A sex-specific relationship between capillary density and anaerobic threshold
Robbins, Jennifer L.; Duscha, Brian D.; Bensimhon, Daniel R.; Wasserman, Karlman; Hansen, James E.; Houmard, Joseph A.; Annex, Brian H.; Kraus, William E.
2009-01-01
Although both capillary density and peak oxygen consumption (V̇o2) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak V̇o2 may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in V̇o2 at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak V̇o2 was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in V̇o2 at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = −0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women. PMID:19164774
A sex-specific relationship between capillary density and anaerobic threshold.
Robbins, Jennifer L; Duscha, Brian D; Bensimhon, Daniel R; Wasserman, Karlman; Hansen, James E; Houmard, Joseph A; Annex, Brian H; Kraus, William E
2009-04-01
Although both capillary density and peak oxygen consumption (Vo(2)) improve with exercise training, it is difficult to find a relationship between these two measures. It has been suggested that peak Vo(2) may be more related to central hemodynamics than to the oxidative potential of skeletal muscle, which may account for this observation. We hypothesized that change in a measure of submaximal performance, anaerobic threshold, might be related to change in skeletal muscle capillary density, a marker of oxidative potential in muscle, with training. Due to baseline differences among these variables, we also hypothesized that relationships might be sex specific. A group of 21 subjects completed an inactive control period, whereas 28 subjects (17 men and 11 women) participated in a 6-mo high-intensity exercise program. All subjects were sedentary, overweight, and dyslipidemic. Potential relationships were assessed between change in capillary density with both change in Vo(2) at peak and at anaerobic threshold with exercise training. All variables and relationships were assessed for sex-specific effects. Change in peak Vo(2) was not related to change in capillary density after exercise training in either sex. Men had a positive correlation between change in Vo(2) at anaerobic threshold and change in capillary density with exercise training (r = 0.635; P < 0.01), whereas women had an inverse relationship (r = -0.636; P < 0.05) between the change in these variables. These findings suggest that, although enhanced capillary density is associated with training-induced improvements in submaximal performance in men, this relationship is different in women.
Capillary density: An important parameter in nailfold capillaroscopy.
Emrani, Zahra; Karbalaie, Abdolamir; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Erlandsson, Björn-Erik
2017-01-01
Nailfold capillaroscopy is one of the various noninvasive bioengineering methods used to investigate skin microcirculation. It is an effective examination for assessing microvascular changes in the peripheral circulation; hence it has a significant role for the diagnosis of Systemic sclerosis with the classic changes of giant capillaries as well as the decline in capillary density with capillary dropout. The decline in capillary density is one of microangiopathic features existing in connective tissue disease. It is detectable with nailfold capillaroscopy. This parameter is assessed by applying quantitative measurement. In this article, we reviewed a common method for calculating the capillary density and the relation between the number of capillaries as well as the existence of digital ulcers, pulmonary arterial hypertension, autoantibodies, scleroderma patterns and different scoring system. Copyright © 2016 Elsevier Inc. All rights reserved.
Quantitative nailfold video capillaroscopy in patients with idiopathic inflammatory myopathy.
Mercer, Louise K; Moore, Tonia L; Chinoy, Hector; Murray, Andrea K; Vail, Andy; Cooper, Robert G; Herrick, Ariane L
2010-09-01
To quantify nailfold capillary density and dimensions in patients with idiopathic inflammatory myopathy (IIM) and compare them with those in healthy controls; to look for associations with microvascular disease in IIM; and to determine whether nailfold capillary density and dimensions change over time. Nailfold video microscopy (x300 magnification) was performed on 24 patients with IIM and 35 healthy controls. Capillary density and dimensions (total width and apical width) were quantified. Patients were clinically assessed and disease activity recorded using the Myositis Disease Activity Assessment Tool. Disease severity and physical function were assessed using the myositis damage index and Stanford HAQ, respectively. Findings were analysed using linear and logistic regression, adjusted for age and sex. In a subgroup of 16 patients with IIM and 27 controls, the process was repeated 6-12 months later and the results were analysed using Student's t-test. Capillary density was lower and dimensions were higher in patients with IIM compared with healthy controls (P < 0.001 for all). Anti-Jo-1 antibody was associated with reduced capillary density. In the longitudinal cohort, the mean change in capillary density was -1.4 in patients vs -0.4 in controls (P = 0.07). Mean change in capillary dimensions did not differ between patients and controls, but some patients demonstrated pronounced changes in capillary morphology over time. Reduced capillary density and increased dimensions in patients with IIM can be quantified using nailfold capillaroscopy, suggesting that nailfold capillaroscopy may be useful as an outcome measure of microvascular disease in studies of IIM.
Tarassoly, Kia; Miraftabi, Arezoo; Soltan Sanjari, Mostafa; Parvaresh, Mohammad Mehdi
2017-06-29
To measure the foveal avascular zone (FAZ) areas and vessel densities of patients with diabetic retinopathy and to study their relationship with diabetic cystoid changes and retinal thickness. Prospective case series of 51 eyes of 31 patients with diabetic retinopathy. The eyes were grouped based on the presence or absence of cystoid edema and evaluated using optical coherence tomography angiography. The FAZ areas and vessel density were compared. The FAZ area at the superficial capillary plexus level was equal between the eyes with and without cystoid edema. Vessel density did not differ as well. There was no correlation with retinal thickness. In eyes with cystoid changes, FAZ area changes at the deep capillary plexus level were difficult to interpret. The FAZ area and vessel density at the superficial capillary plexus level are reproducible and independent of the presence of cystoid edema.
Hoerth, Christian; Kundi, Michael; Katzenschlager, Reinhold; Hirschl, Mirko
2012-01-01
Nailfold capillaroscopy (NVC) is a diagnostic tool particularly useful in the differential diagnosis of rheumatic and connective tissue diseases. Although successfully applied since many years, little is known about prevalence and distribution of NVC changes in healthy individuals. NVC was performed in 120 individuals (57 men and 63 women; age 18 to 70 years) randomly selected according to predefined age and sex strata. Diseases associated with NVC changes were excluded. The nailfolds of eight fingers were assessed according to standardized procedures. A scoring system was developed based on the distribution of the number of morphologically deviating capillaries, microhaemorrhages, and capillary density. Only 18 individuals (15 %) had no deviation in morphology, haemorrhages, or capillary density on any finger. Overall 67 % had morphological changes, 48 % had microhaemorrhages, and 40 % of volunteers below 40 years of age and 18 % above age 40 had less than 8 capillaries/mm. Among morphological changes tortous (43 %), ramified (47 %), and bushy capillaries (27 %) were the most frequently altered capillary types. A semiquantitative scoring system was developed in such a way that a score above 1 indicates an extreme position (above the 90th percentile) in the distribution of scores among healthy individuals. Altered capillaries occur frequently among healthy individuals and should be interpreted as normal unless a suspicious increase in their frequency is determined by reference to the scoring system. Megacapillaries and diffuse loss of capillaries were not found and seem to be of specific diagnostic value.
Early changes in fiber profile and capillary density in long-term stimulated muscles.
