highly appropriate name," said Harvey Tananbaum, Director of the CXC. "Throughout his life Chandra worked tirelessly and with great precision to further our understanding of the universe. These same qualities characterize the many individuals who have devoted much of their careers to building this premier X-ray observatory." "Chandra probably thought longer and deeper about our universe than anyone since Einstein," said Martin Rees, Great Britain's Astronomer Royal. "Chandrasekhar made fundamental contributions to the theory of black holes and other phenomena that the Chandra X-ray Observatory will study. His life and work exemplify the excellence that we can hope to achieve with this great observatory," said NASA Administrator Dan Goldin. Widely regarded as one of the foremost astrophysicists of the 20th century, Chandrasekhar won the Nobel Prize in 1983 for his theoretical studies of physical processes important to the structure and evolution of stars. He and his wife immigrated from India to the U.S. in 1935. Chandrasekhar served on the faculty of the University of Chicago until his death in 1995. The Chandra X-ray Observatory will help astronomers worldwide better understand the structure and evolution of the universe by studying powerful sources of X rays such as exploding stars, matter falling into black holes and other exotic celestial objects. X-radiation is an invisible form of light produced by multimillion degree gas. Chandra will provide X-ray images that are fifty times more detailed than previous missions. At more than 45 feet in length and weighing more than five tons, it will be one of the largest objects ever placed in Earth orbit by the Space Shuttle. Tyrel Johnson, a student at Priest River Lamanna High School in Priest River, Idaho, and Jatila van der Veen, a physics and astronomy teacher at Adolfo Camarillo High School in Camarillo, California, who submitted the winning name and essays, will receive a trip to the Kennedy Space Center in Florida to view the launch of the Chandra X-ray Observatory, a prize donated by TRW. Members of the contest's selection committee were Timothy Hannemann, executive vice president and general manager, TRW Space & Electronics Group; the late CNN correspondent John Holliman; former Secretary of the Air Force Sheila Widnall, professor of aeronautics at MIT; Charles Petit, senior writer for U.S. News & World Report; Sidney Wolff, Director, National Optical Astronomy Observatories; Martin Weisskopf, Advanced X-ray Astrophysics Facility project scientist, Marshall Space Flight Center, Huntsville, AL.; and Harvey Tananbaum, director of the Advanced X-ray Astrophysics Facility Science Center, Smithsonian Astrophysical Observatory, Cambridge, MA. The Chandra X-ray Observatory program is managed by the Marshall Center for the Office of Space Science, NASA Headquarters, Washington, DC. TRW Space and Electronics Group, Redondo Beach, CA, is NASA's prime contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations of the observatory for NASA from Cambridge, MA. EDITORS NOTE: Further information on NASA's Chandra Observatory is available on the internet at http://www.msfc.nasa.gov/news/ and http://chandra.harvard.edu For information about S. Chandrasekhar, or comments from his Chicago colleagues, including those who will use the Chandra X-ray Observatory, contact Steve Koppes, University of Chicago, 773/702-8366 The NASA Video File normally airs at noon, 3:00, 6:00, 9:00 p.m. and midnight Eastern time. NASA Television is available on GE-2, transponder 9C at 85 degrees West longitude, with vertical polarization. Frequency is on 3880.0 megahertz, with audio on 6.8 megahertz. Note to editors: Digital images to accompany this release are available via the Internet at: http://chandra.harvard.edu/press/images.html
1999-03-26
In the Vertical Processing Facility, TRW technicians check the point of attachment of the solar panel array at right. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93
Seeing Red and Shooting Blanks: Study of Red Quasars and Blank X-Ray Sources
NASA Technical Reports Server (NTRS)
Oliversen, Ronald (Technical Monitor); Elvis, Martin
2005-01-01
A major paper describing the technique and providing a list of 'blanks' was published in the Astrophysical Journal (abstract below). The results revealed a fascinating trove of novel X-ray sources: high redshift clusters of galaxies found efficiently; X-ray absorbed, optically clean AGN, which may be the bright prototypes of Chandra Deep Survey sources; and several with a still unknown nature. Recent XMM-Newton results confirm the existence of this class of X-ray source with much refined positions. During the first year of this project we have made a major discovery. The second 'blanks' X-ray source observed with Chandra was found to be extended. Using Chandra data and ground-based R and K band imaging we estimated this to be a high redshift cluster of galaxies with z approx. 0.85. Spectroscopy agrees with this estimate (z=0.89). This success shows that our method of hunting down 'blank' field X-ray sources is a highly efficient method of finding the otherwise elusive high redshift clusters. With extensive follow-up we should be able to use 'blanks' to make cosmological tests. The paper is now in press in the Astrophysical Journal (abstract below.) The other Chandra source is point-like, showing that there are a variety of 'blank' source types. Other follow-up observations with XMM-Newton, and (newly approved in cycle 2) with Chandra are eagerly awaited. A follow-up paper uses a large amount of supporting data for the remaining blanks. A combination of ROSAT, Chandra and ground based data convincingly identified one of the blanks as a Ultra-luminous X-ray source (ULX) in a spiral galaxy (abstract below). This program resulted in 3 refereed papers in major journals, 4 conference proceedings and a significant fraction of the PhD thesis of Dr. Ilaria Cagnoni. Details of the publications are given.
Chandra Looks Back At The Earth
NASA Astrophysics Data System (ADS)
2005-12-01
In an unusual observation, a team of scientists has scanned the northern polar region of Earth with NASA's Chandra X-ray Observatory. The results show that the aurora borealis, or "northern lights," also dance in X-ray light, creating changing bright arcs of X-ray energy above the Earth's surface. While other satellite observations had previously detected high-energy X-rays from the Earth auroras, the latest Chandra observations reveal low-energy X-rays generated during auroral activity for the first time. The researchers, led by Dr. Ron Elsner of NASA's Marshall Space Flight Center in Huntsville, Ala., used Chandra to observe the Earth 10 times over a four-month period in 2004. The images were created from approximately 20-minute scans during which Chandra was aimed at a fixed point in the sky and the Earth's motion carried the auroral regions through Chandra's field of view. From the ground, the aurora are well known to change dramatically over time and this is the case in X-ray light as well. The X-rays in this sample of the Chandra observations, which have been superimposed on a simulated image of the Earth, are seen here at four different epochs. Illlustration of Earth's Magnetosphere and Auroras Illlustration of Earth's Magnetosphere and Auroras Auroras are produced by solar storms that eject clouds of energetic charged particles. These particles are deflected when they encounter the Earth�s magnetic field, but in the process large electric voltages are created. Electrons trapped in the Earth�s magnetic field are accelerated by these voltages and spiral along the magnetic field into the polar regions. There they collide with atoms high in the atmosphere and emit X-rays. Chandra has also observed dramatic auroral activity on Jupiter. Dr. Anil Bhardwaj of Vikram Sarabhai Space Center in Trivandrum, India, is the lead author on a paper describing these results in the Journal of Atmospheric and Solar-Terrestrial Physics. Dr. Bhardwaj was a co-investigator on this project and worked with Dr. Elsner at NASA's Marshall Space Flight Center while this research was conducted. The research team also includes Randy Gladstone (Southwest Research Institute, San Antonio, Texas); Nikolai Østgaard (University of Bergen, Norway); Hunter Waite and Tariq Majeed (University of Michigan, Ann Arbor); Thomas Cravens (University of Kansas, Lawrence); Shen-Wu Chang (University of Alabama, Huntsville); and, Albert E. Metzger (Jet Propulsion Laboratory, Pasadena, Calif). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov
1999-02-10
In the Vertical Processing Facility (VPF), workers keep watch on the crane lifting the shrouded Chandra X-ray Observatory to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
Inside the Vertical Processing Facility (VPF), the overhead crane lifts Chandra X-ray Observatory completely out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), workers guide the final stages as the overhead crane lifts the shrouded Chandra X-ray Observatory to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), workers move the shrouded Chandra X-ray Observatory on its workstand to the scaffolding behind it. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
Inside the Vertical Processing Facility (VPF), workers check the overhead cable that will lift the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
Inside the Vertical Processing Facility (VPF), workers attach the overhead cable to the Chandra X-ray Observatory to lift it out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-10
In the Vertical Processing Facility (VPF), workers watch as the overhead crane starts lifting the shrouded Chandra X-ray Observatory to a vertical position. The telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
Inside the Vertical Processing Facility (VPF), workers begin lifting the Chandra X-ray Observatory out of its protective container. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Chandra LETGS observation of the active binary Algol
NASA Astrophysics Data System (ADS)
Ness, J.-U.; Schmitt, J. H. M. M.; Burwitz, V.; Mewe, R.; Predehl, P.
2002-06-01
A high-resolution spectrum obtained with the low-energy transmission grating onboard the Chandra observatory is presented and analyzed. Our analysis indicates very hot plasma with temperatures up to T~ 15-20 MK from the continuum and from ratios of hydrogen-like and helium-like ions of Si, Mg, and Ne. In addition lower temperature material is present since O VII and N VI are detected. Two methods for density diagnostics are applied. The He-like triplets from N VII to Si XIII are used and densities around 1011 cm-3 are found for the low temperature ions. Taking the UV radiation field from the B star companion into account, we find that the low-Z ions can be affected by the radiation field quite strongly, such that densities of 3x 1010 cm-3 are also possible, but only assuming that the emitting plasma is immersed in the radiation field. For the high temperature He-like ions only low density limits are found. Using ratios of Fe XXI lines produced at similar temperatures are sensitive to lower densities but again yield only low density limits. We thus conclude that the hot plasma has densities below 1012 cm-3. Assuming a constant pressure corona we show that the characteristic loop sizes must be small compared to the stellar radius and that filling factors below 0.1 are unlikely.
Jupiter Hot Spot Makes Trouble For Theory
NASA Astrophysics Data System (ADS)
2002-02-01
A pulsating hot spot of X-rays has been discovered in the polar regions of Jupiter's upper atmosphere by NASA's Chandra X-ray Observatory. Previous theories cannot explain either the pulsations or the location of the hot spot, prompting scientists to search for a new process to produce Jupiter's X-rays. "The location of the X-ray hot spot effectively retires the existing explanation for Jupiter's X-ray emission, leaving us very unsure of its origin," said Randy Gladstone, of the Southwest Research Institute in San Antonio and lead author of a paper on the results in the Feb.28, 2002 issue of the journal Nature. "The source of ions that produce the X-rays must be a lot farther away from Jupiter than previously believed." Chandra observed Jupiter for 10 hours on Dec. 18, 2000, when NASA's Cassini spacecraft was flying by Jupiter on its way to Saturn. The X-ray observations revealed that most of the auroral X-rays come from a pulsating hot spot that appears at a fixed location near the north magnetic pole of Jupiter. Bright infrared and ultraviolet emissions have also been detected from this region in the past. The X-rays were observed to pulsate with a period of 45 minutes, similar to the period of high-latitude radio pulsations detected by NASA's Galileo and Cassini spacecraft. Jupiter X-ray/UV/Optical Composite Credit: X-ray: NASA/SWRI/R.Gladstone et al. UV: NASA/HST/J.Clarke et al. Optical: NASA/HST/R.Beebe et al. An aurora of X-ray light near Jupiter's polar regions had been detected by previous satellites. However, scientists were unable to determine the exact location of the X-rays. The accepted theory held that the X-rays were produced by energetic oxygen and sulfur ions that became excited as they ran into hydrogen and helium in Jupiter's atmosphere. Oxygen and sulfur ions (originally from Jupiter's moon Io) are energized while circulating around Jupiter's enormous magnetosphere. And, some - the purported X-ray producers - get dumped into Jupiter's atmosphere when they return to the region of Io's orbit. Chandra's ability to accurately determine the location of the X-rays proved this model incorrect, as ions from regions of Jupiter's magnetic field near Io cannot reach the high Jovian latitudes where most of the X-rays were observed. This result has its own problems. At the large distances required for the source of the ions - at least 30 times the radius of Jupiter - spacecraft measurements have shown that there are not nearly enough energetic oxygen and sulfur ions to account for the observed X-ray emission. One possibility is that heavy ions among the particles flowing out from the Sun as the solar wind are captured in the outer regions of Jupiter's magnetic field, then accelerated and directed toward its magnetic pole. Once captured, the ions would bounce back and forth in the magnetic field from pole to pole in an oscillating motion that might explain the pulsations. The High Resolution Camera used for the Chandra observations was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Juno-UVS and Chandra Observations of Jupiter's Polar Auroral Emissions
NASA Astrophysics Data System (ADS)
Gladstone, G. R.; Kammer, J. A.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Gérard, J.-C.; Grodent, D.; Bonfond, B.; Jackman, C.; Branduardi-Raymont, G.; Kraft, R. P.; Dunn, W. R.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Mauk, B. H.; Valek, P.; Adriani, A.; Kurth, W. S.; Orton, G. S.
2017-09-01
New results are presented comparing Jupiter's auroras at far-ultraviolet and x-ray wavelengths, using data acquired by Juno-UVS and Chandra. The highly variable polar auroras (which are located within the main auroral oval) track each other quite well in brightness at these two wavelengths.
Disentangling AGN and Star Formation in Soft X-Rays
NASA Technical Reports Server (NTRS)
LaMassa, Stephanie M.; Heckman, T. M.; Ptak, A.
2012-01-01
We have explored the interplay of star formation and active galactic nucleus (AGN) activity in soft X-rays (0.5-2 keV) in two samples of Seyfert 2 galaxies (Sy2s). Using a combination of low-resolution CCD spectra from Chandra and XMM-Newton, we modeled the soft emission of 34 Sy2s using power-law and thermal models. For the 11 sources with high signal-to-noise Chandra imaging of the diffuse host galaxy emission, we estimate the luminosity due to star formation by removing the AGN, fitting the residual emission. The AGN and star formation contributions to the soft X-ray luminosity (i.e., L(sub x,AGN) and L(sub x,SF)) for the remaining 24 Sy2s were estimated from the power-law and thermal luminosities derived from spectral fitting. These luminosities were scaled based on a template derived from XSINGS analysis of normal star-forming galaxies. To account for errors in the luminosities derived from spectral fitting and the spread in the scaling factor, we estimated L(sub x,AGN) and L(sub x,SF))from Monte Carlo simulations. These simulated luminosities agree with L(sub x,AGN) and L(sub x,SF) derived from Chandra imaging analysis within a 3sigma confidence level. Using the infrared [Ne ii]12.8 micron and [O iv]26 micron lines as a proxy of star formation and AGN activity, respectively, we independently disentangle the contributions of these two processes to the total soft X-ray emission. This decomposition generally agrees with L(sub x,SF) and L(sub x,AGN) at the 3 sigma level. In the absence of resolvable nuclear emission, our decomposition method provides a reasonable estimate of emission due to star formation in galaxies hosting type 2 AGNs.
NASA Technical Reports Server (NTRS)
Jia, Jianjun; Ptak, Andrew Francis; Heckman, Timothy M.; Braito, Valantina; Reeves, James
2012-01-01
We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (G = 1.3) and an He-like Fe Ka line with equivalent width 1.5 keV, consistent with previous observations. The Fe Ka line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3-10 keV luminosity of this off-nuclear point source is 6 × 1040 erg s-1 if the emission is isotropic and the source is associated with the Superantennae.
Initial Results From The Chandra High Energy Transmission Grating Spectrometer
NASA Technical Reports Server (NTRS)
Canizares, C. R.; Davis, D. S.; Dewey, D.; Flanagan, K. A.; Houck, J.; Huenemoerder, D. P.; Marshall, H. L.; Schattenburg, M. L.; Schulz, N. S.; Wise, M.
2000-01-01
The High Energy Transmission Grating Spectrometer (HETGS) on the Chandra X-ray Observatory provides spectral resolving powers of 200-1000 over the range 0.4-8.0 keV (1.5-30 A) with effective area of 2-200 square centimeters. Initial observations during the activation and calibration phases of the mission show that the HETGS is performing as predicted prior to Chandra launch. The talk presented very preliminary results that illustrate the power of the HETGS for performing detailed studies of a wide range of celestial sources, including plasma diagnostics. This written version gives a brief summary of that talk with examples of preliminary spectra of Capella, the Crab pulsar, SS433 and the SNR E0102-72.
Accretion disc wind variability in the states of the microquasar GRS 1915+105
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Petschek, Andrew J.; Lee, Julia C.
2012-03-01
Continuing our study of the role and evolution of accretion disc winds in the microquasar GRS 1915+105, we present high-resolution spectral variability analysis of the β and γ states with the Chandra High-Energy Transmission Grating Spectrometer. By tracking changes in the absorption lines from the accretion disc wind, we find new evidence that radiation links the inner and outer accretion discs on a range of time-scales. As the central X-ray flux rises during the high-luminosity γ state, we observe the progressive overionization of the wind. In the β state, we argue that changes in the inner disc leading to the ejection of a transient 'baby jet' also quench the highly ionized wind from the outer disc. Our analysis reveals how the state, structure and X-ray luminosity of the inner accretion disc all conspire to drive the formation and variability of highly ionized accretion disc winds.
Chandra Independently Determines Hubble Constant
NASA Astrophysics Data System (ADS)
2006-08-01
A critically important number that specifies the expansion rate of the Universe, the so-called Hubble constant, has been independently determined using NASA's Chandra X-ray Observatory. This new value matches recent measurements using other methods and extends their validity to greater distances, thus allowing astronomers to probe earlier epochs in the evolution of the Universe. "The reason this result is so significant is that we need the Hubble constant to tell us the size of the Universe, its age, and how much matter it contains," said Max Bonamente from the University of Alabama in Huntsville and NASA's Marshall Space Flight Center (MSFC) in Huntsville, Ala., lead author on the paper describing the results. "Astronomers absolutely need to trust this number because we use it for countless calculations." Illustration of Sunyaev-Zeldovich Effect Illustration of Sunyaev-Zeldovich Effect The Hubble constant is calculated by measuring the speed at which objects are moving away from us and dividing by their distance. Most of the previous attempts to determine the Hubble constant have involved using a multi-step, or distance ladder, approach in which the distance to nearby galaxies is used as the basis for determining greater distances. The most common approach has been to use a well-studied type of pulsating star known as a Cepheid variable, in conjunction with more distant supernovae to trace distances across the Universe. Scientists using this method and observations from the Hubble Space Telescope were able to measure the Hubble constant to within 10%. However, only independent checks would give them the confidence they desired, considering that much of our understanding of the Universe hangs in the balance. Chandra X-ray Image of MACS J1149.5+223 Chandra X-ray Image of MACS J1149.5+223 By combining X-ray data from Chandra with radio observations of galaxy clusters, the team determined the distances to 38 galaxy clusters ranging from 1.4 billion to 9.3 billion light years from Earth. These results do not rely on the traditional distance ladder. Bonamente and his colleagues find the Hubble constant to be 77 kilometers per second per megaparsec (a megaparsec is equal to 3.26 million light years), with an uncertainty of about 15%. This result agrees with the values determined using other techniques. The Hubble constant had previously been found to be 72, give or take 8, kilometers per second per megaparsec based on Hubble Space Telescope observations. The new Chandra result is important because it offers the independent confirmation that scientists have been seeking and fixes the age of the Universe between 12 and 14 billion years. Chandra X-ray Image of CL J1226.9+3332 Chandra X-ray Image of CL J1226.9+3332 "These new results are entirely independent of all previous methods of measuring the Hubble constant," said team member Marshall Joy also of MSFC. The astronomers used a phenomenon known as the Sunyaev-Zeldovich effect, where photons in the cosmic microwave background (CMB) interact with electrons in the hot gas that pervades the enormous galaxy clusters. The photons acquire energy from this interaction, which distorts the signal from the microwave background in the direction of the clusters. The magnitude of this distortion depends on the density and temperature of the hot electrons and the physical size of the cluster. Using radio telescopes to measure the distortion of the microwave background and Chandra to measure the properties of the hot gas, the physical size of the cluster can be determined. From this physical size and a simple measurement of the angle subtended by the cluster, the rules of geometry can be used to derive its distance. The Hubble constant is determined by dividing previously measured cluster speeds by these newly derived distances. Chandra X-ray Image of Abell 1689 Chandra X-ray Image of Abell 1689 This project was championed by Chandra's telescope mirror designer, Leon Van Speybroeck, who passed away in 2002. The foundation was laid when team members John Carlstrom (University of Chicago) and Marshall Joy obtained careful radio measurements of the distortions in the CMB radiation using radio telescopes at the Berkeley-Illinois-Maryland Array and the Caltech Owens Valley Radio Observatory. In order to measure the precise X-ray properties of the gas in these distant clusters, a space-based X-ray telescope with the resolution and sensitivity of Chandra was required. "It was one of Leon's goals to see this project happen, and it makes me very proud to see this come to fruition," said Chandra Project Scientist Martin Weisskopf of MSFC. The results are described in a paper appearing in the August 10th issue of The Astrophysical Journal. MSFC manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
The Chandra Source Catalog: Background Determination and Source Detection
NASA Astrophysics Data System (ADS)
McCollough, Michael; Rots, Arnold; Primini, Francis A.; Evans, Ian N.; Glotfelty, Kenny J.; Hain, Roger; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Doe, Stephen M.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Danny G. Gibbs, II; Grier, John D.; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Refsdal, Brian L.; Siemiginowska, Aneta L.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory are used to generate one of the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).
Chandra Source Catalog: Background Determination and Source Detection
NASA Astrophysics Data System (ADS)
McCollough, Michael L.; Rots, A. H.; Primini, F. A.; Evans, I. N.; Glotfelty, K. J.; Hain, R.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Evans, J. D.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Refsdal, B. L.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-01-01
The Chandra Source Catalog (CSC) is a major project in which all of the pointed imaging observations taken by the Chandra X-Ray Observatory will used to generate the most extensive X-ray source catalog produced to date. Early in the development of the CSC it was recognized that the ability to estimate local background levels in an automated fashion would be critical for essential CSC tasks such as source detection, photometry, sensitivity estimates, and source characterization. We present a discussion of how such background maps are created directly from the Chandra data and how they are used in source detection. The general background for Chandra observations is rather smoothly varying, containing only low spatial frequency components. However, in the case of ACIS data, a high spatial frequency component is added that is due to the readout streaks of the CCD chips. We discuss how these components can be estimated reliably using the Chandra data and what limitations and caveats should be considered in their use. We will discuss the source detection algorithm used for the CSC and the effects of the background images on the detection results. We will also touch on some the Catalog Inclusion and Quality Assurance criteria applied to the source detection results. This work is supported by NASA contract NAS8-03060 (CXC).
First Images From Chandra X-Ray Observatory to be Released
NASA Astrophysics Data System (ADS)
1999-08-01
The first images from the world's most powerful X-ray telescope, NASA's Chandra X-ray Observatory, will be unveiled at a media briefing at 1 p.m. EDT, Thursday, Aug. 26. The briefing will be held in the James E. Webb Auditorium at NASA Headquarters, 300 E St. SW, Washington, DC. The images include the spectacular remnants of a supernova and other astronomical objects. Panelists will be: - Dr. Edward Weiler, Associate Administrator for Space Science, NASA Headquarters, Washington, DC; - Dr. Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X-ray Center, Cambridge, MA; - Dr. Martin Weisskopf, NASA's Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL; and - Dr. Robert Kirshner, astrophysicist, Harvard University, Cambridge, MA. The event will be carried live on NASA Television with question-and-answer capability for reporters covering the briefing from participating NASA centers and from the Chandra Operations Control Center in Cambridge. NASA Television is available on transponder 9C, satellite GE-2 at 85 degrees West longitude, vertical polarization, frequency 3880 MHz, audio of 6.8 MHz. Chandra has been undergoing activation and checkout since it was placed into orbit during Space Shuttle mission STS-93 in July. Chandra will examine exploding stars, black holes, colliding galaxies and other high-energy cosmic phenomena to help scientists gain a better understanding of the structure and evolution of the universe. Chandra images and additional information will be available following the briefing on the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.
A medium-deep Chandra and Subaru survey of the 13-h XMM/ROSAT deep survey area
NASA Astrophysics Data System (ADS)
McHardy, I. M.; Gunn, K. F.; Newsam, A. M.; Mason, K. O.; Page, M. J.; Takata, T.; Sekiguchi, K.; Sasseen, T.; Cordova, F.; Jones, L. R.; Loaring, N.
2003-07-01
We present the results of a Chandra ACIS-I survey of a high-latitude region at 13 h +38° which was earlier observed with ROSAT and which has recently been observed by XMM-Newton for 200 ks. XMM-Newton will provide good-quality X-ray spectra for over 200 sources with fluxes around the knee of the log N/ log S, which are responsible for the bulk of the X-ray background. The main aim of the Chandra observations is to provide arcsecond, or better, positions, and hence reliable identifications, for the XMM-Newton sources. The ACIS-I observations were arranged in a mosaic of four 30-ks pointings, covering almost all of the 15-arcmin radius XMM-Newton/ROSAT field. We detect 214 Chandra sources above a Cash likelihood statistic of 25, which approximates to 5σ significance, to a limiting flux of ~1.3 × 10-15 erg cm-2 s-1 (0.5-7 keV). Optical counterparts are derived from a Subaru SuprimeCam image reaching to R~ 27. The very large majority of the Chandra sources have an optical counterpart, with the distribution peaking at 23 < R < 24, although 14 have no counterpart to R= 27. The fraction of X-ray sources with no identification brighter than R= 27 is similar to that found in deeper Chandra surveys. The majority of the identifications are with galaxies. As found in other Chandra surveys, there is a very wide range of optical magnitudes for a given X-ray flux, implying a range of emission mechanisms, and many sources have high LX/Lopt ratios, implying absorption at moderate redshift. Comparison with the earlier ROSAT survey shows that the accuracy of the ROSAT positions agrees very well with the predictions from simulations by McHardy et al. and that the large majority of the identifications were correct.
The Chandra Deep Field-North Survey and the cosmic X-ray background.
Brandt, W Nielsen; Alexander, David M; Bauer, Franz E; Hornschemeier, Ann E
2002-09-15
Chandra has performed a 1.4 Ms survey centred on the Hubble Deep Field-North (HDF-N), probing the X-ray Universe 55-550 times deeper than was possible with pre-Chandra missions. We describe the detected point and extended X-ray sources and discuss their overall multi-wavelength (optical, infrared, submillimetre and radio) properties. Special attention is paid to the HDF-N X-ray sources, luminous infrared starburst galaxies, optically faint X-ray sources and high-to-extreme redshift active galactic nuclei. We also describe how stacking analyses have been used to probe the average X-ray-emission properties of normal and starburst galaxies at cosmologically interesting distances. Finally, we discuss plans to extend the survey and argue that a 5-10 Ms Chandra survey would lay key groundwork for future missions such as XEUS and Generation-X.
1999-02-08
In the Vertical Processing Facility (VPF), workers check fittings and cables on the stand that will raise the Chandra X-ray Observatory to a vertical position. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
Inside the Vertical Processing Facility (VPF), the Chandra X-ray Observatory (top) lies in its protective container while workers on the floor prepare the overhead cable that will remove it. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-08
In the Vertical Processing Facility (VPF), workers begin moving the overhead crane carrying the Chandra X-ray Observatory from its protective container to a stand on the floor. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
History of Chandra X-Ray Observatory
2004-08-12
NASA’s Chandra X-Ray Observatory (CXO) was launched July 22, 1999 aboard the Space Shuttle Columbia, STS-93 mission. This image was produced by combining a dozen CXO observations made of a 130 light-year region in the center of the Milky Way over the last 5 years. The colors represent low (red), medium (green) and high (blue) energy x-rays. Thanks to Chandra's unique resolving power, astronomers have now been able to identify thousands of point-like x-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies. What remains is a diffuse x-ray glow extending from the upper left to the lower right, along the direction of the disk of the galaxy. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandra program. (NASA/CXC/UCLA/M. Muno et al.)
NASA Astrophysics Data System (ADS)
Hayashida, K.; Kawabata, T.; Nakajima, H.; Inoue, S.; Tsunemi, H.
2017-10-01
The best angular resolution of 0.5 arcsec is realized with the X-ray mirror onborad the Chandra satellite. Nevertheless, further better or comparable resolution is anticipated to be difficult in near future. In fact, the goal of ATHENA telescope is 5 arcsec in the angular resolution. We propose a new type of X-ray interferometer consisting simply of an X-ray absorption grating and an X-ray spectral imaging detector, such as X-ray CCDs or new generation CMOS detectors, by stacking the multi images created with the Talbot interferenece (Hayashida et al. 2016). This system, now we call Multi Image X-ray Interferometer Module (MIXIM) enables arcseconds resolution with very small satellites of 50cm size, and sub-arcseconds resolution with small sattellites. We have performed ground experiments, in which a micro-focus X-ray source, grating with pitch of 4.8μm, and 30 μm pixel detector placed about 1m from the source. We obtained the self-image (interferometirc fringe) of the grating for wide band pass around 10keV. This result corresponds to about 2 arcsec resolution for parrallel beam incidence. The MIXIM is usefull for high angular resolution imaging of relatively bright sources. Search for super massive black holes and resolving AGN torus would be the targets of this system.
CHEERS Results on Mrk 573: A Study of Deep Chandra Observations
NASA Astrophysics Data System (ADS)
Paggi, Alessandro; Wang, Junfeng; Fabbiano, Giuseppina; Elvis, Martin; Karovska, Margarita
2012-09-01
We present results on Mrk 573 obtained as part of the CHandra survey of Extended Emission-line Regions in nearby Seyfert galaxies (CHEERS). Previous studies showed that this source features a biconical emission in the soft X-ray band closely related to the narrow-line region as mapped by the [O III] emission line and the radio emission, though on a smaller scale; we investigate the properties of soft X-ray emission from this source with new deep Chandra observations. Making use of the subpixel resolution of the Chandra/ACIS image and point-spread function deconvolution, we resolve and study substructures in each ionizing cone. The two cone spectra are fitted with a photoionization model, showing a mildly photoionized phase diffused over the bicone. Thermal collisional gas at about ~1.1 keV and ~0.8 keV appears to be located between the nucleus and the "knots" resolved in radio observations, and between the "arcs" resolved in the optical images, respectively; this can be interpreted in terms of shock interaction with the host galactic plane. The nucleus shows a significant flux decrease across the observations indicating variability of the active galactic nucleus (AGN), with the nuclear region featuring a higher ionization parameter with respect to the bicone region. The long exposure allows us to find extended emission up to ~7 kpc from the nucleus along the bicone axis. Significant emission is also detected in the direction perpendicular to the ionizing cones, disagreeing with the fully obscuring torus prescribed in the AGN unified model and suggesting instead the presence of a clumpy structure.
Adjustable Grazing-Incidence X-Ray Optics
NASA Technical Reports Server (NTRS)
O'Dell, Stephen L.; Reid, Paul B.
2015-01-01
With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.
NASA's Chandra Finds Black Holes Are "Green"
NASA Astrophysics Data System (ADS)
2006-04-01
Black holes are the most fuel efficient engines in the Universe, according to a new study using NASA's Chandra X-ray Observatory. By making the first direct estimate of how efficient or "green" black holes are, this work gives insight into how black holes generate energy and affect their environment. The new Chandra finding shows that most of the energy released by matter falling toward a supermassive black hole is in the form of high-energy jets traveling at near the speed of light away from the black hole. This is an important step in understanding how such jets can be launched from magnetized disks of gas near the event horizon of a black hole. Illustration of Fuel for a Black Hole Engine Illustration of Fuel for a Black Hole Engine "Just as with cars, it's critical to know the fuel efficiency of black holes," said lead author Steve Allen of the Kavli Institute for Particle Astrophysics and Cosmology at Stanford University, and the Stanford Linear Accelerator Center. "Without this information, we cannot figure out what is going on under the hood, so to speak, or what the engine can do." Allen and his team used Chandra to study nine supermassive black holes at the centers of elliptical galaxies. These black holes are relatively old and generate much less radiation than quasars, rapidly growing supermassive black holes seen in the early Universe. The surprise came when the Chandra results showed that these "quiet" black holes are all producing much more energy in jets of high-energy particles than in visible light or X-rays. These jets create huge bubbles, or cavities, in the hot gas in the galaxies. Animation of Black Hole in Elliptical Galaxy Animation of Black Hole in Elliptical Galaxy The efficiency of the black hole energy-production was calculated in two steps: first Chandra images of the inner regions of the galaxies were used to estimate how much fuel is available for the black hole; then Chandra images were used to estimate the power required to produce the cavities. "If a car was as fuel-efficient as these black holes, it could theoretically travel over a billion miles on a gallon of gas," said coauthor Christopher Reynolds of the University of Maryland, College Park. New details are given about how black hole engines achieve this extreme efficiency. Some of the gas first attracted to the black holes may be blown away by the energetic activity before it gets too near the black hole, but a significant fraction must eventually approach the event horizon where it is used with high efficiency to power the jets. The study also implies that matter flows towards the black holes at a steady rate for several million years. Chandra X-ray Images of Elliptical Galaxies Chandra X-ray Images of Elliptical Galaxies "These black holes are very efficient, but it also takes a very long time to refuel them," said Steve Allen who receives funding from the Office of Science of the Department of Energy. This new study shows that black holes are green in another important way. The energy transferred to the hot gas by the jets should keep hot gas from cooling, thereby preventing billions of new stars from forming. This will place limits on the growth of the largest galaxies, and prevent galactic sprawl from taking over the neighborhood. These results will appear in an upcoming issue of the Monthly Notices of the Royal Astronomical Society. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov For information about NASA and agency programs on the Web, visit: http://www.nasa.gov
Multiwavelength Study of Powerful New Jet Activity in the Symbiotic System R AQR
NASA Astrophysics Data System (ADS)
Karovska, Margarita
2016-10-01
We propose to carry out coordinated high-spatial resolution Chandra ACIS-S and multiwavelength (UV-Optical) HST/WFC3 observations of R Aqr, a very active symbiotic interacting binary system. Our main goal is to study the physical characteristics of the multi-scale components of the powerful jet; from the vicinity of the central binary (within a few AU) to the jet-circumbinary material interaction region (2500 AU) and beyond, and especially of the recently discovered new component of the inner jet (likely due to recent ejection of material). Our main goal is to gain new insight on early jet formation and propagation, including jet kinematics and precession.
Chandra Finds X-ray Star Bonanza in the Orion Nebula
NASA Astrophysics Data System (ADS)
2000-01-01
NASA's Chandra X-ray Observatory has resolved nearly a thousand faint X-ray-emitting stars in a single observation of young stars in the Orion Nebula. The discovery--the richest field of X-ray sources ever obtained in the history of X-ray astronomy--will be presented on Friday, January 14, at the 195th national meeting of the American Astronomical Society in Atlanta, Georgia. The Orion region is a dense congregation of about 2,000 very young stars formed during the past few million years. The discovery of such a wealth of X-ray stars in the closest massive star-forming region to Earth (only 1,500 light years away) is expected to have a profound impact on our understanding of star formation and evolution. "We've detected X-rays from so many fantastic objects, such as very young massive stars and stars so small that they may evolve into brown dwarfs," said Gordon Garmire, Evan Pugh Professor at Penn State University, University Park. "Chandra's superb angular resolution has resolved this dense cluster of stars with arcsecond accuracy and unsurpassed sensitivity." Garmire leads the team using Chandra's ACIS detector, the Advanced CCD Imaging Spectrometer, conceived and developed for NASA by Penn State University and the Massachusetts Institute of Technology. The brilliant Orion region has awed humankind for millennia. The most massive and brightest of these nascent stars are in the Orion Trapezium, which illuminates the Orion Nebula, also known as Messier 42. The Trapezium and its luminous gas can be seen with the unaided eye in the winter sky in the "sword" of the Orion constellation. Young stars, such as those found in Orion, are known to be much brighter in X-rays than middle-aged stars such as the Sun. The elevated X-ray emission is thought to arise from violent flares in strong magnetic fields near the surfaces of young stars. The Sun itself was probably thousands of times brighter in X-rays during its first few million years. Although the enhanced magnetic activity of young stars has been known for some time, the physical causes and evolution of the activity are poorly understood, according to Dr. Eric Feigelson, professor of astronomy and astrophysics at Penn State. "With hundreds of stars observed simultaneously, possessing a wide range of properties such as mass and rotation rates, we hope the Orion observation will help unravel the astrophysical principles underlying this phenomenon," Feigelson said. "X-ray astronomy now penetrates as deeply into the clouds as the best infrared and optical telescopes, permitting us to study high-energy processes during the earliest phases of star formation." "This Chandra image is a milestone in the field of X-ray astronomy and very gratifying to me personally," said Garmire. "Chandra's sensitivity is 20 times better than achieved with the best previous X-ray telescopes." A number of the ACIS X-ray sources in the Orion observation have special importance. Several are associated with a distinct cluster of higher-mass stars deeply embedded within the murky Orion Molecular Cloud, including the infrared-luminous Becklin-Neugebauer object. "This is the first time X-ray astronomy has resolved individual massive stars still embedded in their natal cloud," said Dr. Leisa Townsley, research associate in astronomy and astrophysics at Penn State. At least three ACIS sources are associated with cluster members with masses so small (roughly 1/20th of the Sun's mass), that they will evolve into brown dwarfs rather than true stars. "They more closely resemble proto-Jupiters than proto-stars," said Dr. Yohko Tsuboi, visiting research scholar in astronomy and astrophysics at Penn State. "Over a dozen X-ray sources have no known counterpart, even in the most sensitive Hubble Space Telescope or infrared studies. These too may be very low-mass stars." The ACIS team studying the Orion X-ray source includes Profs. Feigelson and Garmire and research scientists Patrick Broos, Leisa Townsley, and Yohko Tsuboi at Penn State; Steven Pravdo at the Jet Propulsion Laboratory; and Lynne Hillenbrand at the California Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Other Press Room:Orion Nebula Press Release (PSU Sep 01) To follow Chandra's progress or download images visit the Chandra sites at http://chandra.harvard.edu/photo/2000/0054/index.html AND http://chandra.nasa.gov
Simultaneous Chandra and NuSTAR Observations of the Highly Obscured AGN Candidate in NGC660.
NASA Astrophysics Data System (ADS)
Annuar, Ady
2014-09-01
We are using NuSTAR to undertake a detailed investigation of the obscured AGN population at D<15Mpc. Our latest target is NGC660 where the presence of an AGN has been ambiguous. However, recently it was observed to undergo a radio outburst which reveals a bright continuum source (Argo et al. 2015), coincident with Chandra 2-8 keV emission from one of the three point sources near the nucleus (<5"). This confirms and pinpoints the X-ray position of the AGN. Comparisons of the Chandra flux with the radio emission and other multiwavelength luminosity indicators indicate that the X-ray flux is suppressed, suggesting that it is absorbed by a high column of gas. A NuSTAR observation for this object has been scheduled as part of our program. The requested Chandra observation is essential to unambiguously constrain the AGN and isolate it from other sources at <8 keV. When combined with NuSTAR, we will then be able to accurately characterise the 0.5-30 keV spectrum of the AGN for the first time.
1999-02-06
At the Vertical Processing Facility (VPF), workers (left) drive, by remote control, the rear bogie away from the VPF. The bogie is part of the tractor-trailer rig called the Space Cargo Transportation System that helped move the Chandra X-ray Observatory (right) from the Shuttle Landing Facility into the VPF. Chandra arrived at KSC on Thursday, Feb. 4, aboard an Air Force C-5 Galaxy aircraft. In the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
NASA Astrophysics Data System (ADS)
1999-02-01
Six scientists have been chosen as Fellows of the second annual Chandra X-ray Observatory Postdoctoral Fellowship Program. The fellowships are open to recent astronomy and astrophysics graduates worldwide. This year's winners will work for three years at a host astronomical institution in the United States where they will research problems broadly related to the scientific mission of the Chandra Observatory. The Chandra X-ray Observatory Fellowship Program is a joint venture between NASA and the Chandra X-ray Observatory Center in cooperation with the host institutions. The 1999 Fellows are: Markus Boettcher, a graduate of Bonn University, whose host institution will be Rice University; Jimmy Irwin, a graduate of the University of Virginia, will be hosted by the University of Michigan; Kristen Menou, a graduate of the University of Paris, will be hosted by Princeton University; Eliot Quataert, a graduate of Harvard University, will be hosted by the Institute for Advanced Study; Rudy Wijnands, a graduate of the University of Amsterdam, will be hosted by MIT; and Amy Barger, a graduate of Cambridge University, is a Fellow at large at the University of Hawaii Institute for Astronomy. The Chandra Fellowship Program attracted forty-five applicants from eleven countries. A member of the review panel commented, "I found it extremely difficult to choose between the many excellent entries." "We are very pleased with the response to the program, and I am confident that the work of these fellows will enhance our understanding of the scientific problems to be explored by the Chandra X-ray Observatory," said Nancy Remage Evans, coordinator of the Fellowship Program. NASA's Chandra X-ray Observatory, formerly know as AXAF, will provide stunning new images and data of the extremely hot, active regions in the universe. Such regions exist where stars have exploded, where matter is swirling into black holes, and where clusters of galaxies are merging. A tentative launch date of July 9, 1999 has been set by NASA for the Chandra X-ray Observatory. The Space Shuttle Columbia mission STS-93, commanded by astronaut Eileen Collins will carry the telescope into a low circular orbit of Earth. There the astronauts will deploy the Chandra spacecraft, which will then fire two Boeing Inertial Upper Stage solid motors in succession to place Chandra in a highly elliptical orbit. This orbit will be fine-tuned by the spacecraft's integral propulsion system made by TRW, until it reaches its final height of 10,000 km by 140,000 km. Further information about the Chandra X-ray Observatory is available at the World Wide Web at http://chandra.harvard.edu/. Further information about the Fellowship program is available at http://asc.harvard.edu/fellows/
Bayesian analysis of X-ray jet features of the high redshift quasar jets observed with Chandra
NASA Astrophysics Data System (ADS)
McKeough, Kathryn; Siemiginowska, Aneta; Kashyap, Vinay; Stein, Nathan; Cheung, Chi C.
2015-01-01
X-ray emission of powerful quasar jets may be a result of the inverse Compton (IC) process in which the Cosmic Microwave Background (CMB) photons gain energy by interactions with the jet's relativistic electrons. However, there is no definite evidence that IC/CMB process is responsible for the observed X-ray emission of large scale jets. A step toward understanding the X-ray emission process is to study the Radio and X-ray morphologies of the jet. Results from Chandra X-ray and multi-frequency VLA imaging observations of a sample of 11 high- redshift (z > 2) quasars with kilo-parsec scale radio jets are reported. The sample consists of a set of four z ≥ 3.6 flat-spectrum radio quasars, and seven intermediate redshift (z = 2.1 - 2.9) quasars comprised of four sources with integrated steep radio spectra and three with flat radio spectra.We implement a Bayesian image analysis program, Low-count Image Reconstruction and Analysis (LIRA) , to analyze jet features in the X-ray images of the high redshift quasars. Out of the 36 regions where knots are visible in the radio jets, nine showed detectable X-ray emission. Significant detections are based on the upper bound p-value test based on LIRA simulations. The X-ray and radio properties of this sample combined are examined and compared to lower-redshift samples.This work is supported in part by the National Science Foundation REU and the Department of Defense ASSURE programs under NSF Grant no.1262851 and by the Smithsonian Institution, and by NASA Contract NAS8-39073 to the Chandra X-ray Center (CXC). This research has made use of data obtained from the Chandra Data Archive and Chandra Source Catalog, and software provided by the CXC in the application packages CIAO, ChIPS, and Sherpa. Work is also supported by the Chandra grant GO4-15099X.
Obituary: Leon Van Speybroeck, 1935-2002
NASA Astrophysics Data System (ADS)
Gorenstein, Paul; Tananbaum, Harvey Dale
2003-12-01
Leon Van Speybroeck, a master designer of X-ray telescope mirrors and the telescope scientist for the Chandra X-ray Observatory, died in Newton, Massachusetts, on 25 December 2002, shortly after learning that he had metastatic melanoma. Leon was born on 27 August 1935 in Wichita, Kansas. His father, Paul, was Assistant Treasurer and head of the accounting department at Beech Aircraft, and his mother, Anna Florence (Utley), was a homemaker. Both parents died in 1996. Leon's younger sister, Saundra, is a nurse and his younger brother, John, is a surgeon. Leon received a BS in 1957 and a PhD in 1965, both in physics, from MIT. His PhD thesis, ``Elastic Electron-Deuteron Scattering at High Momentum Transfer," was carried out under the supervision of Henry Kendall and Jerome Friedman. Leon spent two more years at MIT as a research associate. In 1967, he was hired by American Science and Engineering (AS&E) in Cambridge, Massachusetts, and joined the X-ray astronomy group led by Riccardo Giacconi, who received the 2002 Nobel Prize in Physics for contributions to astrophysics that led to the discovery of cosmic X-ray sources. Leon soon became involved in the design and construction of high-resolution, grazing-incidence X-ray telescopes, starting with the Apollo Telescope Mount flown on NASA's Skylab from 1973 to 1974. A series of high-resolution X-ray images of the solar corona led to dramatic changes in ideas about the solar corona, with new emphasis on magnetic dynamo processes. When the Smithsonian Astrophysical Observatory and the Harvard College Observatory morphed into the Harvard-Smithsonian Center for Astrophysics (CfA) in 1973, Leon, with Giacconi and other senior X-ray astronomers from AS&E, joined the CfA and formed the high-energy astrophysics division. Leon guided the design and development of the X-ray mirrors on NASA's Einstein Observatory, which was flown from 1978 to 1981 as the first cosmic X-ray observatory with an imaging telescope. Along the way, he helped the team to solve numerous technical challenges-for example, floating the heavy optics in a mercury bath so that their roundness could be measured without gravitational distortion. The Einstein data, which showed that virtually all classes of astronomical sources are X-ray emitters, opened the door for X-ray astronomy to join the other wavelength domains as an equally important discipline. In recognition of his accomplishments, Leon received the George W. Goddard Award in 1985 from the International Society for Optical Engineering. While the Einstein Observatory was still operating, work began on a successor with a larger effective area and substantially higher angular resolution. Leon led the technology development and then the flight program for the optics on this Advanced X-ray Astrophysics Facility (AXAF). He insisted on systematic analyses and thorough understanding of all the processing steps and metrology data. He negotiated the establishment of incentives and goals for mirror smoothness, and achieved an increase in the fraction of 6-keV X-rays encircled in a 1-arcsecond diameter from 20% to 60%. With his guidance and the efforts of many superb engineers and scientists, polishing and metrology equipment was designed, built, tested, and used at Hughes Danbury Optical Systems Inc, located in Danbury, Connecticut. The equipment was utilized to fabricate X-ray mirrors at the 0.5-arcsecond level of performance-10 times better than any previous X-ray optic. Following the successful fabrication of the optics, Leon worked with the team at Optical Coating Laboratory Inc, in Santa Rosa, California, to establish a process for depositing iridium coatings that provide a relatively high efficiency up to 10 keV and a very stable final surface. The AXAF telescope comprises four pairs of mirrors nested one inside another to increase the collecting area. A major challenge involved assembling the eight cylindrical optics into a single high-resolution telescope. Leon and the team at Eastman Kodak Company in Rochester, New York, designed a 50-foot-high vertical assembly tower that satisfied demanding environmental controls. The mirror elements were held as stress free as possible, maneuvered into alignment, and bonded into place with a slow-curing epoxy to a precision of a few tenths of an arcsecond. Following its launch aboard the space shuttle Columbia in July 1999, AXAF was renamed the Chandra X-ray Observatory. Up to the time of his death, Leon had been leading a team that used Chandra, plus microwave observations of galaxy clusters, to determine the cosmic distance scale. His colleagues expect to publish their results in late 2003. In recognition of his leadership and extraordinary contributions to Chandra, Leon received the 2002 Bruno Rossi Prize of the American Astronomical Society's high-energy astrophysics division. He died two weeks before he was scheduled to deliver his acceptance speech. Despite his illness, he had crafted a marvelous talk illustrating the tremendous advances enabled by the Chandra telescope. One of us (Tananbaum) presented his talk, which received an enthusiastic response from approximately 1000 AAS members. Leon married Erin Harrington in 1959. She survives him along with their daughter Elaine and her husband Lane Kendig; son David, his wife Jennifer Hanson, and their twin daughters Madeline and Nina; and son Alexander and his companion Sherie Davis. When not involved with X-ray telescopes or family trips to National Parks, Leon designed and built exquisite furniture in his elaborate workshop, where every tool hung neatly from its pegboard hook. On 8 February 2003 more than 200 friends and family members gathered at the Harvard Science Center for a Remembrance Service. Many smiles and more than a few tears were seen as people recalled and celebrated Leon's life. Leon was an amazing individual, respected by his colleagues as an outstanding physicist, mathematician, programmer, and engineer who could solve just about any problem. He set and met incredibly high standards in his professional and personal endeavors. He was modest about his accomplishments, but would acknowledge that ``Chandra has a pretty good mirror" when colleagues would share exciting new results made possible by his dedicated efforts and unique skills. It was a privilege to know him.
Kodak Mirror Assembly Tested at Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
2003-01-01
The Eastman-Kodak mirror assembly is being tested for the James Webb Space Telescope (JWST) project at the X-Ray Calibration Facility at Marshall Space Flight Center (MSFC). In this photo, one of many segments of the mirror assembly is being set up inside the 24-ft vacuum chamber where it will undergo x-ray calibration tests. MSFC is supporting Goddard Space Flight Center (GSFC) in developing the JWST by taking numerous measurements to predict its future performance. The tests are conducted in a vacuum chamber cooled to approximate the super cold temperatures found in space. During its 27 years of operation, the facility has performed testing in support of a wide array of projects, including the Hubble Space Telescope (HST), Solar A, Chandra technology development, Chandra High Resolution Mirror Assembly and science instruments, Constellation X-Ray Mission, and Solar X-Ray Imager, currently operating on a Geostationary Operational Environment Satellite. The JWST is NASA's next generation space telescope, a successor to the Hubble Space Telescope, named in honor of NASA's second administrator, James E. Webb. It is scheduled for launch in 2010 aboard an expendable launch vehicle. It will take about 3 months for the spacecraft to reach its destination, an orbit of 940,000 miles in space.
NASA's Future X-ray Missions: From Constellation-X to Generation-X
NASA Technical Reports Server (NTRS)
Hornschemeier, A.
2006-01-01
Among the most important topics in modern astrophysics are the formation and evolution of supermassive black holes in concert with galaxy bulges, the nature of the dark energy equation of state, and the self-regulating symmetry imposed by both stellar and AGN feedback. All of these topics are readily addressed with observations at X-ray wavelengths. NASA's next major X-ray observatory is Constellation-X, which is being developed to perform spatially resolved high-resolution X-ray spectroscopy. Con-X will directly measure the physical properties of material near black holes' last stable orbits and the absolute element abundances and velocities of hot gas in clusters of galaxies. The Con-X mission will be described, as well as its successor, Generation-X (anticipated to fly approx.1 decade after Con-X). After describing these missions and their driving science areas, the talk will focus on areas in which Chandra observing programs may enable science with future X-ray observatories. These areas include a possible ultra-deep Chandra imaging survey as an early Universe pathfinder, a large program to spatially resolve the hot intracluster medium of massive clusters to aid dark energy measurements, and possible deep spectroscopic observations to aid in preparatory theoretical atomic physics work needed for interpreting Con-X spectra.
ACCOUNTING FOR CALIBRATION UNCERTAINTIES IN X-RAY ANALYSIS: EFFECTIVE AREAS IN SPECTRAL FITTING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunsook; Kashyap, Vinay L.; Drake, Jeremy J.
2011-04-20
While considerable advance has been made to account for statistical uncertainties in astronomical analyses, systematic instrumental uncertainties have been generally ignored. This can be crucial to a proper interpretation of analysis results because instrumental calibration uncertainty is a form of systematic uncertainty. Ignoring it can underestimate error bars and introduce bias into the fitted values of model parameters. Accounting for such uncertainties currently requires extensive case-specific simulations if using existing analysis packages. Here, we present general statistical methods that incorporate calibration uncertainties into spectral analysis of high-energy data. We first present a method based on multiple imputation that can bemore » applied with any fitting method, but is necessarily approximate. We then describe a more exact Bayesian approach that works in conjunction with a Markov chain Monte Carlo based fitting. We explore methods for improving computational efficiency, and in particular detail a method of summarizing calibration uncertainties with a principal component analysis of samples of plausible calibration files. This method is implemented using recently codified Chandra effective area uncertainties for low-resolution spectral analysis and is verified using both simulated and actual Chandra data. Our procedure for incorporating effective area uncertainty is easily generalized to other types of calibration uncertainties.« less
1999-02-08
In the Vertical Processing Facility (VPF), workers check the placement of the Chandra X-ray Observatory on the stand on the floor. The stand will be used to raise the observatory to a vertical position. While in the VPF, the telescope will undergo final installation of associated electronic components; it will also be tested, fueled and mated with the Inertial Upper Stage booster. A set of integrated tests will follow. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Focused Wind Mass Accretion in Mira AB
NASA Astrophysics Data System (ADS)
Karovska, Margarita; de Val-Borro, M.; Hack, W.; Raymond, J.; Sasselov, D.; Lee, N. P.
2011-05-01
At a distance of about only 100pc, Mira AB is the nearest symbiotic system containing an Asymptotic Giant Branch (AGB) star (Mira A), and a compact accreting companion (Mira B) at about 0.5" from Mira A. Symbiotic systems are interacting binaries with a key evolutionary importance as potential progenitors of a fraction of asymmetric Planetary Nebulae, and SN type Ia, cosmological distance indicators. The region of interaction has been studied using high-angular resolution, multiwavelength observations ranging from radio to X-ray wavelengths. Our results, including high-angular resolution Chandra imaging, show a "bridge" between Mira A and Mira B, indicating gravitational focusing of the Mira A wind, whereby components exchange matter directly in addition to the wind accretion. We carried out a study using 2-D hydrodynamical models of focused wind mass accretion to determine the region of wind acceleration and the characteristics of the accretion in Mira AB. We highlight some of our results and discuss the impact on our understanding of accretion processes in symbiotic systems and other detached and semidetached interacting systems.
Chandra Turns Up the Heat in the Milky Way Center
NASA Astrophysics Data System (ADS)
2004-06-01
A long look by NASA's Chandra X-ray Observatory has revealed new evidence that extremely hot gas exists in a large region at the center of the Milky Way. The intensity and spectrum of the high-energy X-rays produced by this gas present a puzzle as to how it is being heated. The discovery came to light as a team of astronomers, led by Michael Muno of UCLA used Chandra's unique resolving power to study a region about 100 light years across and painstakingly remove the contributions from 2,357 point-like X-ray sources due to neutron stars, black holes, white dwarfs, foreground stars, and background galaxies. What remained was an irregular, diffuse glow from a 10-million-degree Celsius gas cloud, embedded in a glow of higher-energy X-rays with a spectrum characteristic of 100-million-degree gas. Animation of Galactic Center Animation of Galactic Center "The best explanation for the Chandra data is that the high-energy X-rays come from an extremely hot gas cloud," says Muno, lead author on a paper describing the results to appear in the September 20, 2004 issue of The Astrophysical Journal. "This would mean that there is a significant shortcoming in our understanding of heat sources in the center of our Galaxy." The combined gravity from the known objects in the center of the Milky Way -- all the stars and the supermassive black hole in the center - is not strong enough to prevent the escape of the 100 million degree gas from the region. The escape time would be about 10,000 years, a small fraction of the 10-billion-year lifetime of the Galaxy. This implies that the gas would have to be continually regenerated and heated. The gas could be replenished by winds from massive stars, but the source of the heating remains a puzzle. The high-energy diffuse X-rays from the center of the Galaxy appear to be the brightest part of a ridge of X-ray emission observed by Chandra and previous X-ray observatories to extend for several thousand light years along the disk of the Galaxy. The extent of this hot ridge implies that it is probably not being heated by the supermassive black hole at the center of the Milky Way. VLA Radio Image of Galactic Center VLA Radio Image of Galactic Center Scientists have speculated that magnetic turbulence produced by supernova shock waves can heat the gas to 100 million degrees. Alternatively, high-energy protons and electrons produced by supernova shock waves could be the heat source. However, both these possibilities have problems. The spectrum is not consistent with heating by high-energy particles, the observed magnetic field in the Galactic center does not have the proper structure, and the rate of supernova explosions does not appear to be frequent enough to provide the necessary heating. The team also considered whether the high-energy X-rays only appear to be diffuse, and are in fact due to the combined glow of an as yet undetected population of point-like sources, like the diffuse lights of a city seen at a great distance. The difficulty with this explanation is that 200,000 sources would be required in the observed region. Although the total number of stars in this region is about 30 million, the number of stars of the type expected to produce X-rays at the required power and energy is estimated to be only 20 thousand. Further, such a large unresolved population of sources would produce a much smoother X-ray glow than is observed. Chandra Broadband X-ray Image of Galactic Center Chandra Broadband X-ray Image of Galactic Center, Without Point Sources "There is no known class of objects that could account for such a large number of high-energy X-ray sources at the Galactic center," said Fred Baganoff of the Massachusetts Institute of Technology (MIT) in Cambridge, a coauthor of the study. These results were based on over 170 hours of observations of a 17-by-17-arcminute region around the Milky Way's center using Chandra's Advanced CCD Imaging Spectrometer instrument. Other team members from UCLA, MIT, and Penn State are also co-authors on the upcoming paper in The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. http://chandra.harvard.edu and http://chandra.nasa.gov
The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae
NASA Technical Reports Server (NTRS)
Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Gladstone, G. R.; Waite, J. H.; Cravens, T.; Ford, P.
2007-01-01
The discovery in XMM-Newton X-ray data of X-ray emission above 2 keY from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.
The Morphology of the X-ray Emission above 2 keV from Jupiter's Aurorae
NASA Technical Reports Server (NTRS)
Elsner, R.; Branduardi-Raymont, G.; Galand, M.; Grodent, D.; Waite, J. H.; Cravens, T.; Ford, P.
2007-01-01
The discovery in XMM-Newton X-ray data of X-ray emission above 2 keV from Jupiter's aurorae has led us to reexamine the Chandra ACIS-S observations taken in Feb 2003. Chandra's superior spatial resolution has revealed that the auroral X-rays with E > 2 keV are emitted from the periphery of the region emitting those with E < 1 keV. We are presently exploring the relationship of this morphology to that of the FUV emission from the main auroral oval and the polar cap. The low energy emission has previously been established as due to charge exchange between energetic precipitating ions of oxygen and either sulfur or carbon. It seems likely to us that the higher energy emission is due to precipitation of energetic electrons, possibly the same population of electrons responsible for the FUV emission. We discuss our analysis and interpretation.
High-Resolution X-Ray Spectroscopy and Modeling of the Absorbing and Emitting Outflow in NGC 3783
NASA Astrophysics Data System (ADS)
Kaspi, Shai; Brandt, W. N.; Netzer, Hagai; George, Ian M.; Chartas, George; Behar, Ehud; Sambruna, Rita M.; Garmire, Gordon P.; Nousek, John A.
2001-06-01
The high-resolution X-ray spectrum of NGC 3783 shows several dozen absorption lines and a few emission lines from the H-like and He-like ions of O, Ne, Mg, Si, and S, as well as from Fe XVII-Fe XXIII L-shell transitions. We have reanalyzed the Chandra HETGS spectrum using better flux and wavelength calibrations, along with more robust methods. Combining several lines from each element, we clearly demonstrate the existence of the absorption lines and determine that they are blueshifted relative to the systemic velocity by -610+/-130 km s-1. We find the Ne absorption lines in the High-Energy Grating spectrum to be resolved with FWHM=840+490-360 km s-1; no other lines are resolved. The emission lines are consistent with being at the systemic velocity. We have used regions in the spectrum where no lines are expected to determine the X-ray continuum, and we model the absorption and emission lines using photoionized-plasma calculations. The model consists of two absorption components, with different covering factors, which have an order-of-magnitude difference in their ionization parameters. The two components are spherically outflowing from the active galactic nucleus, and thus contribute to both the absorption and the emission via P Cygni profiles. The model also clearly requires O VII and O VIII absorption edges. The low-ionization component of our model can plausibly produce UV absorption lines with equivalent widths consistent with those observed from NGC 3783. However, we note that this result is highly sensitive to the unobservable UV to X-ray continuum, and the available UV and X-ray observations cannot firmly establish the relationship between the UV and X-ray absorbers. We find good agreement between the Chandra spectrum and simultaneous ASCA and RXTE observations. The 1 keV deficit previously found when modeling ASCA data probably arises from iron L-shell absorption lines not included in previous models. We also set an upper limit on the FWHM of the narrow Fe Kα emission line of 3250 km s-1. This is consistent with this line originating outside the broad-line region, possibly from a torus.
Chandra Sees Shape of Universe During Formative, Adolescent Years
NASA Astrophysics Data System (ADS)
2003-03-01
Scientists using NASA's Chandra X-ray Observatory have taken a snapshot of the adolescent universe from about five billion years ago when the familiar web-like structure of galaxy chains and voids first emerged. The observation reveals distant and massive galaxies dotting the sky, clustered together under the gravitational attraction of deep, unseen pockets of dark matter. This provides important clues of how the universe matured from its chaotic beginnings to its elegant structure we see today. These results are presented today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society at Mt. Tremblant, Quebec. "Piece by piece, we are assembling a photo album of the universe through the ages," said Yuxuan Yang, a doctorate candidate at the University of Maryland, College Park, who conducted the analysis. "Last month we saw a picture of the infant universe taken with the Wilkinson Microwave Anisotropy Probe. Now we can add a snapshot of its adolescence." The Chandra observation traced a patch of sky known as the Lockman Hole in the constellation Ursa Major (containing the Big Dipper). Chandra saw a rich density of active galaxies, seven times denser than what has been detected in previous optical and radio surveys at similar distances. This provides the clearest picture yet at the large-scale structure of the universe at such distances (and age), according to Dr. Richard Mushotzky of NASA Goddard Space Flight Center in Greenbelt, Md., who led the observation. Lockman Hole JPEG, TIFF, PS An image that has been "blurred" to allow better view of the structures outlined by the X-ray sources. The color represents the spectra of the AGN. The red color indicates the sources on average radiates at longer wavelength while green and blue colors indicates the sources radiates at shorter wavelength. The Green and blue regions appear to form a wall, or shows more lumpiness than the "red" sources. If one could capture the universe in a box, scientists say that the large scale structure -- that is, galaxies, galaxy clusters and voids of seemingly empty space -- takes the appearance of a web. Galaxies and intergalactic gas are strung like pearls on unseen filaments of dark matter, which comprises over 85 percent of all matter. Galaxies are attracted to dark matter's gravitational potential. Dark matter does not shine, like ordinary matter made of atoms, and may very well be intrinsically different. Chandra's observation of distant galaxies in the Lockman Hole, spread out over several billion light years from Earth, essentially maps the distribution of dark matter. This provides clues to how the universe grew. "We are seeing the universe during its formative years," said Mushotzky. "This is billions of years after galaxies were born, during a period when the universe began to take on the trappings of an adult." The galaxies that the team saw with Chandra were either dim or altogether undetectable with optical and radio telescopes. This may be because they are enshrouded in dust and gas, which blocks radio waves and optical light. X-rays, a higher-energy form of light, can penetrate this shroud. "Chandra is the only X-ray telescope with a spatial resolution comparable to the optical telescopes," according to Dr. Amy Barger of University of Wisconsin at Madison, who led the optical follow-up with the 10-meter Keck telescope on Mauna Kea, Hawaii. "This is critical to unambiguously identify the optical counterparts of the X-ray sources and measuring distances, or redshifts. This allows scientists to create a three-dimensional image of the large-scale structure." The additive effect of future deep and long Chandra surveys over the next few years will provide an even sharper picture of the young universe. Other scientists who participated in this observation include Drs. Len Cowie and Dave Sanders of the University of Hawaii, and Ph.D. student Aaron Steffen of the University of Wisconsin at Madison. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington.
Six Years Into Its Mission, NASA's Chandra X-ray Observatory Continues to Achieve Scientific Firsts
NASA Astrophysics Data System (ADS)
2005-08-01
In August 1999, NASA's Chandra X-ray Observatory opened for business. Six years later, it continues to achieve scientific firsts. "When Chandra opened its sunshade doors for the first time, it opened the possibility of studying the X-ray emission of the universe with unprecedented clarity," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "Already surpassing its goal of a five-year life, Chandra continues to rewrite textbooks with discoveries about our own solar system and images of celestial objects as far as billions of light years away." Based on the observatory's outstanding results, NASA Headquarters in Washington decided in 2001 to extend Chandra s mission from five years to ten. During the observatory s sixth year of operation, auroras from Jupiter, X-rays from Saturn, and the early days of our solar system were the focus of Chandra discoveries close to home -- discoveries with the potential to better understand the dynamics of life on Earth. Jupiter's auroras are the most spectacular and active auroras in the solar system. Extended Chandra observations revealed that Jupiter s auroral X-rays are caused by highly charged particles crashing into the atmosphere above Jupiter's poles. These results gave scientists information needed to compare Jupiter's auroras with those from Earth, and determine if they are triggered by different cosmic and planetary events. Mysterious X-rays from Saturn also received attention, as Chandra completed the first observation of a solar X-ray flare reflected from Saturn's low-latitudes, the region that correlates to Earth's equator and tropics. This observation led scientists to conclude the ringed planet may act as a mirror, reflecting explosive activity from the sun. Solar-storm watchers on Earth might see a surprising benefit. The results imply scientists could use giant planets like Saturn as remote-sensing tools to help monitor X-ray flaring on portions of the sun facing away from Earth's space satellites. Another Chandra discovery -- gleaned from the deepest X-ray observation of any star cluster -- offered insights on Earth's survival in its infancy. Chandra s focus was the Orion Nebula, which contains at least 1,400 young stars, 30 that are prototypes of the early sun. Using Chandra, scientists learned these young stars produce violent X-ray flares much more frequently and energetically than anything seen today from our 4.6 billion-year-old sun. This implies super-flares torched our young solar system and likely affected the planet-forming disk around the early sun -- enhancing the survival chances of Earth. Space is a harsh environment with extreme temperatures, harmful radiation and none of the protection offered by Earth s atmosphere, said Chandra Program Manager Keith Hefner of the Marshall Center. "Ironically, the fact that our atmosphere absorbs harmful X-rays is the very reason for Chandra s existence. Getting outside the absorbing atmosphere of the Earth requires space-based observatories, and viewing the universe in multiple wavelengths is necessary to fully study cosmic events. Chandra s continued outstanding performance after six years of operation under such harsh conditions is evidence that it is, indeed, an engineering marvel." In its sixth year, Chandra also continued to build on its growing list of discoveries involving black holes. This included finding the most powerful eruption seen in the universe, generated by a supermassive black hole growing at a remarkable rate. The eruption -- which has lasted for 100 million years and is still going -- has generated the energy equivalent to hundreds of millions of gamma-ray bursts. This discovery illustrated the enormous appetite of large black holes, and the profound impact they have on their surroundings. Other recent discoveries include confirming the existence of weight limits for supermassive black holes, finding evidence for a swarm of black holes near the galactic center and gathering more data supporting the existence of mid-sized black holes. Marshall manages the Chandra program for NASA's Science Mission Directorate in Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Managing Radiation Degradation of CCDs on the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
ODell, Stephen L.; Blackwell, William C.; Minow, Joseph I.; Cameron, Robert A.; Morris, David C.; Virani, Shanil N.; Six, N. Frank (Technical Monitor)
2002-01-01
The CCDs on the Chandra X ray Observatory are sensitive to radiation damage particularly from low-energy protons scattering off the telescope's mirrors onto the focal plane. In its highly elliptical orbit, Chandra passes through a spatially and temporally varying radiation environment, ranging from the radiation belts to the solar wind. Translating thc Advanced CCD Imaging Spectrometer (ACIS) out of the focal position during radiation-belt passages has prevented loss of scientific utility and eventually functionality. However, carefully managing the radiation damage during the remainder of the orbit, without unnecessarily sacrificing observing time, is essential to optimizing the scientific value of this exceptional observatory throughout its planned 10-year mission. In working toward this optimization, the Chandra team developed aid applied radiation-management strategies. These strategies include autonomous instrument safing triggered by the on-board radiation monitor, as well as monitoring, alerts, and intervention based upon real-time space-environment data from NOAA and NASA spacecraft. Furthermore, because Chandra often spends much of its orbit out of the solar wind (in the Earth's outer magnetosphere and magnetosheath), the team developed the Chandra Radiation Model to describe the complete low-energy-proton environment. Management of the radiation damage has thus far succeeded in limiting degradation of the charge-transfer inefficiency (CTI) to less than 4.4*10^-6 and 1.4*10^-6 per year for the front-illuminated and back-illuminated CCDs, respectively.
Chandra and ALMA observations of the nuclear activity in two strongly lensed star-forming galaxies
NASA Astrophysics Data System (ADS)
Massardi, M.; Enia, A. F. M.; Negrello, M.; Mancuso, C.; Lapi, A.; Vignali, C.; Gilli, R.; Burkutean, S.; Danese, L.; Zotti, G. De
2018-02-01
Aim. According to coevolutionary scenarios, nuclear activity and star formation play relevant roles in the early stages of galaxy formation. We aim at identifying them in high-redshift galaxies by exploiting high-resolution and high-sensitivity X-ray and millimeter-wavelength data to confirm the presence or absence of star formation and nuclear activity and describe their relative roles in shaping the spectral energy distributions and in contributing to the energy budgets of the galaxies. Methods: We present the data, model, and analysis in the X-ray and millimeter (mm) bands for two strongly lensed galaxies, SDP.9 (HATLAS J090740.0-004200) and SDP.11 (HATLAS J091043.1-000322), which we selected in the Herschel-ATLAS catalogs for their excess emission in the mid-IR regime at redshift ≳1.5. This emission suggests nuclear activity in the early stages of galaxy formation. We observed both of them with Chandra ACIS-S in the X-ray regime and analyzed the high-resolution mm data that are available in the ALMA Science Archive for SDP.9. By combining the information available in mm, optical, and X-ray bands, we reconstructed the source morphology. Results: Both targets were detected in the X-ray, which strongly indicates highly obscured nuclear activity. ALMA observations for SDP.9 for the continuum and CO(6-5) spectral line with high resolution (0.02 arcsec corresponding to 65 pc at the distance of the galaxy) allowed us to estimate the lensed galaxy redshift to a better accuracy than pre-ALMA estimates (1.5753 ± 0.0003) and to model the emission of the optical, millimetric, and X-ray band for this galaxy. We demonstrate that the X-ray emission is generated in the nuclear environment, which strongly supports that this object has nuclear activity. On the basis of the X-ray data, we attempt an estimate of the black hole properties in these galaxies. Conclusions: By taking advantage of the lensing magnification, we identify weak nuclear activity associated with high-z galaxies with high star formation rates. This is useful to extend the investigation of the relationship between star formation and nuclear activity to two intrinsically less luminous high-z star-forming galaxies than was possible so far. Given our results for only two objects, they alone cannot constrain the evolutionary models, but provide us with interesting hints and set an observational path toward addressing the role of star formation and nuclear activity in forming galaxies. The reduced images and data cubes as FITS files are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/610/A53
Impact! Chandra Images a Young Supernova Blast Wave
NASA Astrophysics Data System (ADS)
2000-05-01
Two images made by NASA's Chandra X-ray Observatory, one in October 1999, the other in January 2000, show for the first time the full impact of the actual blast wave from Supernova 1987A (SN1987A). The observations are the first time that X-rays from a shock wave have been imaged at such an early stage of a supernova explosion. Recent observations of SN 1987A with the Hubble Space Telescope revealed gradually brightening hot spots from a ring of matter ejected by the star thousands of years before it exploded. Chandra's X-ray images show the cause for this brightening ring. A shock wave is smashing into portions of the ring at a speed of 10 million miles per hour (4,500 kilometers per second). The gas behind the shock wave has a temperature of about ten million degrees Celsius, and is visible only with an X-ray telescope. "With Hubble we heard the whistle from the oncoming train," said David Burrows of Pennsylvania State University, University Park, the leader of the team of scientists involved in analyzing the Chandra data on SN 1987A. "Now, with Chandra, we can see the train." The X-ray observations appear to confirm the general outlines of a model developed by team member Richard McCray of the University of Colorado, Boulder, and others, which holds that a shock wave has been moving out ahead of the debris expelled by the explosion. As this shock wave collides with material outside the ring, it heats it to millions of degrees. "We are witnessing the birth of a supernova remnant for the first time," McCray said. The Chandra images clearly show the previously unseen, shock-heated matter just inside the optical ring. Comparison with observations made with Chandra in October and January, and with Hubble in February 2000, show that the X-ray emission peaks close to the newly discovered optical hot spots, and indicate that the wave is beginning to hit the ring. In the next few years, the shock wave will light up still more material in the ring, and an inward moving, or reverse, shock wave will heat the material ejected in the explosion itself. "The supernova is digging up its own past," said McCray. The observations were made on October 6, 1999, using the Advanced CCD Imaging Spectrometer (ACIS) and the High Energy Transmission Grating, and again on January 17, 2000, using ACIS. Other members of the team were Eli Michael of the University of Colorado; Dr. Una Hwang, Dr. Steven Holt and Dr. Rob Petre of NASA's Goddard Space Flight Center in Greenbelt, MD; Professor Roger Chevalier of the University of Virginia, Charlottesville; and Professors Gordon Garmire and John Nousek of Pennsylvania State University. The results will be published in an upcoming issue of the Astrophysical Journal. The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University. The High Energy Transmission Grating was built by the Massachusetts Institute of Technology. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More About SN 1987A Images to illustrate this release and more information on Chandra's progress can be found on the Internet at: http://chandra.harvard.edu/photo/2000/sn1987a/index.html AND http://chandra.nasa.gov More About SN 1987A
NASA Awards Chandra X-Ray Observatory Follow-On Contract
NASA Astrophysics Data System (ADS)
2003-08-01
NASA has awarded a contract to the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract will have a period of performance from August 31, 2003, through July 31, 2010, with an estimated value of 373 million. It is a follow-on contract to the existing contract with Smithsonian Astrophysical Observatory that has provided science and operations support to the Observatory since its launch in July 1999. At launch the intended mission life was five years. As a result of Chandra's success, NASA extended the mission from five to 10 years. The value of the original contract was 289 million. The follow-on contract with the Smithsonian Astrophysical Observatory will continue through the 10-year mission. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes the observatory operations, science data processing and the general and guaranteed time observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and up linking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and processing and delivery of the resulting scientific data. There are approximately 200 to 250 observing proposals selected annually out of about 800 submitted, with a total amount of observing time of about 20 million seconds. Chandra has exceeded expectations of scientists, giving them unique insight into phenomena light years away, such as exotic celestial objects, matter falling into black holes, and stellar explosions. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg- shaped, orbit is 200 times higher than that of its visible- light-gathering sister, the Hubble Space Telescope. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. For information about NASA on the Internet, visit: http://www.nasa.gov For information about the Chandra X-ray Observatory on the Internet, visit: http://chandra.harvard.edu and http://chandra.nasa.gov
Chandra Discovers the X-ray Signature of a Powerful Wind from a Galactic Microquasar
NASA Astrophysics Data System (ADS)
2000-11-01
NASA's Chandra X-ray Observatory has detected, for the first time in X rays, a stellar fingerprint known as a P Cygni profile--the distinctive spectral signature of a powerful wind produced by an object in space. The discovery reveals a 4.5-million-mile-per-hour wind coming from a highly compact pair of stars in our galaxy, report researchers from Penn State and the Massachusetts Institute of Technology in a paper they will present on 8 November 2000 during a meeting of the High-Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. The paper also has been accepted for publication in The Astrophysical Journal Letters. "To our knowledge, these are the first P Cygni profiles reported in X rays," say researchers Niel Brandt, assistant professor of astronomy and astrophysics at Penn State, and Norbert S. Schulz, research scientist at the Massachusetts Institute of Technology. The team made the discovery during their first observation of a binary-star system with the Chandra X-ray Observatory, which was launched into space in July 1999. The system, known as Circinus X-1, is located about 20,000 light years from Earth in the constellation Circinus near the Southern Cross. It contains a super-dense neutron star in orbit around a normal fusion-burning star like our Sun. Although Circinus X-1 was discovered in 1971, many properties of this system remain mysterious because Circinus X-1 lies in the galactic plane where obscuring dust and gas have blocked its effective study in many wavelengths. The P Cygni spectral profile, previously detected primarily at ultraviolet and optical wavelengths but never before in X rays, is the textbook tool astronomers rely on for probing stellar winds. The profile looks like the outline of a roller coaster, with one really big hill and valley in the middle, on a data plot with velocity on one axis and the flow rate of photons per second on the other. It is named after the famous star P Cygni, in which such profiles have been observed for over one hundred years. "When you see a P Cygni profile, you immediately know the object you are observing is producing a powerful outflow," Brandt says. Chandra is the first X-ray observatory capable of capturing data of sufficiently high resolution to reveal an X-ray P Cygni profile. Brandt and Schulz say their discovery occurred because they were able to use Chandra continuously for one-third of a day to observe Circinus X-1, plus its signal in X rays is generally very bright, partly because it is relatively nearby in our own Galaxy. P Cygni lines at ultraviolet or optical wavelengths had not been previously seen from Circinus X-1 because a large amount of dust in the galactic plane lies between Earth and this system and this dust is an efficient absorber of ultraviolet and optical light. However, the energetic X rays created by Circinus X-1 could easily penetrate through the obscuring dust and gas--similar to the way medical X-rays on Earth can penetrate through people's bodies. "We were hoping to detect some kind of X-ray line emission from the accreting neutron star in Circinus X-1, but it caught us totally by surprise to observe a complex emission structure like a P Cygni profile in high-energy X rays." schulz says. "This detection clearly marks a new area in X-ray astrophysics, where we will be able to study dynamical structures in the universe like we currently do at ultraviolet or optical wavelengths." Brandt and Schulz used two of Chandra's instruments, known together as the High-Energy Transmission Grating Spectrometer (HETGS), to detect the X rays and produce a high-resolution X-ray spectrum of Circinus X-1. This spectrum is analogous to the rainbow we can see at optical wavelengths. "Chandra's X-ray spectrum is 50 times more detailed than previous X-ray observatories could obtain," Schulz says. First, the super-fine transmission gratings acted like a prism to separate the X-rays into discrete energy bands. Then, the Advanced CCD Imaging Spectrometer (ACIS) was used as a camera to record the X-ray spectral data, which computers processed and plotted onto a graph, revealing the P Cygni signature. Specific elements, such as silicon or iron, emit specific X-ray wavelengths, revealing their presence in the emitting material to astronomers. Before the observation with Chandra, astronomers knew the force of gravity in an X-ray binary system strips material off the surface of the normal star and then pulls this material toward the surface of the super-dense neutron star, forming a relatively flat spiraling cloud of gas called an accretion disk. The detailed Chandra data revealed, in addition, that the radiation and rotational forces in the Circinus X-1 disk are blasting some of the inward-spiraling gas back out into space in a powerful wind, which creates the P Cygni lines in the object's spectrum. P Cygni profiles carry much diagnostic information that is hard to obtain in other ways--such as how fast the wind is moving, how much material it contains, how dense it is, and its chemical composition. "The wind coming out of Circinus X-1 is composed of gas that contains highly ionized atoms of silicon, neon, iron, magnesium, and sulfur, and its peak observed velocity is about 4.5 million miles per hour--so fast it would cross the entire radius of the Earth in about three seconds," Brandt reports. The astronomers used Doppler techniques that detect positive velocities from material moving away from Earth, with signals shifted toward the red end of the spectrum, and negative velocities from material that is coming toward Earth, with signals shifted toward the blue end of the spectrum. "We learned these two stars clearly interact dramatically with each other while this wind is blowing outward at high velocity, which appears to be causing certain properties of the wind to change over time," Schulz says. The researchers produced a time-lapse movie of one of their spectra, which is available on the World Wide Web, along with other information about the discovery, at http://www.astro.psu.edu/users/niel/cirx1/cirx1.html. A binary-star system 20,000 light years from Earth in the constellation of Circinus. Animation showing the strong variability over time of one of the P Cygni spectral lines seen by Chandra from Circinus X-1 (Click Image to View Animation) Credit: Niel Brandt and Norbert Schulz (Note: This animation is the same as the one referred to in the above paragraph) Atoms irradiated with energetic X-rays can emit as well as absorb them at specific wavelengths. Whether astronomers observe emission or absorption depends on the state and environment of the irradiated atoms, so these processes carry vital information about the emitting and absorbing material. Regarding the time-lapse movie, Schulz commented "You can see this profile flipping up and down between a strong emission line on the red side and a strong absorption line on the blue side. We don't yet fully understand what this means, but it does indicate the dynamic nature of this system. We see indications that sometimes either the emitting or the absorbing region gets obscured by matter so thick that not even X rays can penetrate it." The researchers say one reason their discovery that Circinus X-1 has a high-velocity wind is important is that this small two-star system now has striking similarities with a type of luminous active galaxy known as a broad-absorption-line quasar. Broad-absorption-line quasars are galaxies containing a violent centers powered by supermassive black holes. "This type of galaxy has an accretion disk circling its black hole plus very powerful winds created when radiation pushes material off of the disk and out into space," Brandt says. "The disk winds from broad-absorption-line quasars create P Cygni lines in the spectra of these objects. Circinus X-1, with the newly detected X-ray P Cygni profiles, appears in many ways to be a microscopic version of a broad-absorption-line quasar." "Although a typical AGN has a roughly ten-million-solar-mass black hole at its center while the Circinus X-1 system has a neutron star only slightly more massive than our Sun, both systems must obey the same laws of physics," Brandt says. "Gas is gas and gravity is gravity and that's all there is to it--you put gas and gravity together and they make a disk and often, apparently, a disk-generated wind." The researchers hope X-ray P Cygni profiles will be found to be a fairly common property of X-ray binaries containing neutron stars and black holes. "If we can find X-ray P Cygni profiles in more systems, we can learn a great deal about the geometry and the dynamics of the winds these systems emit," Schulz says. "Due to the penetrating nature of X rays, X-ray P Cygni lines have the significant advantage that they can be used to probe winds even from systems that are heavily obscured by dust along the line of sight." The High-Energy Transmission Grating Spectrometer was built by the Massachusetts Institute of Technology with Bruno Rossi Professor Claude Canizares as Principal Investigator. The ACIS X-ray camera was conceived and developed for NASA by Penn State and the Massachusetts Institute of Technology under the leadership of Gordon Garmire, Evan Pugh Professor of Astronomy and Astrophysics at Penn State. The observation of Circinus X-1 was part of the first round of Chandra's guest observer program. The guest observer program is a competitive one open to the World science community. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program. TRW Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Massachusetts. Circinus X-1 Handout Constellation Circinus To follow Chandra's progress, visit the Chandra site at: http://chandra.harvard.edu AND http://chandra.nasa.gov This research was supported by the Chandra X-ray Center, the Alfred P. Sloan Foundation, and the Smithsonian Astrophysical Observatory. This is a joint press release from Penn State and the Massachusetts Institute of Technology Digital images and movies are available on the World Wide Web at http://www.astro.psu.edu/users/niel/cirx1/cirx1.html Science Contacts: Niel Brandt: 814-865-3509 Norbert S. Schulz: 617-258-5767 Barbara K. Kennedy (PIO at Penn State): 814-863-4682 Deborah Halber (PIO at MIT): 617-253-2700 or 617-258-9276
Massey Award Given to Harvey Tananbaum
NASA Astrophysics Data System (ADS)
2010-06-01
Dr. Harvey Tananbaum, director of the Chandra X-ray Center, has been selected as the recipient of the 2010 Massey Award for his career accomplishments in high-energy astrophysics in space. The Massey Award is given by the Royal Society of London and the Committee of Space Research (COSPAR) in memory of Sir Harrie Massey, past Physical Secretary of the Society and member of the COSPAR Bureau. The prestigious award recognizes outstanding contributions to the development of space research in which a leadership role is of particular importance. Dr. Harvey Tananbaum began his career at American Science and Engineering and has been an astrophysicist at the Smithsonian Astrophysical Observatory since 1973. He was involved with pioneering X-ray astronomy missions including UHURU and the Einstein Observatory. Beginning in 1976, Dr. Tananbaum, along with Nobel Prize winner Dr. Riccardo Giacconi, led the team that proposed to NASA to study and design a large X-ray telescope. This project was launched 23 years later in 1999 as the Chandra X-ray Observatory, becoming NASA's flagship X-ray telescope. Dr. Tananbaum has served as the director of the Chandra X-ray Center since 1991. Dr. Tananbaum has received numerous awards from NASA as well as from other agencies and institutions, including the American Astronomical Society's Bruno Rossi Award in 2004 along with Chandra Project Scientist Martin Weisskopf. He is a fellow of the American Association for the Advancement of Science, and in 2005 was elected as a member of the United States National Academy of Science. The presentation of the Massey Award, along with the gold medal that accompanies it, will be made at the upcoming 2010 COSPAR meeting in Bremen, Germany in July. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. A complete list of previous award recipients may be found at: http://cosparhq.cnes.fr/Awards/awards.htm More information on Chandra can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Extends Chandra X-ray Observatory Contract with the Smithsonian Astrophysical Observatory
NASA Astrophysics Data System (ADS)
2002-07-01
NASA NASA has extended its contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass. to August 2003 to provide science and operational support for the Chandra X- ray Observatory, one of the world's most powerful tools to better understand the structure and evolution of the universe. The contract is an 11-month period of performance extension to the Chandra X-ray Center contract, with an estimated value of 50.75 million. Total contract value is now 298.2 million. The contract extension resulted from the delay of the launch of the Chandra X-ray Observatory from August 1998 to July 1999. The revised period of performance will continue the contract through Aug. 31, 2003, which is 48 months beyond operational checkout of the observatory. The contract type is cost reimbursement with no fee. The contract covers mission operations and data analysis, which includes both the observatory operations and the science data processing and general observer (astronomer) support. The observatory operations tasks include monitoring the health and status of the observatory and developing and distributing by satellite the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning, and coordination of science observations with the general observers and the processing and delivery of the resulting scientific data. Each year, there are on the order of 200 to 250 observing proposals selected out of about 800 submitted, with a total amount of observing time about 20 million seconds. X-ray astronomy can only be performed from space because Earth's atmosphere blocks X-rays from reaching the surface. The Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light- gathering sister, the Hubble Space Telescope. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra Program for the Office of Space Science in Washington. The development contractor for the spacecraft was TRW, Inc., Redondo Beach, Calif. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge.