Hudlická, O; Dodd, L; Renkin, E M; Gray, S D
1982-10-01
Predominantly fast skeletal muscles of rabbits [tibialis anterior (TA), extensor digitorum longus (EDL)] were stimulated at a frequency naturally occurring in nerves to slow muscles (10 Hz continuously) for 8 h/day for 2--4 days. Such stimulation is known to convert all glycolytic fibers to oxidative and to increase capillary density. Our aim was to study early stages of conversion to investigate the factors responsible for the changes. Staining of quick-frozen sections for myosin ATPase, succinic dehydrogenase, and alkaline phosphatase was used to study the distribution of different fiber types and to measure fiber cross-sectional areas, capillaries per square millimeter, and capillary-to-fiber ratios in each fiber category. TA but not EDL showed conversion of fast glycolytic to fast oxidative fibers after 2 days, more after 4 days of stimulation. In both muscles, the largest fast glycolytic fibers were diminished in number after stimulation. There was significant increase in total capillaries per square millimeter after 4 days and some increase after 2 days of stimulation. The increase in capillaries per square millimeter exceeded the increase in the number of fibers per square millimeter, and since there was no change in mean fiber area, the increase is attributed to capillary growth. In EDL, there was an increase in the number of capillaries supplying both fast glycolytic and fast oxidative fibers, suggesting that capillary growth precedes fiber type conversion. In TA, the number of capillaries supplying fast oxidative fibers was increased but that to fast glycolytic fibers, was not. This is consistent with capillary growth simultaneous with or following fiber conversion. In both TA and EDL the number of capillaries perfused after contraction was higher in stimulated muscles, suggesting that increased capillary flow contributed to capillary growth.
Nailfold capillaroscopic changes in Kindler syndrome.
Dobrev, Hristo P; Vutova, Nina I
2015-11-01
Kindler syndrome (KS), the fourth major type of hereditary epidermolysis bullosa (HEB), is a rare, autosomal recessive disorder characterized by skin fragility and blistering at birth followed by development of marked photosensitivity and progressive poikilodermatous skin changes in later years. We reported here the case of a 54-year-old woman, who fulfills the diagnostic criteria of KS type of HEB, putting accent on the nailfold capillaroscopic changes. Using videocapillaroscopy we observed pronounced alterations in finger nail capillaries including reduction in capillary density, features of neoangiogenesis (architectural derangement, elongated loops, extremely tortuous, bushy or branching capillaries, thin, branching and interconnected capillaries), enlarged and giant capillaries. We consider the changes observed as an adaptive mechanism that compensate the loss of capillaries due to chronic periungual trauma. Further studies with larger number of patients are needed to confirm the significance of capillaroscopy findings for patients with HEB.
de Boer, Michiel P; Meijer, Rick I; Newman, John; Stehouwer, Coen D A; Eringa, Etto C; Smulders, Yvo M; Serné, Erik H
2014-07-01
Insulin-induced capillary recruitment is considered a significant regulator of overall insulin-stimulated glucose uptake. Insulin's action to recruit capillaries has been hypothesized to involve insulin-induced changes in vasomotion. Data directly linking vasomotion to capillary perfusion, however, are presently lacking. We, therefore, investigated whether insulin's actions on capillary recruitment and vasomotion were interrelated in a group of healthy individuals. We further assessed the role of capillary recruitment in the association between vasomotion and insulin-mediated glucose uptake. Changes in vasomotion and capillary density were determined by LDF and capillary videomicroscopy in skin, respectively, before and during a hyperinsulinemic euglycemic clamp in 19 healthy volunteers. Insulin-induced increase in the neurogenic vasomotion domain was positively related to insulin-augmented capillary recruitment (r = 0.51, p = 0.04), and both parameters were related to insulin-mediated glucose uptake (r = 0.47, p = 0.06 and r = 0.73, p = 0.001, respectively). The change in insulin-augmented capillary recruitment could, at least statistically, largely explain the association between the neurogenic domain and insulin-mediated glucose uptake. Insulin-induced changes in vasomotion and capillary recruitment are associated in healthy volunteers. These data suggest that insulin's action to recruit capillaries may in part involve action on the neurogenic vasomotion domain, thereby enhancing capillary perfusion and glucose uptake. © 2014 John Wiley & Sons Ltd.
Quantitative analysis of nailfold capillary morphology in patients with fibromyalgia
Choi, Dug-Hyun
2015-01-01
Background/Aims Nailfold capillaroscopy (NFC) has been used to examine morphological and functional microcirculation changes in connective tissue diseases. It has been demonstrated that NFC patterns reflect abnormal microvascular dynamics, which may play a role in fibromyalgia (FM) syndrome. The aim of this study was to determine NFC patterns in FM, and their association with clinical features of FM. Methods A total of 67 patients with FM, and 30 age- and sex-matched healthy controls, were included. Nailfold capillary patterns were quantitatively analyzed using computerized NFC. The parameters of interest were as follows: number of capillaries within the central 3 mm, deletion score, apical limb width, capillary width, and capillary dimension. Capillary dimension was determined by calculating the number of capillaries using the Adobe Photoshop version 7.0. Results FM patients had a lower number of capillaries and higher deletion scores on NFC compared to healthy controls (17.3 ± 1.7 vs. 21.8 ± 2.9, p < 0.05; 2.2 ± 0.9 vs. 0.7 ± 0.6, p < 0.05, respectively). Both apical limb width (µm) and capillary width (µm) were significantly decreased in FM patients (1.1 ± 0.2 vs. 3.7 ± 0.6; 5.4 ± 0.5 vs. 7.5 ± 1.4, respectively), indicating that FM patients have abnormally decreased digital capillary diameter and density. Interestingly, there was no difference in capillary dimension between the two groups, suggesting that the length or tortuosity of capillaries in FM patients is increased to compensate for diminished microcirculation. Conclusions FM patients had altered capillary density and diameter in the digits. Diminished microcirculation on NFC may alter capillary density and increase tortuosity. PMID:26161020
NASA Technical Reports Server (NTRS)
Musacchia, X. J.; Steffen, Joseph M.; Fell, R. D.; Dombrowski, M. J.
1988-01-01
This work is a continuation of efforts to assess responses of rat skeletal muscle to weightlessness (W) and earthside laboratory experiments with unloading of hind limbs. The soleus is a slow-twitch, load-bearing (antigravity) muscle. Both exposure to W and to the hypokinesia/hypodynamia of whole-body suspension (WBS) results in soleus atrophy. Cross-sectional areas of both slow- and fast-twitch fibers decrease during 7 days of W or 7 or 14 days of WBS. Density and area changes tended to reverse to control levels during 7 days of recovery (R) following WBS. Capillary density was increased with 7 days of W or 7 or 14 days of WBS. During 7 days of R the capillary density returned toward control levels. In summary, the reduction in fiber cross-sectional areas and the increase in fiber and capillary densities support the hypothesis that in both W and WBS there is a loss in soleus muscle cell mass and not in fiber numbers.
Sanchez-Garcia, M Esther; Ramirez-Lara, Irene; Gomez-Delgado, Francisco; Yubero-Serrano, Elena M; Leon-Acuña, Ana; Marin, Carmen; Alcala-Diaz, Juan F; Camargo, Antonio; Lopez-Moreno, Javier; Perez-Martinez, Pablo; Tinahones, Francisco José; Ordovas, Jose M; Caballero, Javier; Blanco-Molina, Angeles; Lopez-Miranda, Jose; Delgado-Lista, Javier
2018-02-23
Microcirculation disturbances have been associated to most of the cardiovascular risk factors as well as to multiple inflammatory diseases. However, whether these abnormalities are specifically augmented in patients with coronary heart disease is still unknown. We aimed to evaluate if there is a relationship between the presence of coronary heart disease and the existence of functional and structural capillary abnormalities evaluated in the cutaneous microcirculation by videocapillaroscopy. Two matched samples of 30 participants with and without coronary heart disease but with similar clinical and anthropometric characteristics were evaluated by videocapillaroscopy at the dorsal skin of the third finger of the non-dominant hand. We calculated basal capillary density as well as capillary density after a period of arterial and venous occlusion in order to evaluate functionality and maximum capillary density. We also measured capillary recruitment. Microvascular capillary density at rest was significantly lower in patients suffering from coronary heart disease than in controls. This fact was also found after dynamic tests (arterial and venous occlusion), suggesting functional impairments. Capillary recruitment of the samples was not different in our sample. In our study, patients with coronary heart disease exhibit functional and structural microvascular disturbances. Although this is a very preliminary study, these findings open the door for further studying the microvascular functionality in coronary patients and how it relates to the response to treatment and/or the prognosis of the disease. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.