NASA Technical Reports Server (NTRS)
Reeves, J. N.; Gofford, J.; Braito, V.; Sambruna, R.
2010-01-01
We present evidence for X-ray line emitting and absorbing gas in the nucleus of the Broad-Line Radio Galaxy (BLRG), 3C445. A 200 ks Chandra LETG observation of 3C 445 reveals the presence of several highly ionized emission lines in the soft X-ray spectrum, primarily from the He and H-like ions of O, Ne, Mg and Si. Radiative recombination emission is detected from O VII and O VIII, indicating that the emitting gas is photoionized. The He-like emission appears to be resolved into forbidden and intercombination line components, which implies a high density of greater than 10(sup 10) cm(sup -3), while the lines are velocity broadened with a mean width of 2600 km s(sup -1). The density and widths of the ionized lines indicate an origin of the gas on sub-parsec scales in the Broad Line Region (BLR). The X-ray continuum of 3C 445 is heavily obscured by a photoionized absorber of column density N(sub H) = 2 x 10(sup 23) cm(sup -2) and ionization parameter log xi = 1.4 erg cm s(sup -1). However the view of the X-ray line emission is unobscured, which requires the absorber to be located at radii well within any parsec scale molecular torus. Instead we suggest that the X-ray absorber in 3C 445 may be associated with an outflowing, but clumpy accretion disk wind, with an observed outflow velocity of approximately 10000 km s(sup -1).
The STS-93 crew takes part in payload familiarization of the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
A TRW technician joins STS-93 Commander Eileen Collins (center) and Pilot Jeffrey S. Ashby (right) as they observe the Chandra X- ray Observatory on its work stand inside the Vertical Processing Facility. Other members of the STS-93 crew who are at KSC for payload familiarization are Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). Collins is the first woman to serve as a shuttle mission commander. She was the first woman pilot of a Space Shuttle, on mission STS-63, and also served as pilot on mission STS-84. The fifth member of the crew is Mission Specialist Steven A. Hawley. Chandra is scheduled for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe.
The Discovery of a Second Luminous Low Mass X-ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-ray Observatory of 4U2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U2127+119 is in fact two bright sources, separated by 2.7". One source is associated with AC21 1, the previously identified optical counterpart to 4U2127+119, a low mass X-ray binary (LMXB). The second source, M15-X2, is coincident with a 19th U magnitude blue star that is 3.3" from the cluster core. The Chandra count rate of M15-X2 is 2.5 times higher than that of AC211. Prior to the 0.5" imaging capability of Chandra the presence of two so closely separated bright sources would not have been resolved, The optical counterpart, X-ray luminosity and spectrum of M15-X2 are consistent with it also being an LMXB system. This is the first time that two LMXBS have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long standing puzzle where the properties of AC211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U2127+119 into two sources suggests that the X-ray bursts did not come from AC211, but rather from M15X2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in GCs as well as X-ray observations of globular clusters in nearby galaxies.
The Discovery of a Second Luminous Low-Mass X-Ray Binary in the Globular Cluster M15
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Angelini, Lorella
2001-01-01
We report an observation by the Chandra X-Ray Observatory of 4U 2127+119, the X-ray source identified with the globular cluster M15. The Chandra observation reveals that 4U 2127+119 is in fact two bright sources, separated by 2.7 arcsec. One source is associated with AC 211, the previously identified optical counterpart to 4U 2127+119, a low-mass X-ray binary (LMXB). The second source, M15 X-2, is coincident with a 19th U magnitude blue star that is 3.3 arcsec from the cluster core. The Chandra count rate of M15 X-2 is 2.5 times higher than that of AC 211. Prior to the 0.5 arcsec imaging capability of Chandra, the presence of two so closely separated bright sources would not have been resolved. The optical counterpart, X-ray luminosity, and spectrum of M15 X-2 are consistent with it also being an LMXB system. This is the first time that two LMXBs have been seen to be simultaneously active in a globular cluster. The discovery of a second active LMXB in M15 solves a long-standing puzzle where the properties of AC 211 appear consistent with it being dominated by an extended accretion disk corona, and yet 4U 2127+119 also shows luminous X-ray bursts requiring that the neutron star be directly visible. The resolution of 4U 2127+119 into two sources suggests that the X-ray bursts did not come from AC 211 but rather from M15 X-2. We discuss the implications of this discovery for understanding the origin and evolution of LMXBs in globular clusters as well as X-ray observations of globular clusters in nearby galaxies.
2016-09-14
The first detection of Pluto in X-rays has been made using NASA's Chandra X-ray Observatory in conjunction with observations from NASA's New Horizons spacecraft. As New Horizons approached Pluto in late 2014 and then flew by the planet during the summer of 2015, Chandra obtained data during four separate observations. During each observation, Chandra detected low-energy X-rays from the small planet. The main panel in this graphic is an optical image taken from New Horizons on its approach to Pluto, while the inset shows an image of Pluto in X-rays from Chandra. There is a significant difference in scale between the optical and X-ray images. New Horizons made a close flyby of Pluto but Chandra is located near the Earth, so the level of detail visible in the two images is very different. The Chandra image is 180,000 miles across at the distance of Pluto, but the planet is only 1,500 miles across. Pluto is detected in the X-ray image as a point source, showing the sharpest level of detail available for Chandra or any other X-ray observatory. This means that details over scales that are smaller than the X-ray source cannot be seen here. Detecting X-rays from Pluto is a somewhat surprising result given that Pluto - a cold, rocky world without a magnetic field - has no natural mechanism for emitting X-rays. However, scientists knew from previous observations of comets that the interaction between the gases surrounding such planetary bodies and the solar wind - the constant streams of charged particles from the sun that speed throughout the solar system -- can create X-rays. The researchers were particularly interested in learning more about the interaction between the gases in Pluto's atmosphere and the solar wind. The New Horizon spacecraft carries an instrument designed to measure that activity up-close -- Solar Wind Around Pluto (SWAP) -- and scientists examined that data and proposed that Pluto contains a very mild, close-in bowshock, where the solar wind first "meets" Pluto (similar to a shock wave that forms ahead of a supersonic aircraft) and a small wake or tail behind the planet. The immediate mystery is that Chandra's readings on the brightness of the X-rays are much higher than expected from the solar wind interacting with Pluto's atmosphere. The Chandra detection is also surprising since New Horizons discovered Pluto's atmosphere was much more stable than the rapidly escaping, "comet-like" atmosphere that many scientists expected before the spacecraft flew past in July 2015. In fact, New Horizons found that Pluto's interaction with the solar wind is much more like the interaction of the solar wind with Mars, than with a comet. While Pluto is releasing enough gas from its atmosphere to make the observed X-rays, there isn't enough solar wind flowing directly at Pluto at its great distance from the Sun to make them according to certain theoretical models. There are several suggested possibilities for the enhanced X-ray emission from Pluto. These include a much wider and longer tail of gases trailing Pluto than New Horizons detected using its SWAP instrument. Because Pluto is so small compared to the size of a Chandra point source, scientists may be unable to detect such a tail in X-rays. Other possibilities are that interplanetary magnetic fields are focusing more particles than expected from the solar wind into the region around Pluto, or the low density of the solar wind in the outer solar system at the distance of Pluto could allow for the formation of a doughnut, or torus, of neutral gas centered around Pluto's orbit. It will take deeper and higher resolution images of X-rays from Pluto's environment than we currently have from Chandra to distinguish between these possibilities. http://photojournal.jpl.nasa.gov/catalog/PIA21061
TRW Video News: Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Kennedy Space Center sponsored video release presents live footage of the Chandra X-ray Observatory prior to STS-93 as well as several short animations recreating some of its activities in space. These animations include a Space Shuttle fly-by with Chandra, two perspectives of Chandra's deployment from the Shuttle, the Chandra deployment orbit sequence, the Initial Upper Stage (IUS) first stage burn, and finally a "beauty shot", which represents another animated view of Chandra in space.
Radio Sources Associated with Intermediate X-ray Luminosity Objects in Merging Galaxy Systems
NASA Technical Reports Server (NTRS)
Neff, S. G.; Ulvestad, J. S.; Oegerle, William R. (Technical Monitor)
2002-01-01
We present new, high-resolution 6, 3.6, and 2 cm radio images of a time-ordered sequence of merging galaxy systems. The new data have a resolution of less than 100pc and a sensitivity comparable to a few x Cas A. We detect compact radio sources in all systems, generally embedded in more diffuse radio emission at the longer wavelengths. Several of the compact radio sources are coincident with compact Intermediate-luminosity X-ray Objects (IXOs) in these systems, and many more are within the 3$/sigma$ Chandra position errors for other IXOs. The fraction of radio identifications and the nature of the radio sources changes as a function of merger stage. These data suggest that the IXOs are associated with complexes of supernova remnants, and therefore with star formation that has occurred within the last $/sim$10$circumflex7$ yr, but are not located in HII regions where copious star formation is occurring currently.
Development Status of Adjustable Grazing Incidence Optics for 0.5 Arcsecond X-Ray Imaging
NASA Technical Reports Server (NTRS)
Reid, Paul B.; Aldcroft, Thomas L.; Allured, Ryan; Cotroneo, Vincenzo; Johnson-Wilke, Raegan L.; Marquez, Vanessa; McMuldroch, Stuart; O'Dell, Stephen L.; Ramsey, Brian D.; Schwartz, Daniel A.;
2014-01-01
We describe progress in the development of adjustable grazing incidence X-ray optics for 0.5 arcsec resolution cosmic X-ray imaging. To date, no optics technology is available to blend high resolution imaging like the Chandra X-ray Observatory, with square meter collecting area. Our approach to achieve these goals simultaneously is to directly deposit thin film piezoelectric actuators on the back surface of thin, lightweight Wolter-I or Wolter- Schwarschild mirror segments. The actuators are used to correct mirror figure errors due to fabrication, mounting and alignment, using calibration and a one-time figure adjustment on the ground. If necessary, it will also be possible to correct for residual gravity release and thermal effects on-orbit. In this paper we discuss our most recent results measuring influence functions of the piezoelectric actuators using a Shack-Hartmann wavefront sensor. We describe accelerated and real-time lifetime testing of the piezoelectric material, and we also discuss changes to, and recent results of, our simulations of mirror correction.
O Star Wind Mass-Loss Rates and Shock Physics from X-ray Line Profiles in Archival XMM RGS Data
NASA Astrophysics Data System (ADS)
Cohen, David
O stars are characterized by their dense, supersonic stellar winds. These winds are the site of X-ray emission from shock-heated plasma. By analyzing high-resolution X-ray spectra of these O stars, we can learn about the wind-shock heating and X-ray production mechanism. But in addition, the X-rays can also be used to measure the mass-loss rate of the stellar wind, which is a key observational quantity whose value affects stellar evolution and energy, momentum, and mass input to the Galactic interstellar medium. We make this X-ray based mass-loss measurement by analyzing the profile shapes of the X-ray emission lines observed at high resolution with the Chandra and XMM-Newton grating spectrometers. One advantage of our method is that it is insensitive to small-scale clumping that affects density-squared diagnostics. We are applying this analysis technique to O stars in the Chandra archive, and are finding mass-loss rates lower than those traditionally assumed for these O stars, and in line with more recent independent determinations that do account for clumping. By extending this analysis to the XMM RGS data archive, we will make significant contributions to the understanding of both X-ray production in O stars and to addressing the issue of the actual mass-loss rates of O stars. The XMM RGS data archive provides several extensions and advantages over the smaller Chandra HETGS archive: (1) there are roughly twice as many O and early B stars in the XMM archive; (2) the longer wavelength response of the RGS provides access to diagnostically important lines of nitrogen and carbon; (3) the very long, multiple exposures of zeta Pup provide the opportunity to study this canonical O supergiant's X-ray spectrum in unprecedented detail, including looking at the time variability of X-ray line profiles. Our research team has developed a sophisticated empirical line profile model as well as a computational infrastructure for fitting the model to high-resolution X-ray spectra in order to determine the values of physically meaningful model parameters, and to place confidence limits on them. We have incorporated second-order effects into our models, including resonance scattering. We have also developed tools for modeling the X-ray opacity of the cold, X-ray absorbing wind component, which is a crucial ingredient of the technique we have developed for determining wind mass-loss rates from analyzing the ensemble of emission lines from a given star's X-ray spectrum. In addition to testing state-of-the-art wind shock models and measuring O star mass-loss rates, an important component of our proposed research program is the education of talented undergraduates. Swarthmore undergraduates have made significant contributions to the development of our line profile modeling, the wind opacity modeling, and related research topics such as laboratory astrophysics before going on to PhD programs. Two have been named as finalists for the APS's Apker prize. The research we propose here will involve two undergraduates and will likely lead to honors theses, refereed papers, and the opportunity to present their research results at national and international meetings. By measuring mass-loss rates for all the O stars for which high-resolution X-ray spectra exist and by constraining X-ray production mechanisms, we will address issues important to our understanding of stellar and galactic evolution: including the frequency of core collapse supernovae, the energetics of the Galactic interstellar medium, and the radiation conditions in star formation regions where not only new, solar-type stars form, but also where their planetary systems form and are subject to effects of high-energy emission from nearby stars. In this way, the work we are proposing in this project will make a contribution to NASA's mission to understand cosmic evolution and the conditions for generating and sustaining life in the Universe.
Chandra ACIS Sub-pixel Resolution
NASA Astrophysics Data System (ADS)
Kim, Dong-Woo; Anderson, C. S.; Mossman, A. E.; Allen, G. E.; Fabbiano, G.; Glotfelty, K. J.; Karovska, M.; Kashyap, V. L.; McDowell, J. C.
2011-05-01
We investigate how to achieve the best possible ACIS spatial resolution by binning in ACIS sub-pixel and applying an event repositioning algorithm after removing pixel-randomization from the pipeline data. We quantitatively assess the improvement in spatial resolution by (1) measuring point source sizes and (2) detecting faint point sources. The size of a bright (but no pile-up), on-axis point source can be reduced by about 20-30%. With the improve resolution, we detect 20% more faint sources when embedded on the extended, diffuse emission in a crowded field. We further discuss the false source rate of about 10% among the newly detected sources, using a few ultra-deep observations. We also find that the new algorithm does not introduce a grid structure by an aliasing effect for dithered observations and does not worsen the positional accuracy
Chandra Reviews Black Hole Musical: Epic But Off-Key
NASA Astrophysics Data System (ADS)
2006-10-01
A gigantic sonic boom generated by a supermassive black hole has been found with NASA's Chandra X-ray Observatory, along with evidence for a cacophony of deep sound. This discovery was made by using data from the longest X-ray observation ever of M87, a nearby giant elliptical galaxy. M87 is centrally located in the Virgo cluster of galaxies and is known to harbor one of the Universe's most massive black holes. Scientists detected loops and rings in the hot, X-ray emitting gas that permeates the cluster and surrounds the galaxy. These loops provide evidence for periodic eruptions that occurred near the supermassive black hole, and that generate changes in pressure, or pressure waves, in the cluster gas that manifested themselves as sound. Chandra Low Energy X-ray Images of M87 Chandra Low Energy X-ray Images of M87 "We can tell that many deep and different sounds have been rumbling through this cluster for most of the lifetime of the Universe," said William Forman of the Harvard-Smithsonian Center for Astrophysics (CfA). The outbursts in M87, which happen every few million years, prevent the huge reservoir of gas in the cluster from cooling and forming many new stars. Without these outbursts and resultant heating, M87 would not be the elliptical galaxy it is today. "If this black hole wasn't making all of this noise, M87 could have been a completely different type of galaxy," said team member Paul Nulsen, also of the CfA, "possibly a huge spiral galaxy about 30 times brighter than the Milky Way." Chandra High Energy X-ray Image of M87 Chandra High Energy X-ray Image of M87 The outbursts result when material falls toward the black hole. While most of the matter is swallowed, some of it was violently ejected in jets. These jets are launched from regions close to the black hole (neither light nor sound can escape from the black hole itself) and push into the cluster's gas, generating cavities and sound which then propagate outwards. Chandra's M87 observations also give the strongest evidence to date of a shock wave produced by the supermassive black hole, a clear sign of a powerful explosion. This shock wave appears as a nearly circular ring of high-energy X-rays that is 85,000 light years in diameter and centered on the black hole. Other remarkable features are seen in M87 for the first time including narrow filaments of X-ray emission -- some over 100,000 light years long -- that may be due hot gas trapped by magnetic fields. Also, a large, previously unknown cavity in the hot gas, created by an outburst from the black hole about 70 million years ago, is seen in the X-ray image. Animation Showing a Supermassive Black Hole Outburst in M87 Animation Showing a Supermassive Black Hole Outburst in M87 "We can explain some of what we see, like the shock wave, with textbook physics," said team member Christine Jones, also of the CfA. "However, other details, like the filaments we find, leave us scratching our heads." Sound has been detected from another black hole in the Perseus cluster, which was calculated to have a note some 57 octaves below middle C. However, the sound in M87 appears to be more discordant and complex. A series of unevenly spaced loops in the hot gas gives evidence for small outbursts from the black hole about every 6 million years. These loops imply the presence of sound waves, not visible in the Chandra image, which are about 56 octaves below middle C. The presence of the large cavity and the sonic boom gives evidence for even deeper notes -- 58 or 59 octaves below middle C -- powered by large outbursts. These new results on M87 were presented at the High-Energy Astrophysics Division meeting being held in San Francisco. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, M.; Hester, J. J.; Tennant, A. F.; Elsner, R. F.; Schulz, N. S.; Marshall, H. L.; Karovska, M.; Nichols, J. S.; Swartz, D. A.; Kolodziejczak, J. J.
2000-01-01
The Chandra X-ray Observatory observed the Crab Nebula and Pulsar During orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) read-out by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure, at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the Nebula.
Deepest Image of Exploded Star Uncovers Bipolar Jets
NASA Astrophysics Data System (ADS)
2004-08-01
A spectacular new image of Cassiopeia A from NASA's Chandra X-ray Observatory released today has nearly 200 times more data than the "First Light" Chandra image of this object made five years ago. The new image reveals clues that the initial explosion caused by the collapse of a massive star was far more complicated than suspected. Chandra Broadband Image of Cassiopeia A Chandra Broadband Image of Cassiopeia A "Although this young supernova remnant has been intensely studied for years, this deep observation is the most detailed ever made of the remains of an exploded star," said Martin Laming of the Naval Research Laboratory in Washington, D.C. Laming is part of a team of scientists led by Una Hwang of the Goddard Space Flight Center in Greenbelt, Maryland. "It is a gold mine of data that astronomers will be panning through for years to come." The one-million-second (about 11.5-day) observation of Cassiopeia A uncovered two large, opposed jet-like structures that extend to about 10 light years from the center of the remnant. Clouds of iron that have remained nearly pure for the approximately 340 years since the explosion were also detected. "The presence of the bipolar jets suggests that jets could be more common in relatively normal supernova explosions than supposed by astronomers," said Hwang. A paper by Hwang, Laming and others on the Cassiopeia A observation will appear in an upcoming issue of The Astrophysical Journal Letters. Chandra Enhanced Silicon Image of Cassiopeia A Chandra Enhanced Silicon Image of Cassiopeia A X-ray spectra show that the jets are rich in silicon atoms and relatively poor in iron atoms. In contrast, fingers of almost pure iron gas extend in a direction nearly perpendicular to the jets. This iron was produced in the central, hottest regions of the star. The high silicon and low iron abundances in the jets indicate that massive, matter-dominated jets were not the immediate cause of the explosion, as these should have carried out large quantities of iron from the central regions of the star. A working hypothesis is that the explosion produced high-speed jets similar to those in hypernovae that produce gamma-ray bursts, but in this case, with much lower energies. The explosion also left a faint neutron star at the center of the remnant. Unlike the rapidly rotating neutron stars in the Crab Nebula and Vela supernova remnants that are surrounded by dynamic magnetized clouds of electrons, this neutron star is quiet and faint. Nor has pulsed radiation been detected from it. It may have a very strong magnetic field generated during the explosion that helped to accelerate the jets, and today resembles other strong-field neutron stars (a.k.a. "magnetars") in lacking a wind nebula. Chandra 3-color X-ray Image of Cassiopeia A Chandra 3-color X-ray Image of Cassiopeia A Chandra was launched aboard the Space Shuttle Columbia on July 23, 1999. Less than a month later, it was able to start taking science measurements along with its calibration data. The original Cassiopeia A observation was taken on August 19, 1999, and then released to the scientific community and the public one week later on August 26. At launch, Chandra's original mission was intended to be five years. Having successfully completed that objective, NASA announced last August that the mission would be extended for another five years. The data for this new Cassiopeia A image were obtained by Chandra's Advanced Charged Coupled Device Imaging Spectrometer (ACIS) instrument during the first half of 2004. Due to its value to the astronomical community, this rich dataset was made available immediately to the public. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Elvis, M.; Murdin, P.
2002-10-01
Launched on 23 July 1999 on board the SpaceShuttle Columbia from Cape Canaveral, the ChandraX-ray Observatory is the first x-ray astronomytelescope to match the 1/2 arcsecond imagingpower and the 0.1% spectral resolving power ofoptical telescopes. Chandra is named afterSubramanian Chandrasekhar, known as Chandra, andauthor of the Chandrasekhar limit. Chandra hasbeen extremely successful and produc...
CHANDRA AND SWIFT X-RAY OBSERVATIONS OF THE X-RAY PULSAR SMC X-2 DURING THE OUTBURST OF 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, K. L.; Hu, C.-P; Lin, L. C. C.
2016-09-10
We report the Chandra /HRC-S and Swift /XRT observations for the 2015 outburst of the high-mass X-ray binary pulsar in the Small Magellanic Cloud, SMC X-2. While previous studies suggested that either an O star or a Be star in the field is the high-mass companion of SMC X-2, our Chandra /HRC-S image unambiguously confirms the O-type star as the true optical counterpart. Using the Swift /XRT observations, we extracted accurate orbital parameters of the pulsar binary through a time of arrivals analysis. In addition, there were two X-ray dips near the inferior conjunction, which are possibly caused by eclipsesmore » or an ionized high-density shadow wind near the companion’s surface. Finally, we propose that an outflow driven by the radiation pressure from day ∼10 played an important role in the X-ray/optical evolution of the outburst.« less
Using ACIS on the Chandra X-ray Observatory as a Particle Radiation Monitor II
NASA Technical Reports Server (NTRS)
Grant, C. E.; Ford, P. G.; Bautz, M. W.; ODell, S. L.
2012-01-01
The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.
Chandra and Swift Observations of Unidentified Fermi-LAT Objects
NASA Astrophysics Data System (ADS)
Donato, Davide; Cheung, T.; Gehrels, N.
2010-03-01
In the last year we targeted some of the unidentified Fermi-LAT objects (UFOs) at high Galactic latitude with Chandra and Swift in order to determine the basic properties (positions, fluxes, hardness ratios) of all X-ray sources within the Fermi-LAT localization circles. These satellites enable us to detect the X-ray conterparts with a flux limit that is at least an order of magnitude lower than achieved in extant RASS data and to further follow-up at other wavelengths, with the ultimate goal to reveal the nature of these enigmatic gamma-ray sources. Here we present the results obtained with 5 Chandra pointings of high Galactic latitude UFOs in the Fermi-LAT 3-months bright source list. The association of detected X-ray sources within the improved 11-months Fermi-LAT localization circles with available optical and radio observations is discussed.
CIAO: A Modern Data Analysis System for X-Ray Astronomy
NASA Astrophysics Data System (ADS)
Fruscione, Antonella
2017-08-01
It is now eighteen years after launch and Chandra continues to produce spectacular results!A portion of the success is to be attributed to the data analysis software CIAO (Chandra Interactive Analysis of Observations) that the Chandra X-Ray Center (CXC) continues to improve and release year after year.CIAO is downloaded more than 1200 times a year and it is used by a wide variety of users around the world: from novice to experienced X-ray astronomers, high school, undergraduate and graduate students, archival users (many new to X-ray or Chandra data), users with extensive resources and others from smaller countries and institutions.The scientific goals and kinds of datasets and analysis cover a wide range: observations spanning from days to years, different instrument configurations and different kinds of targets, from pointlike stars and quasars, to fuzzy galaxies and clusters, to moving solar objects. These different needs and goals require a variety of specialized software and careful and detailed documentation which is what the CIAO software provides. In general, we strive to build a software system which is easy for beginners, yet powerful for advanced users.The complexity of the Chandra data require a flexible data analysis system which provides an environment where the users can apply our tools, but can also explore and construct their own applications. The main purpose of this talk is to present CIAO as a modern data analysis system for X-ray data analysis.CIAO has grown tremendously over the years and we will highlight (a) the most recent advancements with a particular emphasis on the newly developed high-level scripts which simplify the analysis steps for the most common cases making CIAO more accessible to all users - including beginners and users who are not X-ray astronomy specialists, (b) the python-based Sherpa modelling and fitting application and the new stand-alone version openly developed and distributed on Github and (c) progress on methods to characterize the Chandra PSF.
NASA Astrophysics Data System (ADS)
Xiang, Jingen
X-rays are absorbed and scattered by dust grains when they travel through the interstellar medium. The scattering within small angles results in an X-ray ``halo''. The halo properties are significantly affected by the energy of radiation, the optical depth of the scattering, the grain size distributions and compositions, and the spatial distribution of dust along the line of sight (LOS). Therefore analyzing the X-ray halo properties is an important tool to study the size distribution and spatial distribution of interstellar grains, which plays a central role in the astrophysical study of the interstellar medium, such as the thermodynamics and chemistry of the gas and the dynamics of star formation. With excellent angular resolution, good energy resolution and broad energy band, the Chandra ACIS is so far the best instrument for studying the X-ray halos. But the direct images of bright sources obtained with ACIS usually suffer from severe pileup which prevents us from obtaining the halos in small angles. We first improve the method proposed by Yao et al to resolve the X-ray dust scattering halos of point sources from the zeroth order data in CC-mode or the first order data in TE mode with Chandra HETG/ACIS. Using this method we re-analyze the Cygnus X-1 data observed with Chandra. Then we studied the X-ray dust scattering halos around 17 bright X-ray point sources using Chandra data. All sources were observed with the HETG/ACIS in CC-mode or TE-mode. Using the interstellar grain models of WD01 model and MRN model to fit the halo profiles, we get the hydrogen column densities and the spatial distributions of the scattering dust grains along the line of sights (LOS) to these sources. We find there is a good linear correlation not only between the scattering hydrogen column density from WD01 model and the one from MRN model, but also between N_{H} derived from spectral fits and the one derived from the grain models WD01 and MRN (except for GX 301-2 and Vela X-1): N_{H,WD01} = (0.720±0.009) × N_{H,abs} + (0.051±0.013) and N_{H, MRN} = (1.156±0.016) × N_{H,abs} + (0.062±0.024) in the units 10^{22} cm^{-2}. Then the correlation between FHI and N_{H} is obtained. Both WD01 model and MRN model fits show that the scattering dust density very close to these sources is much higher than the normal interstellar medium and we consider it is the evidence of molecular clouds around these X-ray binaries. We also find that there is the linear correlation between the effective distance through the galactic dust layer and hydrogen scattering olumn density N_{H} excluding the one in x=0.99-1.0 but the correlation does not exist between he effective distance and the N_{H} in x=0.99-1.0. It shows that the dust nearby the X-ray sources is not the dust from galactic disk. Then we estimate the structure and density of the stellar wind around the special X-ray pulsars Vela X-1 and GX 301-2. Finally we discuss the possibility of probing the three dimensional structure of the interstellar using the X-ray halos of the transient sources, probing the spatial distributions of interstellar dust medium nearby the point sources, even the structure of the stellar winds using higher angular resolution X-ray dust scattering halos and testing the model that the black hole can be formed from the direct collapse of a massive star without supernova using the statistical distribution of the dust density nearby the X-ray binaries.
Probing the Inflow/Out-flow and Accretion Disk of Cyg X-1 in the High State with HETG/Chandra
NASA Technical Reports Server (NTRS)
Feng, Y. X.; Tennant, A. F.; Zhang, S. N.
2003-01-01
Cyg X- 1 was observed in the high state at the conjunction orbital phase (0) with HETG/Chandra. Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe XXV, Fe XXIV, Fe XXIII, Si XIV, S XVI, Ne X, and etc. In the high state the profile of the absorption lines are composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than that of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the both spectra of HETG/Chandra and PCA/RXTE. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of fluorescent Fe K$ \\alpha$ line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.
The Chandra Source Catalog : Automated Source Correlation
NASA Astrophysics Data System (ADS)
Hain, Roger; Evans, I. N.; Evans, J. D.; Glotfelty, K. J.; Anderson, C. S.; Bonaventura, N. R.; Chen, J. C.; Davis, J. E.; Doe, S. M.; Fabbiano, G.; Galle, E.; Gibbs, D. G.; Grier, J. D.; Hall, D. M.; Harbo, P. N.; He, X.; Houck, J. C.; Karovska, M.; Lauer, J.; McCollough, M. L.; McDowell, J. C.; Miller, J. B.; Mitschang, A. W.; Morgan, D. L.; Nichols, J. S.; Nowak, M. A.; Plummer, D. A.; Primini, F. A.; Refsdal, B. L.; Rots, A. H.; Siemiginowska, A. L.; Sundheim, B. A.; Tibbetts, M. S.; Van Stone, D. W.; Winkelman, S. L.; Zografou, P.
2009-01-01
Chandra Source Catalog (CSC) master source pipeline processing seeks to automatically detect sources and compute their properties. Since Chandra is a pointed mission and not a sky survey, different sky regions are observed for a different number of times at varying orientations, resolutions, and other heterogeneous conditions. While this provides an opportunity to collect data from a potentially large number of observing passes, it also creates challenges in determining the best way to combine different detection results for the most accurate characterization of the detected sources. The CSC master source pipeline correlates data from multiple observations by updating existing cataloged source information with new data from the same sky region as they become available. This process sometimes leads to relatively straightforward conclusions, such as when single sources from two observations are similar in size and position. Other observation results require more logic to combine, such as one observation finding a single, large source and another identifying multiple, smaller sources at the same position. We present examples of different overlapping source detections processed in the current version of the CSC master source pipeline. We explain how they are resolved into entries in the master source database, and examine the challenges of computing source properties for the same source detected multiple times. Future enhancements are also discussed. This work is supported by NASA contract NAS8-03060 (CXC).
The Chandra Source Catalog 2.0: Estimating Source Fluxes
NASA Astrophysics Data System (ADS)
Primini, Francis Anthony; Allen, Christopher E.; Miller, Joseph; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Plummer, David A.; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula
2018-01-01
The Second Chandra Source Catalog (CSC2.0) will provide information on approximately 316,000 point or compact extended x-ray sources, derived from over 10,000 ACIS and HRC-I imaging observations available in the public archive at the end of 2014. As in the previous catalog release (CSC1.1), fluxes for these sources will be determined separately from source detection, using a Bayesian formalism that accounts for background, spatial resolution effects, and contamination from nearby sources. However, the CSC2.0 procedure differs from that used in CSC1.1 in three important aspects. First, for sources in crowded regions in which photometric apertures overlap, fluxes are determined jointly, using an extension of the CSC1.1 algorithm, as discussed in Primini & Kashyap (2014ApJ...796…24P). Second, an MCMC procedure is used to estimate marginalized posterior probability distributions for source fluxes. Finally, for sources observed in multiple observations, a Bayesian Blocks algorithm (Scargle, et al. 2013ApJ...764..167S) is used to group observations into blocks of constant source flux.In this poster we present details of the CSC2.0 photometry algorithms and illustrate their performance in actual CSC2.0 datasets.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
NASA Astrophysics Data System (ADS)
Corrales, Lia
2015-05-01
X-ray bright quasars might be used to trace dust in the circumgalactic and intergalactic medium through the phenomenon of X-ray scattering, which is observed around Galactic objects whose light passes through a sufficient column of interstellar gas and dust. Of particular interest is the abundance of gray dust larger than 0.1 μ m, which is difficult to detect at other wavelengths. To calculate X-ray scattering from large grains, one must abandon the traditional Rayleigh-Gans approximation. The Mie solution for the X-ray scattering optical depth of the universe is ∼ 1%. This presents a great difficulty for distinguishing dust scattered photons from the point source image of Chandra, which is currently unsurpassed in imaging resolution. The variable nature of AGNs offers a solution to this problem, as scattered light takes a longer path and thus experiences a time delay with respect to non-scattered light. If an AGN dims significantly (≳ 3 dex) due to a major feedback event, the Chandra point source image will be suppressed relative to the scattering halo, and an X-ray echo or ghost halo may become visible. I estimate the total number of scattering echoes visible by Chandra over the entire sky: {{N}ech}∼ {{10}3}({{ν }fb}/y{{r}-1}), where {{ν }fb} is the characteristic frequency of feedback events capable of dimming an AGN quickly.
Chandra monitoring, trends, and response
NASA Astrophysics Data System (ADS)
Spitzbart, Brad D.; Wolk, Scott J.; Isobe, Takashi
2002-12-01
The Chandra X-ray Observatory was launched in July, 1999 and has yielded extraordinary scientific results. Behind the scenes, our Monitoring and Trends Analysis (MTA) system has proven to be a valuable resource. With three years worth of on-orbit data, we have available a vast array of both telescope diagnostic information and analysis of scientific data to access Observatory performance. As part of Chandra's Science Operations Team (SOT), the primary goal of MTA is to provide tools for effective decision making leading to the most efficient production of quality science output from the Observatory. We occupy a middle ground between flight operations, chiefly concerned with the health and safety of the spacecraft, and validation and verification, concerned with the scientific validity of the data taken and whether or not they fulfill the observer's requirements. In that role we provide and receive support from systems engineers, instrument experts, operations managers, and scientific users. MTA tools, products, and services include real-time monitoring and alert generation for the most mission critical components, long term trending of all spacecraft systems, detailed analysis of various subsystems for life expectancy or anomaly resolution, and creating and maintaining a large SQL database of relevant information. This is accomplished through the use of a wide variety of input data sources and flexible, accessible programming and analysis techniques. This paper will discuss the overall design of the system, its evolution and the resources available.
NASA Astrophysics Data System (ADS)
2004-09-01
Astronomers have used an X-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. The image, from NASA's Chandra X-ray Observatory, shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. VLA Radio Image of the Mouse, Full Field VLA Radio Image of the Mouse, Full Field A cone-shaped cloud of radio-wave-emitting particles envelopes the X-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. It gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. "A few dozen pulsar wind nebulae are known, including the spectacular Crab Nebula, but none have the Mouse's combination of relatively young age and incredibly rapid motion through interstellar space," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics and lead author of a paper on the Mouse that will appear in an upcoming issue of The Astrophysical Journal. "We effectively are seeing a supersonic cosmic wind tunnel, in which we can study the effects of a pulsar's motion on its pulsar wind nebula, and test current theories." Illustration of the Mouse System Illustration of the Mouse System Pulsars are known to be rapidly spinning, highly magnetized neutron stars -- objects so dense that a mass equal to that of the Sun is packed into a diameter of about 12 miles. Their formation is associated with a Type II supernova, the collapse and subsequent explosion of a massive star. The origin of a pulsar's high velocity is not known, but many astrophysicists suspect that it is directly related to the explosive circumstances involved in the birth of the pulsar. The rapid rotation and strong magnetic field of a pulsar can generate a wind of high-energy matter and antimatter particles that rush out at near the speed of light. These pulsar winds create large, magnetized bubbles of high-energy particles called pulsar wind nebulae. The X-ray and radio data on the Mouse have enabled Gaensler and his colleagues to constrain the properties of the ambient gas, to estimate the velocity of the pulsar, and to analyze the structure of the various shock waves created by the pulsar, the flow of particles away from the pulsar, and the magnetic field in the nebula. Zoom into Chandra's Image of the Mouse Zoom into Chandra's Image of the Mouse Other members of the research team were Eric van der Swaluw (FOM Institute of Physics, The Netherlands), Fernando Camilo (Columbia Univ., New York), Vicky Kaspi (McGill Univ., Montreal), Frederick K. Baganoff (MIT, Cambridge, Mass.), Farhad Yusef-Zadeh (Northwestern), and Richard Manchester (Australia Telescope National Facility). The pulsar in the Mouse was originally detected by Camilo et al. in 2002 using Australia's Parkes radio telescope. Chandra observed the Mouse on October 23 and 24, 2002. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Office of Space Science, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Astrophysics Data System (ADS)
Townsley, Leisa K.; Broos, Patrick S.; Feigelson, Eric D.; Garmire, Gordon P.; Getman, Konstantin V.
2006-04-01
We have studied the X-ray point-source population of the 30 Doradus (30 Dor) star-forming complex in the Large Magellanic Cloud using high spatial resolution X-ray images and spatially resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Here we describe the X-ray sources in a 17'×17' field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. The cluster R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3-O5 stars, as well as a few bright X-ray sources previously reported. Over 2 orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and the binarity of each system, rather than reflecting the widely reported characteristic value LX/Lbol~=10-7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Dor, the complete life cycle of a massive stellar cluster can be revealed.
A Link between X-Ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, Anastasios K.; Edwards, Philip G.; Broderick, Jess W.
2014-03-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. Here we present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find no evidence for any relativistic X-ray emission lines. Indeed, despite ~5 × brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is >~ 20 × weaker than the line observed by Díaz Trigo et al. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby interstellar medium, in which case the X-ray emission lines might be unrelated to the radio emission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gitti, Myriam; O'Sullivan, Ewan; Giacintucci, Simona
2010-05-01
We report on the results of an analysis of Chandra, XMM-Newton, and new Giant Metrewave Radio Telescope (GMRT) data of the X-ray bright compact group of galaxies HCG 62, which is one of the few groups known to possess clear, small X-ray cavities in the inner regions. This is part of an ongoing X-ray/low-frequency radio study of 18 groups, initially chosen for the availability of good-quality X-ray data and evidence for active galactic nucleus/hot gas interaction. At higher frequency (1.4 GHz), the HCG 62 cavity system shows minimal if any radio emission, but the new GMRT observations at 235 MHzmore » and 610 MHz clearly detect extended low-frequency emission from radio lobes corresponding to the cavities. By means of the synergy of X-ray and low-frequency radio observations, we compare and discuss the morphology, luminosity, and pressure of the gas and of the radio source. We find that the radio source is radiatively inefficient, with a ratio of radio luminosity to mechanical cavity power of {approx}10{sup -4}, and that the radio pressure of the lobes is about 1 order of magnitude lower than the X-ray pressure of the surrounding thermal gas. Thanks to the high spatial resolution of the Chandra surface brightness and temperature profiles, we also identify a shock front located at 36 kpc to the southwest of the group center, close to the southern radio lobe, with a Mach number {approx}1.5 and a total power which is about 1 order of magnitude higher than the cavity power. Such a shock may have heated the gas in the southern region, as indicated by the temperature map. The shock may also explain the arc-like region of enriched gas seen in the iron abundance map, as this may be produced by a non-Maxwellian electron distribution near its front.« less
NASA Technical Reports Server (NTRS)
Jia, Jianjun; Ptak, Andrew; Heckman, Timothy M.; Braito, Valentina; Reeves, James
2012-01-01
We present a Chandra observation of IRAS 19254-7245, a nearby ultraluminous infrared galaxy also known as the Superantennae. The high spatial resolution of Chandra allows us to disentangle for the first time the diffuse starburst (SB) emission from the embedded Compton-thick active galactic nucleus (AGN) in the southern nucleus. No AGN activity is detected in the northern nucleus. The 2-10 keV spectrum of the AGN emission is fitted by a flat power law (TAU = 1.3) and an He-like Fe Kalpha line with equivalent width 1.5 keV, consistent with previous observations. The Fe K line profile could be resolved as a blend of a neutral 6.4 keV line and an ionized 6.7 keV (He-like) or 6.9 keV (H-like) line. Variability of the neutral line is detected compared with the previous XMM-Newton and Suzaku observations, demonstrating the compact size of the iron line emission. The spectrum of the galaxy-scale extended emission excluding the AGN and other bright point sources is fitted with a thermal component with a best-fit kT of approximately 0.8 keV. The 2-10 keV luminosity of the extended emission is about one order of magnitude lower than that of the AGN. The basic physical and structural properties of the extended emission are fully consistent with a galactic wind being driven by the SB. A candidate ultraluminous X-ray source is detected 8 south of the southern nucleus. The 0.3 - 10 keV luminosity of this off-nuclear point source is approximately 6 x 10(exp 40) erg per second if the emission is isotropic and the source is associated with the Superantennae.
Mrs. Chandrasekhar poses with contest winners
NASA Technical Reports Server (NTRS)
1999-01-01
Mrs. Lalitha Chandrasekhar (left), wife of the late Indian- American Nobel Laureate Subrahmanyan Chandrasekhar, poses with a model of the Chandra X-ray Observatory and the winners of the contest to rename the telescope in the TRW Media Hospitality Tent at the NASA Press Site at KSC. The winners of the contest are Jatila van der Veen (center), academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson (right), high school student, Laclede, Idaho. The name 'Chandra,' a shortened version of Chandrasekhar's name which he preferred among friends and colleagues, was chosen to honor the Nobel Laureate. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.