Nailfold capillaroscopy in Behçet disease, performed using videodermoscopy.
Aytekin, S; Yuksel, E P; Aydin, F; Senturk, N; Ozden, M G; Canturk, T; Turanli, A Y
2014-06-01
Nailfold capillaroscopy is used for the identification of microvascular involvement in many rheumatic and extrarheumatic diseases. To determine the nailfold capillary changes in patients with Behçet disease (BD) by videodermoscopy, i.e. nailfold videocapillaroscopy (NVC). We used a videodermatoscope (Molemax II, × 30 magnification) to perform nailfold capillaroscopy on 40 patients with BD and 40 healthy controls (HC). All nailfold images were evaluated for capillary density, distribution and morphology, assessing features such as enlargement or tortuosity of the capillaries, microhaemorrhages and avascular areas. Enlarged capillaries were detected in 14 patients, microhaemorrhages in 6 patients, and avascular area in 3 patients. There was a statistically significant difference between patients with BD and healthy controls for capillary dilatation and microhaemorrhages (P < 0.05). Capillaroscopic changes were not associated with sex or clinical characteristics. Using NVC, nailfold capillary changes were apparent in patients with BD, but not in HC. NVC could be a useful technique for evaluating microvascular damage in BD. © 2014 British Association of Dermatologists.
Kim, Alice Y.; Rodger, Damien C.; Shahidzadeh, Anoush; Chu, Zhongdi; Koulisis, Nicole; Burkemper, Bruce; Jiang, Xuejuan; Pepple, Kathryn L.; Wang, Ruikang K.; Puliafito, Carmen A.; Rao, Narsing A.; Kashani, Amir H.
2016-01-01
Purpose To quantify retinal capillary density and morphology in uveitis using SD-OCTA. Design Cross-sectional, observational study Methods Healthy and uveitic subjects were recruited from two tertiary care eye centers. Prototype SD-OCTA devices (Cirrus, Carl Zeiss Meditec, Inc., Dublin, CA) were used to generate 3×3 mm2 OCTA images centered on the fovea. Subjects were placed into 3 groups based on the type of optical microangiography (OMAG) algorithm used for image processing (intensity-and/or phase) and type of retinal segmentation (automatic or manual). A semi-automated method was used to calculate skeleton density (SD), vessel density (VD), fractal dimension (FD), and vessel diameter index (VDI). Retinal vasculature was assessed in the superficial retinal layer (SRL), deep retinal layer (DRL), and non-segmented retinal layer (NS-RL). A generalized estimating equations model was used to analyze associations between the OCTA measures and disease status within each retinal layer. A P value < 0.05 was accepted as significant. Reproducibility and repeatability were assessed using the Intraclass Correlation Coefficient (ICC). Results The SD, VD, and FD of the parafoveal capillaries were lower in uveitic eyes compared to healthy eyes in all retinal segments. In addition, SD and VD were significantly lower in the DRL of subjects with uveitic macular edema. There was no correlation in any capillary parameters and anatomic classification of uveitis. Conclusions Quantitative analysis of parafoveal capillary density and morphology in uveitis demonstrates significantly lower capillary density and complexity. SD-OCTA algorithms are robust enough to detect these changes and can provide a novel diagnostic index of disease for uveitis subjects. PMID:27594138
Kannan, Pavitra; Schain, Martin; Kretzschmar, Warren W; Weidner, Lora; Mitsios, Nicholas; Gulyás, Balázs; Blom, Hans; Gottesman, Michael M; Innis, Robert B; Hall, Matthew D; Mulder, Jan
2017-06-01
Changes in P-glycoprotein and ABCG2 densities may play a role in amyloid-beta accumulation in Alzheimer's disease. However, previous studies report conflicting results from different brain regions, without correcting for changes in vessel density. We developed an automated method to measure transporter density exclusively within the vascular space, thereby correcting for vessel density. We then examined variability in transporter density across brain regions, matter, and disease using two cohorts of post-mortem brains from Alzheimer's disease patients and age-matched controls. Changes in transporter density were also investigated in capillaries near plaques and on the mRNA level. P-glycoprotein density varied with brain region and matter, whereas ABCG2 density varied with brain matter. In temporal cortex, P-glycoprotein density was 53% lower in Alzheimer's disease samples than in controls, and was reduced by 35% in capillaries near plaque deposits within Alzheimer's disease samples. ABCG2 density was unaffected in Alzheimer's disease. No differences were detected at the transcript level. Our study indicates that region-specific changes in transporter densities can occur globally and locally near amyloid-beta deposits in Alzheimer's disease, providing an explanation for conflicting results in the literature. When differences in region and matter are accounted for, changes in density can be reproducibly measured using our automated method.
Broyd, Christopher J; Hernández-Pérez, Francisco; Segovia, Javier; Echavarría-Pinto, Mauro; Quirós-Carretero, Alicia; Salas, Clara; Gonzalo, Nieves; Jiménez-Quevedo, Pilar; Nombela-Franco, Luis; Salinas, Pablo; Núñez-Gil, Ivan; Del Trigo, Maria; Goicolea, Javier; Alonso-Pulpón, Luis; Fernández-Ortiz, Antonio; Parker, Kim; Hughes, Alun; Mayet, Jamil; Davies, Justin; Escaned, Javier
2018-05-21
Techniques for identifying specific microcirculatory structural changes are desirable. As such, capillary rarefaction constitutes one of the earliest changes of cardiac allograft vasculopathy (CAV) in cardiac allograft recipients, but its identification with coronary flow reserve (CFR) or intracoronary resistance measurements is hampered because of non-selective interrogation of the capillary bed. We therefore investigated the potential of wave intensity analysis (WIA) to assess capillary rarefaction and thereby predict CAV. Fifty-two allograft patients with unobstructed coronary arteries and normal left ventricular (LV) function were assessed. Adequate aortic pressure and left anterior descending artery flow measurements at rest and with intracoronary adenosine were obtained in 46 of which 2 were lost to follow-up. In a subgroup of 15 patients, simultaneous RV biopsies were obtained and analysed for capillary density. Patients were followed up with 1-3 yearly screening angiography. A significant relationship with capillary density was noted with CFR (r = 0.52, P = 0.048) and the backward decompression wave (BDW) (r = -0.65, P < 0.01). Over a mean follow-up of 9.3 ± 5.2 years patients with a smaller BDW had an increased risk of developing angiographic CAV (hazard ratio 2.89, 95% CI 1.12-7.39; P = 0.03). Additionally, the index BDW was lower in those who went on to have a clinical CAV-events (P = 0.04) as well as more severe disease (P = 0.01). Within cardiac transplant patients, WIA is able to quantify the earliest histological changes of CAV and can predict clinical and angiographic outcomes. This proof-of-concept for WIA also lends weight to its use in the assessment of other disease processes in which capillary rarefaction is involved.
Capillary evaporation of the ionic liquid [EMIM][BF4] in nanoscale solvophobic confinement
NASA Astrophysics Data System (ADS)
Shrivastav, Gourav; Remsing, Richard C.; Kashyap, Hemant K.
2018-05-01
Solvent density fluctuations play a crucial role in liquid-vapor transitions in solvophobic confinement and can also be important for understanding solvation of polar and apolar solutes. In the case of ionic liquids (ILs), density fluctuations can be used to understand important processes in the context of nanoscale aggregation and colloidal self-assemblies. In this article, we explore the nature of density fluctuations associated with capillary evaporation of the IL 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIM][BF4]) in the confined region of model solvophobic nanoscale sheets by using molecular dynamics simulations combined with non-Boltzmann sampling techniques. We demonstrate that density fluctuations of the confined IL play an important role in capillary evaporation, suggesting analogies to dewetting transitions involving water. Significant changes in the interfacial structure of the IL are also detailed and suggested to underlie a non-classical (non-parabolic) dependence of the free energy barrier to evaporation on the degree of confinement.