1999-07-19
KENNEDY SPACE CENTER, FLA. -- Mrs. Lalitha Chandrasekhar (left), wife of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar, poses with a model of the Chandra X-ray Observatory and the winners of the contest to rename the telescope in the TRW Media Hospitality Tent at the NASA Press Site at KSC. The winners of the contest are Jatila van der Veen (center), academic coordinator and lecturer, Physics Dept., University of Santa Barbara, Calif., and Tyrel Johnson (right), high school student, Laclede, Idaho. The name "Chandra," a shortened version of Chandrasekhar's name which he preferred among friends and colleagues, was chosen to honor the Nobel Laureate. "Chandra" also means "Moon" or "luminous" in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93
How To Cover NASA's Chandra X-ray Observatory
NASA Astrophysics Data System (ADS)
1999-07-01
NASA's newest space telescope, the Chandra X-ray Observatory, is scheduled for launch not earlier than July 20, 1999, aboard Space Shuttle mission STS-93. The world's most powerful X-ray observatory, Chandra will join the Hubble Space Telescope and NASA's other great observatories in an unprecedented study of our universe. With its capability to "see" an otherwise invisible but violent, vibrant and ever-changing universe, Chandra will provide insights into the universe's structure and evolution. The following information is designed to assist news media representatives cover launch and activation of the Chandra X-ray Observatory. Covering from the Chandra Control Center NASA will establish a news center at the Chandra X-ray Observatory Operations Control Center in Cambridge, Mass., during the critical period of launch and early activation. The news center will be open from approximately two days prior to launch until the observatory is established in its operating orbit approximately 11 days after launch. The telephone numbers for the news center are: (617) 496-4454 (617) 496-4462 (617) 496-4484 The news center will be staffed around the clock during the Shuttle mission by media relations officers knowledgeable about the Chandra mission and its status. Media covering from the news center will be provided work space and have opportunities for face-to-face interviews with Chandra management, control team members and Chandra scientists. They will be able to participate in daily Chandra status briefings and have access to a special control room viewing area. Additionally, media covering from Cambridge will receive periodic status reports on Chandra and the STS-93 mission, and will be able to participate in interactive televised briefings on the STS-93 mission originating from other NASA centers. While advance accreditation is not required, media interested in covering Chandra from the Operations Control Center should contact Dave Drachlis by telephone at (256) 544-0031 in advance of the mission to make arrangements for special support, such as telephone service, and uplink or remote truck parking. Covering from the Kennedy Space Center The Kennedy Space Center, Fla., news center is primarily responsible for disseminating information about the Shuttle countdown and launch. However, media relations officers knowledgeable about Chandra will be present at the Kennedy news center through launch. Additionally, some members of the Chandra management and science team will be at the Kennedy Space Center and available for interviews through launch. Media interested in covering the Chandra launch from the Kennedy Space Center should contact its Public Affairs Office at (407) 867-2468. Prior accreditation is required. Covering from the Johnson Space Center The Johnson Space Center, Houston, Texas, news center has responsibility for disseminating information about STS-93 flight operations. Media interested in covering the mission from the Johnson Space Center should contact its Public Affairs Office at (281) 483-5111. Prior accreditation is required. Status Reports During the STS-93 Space Shuttle mission to launch Chandra, NASA will issue twice-daily status reports from the Chandra Operations Control Center in Cambridge, Mass. Following the Shuttle mission, through Chandra's on-orbit checkout period, reports will be issued weekly. These reports are available via the Internet at: http://chandra.msfc.nasa.gov Press Briefings During the Space Shuttle mission to launch the observatory, NASA will conduct daily press briefings on the status of the observatory. These briefings will be conducted at the Chandra Operations Control Center in Cambridge, Mass. Media briefings will be broadcast on NASA Television (see below). Media without access to NASA Television may monitor the briefings by calling (256) 544-5300 and asking to be connected to the NASA Television audio feed. A briefing schedule will be released before launch and updated as appropriate during the mission. NASA Television The launch and early activation of the Chandra X-ray Observatory will be carried live on NASA Television, available through the GE2 satellite system, which is located on Transponder 9C, at 85 degrees west longitude, frequency 3880.0 MHz, audio 6.8 MHz. Around-the-clock, up-to-the minute commentary, television and daily briefings on Chandra's status will originate from the Chandra Operations Control Center in Cambridge, Mass., during Shuttle Mission STS-93. Internet Information Up-to-date, comprehensive information on the Chandra X-ray Observatory is available to news media on the Internet at: http://chandra.harvard.edu The latest status reports, news releases, photos, fact sheets and background archives, as well as links to other Chandra-related sites, are available at this address. Live Shots - Television Back-hauls Television station news departments may conduct live, or live-to-tape interviews via the NASA satellite with Chandra program managers, scientists and control team members prior to, during, and following the launch of Chandra. For additional information or to arrange interviews, broadcasters may contact Dave Drachlis at (256) 544-0031. Interviews Members of the Chandra development, operations, and science teams are available to the news media for interviews upon request. NASA TV on the web
NASA Astrophysics Data System (ADS)
Citterio, O.; Civitani, M. M.; Pareschi, G.; Basso, S.; Campana, S.; Conconi, P.; Ghigo, M.; Mattaini, E.; Moretti, A.; Parodi, G.; Tagliaferri, G.
2013-09-01
The implementation of a X-ray mission with high imaging capabilities, similar to those achieved with Chandra (< 1 arcsec Half Energy Width, HEW), but with a much larger throughput is a very attractive perspective, even if challenging. For such a mission the scientific opportunities, in particular for the study of the early Universe, would remain at the state of the art for the next decades. At the beginning of the new millennium the XEUS mission has been proposed, with an effective area of several m2 and an angular resolution better than 2 arcsec HEW. Unfortunately, after the initial study, this mission was not implemented, mainly due to the costs and the low level of technology readiness. Currently the most advanced proposal for such a kind of mission is the SMART-X project, led by CfA and involving several other US Institutes. This project is based on adjustable segments of thin foil mirrors with piezo-electric actuators, aiming to achieve an effective area < 2 m2 at 1 keV and an angular resolution better than 1 arcsec HEW. Another attractive technology to realize an X-ray telescope with similar characteristics is being developed at NASA/Goddard. In this case the mirrors are based on Si substrates that are super-polished and figured starting from a bulky Si ingot, from which they are properly cut. Here we propose an alternative method based on precise direct grinding, figuring and polishing of thin (a few mm) glass shells with innovative deterministic polishing methods. This is followed by a final correction via ion figuring to obtain the desired accuracy in order to achieve the 1 arc sec HEW requirement. For this purpose, a temporary stiffening structure is used to support the shell from the polishing operations up to its integration in the telescope supporting structure. We will present the technological process under development, the results achieved so far and some mission scenarios based on this kind of optics, aiming to achieve an effective area more than 10 times larger than Chandra and an angular resolution of 1 arcsec HEW on axis and of a few arcsec off-axis across a large field of view (1 deg in diameter).
A Chandra Study of Supernova Remnants in the Large and Small Magellanic Clouds
NASA Astrophysics Data System (ADS)
Schenck, Andrew Corey
2017-08-01
In the first part of this thesis we measure the interstellar abundances for the elements O, Ne, Mg, Si, and Fe in the Large Magellanic Cloud (LMC), based on the observational data of sixteen supernova remnants (SNRs) in the LMC as available in the public archive of the Chandra X-ray Observatory (Chandra). We find lower abundances than previous measurements based on a similar method using data obtained with the Advanced Satellite for Astrophysics and Cosmology (ASCA). We discuss the origins of the discrepancy between our Chandra and the previous ASCA measurements. We conclude that our measurements are generally more reliable than the ASCA results thanks to the high-resolution imaging spectroscopy with our Chandra data, although there remain some systematic uncertainties due to the use of different spectral modelings between the previous work and ours. We also discuss our results in comparison with the LMC abundance measurements based on optical observations of stars. The second part of this thesis is a detailed study of a core-collapse SNR B0049-73.6 in the Small Magellanic Cloud (SMC). Based on our deep Chandra observation, we detect metal-rich ejecta features extending out to the outermost boundary of B0049-73.6, which were not seen in the previous data. We find that the central nebula is dominated by emission from reverse-shocked ejecta material enriched in O, Ne, Mg, and Si. O-rich ejecta distribution is relatively smooth throughout the central nebula. In contrast the Si-rich material is highly structured. These results suggest that B0049-73.6 was produced by an asymmetric core-collapse explosion of a massive star. The estimated abundance ratios among these ejecta elements are in plausible agreement with the nucleosynthesis products from the explosion of a 13-15M. progenitor. We reveal that the central ring-like (in projection) ejecta nebula extends to ˜9 pc from the SNR center. This suggests that the contact discontinuity (CD) may be located at a further distance from the SNR center than the previous estimate (˜6 pc). Based on our estimated larger size of the CD, we suggest that the significant effect from the presence of a Fe-Ni bubble at the SNR center (as proposed by the previous work) may not be required to describe the overall dynamics of this SNR. Applying the Sedov-Taylor similarity solutions, we estimate the dynamical age of ˜17,000 yr and an explosion energy of E0 ˜ 1:7 x 1051 erg for B0049-73.6. We place a stringent upper limit of LX ˜ 6:0 x 1032 erg s-1 on the 0.3-7.0 keV band luminosity for the embedded compact stellar remnant at the center of B0049-73.6. Our tight estimate for the X-ray luminosity upper limit suggests that the compact stellar remnant of this SNR may be a similar object to those in a peculiar class of low-luminosity neutron stars (e.g., the so-called Dim Isolated neutron stars) or may possibly be a black hole. Finally, we demonstrate our adaptive mesh grid method for the analysis of the rich SNR data. We developed our own computer software to implement this technique which is useful for an efficient spatially-resolved spectroscopic study of high-quality datasets of SNRs. As part of this software we also implement automated spectral model fits for all individual spectra extracted from our adaptively defined small sub- regions. We illustrate the utility of this technique with an example study of SNR N63A in the LMC.
NASA Technical Reports Server (NTRS)
Feng, Y. X.; Tennant, A. F.; Zhang, S. N.
2003-01-01
Cygnus X-1 was observed in the high state at the conjunction orbital phase (0) with Chandra High Energy Transmission Grating (HETG). Strong and asymmetric absorption lines of highly ionized species were detected, such as Fe xxv, Fe xxiv, Fe xxiii, Si xiv, S xvi, Ne x, etc. In the high state the profile of the absorption lines is composed of an extended red wing and a less extended blue wing. The red wings of higher ionized species are more extended than those of lower ionized species. The detection of these lines provides a way to probe the properties of the flow around the companion and the black hole in Cyg X-1 during the high state. A broad emission feature around 6.5 keV was significantly detected from the spectra of both the Chandra/HETG and the RXTE/Proportional Counter Array. This feature appears to be symmetric and can be fitted with a Gaussian function rather than the Laor disk line model of the fluorescent Fe K(alpha) line from an accretion disk. The implications of these results on the structure of the accretion flow of Cyg X-1 in the high state are discussed.
Carbon X-ray absorption in the local ISM: fingerprints in X-ray Novae spectra
NASA Astrophysics Data System (ADS)
Gatuzz, Efraín; Ness, J.-U.; Gorczyca, T. W.; Hasoglu, M. F.; Kallman, Timothy R.; García, Javier A.
2018-06-01
We present a study of the C K-edge using high-resolution LETGS Chandra spectra of four novae during their super-soft-source (SSS) phase. We identified absorption lines due to C II Kα, C III Kα and C III Kβ resonances. We used these astronomical observations to perform a benchmarking of the atomic data, which involves wavelength shifts of the resonances and photoionization cross-sections. We used improved atomic data to estimate the C II and C III column densities. The absence of physical shifts for the absorption lines, the consistence of the column densities between multiple observations and the high temperature required for the SSS nova atmosphere modeling support our conclusion about an ISM origin of the respective absorption lines. Assuming a collisional ionization equilibrium plasma the maximum temperature derived from the ratio of C II/C III column densities of the absorbers correspond to Tmax < 3.05 × 104 K.
X-Rays Found From a Lightweight Brown Dwarf
NASA Astrophysics Data System (ADS)
2003-04-01
Using NASA's Chandra X-ray Observatory, scientists have detected X-rays from a low mass brown dwarf in a multiple star system, which is as young as 12 million years old. This discovery is an important piece in an increasingly complex picture of how brown dwarfs - and perhaps the very massive planets around other stars - evolve. Chandra's observations of the brown dwarf, known as TWA 5B, clearly resolve it from a pair of Sun-like stars known as TWA 5A. The system is about 180 light years from the Sun and a member of a group of about a dozen young stars in the southern constellation Hydra. The brown dwarf orbits the binary stars at a distance about 2.75 times that of Pluto's orbit around the Sun. This is first time that a brown dwarf this close to its parent star(s) has been resolved in X-rays. "Our Chandra data show that the X-rays originate from the brown dwarf's coronal plasma which is some 3 million degrees Celsius," said Yohko Tsuboi of Chuo University in Tokyo and lead author of the April 10th issue of Astrophysical Journal Letters paper describing these results. "The brown dwarf is sufficiently far from the primary stars that the reflection of X-rays is unimportant, so the X-rays must come the brown dwarf itself." TWA 5B is estimated to be only between 15 and 40 times the mass of Jupiter, making it one of the least massive brown dwarfs known. Its mass is rather near the currently accepted boundary (about 12 Jupiter masses) between planets and brown dwarfs. Therefore, these results may also have implications for very massive planets, including those that have been discovered as extrasolar planets in recent years. Brown Dwarf size comparison schematic Brown Dwarf size comparison schematic "This brown dwarf is as bright as the Sun today in X-ray light, while it is fifty times less massive than the Sun," said Tsuboi. "This observation, thus, raises the possibility that even massive planets might emit X-rays by themselves during their youth!" This research on TWA 5B also provides a link between an active X-ray state in young brown dwarfs (about 1 million years old) and a later, quieter period of brown dwarfs when they reach ages of 500 million to a billion years. Brown dwarfs are often referred to as "failed stars," as they are believed to be under the mass limit (about 80 Jupiter masses) needed to spark the nuclear fusion of hydrogen to helium, which characterizes traditional stars. Scientists hope to better understand the evolution of magnetic activity in brown dwarfs through the X-ray behavior. Chandra observed TWA 5B for about three hours on April 15, 2001, with its Advanced CCD Imaging Spectrometer (ACIS). Along with Chandra's mirrors, ACIS can achieve the angular resolution of a half arc second. TWA 5B Optical image of TWA 5B "This brown dwarf is about 200 times dimmer than the primary and located just two arcseconds away," said Gordon Garmire of Penn State University who led the ACIS team. "It's quite an achievement that Chandra was able to resolve it." Other members of the research team included Yoshitomo Maeda (Institute of Space and Astronautical Science, Kanagawa, Japan), Eric Feigelson, Gordon Garmire, George Chartas, and Koji Mori (Penn State University), and Steve Prado (Jet Propulsion Laboratory). NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington. Images and additional information about this result are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
X-ray observations of dust obscured galaxies in the Chandra deep field south
NASA Astrophysics Data System (ADS)
Corral, A.; Georgantopoulos, I.; Comastri, A.; Ranalli, P.; Akylas, A.; Salvato, M.; Lanzuisi, G.; Vignali, C.; Koutoulidis, L.
2016-08-01
We present the properties of X-ray detected dust obscured galaxies (DOGs) in the Chandra deep field south. In recent years, it has been proposed that a significant percentage of the elusive Compton-thick (CT) active galactic nuclei (AGN) could be hidden among DOGs. This type of galaxy is characterized by a very high infrared (IR) to optical flux ratio (f24 μm/fR > 1000), which in the case of CT AGN could be due to the suppression of AGN emission by absorption and its subsequent re-emission in the IR. The most reliable way of confirming the CT nature of an AGN is by X-ray spectroscopy. In a previous work, we presented the properties of X-ray detected DOGs by making use of the deepest X-ray observations available at that time, the 2Ms observations of the Chandra deep fields, the Chandra deep field north (CDF-N), and the Chandra deep field south (CDF-S). In that work, we only found a moderate percentage (<50%) of CT AGN among the DOGs sample. However, we pointed out that the limited photon statistics for most of the sources in the sample did not allow us to strongly constrain this number. In this paper, we further explore the properties of the sample of DOGs in the CDF-S presented in that work by using not only a deeper 6Ms Chandra survey of the CDF-S, but also by combining these data with the 3Ms XMM-Newton survey of the CDF-S. We also take advantage of the great coverage of the CDF-S region from the UV to the far-IR to fit the spectral energy distributions (SEDs) of our sources. Out of the 14 AGN composing our sample, 9 are highly absorbed (NH > 1023 cm-2), whereas 2 look unabsorbed, and the other 3 are only moderately absorbed. Among the highly absorbed AGN, we find that only three could be considered CT AGN. In only one of these three cases, we detect a strong Fe Kα emission line; the source is already classified as a CT AGN with Chandra data in a previous work. Here we confirm its CT nature by combining Chandra and XMM-Newton data. For the other two CT candidates, the non-detection of the line could be because of the low number of counts in their X-ray spectra, but their location in the L2-10 keV/L12 μm plot supports their CT classification. Although a higher number of CT sources could be hidden among the X-ray undetected DOGs, our results indicate that DOGs could be as well composed of only a fraction of CT AGN plus a number of moderate to highly absorbed AGN, as previously suggested. From our study of the X-ray undetected DOGs in the CDF-S, we estimate a percentage between 13 and 44% of CT AGN among the whole population of DOGs.
Spectral classification of selected ISOGAL sources using Himalayan Chandra Telescope
NASA Astrophysics Data System (ADS)
Joshi, U. C.; Ganesh, S.; Baliyan, K. S.; Parthasarathy, M.; Schultheis, M.; Rajpurohit, A.; Simon, G.; Omont, A.
The ISOGAL survey (Omont et al. 1999) is devoted to the observation of selected regions of the Galactic plane in the mid-infrared with ISOCAM. More than 240 fields were observed at 7 and 15 micron wave-bands with ISOCAM at an angular resolution of 6'' which has provided a complete census, in the areas surveyed, of the stars in the late stages (RGB/AGB phases) of stellar evolution. Optical counterparts are detected for some of the ISOGAL sources in the directions where the extinction is relatively lower. We obtained optical spectra of ˜100 such sources with the Himalayan Chandra Telescope (HCT), India and estimated their spectral classes. Optical spectroscopy together with mid-IR data is expected to allow us to obtain the spectral-type vs mass-loss relation which are important parameters to understand the late stages of stellar evolution. In this paper, we present a set of spectra taken in the field FC97 for which ISOGAL survey is complete.
X-ray studies of supernova remnants: A different view of supernova explosions
Badenes, Carles
2010-01-01
The unprecedented spatial and spectral resolutions of Chandra have revolutionized our view of the X-ray emission from supernova remnants. The excellent datasets accumulated on young, ejecta-dominated objects like Cas A or Tycho present a unique opportunity to study at the same time the chemical and physical structure of the explosion debris and the characteristics of the circumstellar medium sculpted by the progenitor before the explosion. Supernova remnants can thus put strong constraints on fundamental aspects of both supernova explosion physics and stellar evolution scenarios for supernova progenitors. This view of the supernova phenomenon is completely independent of, and complementary to, the study of distant extragalactic supernovae at optical wavelengths. The calibration of these two techniques has recently become possible thanks to the detection and spectroscopic follow-up of supernova light echoes. In this paper, I review the most relevant results on supernova remnants obtained during the first decade of Chandra and the impact that these results have had on open issues in supernova research. PMID:20404206
The X-Ray Variability of Sagittarius A*
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Nowak, Michael; Gammie, Charles F.; Dexter, Jason; Markoff, Sera; Haggard, Daryl; Nayakshin, Sergei; Wang, Q. Daniel; Grosso, Nicolas; Porquet, Delphine; Tomsick, John; Degenaar, Nathalie; Fragile, P. Christopher; Wijnands, Rudy; Miller, Jon M.; Baganoff, Frederick K.
2015-01-01
Over the last decade, X-ray observations of Sgr A* have revealed a black hole in a deep sleep, punctuated roughly once per day by brief ares. The extreme X-ray faintness of this supermassive black hole has been a long-standing puzzle in black hole accretion. To study the accretion processes in the Galactic Center, Chandra (in concert with numerous ground- and space-based observatories) undertook a 3 Ms campaign on Sgr A* in 2012. With its excellent observing cadence, sensitivity, and spectral resolution, this Chandra X-ray Visionary Project (XVP) provides an unprecedented opportunity to study the behavior of our closest supermassive black hole. We present a progress report from our ongoing study of X-ray flares, including one of the brightest flares ever seen from Sgr A*. Focusing on the statistics of the flares, the quiescent emission, and the relationship between the X-ray and the infrared, we discuss the physical implications of X-ray variability in the Galactic Center.
NASA Astrophysics Data System (ADS)
Corrales, Lia; Li, Haochuan; Heinz, Sebastian
2018-01-01
With accurate cross-sections and higher signal-to-noise, X-ray spectroscopy can directly measure Milky Way gas and dust-phase metal abundances with few underlying assumptions. The X-ray energy band is sensitive to absorption by all abundant interstellar metals — carbon, oxygen, neon, silicon, magnesium, and iron — whether they are in gas or dust form. High resolution X-ray spectra from Galactic X-ray point sources can be used to directly measure metal abundances from all phases of the interstellar medium (ISM) along singular sight lines. We show our progress for measuring the depth of photoelectric absorption edges from neutral ISM metals, using all the observations of bright Galactic X-ray binaries available in the Chandra HETG archive. The cross-sections we use take into account both the absorption and scattering effects by interstellar dust grains on the iron and silicate spectral features. However, there are many open problems for reconciling X-ray absorption spectroscopy with ISM observations in other wavelengths. We will review the state of the field, lab measurements needed, and ways in which the next generation of X-ray telescopes will contribute.
Evolution of the High Velocity X-Ray Emission in SN 1987A
NASA Astrophysics Data System (ADS)
Dewey, Daniel; Haberl, F.; Dwarkadas, V. V.; Burrows, D. N.; Park, S.
2011-01-01
Chandra HETG observations of SN 1987A in late 1999 showed very broad lines with observed FWHM of order 7000 km/s (Michael et al. 2002). At this time (SN day 4600) the blastwave was already interacting with the HII region around the progenitor and optical spots had recently appeared. High-resolution spectra taken from May 2003 ( day 5900) to the present by XMM-Newton and Chandra have been well fit by models with FWHM less than 2000 km/s (Zhekov et al. 2005; Dewey et al. 2008; Sturm et al 2010). The emission is increasingly dominated by these narrower components as the blastwave encounters more of the dense equatorial ring. However emission from the HII region out of the ring plane is still expected at late times and would contribute a high-velocity component to the spectra. We analyze 6 epochs of SN 1987A grating data and include an additional very broad component in the spectral model. We find that deep HETG 2007 data are better fit when one quarter of the flux comes from a component with FWHM 8500 km/s, and that RGS 2003 data show an improved fit with a very-broad fraction that is between the 1999 and 2007 values. Later data continue a progression to lower, but still significant, very-broad fractions. The measurements are discussed in terms of the density and extent of the out-of-plane HII region, hydrodynamical simulations, and 3D models of SN 1987A's emission. Support for this work was provided by NASA/USA through contract NAS8-03060 to the Smithsonian Astrophysical Observatory (SAO) and further SAO sub-contracts TM9-0004X to VVD (U Chicago) and SV3-73016 to MIT for support of the CXC.
Virtual Observatory Interfaces to the Chandra Data Archive
NASA Astrophysics Data System (ADS)
Tibbetts, M.; Harbo, P.; Van Stone, D.; Zografou, P.
2014-05-01
The Chandra Data Archive (CDA) plays a central role in the operation of the Chandra X-ray Center (CXC) by providing access to Chandra data. Proprietary interfaces have been the backbone of the CDA throughout the Chandra mission. While these interfaces continue to provide the depth and breadth of mission specific access Chandra users expect, the CXC has been adding Virtual Observatory (VO) interfaces to the Chandra proposal catalog and observation catalog. VO interfaces provide standards-based access to Chandra data through simple positional queries or more complex queries using the Astronomical Data Query Language. Recent development at the CDA has generalized our existing VO services to create a suite of services that can be configured to provide VO interfaces to any dataset. This approach uses a thin web service layer for the individual VO interfaces, a middle-tier query component which is shared among the VO interfaces for parsing, scheduling, and executing queries, and existing web services for file and data access. The CXC VO services provide Simple Cone Search (SCS), Simple Image Access (SIA), and Table Access Protocol (TAP) implementations for both the Chandra proposal and observation catalogs within the existing archive architecture. Our work with the Chandra proposal and observation catalogs, as well as additional datasets beyond the CDA, illustrates how we can provide configurable VO services to extend core archive functionality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tombesi, F.; Kallman, T.; Leutenegger, M. A.
2016-10-20
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory . The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700–1000 eV associated with ionized Fe L transitions (Fe XVII–XX). An emission line at the energy of E ≃ 6.4 keV consistent with the Fe K α is also observed. Our best-fit model requires at least three different components: (i) amore » hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 ± 0.1 keV; (ii) a warm absorber with ionization parameter log ξ = 2.3 ± 0.5 erg s{sup −1} cm, column density log N {sub H} = 20.7 ± 0.1 cm{sup −2}, and outflow velocity v {sub out} < 150 km s{sup −1}; and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.« less
NASA Technical Reports Server (NTRS)
Tombesi, F.; Reeves, J. N.; Kallman, Timothy R.; Reynolds, C. S.; Mushotzky, R. F.; Braito, V.; Behar, E.; Leutenegger, Maurice A.; Cappi, M.
2016-01-01
We present the first high spectral resolution X-ray observation of the broad-line radio galaxy 3C 390.3 obtained with the high-energy transmission grating spectrometer on board the Chandra X-ray Observatory. The spectrum shows complex emission and absorption features in both the soft X-rays and Fe K band. We detect emission and absorption lines in the energy range E = 700-1000 eV associated with ionized Fe L transitions (Fe XVIIXX). An emission line at the energy of E approximately equal to 6.4 keV consistent with the Fe K alpha is also observed. Our best-fit model requires at least three different components: (i) a hot emission component likely associated with the hot interstellar medium in this elliptical galaxy with temperature kT = 0.5 +/- 0.1 keV; (ii) a warm absorber with ionization parameter log Epislon = 2.3 +/- 0.5 erg s(exp 1) cm, column density logN(sub H) = 20.7 +/- 0.1 cm(exp -2), and outflow velocity v(sub out) less than 150 km s(exp -1); and (iii) a lowly ionized reflection component in the Fe K band likely associated with the optical broad-line region or the outer accretion disk. These evidences suggest the possibility that we are looking directly down the ionization cone of this active galaxy and that the central X-ray source only photoionizes along the unobscured cone. This is overall consistent with the angle-dependent unified picture of active galactic nuclei.
The First FUor in Early X-Ray Outburst: HBC 722
NASA Astrophysics Data System (ADS)
Guedel, Manuel
2012-09-01
FU Ori outbursts ("FUors") play an important role in the accretion history of a pre-main sequence star. They reveal themselves as brightness increases by several magnitudes in the optical/infrared. FUors are attributed to accretion disk instabilities heating the inner disk such that it entirely dominates the optical spectrum. They decline over many years to decades. Only a handful of FUors in optical eruption have been recorded during the past decades, and no FUor has been caught in X-ray outburst before the recent eruption of the bona-fide FUor HBC 722 in 2010. We have secured two X-ray snapshot observations and now propose to obtain a high resolution Chandra image and a CCD spectrum to continue study of this object in the framework of a multi-wavelength campaign.
2MASS J00423991+3017515: An AGN On The Run?
NASA Astrophysics Data System (ADS)
Hogg, James
2016-09-01
We have discovered a peculiar AGN, 2MASS J00423991+3017515, in a local (z=0.14), disturbed galaxy whose optical spectrum has multiple broad lines that are consistently offset from the narrow line emission and host galaxy absorption by 1530 km/s. The morphology of the host galaxy and spectral properties thus suggest this AGN may be a recoiling supermassive black hole (SMBH). We propose high-resolution X-ray imaging and spectral follow-ups with the ACIS camera on Chandra to determine if the source of the kinematically-offset broad line emission is also spatially offset from the nucleus of the host galaxy. If a single, spatially offset AGN is detected, this source will be strongest candidate for a recoiling AGN candidate discovered to date.
Testing the Merger Paradigm: X-ray Observations of Radio-Selected Sub-Galactic-Scale Binary AGNs
NASA Astrophysics Data System (ADS)
Fu, Hai
2016-09-01
Interactions play an important role in galaxy evolution. Strong gas inflows are expected in the process of gas-rich mergers, which may fuel intense black hole accretion and star formation. Sub-galactic-scale binary/dual AGNs thus offer elegant laboratories to study the merger-driven co-evolution phase. However, previous samples of kpc-scale binaries are small and heterogeneous. We have identified a flux-limited sample of kpc-scale binary AGNs uniformly from a wide-area high-resolution radio survey conducted by the VLA. Here we propose Chandra X-ray characterization of a subset of four radio-confirmed binary AGNs at z 0.1. Our goal is to compare their X-ray properties with those of matched control samples to test the merger-driven co-evolution paradigm.
NASA Technical Reports Server (NTRS)
Strohmayer, T.
2008-01-01
We present new, extended X-ray timing measurements of the ultra-compact binary candidates V407 Vul and RX J0806.3+1527 (J0806), as well as a summary of the first high resolution X-ray spectra of 50806 obtained with the Chandra/LETG. The temporal baseline for both objects is approximately 12 years, and our measurements confirm the secular spin-up in their X-ray periods. The spin-up rate in 50806 is remarkably uniform at 3.55x10(exp -16)Hz/s, with a measurement precision of 0.2%. We place a limit (90% confidence) on 1 d dot nu < 4x10(exp -26)Hz/sq s. Interestingly, for V407 Vul we find the first evidence that the spin-up rate is slowing, with d dot\
1999-02-06
KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (right) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-06
KENNEDY SPACE CENTER, FLA. -- The Chandra X-ray Observatory is unloaded from an Air Force C-5 Galaxy transporter two days after landing at the Shuttle Landing Facility on Feb. 4. The observatory sits cradled in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System, which closely resembles the size and shape of the Shuttle cargo bay. In the background (left) is the mate-demate device, used when an orbiter is returned to KSC on the back of a Shuttle carrier aircraft. Over the next few months, Chandra will undergo final tests and be mated to a Boeing-provided Inertial Upper Stage for launch July 9 aboard Space Shuttle Columbia, on mission STS-93 . Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
History of Chandra X-Ray Observatory
2002-01-23
Leon Van Speybroeck of the Harvard-Smithsonian Center for Astrophysics in Cambridge Massachusetts was awarded the 2002 Bruno Rossi Prize of the High-Energy Astrophysics Division of the American Astronomy Society. The Rossi Prize is an arnual recognition of significant contributions in high-energy astrophysics in honor of the Massachusetts Institute of Technology's late Professor Bruno Rossi, an authority on cosmic ray physics and a pioneer in the field of x-ray astronomy. Van Speybroeck, who led the effort to design and make the x-ray mirrors for NASA's premier Chandra X-Ray Observatory, was recognized for a career of stellar achievements in designing precision x-ray optics. As Telescope Scientist for Chandra, he has worked for more than 20 years with a team that includes scientists and engineers from the Harvard-Smithsonian, NASA's Marshall Space Flight Center, TRW, Inc., Huhes-Danbury (now B.F. Goodrich Aerospace), Optical Coating Laboratories, Inc., and Eastman-Kodak on all aspects of the x-ray mirror assembly that is the heart of the observatory.
The Chandra X-ray Center data system: supporting the mission of the Chandra X-ray Observatory
NASA Astrophysics Data System (ADS)
Evans, Janet D.; Cresitello-Dittmar, Mark; Doe, Stephen; Evans, Ian; Fabbiano, Giuseppina; Germain, Gregg; Glotfelty, Kenny; Hall, Diane; Plummer, David; Zografou, Panagoula
2006-06-01
The Chandra X-ray Center Data System provides end-to-end scientific software support for Chandra X-ray Observatory mission operations. The data system includes the following components: (1) observers' science proposal planning tools; (2) science mission planning tools; (3) science data processing, monitoring, and trending pipelines and tools; and (4) data archive and database management. A subset of the science data processing component is ported to multiple platforms and distributed to end-users as a portable data analysis package. Web-based user tools are also available for data archive search and retrieval. We describe the overall architecture of the data system and its component pieces, and consider the design choices and their impacts on maintainability. We discuss the many challenges involved in maintaining a large, mission-critical software system with limited resources. These challenges include managing continually changing software requirements and ensuring the integrity of the data system and resulting data products while being highly responsive to the needs of the project. We describe our use of COTS and OTS software at the subsystem and component levels, our methods for managing multiple release builds, and adapting a large code base to new hardware and software platforms. We review our experiences during the life of the mission so-far, and our approaches for keeping a small, but highly talented, development team engaged during the maintenance phase of a mission.
A New Temperature Determination Using the Fe XVII Emission of Capella
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Gu, M. F.; Lepson, J.; Desai, P.
2011-12-01
Typically, the most reliable way to spectroscopically determine the electron temperature is to measure the strength of dielectronic recombination (DR) satellite lines relative to the associated resonance line, IDR/ Ir, as this ratio varies steeply with temperature and does not require assumptions associated with the calculations of ionization equilibria. We have applied this method to the Fe XVII lines, which are very bright in the spectrum of Capella observed with high resolution with Chandra's High Energy Transmission Grating Spectrometer. In particular, we have determined the intensity of the dielectronic satellite lines next to the Fe XVII 2p-3d resonance line, commonly denoted 3C. The atomic data needed to do this are supplied by the Flexible Atomic Code. The temperature, TDR, we have derived from this method is somewhat lower than TDEM, derived from the differential emission measure for Fe XVII. We show that the precision of this method is very high, and we discuss the its limitations.
Deep Chandra observations of the stripped galaxy group falling into Abell 2142
NASA Astrophysics Data System (ADS)
Eckert, D.; Gaspari, M.; Owers, M. S.; Roediger, E.; Molendi, S.; Gastaldello, F.; Paltani, S.; Ettori, S.; Venturi, T.; Rossetti, M.; Rudnick, L.
2017-09-01
In the local Universe, the growth of massive galaxy clusters mainly operates through the continuous accretion of group-scale systems. The infalling group in Abell 2142 is the poster child of such an accreting group, and as such, it is an ideal target to study the astrophysical processes induced by structure formation. We present the results of a deep (200 ks) observation of this structure with Chandra that highlights the complexity of this system in exquisite detail. In the core of the group, the spatial resolution of Chandra reveals a leading edge and complex AGN-induced activity. The morphology of the stripped gas tail appears straight in the innermost 250 kpc, suggesting that magnetic draping efficiently shields the gas from its surroundings. However, beyond 300 kpc from the core, the tail flares and the morphology becomes strongly irregular, which could be explained by a breaking of the drape, for example, caused by turbulent motions. The power spectrum of surface-brightness fluctuations is relatively flat (P2D ∝ k-2.3), which indicates that thermal conduction is strongly inhibited even beyond the region where magnetic draping is effective. The amplitude of density fluctuations in the tail is consistent with a mild level of turbulence with a Mach number M3D 0.1 - 0.25. Overall, our results show that the processes leading to the thermalization and mixing of the infalling gas are slow and relatively inefficient.
High-resolution measurements in the EUV on NSTX
NASA Astrophysics Data System (ADS)
Beiersdorfer, P.; Bitter, M.; Lepson, J. K.; Gu, M.-F.
2005-10-01
The extreme ultraviolet (EUV) wavelength band is rich in lines useful as plasma diagnostics. This fact is being used by the Chandra and XMM-Newton satellites for studying stellar coronae and galactic nuclei. We have installed a new grating spectrometer on the NSTX tokamak that allows us to study emission lines in the EUV with similar spectral resolution. We have observed the K-shell lines of heliumlike and hydrogenlike boron, carbon, and oxygen. Moreover, we have measured the L-shell spectra of neonlike Ar, Fe, and Ni. All elements except argon were intrinsic to NSTX plasmas. Many of these spectra are of great interest to astrophysics. Our measurements provide line lists and calibrate density-sensitive line ratios in a density regime not accessible by other laboratory sources. Moreover, we were able to measure the temperature dependence of several iron lines needed to address puzzling results from stellar flare plasmas. This work was performed under the auspices of the U.S. DOE by UC-LLNL under contract W-7405-Eng-48 and by PPPL under contract DE-AC02-76CHO3073.
The Highest Resolution X-ray View of the Nuclear Region of NGC 4151
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Fabbiano, G.; Karovska, M.; Elvis, M.; Risaliti, G.; Zezas, A.; Mundell, C. G.
2009-09-01
We report high resolution imaging of the nucleus of the Seyfert 1 galaxy NGC 4151 obtained with a 50 ks Chandra HRC observation. The HRC image resolves the emission on spatial scales of 0.5 arcsec (30 pc), showing an extended X-ray morphology overall consistent with the narrow line region seen in optical line emission. Removal of the bright point-like nuclear source and image deconvolution technique both reveal X-ray enhancements that closely match the substructures seen in the HST [OIII] image and prominent knots in the radio jet. We find that most of the NLR clouds in NGC 4151 have [OIII] to soft X-ray ratio consistent with the values observed in NLRs of some Seyfert 2 galaxies, which indicates a uniform ionization parameter even at large radii and a density dependence ∝ r^{-2} as expected in the disk wind scenario. We examine various X-ray emission mechanisms of the radio jet and consider thermal emission from interaction between radio outflow and the NLR clouds the most probable origin for the X-ray emission associated with the jet.
NASA Technical Reports Server (NTRS)
Elsner, R. F.; Ramsey, B. D.; Waite, J. H., Jr.; Rehak, P.; Johnson, R. E.; Cooper, J. F.; Swartz, D. A.
2004-01-01
Remote observations with the Chandra X-ray Observatory and the XMM-Newton Observatory have shown that the Jovian system is a source of x-rays with a rich and complicated structure. The planet's polar auroral zones and its disk are powerful sources of x-ray emission. Chandra observations revealed x-ray emission from the Io Plasma Torus and from the Galilean moons Io, Europa, and possibly Ganymede. The emission from these moons is certainly due to bombardment of their surfaces of highly energetic protons, oxygen and sulfur ions from the region near the Torus exciting atoms in their surfaces and leading to fluorescent x-ray emission lines. Although the x-ray emission from the Galilean moons is faint when observed fiom Earth orbit, an imaging x-ray spectrometer in orbit around these moons, operating at 200 eV and above with 150 eV energy resolution, would provide a detailed mapping (down to 40 m spatial resolution) of the elemental composition in their surfaces. Here we describe the physical processes leading to x-ray emission fiom the surfaces of Jupiter's moons and the instrumental properties, as well as energetic ion flux models or measurements, required to map the elemental composition of their surfaces. We discuss the proposed scenarios leading to possible surface compositions. For Europa, the two most extreme are (1) a patina produced by exogenic processes such as meteoroid bombardment and ion implantation, and (2) upwelling of material fiom the subsurface ocean. We also describe the characteristics of X - m , an imaging x-ray spectrometer under going a feasibility study for the JIM0 mission, with the ultimate goal of providing unprecedented x-ray studies of the elemental composition of the surfaces of Jupiter's icy moons and Io, as well as of Jupiter's auroral x-ray emission.
The Chandra Deep Wide-Field Survey: Completing the new generation of Chandra extragalactic surveys
NASA Astrophysics Data System (ADS)
Hickox, Ryan
2016-09-01
Chandra X-ray surveys have revolutionized our view of the growth of black holes across cosmic time. Recently, fundamental questions have emerged about the connection of AGN to their host large scale structures that clearly demand a wide, deep survey over a large area, comparable to the recent extensive Chandra surveys in smaller fields. We propose the Chandra Deep Wide-Field Survey (CDWFS) covering the central 6 sq. deg in the Bootes field, totaling 1.025 Ms (building on 550 ks from the HRC GTO program). CDWFS will efficiently probe a large cosmic volume, allowing us to carry out accurate new investigations of the connections between black holes and their large-scale structures, and will complete the next generation surveys that comprise a key part of Chandra's legacy.
Yes, High School Students Can Analyze Chandra Data
NASA Astrophysics Data System (ADS)
Keohane, J. W.; Clearfield, C. R.; Olbert, C. M.
2002-12-01
For the past two years, high school students at the North Carolina School of Science and Math (NCSSM) have worked with new and archival Chandra data, and have produced interesting scientific results. These results have included one refereed paper in the Ap.J., and about a dozen presentations at scientific meetings (including three at this meeting). The students were selected, based on interest, from the junior class at NCSSM, to stay on campus and work intensively for 2 to 4 weeks over the summer. Each team of students selected an object with public Chandra ACIS data, and were taught how to produce data products such as images and spectra, as well as conduct a literature search. In most cases, a paper had already been published using those data, and the students were usually able to reproduce the results. As the students waded through the literature, they would search for a theory to test or an interesting new phenomenon. Often the students would request an image in another wavelength to compare in detail to the Chandra data. After the summer, many students continued to work throughout the following fall semester, producing a paper for submission to the Siemens Westinghouse Science and Technology Competition by the beginning of October. In the process of conducting research, the students learn to apply many physics concepts, and learn valuable scientific research and writing skills. Those students that choose to continue with astrophysics can often dive directly into a high-level research project immediately when they arrive at college. These programs have been funded by NASA, through E/PO grants attached to parent research grants.
Hitomi Observations of the LMC SNR N132D: Fast and Asymmetric Iron-rich Ejecta
NASA Astrophysics Data System (ADS)
Miller, Eric D.; Hitomi Collaboration
2018-01-01
We present Hitomi Soft X-ray Spectrometer (SXS) observations of N132D, a young, ~2500 year-old, X-ray bright, O-rich core-collapse supernova remnant in the LMC. Despite a very short observation of only 3.7 ksec, the SXS easily detects the line complexes of He-like S K and Fe K with 16-17 counts in each. The Fe K feature is measured for the first time at high spectral resolution, and we find that the Fe K-emitting material is highly redshifted at ~1000 km/s compared to the local LMC ISM, indicating (1) that it arises from the SN ejecta, and (2) that this ejecta is highly asymmetric, since no corresponding blue-shifted component is found. The S K-emitting material has a velocity consistent with the local LMC ISM, and is likely swept-up ISM material. These results are consistent with spatial mapping of these emission lines with XMM-Newton and Chandra, which show the Fe K concentrated in the interior of the remnant and the S K tracing the outer shell. Most importantly, they highlight the power of high-spectral-resolution imaging observations, and demonstrate the new window that has been opened with Hitomi and will be greatly widened with future missions such as the X-ray Astronomy Recovery Mission (XARM) and Athena.
The Warm-Hot Intergalactic Medium Explorer (WHIMex) Mission Concept
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Cash, W. C.; McEntaffer, R. L.; Zhang, W.; O'Dell, S.; Bautz, M.; Elvis, M.
2011-05-01
WHIMEx is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMEx will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMEx achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and 15 arcsecond resolution. The X-ray beam is dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.15 to 2keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs.If selected WHIMEx could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into its 540 km, 70° inclination low earth orbit. In flight, it would open up a new field of exploration with high resolution observations of AGN outflows, the IGM, interstellar medium, mass transfer binaries, stellar coronae and much more
The Warm-Hot Intergalactic Medium Explorer (WHIMex)
NASA Astrophysics Data System (ADS)
Lillie, Charles F.; Cash, W. C.; Science, WHIMex; Instrument Teams
2011-09-01
WHIMex is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMex will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMex achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and <15 arcsecond resolution. The X-ray s are dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.3 to 0.8 keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs. If selected WHIMex could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into a 540 km, 70° inclination low earth orbit. In flight, it would open a new field of exploration with high resolution observations of AGN outflows, the IGM, Interstellar Medium, mass transfer binaries, stellar coronae and much more.