Pinhas, Alexander; Linderman, Rachel; Mo, Shelley; Krawitz, Brian D; Geyman, Lawrence S; Carroll, Joseph; Rosen, Richard B; Chui, Toco Y
2018-01-01
To present a method for age-matched deviation mapping in the assessment of disease-related changes to the radial peripapillary capillaries (RPCs). We reviewed 4.5x4.5mm en face peripapillary OCT-A scans of 133 healthy control eyes (133 subjects, mean 41.5 yrs, range 11-82 yrs) and 4 eyes with distinct retinal pathologies, obtained using spectral-domain optical coherence tomography angiography. Statistical analysis was performed to evaluate the impact of age on RPC perfusion densities. RPC density group mean and standard deviation maps were generated for each decade of life. Deviation maps were created for the diseased eyes based on these maps. Large peripapillary vessel (LPV; noncapillary vessel) perfusion density was also studied for impact of age. Average healthy RPC density was 42.5±1.47%. ANOVA and pairwise Tukey-Kramer tests showed that RPC density in the ≥60yr group was significantly lower compared to RPC density in all younger decades of life (p<0.01). Average healthy LPV density was 21.5±3.07%. Linear regression models indicated that LPV density decreased with age, however ANOVA and pairwise Tukey-Kramer tests did not reach statistical significance. Deviation mapping enabled us to quantitatively and visually elucidate the significance of RPC density changes in disease. It is important to consider changes that occur with aging when analyzing RPC and LPV density changes in disease. RPC density, coupled with age-matched deviation mapping techniques, represents a potentially clinically useful method in detecting changes to peripapillary perfusion in disease.
Shen, Ceying; Yan, Shu; Du, Min; Zhao, Hong; Shao, Ling; Hu, Yibo
2018-05-08
To assess capillary dropout in the superficial retinal capillary plexus (SCP) by optical coherence tomography angiography (OCTA) in the early stage of diabetic retinopathy (DR). This study was a cross-sectional observational study. Patients that underwent OCTA examinations in our hospital between November 2015 and May 2016 were included in the study. The subjects were divided into two groups: A) normal controls (41 eyes of 41 subjects) and B) the DR patients (49 eyes of 49 patients with mild non-proliferative DR (NPDR)). The retinal thickness and SCP vessel density were analyzed using built-in software in nine sections of the macular area; whole scan area; fovea; parafovea; and sub-sections of the parafovea, superior-hemi, inferior-hemi, temporal, superior, nasal, and inferior. The correlation between vessel density and retinal thickness was also analyzed. The SCP density was significantly lower (P < 0.05) in mild NPDR patients than in normal controls in all areas, with the exception of the fovea (P > 0.05). In the parafovea, superior-hemi, inferior-hemi, temporal, and nasal sectors of group B, the SCP density was negatively correlated with the corresponding retinal thickness (P < 0.05). Specifically, as the SCP density decreased, retinal thickness increased. In the early stage of NPDR, retinal capillary dropout and retinal thickness changes can be clearly captured and analyzed by OCTA. The results confirm a negative correlation between vessel density and retinal thickness in diabetic patients. This noninvasive technique could be applied for DR detection and monitoring. Further study with a larger sample size is warranted.
Moraes, Roger de; Van Bavel, Diogo; Moraes, Beatriz Serpa de; Tibiriçá, Eduardo
2014-12-15
Dietary creatine supplementation (CrS) is a practice commonly adopted by physically active individuals. However, the effects of CrS on systemic microvascular reactivity and density have never been reported. Additionally, CrS is able to influence blood levels of homocysteine, resulting in presumed effects on vascular endothelial function. Thus, we investigated the effects of CrS on the systemic microcirculation and on homocysteine levels in healthy young individuals. This open-label study was performed on a group of 40 healthy male, moderately physically active subjects aged 27.7 ± 13.4 years who received one week of CrS at a dose of 20 g/day of commercially available micronized creatine monohydrate. Laser speckle contrast imaging was used in the evaluation of cutaneous microvascular reactivity, and intra-vital video microscopy was used to evaluate skin capillary density and reactivity, before and after CrS. CrS did not alter plasma levels of homocysteine, although CrS increased creatinine (p = 0.0001) and decreased uric acid (p = 0.0004) plasma levels. Significant changes in total cholesterol (p = 0.0486) and LDL-cholesterol (p = 0.0027) were also observed along with a reduction in plasma levels of T3 (p = 0.0074) and an increase in T4 levels (p = 0.0003). Skin functional capillary density (p = 0.0496) and capillary recruitment during post-occlusive reactive hyperemia (p = 0.0043) increased after CrS. Increases in cutaneous microvascular vasodilation induced by post-occlusive reactive hyperemia (p = 0.0078) were also observed. Oral supplementation with creatine in healthy, moderately physically active young adults improves systemic endothelial-dependent microvascular reactivity and increases skin capillary density and recruitment. These effects are not concurrent with changes in plasma homocysteine levels.
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; Suchkova, O. V.; Sasonko, M. L.; Priezzhev, A. V.
2016-04-01
This study is aimed to define the extent of digital capillaroscopy possibilities for the quantification and estimation of microvascular abnormalities in type 2 diabetes mellitus (T2DM). A total of 196 adult persons were enrolled in the study including the group of compensated T2DM (n = 52), decompensated diabetics (n = 68), and healthy volunteers (n = 76) with normal blood glucose and without signs of cardiovascular pathology. All participants of the study were examined with the digital optical capillaroscope ("AET", Russia). This instrument is equipped with an image-processing program allowing for quantifying the diameters of the arterial and venous segments of the capillaries and their ratio (coefficient of remodeling), perivascular zone size, capillary blood velocity, and the degree of arterial loops narrowing and the density of the capillary network. Also we estimated the relative amount of coil-shaped capillaries. The study revealed significant difference in the capillary density and the remodeling coefficient in comparison of T2DM patients with non-diabetic individuals. Significant changes are found in the decompensated T2DM group compared to the compensated group of diabetic patients. Furthermore, the number of coil-shaped capillaries differed greatly in T2DM patients as compared to the healthy subjects. The study did not reveal any statistically significant differences in the capillary density between the patients with compensated and decompensated T2DM. The digital optical capillaroscope equipped with the advanced image-processing algorithm opens up new possibilities for obtaining clinically important information on microvascular abnormalities in patients suffering from diabetes mellitus.
Radial fingering under arbitrary viscosity and density ratios
NASA Astrophysics Data System (ADS)
Anjos, Pedro H. A.; Dias, Eduardo O.; Miranda, José A.
2017-08-01
We study viscous fingering formation in radial Hele-Shaw cell geometry considering the combined action of capillary and inertial effects for arbitrary values of viscosity and density ratios. We tackle the problem by employing a perturbative mode-coupling approach and focus our attention on weakly nonlinear stages of the dynamics. If inertial effects are neglected, our theoretical results indicate that the shape of the resulting interfacial patterns is significantly affected by changes in the viscosity ratio. Under such conditions, the growing fingers tend to proliferate through a repeated ramification process (e.g., by finger bifurcation, quadrifurcation, etc.) as the capillary number is increased. Nevertheless, we find that this scenario is dramatically altered when inertia is taken into account. When inertia is relevant, the conventional finger splitting morphologies are replaced by three-lobed structures, characterized by the occurrence of sidebranching phenomena. We verify that slightly different types of sidebranched patterns arise, presenting either wide or sharp fingertips, for a range of capillary numbers and density ratios.
Use of microcirculatory parameters to evaluate clinical treatments of chronic venous disorder (CVD).
Lascasas-Porto, Carmen Lucia; Milhomens, Ana Letícia M; Virgini-Magalhães, Carlos Eduardo; Fernandes, Fabiano F A; Sicuro, Fernando L; Bouskela, Eliete
2008-05-01
To evaluate changes on cutaneous microangiopathy in chronic venous disorder (CVD) after use of Cirkan [venotonic drug containing Ruscus aculeatus (plant extract), hesperidine methylchalcone (flavonoid) and vitamin C], elastic compression stockings (ECS) or no treatment for four weeks. Fifty-five female patients (85 legs), 25 to 57 years, with at least one limb classified as C2,s or C2,3,s (CEAP classification), were allocated consecutively, according to entrance order, in these three groups. Ten healthy women age-matched were also investigated. Using orthogonal polarization spectral technique (noninvasive method), measurements of functional capillary density (FCD, number of capillaries with flowing red blood cells/mm(2)), capillary morphology (CM, % of abnormal capillaries/mm(2)) and diameters (mum) of dermal papilla (DDP), capillary bulk (DCB) and capillary limb (CD) were obtained on the medial perimalleolar region and later analyzed using CapImage software. CVD patients showed significant changes on CD and CM compared to healthy subjects in agreement with our previous findings (J Vasc Surg 43:1037-1044, 2006). On Cirkan-treated patients, after 4 weeks, CD decreased on both limbs and CM improved on the left one, suggesting an amelioration of the chronic venous hypertension. No significant changes could be detected on other patient groups. These results confirm the existence of microcirculatory dysfunction in early stages of CVD, probably due to post-capillary hypertension, and further support the venotonic action of Cirkan.
Can red-light 5-aminolevulinic photodynamic therapy cure port wine stains on comb animal model?
Lai, Yongxian; Zhang, Haiyan; Wei, Minglei; Ji, Jie; Shi, Lei; Wang, Peiru; Wang, Bo; Huang, Zheng; Wang, Xiuli
2018-06-01
To study the curative effect of red-light 5-Aminolevulinic photodynamic therapy(ALA-PDT) to port wine stains(PWS) on comb animal model. 160 male cocks were randomly divided into 16 groups. The ALA only group was given ALA only topical or systemic application. Light only groups were only given 630 nm red light irradiation with different light density. ALA-PDT groups were given red light after the application of topical or systemic ALA. PDL group was given PDL irradiation. The distribution of fluorescence in tissue after topical or systemic application of ALA was detected. The morphological changes, the pathological changes and the capillary reduction rate of the comb were observed after treatment for 0, 1, 3, 5, 7, 14 days. The PpIX fluorescence generated after topical and systemic application of ALA. In the topical ALA-PDT group at low light density 80 J/cm 2 , the morphology and the histopathology had no obvious change. While under 160 J/cm 2 and 200 J/cm 2 light density, severe erosion and thick scab appeared. The histopathology showed epidermal necrosis and loss. The immunohistochemistry showed that there was no significant change in the number of capillaries under different light density (P > 0.05). In the systemic ALA-PDT group under low light density 80 J/cm 2 , only partial erosion and thin scab was observed on the treatment side. With the increase of light density, thick charred crust and even scar was observed. The histopathology showed that there were different degrees of damage to dermal and epidermal tissues. And the immunohistochemistry showed the capillary reduced significantly in the treatment side (P < 0.01). In control group, the comb is ruddy and plump. These results suggest that either topical or systemic red-light ALA-PDT is not suitable treatment methods for PWS. Copyright © 2018 Elsevier B.V. All rights reserved.
Treu, Curt; de Souza, Maria das Graças Coelho; Lupi, Omar; Sicuro, Fernando Lencastre; Maranhão, Priscila Alves; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete
2017-01-01
Leprosy is a chronic granulomatous infection of skin and peripheral nerves caused by Mycobacterium leprae and is considered the main infectious cause of disability worldwide. Despite the several studies regarding leprosy, little is known about its effects on microvascular structure and function in vivo. Thus, we have aimed to compare skin capillary structure and functional density, cutaneous vasomotion (spontaneous oscillations of arteriolar diameter), which ensures optimal blood flow distribution to skin capillaries) and cutaneous microvascular blood flow and reactivity between ten men with lepromatous leprosy (without any other comorbidity) and ten age- and gender-matched healthy controls. Orthogonal polarization spectral imaging was used to evaluate skin capillary morphology and functional density and laser Doppler flowmetry to evaluate blood flow, vasomotion and spectral analysis of flowmotion (oscillations of blood flow generated by vasomotion) and microvascular reactivity, in response to iontophoresis of acetylcholine and sodium nitroprusside. The contribution of different frequency components of flowmotion (endothelial, neurogenic, myogenic, respiratory and cardiac) was not statistically different between groups. However, endothelial-dependent and -independent vasodilatations elicited by acetylcholine and sodium nitroprusside iontophoresis, respectively, were significantly reduced in lepromatous leprosy patients compared to controls, characterizing the existence of microvascular dysfunction. These patients also presented a significant increase in the number of capillaries with morphological abnormalities and in the diameters of the dermal papilla and capillary bulk when compared to controls. Our results suggest that lepromatous leprosy causes severe microvascular dysfunction and significant alterations in capillary structure. These structural and functional changes are probably induced by exposure of the microvascular bed to chronic inflammation evoked by the Mycobacterium leprae. PMID:28419120
Noninvasive imaging of human foveal capillary network using dual-conjugate adaptive optics.
Popovic, Zoran; Knutsson, Per; Thaung, Jörgen; Owner-Petersen, Mette; Sjöstrand, Johan
2011-04-22
To demonstrate noninvasive imaging of human foveal capillary networks with a high-resolution, wide-field, dual-conjugate adaptive optics (DCAO) imaging instrument. The foveal capillary networks of five healthy subjects with no previous history of ocular or neurologic disease or surgery were imaged with a novel high-resolution, wide-field DCAO instrument. The foveal avascular zone (FAZ) in each image was defined using a manual procedure. An automated algorithm based on publicly available and custom-written software was used to identify vessels and extract morphologic FAZ and vessel parameters. Capillary densities were calculated in two annular regions of interest (ROIs) outside the FAZ (500 μm and 750 μm outer radius from the foveal center) and in the superior, inferior, temporal, and nasal quadrants within the two ROIs. Mean FAZ area was 0.302 ± 0.100 mm(2), and mean capillary density (length/area) in the inner ROI was 38.0 ± 4.0 mm(-1) and 36.4 ± 4.0 mm(-1) in the outer ROI. The difference in ROI capillary density was not significant. There was no significant difference in quadrant capillary density within the two ROIs or between quadrants irrespective of ROI. The authors have demonstrated a technique for noninvasive imaging and semiautomated detection and analysis of foveal capillaries. In comparison with other studies, their method yielded lower capillary densities than histology but similar results to the current clinical gold standard, fluorescein angiography. The increased field of view of the DCAO instrument opens up new possibilities for high-resolution noninvasive clinical imaging of foveal capillaries.
Govoni, Virginia; Sanders, Thomas A B; Reidlinger, Dianne P; Darzi, Julia; Berry, Sarah E E; Goff, Louise M; Seed, Paul T; Chowienczyk, Philip J; Hall, Wendy L
2017-04-01
Healthy microcirculation is important to maintain the health of tissues and organs, most notably the heart, kidney and retina. Single components of the diet such as salt, lipids and polyphenols may influence microcirculation, but the effects of dietary patterns that are consistent with current dietary guidelines are uncertain. It was hypothesized that compliance to UK dietary guidelines would have a favourable effect on skin capillary density/recruitment compared with a traditional British diet (control diet). A 12-week randomized controlled trial in men and women aged 40-70 years was used to test whether skin microcirculation, measured by skin video-capillaroscopy on the dorsum of the finger, influenced functional capillary density (number of capillaries perfused under basal conditions), structural capillary density (number of anatomical capillaries perfused during finger cuff inflation) and capillary recruitment (percentage difference between structural and functional capillary density). Microvascular measures were available for 137 subjects out of the 165 participants randomized to treatment. There was evidence of compliance to the dietary intervention, and participants randomized to follow dietary guidelines showed significant falls in resting supine systolic, diastolic and mean arterial pressure of 3.5, 2.6 and 2.9 mmHg compared to the control diet. There was no evidence of differences in capillary density, but capillary recruitment was 3.5 % (95 % CI 0.2, 6.9) greater (P = 0.04) on dietary guidelines compared with control. Adherence to dietary guidelines may help maintain a healthy microcirculation in middle-aged men and women. This study is registered at www.isrctn.com as ISRCTN92382106.