Jet Power and Black Hole Assortment Revealed in New Chandra Image
NASA Astrophysics Data System (ADS)
2008-01-01
A dramatic new Chandra image of the nearby galaxy Centaurus A provides one of the best views to date of the effects of an active supermassive black hole. Opposing jets of high-energy particles can be seen extending to the outer reaches of the galaxy, and numerous smaller black holes in binary star systems are also visible. The image was made from an ultra-deep look at the galaxy Centaurus A, equivalent to more than seven days of continuous observations. Centaurus A is the nearest galaxy to Earth that contains a supermassive black hole actively powering a jet. X-ray Image of Centaurus A, Labeled X-ray Image of Centaurus A, Labeled A prominent X-ray jet extending for 13,000 light years points to the upper left in the image, with a shorter "counterjet" aimed in the opposite direction. Astronomers think that such jets are important vehicles for transporting energy from the black hole to the much larger dimensions of a galaxy, and affecting the rate at which stars form there. High-energy electrons spiraling around magnetic field lines produce the X-ray emission from the jet and counterjet. This emission quickly saps the energy from the electrons, so they must be continually reaccelerated or the X-rays will fade out. Knot-like features in the jets detected in the Chandra image show where the acceleration of particles to high energies is currently occurring, and provides important clues to understanding the process that accelerates the electrons to near-light speeds. People Who Read This Also Read... NASA’s Swift Satellite Catches First Supernova in The Act of Exploding Black Holes Have Simple Feeding Habits Chandra Data Reveal Rapidly Whirling Black Holes Erratic Black Hole Regulates Itself The inner part of the X-ray jet close to the black hole is dominated by these knots of X-ray emission, which probably come from shock waves -- akin to sonic booms -- caused by the jet. Farther from the black hole there is more diffuse X-ray emission in the jet. The cause of particle acceleration in this part of the jet is unknown. Hundreds of point-like sources are also seen in the Chandra image. Many of these are X-ray binaries that contain a stellar-mass black hole and a companion star in orbit around one another. Determining the population and properties of these black holes should help scientists better understand the evolution of massive stars and the formation of black holes. Another surprise was the detection of two particularly bright X-ray binaries. These sources may contain stellar mass black holes that are unusually massive, and this Chandra observation might have caught them gobbling up material at a high rate. In this image, low-energy X-rays are colored red, intermediate-energy X-rays are green, and the highest-energy X-rays detected by Chandra are blue. The dark green and blue bands running almost perpendicular to the jet are dust lanes that absorb X-rays. This dust lane was created when Centaurus A merged with another galaxy perhaps 100 million years ago. This research was presented at the American Astronomical Society meeting on January 9th by Gregory Sivakoff (The Ohio State University). Other team members include Ralph Kraft (Harvard-Smithsonian Center for Astrophysics), Martin Hardcastle (University of Hertfordshire), Diana Worrall (University of Bristol), and Andres Jordan (Smithsonian Astrophysical Observatory). NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.
Action at the Horizon: Chandra/EHT Observations of Sgr A*
NASA Astrophysics Data System (ADS)
Neilsen, Joseph
2017-09-01
In April 2017, the Event Horizon Telescope will observe Sgr A* with imaging quality sufficient to resolve the shadow of the black hole, while providing a close-up view of accretion at the horizon. As Sgr A* is a well-known source of X-ray flares, coordinated Chandra/EHT observations offer an incredible opportunity: a chance to observe structures (e.g., hotspots) near the event horizon while tracking their high-energy variability. In anticipation of a follow-up campaign in 2018, we are requesting 4x33 ks Chandra observations of Sgr A* to be coordinated with EHT. This campaign will double our chances of simultaneous flares. We will search for flares and hotspots, provide priors for EHT image reconstruction, and track any activity associated with the closest approach of the massive star S0-2.
A Deep Chandra Observation of the Distant Galaxy Cluster MS 1137.5+6625
NASA Astrophysics Data System (ADS)
Grego, Laura; Vrtilek, J. M.; Van Speybroeck, Leon; David, Laurence P.; Forman, William; Carlstrom, John E.; Reese, Erik D.; Joy, Marshall K.
2004-06-01
We present results from a deep Chandra observation of MS 1137.5+66, a distant (z=0.783) and massive cluster of galaxies. Only a few similarly massive clusters are currently known at such high redshifts; accordingly, this observation provides much needed information on the dynamical state of these rare systems. The cluster appears both regular and symmetric in the X-ray image. However, our analysis of the spectral and spatial X-ray data in conjunction with interferometric Sunyaev-Zel'dovich effect data and published deep optical imaging suggests that the cluster has a fairly complex structure. The angular diameter distance we calculate from the Chandra and Sunyaev-Zel'dovich effect data assuming an isothermal, spherically symmetric cluster implies a low value for the Hubble constant for which we explore possible explanations.
"Wonderful" Star Reveals its Hot Nature
NASA Astrophysics Data System (ADS)
2005-04-01
For the first time an X-ray image of a pair of interacting stars has been made by NASA's Chandra X-ray Observatory. The ability to distinguish between the interacting stars - one a highly evolved giant star and the other likely a white dwarf - allowed a team of scientists to observe an X-ray outburst from the giant star and find evidence that a bridge of hot matter is streaming between the two stars. "Before this observation it was assumed that all the X-rays came from a hot disk surrounding a white dwarf, so the detection of an X-ray outburst from the giant star came as a surprise," said Margarita Karovska of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., and lead author article in the latest Astrophysical Journal Letters describing this work. An ultraviolet image made by the Hubble Space Telescope was a key to identifying the location of the X-ray outburst with the giant star. X-ray studies of this system, called Mira AB, may also provide better understanding of interactions between other binary systems consisting of a "normal" star and a collapsed star such as a white dwarf, black hole or a neutron star, where the stellar objects and gas flow cannot be distinguished in an image. HST Ultraviolet Image of Mira HST Ultraviolet Image of Mira The separation of the X-rays from the giant star and the white dwarf was made possible by the superb angular resolution of Chandra, and the relative proximity of the star system at about 420 light years from Earth. The stars in Mira AB are about 6.5 billion miles apart, or almost twice the distance of Pluto from the Sun. Mira A (Mira) was named "The Wonderful" star in the 17th century because its brightness was observed to wax and wane over a period of about 330 days. Because it is in the advanced, red giant phase of a star's life, it has swollen to about 600 times that of the Sun and it is pulsating. Mira A is now approaching the stage where its nuclear fuel supply will be exhausted, and it will collapse to become a white dwarf. The internal turmoil in Mira A could create magnetic disturbances in the upper atmosphere of the star and lead to the observed X-ray outbursts, as well as the rapid loss of material from the star in a blustery, strong, stellar wind. Some of the gas and dust escaping from Mira A is captured by its companion Mira B. In stark contrast to Mira A, Mira B is thought to be a white dwarf star about the size of the Earth. Some of the material in the wind from Mira A is captured in an accretion disk around Mira B, where collisions between rapidly moving particles produce X-rays. Animation of Interacting Stars Animation of Interacting Stars One of the more intriguing aspects of the observations of Mira AB at both X-ray and ultraviolet wavelengths is the evidence for a faint bridge of material joining the two stars. The existence of a bridge would indicate that, in addition to capturing material from the stellar wind, Mira B is also pulling material directly off Mira A into the accretion disk. Chandra observed Mira with its Advanced CCD Imaging Spectrometer on December 6, 2003 for about 19 hours. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate, Washington. Northrop Grumman of Redondo Beach, Calif., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bodaghee, A.; Tomsick, J. A.; Rahoui, F.
2012-06-01
The Chandra High Resolution Camera observed the fields of five hard X-ray sources in order to help us obtain X-ray coordinates with subarcsecond precision. These observations provide the most accurate X-ray positions known for IGR J16393-4643 and IGR J17091-3624. The obscured X-ray pulsar IGR J16393-4643 lies at R.A. (J2000) = 16{sup h}39{sup m}05.{sup s}47, and decl. = -46 Degree-Sign 42'13.''0 (error radius of 0.''6 at 90% confidence). This position is incompatible with the previously proposed counterpart 2MASS J16390535-4642137, and it points instead to a new counterpart candidate that is possibly blended with the Two Micron All Sky Survey star. Themore » black hole candidate IGR J17091-3624 was observed during its 2011 outburst providing coordinates of R.A. = 17{sup h}09{sup m}07.{sup s}59, and decl. = -36 Degree-Sign 24'25.''4. This position is compatible with those of the proposed optical/IR and radio counterparts, solidifying the source's status as a microquasar. Three targets, IGR J14043-6148, IGR J16358-4726, and IGR J17597-2201, were not detected. We obtained 3{sigma} upper limits of, respectively, 1.7, 1.8, and 1.5 Multiplication-Sign 10{sup -12} erg cm{sup -2} s{sup -1} on their 2-10 keV fluxes.« less
Most powerful X-ray telescope marks third anniversary
NASA Astrophysics Data System (ADS)
2002-08-01
A black hole gobbles up matter in our own Milky Way Galaxy. A hot spot of X-rays pulsates from near Jupiter's poles. An intergalactic web of hot gas, hidden from view since the time galaxies formed, is finally revealed. These scenarios sound like science fiction - but to those familiar with the latest developments in X-ray astronomy, they are just a few of the real-life discoveries made by NASA's Chandra X-ray Observatory during its third year of operation. "Within the last year, Chandra has revealed another series of never-before-seen phenomena in our galaxy and beyond," said Chandra project scientist Dr. Martin Weisskopf of NASA's Marshall Space Flight Center in Huntsville, Ala. "When you combine recent discoveries with the secrets revealed during the observatory's first two years in orbit, it's amazing how much Chandra has told us about the universe in a relatively short period of time." One such discovery was an unprecedented view of a supermassive black hole devouring material in the Milky Way Galaxy - a spectacle witnessed for the first time when Chandra observed a rapid X-ray flare emitted from the direction of the black hole residing at our galaxy's center. In a just few minutes, Sagittarius A, a source of radio emission believed to be associated with the black hole, became 45 times brighter in X-rays, before declining to pre-flare levels a few hours later, offering astronomers a never-before-seen view of the energetic processes surrounding this supermassive black hole. "When we launched the Chandra Observatory, we attempted to explain its amazing capabilities in Earthly terms, such as the fact it can 'see' so well, it's like someone reading the letters of a stop sign 12 miles away," said Chandra Program Manager Tony Lavoie of the Marshall Center. "But now that the observatory has been in orbit for three years, we have unearthly proof of the technological marvel Chandra really is. Not only has it continued to operate smoothly and efficiently, it has provided the highest quality X-ray images ever made. Now, we're not talking about stop signs, but rather black holes, star systems, galaxies and planets." One such discovery involved the planet Jupiter. Using the Chandra Observatory, astronomers discovered a pulsating hot spot of X-rays in the polar regions of the planet's upper atmosphere and uncovered evidence the X-ray source is not arising from the region of Jupiter where previously believed. By revealing that most of the X-rays come from a hot spot appearing at a fixed location near Jupiter's north magnetic pole, Chandra disproved the previous model, which placed the emission at a lower latitude of the planet's atmosphere and had no knowledge the X-rays were pulsed. "Sometimes new discoveries provide answers, and sometimes they pose more questions," said Weisskopf. "This is a good example, because by pinpointing the location of Jupiter's hot spot, Chandra ruled out the existing explanation for the planet's X-ray emission. Now we must search for a new process that explains Jupiter's X-rays. When we accomplish that, we can assemble yet another piece to the cosmic puzzle." One such piece fell into place when the Chandra Observatory discovered part of an intergalactic web of hot gas and dark matter that contains most of the material in the universe. The hot gas, which appeared to lie like a fog in channels carved by rivers of gravity, has been hidden from view since the time galaxies formed. These observations, together with ultraviolet observations, helped shed new light on how the universe evolved. The hot gas detected by Chandra can be used to trace the presence of the more massive dark matter component. The discovery of the hot gas may eventually enable astronomers to map the distribution of dark matter in the universe and perhaps understand its origin. These recent discoveries build on a series of groundbreaking findings made by the Chandra Observatory during its first two years of operation. Initial highlights include its discovery of an X-ray ring around the Crab Nebula , finding the most distant X-ray cluster of galaxies, capturing the deepest X-ray images ever recorded and discovering a new size of black hole. Because Earth's atmosphere blocks X-rays from reaching the surface, X-ray astronomy can only be performed from space. Launched in July 1999, the Chandra Observatory travels one-third of the way to the Moon during its orbit around the Earth every 64 hours. At its highest point, Chandra's highly elliptical, or egg-shaped, orbit is 200 times higher than that of its visible-light-gathering sister, the Hubble Space Telescope. The Marshall Center manages the Chandra program, and TRW, Inc. of Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian Astrophysical Observatory's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.; Hester, J. Jeff; Tennant, Allyn F.; Elsner, Ronald F.; Schulz, Norbert S.; Marshall, Herman L.; Karovska, Margarita; Nichols, Joy S.; Swartz, Douglas A.; Kolodziejczak, Jeffery J.
2000-01-01
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced Charge Coupled Devices (CCD) Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
The X-ray Variability of Eta Car, 1996-2010
NASA Technical Reports Server (NTRS)
Corcoran, Michael F.; Hamaguchi, K.; Gull, T.; Owocki, S.; Pittard, J.
2010-01-01
X-ray photometry in the 2-10 keY band of the the supermassive binary star Eta Car has been measured with the Rossi X-ray Timing Explorer from 1996-2010. The ingress to X-ray minimum is consistent with a period of 2024 days. The 2009 X-ray minimum began on January 162009 and showed an unexpectedly abrupt recovery starting after 12 Feb 2009. The X-ray colors become harder about half-way through all three minima and continue until flux recovery. The behavior of the fluxes and X-ray colors for the most recent X-ray minimum, along with Chandra high resolution grating spectra at key phases suggests a significant change in the inner wind of Eta Car, a possible indicator that the star is entering a new unstable phase of mass loss.
Discovery of Spatial and Spectral Structure in the X-Ray Emission from the Crab Nebula.
Weisskopf; Hester; Tennant; Elsner; Schulz; Marshall; Karovska; Nichols; Swartz; Kolodziejczak; O'Dell
2000-06-20
The Chandra X-Ray Observatory observed the Crab Nebula and pulsar during orbital calibration. Zeroth-order images with the High-Energy Transmission Grating (HETG) readout by the Advanced CCD Imaging Spectrometer spectroscopy array (ACIS-S) show a striking richness of X-ray structure at a resolution comparable to that of the best ground-based visible-light observations. The HETG-ACIS-S images reveal, for the first time, an X-ray inner ring within the X-ray torus, the suggestion of a hollow-tube structure for the torus, and X-ray knots along the inner ring and (perhaps) along the inward extension of the X-ray jet. Although complicated by instrumental effects and the brightness of the Crab Nebula, the spectrometric analysis shows systematic variations of the X-ray spectrum throughout the nebula.
High-Energy Electron-Ion and Photon-Ion Collisions: Status and Challenges
NASA Technical Reports Server (NTRS)
Kallman, Timothy R.
2010-01-01
Non-LTE plasmas are ubiquitous in objects studied in the UV and X-ray energy bands. Collisional and photoionization cross sections for atoms and ions are fundamental to our ability to model such plasmas. Modeling is key in the X-ray band, where detector properties and limited spectral resolution limit the ability to measure model-independent line strengths, or other spectral features. Much of the motivation for studying such collisions and many of the tools, are not new. However, the motivation for such studies and their applications, have been affected by the advent of X-ray spectroscopy with the gratings on Chandra and XMM-Newton. In this talk I will review this motivation and describe the tools currently in use for such studies. I will also describe some current unresolved problems and the likely future needs for such data.
Chandra Radiation Environment Modeling
NASA Technical Reports Server (NTRS)
Minow, Joseph I.; Blackwell, W. C.
2003-01-01
CRMFLX (Chandra Radiation Model of ion FluX) is a radiation environment risk mitigation tool for use as a decision aid in planning the operations times for Chandra's Advanced CCD Imaging Spectrometer (ACIS) detector. The accurate prediction of the proton flux environment with energies of 100 - 200 keV is needed in order to protect the ACIS detector against proton degradation. Unfortunately, protons of this energy are abundant in the region of space Chandra must operate, and on-board particle detectors do not measure proton flux levels of the required energy range. This presentation will describe the plasma environment data analysis and modeling basis of the CRMFLX engineering environment model developed to predict the proton flux in the solar wind, magnetosheath, and magnetosphere phenomenological regions of geospace. The recently released CRMFLX Version 2 implementation includes an algorithm that propagates flux from an observation location to other regions of the magnetosphere based on convective ExB and VB-curvature particle drift motions. This technique has the advantage of more completely filling out the database and makes maximum use of limited data obtained during high Kp periods or in areas of the magnetosphere with poor satellite flux measurement coverage.
Chandra Captures Flare From Brown Dwarf
NASA Astrophysics Data System (ADS)
2000-07-01
The first flare ever seen from a brown dwarf, or failed star, was detected by NASA's Chandra X-ray Observatory. The bright X-ray flare has implications for understanding the explosive activity and origin of magnetic fields of extremely low mass stars. Chandra detected no X-rays at all from LP 944-20 for the first nine hours of a twelve hour observation, then the source flared dramatically before it faded away over the next two hours. "We were shocked," said Dr. Robert Rutledge of the California Institute of Technology in Pasadena, the lead author on the discovery paper to appear in the July 20 issue of Astrophysical Journal Letters. "We didn't expect to see flaring from such a lightweight object. This is really the 'mouse that roared.'" Chandra LP 944-20 X-ray Image Press Image and Caption The energy emitted in the brown dwarf flare was comparable to a small solar flare, and was a billion times greater than observed X-ray flares from Jupiter. The flaring energy is believed to come from a twisted magnetic field. "This is the strongest evidence yet that brown dwarfs and possibly young giant planets have magnetic fields, and that a large amount of energy can be released in a flare," said Dr. Eduardo Martin, also of Caltech and a member of the team. Professor Gibor Basri of the University of California, Berkeley, the principal investigator for this observation, speculated that the flare "could have its origin in the turbulent magnetized hot material beneath the surface of the brown dwarf. A sub-surface flare could heat the atmosphere, allowing currents to flow and give rise to the X-ray flare -- like a stroke of lightning." LP 944-20 is about 500 million years old and has a mass that is about 60 times that of Jupiter, or 6 percent that of the Sun. Its diameter is about one-tenth that of the Sun and it has a rotation period of less than five hours. Located in the constellation Fornax in the southern skies, LP 944-20 is one of the best studied brown dwarfs because it is only 16 light years from Earth. The absence of X-rays from LP 944-20 during the non-flaring period is in itself a significant result. It sets the lowest limit on steady X-ray power produced by a brown dwarf, and shows that the million degree Celsius upper atmospheres, or coronas, cease to exist as the surface temperature of a brown dwarf cools below about 2500 degrees Celsius. "This is an important confirmation of the trend that hot gas in the atmospheres of lower mass stars is produced only in flares," said Professor Lars Bildsten of the University of California, Santa Barbara, also a member of the team. Brown dwarfs have too little mass to sustain significant nuclear reactions in their cores. Their primary source of energy is the release of gravitational energy as they slowly contract. They are very dim less than a tenth of a percent as luminous as the Sun -- and of great interest to astronomers because they are poorly understood and probably a very common class of objects that are intermediate between normal stars and giant planets. The 12-hour observation of LP 944-20 was made on December 15, 1999, using the Advanced CCD Imaging Spectrometer (ACIS). The ACIS instrument was built for NASA by the Massachusetts Institute of Technology, Cambridge, and Pennsylvania State University, University Park. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov High resolution digital versions of the X-ray image (JPG, 300 dpi TIFF) are available at the Internet sites listed above.
The Chandra X-ray Observatory PSF Library
NASA Astrophysics Data System (ADS)
Karovska, M.; Beikman, S. J.; Elvis, M. S.; Flanagan, J. M.; Gaetz, T.; Glotfelty, K. J.; Jerius, D.; McDowell, J. C.; Rots, A. H.
Pre-flight and on-orbit calibration of the Chandra X-Ray Observatory provided a unique base for developing detailed models of the optics and detectors. Using these models we have produced a set of simulations of the Chandra point spread function (PSF) which is available to the users via PSF library files. We describe here how the PSF models are generated and the design and content of the Chandra PSF library files.
NASA Technical Reports Server (NTRS)
An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.; Kaspi, Victoria M.; Harrison, Fiona A.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fryer, Chris L.; Grefenstette, Brian W.;
2014-01-01
We present the first images of the pulsar wind nebula (PWN) MSH 15-52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find that the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron emitting electron distribution at approximately 200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509-58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50 of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N(sub H) map. We discuss possible origins of the shell-like structure and their implications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Hongjun; Kaspi, Victoria M.; Madsen, Kristin K.
2014-10-01
We present the first images of the pulsar wind nebula (PWN) MSH 15–52 in the hard X-ray band (≳8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3-7 keV band is similar to that seen in Chandra high-resolution imaging. However, the spatial extent decreases with energy, which we attribute to synchrotron energy losses as the particles move away from the shock. The hard-band maps show a relative deficit of counts in the northern region toward the RCW 89 thermal remnant, with significant asymmetry. We find thatmore » the integrated PWN spectra measured with NuSTAR and Chandra suggest that there is a spectral break at 6 keV, which may be explained by a break in the synchrotron-emitting electron distribution at ∼200 TeV and/or imperfect cross calibration. We also measure spatially resolved spectra, showing that the spectrum of the PWN softens away from the central pulsar B1509–58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models. We find non-monotonic structure in the variation with distance of spectral hardness within 50'' of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the N {sub H} map. We discuss possible origins of the shell-like structure and their implications.« less
Chandra X-ray Time-Domain Study of Alpha Centauri AB, Procyon, and their Environs
NASA Astrophysics Data System (ADS)
Ayres, Thomas R.
2018-06-01
For more than a decade, Chandra X-ray Observatory has been monitoring the central AB binary (G2V+K1V) of the α Centauri triple system with semi-annual pointings, using the High-Resolution Camera. This study has been extended in recent years to the mid-F subgiant, Procyon. The main objective is to follow the coronal (T~1MK) activity variations of the three stars, analogous to the Sun's 11-year sunspot cycle. Tentative periods of 20 yr and 8 yr have been deduced for α Cen A and B, respectively; but so far Procyon has shown only a slow, very modest decline in count rate, which could well reflect a slight instrumental degradation rather than intrinsic behavior. The negligible high-energy variability of Procyon sits in stark contrast to the dramatic factor of several to ten changes in the X-ray luminosities of α Cen AB and the Sun over their respective cycles. Further, although sunlike α Cen A has been observed by successive generations of X-ray observatories for nearly four decades, albeit sporadically, there are key gaps in the coverage that affect the determination of the cycle period. In fact, the most recent pointings suggest a downturn in A's count rate that might be signaling a shorter, more solar-like cycle following a delayed minimum in the 2005--2010 time frame (perhaps an exaggerated version of the extended solar minimum between recent Cycles 23 and 24). Beyond the coronal cycles of the three stars, the sequence of periodic X-ray images represents a unique time-domain history concerning steady as well as variable sources in the two 30'x30' fields. The most conspicuous of the variable objects -- in the α Cen field -- will be described here.
NASA Technical Reports Server (NTRS)
Cheung, C. C.; Donato, D.; Gehrels, N.; Sokolovsky, K. V.; Giroletti, M.
2012-01-01
We present Chandra ACIS-I X-ray observations of 0FGL J1311.9-3419 and 0FGL J1653.4-0200, the two brightest high Galactic latitude (absolute value (beta) >10 deg) gamma-ray sources from the three-month Fermi Large Area Telescope (LAT) bright source list that are still unidentified. Both were also detected previously by EGRET, and despite dedicated multi-wavelength follow-up, they are still not associated with established classes of gamma-ray emitters like pulsars or radio-loud active galactic nuclei. X-ray sources found in the ACIS-I fields of view are cataloged, and their basic properties are determined. These are discussed as candidate counterparts to 0FGL J1311.9-3419 and 0FGL J1653.4-0200, with particular emphasis on the brightest of the 9 and 13 Chandra sources detected within the respective Fermi-LAT 95% confidence regions. Further follow-up studies, including optical photometric and spectroscopic observations, are necessary to identify these X-ray candidate counterparts in order to ultimately reveal the nature of these enigmatic gamma-ray objects.
History of Chandra X-Ray Observatory
2000-12-18
This Chandra image of Jupiter shows concentrations of aurora x-rays near the north and south poles due to a single `hot spot' that pulsates with a period of 45 minutes, similar to high-latitude radio pulsation previously detected by NASA's Galileo and Cassini spacecraft. Previous x-ray detections of Jupiter have been made with other x-ray telescopes, but did not reveal that the sources of the x-rays, energetic oxygen and sulfur ions, would be located so near the poles. Previous theories held that ions were mostly coming from Jupiter's moon, lo. Chandra's ability to pinpoint the source of the x-rays discards this theory since ions coming from near lo's orbit carnot reach the observed high latitudes. One possibility is that particles flowing out from the Sun are captured in the outer regions of Jupiter's magnetic field, then accelerated and directed toward its magnetic pole. Once captured, the ions would bounce back and forth in the magnetic field from Jupiter's north pole to the south pole in an oscillating motion that could explain the pulsation.
Observation of variable pre-eclipse dips and disk winds in the eclipsing LMXB XTE J1710-281
NASA Astrophysics Data System (ADS)
Raman, Gayathri; Maitra, Chandreyee; Paul, Biswajit
2018-04-01
We report the first detection of highly ionized Fe species in the X-ray spectrum of the eclipsing and dipping Low Mass X-ray Binary XTE J1710-281. Using archival Chandra and Suzaku observations, we have carried out a spectro-timing analysis of the source during three different epochs. We compare the average orbital profile and obtain differences in pre-eclipse dip morphologies between different observation epochs. We observe an orbit to orbit evolution of the dips for the first time in this source in both the Chandra observations, reflecting changes in the structure of the accretion disc in timescales of hours. We further perform intensity resolved spectroscopy for both the Chandra and the Suzaku data to characterize the changes in the spectral parameters from the persistent to the dipping intervals. We find that the absorbers responsible for the dips, can be best described using a partially ionized partial covering absorber, with an ionization parameter, log(ξ) of ˜2. The photon index of the source remained at ˜2 during both the Chandra and the Suzaku observations. In the 0.6-9 keV Suzaku spectra, we detect a broad 0.72 keV Fe L-alpha emission line complex and two narrow absorption lines at ˜6.60 keV and ˜7.01 keV. The highly ionized Fe line signatures, being an indicator of accretion disc-winds, has been observed for the first time in XTE J1710-281.
Chandra Detects Enigmatic Point X-ray Sources in the Cat's Eye and the Helix Nebulae
NASA Astrophysics Data System (ADS)
Guerrero, M. A.; Gruendl, R. A.; Chu, Y.-H.; Kaler, J. B.; Williams, R. M.
2000-12-01
Central stars of planetary nebulae (PNe) with Teff greater than 100,000 K are expected to emit soft X-rays that peak below 0.1 keV. Chandra ACIS-S observations of the Cat's Eye Nebula (NGC 6543) and the Helix Nebula (NGC 7293) have detected point X-ray sources at their central stars. The point X-ray source at the central star of the Cat's Eye is both unknown previously and unexpected because the stellar temperature is only ~50,000 K. In contrast, the point X-ray source at the central star of the Helix was previously detected by ROSAT and its soft X-ray emission is expected because the stellar temperature is ~100,000 K. However, the Helix X-ray source also shows a harder X-ray component peaking at 0.8 keV that is unexpected and for which Chandra has provided the first high-resolution spectrum for detailed analysis. The spectra of the point X-ray sources in the Cat's Eye and the Helix show line features indicating an origin of thermal plasma emission. The spectrum of the Helix source can be fit by Raymond & Smith's model of plasma emission at ~9*E6 K. The spectrum of the Cat's Eye source has too few counts for a spectral fit, but appears to be consistent with plasma emission at 2-3*E6 K. The X-ray luminosities of both sources are ~5*E29 erg s-1. The observed plasma temperatures are too high for accretion disks around white dwarfs, but they could be ascribed to coronal X-ray emission. While central stars of PNe are not known to have coronae, the observed spectra are consistent with quiescent X-ray emission from dM flare stars. On the other hand, neither the central star of the Helix or the Cat's Eye are known to have a binary companion. It is possible that the X-rays from the Cat's Eye's central star originate from shocks in the stellar wind, but the central star of the Helix does not have a measurable fast stellar wind. This work is supported by the CXC grant number GO0-1004X.
IS IGR J11014-6103 A PULSAR WITH THE HIGHEST KNOWN KICK VELOCITY?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsick, John A.; Bodaghee, Arash; Fornasini, Francesca
2012-05-10
We report on Chandra X-ray and Parkes radio observations of IGR J11014-6103, which is a possible pulsar wind nebula with a complex X-ray morphology and a likely radio counterpart. With the superb angular resolution of Chandra, we find evidence that a portion of the extended emission may be related to a bow shock due to the putative pulsar moving through the interstellar medium. The inferred direction of motion is consistent with IGR J11014-6103 having been born in the event that produced the supernova remnant (SNR) MSH 11-61A. If this association is correct, then previous constraints on the expansion of MSHmore » 11-61A imply a transverse velocity for IGR J11014-6103 of 2400-2900 km s{sup -1}, depending on the SNR model used. This would surpass the kick velocities of any known pulsars and rival or surpass the velocities of any compact objects that are associated with SNRs. While it is important to confirm the nature of the source, our radio pulsation search did not yield a detection.« less
Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX
NASA Astrophysics Data System (ADS)
Townsley, Leisa K.; Broos, Patrick
2017-08-01
30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.
Chandra Observations of SN 1987A: The Soft X-Ray Light Curve Revisited
NASA Technical Reports Server (NTRS)
Helder, E. A.; Broos, P. S.; Dewey, D.; Dwek, E.; McCray, R.; Park, S.; Racusin, J. L.; Zhekov, S. A.; Burrows, D. N.
2013-01-01
We report on the present stage of SN 1987A as observed by the Chandra X-Ray Observatory. We reanalyze published Chandra observations and add three more epochs of Chandra data to get a consistent picture of the evolution of the X-ray fluxes in several energy bands. We discuss the implications of several calibration issues for Chandra data. Using the most recent Chandra calibration files, we find that the 0.5-2.0 keV band fluxes of SN 1987A have increased by approximately 6 x 10(exp-13) erg s(exp-1)cm(exp-2) per year since 2009. This is in contrast with our previous result that the 0.5-2.0 keV light curve showed a sudden flattening in 2009. Based on our new analysis, we conclude that the forward shock is still in full interaction with the equatorial ring.
Chandra and the VLT Jointly Investigate the Cosmic X-Ray Background
NASA Astrophysics Data System (ADS)
2001-03-01
Summary Important scientific advances often happen when complementary investigational techniques are brought together . In the present case, X-ray and optical/infrared observations with some of the world's foremost telescopes have provided the crucial information needed to solve a 40-year old cosmological riddle. Very detailed observations of a small field in the southern sky have recently been carried out, with the space-based NASA Chandra X-Ray Observatory as well as with several ground-based ESO telescopes, including the Very Large Telescope (VLT) at the Paranal Observatory (Chile). Together, they have provided the "deepest" combined view at X-ray and visual/infrared wavelengths ever obtained into the distant Universe. The concerted observational effort has already yielded significant scientific results. This is primarily due to the possibility to 'identify' most of the X-ray emitting objects detected by the Chandra X-ray Observatory on ground-based optical/infrared images and then to determine their nature and distance by means of detailed (spectral) observations with the VLT . In particular, there is now little doubt that the so-called 'X-ray background' , a seemingly diffuse short-wave radiation first detected in 1962, in fact originates in a vast number of powerful black holes residing in active nuclei of distant galaxies . Moreover, the present investigation has permitted to identify and study in some detail a prime example of a hitherto little known type of object, a distant, so-called 'Type II Quasar' , in which the central black hole is deeply embedded in surrounding gas and dust. These achievements are just the beginning of a most fruitful collaboration between "space" and "ground". It is yet another impressive demonstration of the rapid progress of modern astrophysics, due to the recent emergence of a new generation of extremely powerful instruments. PR Photo 09a/01 : Images of a small part of the Chandra Deep Field South , obtained with ESO telescopes in three different wavebands. PR Photo 09b/01 : A VLT/FORS1 spectrum of a 'Type II Quasar' discovered during this programme. The 'Chandra Deep Field South' and the X-Ray Background ESO PR Photo 09a/01 ESO PR Photo 09a/01 [Preview - JPEG: 400 x 183 pix - 76k] [Normal - JPEG: 800 x 366 pix - 208k] [Hires - JPEG: 3000 x 1453 pix - 1.4M] Caption : PR Photo 09a/01 shows optical/infrared images in three wavebands ('Blue', 'Red', 'Infrared') from ESO telescopes of the Type II Quasar CXOCDFS J033229.9 -275106 (at the centre), one of the distant X-ray sources identified in the Chandra Deep Field South (CDFS) area during the present study. Technical information about these photos is available below. The 'Chandra Deep Field South (CDFS)' is a small sky area in the southern constellation Fornax (The Oven). It measures about 16 arcmin across, or roughly half the diameter of the full moon. There is unusually little gas and dust within the Milky Way in this direction and observations towards the distant Universe within this field thus profit from an particularly clear view. That is exactly why this sky area was selected by an international team of astronomers [1] to carry out an ultra-deep survey of X-ray sources with the orbiting Chandra X-Ray Observatory . In order to detect the faintest possible sources, NASA's satellite telescope looked in this direction during an unprecedented total of almost 1 million seconds of exposure time (11.5 days). The main scientific goal of this survey is to understand the nature and evolution of the elusive sources that make up the 'X-ray background' . This diffuse glare in the X-ray sky was discovered by Riccardo Giacconi and his collaborators during a pioneering rocket experiment in 1962. The excellent imaging quality of Chandra (the angular resolution is about 1 arcsec) makes it possible to do extremely deep exposures without encountering problems introduced by the "confusion effect". This refers to the overlapping of images of sources that are seen close to each other in the sky and thus are difficult to study individually. Previous X-ray satellites were not able to obtain sufficiently sharp X-ray images and the earlier deep X-ray surveys therefore suffered severely from this effect. Moreover, Chandra has much better sensitivity at shorter wavelengths (higher energies) which are less affected by obscuration effects. It can therefore better detect faint sources that emit very energetic ("hard") X-rays. X-ray and optical surveys in the Chandra Deep Field South The one-million second Chandra observations were completed in December 2000. In parallel, a group of astronomers based at institutes in Europe and the USA (the CFDS-team [1]) has been collecting deep images and extensive spectroscopic data with the VLT during the past 2 years (cf. PR Photo 09a/01 ). Their aim was to 'identify' the Chandra X-ray sources, i.e., to unveil their nature and measure their distances. For the identification of these sources, the team has also made extensive use of the observations that were carried out as a part of the comprehensive ESO Imaging Survey Project (EIS). More than 300 X-ray sources were detected in the CDFS by Chandra . A significant fraction of these objects shine so faintly in the optical and near-infrared wavebands that only long-exposure observations with the VLT have been able to detect them. During five observing nights with the FORS1 multi-mode instrument at the 8.2-m VLT ANTU telescope in October and November 2000, the CDFS team was able to identify and obtain spectra of more than one hundred of the X-ray sources registered by Chandra . Nature of the X-ray sources The first results from this study have now confirmed that the 'hard' X-ray background is mainly due to Active Galactic Nuclei (AGN) . The observations also reveal that a large fraction of them are of comparatively low brightness (referred to as 'low-luminosity AGN'), heavily enshrouded by dust and located at distances of 8,000 - 9,000 million light-years (corresponding to a redshift of about 1 and a look-back time of 57% of the age of the Universe [2]) . It is generally believed that all these sources are powered by massive black holes at their centres. Previous X-ray surveys missed most of these objects because they were too faint to be observed by the telescopes then available, in particular at short X-ray wavelengths ('hard X-ray photons') where more radiation from the highly active centres is able to pass through the surrounding, heavily absorbing gas and dust clouds. Other types of well-known X-ray sources, e.g., QSOs ('quasars' = high-luminosity AGN) as well as clusters or groups of galaxies were also detected during these observations. Studies of all classes of objects in the CDFS are also being carried out by several other European groups. This sky field, already a standard reference in the southern hemisphere, will be the subject of several multi-wavelength investigations for many years to come. A prime example will be the Great Observatories Origins Deep Survey (GOODS) which will be carried out by the NASA SIRTF infrared satellite in 2003. Discovery of a distant Type II Quasar ESO PR Photo 09b/01 ESO PR Photo 09b/01 [Preview - JPEG: 400 x 352 pix - 56k] [Normal - JPEG: 800 x 703 pix - 128k] Caption : PR Photo 09b/01 displays the optical spectrum of the distant Type II Quasar CXOCDFS J033229.9 -275106 in the Chandra Deep Field South (CDFS), obtained with the FORS1 multi-mode instrument at VLT ANTU. Strong, redshifted emission lines of Hydrogen and ionised Helium, Oxygen, Nitrogen and Carbon are marked. Technical information about this photo is available below. One particular X-ray source that was identified with the VLT during the present investigation has attracted much attention - it is the discovery of a dust-enshrouded quasar (QSO) at very high redshift ( z = 3.7, corresponding to a distance of about 12,000 million light-years; [2]), cf. PR Photo 09a/01 and PR Photo 09b/01 . It is the first very distant representative of this elusive class of objects (referred to as ' Type II Quasars ') which are believed to account for approximately 90% of the black-hole-powered quasars in the distant Universe. The 'sum' of the identified Chandra X-ray sources in the CDFS was found to match both the intensity and the spectral properties of the observed X-ray background. This important result is a significant step forward towards the definitive resolution of this long-standing cosmological problem. Naturally, ESO astronomer Piero Rosati and his colleagues are thrilled: " It is clearly the combination of the new and detailed Chandra X-ray observations and the enormous light-gathering power of the VLT that has been instrumental to this success. " However, he says, " the identification of the remaining Chandra X-ray sources will be the next challenge for the VLT since they are extremely faint. This is because they are either heavily obscured by dust or because they are extremely distant ". More Information This Press Release is issued simultaneously with a NASA Press Release (see also the Harvard site ). Some of the first results are described in a research paper ("First Results from the X-ray and Optical Survey of the Chandra Deep Field South" available on the web at astro-ph/0007240. More information about science results from the Chandra X-Ray Observatory may be found at: http://asc.harvard.edu/. The optical survey of CDFS at ESO with the Wide-Field Imager is described in connection with PR Photos 46a-b/99 ('100,000 galaxies at a glance'). An image of the Chandra Deep Field South is available at the ESO website on the EIS Image Gallery webpage. . Notes [1]: The Chandra Team is lead by Riccardo Giacconi (Association of Universities Inc. [AUI], Washington, USA) and includes: Piero Rosati , Jacqueline Bergeron , Roberto Gilmozzi , Vincenzo Mainieri , Peter Shaver (European Southern Observatory [ESO]), Paolo Tozzi , Mario Nonino , Stefano Borgani (Osservatorio Astronomico, Trieste, Italy), Guenther Hasinger , Gyula Szokoly (Astrophysical Institute Potsdam [AIP], Germany), Colin Norman , Roberto Gilli , Lisa Kewley , Wei Zheng , Andrew Zirm , JungXian Wang (Johns Hopkins University [JHU], Baltimore, USA), Ken Kellerman (National Radio Astronomy Observatory [NRAO], Charlottesville, USA), Ethan Schreier , Anton Koekemoer and Norman Grogin (Space Telescope Science Institute (STScI), Baltimore, USA). [2] In astronomy, the redshift denotes the fraction by which the lines in the spectrum of an object are shifted towards longer wavelengths. The observed redshift of a distant galaxy or quasar gives a direct estimate of the apparent recession velocity as caused by the universal expansion. Since the expansion rate increases with the distance, the velocity is itself a function (the Hubble relation) of the distance to the object. Redshifts of 1 and 3.7 correspond to when the Universe was about 43% and 12% of its present age. The distances indicated in this Press Release depend on the cosmological model chosen and are based on an age of 19,000 million years. Technical information about the photos PR Photo 09a/01 shows B-, R- and I-band images of a 20 x 20 arcsec 2 area within the CDFS, centred on the Type II Quasar CXOCDFS J033229.9 -275106 . They were obtained with the MPG/ESO 2.2-m telescope and the Wide-Field Imager (WFI) at La Silla (B-band; 8 hrs exposure time) and the 8.2-m VLT ANTU telescope with the FORS1 multi-mode instrument at Paranal (R- and I-bands; each 2 hrs exposure). The measured magnitudes are R=23.5 and I=22.7. The overlaid contours show the associated Chandra X-ray source (smoothed with a sigma = 1 arcsec gaussian profile). North is up and East is left. The spectrum shown in PR Photo 09b/01 was obtained on November 25, 2000, with VLT ANTU and FORS1 in the multislit mode (150-I grism, 1.2 arcsec slit). The exposure time was 3 hours.
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, looking over the Inertial Upper Stage booster being readied for their mission are (left to right) STS-93 Pilot Jeffrey S. Ashby and Mission Specialists Michel Tognini, who represents the Centre National d'Etudes Spatiales (CNES), and Steven A. Hawley. On the far right is Eric Herrburger, with Boeing. Other crew members (not shown) are Commander Eileen Collins and Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Mission Specialist Catherine G. Coleman kneels next to the Inertial Upper Stage booster being readied for the mission. Other crew members (not shown) are Commander Eileen Collins, Pilot Jeffrey S. Ashby and Mission Specialists Steven A. Hawley and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Pilot Jeffrey S. Ashby and Mission Specialist Steven A. Hawley look over the Inertial Upper Stage booster being readied for their mission. Other crew members (not shown) are Commander Eileen Collins and Mission Specialists Catherine G. Coleman and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
Compton thick AGN in Chandra sureys
NASA Astrophysics Data System (ADS)
Brightman, Murray; Nandra, Kirpal
2014-07-01
We present the results from the X-ray spectral analysis of active galactic nuclei (AGN) in the Chandra Deep Field-South, AEGIS-XD and Chandra-COSMOS surveys, focussing on the identification and characterisation of the most heavily obscured, Compton thick (CT, N H > 104 cm-2) sources. Our sample is comprised of 3088 X-ray selected sources, which has a high rate of redshift completeness (97%). The aim is to produce the largest and cleanest uniform sample of these sources from the data as possible. We identify these sources through X-ray spectral fitting, utilising torus spectral models designed for heavily obscured AGN which self consistently include the spectral signatures of heavy absorption, being Compton scattering, photoelectric absorption and iron Kα fluorescence. We identify a total of 163 CT AGN covering an intrinsic 2-10 keV X-ray luminosity range of 102 -3 × 105 erg s-1 and from z = 0.1-7.
Observations of the Crab Nebula with the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, Martin C.
2012-01-01
The Crab nebula and its associated pulsar have been the target of thousands of observations at all wavelengths over the years. Nevertheless, the system continues to provide new surprises and observational insights into its physical mechanisms. We shall discuss a number of new results we have obtained through Chandra observations. Results include highly detailed pulse-phase spectroscopy which poses challenges to our understanding of pulsar emission mechanisms, a new and precise look at the pulsar geometry, a study of the spatial and temporal variation(s) of the southern jet, and the results of a search for the site of the recently-discovered gamma ]ray flares. We have been using the Chandra X -Ray observatory to monitor the Crab on a monthly cadence since just after the 2010 September gamma ]ray flare. We were fortunate to trigger series of preplanned target of opportunity observations during the 2011 April flare.