Green, Howard J; Burnett, Margaret; Kollias, Helen; Ouyang, Jing; Smith, Ian; Tupling, Susan
2012-05-01
To investigate the hypothesis that increases in fibre capillary density would precede increases in oxidative potential following training onset, tissue was extracted from the vastus lateralis prior to (0 days) and following 3 and 6 consecutive days of submaximal cycle exercise (2 h·day(-1)). Participants were untrained males (age = 21.4 ± 0.58 years; peak oxygen consumption = 46.2 ± 1.6 mL·kg(-1)·min(-1); mean ± standard error (SE)). Tissue was assessed for succinic dehydrogenase activity (SDH) by microphotometry and indices of capillarization based on histochemically assessed area and capillary counts (CC) in specific fibre types. Three days of training (n = 13) resulted in a generalized decrease (p < 0.05) in fibre area (-14.2% ± 3.0%; mean ± SE) and increase (p < 0.05) in CC/Area (20.4% ± 2.7%) and no change in either CC or SDH activity. Following 6 days of treatment (n = 6), increases (p < 0.05) in CC (18.2% ± 4.2%), CC/Area (28.9% ± 3.2%), and SDH activity (22.9% ± 6.0%) occurred that was not specific to major fibre type. No changes in either fibre area or fibre-type distribution were observed with additional training. We conclude that increases in angiogenic-based capillary density and oxidative potential occur coincidentally following training onset, while increases in capillary density, mediated by reductions in fibre area, represent an initial isolated response, the significance of which may be linked to the metabolic alterations that also result.
Pinhas, Alexander; Dubow, Michael; Shah, Nishit; Cheang, Eric; Liu, Chun L.; Razeen, Moataz; Gan, Alexander; Weitz, Rishard; Sulai, Yusufu N.; Chui, Toco Y.; Dubra, Alfredo; Rosen, Richard B.
2016-01-01
Purpose Eyes fellow to nonischemic central retinal vein occlusion (CRVO) were examined for abnormalities, which might explain their increased risk for future occlusion, using adaptive optics scanning light ophthalmoscope fluorescein angiography. Methods Adaptive optics scanning light ophthalmoscope fluorescein angiography foveal microvascular densities were calculated. Nonperfused capillaries adjacent to the foveal avascular zone were identified. Spectral domain optical coherence tomography, ultrawide field fluorescein angiographies, and microperimetry were also performed. Results Ten fellow eyes of nine nonischemic CRVO and 1 nonischemic hemi-CRVO subjects and four affected eyes of three nonischemic CRVO and one nonischemic hemi-CRVO subjects were imaged. Ninety percent of fellow eyes and 100% of affected eyes demonstrated at least 1 nonperfused capillary compared with 31% of healthy eyes. Fellow eye microvascular density (35 ± 3.6 mm−1) was significantly higher than that of affected eyes (25 ± 5.2 mm−1) and significantly lower than that of healthy eyes (42 ± 4.2 mm−1). Compared with healthy controls, spectral domain optical coherence tomography thicknesses showed no significant difference, whereas microperimetry and 2/9 ultrawide field fluorescein angiography revealed abnormalities in fellow eyes. Conclusion Fellow eye changes detectable on adaptive optics scanning light ophthalmoscope fluorescein angiography reflect subclinical pathology difficult to detect using conventional imaging technologies. These changes may help elucidate the pathogenesis of nonischemic CRVO and help identify eyes at increased risk of future occlusion. PMID:25932560
Barcelos, Amanda; Lamas, Cristiane; Tibiriça, Eduardo
2017-07-28
Infective endocarditis is a severe condition with high in-hospital and 5-year mortality. There is increasing incidence of infective endocarditis, which may be related to healthcare and changes in prophylaxis recommendations regarding oral procedures. Few studies have evaluated the microcirculation in patients with infective endocarditis, and so far, none have utilized laser-based technology or evaluated functional capillary density. The aim of the study is to evaluate the changes in the systemic microvascular bed of patients with both acute and subacute endocarditis. This is a cohort study that will include adult patients with confirmed active infective endocarditis according to the modified Duke criteria who were admitted to our center for treatment. A control group of sex- and age-matched healthy volunteers will be included. Functional capillary density, which is defined as the number of spontaneously perfused capillaries per square millimeter of skin, will be assessed by video-microscopy with an epi-illuminated fiber optic microscope. Capillary recruitment will be evaluated using post-occlusive reactive hyperemia. Microvascular flow will be evaluated in the forearm using a laser speckle contrast imaging system for the noninvasive and continuous measurement of cutaneous microvascular perfusion changes. Laser speckle contrast imaging will be used in combination with skin iontophoresis of acetylcholine, an endothelium-dependent vasodilator, or sodium nitroprusside (endothelium independent) to test microvascular reactivity. The present study will contribute to the investigation of microcirculatory changes in infective endocarditis and possibly lead to an earlier diagnosis of the condition and/or determination of its severity and complications. Trial registration ClinicalTrials.gov ID: NCT02940340.
Pleural pressure theory revisited: a role for capillary equilibrium.
Casha, Aaron R; Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca; Scarci, Marco
2017-04-01
Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes' hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation.
Dinsdale, Graham; Moore, Tonia; O'Leary, Neil; Tresadern, Philip; Berks, Michael; Roberts, Christopher; Manning, Joanne; Allen, John; Anderson, Marina; Cutolo, Maurizio; Hesselstrand, Roger; Howell, Kevin; Pizzorni, Carmen; Smith, Vanessa; Sulli, Alberto; Wildt, Marie; Taylor, Christopher; Murray, Andrea; Herrick, Ariane L
2017-07-01
Our aim was to assess the reliability of nailfold capillary assessment in terms of image evaluability, image severity grade ('normal', 'early', 'active', 'late'), capillary density, capillary (apex) width, and presence of giant capillaries, and also to gain further insight into differences in these parameters between patients with systemic sclerosis (SSc), patients with primary Raynaud's phenomenon (PRP) and healthy control subjects. Videocapillaroscopy images (magnification 300×) were acquired from all 10 digits from 173 participants: 101 patients with SSc, 22 with PRP and 50 healthy controls. Ten capillaroscopy experts from 7 European centres evaluated the images. Custom image mark-up software allowed extraction of the following outcome measures: overall grade ('normal', 'early', 'active', 'late', 'non-specific', or 'ungradeable'), capillary density (vessels/mm), mean vessel apical width, and presence of giant capillaries. Observers analysed a median of 129 images each. Evaluability (i.e. the availability of measures) varied across outcome measures (e.g. 73.0% for density and 46.2% for overall grade in patients with SSc). Intra-observer reliability for evaluability was consistently higher than inter- (e.g. for density, intra-class correlation coefficient [ICC] was 0.71 within and 0.14 between observers). Conditional on evaluability, both intra- and inter-observer reliability were high for grade (ICC 0.93 and 0.78 respectively), density (0.91 and 0.64) and width (0.91 and 0.85). Evaluability is one of the major challenges in assessing nailfold capillaries. However, when images are evaluable, the high intra- and inter-reliabilities suggest that overall image grade, capillary density and apex width have potential as outcome measures in longitudinal studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Cao, Dan; Yang, Dawei; Huang, Zhongning; Zeng, Yunkao; Wang, Jun; Hu, Yunyan; Zhang, Liang
2018-05-01
To investigate changes in retinal vascular plexuses and choriocapillaris in patients with type 2 diabetes mellitus (DM2) without diabetic retinopathy (DR) and healthy controls using optical coherence tomography angiography (OCTA). A total of 71 DM2 and 67 healthy control subjects were included. All subjects underwent OCTA examination (RTVue-XR Avanti; Optovue, Fremont, CA, USA). Average vessel density in superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris, parafoveal vessel density in SCP and DCP, FAZ area (mm 2 ) in SCP, microaneurysms and capillary nonperfusion were taken into analysis. Parafoveal vessel density in both SCP and DCP decreased in the eyes without clinical DR compared to normal controls (p < 0.001). Diabetic patients with no signs of DR also had a significant reduction in average vessel density of SCP, DCP and choriocapillaris (p < 0.001, p < 0.001 and p = 0.006, respectively). No significant difference was found in FAZ area of SCP between DM2 eyes and healthy controls (p = 0.253). The average vessel density of SCP and DCP is not correlated with HbA1c or serum creatinine in DM2 patients. Microaneurysms seen in OCTA but not in fundus examination were found in 8 out of the 71 (11.3%) diabetic eyes, and capillary nonperfusion was noted in 18 of 71 diabetic eyes. We demonstrated that OCTA can identify preclinical DR before the manifestation of clinically apparent retinopathy in diabetic eyes. DM2 patients without DR have SCP, DCP and choriocapillaris impairment. Our results suggested that OCTA might be a promising tool for regular screening of diabetic eyes for DR.
Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat.
Anversa, P.; Beghi, C.; McDonald, S. L.; Levicky, V.; Kikkawa, Y.; Olivetti, G.
1984-01-01
The growth response of the right ventricle was studied in rats following ligation of the left coronary artery, which produced infarcts comprising approximately 40% of the left ventricle. A month after surgery the weight of the right ventricle was increased 30%, and this hypertrophic change was characterized by a 17% wall thickening, consistent with the 13% greater diameter of myocytes. Myocardial hypertrophy was accompanied by an inadequate growth of the microvasculature that supports tissue oxygenation. This was seen by relative decreases in capillary luminal volume density (-27%) and capillary luminal surface density (-21%) and by an increase in the average maximum distance from the capillary wall to the mitochondria of myocytes (19%). In contrast, measurements of the mean myocyte volume per nucleus showed a proportional enlargement of these cells (32%), from 16,300 cu mu in control animals to 21,500 cu mu in experimental rats. Quantitative analysis of the right coronary artery revealed a 33% increase in its luminal area, commensurate with the magnitude of ventricular hypertrophy. PMID:6236695
Electrokinetic flow in a capillary with a charge-regulating surface polymer layer.
Keh, Huan J; Ding, Jau M
2003-07-15
An analytical study of the steady electrokinetic flow in a long uniform capillary tube or slit is presented. The inside wall of the capillary is covered by a layer of adsorbed or covalently bound charge-regulating polymer in equilibrium with the ambient electrolyte solution. In this solvent-permeable and ion-penetrable surface polyelectrolyte layer, ionogenic functional groups and frictional segments are assumed to distribute at uniform densities. The electrical potential and space charge density distributions in the cross section of the capillary are obtained by solving the linearized Poisson-Boltzmann equation. The fluid velocity profile due to the application of an electric field and a pressure gradient through the capillary is obtained from the analytical solution of a modified Navier-Stokes/Brinkman equation. Explicit formulas for the electroosmotic velocity, the average fluid velocity and electric current density on the cross section, and the streaming potential in the capillary are also derived. The results demonstrate that the direction of the electroosmotic flow and the magnitudes of the fluid velocity and electric current density are dominated by the fixed charge density inside the surface polymer layer, which is determined by the regulation characteristics such as the dissociation equilibrium constants of the ionogenic functional groups in the surface layer and the concentration of the potential-determining ions in the bulk solution.
Regression of Lingual Lymphatic Vessels in Sodium-restricted Mice.
He, Lianying; McCluskey, Lynnette Phillips
2018-05-01
Lymphatic vessel networks can expand and regress, with consequences for interstitial fluid drainage and nutrient supply to tissues, inflammation, and tumor spread. A diet high in sodium stimulates hyperplasia of cutaneous lymphatic capillaries. We hypothesized that dietary sodium restriction would have the opposite effect, shrinking lymphatic capillaries in the tongue. Lingual lymphatic capillary density and size was significantly reduced in mice fed a low-sodium diet (0.03%) for 3 weeks compared with control-fed mice. Blood vessel density was unchanged. Despite lymphatic capillary shrinkage, lingual edema was not observed. The effect on lymphatic capillaries was reversible, as lymphatic density and size in the tongue were restored by 3 weeks on a control diet. Lymphatic hyperplasia induced by a high-sodium diet is dependent on infiltrating macrophages. However, lingual CD68+ macrophage density was unchanged by sodium deficiency, indicating that distinct mechanisms may mediate lymphatic regression. Further studies are needed to test whether dietary sodium restriction is an effective, non-invasive co-therapy for oral cancer.
Tibirica, Eduardo; Rodrigues, Elba; Cobas, Roberta; Gomes, Marilia B.
2007-01-01
Microvascular function in patients with type 1 diabetes without chronic complications was assessed using skin capillary recruitment during post-occlusive reactive hyperemia (PORH). Structural (maximal) capillary density was evaluated during venous occlusion. The study included 48 consecutive outpatients aged 26.3 ± 10.8 years with type 1 diabetes (duration of 9.5 years) without chronic complications and 34 control subjects. Intravital capillary video-microscopy was used in the dynamic study of skin capillaries in the dorsum of the fingers and toes. Capillary recruitment during PORH (% increase in mean capillary density, MCD) was significantly higher in the controls than the patients in both the fingers (p < 0.001) and toes (p < 0.001). During venous occlusion, MCD increase was also higher in the controls than the patients in both the fingers (p < 0.05) and toes (p < 0.0001). In patients, no difference was found between MCD at baseline and after venous occlusion in the fingers but a decrease was observed in the toes (p < 0.001). It is concluded that skin capillary function is significantly impaired in both fingers and toes of patients with type 1 diabetes without chronic complications. Moreover, capillary density during venous occlusion did not increase in either extremity in the patients, suggesting that their capillaries at rest are already maximally recruited. PMID:17823692
Capillarization in skeletal muscle of rats with cardiac hypertrophy.
Degens, Hans; Anderson, Rebecca K; Alway, Stephen E
2002-02-01
Exercise intolerance during chronic heart failure (CHF) is localized mainly in skeletal muscle. A decreased capillarization may impair exchange of oxygen between capillaries and muscle tissue and in this way contribute to exercise intolerance. We assessed changes in capillary supply in plantaris and diaphragm muscles of a rat aorta-caval fistula (ACF) preparation, a volume overload model for CHF. An ACF was created under equithesin anesthesia. Plantaris and diaphragm muscles were removed 6 wk postsurgery and examined for myosin heavy chain (MyHC) content and capillary supply. Cardiac hypertrophy was 96% (P < 0.002) after ACF. The Type IIb MyHC content of the plantaris muscles increased (33.9 +/- 3.3 vs 49.8 +/- 3.8%; mean +/- SEM) at the expense of Type IIa MyHC (17.6 +/- 1.8 vs 11.2 +/- 1.7%) in ACF rats (P < 0.05). In the diaphragm, the number of Type I (32.1 +/- 2.3 vs 40.6 +/- 2.7%) and IIb fibers (40.6 +/- 1.9 vs 49.6 +/- 3.6%) increased at the expense of Type IIa fibers (26.8 +/- 2.5 vs 9.4 +/- 0.9%) (P < 0.05). The capillary number per fiber did not change, and this indicated that no capillary loss occurred with ACF. Also, the capillary density was maintained in the diaphragm and plantaris muscles of ACF rats. Furthermore, the coupling between fiber type, size, and metabolic type of surrounding fibers, with the capillary supply to a fiber, was maintained in rats with an ACF. The cardiac hypertrophy induced by volume overload seems adequate to prevent atrophy and changes in the microcirculation of limb and diaphragm muscles.