The Chandra Source Catalog 2.0: Building The Catalog
NASA Astrophysics Data System (ADS)
Grier, John D.; Plummer, David A.; Allen, Christopher E.; Anderson, Craig S.; Budynkiewicz, Jamie A.; Burke, Douglas; Chen, Judy C.; Civano, Francesca Maria; D'Abrusco, Raffaele; Doe, Stephen M.; Evans, Ian N.; Evans, Janet D.; Fabbiano, Giuseppina; Gibbs, Danny G., II; Glotfelty, Kenny J.; Graessle, Dale E.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; Houck, John C.; Lauer, Jennifer L.; Laurino, Omar; Lee, Nicholas P.; Martínez-Galarza, Juan Rafael; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph; McLaughlin, Warren; Morgan, Douglas L.; Mossman, Amy E.; Nguyen, Dan T.; Nichols, Joy S.; Nowak, Michael A.; Paxson, Charles; Primini, Francis Anthony; Rots, Arnold H.; Siemiginowska, Aneta; Sundheim, Beth A.; Tibbetts, Michael; Van Stone, David W.; Zografou, Panagoula
2018-01-01
To build release 2.0 of the Chandra Source Catalog (CSC2), we require scientific software tools and processing pipelines to evaluate and analyze the data. Additionally, software and hardware infrastructure is needed to coordinate and distribute pipeline execution, manage data i/o, and handle data for Quality Assurance (QA) intervention. We also provide data product staging for archive ingestion.Release 2 utilizes a database driven system used for integration and production. Included are four distinct instances of the Automatic Processing (AP) system (Source Detection, Master Match, Source Properties and Convex Hulls) and a high performance computing (HPC) cluster that is managed to provide efficient catalog processing. In this poster we highlight the internal systems developed to meet the CSC2 challenge.This work has been supported by NASA under contract NAS 8-03060 to the Smithsonian Astrophysical Observatory for operation of the Chandra X-ray Center.
1999-06-24
KENNEDY SPACE CENTER, FLA. -- At Launch Pad 39B, the payload canister carrying the Chandra X-ray Observatory nears the end of its ascent up the Rotating Service Structure (RSS) to the Payload Changeout Room. Umbilical hoses, which maintain a controlled environment for the observatory, are still attached to the payload canister transporter below that transferred the payload from the Vertical Processing Facility. The observatory will be moved into the payload bay of the Space Shuttle Columbia, seen in the background, after the RSS rotates to a position behind Columbia. The world's most powerful X-ray telescope, Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Chandra is scheduled for launch no earlier than July 20 aboard Space Shuttle Columbia, on mission STS-93
Chandra HETGs Observation of the Warm Absorber in Mrk 290
NASA Astrophysics Data System (ADS)
Zhang, Shuinai; Marshall, H. L.; Ji, L. L.
2009-01-01
Four Chandra High Energy Transmission Grating spectra of Mrk 290, a bright Seyfert 1, were carried out in 2003 with a total integration time of 251 ks. The nuclear X-ray spectrum is best described by a absorbed power law of photon index Γ 1.83 plus a black body model with a temperature of 90 eV. Using the combined spectra, we detect significant absorption lines due to intervening ionized outflowing gas. Some absorption lines show a discrete velocity structure. The outflow velocity 500 km/s is comparable with that in ultraviolet band. Support for this work was provided by the National Aeronautic Space Administration through the Smithonian Astrophysics of Observation contract SV3-73016 to MIT for support of the Chandra X-ray Center, which is operated by SAO for and on behalf of NASA under contract NAS8-03060.
Giant Galaxy's Violent Past Comes Into Focus
NASA Astrophysics Data System (ADS)
2004-05-01
Long-exposure images of the giant elliptical galaxy M87 by NASA's Chandra X-ray Observatory, together with radio observations, have provided spectacular evidence of repetitive outbursts from the vicinity of the galaxy's supermassive black hole. Magnetized rings, bubbles, plumes and jets ranging in size from a few thousand to a few hundred thousand light years point to ongoing violent activity for hundreds of millions of years. "The hot X-ray emitting gas extending for hundreds of thousands of light years around M87 reveals a record of episodes of black hole activity," said Paul Nulsen of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. and an author of an Astrophysical Journal paper describing the latest Chandra observations. "With these detailed observations, we are beginning to understand how the central supermassive black hole transfers enormous amounts of energy over vast reaches of space." M87, located in the middle of the Virgo galaxy cluster, is surrounded by an extensive atmosphere of multi-million degree Celsius gas. Chandra's long-exposure image has allowed astronomers to see in more detail structures discovered by previous observations with Chandra and other X-ray telescopes, to discover new features, and to make specific comparisons with radio images, which trace the presence of high-energy electrons in a magnetic field." X-ray Image of M87 Chandra X-ray Image of M87, Close-Up The picture that emerges is one in which the infall of material toward a central supermassive black hole produces a magnetized jet of high-energy particles that blasts away from the vicinity of the black hole at near the speed of light. As a jet plows into the surrounding gas, a buoyant, magnetized bubble of high-energy particles is created, and an intense sound wave rushes ahead of the expanding bubble. In Chandra's image of M87, X-rays from the jet dominate the central region of the galaxy. The jet is thought to be pointed at a small angle toward the line of sight, out of the plane of the image. Bright arcs around dark cavities of faint X-ray emission appear to be gas that has been swept up on rising, buoyant bubbles that were created a few million years ago (in M87 time - M87 is 50 million light years from Earth). These bubbles, which rise like hot air from a fire or explosion in the atmosphere, show up as bright regions in radio images. An alternative interpretation, presented in the June 1, 2004 issue of Astrophysical Journal Letters by Hua Feng of Tsinghau University in China and colleagues, is that the rings are shock waves that surround the jet and are seen in projection. An image processed to bring out faint features reveals two circular rings with radii of 45 thousand and 55 thousand light years, respectively. These features are likely sound waves produced by earlier explosions about 10 million and 14 million years ago, respectively. A very faint arc at an even larger distance has a probable age of 100 million years. X-ray Image of M87 Chandra X-ray Image of M87, Minus Radial Gradient Spectacular, curved X-ray plumes extending from the upper left to the lower right illustrate in dramatic fashion how the central black hole can affect the galaxy and its environment over huge distances. The arm on the upper left extends more than 75 thousand light years, and the one on the lower right more than 100 thousand light years from the center of the galaxy. These features are thought to be gas carried out from the center of the galaxy onbuoyant bubbles created by outbursts tens of millions of years ago. A growing body of evidence from other galaxy clusters suggests that episodic outbursts from supermassive black holes in giant, centrally located galaxies are a common feature. These outbursts, which produce magnetized jets and bubbles of high energy particles, along with mammoth sound waves, could be due to the self-regulated inflow of gas into the black hole – gas around the black hole cools and flows inward to feed the black hole, producing an outburst which shuts down the inflow for a few million years, at which point the cycle begins again. Or, the cause could be a much more dramatic event, like the cannibalization of a smaller galaxy, with the subsequent merger of two supermassive black holes in the center. The results from Nulsen's team, which included William Forman and other colleagues from the CfA, were based on approximately 40 hours of Chandra observations with its Advanced CCD Imaging Spectrometer. Andrew Young of the University of Maryland in College Park, and colleagues, have published a paper identifying many of the X-ray features in M87 in the November 10, 2002 issue of The Astrophysical Journal based on a shorter Chandra observation. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the Office of Space Science, NASA Headquarters, Washington. Northrop Grumman of Redondo Beach, Calif., formerly TRW, Inc., was the prime development contractor for the observatory. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
HIGH PRECISION K-SHELL PHOTOABSORPTION CROSS SECTIONS FOR ATOMIC OXYGEN: EXPERIMENT AND THEORY
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLaughlin, B. M.; Ballance, C. P.; Bowen, K. P.
2013-07-01
Photoabsorption of atomic oxygen in the energy region below the 1s {sup -1} threshold in X-ray spectroscopy from Chandra and XMM-Newton is observed in a variety of X-ray binary spectra. Photoabsorption cross sections determined from an R-matrix method with pseudo-states and new, high precision measurements from the Advanced Light Source (ALS) are presented. High-resolution spectroscopy with E/{Delta}E Almost-Equal-To 4250 {+-} 400 was obtained for photon energies from 520 eV to 555 eV at an energy resolution of 124 {+-} 12 meV FWHM. K-shell photoabsorption cross section measurements were made with a re-analysis of previous experimental data on atomic oxygen atmore » the ALS. Natural line widths {Gamma} are extracted for the 1s {sup -1}2s {sup 2}2p {sup 4}({sup 4} P)np {sup 3} P Degree-Sign and 1s {sup -1}2s {sup 2}2p {sup 4}({sup 2} P)np {sup 3} P Degree-Sign Rydberg resonances series and compared with theoretical predictions. Accurate cross sections and line widths are obtained for applications in X-ray astronomy. Excellent agreement between theory and the ALS measurements is shown which will have profound implications for the modeling of X-ray spectra and spectral diagnostics.« less
High Resolution Studies of Mass Loss from Massive Binary Stars
NASA Astrophysics Data System (ADS)
Corcoran, Michael F.; Gull, Theodore R.; Hamaguchi, Kenji; Richardson, Noel; Madura, Thomas; Post Russell, Christopher Michael; Teodoro, Mairan; Nichols, Joy S.; Moffat, Anthony F. J.; Shenar, Tomer; Pablo, Herbert
2017-01-01
Mass loss from hot luminous single and binary stars has a significant, perhaps decisive, effect on their evolution. The combination of X-ray observations of hot shocked gas embedded in the stellar winds and high-resolution optical/UV spectra of the cooler mass in the outflow provides unique ways to study the unstable process by which massive stars lose mass both through continuous stellar winds and rare, impulsive, large-scale mass ejections. The ability to obtain coordinated observations with the Hubble Space Telescope Imaging Spectrograph (HST/STIS) and the Chandra High-Energy Transmission Grating Spectrometer (HETGS) and other X-ray observatories has allowed, for the first time, studies of resolved line emisssion over the temperature range of 104- 108K, and has provided observations to confront numerical dynamical models in three dimensions. Such observations advance our knowledge of mass-loss asymmetries, spatial and temporal variabilities, and the fundamental underlying physics of the hot shocked outflow, providing more realistic constraints on the amount of mass lost by different luminous stars in a variety of evolutionary stages. We discuss the impact that these joint observational studies have had on our understanding of dynamical mass outflows from massive stars, with particular emphasis on two important massive binaries, Delta Ori Aa, a linchpin of the mass luminosity relation for upper HRD main sequence stars, and the supermassive colliding wind binary Eta Carinae.
Revisiting the Short-term X-ray Spectral Variability of NGC 4151 with Chandra
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Risaliti, G.; Fabbiano, G.; Elvis, M.; Zezas, A.; Karovska, M.
2010-05-01
We present new X-ray spectral data for the Seyfert 1 nucleus in NGC 4151 observed with Chandra for ~200 ks. A significant ACIS pileup is present, resulting in a nonlinear count rate variation during the observation. With pileup corrected spectral fitting, we are able to recover the spectral parameters and find consistency with those derived from unpiled events in the ACIS readout streak and outer region from the bright nucleus. The absorption corrected 2-10 keV flux of the nucleus varied between 6 × 10-11 erg s-1 cm-2 and 10-10 erg s-1 cm-2 (L 2-10 keV ~ 1.3-2.1 × 1042 erg s-1). Similar to earlier Chandra studies of NGC 4151 at a historical low state, the photon indices derived from the same absorbed power-law model are Γ ~ 0.7-0.9. However, we show that Γ is highly dependent on the adopted spectral models. Fitting the power-law continuum with a Compton reflection component gives Γ ~ 1.1. By including passage of non-uniform X-ray obscuring clouds, we can reproduce the apparent flat spectral states with Γ ~ 1.7, typical for Seyfert 1 active galactic nuclei. The same model also fits the hard spectra from previous ASCA "long look" observation of NGC 4151 in the lowest flux state. The spectral variability during our observation can be interpreted as variations in intrinsic soft continuum flux relative to a Compton reflection component that is from distant cold material and constant on short timescale, or variations of partially covering absorber in the line of sight toward the nucleus. An ionized absorber model with ionization parameter log ξ ~ 0.8-1.1 can also fit the low-resolution ACIS spectra. If the partial covering model is correct, adopting a black hole mass M_{BH}˜ 4.6× 10^7 M sun we constrain the distance of the obscuring cloud from the central black hole to be r <~ 9 lt-day, consistent with the size of the broad emission line region of NGC 4151 from optical reverberation mapping.
Nustar and Chandra Insight into the Nature of the 3-40 Kev Nuclear Emission in Ngc 253
NASA Technical Reports Server (NTRS)
Lehmer, Bret D.; Wik, Daniel R.; Hornschemeier, Ann E.; Ptak, Andrew; Antoniu, V.; Argo, M.K.; Bechtol, K.; Boggs, S.; Christensen, F.E.; Craig, W.W.;
2013-01-01
We present results from three nearly simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR) and Chandra monitoring observations between 2012 September 2 and 2012 November 16 of the local star-forming galaxy NGC 253. The 3-40 kiloelectron volt intensity of the inner approximately 20 arcsec (approximately 400 parsec) nuclear region, as measured by NuSTAR, varied by a factor of approximately 2 across the three monitoring observations. The Chandra data reveal that the nuclear region contains three bright X-ray sources, including a luminous (L (sub 2-10 kiloelectron volt) approximately few × 10 (exp 39) erg per s) point source located approximately 1 arcsec from the dynamical center of the galaxy (within the sigma 3 positional uncertainty of the dynamical center); this source drives the overall variability of the nuclear region at energies greater than or approximately equal to 3 kiloelectron volts. We make use of the variability to measure the spectra of this single hard X-ray source when it was in bright states. The spectra are well described by an absorbed (power-law model spectral fit value, N(sub H), approximately equal to 1.6 x 10 (exp 23) per square centimeter) broken power-law model with spectral slopes and break energies that are typical of ultraluminous X-ray sources (ULXs), but not active galactic nuclei (AGNs). A previous Chandra observation in 2003 showed a hard X-ray point source of similar luminosity to the 2012 source that was also near the dynamical center (Phi is approximately equal to 0.4 arcsec); however, this source was offset from the 2012 source position by approximately 1 arcsec. We show that the probability of the 2003 and 2012 hard X-ray sources being unrelated is much greater than 99.99% based on the Chandra spatial localizations. Interestingly, the Chandra spectrum of the 2003 source (3-8 kiloelectron volts) is shallower in slope than that of the 2012 hard X-ray source. Its proximity to the dynamical center and harder Chandra spectrum indicate that the 2003 source is a better AGN candidate than any of the sources detected in our 2012 campaign; however, we were unable to rule out a ULX nature for this source. Future NuSTAR and Chandra monitoring would be well equipped to break the degeneracy between the AGN and ULX nature of the 2003 source, if again caught in a high state.
The Spectral Energy Distribution of the Seyfert Galaxy Ton S180
NASA Technical Reports Server (NTRS)
Turner, T. J.; Romano, P.; Kraemer, S. B.; George, I. M.; Yaqoob, T.; Crenshaw, D. M.; Storm, J.; Alloin, D.; Lazzaro, D.; DaSilva, L.;
2001-01-01
We present spectral results from a multi-satellite, broad-band campaign on the Narrow-line Seyfert 1 galaxy Ton S180 performed at the end of 1999. We discuss the spectral-energy distribution of the source, combining simultaneous Chandra, ASCA and EUVE data with contemporaneous FUSE, HST, and ground-based optical and infrared data. The resulting SED shows that most of the, energy is emitted in the 10 - 100 eV regime, which must be dominated by the primary energy source. No spectral turnover is evident in the UV regime. This, the strong soft X-ray emission, and the overall shape of the SED indicate that emission from the accretion disk peaks between 15 and 100 eV. High resolution FUSE spectra showing UV absorption due to OVI and the lack of detectable X-ray absorption in the Candra spectrum demonstrate the presence of a low column density of highly ionized gas along our line of sight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kastner, J. H.; Montez, R. Jr.; Rapson, V.
2012-08-15
We present an overview of the initial results from the Chandra Planetary Nebula Survey (CHANPLANS), the first systematic (volume-limited) Chandra X-Ray Observatory survey of planetary nebulae (PNe) in the solar neighborhood. The first phase of CHANPLANS targeted 21 mostly high-excitation PNe within {approx}1.5 kpc of Earth, yielding four detections of diffuse X-ray emission and nine detections of X-ray-luminous point sources at the central stars (CSPNe) of these objects. Combining these results with those obtained from Chandra archival data for all (14) other PNe within {approx}1.5 kpc that have been observed to date, we find an overall X-ray detection rate ofmore » {approx}70% for the 35 sample objects. Roughly 50% of the PNe observed by Chandra harbor X-ray-luminous CSPNe, while soft, diffuse X-ray emission tracing shocks-in most cases, 'hot bubbles'-formed by energetic wind collisions is detected in {approx}30%; five objects display both diffuse and point-like emission components. The presence (or absence) of X-ray sources appears correlated with PN density structure, in that molecule-poor, elliptical nebulae are more likely to display X-ray emission (either point-like or diffuse) than molecule-rich, bipolar, or Ring-like nebulae. All but one of the point-like CSPNe X-ray sources display X-ray spectra that are harder than expected from hot ({approx}100 kK) central stars emitting as simple blackbodies; the lone apparent exception is the central star of the Dumbbell nebula, NGC 6853. These hard X-ray excesses may suggest a high frequency of binary companions to CSPNe. Other potential explanations include self-shocking winds or PN mass fallback. Most PNe detected as diffuse X-ray sources are elliptical nebulae that display a nested shell/halo structure and bright ansae; the diffuse X-ray emission regions are confined within inner, sharp-rimmed shells. All sample PNe that display diffuse X-ray emission have inner shell dynamical ages {approx}< 5 Multiplication-Sign 10{sup 3} yr, placing firm constraints on the timescale for strong shocks due to wind interactions in PNe. The high-energy emission arising in such wind shocks may contribute to the high excitation states of certain archetypical 'hot bubble' nebulae (e.g., NGC 2392, 3242, 6826, and 7009).« less
Mrs. Chandrasekhar poses with model of the Chandra X-ray Observatory
NASA Technical Reports Server (NTRS)
1999-01-01
Mrs. Lalitha Chandrasekhar, wife of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar, poses with a model of the Chandra X-ray Observatory in the TRW Media Hospitality Tent at the NASA Press Site at KSC. The name 'Chandra,' a shortened version of Chandrasekhar's name which he preferred among friends and colleagues, was chosen in a contest to rename the telescope. 'Chandra' also means 'Moon' or 'luminous' in Sanskrit. The observatory is scheduled to be launched aboard Columbia on Space Shuttle mission STS-93.
UNBIASED CORRECTION RELATIONS FOR GALAXY CLUSTER PROPERTIES DERIVED FROM CHANDRA AND XMM-NEWTON
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Hai-Hui; Li, Cheng-Kui; Chen, Yong
2015-01-20
We use a sample of 62 clusters of galaxies to investigate the discrepancies between the gas temperature and total mass within r {sub 500} from XMM-Newton and Chandra data. Comparisons of the properties show that (1) both the de-projected and projected temperatures determined by Chandra are higher than those of XMM-Newton and there is a good linear relationship for the de-projected temperatures: T {sub Chandra} = 1.25 × T {sub XMM}–0.13. (2) The Chandra mass is much higher than the XMM-Newton mass with a bias of 0.15 and our mass relation is log{sub 10} M {sub Chandra} = 1.02 × log{sub 10}more » M {sub XMM}+0.15. To explore the reasons for the discrepancy in mass, we recalculate the Chandra mass (expressed as M{sub Ch}{sup mo/d}) by modifying its temperature with the de-projected temperature relation. The results show that M{sub Ch}{sup mo/d} is closer to the XMM-Newton mass with the bias reducing to 0.02. Moreover, M{sub Ch}{sup mo/d} are corrected with the r {sub 500} measured by XMM-Newton and the intrinsic scatter is significantly improved with the value reducing from 0.20 to 0.12. These mean that the temperature bias may be the main factor causing the mass bias. Finally, we find that M{sub Ch}{sup mo/d} is consistent with the corresponding XMM-Newton mass derived directly from our mass relation at a given Chandra mass. Thus, the de-projected temperature and mass relations can provide unbiased corrections for galaxy cluster properties derived from Chandra and XMM-Newton.« less
Chandra Pinpoints Edge Of Accretion Disk Around Black Hole
NASA Astrophysics Data System (ADS)
2001-05-01
Using four NASA space observatories, astronomers have shown that a flaring black hole source has an accretion disk that stops much farther out than some theories predict. This provides a better understanding of how energy is released when matter spirals into a black hole. On April 18, 2000, the Hubble Space Telescope and the Extreme Ultraviolet Explorer observed ultraviolet radiation from the object known as XTE J1118+480, a black hole roughly seven times the mass of the Sun, locked in a close binary orbit with a Sun-like star. Simultaneously, the Rossi X-ray Timing Explorer observed high-energy X-rays from matter plunging toward the black hole, while the Chandra X-ray Observatory focused on the critical energy band between the ultraviolet and high-energy X-rays, providing the link that tied all the data together. "By combining the observations of XTE J1118+480 at many different wavelengths, we have found the first clear evidence that the accretion disk can stop farther out," said Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics who led the Chandra observations. "The Chandra data indicate that this accretion disk gets no closer to the event horizon than about 600 miles, a far cry from the 25 miles that some had expected." Scientists theorize that the accretion disk is truncated there because the material erupts into a hot bubble of gas before taking its final plunge into the black hole. Matter stripped from a companion star by a black hole can form a flat, pancake-like structure, called an “accretion disk.” As material spirals toward the inner edge of the accretion disk, it is heated by the immense gravity of the black hole, which causes it to radiate in X-rays. By examining the X-rays, researchers can gauge how far inward the accretion disk extends. Most astronomers agree that when material is transferred onto the black hole at a high rate, then the accretion disk will reach to within about 25 miles of the event horizon -- the surface of “no return” for matter or light falling into a black hole. However, scientists disagree on how close the accretion disk comes when the rate of transfer is much less. "The breakthrough came when Chandra did not detect the X-ray signature one would expect if the accretion disk came as near as 25 miles," said Ann Esin, a Caltech theoretical astrophysicist who led a group that explored the implications of the observations. "This presents a fundamental problem for models in which the disk extends close to the event horizon." In March 2000, XTE J1118+480 experienced a sudden eruption in X-rays that led to the discovery of the object by RXTE. The X-ray source was in a direction where absorption by gas and dust was minimal, allowing ultraviolet and low-energy X-rays to be observed. In the following month, an international team organized observations of XTE J1118+480 in other wavelengths. Chandra observed XTE J1118+480 for 27,000 seconds with its Low-Energy Transmission Grating (LETG) and the Advanced CCD Imaging Spectrometer (ACIS). The research team for this investigation also included scientists from both the United States (CfA, MIT, University of Notre Dame, Lawrence Livermore National Laboratory, NASA Goddard Space Flight Center) and the United Kingdom (The Open University, University of Southampton, Mullard Radio Astronomy Observatory). The LETG was built by the SRON and the Max Planck Institute, and the ACIS instrument by the Massachusetts Institute of Technology, Cambridge, Mass., and Penn State University, University Park. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Optics Requirements For The Generation-X X-Ray Telescope
NASA Technical Reports Server (NTRS)
O'Dell, S. .; Elsner, R. F.; Kolodziejczak, J. J.; Ramsey, B. D.; Weisskopf, M. C.; Zhang, W. W.; Content, D. A.; Petre, R.; Saha, T. T.; Reid, P. B.;
2008-01-01
US, European, and Japanese space agencies each now operate successful X-ray missions -- NASA s Chandra, ESA s XMM-Newton, and JAXA s Suzaku observatories. Recently these agencies began a collaboration to develop the next major X-ray astrophysics facility -- the International X-ray Observatory (IXO) -- for launch around 2020. IXO will provide an order-of-magnitude increase in effective area, while maintaining good (but not sub-arcsecond) angular resolution. X-ray astronomy beyond IXO will require optics with even larger aperture areas and much better angular resolution. We are currently conducting a NASA strategic mission concept study to identify technology issues and to formulate a technology roadmap for a mission -- Generation-X (Gen-X) -- to provide these capabilities. Achieving large X-ray collecting areas in a space observatory requires extremely lightweight mirrors.
Development Roadmap for an Adjustable X-Ray Optics Observatory
NASA Technical Reports Server (NTRS)
Schwartz, Dan; Brissenden, R.; Bookbinder, J.; Davis, W.; Forman, W.; Freeman, M.; O'Dell, S.; Ramsey, B.; Reid, P.; Romaine, S.;
2011-01-01
We are developing adjustable X-ray optics to use on a mission such as SMART-X (see posters 38.02, 38.03 and Presentation 30.03). To satisfy the science problems expected to be posed by the next decadal survey, we anticipate requiring effective area greater than 1 square meter and Chandra-like angular resolution: approximately equal to 0.5 inches. To achieve such precise resolution we are developing adjustable mirror technology for X-ray astronomy application. This uses a thin film of piezoelectric material deposited on the back surface of the mirror to correct for figure distortions, including manufacturing errors and deflections due to gravity and thermal effects. We present here a plan to raise this technology from its current Level 2, to Level 6, by 2018.
X-ray flux of the Narrow-Line Seyfert 1 galaxy WPVS 007 during a high UV flux state
NASA Astrophysics Data System (ADS)
Grupe, Dirk
2016-09-01
We request a short, 10ks, observation with Chandra ACIS-S of the highly X-ray variable Narrow Line Seyfert 1 Galaxy WPVS 007 quasi-simultaneously with HST between March 13 and 26. WPVS 007 is one of the most unusual AGN showing strong variabilty in broad absorption lines - a feature that is only seen in high-luminous quasars. We have monitored WPVS 007 since October 2005 with Swift, but we can typically not detect it in X-rays. Our last observation of WPVS 007 by Chandra in March 2015 when it was fount to be in an extremely low UV flux state (Leighgly et al. 2015) found it at a level of 8e-4 counts/s in ACIS-s corresponding to a flux in the 0.3-10 keV band of 1e-17 W/m2. Merging all Swift observaton since then (66ks) results in an 3sigma ul of 1.4e-17 W/m2. Obtaining a Chandra observation close to the HST observation will provide us with a crucial flux measurement that will allow us to determine the intrinsic luminosity of the AGN. Note, WPVS007 is currently at a bright UV state.
Deepest X-Rays Ever Reveal universe Teeming With Black Holes
NASA Astrophysics Data System (ADS)
2001-03-01
For the first time, astronomers believe they have proof black holes of all sizes once ruled the universe. NASA's Chandra X-ray Observatory provided the deepest X-ray images ever recorded, and those pictures deliver a novel look at the past 12 billion years of black holes. Two independent teams of astronomers today presented images that contain the faintest X-ray sources ever detected, which include an abundance of active super massive black holes. "The Chandra data show us that giant black holes were much more active in the past than at present," said Riccardo Giacconi, of Johns Hopkins University and Associated Universities, Inc., Washington, DC. The exposure is known as "Chandra Deep Field South" since it is located in the Southern Hemisphere constellation of Fornax. "In this million-second image, we also detect relatively faint X-ray emission from galaxies, groups, and clusters of galaxies". The images, known as Chandra Deep Fields, were obtained during many long exposures over the course of more than a year. Data from the Chandra Deep Field South will be placed in a public archive for scientists beginning today. "For the first time, we are able to use X-rays to look back to a time when normal galaxies were several billion years younger," said Ann Hornschemeier, Pennsylvania State University, University Park. The group’s 500,000-second exposure included the Hubble Deep Field North, allowing scientists the opportunity to combine the power of Chandra and the Hubble Space Telescope, two of NASA's Great Observatories. The Penn State team recently acquired an additional 500,000 seconds of data, creating another one-million-second Chandra Deep Field, located in the constellation of Ursa Major. Chandra Deep Field North/Hubble Deep Field North Press Image and Caption The images are called Chandra Deep Fields because they are comparable to the famous Hubble Deep Field in being able to see further and fainter objects than any image of the universe taken at X-ray wavelengths. Both Chandra Deep Fields are comparable in observation time to the Hubble Deep Fields, but cover a much larger area of the sky. "In essence, it is like seeing galaxies similar to our own Milky Way at much earlier times in their lives," Hornschemeier added. "These data will help scientists better understand star formation and how stellar-sized black holes evolve." Combining infrared and X-ray observations, the Penn State team also found veils of dust and gas are common around young black holes. Another discovery to emerge from the Chandra Deep Field South is the detection of an extremely distant X-ray quasar, shrouded in gas and dust. "The discovery of this object, some 12 billion light years away, is key to understanding how dense clouds of gas form galaxies, with massive black holes at their centers," said Colin Norman of Johns Hopkins University. The Chandra Deep Field South results were complemented by the extensive use of deep optical observations supplied by the Very Large Telescope of the European Southern Observatory in Garching, Germany. The Penn State team obtained optical spectroscopy and imaging using the Hobby-Eberly Telescope in Ft. Davis, TX, and the Keck Observatory atop Mauna Kea, HI. Chandra's Advanced CCD Imaging Spectrometer was developed for NASA by Penn State and Massachusetts Institute of Technology under the leadership of Penn State Professor Gordon Garmire. NASA's Marshall Space Flight Center, Huntsville, AL, manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. More information is available on the Internet at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Post-periastron behavior of PSR J2032+4127/MT91 213: Outburst, jet, and winds
NASA Astrophysics Data System (ADS)
Ho, Wynn
2017-09-01
We propose 6x30 ks observations of the radio/gamma-ray pulsar PSR J2032+4127 and its companion Be-star MT91 213. This nearby pulsar is in a 49 yr orbit and will reach periastron 2017 November 13, when it will undergo an outburst if it accretes from a disk that surrounds the Be star. Our proposed observations allow us to (1) track the X-ray lightcurve and measure cooling of the neutron star crust, thus probing fundamental physics in extreme regimes. Irrespective of the outburst, our observations allow us to track (2) jet formation and (3) emission from the colliding winds of the two stars, thus serving as an important comparison to the only other gamma-ray pulsar in a Be-binary PSR B1259-63/LS 2883. These objectives require the long-term, high spatial resolution capabilities of Chandra.
A Spatially Resolved Plerionic X-Ray Nebula around PSR B0540-69.
Gotthelf; Wang
2000-04-01
We present a high-resolution Chandra X-ray observation of PSR B0540-69, the Crab-like 50 ms pulsar in the Large Magellanic Cloud. We use phase-resolved imaging to decompose the extended X-ray emission, as expected of a synchrotron nebula, from the pointlike emission of the pulsar. The image of the pulsed X-ray emission shows a well-defined point-spread function of the observation, while the resolved nebula has a morphology and size remarkably similar to the Crab nebula, including evidence for a jetlike feature from PSR B0540-69. The patchy outer shell, which most likely represents the expanding blast wave of the supernova, is reminiscent of that seen in radio. Based on morphology, size, and energetics, there can be little doubt that SNR B0540-69 is an analogous system to the Crab but located in our neighboring galaxy.
Science with Constellation-X, Choice of Instrumentation
NASA Technical Reports Server (NTRS)
Hornscheimeier, Ann; White, Nicholas; Tananbaum, Harvey; Garcia, Michael; Bookbinder, Jay; Petre, Robert; Cottam, Jean
2007-01-01
The Constellation X-ray Observatory is one of the two Beyond Einstein Great Observatories and will provide a 100-fold increase in collecting area in high spectral resolving power X-ray instruments over the Chandra and XMM-Newton gratings instruments. The mission has four main science objectives which drive the requirements for the mission. This contribution to the Garmire celebration conference describes these four science areas: Black Holes, Dark Energy, Missing Baryons, and the Neutron Star Equation of State as well as the requirements flow-down that give rise to the choice of instrumentation and implementation for Constellation-X. As we show, each of these science areas place complementary constraints on mission performance parameters such as collecting area, spectral resolving power, timing resolution, and field of view. The mission's capabilities will enable a great breadth of science, and its resources will be open to the community through its General Observer program.
Chandra Sees Wealth Of Black Holes In Star-Forming Galaxies
NASA Astrophysics Data System (ADS)
2001-06-01
NASA's Chandra X-ray Observatory has found new populations of suspected mid-mass black holes in several starburst galaxies, where stars form and explode at an unusually high rate. Although a few of these objects had been found previously, this is the first time they have been detected in such large numbers and could help explain their relationship to star formation and the production of even more massive black holes. At the 198th meeting of the American Astronomical Society in Pasadena, California, three independent teams of scientists reported finding dozens of X-ray sources in galaxies aglow with star formation. These X-ray objects appear point-like and are ten to a thousand times more luminous in X-rays than similar sources found in our Milky Way and the M81 galaxy. "Chandra gives us the ability to study the populations of individual bright X-ray sources in nearby galaxies in extraordinary detail," said Andreas Zezas, lead author from the Harvard-Smithsonian Center for Astrophysics team that observed The Antennae, a pair of colliding galaxies, and M82, a well-known starburst galaxy. "This allows us to build on earlier detections of these objects and better understand their relationship to starburst galaxies." Antennae-True Color Image True Color Image of Antennae Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption Kimberly Weaver, of NASA's Goddard Space Flight Center in Greenbelt, MD, lead scientist of the team that studied the starburst galaxy NGC 253, discussed the importance of the unusual concentration of these very luminous X-ray sources near the center of that galaxy. Four sources, which are tens to thousands of times more massive than the Sun, are located within 3,000 light years of the galaxy core. "This may imply that these black holes are gravitating toward the center of the galaxy where they could coalesce to form a single supermassive black hole," Weaver suggested. "It could be that this starburst galaxy is transforming itself into a quasar-like galaxy as we watch. In NGC 253, Chandra may have found the causal connection between starburst activity and quasars." Chandra detected variability and a relatively large ratio of high- to low-energy X-rays in these sources - two characteristics of superheated gas falling into black holes. When combined with extreme luminosities, this tells astronomers that some of these objects must have masses many times greater than ordinary stellar black holes, if they radiate energy uniformly in all directions. Scenarios for the formation of such "intermediate-mass" black holes include the direct collapse of a single, massive cloud of gas into a black hole, or the coalescence of a cluster of stellar black holes, but no uniformly accepted model exists. M82-True Color Image True Color Image of M82 Credit: NASA/SAO/G.Fabbiano et al. Press Image and Caption An alternative possibility, mentioned by Giuseppina Fabbiano of the Harvard-Smithsonian team, is that the X-rays from such highly luminous sources are beamed toward us -- perhaps by a funnel formed by the infalling matter. This would imply that the mass of the underlying black hole is only about ten times the mass of the Sun, in line with the known black hole sources in our galaxy. In this event, they would represent a short-lived but common stage in the evolution of black holes in close binary star systems. Long-term monitoring of the very luminous X-ray sources should distinguish between these possibilities. Andrew Ptak, led a team from Carnegie-Mellon University in Pittsburgh, PA, and Penn State University, University Park, PA, that used Chandra data to survey 37 galaxies. Ptak’s team found that 25 percent of galaxies, which were chosen for their suspected central supermassive black holes and areas of star formation, had these very luminous X-ray sources. The team plans to expand their survey with Chandra to assess the probability of finding these very bright X-ray sources in other types of galaxies. NASA's Marshall Space Flight Center, Huntsville, AL, manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
X-ray Variability In Extragalactic Jets as Seen by Chandra
NASA Astrophysics Data System (ADS)
Trevor, Max; Meyer, Eileen; Georganopoulos, Markos; Aubin, Sam; Hewitt, Jennifer; DeNigris, Natalie; Whitley, Kevin
2018-01-01
The unrivaled spatial resolution of Chandra has lead to the detection of over 100 extragalactic jetsemitting X-rays on kiloparsec scales, far from the central AGN. These jets are understood to be powerful redistributors of energy on galactic and extragalactic scales, with important effects on galaxy evolution and cluster heating. However, we lack an understanding of many important jet properties, including the particle makeup, particle acceleration characteristics, and total energy content, and even how fast the jet is at kpc scales. In the most powerful jets, a persistently open question is the nature of the emission mechanism for the Chandra-observed X-rays. While inverse Compton upscattering of CMB photons (IC/CMB) by a still-relativistic jet is widely adopted, our group has very recently ruled it out in several cases, suggesting that the X-rays from powerful sources, like the low-power jets, have a synchrotron origin, albeit one with unknown origins, requiring in-situ lepton acceleration at least up to 100 TeV. A very efficient way to extend this result to many more sources is to check for variability of the large scale jet X-ray emission, something that is definitively not expected in the case of IC/CMB due to the extremely long cooling times of the electrons responsible for the emission, but it is plausible if the X-rays are of synchrotron nature. Based on previously published observations of X-ray variability in the jets of M87 and Pictor A, as well as preliminary results suggesting variability in two more powerful jets, we have examined archival observations of over 40 jets which have been imaged twice or more with Chandra for variability, with timescales of a few to nearly 14 years. This analysis has two main goals, namely (i) to confirm a synchrotron origin for the X-rays in powerful sources, as variability is inconsistent with the competing IC/CMB model and (ii) to use the timescales and characteristics (e.g., spectral changes) of any detected X-ray variability to place limits on the emitting region size and magnetic field.
NASA Technical Reports Server (NTRS)
Skinner, Gerry; Arzoumanian, Z.; Cash, W.; Gehrels, N.; Gendreau, K.; Gorenstein, P.; Krizmanic, J.; Leitner, J.; Miller, M.; Reasenberg, R.;
2008-01-01
MASSIM, the Milli-Arc-Second Structure Imager, is a mission that has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. It uses a set of achromatic diffractive-refractive Fresnel lenses on an optics spacecraft to focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other astrophysical phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds. After introducing the principle of diffractive imaging in the x-ray/gamma-ray regime, the MASSIM mission concept and baseline design will be described along with a discussion of the options and trade-offs within the X-ray optics design.
A Cocoon Found Inside the Black Widow's Web
NASA Astrophysics Data System (ADS)
2003-02-01
NASA's Chandra X-ray Observatory image of the mysterious "Black Widow" pulsar reveals the first direct evidence of an elongated cocoon of high-energy particles. This discovery shows that this billion-year-old rejuvenated pulsar is an extremely efficient generator of a high-speed flow of matter and antimatter particles. Known officially as pulsar B1957+20, the Black Widow received its nickname because it is emitting intense high-energy radiation that is destroying its companion through evaporation. B1957+20, which completes one rotation every 1.6-thousandths of a second, belongs to a class of extremely rapidly rotating neutron stars called millisecond pulsars. The motion of B1957+20 through the galaxy -- at a high speed of almost a million kilometers per hour -- creates a bow shock wave visible to optical telescopes. The Chandra observation shows what cannot be seen in visible light: a second shock wave. This secondary shock wave is created from pressure that sweeps the wind back from the pulsar to form the cocoon of high-energy particles, visible for the first time in the Chandra data. "This is the first detection of a double-shock structure around a pulsar," said Benjamin Stappers, of the Dutch Organization for Research in Astronomy (ASTRON), lead author on a paper describing the research that will appear in the Feb. 28, 2003, issue of Science magazine. "It should enable astronomers to test theories of the dynamics of pulsar winds and their interaction with their environment." B1957+20 X-ray-only image of B1957+20 Scientists believe millisecond pulsars are very old neutron stars that have been spun up by accreting material from their companions. The steady push of the infalling matter on the neutron star spins it up in much the same way as pushing on a merry-go-round makes it rotate faster. The result is an object about 1.5 times as massive as the Sun and ten miles in diameter that rotates hundreds of times per second. The advanced age, very rapid rotation rate and relatively low magnetic field of millisecond pulsars put them in a totally separate class from young pulsars observed in the remnants of supernova explosions. "This star has had an incredible journey. It was born in a supernova explosion as a young and energetic pulsar, but after a few million years grew old and slow and faded from view," said Bryan Gaensler of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., a coauthor of the paper. "Over the next few hundred million years, this dead pulsar had material dumped on it by its companion, and the pulsar's magnetic field has been dramatically reduced. B1957+20 B1957+20 Artist's illustrations of B1957+20 "This pulsar has been through hell, yet somehow it's still able to generate high-energy particles just like its younger brethren," continued Gaensler. The key is the rapid rotation of B1957+20. The Chandra result confirms the theory that even a relatively weakly magnetized neutron star can generate intense electromagnetic forces and accelerate particles to high energies to create a pulsar wind, if it is rotating rapidly enough. Chandra's Advanced CCD Imaging Spectrometer observed B1957+20 for over 40,000 seconds on June 21, 2001. Other members of the research team include Victoria Kaspi (McGill University, Montreal), Michiel van der Klis (University of Amsterdam) and Walter Lewin (Massachusetts Institute of Technology, Cambridge). NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass., for the Office of Space Science at NASA Headquarters, Washington.
X-Ray Spectral Properties of Seven Heavily Obscured Seyfert 2 Galaxies
NASA Astrophysics Data System (ADS)
Marchesi, S.; Ajello, M.; Comastri, A.; Cusumano, G.; La Parola, V.; Segreto, A.
2017-02-01
We present the combined Chandra and Swift-BAT spectral analysis of seven Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog. We selected nearby (z ≤ 0.03) sources lacking a ROSAT counterpart that never previously been observed with Chandra in the 0.3-10 keV energy range, and targeted these objects with 10 ks Chandra ACIS-S observations. The X-ray spectral fitting over the 0.3-150 keV energy range allows us to determine that all the objects are significantly obscured, with N H ≥ 1023 cm-2 at a >99% confidence level. Moreover, one to three sources are candidate Compton-thick Active Galactic Nuclei (CT-AGNs; I.e., N H ≥ 1024 cm-2). We also test the recent spectral curvature method developed by Koss et al. to find candidate CT-AGNs, finding a good agreement between our results and their predictions. Because the selection criteria we adopted were effective in detecting highly obscured AGNs, further observations of these and other Seyfert 2 galaxies selected from the Swift-BAT 100 month catalog will allow us to create a statistically significant sample of highly obscured AGNs, therefore providing a better understanding of the physics of the obscuration processes.
X-ray Observations of the Bright Old Nova V603 Aquilae
NASA Technical Reports Server (NTRS)
Mukai, K.; Orio, M.
2004-01-01
We report on our Chandra and RXTE observations of the bright old nova, V603 Aql, performed in 2001 April, supplemented by our analysis of archival X-ray data on this object. We find that the RXTE data are contaminated by the Galactic Ridge X-ray emission. After accounting for this effect, we find a high level of aperiodic variability in the RXTE data, at a level consistent with the uncontaminated Chandra data. The Chandra HETG spectrum clearly originates in a multi-temperature plasma. We constrain the possible emission measure distribution of the plasma through a combination of global and local fits. The X-ray luminosity and the spectral shape of V603 Aql resemble those of SS Cyg in transition between quiescence and outburst. The fact that the X-ray flux variability is only weakly energy dependent can be interpreted by supposing that the variability is due to changes in the maximum temperature of the plasma. The plasma density is likely to be high, and the emission region is likely to be compact. Finally, the apparent overabundance of Ne is consistent with V603 Aql being a young system.
Chandra Reveals Nest of Tight Binaries in Dense Cluster
NASA Astrophysics Data System (ADS)
2001-05-01
Scientists have gazed into an incredibly dense star cluster with NASA's Chandra X-ray Observatory and identified a surprising bonanza of binary stars, including a large number of rapidly rotating neutron stars. The discovery may help explain how one of the oldest structures in our Galaxy evolved over its lifetime. By combining Chandra, Hubble Space Telescope, and ground-based radio data, the researchers conducted an important survey of the binary systems that dominate the dynamics of 47 Tucanae, a globular cluster about 12 billion years old located in our Milky Way galaxy. Most of the binaries in 47 Tucanae are systems in which a normal, Sun-like companion orbits a collapsed star, either a white dwarf or a neutron star. White dwarf stars are dense, burnt-out remnants of stars like the Sun, while neutron stars are even denser remains of a more massive star. When matter from a nearby star falls onto either a white dwarf or a neutron star, as in the case with the binaries in 47 Tucanae, X-rays are produced. 47 Tuc This composite image shows relation of the Chandra image of 47 Tucanae to ground-based, optical observations. "This Chandra image provides the first complete census of compact binaries in the core of a globular cluster," said Josh Grindlay of the Harvard-Smithsonian Center for Astrophysics (CfA) and lead author of the report that appears in the May 18 issue of Science. "The relative number of neutron stars versus white dwarfs in these binaries tell us about the development of the first stars in the cluster, and the binaries themselves are key to the evolution of the entire cluster core." Many of the binaries in 47 Tucanae are exotic systems never before seen in such large quantities. Perhaps the most intriguing are the "millisecond pulsars", which contain neutron stars that are rotating extremely rapidly, between 100 to nearly 1000 times a second. "The Chandra data, in conjunction with radio observations, indicate that there are many more millisecond pulsars than we would expect based on the number of their likely progenitors we found," said co-author Peter Edmonds, also of the CfA. "While there is a general consensus on how some of the millisecond pulsars form, these new data suggest that there need to be other methods to create them." In addition to the millisecond pulsars, Chandra also detected other important populations of binary systems, including those with white dwarf stars and normal stars, and others where pairs of normal stars undergo large flares induced by their close proximity. The Chandra data also indicate an apparent absence of a central black hole. Stellar-sized mass black holes -- those about five to ten times as massive as the Sun -- have apparently not coalesced to the center of the star cluster. All or most stellar-sized black holes that formed over the lifetime of the cluster have likely been ejected by their slingshot encounters with binaries deep in the cluster core. "These results show that binary star systems are a source of gravitational energy which ejects stellar mass black holes and prevents the collapse of the cluster’s core to a more massive, central black hole," said the CfA's Craig Heinke. "In other words, binary systems - not black holes - are the dynamical heat engines that drive the evolution of globular clusters." Chandra observed 47 Tucanae on March 16-17, 2000, for a period of 74,000 seconds with the Advanced CCD Imaging Spectrometer (ACIS). The ACIS X-ray camera was developed for NASA by Penn State and the Massachusetts Institute of Technology. The High Energy Transmission Grating Spectrometer was built by MIT. NASA's Marshall Space Flight Center in Huntsville, AL, manages the Chandra program. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Images associated with this release are available on the World Wide Web at: http://chandra.harvard.edu AND http://chandra.nasa.gov
Atomic Data in X-Ray Astrophysics
NASA Technical Reports Server (NTRS)
Brickhouse, N. S.
2000-01-01
With the launches of the Chandra X-ray Observatory (CXO) and the X-ray Multimirror Mission (XMM) and the upcoming launch of the Japanese mission ASTRO-E, high resolution X-ray spectroscopy of cosmic sources has begun. Early, deep observations of three stellar coronal sources will provide not only invaluable calibration data, but will also give us benchmarks for the atomic data under collisional equilibrium conditions. Analysis of the Chandra X-ray Observatory data, and data from other telescopes taken simultaneously, for these stars is ongoing as part of the Emission Line Project. Goals of the Emission Line Project are: (1) to determine and verify accurate and robust diagnostics and (2) to identify and prioritize issues in fundamental spectroscopy which will require further theoretical and/or laboratory work. The Astrophysical Plasma Emission Database will be described in some detail, as it is introducing standardization and flexibility into X-ray spectral modeling. Spectral models of X-ray astrophysical plasmas can be generally classified as dominated by either collisional ionization or by X-ray photoionization. While the atomic data needs for spectral models under these two types of ionization are significantly different, there axe overlapping data needs, as I will describe. Early results from the Emission Line Project benchmarks are providing an invaluable starting place, but continuing work to improve the accuracy and completeness of atomic data is needed. Additionally, we consider the possibility that some sources will require that both collisional ionization and photoionization be taken into account, or that time-dependent ionization be considered. Thus plasma spectral models of general use need to be computed over a wide range of physical conditions.
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; George, Ian M.; Kallman, Timothy R.; Padmanabhan, Urmila; Weaver, Kimberly A.; Turner, T. Jane
2003-01-01
We report the detection of Fe xxv and Fe XXVI Ka emission lines from a Chandra High Energy Grating Spectrometer (HETGS) observation of the narrow-line Seyfert 1 galaxy NGC 7314, made simultaneously with RXTE. The lines are redshifted (cz approximately 1500 kilometers per second) relative to the systemic velocity and unresolved by the gratings. We argue that the lines originate in a near face-on (less than 7 deg) disk having a radial line emissivity flatter than r(exp -2). Line emission from ionization states of Fe in the range approximately Fe I a up to Fe XXVI is observed. The ionization balance of Fe responds to continuum variations on timescales less than 12.5 ks, supporting an origin of the lines close to the X-ray source. We present additional, detailed diagnostics from this rich data set. These results identify NGC 7314 as a key source to study in the future if we are to pursue reverberation mapping of space-time near black-hole event horizons. This is because it is first necessary to understand the ionization structure of accretion disks and the relation between the X-ray continuum and Fe Ka line emission. However, we also describe how our results are suggestive of a means of measuring black-hole spin without a knowledge of the relation between the continuum and line emission. Finally, these data emphasize that one can study strong gravity with narrow (as opposed to very broad) disk lines. In fact narrow lines offer higher precision, given sufficient energy resolution.
Hydrodynamic Simulations of Kepler's Supernova Remnant
NASA Astrophysics Data System (ADS)
Sullivan, Jessica; Blondin, John; Borkowski, Kazik; Reynolds, Stephen
2018-01-01
Kepler’s supernova remnant contains unusual features that strongly suggest an origin in a single-degenerate Type Ia explosion, including anisotropic circumstellar medium (CSM), a strong brightness gradient, and spatially varying expansion proper motions. We present 3Dhydrodynamic simulations to test a picture in which Kepler's progenitor binary emitted a strong asymmetric wind, densest in the orbital plane, while the system moved at high velocity through the ISM. We simulate the creation of the presupernova environment as well as the supernova blast wave, using the VH-1 grid-based hydrodynamics code. We first modeled an anisotropic wind to create an asymmetric bowshock around the progenitor, then the blast wave from thesupernova. The final simulation places both previous model pieces onto a single grid and allows the blast wave to expand into the bowshock. Models were completed on a Yin-Yang grids with matching angular resolutions. By manipulating parameters that control the asymmetry of the system, we attempted to find conditions that recreated the current state of Kepler. We analyzed these models by comparing images of Kepler from the Chandra X-ray Observatory to line-of-sight projections from the model results. We also present comparisons of simulated expansion velocities with recent observations of X-ray proper motions from Chandra images. We were able to produce models that contained similar features to those seen in Kepler. We find the greatest resemblance to Kepler images with a presupernova wind with an equator-to-pole density contrast of 3 and a moderately disk-like CSM at a 5° angle between equatorial plane and system motion.
Deep Chandra observations of Pictor A
NASA Astrophysics Data System (ADS)
Hardcastle, M. J.; Lenc, E.; Birkinshaw, M.; Croston, J. H.; Goodger, J. L.; Marshall, H. L.; Perlman, E. S.; Siemiginowska, A.; Stawarz, Ł.; Worrall, D. M.
2016-02-01
We report on deep Chandra observations of the nearby broad-line radio galaxy Pictor A, which we combine with new Australia Telescope Compact Array (ATCA) observations. The new X-ray data have a factor of 4 more exposure than observations previously presented and span a 15 yr time baseline, allowing a detailed study of the spatial, temporal and spectral properties of the AGN, jet, hotspot and lobes. We present evidence for further time variation of the jet, though the flare that we reported in previous work remains the most significantly detected time-varying feature. We also confirm previous tentative evidence for a faint counterjet. Based on the radio through X-ray spectrum of the jet and its detailed spatial structure, and on the properties of the counterjet, we argue that inverse-Compton models can be conclusively rejected, and propose that the X-ray emission from the jet is synchrotron emission from particles accelerated in the boundary layer of a relativistic jet. For the first time, we find evidence that the bright western hotspot is also time-varying in X-rays, and we connect this to the small-scale structure in the hotspot seen in high-resolution radio observations. The new data allow us to confirm that the spectrum of the lobes is in good agreement with the predictions of an inverse-Compton model and we show that the data favour models in which the filaments seen in the radio images are predominantly the result of spatial variation of magnetic fields in the presence of a relatively uniform electron distribution.
A Link Between X-ray Emission Lines and Radio Jets in 4U 1630-47?
NASA Astrophysics Data System (ADS)
Neilsen, Joseph; Coriat, Mickaël; Fender, Rob; Lee, Julia C.; Ponti, Gabriele; Tzioumis, A.; Edwards, Phillip; Broderick, Jess
2014-06-01
Recently, Díaz Trigo et al. reported an XMM-Newton detection of relativistically Doppler-shifted emission lines associated with steep-spectrum radio emission in the stellar-mass black hole candidate 4U 1630-47 during its 2012 outburst. They interpreted these lines as indicative of a baryonic jet launched by the accretion disk. We present a search for the same lines earlier in the same outburst using high-resolution X-ray spectra from the Chandra HETGS. While our observations (eight months prior to the XMM-Newton campaign) also coincide with detections of steep spectrum radio emission by the Australia Telescope Compact Array, we find a strong disk wind but no evidence for any relativistic X-ray emission lines. Indeed, despite ˜5× brighter radio emission, our Chandra spectra allow us to place an upper limit on the flux in the blueshifted Fe XXVI line that is ˜20× weaker than the line observed by Díaz Trigo et al. Thus we can conclusively say that radio emission is not universally associated with relativistically Doppler-shifted emission lines in 4U 1630-47. We explore several scenarios that could explain our differing results, including variations in the geometry of the jet or a mass-loading process or jet baryon content that evolves with the accretion state of the black hole. We also consider the possibility that the radio emission arises in an interaction between a jet and the nearby ISM, in which case the X-ray emission lines might be unrelated to the radio emission.
X-ray Arcs Tell The Tale Of Giant Eruption
NASA Astrophysics Data System (ADS)
2002-08-01
Long ago, a giant eruption occurred in a nearby galaxy and plunged it into turmoil. Now NASA's Chandra X-ray Observatory has revealed the remains of that explosion in the form of two enormous arcs of hot gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes in the centers of many so-called "active" galaxies. Scientists from the Harvard-Smithsonian Center for Astrophysics (CfA) report that two arc-like structures of multimillion-degree gas in the galaxy Centaurus A appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been produced in a titanic explosion that occurred about ten million years ago. A composite image of the galaxy made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a stunning tableau of a tumultuous galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of X-ray emitting hot gas. "Putting all the images together was the key to understanding what Chandra showed," said Margarita Karovska, lead author on a paper in the September 20, 2002, issue of The Astrophysical Journal. "Suddenly it all clicked in, as with a giant puzzle, and the images fit together to make a complete picture of the galaxy geometry that was not at all apparent before." The team proposes that the orientation of the arcs of hot gas perpendicular to the jet and the symmetry of the projected ring with respect to the center of the galaxy could be evidence that the ring is the result of a giant eruption in the nucleus of the galaxy 10 million years ago. This explosion may have produced a galaxy-sized shock wave that has been moving outward at speeds of a million miles per hour. The age of 10 million years for the outburst is consistent with other optical and infrared observations that indicate that the rate of star formation in the galaxy increased dramatically at about that time. Centaurus A Arcs Centaurus A X-ray Image Other authors have suggested that the merger of a small spiral galaxy with Centaurus A about a hundred million years ago triggered the high-energy jets and the ongoing violent activity in the nucleus of the galaxy. The tremendous energy released when a galaxy is "turned on" by a collision can have a profound influence on the subsequent evolution of the galaxy and its neighbors. The mass of the central black hole can increase, the gas reservoir for the next generation of stars can be expelled, and the space between the galaxies can be enriched with heavier elements. "Active galaxies could have played a significant role in the evolution of galaxies in the early universe when collisions between galaxies were much more frequent," said Giuseppina Fabbiano, a coauthor on the paper. "Centaurus A, at a distance of only 11 million light years, gives us a rare opportunity to study such an active galaxy in action." Chandra observed Centaurus A with its High Resolution Camera instrument on September 10, 1999, for approximately 4.7 hours. Other members of CfA research team include Martin Elvis, Ralph Kraft, Stephen Murray, and Fabrizio Nicastro The HRC was built by the Smithsonian Astrophysical Observatory in Cambridge, Mass. NASA's Marshall Space Flight Center, Huntsville, AL, manages the Chandra program for the Office of Space Science, Washington, DC. TRW, Inc., Redondo Beach, California, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA.
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter
2004-01-01
Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.
Chandra Takes In The Bright Lights, Big City Of The Milky Way
NASA Astrophysics Data System (ADS)
2002-01-01
NASA's Chandra X-ray Observatory has made a stunning, high-energy panorama of the central regions of our Milky Way galaxy. The findings are an important step toward understanding the most active area of the Milky Way as well as other galaxies throughout the universe. Like a sprawling megalopolis, the new Chandra images show hundreds of white dwarf stars, neutron stars and black holes bathed in an incandescent fog of multimillion-degree gas around a supermassive black hole. "The center of the galaxy is where the action is," said Q. Daniel Wang of the University of Massachusetts, Amherst. "With these images, we get a new perspective of the interplay between stars, gas and dust, as well as the magnetic fields and gravity in the region. We can see how such forces affect the immediate vicinity and may influence other aspects of the galaxy." Wang presented the montage of 30 separate Chandra images today at the American Astronomical Society meeting in Washington, and in a paper published in the Jan. 10, 2002, issue of the journal Nature. The images, made with the Advanced CCD Imaging Spectrometer (ACIS) July 16-21, 2001, covered a 400- by 900-light-year swath of the center of the galaxy. One immediate result was that the team could separate out the individual X-ray sources from the diffuse glow produced by hot gas. "We can now see that the sources are responsible for most of the X-rays from highly ionized iron previously attributed to the diffuse glow," said Eric Gotthelf, of Columbia University in New York, a co-author. "So we must now revise our notion of the hot gas, which appears to be about 10 times cooler than previously thought. It's only a relatively mild 10 million degrees!" The diffuse X-ray emission seems to be related to the turmoil and density of matter in the inner Milky Way. Stars are forming there at a much more rapid rate than in the galactic "suburbs." Many of the most massive stars in the galaxy are located in the galactic center and are furiously boiling off their outer layers in searing stellar winds. Supernova explosions are far more common in the region and send shock waves booming through the inner galaxy. And then there is the three-million-solar-mass black hole at the epicenter. Although Chandra recently observed a small flare from the vicinity of the central supermassive black hole, the power output near the black hole remains relatively low. However, an unexplained fluorescence of iron atoms, observed by the team to be associated with molecular clouds a few hundred light years away, may indicate that the supermassive black hole was hundreds of times brighter in the past. Alternatively, the fluorescence could be due to high-energy particles called cosmic rays produced by supernovas or bygone eruptions from the supermassive black hole. "The galactic center is dominated by very high pressures due to the hot gas component and the strong magnetic fields," said Cornelia Lang, also of the University of Massachusetts, and a co-author. "It's a nice place to visit with a telescope but I wouldn't want to live there." The Chandra map shows that the high-pressure and high-temperature gas is apparently escaping from the center into the halo of the galaxy. "A galaxy is a sort of ecosystem, and the activity in the center can seriously affect the evolution of the galaxy as a whole," said Wang. "Astronomically, the center of the Milky Way is really in our backyard, and, therefore, provides an excellent laboratory to learn about the cores of other galaxies." The ACIS instrument was developed for NASA by Pennsylvania State University, University Park, and Massachusetts Institute of Technology, Cambridge. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program, and TRW, Inc., Redondo Beach, Calif., is the prime contractor. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, Mass.
1999-01-21
The Chandra X-ray Observatory (CXO), NASA's newest space telescope, is seen above at the unveiling ceremony at TRW Space and Electronics Group in Redondo Beach, Calif. The photo was taken by Marshall Space Flight Center and appears on its Marshall News Center Web site, along with other digital images of the completely assembled observatory. Formerly called the Advanced X-ray Astrophysics Facility, the CXO is the world's most powerful X-ray telescope. Scientists believe its ability to see previously invisible black holes and high-temperature gas clouds give the observatory the potential to rewrite the books on the structure and evolution of our universe
Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution
NASA Astrophysics Data System (ADS)
Bouwman, Jeroen
2006-09-01
We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-19
... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Project No. 2354-10] Chandra Coffee and Rabun Boatworks, Complainants v. Georgia Power Company, Respondent; Notice of Complaint February 3, 2010. Take notice that on December 14, 2009, as amended on January 8, 2010, Chandra Coffee and Rabun...
Searching for outflows in ultraluminous X-ray sources through high-resolution X-ray spectroscopy
NASA Astrophysics Data System (ADS)
Kosec, P.; Pinto, C.; Fabian, A. C.; Walton, D. J.
2018-02-01
Ultraluminous X-ray sources (ULXs) are non-nuclear point sources exceeding the Eddington luminosity of a 10 M⊙ black hole. Modern consensus for a majority of the ULX population is that they are powered by stellar-mass black holes or neutron stars accreting well above the Eddington limit. Theoretical models of super-Eddington accretion predict existence of powerful outflows of moderately ionized gas at mildly relativistic velocities. So far, these winds have been found in three systems: NGC 1313 X-1, NGC 5408 X-1 and NGC 55 ULX. In this work, we create a sample of all ULXs with usable archival high-resolution X-ray data, with 10 sources in total, in which we aim to find more signatures of outflows. We perform Gaussian line scans to find any narrow spectral signatures, and physical wind model scans where possible. We tentatively identify an outflow in NGC 5204 X-1, blueshifted to 0.34c, which produces emission features with a total significance of at least 3σ. Next we compare ULXs with similar hardness ratios. Holmberg IX X-1 shows absorption features that could be associated with a photoionized outflowing absorber, similar to that seen in NGC 1313 X-1. The spectrum of Holmberg II X-1 possesses features similar to NGC 5408 X-1 and NGC 6946 X-1 shows O VIII rest-frame emission. All other sources from the sample also show tentative evidence of spectral features in their high-resolution spectra. Further observations with the XMM-Newton and Chandra gratings will place stronger constraints. Future missions like XARM and Athena will be able to detect them at larger distances and increase our sample.
1999-02-09
In the Solid Motor Assembly Building, Cape Canaveral Air Station, STS-93 Mission Specialist Catherine G. Coleman (left) lifts the protective covering to look at the avionics box on the Inertial Upper Stage booster. Next to her are Eric Herrburger (center), with Boeing, and crew member Mission Specialist Michel Tognini (right) of France, who represents the Centre National d'Etudes Spatiales (CNES). STS-93 is scheduled to launch July 9 aboard Space Shuttle Columbia and has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Other STS-93 crew members are Commander Eileen M. Collins, Pilot Jeffrey S. Ashby and Mission Specialist Steven A. Hawley
Monitoring variable X-ray sources in nearby galaxies
NASA Astrophysics Data System (ADS)
Kong, A. K. H.
2010-12-01
In the last decade, it has been possible to monitor variable X-ray sources in nearby galaxies. In particular, since the launch of Chandra, M31 has been regularly observed. It is perhaps the only nearby galaxy which is observed by an X-ray telescope regularly throughout operation. With 10 years of observations, the center of M31 has been observed with Chandra for nearly 1 Msec and the X-ray skies of M31 consist of many transients and variables. Furthermore, the X-ray Telescope of Swift has been monitoring several ultraluminous X-ray sources in nearby galaxies regularly. Not only can we detect long-term X-ray variability, we can also find spectral variation as well as possible orbital period. In this talk, I will review some of the important Chandra and Swift monitoring observations of nearby galaxies in the past 10 years. I will also present a "high-definition" movie of M31 and discuss the possibility of detecting luminous transients in M31 with MAXI.
History of Chandra X-Ray Observatory
1999-12-01
This Chandra image shows the central regions of two colliding galaxies known collectively as the Antennae (NGC-4038/4039). The Chandra image reveals a large population of extremely bright x-ray sources in this area of intense star formation. These x-ray sources, which emit 10 to several hundred times more x-ray power than similar sources in our own galaxy, are believed to be either massive black holes, or black holes that are beaming their energy toward Earth. In this x-ray image, red represents the low energy band, green intermediate, and blue the highest observed energies. The white and yellow sources are those that emit significant amounts of both low and high energy x-rays. About 60 million light years from Earth in the constellation Corvus, the Antennae Galaxies got their nickname from the wispy anntennae-like streams of gas as seen by optical telescopes. These ongoing wisps are believed to have been produced approximately 100 million years ago by the collision between the gala
1999-02-09
In the Vertical Processing Facility (VPF), the STS-93 crew stands in front of the VPF Aft Flight Deck simulator, which is part of KSC's Cargo Integration Test Equipment. From left, they are Mission Specialist Michel Tognini of France, Commander Eileen M. Collins, Mission Specialist Steven A. Hawley, Pilot Jeffrey S. Ashby and Mission Specialist Catherine G. Coleman. Tognini represents France's space agency, the Centre National d'Etudes Spatiales (CNES). STS-93, scheduled to launch July 9 aboard Space Shuttle Columbia, has the primary mission of the deployment of the Chandra X-ray Observatory, which is undergoing testing in the VPF. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
Members of the STS-93 crew look over the Space Shuttle Columbia's main engine in the Space Shuttle Main Engine Facility as they listen to Al Strainer, with United Space Alliance. From left, the crew members are Mission Specialist Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES), Pilot Jeffrey S. Ashby, Mission Specialist Steven A. Hawley, and Commander Eileen Collins. At the far right is Matt Gaetjens, with the Vehicle Integration Test Team. The fifth crew member (not shown) is Mission Specialist Catherine G. Coleman. STS-93, scheduled to launch July 9, has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe
1999-02-09
Inside the Vehicle Assembly Building, two STS-93 crew members, (center) Mission Specialist Michel Tognini of France and Pilot Jeffrey S. Ashby, get a close look at something seldom seen, the tip of an external tank. With them are Roland Nedelkovich (far left), with the Vertical Integration Test Team, and John Hlavacka (far right). STS-93 is scheduled to launch July 9 aboard Space Shuttle Columbia and has the primary mission of the deployment of the Chandra X-ray Observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Other STS-93 crew members are Commander Eileen M. Collins and Mission Specialists Catherine G. Coleman and Steven A. Hawley
STS-93/ Chandra Science Briefing
NASA Technical Reports Server (NTRS)
1999-01-01
This video shows a press briefing, reviewing the type of information which scientist hope to get from the Chandra X-ray Telescope. The telescope is scheduled to be launched during the STS-93 flight. The participants in the briefing are: Don Savage, of NASA Headquarters; Ed Weiler, Associate Administrator for Space Sciences; Alan Bunner, Chandra Project Scientist and Michael Turner, an astrophysicist at the University of Chicago. After the introduction by Mr. Savage, the broad scientific goals of the Chandra mission are reviewed by Dr. Weiler. This is followed by an acknowledgement of many of the people who participated in the development of the Chandra Telescope. This is followed by a discussion of the astrophysics and the information which the telescope should provide. Mrs. Chandrasekhar, the widow of Subrahmanyan Chandrasekhar, was in the audience. She was introduced and spoke briefly about the late Nobel Laureate astrophysicist.
PSR J2022 plus 3842: An Energetic Radio and X-Ray Pulsar Associated with SNR G76.9 plus 1.0
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Gotthelf, E. V.; Ransom, S. M.; Kothes, R.; Landecker, T. L.
2010-01-01
We present Chandra X-ray Observatory, Robert C. Byrd Green Bank Radio Telescope (GBT), and Rossi X-ray Timing Explorer (RXTE) observations directed toward the radio supernova remnant (SNR) G76.9+1.0. The Chandra investigation reveals a hard, unresolved X-ray source coincident with the midpoint of the double-lobed radio morphology and surrounded by faint, compact X-ray nebulosity. These features suggest that an energetic neutron star is powering a pulsar wind nebula (PWN) seen in synchrotron emission. Indeed, the spatial relationship of the X-ray and radio emissions is remarkably similar to the extended emission around the Vela pulsar. A follow-up pulsation search with the GBT uncovered a highly-dispersed (DM = 427 +/- 1 pc/cu cm) and highly-scattered pulsar with a period of 24 ms. Its subsequently measured spin-down rate implies a characteristic age T(sub c) = 8.9 kyr, making PSR J2022+3842 the most rapidly rotating young radio pulsar known. With a spin-down luminosity E = 1.2 x 10(exp 38) erg/s, it is the second-most energetic Galactic pulsar known, after the Crab pulsar. The 24-ms pulsations have also been detected in the RXTE observation; the combined Chandra and RXTE spectral fit suggests that the Chandra point-source emission is virtually 100% pulsed. The 2-16 keV spectrum of the narrow (0.06 cycles FWHM) pulse is well-fitted by an absorbed power-law model with column density N(sub H) = (1.7 +/- 0.5) x 10(exp 22)/sq cm and photon index Gamma = 1.0 +/- 0.2, strongly suggestive of magnetospheric emission. For an assumed distance of 10 kpc, the 2-10 keV luminosity of L(sub X) = 6.9 x 10(exp 33) erg/s suggests one of the lowest known X-ray conversion efficiencies L(sub X)/ E = 5.8 x 10(exp -5), similar to that of the Vela pulsar. Finally, the PWN around PSR J2022+3842 revealed by Chandra is also underluminous, with F(sub PWN)/ F(sub PSR) < or approx.1 in the 2-10 keV band, a further surprise given the pulsar's high spin-down luminosity.
Scientists Find X Rays from Stellar Winds That May Play Significant Role in Galactic Evolution
NASA Astrophysics Data System (ADS)
2001-09-01
Colorful star-forming regions that have captivated stargazers since the advent of the telescope 400 years ago contain gas thousands of times more energetic than previously recognized, powered by colliding stellar winds. This multimillion-degree gas radiated as X rays is one of the long-sought sources of energy and elements in the Milky Way galaxy's interstellar medium. A team led by Leisa Townsley, a senior research associate in astronomy and astrophysics at Penn State University, uncovered this wind phenomenon in the Rosette Nebula, a stellar nursery. With the Chandra X-ray Observatory, the team found that the most massive stars in the nebula produce winds that slam into each other, create violent shocks, and infuse the region with 6-million-degree gas. The findings are presented in Washington, D.C., today at a conference entitled "Two Years of Science with Chandra." "A ghostly glow of diffuse X-ray emission pervades the Rosette Nebula and perhaps many other similar star-forming regions throughout the Galaxy," said Townsley. "We now have a new view of the engine lighting the beautiful Rosette Nebula and new evidence for how the interstellar medium may be energized." Townsley and her colleagues created a striking X-ray panorama of the Rosette Molecular Cloud from four images with Chandra's Advanced CCD Imaging Spectrometer. This is a swath of the sky nearly 100 light years across sprayed with hundreds of X-ray-emitting young stars. In one corner of the Rosette Molecular Cloud lies the Rosette Nebula, called an "H II region" because the hydrogen gas there has been stripped of its electrons due to the strong ultraviolet radiation from its young stars. This region, about 5,000 light years away in the constellation Monoceros, the Unicorn, has long been a favorite among amateur astronomers. The wispy, colorful display is visible with small telescopes. The Chandra survey reveals, for the first time, 6-million-degree gas at the center of the Rosette Nebula, occupying a volume of about 3,000 cubic light years. Fueling the fury are a handful of massive type-O and type-B stars at the core of the nebula, the most massive members of a populous "OB association" that also includes hundreds of lower- mass stars. Rosette Nebula Optical/X-ray Composite Press Image and Caption "Until this observation, no one really knew where the energy of the powerful OB stellar winds goes," said Eric Feigelson, professor of astronomy and astrophysics at Penn State and a co-investigator in the study. "Theorists have speculated about this for decades, and we now see with Chandra the heat from the winds slamming into the cooler gas." Earlier X-ray telescopes did not have the resolution to differentiate between point sources and diffuse emission in the Rosette Nebula to the extent that Chandra has. Chandra imaged over 300 individual young stars in the Rosette Nebula, plus hundreds more in the Rosette Molecular Cloud. "We were able to identify the faint, diffuse radiation by subtracting out these point sources and looking at what was left over," explains team member Patrick Broos, a research assistant in astronomy and astrophysics at Penn State. The diffuse emission is not likely to be from supernova remnants left over from exploded stars because the Rosette Nebula is too young to have produced these, according to You- Hua Chu, of the University of Illinois at Urbana-Champaign. Rather, the diffuse emission must be related to the way the stellar winds from OB associations dissipate their energy. Understanding the detailed processes involved will rely on front-line research done in the laboratory on energy transport in very hot gases, according to Thierry Montmerle, of the Centre d'Etudes de Saclay in France. Chu and Montmerle have joined the research team to help interpret the Chandra results. The observations were made with Chandra's Advanced CCD Imaging Spectrometer, which was conceived and developed for NASA by Penn State and Massachusetts Institute of Technology under the leadership of Gordon Garmire, the Evan Pugh Professor of Astronomy and Astrophysics at Penn State.
NASA Technical Reports Server (NTRS)
Schwartz, Daniel A.; Allured, Ryan; Bookbinder, Jay A.; Cotroneo, Vincenzo; Forman, William R.; Freeman, Mark D.; McMuldroch, Stuart; Reid, Paul B.; Tananbaum, Harvey; Vikhlinin, Alexey A.;
2014-01-01
Addressing the astrophysical problems of the 2020's requires sub-arcsecond x-ray imaging with square meter effective area. Such requirements can be derived, for example, by considering deep x-ray surveys to find the young black holes in the early universe (large redshifts) which will grow into the first super-massive black holes. We have envisioned a mission, the Square Meter Arcsecond Resolution Telescope for X-rays (SMART-X), based on adjustable x-ray optics technology, incorporating mirrors with the required small ratio of mass to collecting area. We are pursuing technology which achieves sub-arcsecond resolution by on-orbit adjustment via thin film piezoelectric "cells" deposited directly on the non-reflecting sides of thin, slumped glass. While SMART-X will also incorporate state-of-the-art x-ray cameras, the remaining spacecraft systems have no requirements more stringent than those which are well understood and proven on the current Chandra X-ray Observatory.
Sacrificial Charge and the Spectral Resolution Performance of ACIS CCDs
NASA Astrophysics Data System (ADS)
Grant, Catherine E.; Prigozhin, Gregory; Lamarr, Beverly; Bautz, Mark W.
2002-04-01
Soon after launch, the Advanced CCD Imaging Spectrometer (ACIS), one of the focal plane instruments on the Chandra X-ray Observatory, suffered radiation damage from exposure to soft protons during passages through the Earth's radiation belts. The ACIS team is continuing to study the properties of the damage with an emphasis on developing techniques to mitigate charge transfer inefficiency (CTI) and spectral resolution degradation. A post-facto CTI corrector has been developed which can effectively recover much of the lost resolution (Townsley et al. 2000, ApJ, 534, L139). Any further improvements in performance will require knowledge of the location and amount of sacrificial charge - charge deposited along the readout path of an event which fills electron traps and changes CTI. We report on efforts by the ACIS Instrument team to characterize which charge traps cause performance degradation and the properties of the sacrificial charge seen on-orbit. We also report on early attempts to correct for the presence of sacrificial charge.
IXO and the Missing Baryons: The Need High Resolution Spectroscopy
NASA Astrophysics Data System (ADS)
Nicastro, Fabrizio
2009-01-01
About half of the baryons in the Universe are currently eluding detection. Hydrodynamical simulations for the formation of Large Scale Structures (LSSs), predict that these baryons, at z<1, are hiding in a tenuous (over-density 5-10) and hot (T 1e6 K) filamentary web of intergalactic matter: the Warm-Hot Intergalactic Medium (WHIM). The WHIM has probably been progressively enriched with metals, during phases of intense starburst and AGN activity, up to possibly solar metallicity (Cen & Ostriker, 2006), and should therefore shine and/or absorb in in the soft X-ray band, via electronic transitions from the most abundant metals. The importance of detecting and studying the WHIM lies not only in the possibility of finally making a complete census of all baryons in the Universe, but also in the possibility of (a) directly measuring the metallicity history of the Universe, and so investigating on metal-transport in the Universe and galaxy-IGM, AGN-IGM feedback mechanisms, (b) directly measuring the heating history of the Universe, and so understanding the process of LSS formation and shocks, and (c) performing cosmological parameter measurements through a 3D 2-point angular correlation function analysis of the WHIM filaments. Detecting, and studying the WHIM with the current X-ray instrumentation however, is extremely challenging, because of the low sensitivity and resolution of the Chandra and XMM-Newton gratings, and the very low 'grasp' of all currently available imaging-spectrometers. IXO, instead, thanks to its large grating effective area (> 1000 cm2 at 0.5 keV) and high spectral resolution (R>2500 at 0.5 keV) will be perfectly suited to attack the problem in a systematic way. Here we demonstrate that high resolution gratings are crucial for these kind of studies and show that the IXO gratings will be able to detect more than 300-700 OVII WHIM filaments along about 70 lines of sight, in less than 0.7.
X-ray Weak Broad-line Qquasars: Absorption or Intrinsic X-ray Weakness
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Risaliti, Guida
2005-01-01
XMM observations of X-ray weak quasars have been performed during 2003 and 2004. The data for all the observations have become available in 2004 (there has been a delay of several months on the initial schedule, due to high background flares which contaminated the observations: as a consequence, most of them had to be rescheduled). We have reduced and analyzed all the data, and obtained interesting scientific results. Out of the eight sources, 4 are confirmed to be extremely X-ray weak, in agreement with the results of previous Chandra observations. 3 sources are confined to be highly variable both in flux (by factor 20-50) and in spectral properties (dramatic changes in spectral index). For both these groups of objects we are completing a publication: 1) For the X-ray weak sources, a paper is submitted with a complete analysis of the X-ray spectra both from Chandra and XMM-Newton, and a comparison with optical and near-IR photometry obtained from all-sky surveys. Possible models for the unusual spectral energy distribution of these sources are also presented. 2) For the variable sources, a paper is being finalized where the X-ray spectra obtained with XMM-Newton are compared with previous X-ray observations and with observations at other wavelengths. It is shown that these sources are high luminosity and extreme cases of the highly variable class of narrow-line Seyfert Is. In order to further understand the nature of these X-ray weak quasars, we submitted proposals for spectroscopy at optical and infrared telescopes. We obtained time at the TNG 4 meter telescope for near-IR observations and at the Hobby-Eberly Telescope for optical high-resolution spectroscopy. These observations have been performed in early 2004. They will complement the XMM data and will lead to understanding of whether the X-ray weakness of these sources is an intrinsic property or is due to absorption by circum-nuclear material. The infrared spectra of the variable sources have been already analyzed and are discussed in the paper by Memola et al. which will be soon submitted.
Dynamics of the Shocked Gas in the Eta Carinae System as Seen by Chandra
NASA Technical Reports Server (NTRS)
Corcoran, M. F.; Hamaguchi, K.; Henley, D. B.; Ishibashi, K.; Gull, T.; Nielsen, K.; Pittard, J. M.
2006-01-01
We report on a series of X-ray spectra of the supermassive star Eta Carinae obtained by the High Energy Transmission Grating Spectrometer on the CHANDRA X-ray observatory before, during and after the star's X-ray minimum in the summer of 2003. The X-ray spectra show significant variations in emission measure and absorption, in the strength of the iron K edge and fluorescent iron emission, but show little change in the distribution of emission measure with temperature. The CHANDRA spectra also resolve emission from Si, S, Fe and other elements in H-like and He-like configurations. The HETGS spectra show that these lines change in centroid energy along with evidence of changes in the forbidden-to-intercombination ratios of the He-like triplets. These spectra offer strong support that the X-ray emission originates within a shock cone around an unseen, massive companion. The variations of the X-ray line spectrum provide a direct measure of the dynamics of the shocked gas in this cone and also evidence that the hottest region of the shock is not always in collisional ionization equilibrium. We discuss these results in light of the recent discovery of He II 4686 emission and the reported discovery of FUV emission from the companion star. This work was supported by SAO/Chandra grant GO3-4008A.
CHANDRA Observations of the Corona of AU Mic (dM1e)
NASA Astrophysics Data System (ADS)
Linsky, J. L.; Brown, A.; Osten, R. A.
2002-05-01
The dM1e flare star AU Mic (HD 197481, Gl 803) is the most luminous flare star in X-rays within 10 pc of the Sun. We observed the star in November 2000 for 60 ks using Chandra's High Energy Transmission Grating Spectrometer and ACIS-S detector. Since the X-ray flux was remarkably constant during this interval with only one small flare, the results we present refer to the quiescent state of the stellar corona. We have analyzed the Chandra spectra using the approach described by Osten et al (2002) for the analysis of similar observations of the active binary σ 2 CrB. We used CIAO2.0 "threads" and custom IDL procedures applied to the reprocessed Level 2 file. For the spectral line identification and atomic parameters, we used the APEC v1.10 line list. We derive the coronal emission measure distribution and abundances from the emission lines and continuum in the Chandra data set and the emission lines observed by EUVE during similar quiescent periods. The coronal model is compared with the fluxes of Fe XXI 1354A observed by STIS and Fe XVIII 975A observed by FUSE and with the lower temperature emission measure distribution obtained by Pagano et al (2000) from quiescent STIS observations. We acknowledge support by NASA through grant H-04630D to NIST and the University of Colorado.
NASA Extends Chandra Science and Operations Support Contract
NASA Astrophysics Data System (ADS)
2010-01-01
NASA has extended a contract with the Smithsonian Astrophysical Observatory in Cambridge, Mass., to provide science and operational support for the Chandra X-ray Observatory, a powerful tool used to better understand the structure and evolution of the universe. The contract extension with the Smithsonian Astrophysical Observatory provides continued science and operations support to Chandra. This approximately 172 million modification brings the total value of the contract to approximately 545 million for the base effort. The base effort period of performance will continue through Sept. 30, 2013, except for the work associated with the administration of scientific research grants, which will extend through Feb. 28, 2016. The contract type is cost reimbursement with no fee. In addition to the base effort, the contract includes two options for three years each to extend the period of performance for an additional six years. Option 1 is priced at approximately 177 million and Option 2 at approximately 191 million, for a total possible contract value of about $913 million. The contract covers mission operations and data analysis, which includes observatory operations, science data processing and astronomer support. The operations tasks include monitoring the health and status of the observatory and developing and uplinking the observation sequences during Chandra's communication coverage periods. The science data processing tasks include the competitive selection, planning and coordination of science observations and processing and delivery of the resulting scientific data. NASA's Marshall Space Flight Center in Huntsville, Ala, manages the Chandra program for the agency's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations. For more information about the Chandra X-ray Observatory visit: http://chandra.nasa.gov
A Comparative View of X-rays from the Solar System
NASA Technical Reports Server (NTRS)
Bhardwaj, Anil; Elsner, Ron; Gladstone, Randy; Cravens, Tom; Waite, Hunter; Branduardi-Raymont, Graziella; Ostgaard, Nikolai; Dennerl, Konrad; Lisse, Carey; Kharchenko, Vasili
2005-01-01
With the advent of sophisticated X-ray observatories, viz., Chandra and XMM-Newton, the field of planetary X-ray astronomy is advancing at a faster pace. Several new solar system objects are now know to shine in X-rays at energies generally below 2 keV. Jupiter, Saturn, and Earth, all three magnetized planets, have been observed by Chandra and XMM-Newton. At Jupiter, both auroral and non-auroral disk X-ray emissions have been observed. The first soft X-ray observation of Earth's aurora by Chandra shows that it is highly variable. X-rays have been detected from Saturn's disk, but no convincing evidence of X-ray aurora has been seen. Several comets have been observed in X-rays by Chandra and XMM-Newton. Cometary X-rays are produced due to change exchange of solar wind ions with cold cometary neutrals. Soft X-rays have also been observed from Venus, Mars, Moon, Io, Europa, Io plasma torus, and heliosphere. The non-auroral X-ray emissions from Jupiter, Saturn, and Earth, and those from sunlit disk of Mars, Venus, and Moon are produced due to scattering of solar X-rays. The spectral characteristics of X-ray emission from comets, heliosphere, darkside of Moon, and Martian halo are quite similar, but they appear to be quite different from those of Jovian auroral X-rays. The X- ray aurora on Earth is generated by electron bremsstrahlung and on Jupiter by precipitation of highly-ionized energetic heavy ions. In this paper we will present a comparative overview of X-ray emission from different solar system objects and make an attempt to synthesize a coherent picture.
An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624
NASA Technical Reports Server (NTRS)
King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.
2012-01-01
Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems
Chandra Sees Remarkable Eclipse of Black Hole
NASA Astrophysics Data System (ADS)
2007-04-01
A remarkable eclipse of a supermassive black hole and the hot gas disk around it has been observed with NASA's Chandra X-ray Observatory. This eclipse has allowed two key predictions about the effects of supermassive black holes to be tested. Just as eclipses of the Sun and moon give astronomers rare opportunities to learn about those objects, an alignment in a nearby galaxy has provided a rare opportunity to investigate a supermassive black hole. Illustrations of Black Hole Eclipse Illustrations of Black Hole Eclipse The supermassive black hole is located in NGC 1365, a galaxy 60 million light years from Earth. It contains a so called active galactic nucleus, or AGN. Scientists believe that the black hole at the center of the AGN is fed by a steady stream of material, presumably in the form of a disk. Material just about to fall into a black hole should be heated to millions of degrees before passing over the event horizon, or point of no return. The disk of gas around the central black hole in NGC 1365 produces copious X-rays but is much too small to resolve directly with a telescope. However, the disk was eclipsed by an intervening cloud, so observation of the time taken for the disk to go in and out of eclipse allowed scientists to estimate the size of the disk. Black Hole Animation Black Hole Animation "For years we've been struggling to confirm the size of this X-ray structure," said Guido Risaliti of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass, and the Italian Institute of Astronomy (INAF). "This serendipitous eclipse enabled us to make this breakthrough." The Chandra team directly measured the size of the X-ray source as about seven times the distance between the Sun and the Earth. That means the source of X-rays is about 2 billion times smaller than the host galaxy and only about 10 times larger than the estimated size of the black hole's event horizon, consistent with theoretical predictions. Chandra X-ray Image of NGC 1365 Chandra X-ray Image of NGC 1365 "Thanks to this eclipse, we were able to probe much closer to the edge of this black hole than anyone has been able to before," said co-author Martin Elvis from CfA. "Material this close in will likely cross the event horizon and disappear from the universe in about a hundred years, a blink of an eye in cosmic terms." In addition to measuring the size of this disk of material, Risaliti and his colleagues were also able to estimate the location of the dense gas cloud that eclipsed the X-ray source and central black hole. The Chandra data show that this cloud is one hundredth of a light year from the black hole's event horizon, or 300 times closer than generally thought. "AGN include the brightest objects in the Universe and are powerful probes of the early universe. So, it's vital to understand their basic structure," said Risaliti. "It turns out that we still have work to do to understand these monsters." A series of six Chandra observations of NGC 1365 were made every two days over a period of two weeks in April 2006. During five of the observations, high energy X-rays from the central X-ray source were visible, but in the second one - corresponding to the eclipse - they were not. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
NASA Technical Reports Server (NTRS)
Kwong, Victor H. S.
2003-01-01
The laser ablation/ion storage facility at the UNLV Physics Department has been dedicated to the study of atomic and molecular processes in low temperature plasmas. Our program focuses on the charge transfer (electron capture) of multiply charged ions and neutrals important in astrophysics. The electron transfer reactions with atoms and molecules is crucial to the ionization condition of neutral rich photoionized plasmas. With the successful deployment of the Far Ultraviolet Spectroscopic Explorer (FUSE) and the Chandra X-ray Observatory by NASA high resolution VUV and X-ray emission spectra fiom various astrophysical objects have been collected. These spectra will be analyzed to determine the source of the emission and the chemical and physical environment of the source. The proper interpretation of these spectra will require complete knowledge of all the atomic processes in these plasmas. In a neutral rich environment, charge transfer can be the dominant process. The rate coefficients need to be known accurately. We have also extended our charge transfer measurements to KeV region with a pulsed ion beam. The inclusion of this facility into our current program provides flexibility in extending the measurement to higher energies (KeV) if needed. This flexibility enables us to address issues of immediate interest to the astrophysical community as new observations are made by high resolution space based observatories.
The low energy detector of Simbol-X
NASA Astrophysics Data System (ADS)
Lechner, P.; Andricek, L.; Briel, U.; Hasinger, G.; Heinzinger, K.; Herrmann, S.; Huber, H.; Kendziorra, E.; Lauf, T.; Lutz, G.; Richter, R.; Santangelo, A.; Schaller, G.; Schnecke, M.; Schopper, F.; Segneri, G.; Strüder, L.; Treis, J.
2008-07-01
Simbol-X is a French-Italian-German hard energy X-ray mission with a projected launch in 2014. Being sensitive in the energy range from 500 eV to 80 keV it will cover the sensitivity gap beyond the energy interval of today's telescopes XMM-Newton and Chandra. Simbol-X will use an imaging telescope of nested Wolter-I mirrors. To provide a focal length of 20 m it will be the first mission of two independent mirror and detector spacecrafts in autonomous formation flight. The detector spacecraft's payload is composed of an imaging silicon low energy detector in front of a pixelated cadmium-telluride hard energy detector. Both have a sensitive area of 8 × 8 cm2 to cover a 12 arcmin field of view and a pixel size of 625 × 625 μm2 adapted to the telescope's resolution of 20 arcsec. The additional LED specifications are: high energy resolution, high quantum efficiency, fast readout and optional window mode, monolithic device with 100 % fill factor and suspension mounting, and operation at warm temperature. To match these requirements the low energy detector is composed of 'active macro pixels', combining the large, scalable area of a Silicon Drift Detector and the low-noise, on-demand readout of an integrated DEPFET amplifier. Flight representative prototypes have been processed at the MPI semiconductor laboratory, and the prototype's measured performance demonstrates the technology readiness.
Arcus: Exploring the Formation and Evolution of Clusters, Galaxies, and Stars
NASA Astrophysics Data System (ADS)
Smith, Randall K.; Arcus Collaboration
2017-06-01
The Large Scale Structure (LSS) of the Universe grew via the gravitational collapse of dark matter, but the visible components that trace the LSS-galaxies, groups and clusters-have a more complex history. Their baryons experience shock heating, radiative cooling and feedback from black holes and star formation, which leave faint signatures of hot (T~10^5-10^8 K), metal-enriched gas in the interstellar and intergalactic media (ISM and IGM). While recent Planck and X-ray studies support this scenario, no current mission possesses the instrumentation necessary to provide direct observational evidence for these “missing baryons." Arcus, a proposed MIDEX mission, leverages recent advances in critical-angle transmission (CAT) gratings and silicon pore optics (SPOs), using CCDs with strong Suzaku heritage and electronics based on the Swift mission; both the spacecraft and mission operations reuse highly successful designs. To be launched in 2023, Arcus will be the only observatory capable of studying, in detail, the hot galactic and intergalactic gas-the dominant baryonic component in the present-day Universe and ultimate reservoir of entropy, metals and the output from cosmic feedback. Its superior soft X-ray sensitivity will complement the forthcoming post-Hitomi and Athena calorimeters, which will have comparably high spectral resolution above 2 keV but poorer spectral resolution than XMM or Chandra in the Arcus bandpass.
X-Ray Optics: Past, Present, and Future
NASA Technical Reports Server (NTRS)
Zhang, William W.
2010-01-01
X-ray astronomy started with a small collimated proportional counter atop a rocket in the early 1960s. It was immediately recognized that focusing X-ray optics would drastically improve both source location accuracy and source detection sensitivity. In the past 5 decades, X-ray astronomy has made significant strides in achieving better angular resolution, large photon collection area, and better spectral and timing resolutions, culminating in the three currently operating X-ray observatories: Chandra, XMM/Newton, and Suzaku. In this talk I will give a brief history of X-ray optics, concentrating on the characteristics of the optics of these three observatories. Then I will discuss current X-ray mirror technologies being developed in several institutions. I will end with a discussion of the optics for the International X-ray Observatory that I have been developing at Goddard Space Flight Center.
Adaptive grazing incidence optics for the next generation of x-ray observatories
NASA Astrophysics Data System (ADS)
Lillie, C.; Pearson, D.; Plinta, A.; Metro, B.; Lintz, E.; Shropshire, D.; Danner, R.
2010-09-01
Advances in X-ray astronomy require high spatial resolution and large collecting area. Unfortunately, X-ray telescopes with grazing incidence mirrors require hundreds of concentric mirror pairs to obtain the necessary collecting area, and these mirrors must be thin shells packed tightly together... They must also be light enough to be placed in orbit with existing launch vehicles, and able to be fabricated by the thousands for an affordable cost. The current state of the art in X-ray observatories is represented by NASA's Chandra X-ray observatory with 0.5 arc-second resolution, but only 400 cm2 of collecting area, and by ESA's XMM-Newton observatory with 4,300 cm2 of collecting area but only 15 arc-second resolution. The joint NASA/ESA/JAXA International X-ray Observatory (IXO), with {15,000 cm2 of collecting area and 5 arc-second resolution which is currently in the early study phase, is pushing the limits of passive mirror technology. The Generation-X mission is one of the Advanced Strategic Mission Concepts that NASA is considering for development in the post-2020 period. As currently conceived, Gen-X would be a follow-on to IXO with a collecting area >= 50 m2, a 60-m focal length and 0.1 arc-second spatial resolution. Gen-X would be launched in {2030 with a heavy lift Launch Vehicle to an L2 orbit. Active figure control will be necessary to meet the challenging requirements of the Gen-X optics. In this paper we present our adaptive grazing incidence mirror design and the results from laboratory tests of a prototype mirror.
Fabrication update on critical-angle transmission gratings for soft x-ray grating spectrometers
NASA Astrophysics Data System (ADS)
Heilmann, Ralf K.; Bruccoleri, Alex; Mukherjee, Pran; Yam, Jonathan; Schattenburg, Mark L.
2011-09-01
Diffraction grating-based, wavelength dispersive high-resolution soft x-ray spectroscopy of celestial sources promises to reveal crucial data for the study of the Warm-Hot Intergalactic Medium, the Interstellar Medium, warm absorption and outflows in Active Galactic Nuclei, coronal emission from stars, and other areas of interest to the astrophysics community. Our recently developed critical-angle transmission (CAT) gratings combine the advantages of the Chandra high and medium energy transmission gratings (low mass, high tolerance of misalignments and figure errors, polarization insensitivity) with those of blazed reflection gratings (high broad band diffraction efficiency, high resolution through use of higher diffraction orders) such as the ones on XMM-Newton. Extensive instrument and system configuration studies have shown that a CAT grating-based spectrometer is an outstanding instrument capable of delivering resolving power on the order of 5,000 and high effective area, even with a telescope point-spread function on the order of many arc-seconds. We have fabricated freestanding, ultra-high aspect-ratio CAT grating bars from silicon-on-insulator wafers using both wet and dry etch processes. The 200 nm-period grating bars are supported by an integrated Level 1 support mesh, and a coarser external Level 2 support mesh. The resulting grating membrane is mounted to a frame, resulting in a grating facet. Many such facets comprise a grating array that provides light-weight coverage of large-area telescope apertures. Here we present fabrication results on the integration of CAT gratings and the different high-throughput support mesh levels and on membrane-frame bonding. We also summarize recent x-ray data analysis of 3 and 6 micron deep wet-etched CAT grating prototypes.
Iron K Features in the Quasar E 1821+643: Evidence for Gravitationally Redshifted Absorption?
NASA Technical Reports Server (NTRS)
Yaqoob, Tahir; Serlemitsos, Peter
2005-01-01
We report a Chandra high-energy grating detection of a narrow, redshifted absorption line superimposed on the red wing of a broad Fe K line in the z = 0.297 quasar E 1821+643. The absorption line is detected at a confidence level, estimated by two different methods, in the range approx. 2 - 3 sigma. Although the detection significance is not high enough to exclude a non-astrophysical origin, accounting for the absorption feature when modeling the X-ray spectrum implies that the Fe-K emission line is broad, and consistent with an origin in a relativistic accretion disk. Ignoring the apparent absorption feature leads to the conclusion that the Fe-K emission line is narrower, and also affects the inferred peak energy of the line (and hence the inferred ionization state of Fe). If the absorption line (at approx. 6.2 keV in the quasar frame) is real, we argue that it could be due to gravitationally redshifted Fe XXV or Fe XXVI resonance absorption within approx. 10 - 20 gravitational radii of the putative central black hole. The absorption line is not detected in earlier ASCA and Chandra low-energy grating observations, but the absorption line is not unequivocally ruled out by these data. The Chandra high-energy grating Fe-K emission line is consistent with an origin predominantly in Fe I-XVII or so. In an ASCA observation eight years earlier, the Fe-K line peaked at approx. 6.6 keV, closer to the energies of He-like Fe triplet lines. Further, in a Chandra low-energy grating observation the Fe-K line profile was double-peaked, one peak corresponding to Fe I-XVII or so, the other peak to Fe XXVI Ly alpha. Such a wide range in ionization state of Fe is not ruled out by the HEG and ASCA data either, and is suggestive of a complex structure for the line-emitter.
NASA Unveils First Images From Chandra X-Ray Observatory
NASA Astrophysics Data System (ADS)
1999-08-01
Extraordinary first images from NASA's Chandra X-ray Observatory trace the aftermath of a gigantic stellar explosion in such stunning detail that scientists can see evidence of what may be a neutron star or black hole near the center. Another image shows a powerful X-ray jet blasting 200,000 light years into intergalactic space from a distant quasar. Released today, both images confirm that NASA's newest Great Observatory is in excellent health and its instruments and optics are performing up to expectations. Chandra, the world's largest and most sensitive X-ray telescope, is still in its orbital check-out and calibration phase. "When I saw the first image, I knew that the dream had been realized," said Dr. Martin Weisskopf, Chandra Project Scientist, NASA's Marshall Space Flight Center, Huntsville, AL. "This observatory is ready to take its place in the history of spectacular scientific achievements." "We were astounded by these images," said Harvey Tananbaum, Director of the Smithsonian Astrophysical Observatory's Chandra X- ray Center, Cambridge, MA. "We see the collision of the debris from the exploded star with the matter around it, we see shock waves rushing into interstellar space at millions of miles per hour, and, as a real bonus, we see for the first time a tantalizing bright point near the center of the remnant that could possibly be a collapsed star associated with the outburst." Chandra's PKS 0637-752 PKS 0637-752 After the telescope's sunshade door was opened last week, one of the first images taken was of the 320-year-old supernova remnant Cassiopeia A, which astronomers believe was produced by the explosion of a massive star. Material blasted into space from the explosion crashed into surrounding material at 10 million miles per hour. This collision caused violent shock waves, like massive sonic booms, creating a vast 50-million degree bubble of X-ray emitting gas. Heavy elements in the hot gas produce X-rays of specific energies. Chandra's ability to precisely measure these X-rays tells how much of each element is present. With this information, astronomers can investigate how the elements necessary for life are created and spread throughout the galaxy by exploding stars. "Chandra will help to confirm one of the most fascinating theories of modern science -- that we came from the stars," said Professor Robert Kirshner of Harvard University. "Its ability to make X-ray images of comparable quality to optical images will have an impact on virtually every area of astronomy." Chandra also imaged a distant and very luminous quasar -- a single star-like object -- sporting a powerful X-ray jet blasting into space. The quasar radiates with the power of 10 trillion suns, energy which scientists believe comes from a supermassive black hole at its center. Chandra's image, combined with radio telescope observations, should provide insight into the process by which supermassive black holes can produce such cosmic jets. "Chandra has allowed NASA to seize the opportunity to put the U.S. back in the lead of observational X-ray astronomy," said Dr. Edward Weiler, Associate Administrator of Space Science, NASA Headquarters, Washington, DC. "History teaches us that whenever you develop a telescope 10 times better than what came before, you will revolutionize astronomy. Chandra is poised to do just that." The Chandra X-ray observatory was named in honor of the late Nobel laureate Subrahmanyan Chandrasekhar. NASA's Marshall Space Flight Center manages the Chandra program. TRW, Inc., Redondo Beach, CA, is the prime contractor for the spacecraft. The Smithsonian's Chandra X-ray Center controls science and flight operations from Cambridge, MA. Press: Fact Sheet The first Chandra images will be posted to the Internet at: http://chandra.nasa.gov and http://chandra.harvard.edu NASA press releases and other information are available automatically by sending an Internet electronic mail message to domo@hq.nasa.gov. In the body of the message (not the subject line) users should type the words "subscribe press-release" (no quotes). The system will reply with a confirmation via E-mail of each subscription. A second automatic message will include additional information on the service. NASA releases also are available via CompuServe using the command GO NASA. To unsubscribe from this mailing list, address an E-mail message to domo@hq.nasa.gov, leave the subject blank, and type only "unsubscribe press-release" (no quotes) in the body of the message.
Taking the Pulse of a Black Hole System
NASA Astrophysics Data System (ADS)
2011-01-01
Using two NASA X-ray satellites, astronomers have discovered what drives the "heartbeats" seen in the light from an unusual black hole system. These results give new insight into the ways that black holes can regulate their intake and severely curtail their growth. This study examined GRS 1915+105 (GRS 1915 for short), a binary system in the Milky Way galaxy containing a black hole about 14 times more massive than the Sun that is feeding off material from a companion star. As this material falls towards the black hole, it forms a swirling disk that emits X-rays. The black hole in GRS 1915 has been estimated to rotate at the maximum possible rate, allowing material in the inner disk to orbit very close to the black hole, at a radius only 20% larger than the event horizon, where the material travels at 50% the speed of light. Using the Chandra X-ray Observatory and the Rossi X-ray Timing Explorer (RXTE), researchers monitored this black hole system over a period of eight hours. As they watched, GRS 1915 gave off a short, bright pulse of X-ray light approximately every 50 seconds, varying in brightness by a factor of about three. This type of rhythmic cycle closely resembles an electrocardiogram of a human heart -- though at a slower pace. "Trying to understand the physics of this 'heartbeat state' is a little like trying to understand how a person's heart beats by watching changes in the blood flow through their veins," said Joey Neilsen, a graduate student at Harvard University, who presented these results from his dissertation at the American Astronomical Society (AAS) meeting in Seattle, Wash. It was previously known that GRS 1915 can develop such heartbeats when its mass consumption rate is very high. After monitoring it with the special combination of Chandra and RXTE, Neilsen and his collaborators realized that they could use the pulses to figure out what controls how much material the black hole consumes. "With each beat, the black hole pumps an enormous amount of energy into its surroundings," said Neilsen. "All that energy has profound consequences for the disk, even very far from the black hole." Changes in the X-ray spectrum observed by RXTE during each heartbeat reveal that the inner region of the disk, at only a few times the radius of the black hole's event horizon, emits enough radiation to push material away from the black hole. Eventually the disk gets so bright and so hot that it essentially disintegrates and plunges towards the black hole. Then the cycle begins again. "This behavior is a clear and startling demonstration of the power of radiation in the fight against gravity," said co-author Ron Remillard of the Massachusetts Institute of Technology. "During the heartbeat state, radiation prevents the black hole from ingesting as much material as it would otherwise." Neilsen and his colleagues estimated that the rate at which material falls onto the black hole changes by about a factor of ten during each cycle, with the maximum rate coinciding with the X-ray pulse. Between pulses, the inner part of the disk refills from material farther away from the black hole. The astronomers also used Chandra's high-resolution spectrograph to study the effects of this heartbeat variation on regions of the disk very far from the black hole, at distances of about 100,000 to a million times the radius of the event horizon. By analyzing the Chandra spectrum, they found a very strong wind being driven away from the outer parts of the disk. The wind changed significantly in just 5 seconds, nearly 100 times faster than has ever been seen in a wind from a stellar-mass black hole. The researchers concluded that the strong X-ray pulse from the inner disk must heat the outer disk. This heating process launches a wind, so that each new pulse drives more wind from the disk. The rate of mass expelled in this wind is remarkably high, as much as 25 times the maximum rate at which matter falls onto the black hole. "All that energy blows away an enormous amount of matter, equivalent to one third the mass of the Moon per day! This effectively forces the black hole onto a severe diet, and we think it eventually has real consequences for the system's heartbeat," said co-author Julia Lee, associate professor in the Astronomy department at Harvard and Neilsen's thesis advisor. This massive wind drains material from the outer disk and after a couple weeks, this depletion affects the inner disk, causing the black hole to feed much more slowly and its X-ray brightness to decrease substantially. Unable to power such strong variations in the disk and the wind, GRS 1915's 'heart' ceases to beat. This remarkable system then likely begins one of its 13 other known patterns of variation. Neilsen is a winner of the Roger Doxsey Travel Prize, which provides graduate students within one year of receiving or receipt of their PhD a monetary prize to enable the oral presentation of their dissertation research at an AAS meeting. NASA's Marshall Space Flight Center in Huntsville, Ala., manages the Chandra program for NASA's Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory controls Chandra's science and flight operations from Cambridge, Mass. More information, including images and other multimedia, can be found at: http://chandra.harvard.edu and http://chandra.nasa.gov
Planetary Observations in the Soft X-ray band; Present status and Future CMOS based technology
NASA Astrophysics Data System (ADS)
Kenter, A.; Kraft, R.; Murray, S.; Smith, R.; George, F.; Branduardi-Raymont, G.; Roediger, E.; Forman, W.; Elvis, M.
2013-12-01
Virtually every object in the Solar system emits X-rays, and X-ray studies of these objects often provides information that cannot be obtained by observations in other bands. The Solar Wind Charge Exchange (SWX) has revealed the nature and constituents of everything from comets, to the magnetosphere of the Earth and the gas giants. X-ray fluorescence observations of atmosphere-less rocky bodies have revealed their surface composition and gross morphology. Existing data, however, have been limited by observations with state of the art Earth-orbiting telescopes (e.g. Chandra, XMM-Newton, and Suzaku) or in-situ instruments with limited capabilities. We are developing CMOS imaging detectors optimized for use as soft x-ray imaging spectrometers. These devices, when coupled to a light-weight focusing optic or mechanical collimator, would be ideal for examining X-ray emission within the Solar System with unprecedented spatial, spectral and temporal resolution. CMOS devices, apart from their observational capabilities, would be ideal for a planetary mission as they consume very little power (~mW) and require only modest cooling. Furthermore, CMOS devices, unlike conventional CCDs, are extremely radiation hard (>5MRad) and could withstand even the hostile radiation environment of a Jovian orbit with little or no performance degradation. The devices can also be read at high (hundreds to thousands of frames per second) frame rates at low noise, a critical requirement given the high count rates (thousands of cts per second). Our CMOS imaging detectors are back thinned and optimized to detect very soft X-ray emission from light elements such as C,N,O,P,S as well as emission from higher Z elements such as Fe and Ti. This sensor can also resolve the strong CX emission lines of O present is the magnetospheric X-ray emission of the gas giants, as well as thermal and non-thermal bremsstrahlung. We could also detect and study the temporal evolution X-ray synchrotron emission from ultra-relativistic electrons, indicative of strong magnetohydrodynamic shocks. In this poster we outline some of the planetary investigations that could be made with this technology, and present the current status of our instrumentation development. We also compare the capabilities of our X-ray imaging spectrometer on a dedicated mission to Jupiter with the results obtained with Chandra. Our instrument, on a dedicated mission to Jupiter, could obtain more data on the Jovian auroras and the Io plasma torus in five minutes than we could with weeks of continuous Chandra observation.
New Panorama Reveals More Than a Thousand Black Holes
NASA Astrophysics Data System (ADS)
2007-03-01
By casting a wide net, astronomers have captured an image of more than a thousand supermassive black holes. These results give astronomers a snapshot of a crucial period when these monster black holes are growing, and provide insight into the environments in which they occur. The new black hole panorama was made with data from NASA's Chandra X-ray Observatory, the Spitzer Space Telescope and ground-based optical telescopes. The black holes in the image are hundreds of millions to several billion times more massive than the sun and lie in the centers of galaxies. X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field X-ray, IR & Optical Composites of Obscured & Unobscured AGN in Bootes Field Material falling into these black holes at high rates generates huge amounts of light that can be detected in different wavelengths. These systems are known as active galactic nuclei, or AGN. "We're trying to get a complete census across the Universe of black holes and their habits," said Ryan Hickox of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass. "We used special tactics to hunt down the very biggest black holes." Instead of staring at one relatively small part of the sky for a long time, as with the Chandra Deep Fields -- two of the longest exposures obtained with the observatory -- and other concentrated surveys, this team scanned a much bigger portion with shorter exposures. Since the biggest black holes power the brightest AGN, they can be spotted at vast distances, even with short exposures. Scale Chandra Images to Full Moon Scale Chandra Images to Full Moon "With this approach, we found well over a thousand of these monsters, and have started using them to test our understanding of these powerful objects," said co-investigator Christine Jones, also of the CfA. The new survey raises doubts about a popular current model in which a supermassive black hole is surrounded by a doughnut-shaped region, or torus, of gas. An observer from Earth would have their view blocked by this torus by different amounts, depending on the orientation of the torus. According to this model, astronomers would expect a large sample of black holes to show a range of absorption of the radiation from the nuclei. This absorption should range from completely exposed to completely obscured, with most in-between. Nuclei that are completely obscured are not detectable, but heavily obscured ones are. "Instead of finding a whole range, we found nearly all of the black holes are either naked or covered by a dense veil of gas," said Hickox. "Very few are in between, which makes us question how well we know the environment around these black holes." This study found more than 600 obscured and 700 unobscured AGN, located between about six to 11 billion light years from Earth. They were found using an early application of a new search method. By looking at the infrared colors of objects with Spitzer, AGN can be separated from stars and galaxies. The Chandra and optical observations then verify these objects are AGN. This multi-wavelength method is especially efficient at finding obscured AGN. "These results are very exciting, using two NASA Great Observatories to find and understand the largest sample of obscured supermassive black holes ever found in the distant universe", said co-investigator Daniel Stern, of NASA's Jet Propulsion Laboratory in Pasadena, Calif. The Chandra image is the largest contiguous field ever obtained by the observatory. At 9.3 square degrees, it is over 40 times larger than the full moon seen on the night sky and over 80 times larger than either of the Chandra Deep Fields. This survey, taken in a region of the Bootes constellation, involved 126 separate pointings of 5,000-second Chandra exposures each. The researchers combined this with data obtained from Spitzer, and Kitt Peak's 4-meter Mayall and the MMT 6.5-meter optical telescopes, both located outside Tuscon, Ariz., from the same patch of sky. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center, Cambridge, Mass. Additional information and images are available at: http://chandra.harvard.edu and http://chandra.nasa.gov
Infrared Faint Radio Sources in the Extended Chandra Deep Field South
NASA Astrophysics Data System (ADS)
Huynh, Minh T.
2009-01-01
Infrared-Faint Radio Sources (IFRSs) are a class of radio objects found in the Australia Telescope Large Area Survey (ATLAS) which have no observable counterpart in the Spitzer Wide-area Infrared Extragalactic Survey (SWIRE). The extended Chandra Deep Field South now has even deeper Spitzer imaging (3.6 to 70 micron) from a number of Legacy surveys. We report the detections of two IFRS sources in IRAC images. The non-detection of two other IFRSs allows us to constrain the source type. Detailed modeling of the SED of these objects shows that they are consistent with high redshift AGN (z > 2).
1999-04-15
The Space Shuttle orbiter Columbia sits outside the Orbiter Processing Facility bay 1 after transfer from the Vehicle Assembly Building. Columbia will undergo processing for mission STS-93, targeted for launch in July 1999. The STS-93 mission will deploy the Chandra X-ray Observatory (formerly AXAF) which comprises three major elements: the spacecraft, the telescope, and the science instrument module (SIM). Chandra will allow scientists from around the world to obtain unprecedented X-ray images of a variety of high-energy objects to help understand the structure and evolution of the universe. The STs-93 mission commander is Eileen M. Collins, the first woman to serve in that capacity
History of Chandra X-Ray Observatory
2000-09-20
This Chandra image reveals, in detail, the turbulent debris created by a supernova explosion that was observed by the Danish Astronomer Tycho Brahe in the year 1572. The colors show different x-ray energies, with red, green, and blue representing low, medium, and high energies, respectively. Most likely caused by the destruction of a white dwarf star, a shock wave produced by the expanding debris is outlined by the sharp blue circular arcs of 20 million degree Celsius gas seen on the outer rim. The stellar debris, visible only by x-ray, has a temperature of about 10 million degrees, and shows up as mottled yellow, green, and red fingers of gas.
History of Chandra X-Ray Observatory
2004-09-24
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA’s Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
NASA Technical Reports Server (NTRS)
2004-01-01
Astronomers have used an x-ray image to make the first detailed study of the behavior of high-energy particles around a fast moving pulsar. This image, from NASA's Chandra X-Ray Observatory (CXO), shows the shock wave created as a pulsar plows supersonically through interstellar space. These results will provide insight into theories for the production of powerful winds of matter and antimatter by pulsars. Chandra's image of the glowing cloud, known as the Mouse, shows a stubby bright column of high-energy particles, about four light years in length, swept back by the pulsar's interaction with interstellar gas. The intense source at the head of the X-ray column is the pulsar, estimated to be moving through space at about 1.3 million miles per hour. A cone-shaped cloud of radio-wave-emitting particles envelopes the x-ray column. The Mouse, a.k.a. G359.23-0.82, was discovered in 1987 by radio astronomers using the National Science Foundation's Very Large Array in New Mexico. G359.23-0.82 gets its name from its appearance in radio images that show a compact snout, a bulbous body, and a remarkable long, narrow, tail that extends for about 55 light years. NASA's Marshall Space Flight Center in Huntsville, Alabama manages the Chandler program.
TRW Ships NASA's Chandra X-ray Observatory To Kennedy Space Center
NASA Astrophysics Data System (ADS)
1999-04-01
Two U.S. Air Force C-5 Galaxy transport planes carrying the observatory and its ground support equipment landed at Kennedy's Space Shuttle Landing Facility at 2:40 p.m. EST this afternoon. REDONDO BEACH, CA.--(Business Wire)--Feb. 4, 1999--TRW has shipped NASA's Chandra X-ray Observatory ("Chandra") to the Kennedy Space Center (KSC), in Florida, in preparation for a Space Shuttle launch later this year. The 45-foot-tall, 5-ton science satellite will provide astronomers with new information on supernova remnants, the surroundings of black holes, and other celestial phenomena that produce vast quantities of X-rays. Cradled safely in the cargo hold of a tractor-trailer rig called the Space Cargo Transportation System (SCTS), NASA's newest space telescope was ferried on Feb. 4 from Los Angeles International Airport to KSC aboard an Air Force C-5 Galaxy transporter. The SCTS, an Air Force container, closely resembles the size and shape of the Shuttle cargo bay. Over the next few months, Chandra will undergo final tests at KSC and be mated to a Boeing-provided Inertial Upper Stage for launch aboard Space Shuttle Columbia. A launch date for the Space Shuttle STS-93 mission is expected to be announced later this week. The third in NASA's family of Great Observatories that includes the Hubble Space Telescope and the TRW-built Compton Gamma Ray observatory, Chandra will use the world's most powerful X-ray telescope to allow scientists to "see" and monitor cosmic events that are invisible to conventional optical telescopes. Chandra's X-ray images will yield new insight into celestial phenomena such as the temperature and extent of gas clouds that comprise clusters of galaxies and the superheating of gas and dust particles as they swirl into black holes. A TRW-led team that includes the Eastman Kodak Co., Raytheon Optical Systems Inc., and Ball Aerospace & Technologies Corp. designed and built the Chandra X-ray Observatory for NASA's Marshall Space Flight Center. The Smithsonian Astrophysical Observatory will manage the Chandra science mission for NASA from the Chandra X-ray Observatory Center in Cambridge, Mass. TRW has been developing scientific, communications and environmental satellite systems for NASA since 1958. In addition to building the Chandra X-ray Observatory, the company is currently developing the architectures and technologies needed to implement several of NASA's future space science missions, including the Next Generation Space Telescope, the Space Inteferometry Mission, both part of NASA's Origins program, and Constellation-X, the next major NASA X-ray mission after Chandra. Article courtesy of TRW. TRW news releases are available on the corporate Web site: http://www.trw.com.
VizieR Online Data Catalog: VANDELS High-Redshift Galaxy Evolution (McLure+, 2017)
NASA Astrophysics Data System (ADS)
McLure, R.; Pentericci, L.; Vandels Team
2017-11-01
This is the first data release (DR1) of the VANDELS survey, an ESO public spectroscopy survey targeting the high-redshift Universe. The VANDELS survey uses the VIMOS spectrograph on ESO's VLT to obtain ultra-deep, medium resolution, optical spectra of galaxies within the UKIDSS Ultra Deep Survey (UDS) and Chandra Deep Field South (CDFS) survey fields (0.2 sq. degree total area). Using robust photometric redshift pre-selection, VANDELS is targeting ~2100 galaxies in the redshift interval 1.0
Spatially Resolved Hard X-ray Emission in the Central 5 kpc of the Galaxy Merger NGC 6240
NASA Astrophysics Data System (ADS)
Wang, Junfeng; Nardini, E.; Fabbiano, G.; Karovska, M.; Elvis, M.; Pellegrini, S.; Max, C. E.; Risaliti, G.; U, V.; Zezas, A.
2013-04-01
We have obtained a deep, sub-arcsecond resolution X-ray image of the nuclear region of the luminous galaxy merger NGC 6240 with Chandra, which resolves the X-ray emission from the pair of active nuclei and the diffuse hot gas in great detail. We detect extended hard X-ray emission from 70 million K hot gas over a spatial scale of 5 kpc, indicating the presence of fast shocks with velocity of 2200 km/s. For the first time we obtain spatial distribution of this highly ionized gas emitting FeXXV and find that it shows a remarkable correspondence to the large scale morphology of H_2(1-0) S(1) line emission and Hα filaments. Propagation of fast shocks originated in the starburst driven wind into the ambient dense gas can account for this morphological correspondence. Both the energetics and the iron mass in the hot gas are consistent with the expected injection from the supernovae explosion during the starburst that is commensurate with its high star formation rate.
The Development of a Deflectometer for Accurate Surface Figure Metrology
NASA Technical Reports Server (NTRS)
Gubarev, Mikhail; Eberhardt, Andrew; Ramsey, Brian; Atkins, Carolyn
2015-01-01
Marshall Space Flight Center is developing the method of direct fabrication for high resolution full-shell x-ray optics. In this technique the x-ray optics axial profiles are figured and polished using a computer-controlled ZeekoIRP600X polishing machine. Based on the Chandra optics fabrication history about one third of the manufacturing time is spent on moving a mirror between fabrication and metrology sites, reinstallation and alignment with either the metrology or fabrication instruments. Also, the accuracy of the alignment significantly affects the ultimate accuracy of the resulting mirrors. In order to achieve higher convergence rate it is highly desirable to have a metrology technique capable of in situ surface figure measurements of the optics under fabrication, so the overall fabrication costs would be greatly reduced while removing the surface errors due to the re-alignment necessary after each metrology cycle during the fabrication. The goal of this feasibility study is to demonstrate if the Phase Measuring Deflectometry can be applied for in situ metrology of full shell x-ray optics. Examples of the full-shell mirror substrates suitable for the direct fabrication
The Ionized Nuclear Environment in NGC 985 as seen by Chandra and BeppoSAX
NASA Astrophysics Data System (ADS)
Krongold, Y.; Nicastro, F.; Elvis, M.; Brickhouse, N. S.; Mathur, S.; Zezas, A.
2005-02-01
We investigate the ionized environment of the Seyfert 1 galaxy NGC 985 with a new Chandra HETGS observation and an archival BeppoSAX observation. Both spectra exhibit strong residuals to a single-power-law model, indicating the presence of an ionized absorber and a soft excess. A detailed model over the Chandra data shows that the 0.6-8 keV intrinsic continuum can be well represented by a power law (Γ~1.6) plus a blackbody component (kT=0.1 keV). Two absorption components are clearly required to fit the absorption features observed in the Chandra spectrum. The components have a difference of 29 in ionization parameter and 3 in column density. The presence of the low-ionization component is evidenced by an Fe M-shell unresolved transition array produced by charge states VII-XIII. The high-ionization phase is required by the presence of broad absorption features arising from several blends of Fe L-shell transitions (Fe XVII-XXII). A third highly ionized component might also be present, but the data do not allow us to constrain its properties. Although poorly constrained, the outflow velocities of the components (581+/-206 km s-1 for the high-ionization phase and 197+/-184 km s-1 for the low-ionization one) are consistent with each other and with the outflow velocities of the absorption components observed in the UV. In addition, the low-ionization component produces significant amounts of O VI, N V, and C IV, which suggests that a single outflow produces the UV and X-ray features. The broadband (0.1-100 keV) continuum in the BeppoSAX data can be parameterized by a power law (Γ~1.4), a blackbody (kT=0.1 keV), and a high-energy cutoff (Ec~70 keV). An X-ray luminosity variation by a factor of 2.3 is observed between the BeppoSAX and Chandra observations (separated by almost 3 yr). Variability in the opacity of the absorbers is detected in response to the continuum variation, but while the colder component is consistent with a simple picture of photoionization equilibrium, the ionization state of the hotter component seems to increase, while the continuum flux drops. The most striking result in our analysis is that during both the Chandra and the BeppoSAX observations, the two absorbing components appear to have the same pressure. Thus, we suggest that the absorption arises from a multiphase wind. Such a scenario can explain the change in the opacity of both absorption components during the observations, but it requires that a third, hotter component be pressure-confining the two phases. Hence, our analysis points to a three-phase medium similar to the wind found in NGC 3783, and it further suggests that such a wind might be a common characteristic in active galactic nuclei. The pressure-confining scenario requires fragmentation of the confined phases into a large number of clouds.
Six Years of Science with the Chandra X-Ray Observatory
NASA Technical Reports Server (NTRS)
Weisskopf, Martin
2005-01-01
The Chandra X-ray Observatory had its origins in a 1963 proposal led by Riccardo Giacconi that called for a 1-meter diameter, 1-arcsecond class X-Ray telescope for studying the Universe in X-rays. We will briefly discuss the history of the mission, the development of the hardware, its testing, and the launch on 1999, July 23. The remainder of the talk will be an admittedly eclectic review of some of the most exciting scientific highlights. These include the detection and identification of the first source seen with Chandra - an unusual Seyfert 1 we nicknamed Leon X-1, the detailed study of the Crab Nebula and its pulsar, and spectacular images of other supernova remnants including a 1-Million second exposure on Cas A. We also will summarize some of the major Chandra findings for normal and active galaxies and we will illustrate the breadth of science enabled by Chandra observations of clusters of galaxies and their implications for cosmology.
NASA Technical Reports Server (NTRS)
Bonamente, Massimiliano; Joy, Marshall; LaRoque, Samuel J.; Carlstrom, John E.; Nagai, Daisuke; Marrone, Dan
2007-01-01
We present Sunyaev-Zel'dovich Effect (SZE) scaling relations for 38 massive galaxy clusters at redshifts 0.14 less than or equal to z less than or equal to 0.89, observed with both the Chandra X-ray Observatory and the centimeter-wave SZE imaging system at the BIMA and OVRO interferometric arrays. An isothermal ,Beta-model with central 100 kpc excluded from the X-ray data is used to model the intracluster medium and to measure global cluster properties. For each Cluster, we measure the X-ray spectroscopic temperature, SZE gas mass, total mass. and integrated Compton-gamma parameters within r(sub 2500). Our measurements are in agreement with the expectations based on a simple self-similar model of cluster formation and evolution. We compare the cluster properties derived from our SZE observations with and without Chandra spatial and spectral information and find them to be in good agreement: We compare our results with cosmological numerical simulations, and find that simulations that include radiative cooling, star formation and feedback match well both the slope and normalization of our SZE scaling relations.
History of Chandra X-Ray Observatory
2002-07-31
This is a photo taken by NASA's Chandra X-ray Observatory that reveals the remains of an explosion in the form of two enormous arcs of multimillion-degree gas in the galaxy Centaurus A that appear to be part of a ring 25,000 light years in diameter. The size and location of the ring suggest that it could have been an explosion that occurred about 10 million years ago. A composite image made with radio (red and green), optical (yellow-orange), and X-ray data (blue) presents a sturning tableau of a turbulent galaxy. A broad band of dust and cold gas is bisected at an angle by opposing jets of high-energy particles blasting away from the supermassive black hole in the nucleus. Lying in a plane perpendicular to the jets are the two large arcs of x-ray emitting multi-million degree gas. This discovery can help astronomers better understand the cause and effect of violent outbursts from the vicinity of supermassive black holes of active galaxies. The Chandra program is managed by the Marshall Space Flight Center in Huntsville, Alabama.
1999-02-09
Before leaving KSC, STS-93 Commander Eileen M. Collins poses by a T-38 jet trainer aircraft at the Shuttle Landing Facility. She and the rest of the STS-93 crew spent two days visiting mission-related sites, including the Vertical Processing Facility where the Chandra X-ray Observatory is undergoing testing. STS-93 is scheduled to launch July 9 aboard Space Shuttle Columbia and has the primary mission of the deployment of the observatory. Formerly called the Advanced X-ray Astrophysics Facility, Chandra comprises three major elements: the spacecraft, the science instrument module (SIM), and the world's most powerful X-ray telescope. Chandra will allow scientists from around the world to see previously invisible black holes and high-temperature gas clouds, giving the observatory the potential to rewrite the books on the structure and evolution of our universe. Collins is the first woman to serve as commander of a Space Shuttle. Other STS-93 crew members are Pilot Jeffrey S. Ashby and Mission Specialists Catherine G. Coleman, Steven A. Hawley, and Michel Tognini of France, who represents the Centre National d'Etudes Spatiales (CNES)
The Chandra Source Catalog: Spectral Properties
NASA Astrophysics Data System (ADS)
Doe, Stephen; Siemiginowska, Aneta L.; Refsdal, Brian L.; Evans, Ian N.; Anderson, Craig S.; Bonaventura, Nina R.; Chen, Judy C.; Davis, John E.; Evans, Janet D.; Fabbiano, Giuseppina; Galle, Elizabeth C.; Gibbs, Danny G., II; Glotfelty, Kenny J.; Grier, John D.; Hain, Roger; Hall, Diane M.; Harbo, Peter N.; He, Xiang Qun (Helen); Houck, John C.; Karovska, Margarita; Kashyap, Vinay L.; Lauer, Jennifer; McCollough, Michael L.; McDowell, Jonathan C.; Miller, Joseph B.; Mitschang, Arik W.; Morgan, Douglas L.; Mossman, Amy E.; Nichols, Joy S.; Nowak, Michael A.; Plummer, David A.; Primini, Francis A.; Rots, Arnold H.; Sundheim, Beth A.; Tibbetts, Michael S.; van Stone, David W.; Winkelman, Sherry L.; Zografou, Panagoula
2009-09-01
The first release of the Chandra Source Catalog (CSC) contains all sources identified from eight years' worth of publicly accessible observations. The vast majority of these sources have been observed with the ACIS detector and have spectral information in 0.5-7 keV energy range. Here we describe the methods used to automatically derive spectral properties for each source detected by the standard processing pipeline and included in the final CSC. Hardness ratios were calculated for each source between pairs of energy bands (soft, medium and hard) using the Bayesian algorithm (BEHR, Park et al. 2006). The sources with high signal to noise ratio (exceeding 150 net counts) were fit in Sherpa (the modeling and fitting application from the Chandra Interactive Analysis of Observations package, developed by the Chandra X-ray Center; see Freeman et al. 2001). Two models were fit to each source: an absorbed power law and a blackbody emission. The fitted parameter values for the power-law and blackbody models were included in the catalog with the calculated flux for each model. The CSC also provides the source energy flux computed from the normalizations of predefined power-law and black-body models needed to match the observed net X-ray counts. In addition, we provide access to data products for each source: a file with source spectrum, the background spectrum, and the spectral response of the detector. This work is supported by NASA contract NAS8-03060 (CXC).
NASA Technical Reports Server (NTRS)
LeBel, Kenneth A.; Poivey, Christian; Barth, Janet L.
2003-01-01
This viewgraph presentation presents an overview of the use of in-flight science data to review the radiation effects on commercial off the shelf (COTS) electronics used in recent spacecraft missions. The authors review the hazards that the space radiation environment pose for spacecraft electronics. They specifically discuss long term effects such as total ionizing dose (TID) and short term effects like single particle events (SEE). The advantages of using COTS electronics despite not being radiation hardened are mentioned. The reasons cite for tracking in-flight performance of COTS electronics include: anomaly resolution, validate ground tests and environmental predictions and provide lessons for future designers. Sample radiation impacts of science data from the following missions are analyzed: SOHO/LASCO 3 Coronograph, Microwave Anisotrophy Probe, Hubble Space Telescope and Chandra X-Ray Observatory.
MASSIM, the Milli-Arc-Second Structure Imager
NASA Technical Reports Server (NTRS)
Skinner, Gerry
2008-01-01
The MASSIM (Milli-Arc-Second Structure Imager) mission will use a set of achromatic diffractive-refractive Fresnel lenses to achieve imaging in the X-ray band with unprecedented angular resolution. It has been proposed for study within the context of NASA's "Astrophysics Strategic Mission Concept Studies" program. Lenses on an optics spacecraft will focus 5-11 keV X-rays onto detectors on a second spacecraft flying in formation 1000 km away. It will have a point-source sensitivity comparable with that of the current generation of major X-ray observatories (Chandra, XMM-Newton) but an angular resolution some three orders of magnitude better. MASSIM is optimized for the study of jets and other phenomena that occur in the immediate vicinity of black holes and neutron stars. It can also be used for studying other phenomena on the milli-arc-second scale, such as those involving proto-stars, the surfaces and surroundings of nearby active stars and interacting winds.