Cheerios Effect Controlled by Electrowetting.
Yuan, Junqi; Feng, Jian; Cho, Sung Kwon
2015-08-04
The Cheerios effect is a common phenomenon in which small floating objects are either attracted or repelled by the sidewall due to capillary interaction. This attractive or repulsive behavior is highly dependent on the slope angles (angles of the interface on the wall or floating object with respect to a horizontal line) that can be mainly controlled by the wettability of the wall and floating object and the density of the object. In this paper, electrowetting on dielectric (EWOD) is implemented to the wall or floating object in order to actively control the wettability and thus capillary interaction. As such, the capillary force on buoyant and dense floating objects can be easily switched between repulsion and attraction by simply applying an electrical input. In addition, the theoretical prediction for the capillary force is verified experimentally by measuring the motion of floating particle and the critical contact angle on the wall at which the capillary force changes from attraction to repulsion. This successive verification is enabled by the merit of EWOD that allows for continuous change in the contact angle. Finally, the control method is extended to continuously move a floating object along a linear path and to continuously rotate a dumbbell-like floating object in centimeter scales using arrays of EWOD electrodes. A continuous linear motion is also accomplished in a smaller scale where the channel width (3 mm) is comparable to the capillary length.
Detection and quantification of subtle changes in red blood cell density using a cell phone.
Felton, Edward J; Velasquez, Anthony; Lu, Shulin; Murphy, Ryann O; ElKhal, Abdala; Mazor, Ofer; Gorelik, Pavel; Sharda, Anish; Ghiran, Ionita C
2016-08-16
Magnetic levitation has emerged as a technique that offers the ability to differentiate between cells with different densities. We have developed a magnetic levitation system for this purpose that distinguishes not only different cell types but also density differences in cells of the same type. This small-scale system suspends cells in a paramagnetic medium in a capillary placed between two rare earth magnets, and cells levitate to an equilibrium position determined solely by their density. Uniform reference beads of known density are used in conjunction with the cells as a means to quantify their levitation positions. In one implementation images of the levitating cells are acquired with a microscope, but here we also introduce a cell phone-based device that integrates the magnets, capillary, and a lens into a compact and portable unit that acquires images with the phone's camera. To demonstrate the effectiveness of magnetic levitation in cell density analysis we carried out levitation experiments using red blood cells with artificially altered densities, and also levitated those from donors. We observed that we can distinguish red blood cells of an anemic donor from those that are healthy. Since a plethora of disease states are characterized by changes in cell density magnetic cell levitation promises to be an effective tool in identifying and analyzing pathologic states. Furthermore, the low cost, portability, and ease of use of the cell phone-based system may potentially lead to its deployment in low-resource environments.
Pleural pressure theory revisited: a role for capillary equilibrium
Caruana-Gauci, Roberto; Manche, Alexander; Gauci, Marilyn; Chetcuti, Stanley; Bertolaccini, Luca
2017-01-01
Background Theories elucidating pleural pressures should explain all observations including the equal and opposite recoil of the chest wall and lungs, the less than expected pleural hydrostatic gradient and its variation at lobar margins, why pleural pressures are negative and how pleural fluid circulation functions. Methods A theoretical model describing equilibrium between buoyancy, hydrostatic forces, and capillary forces is proposed. The capillary equilibrium model described depends on control of pleural fluid volume and protein content, powered by an active pleural pump. Results The interaction between buoyancy forces, hydrostatic pressure and capillary pressure was calculated, and values for pleural thickness and pressure were determined using values for surface tension, contact angle, pleural fluid and lung densities found in the literature. Modelling can explain the issue of the differing hydrostatic vertical pleural pressure gradient at the lobar margins for buoyancy forces between the pleural fluid and the lung floating in the pleural fluid according to Archimedes’ hydrostatic paradox. The capillary equilibrium model satisfies all salient requirements for a pleural pressure model, with negative pressures maximal at the apex, equal and opposite forces in the lung and chest wall, and circulatory pump action. Conclusions This model predicts that pleural effusions cannot occur in emphysema unless concomitant heart failure increases lung density. This model also explains how the non-confluence of the lung with the chest wall (e.g., lobar margins) makes the pleural pressure more negative, and why pleural pressures would be higher after an upper lobectomy compared to a lower lobectomy. Pathological changes in pleural fluid composition and lung density alter the equilibrium between capillarity and buoyancy hydrostatic pressure to promote pleural effusion formation. PMID:28523153
NASA Astrophysics Data System (ADS)
Qin, Zhiyong; Li, Wentao; Liu, Jiansheng; Liu, Jiaqi; Yu, Changhai; Wang, Wentao; Qi, Rong; Zhang, Zhijun; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Li, Ruxin; Xu, Zhizhan
2018-04-01
A hydrogen-filled capillary discharge waveguide made of quartz is presented for high-energy laser wakefield acceleration (LWFA). The experimental parameters (discharge current and gas pressure) were optimized to mitigate ablation by a quantitative analysis of the ablation plasma density inside the hydrogen-filled quartz capillary. The ablation plasma density was obtained by combining a spectroscopic measurement method with a calibrated gas transducer. In order to obtain a controllable plasma density and mitigate the ablation as much as possible, the range of suitable parameters was investigated. The experimental results demonstrated that the ablation in the quartz capillary could be mitigated by increasing the gas pressure to ˜7.5-14.7 Torr and decreasing the discharge current to ˜70-100 A. These optimized parameters are promising for future high-energy LWFA experiments based on the quartz capillary discharge waveguide.
Semi-automatic assessment of skin capillary density: proof of principle and validation.
Gronenschild, E H B M; Muris, D M J; Schram, M T; Karaca, U; Stehouwer, C D A; Houben, A J H M
2013-11-01
Skin capillary density and recruitment have been proven to be relevant measures of microvascular function. Unfortunately, the assessment of skin capillary density from movie files is very time-consuming, since this is done manually. This impedes the use of this technique in large-scale studies. We aimed to develop a (semi-) automated assessment of skin capillary density. CapiAna (Capillary Analysis) is a newly developed semi-automatic image analysis application. The technique involves four steps: 1) movement correction, 2) selection of the frame range and positioning of the region of interest (ROI), 3) automatic detection of capillaries, and 4) manual correction of detected capillaries. To gain insight into the performance of the technique, skin capillary density was measured in twenty participants (ten women; mean age 56.2 [42-72] years). To investigate the agreement between CapiAna and the classic manual counting procedure, we used weighted Deming regression and Bland-Altman analyses. In addition, intra- and inter-observer coefficients of variation (CVs), and differences in analysis time were assessed. We found a good agreement between CapiAna and the classic manual method, with a Pearson's correlation coefficient (r) of 0.95 (P<0.001) and a Deming regression coefficient of 1.01 (95%CI: 0.91; 1.10). In addition, we found no significant differences between the two methods, with an intercept of the Deming regression of 1.75 (-6.04; 9.54), while the Bland-Altman analysis showed a mean difference (bias) of 2.0 (-13.5; 18.4) capillaries/mm(2). The intra- and inter-observer CVs of CapiAna were 2.5% and 5.6% respectively, while for the classic manual counting procedure these were 3.2% and 7.2%, respectively. Finally, the analysis time for CapiAna ranged between 25 and 35min versus 80 and 95min for the manual counting procedure. We have developed a semi-automatic image analysis application (CapiAna) for the assessment of skin capillary density, which agrees well with the classic manual counting procedure, is time-saving, and has a better reproducibility as compared to the classic manual counting procedure. As a result, the use of skin capillaroscopy is feasible in large-scale studies, which importantly extends the possibilities to perform microcirculation research in humans. © 2013.
Electron density measurement in gas discharge plasmas by optical and acoustic methods
NASA Astrophysics Data System (ADS)
Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.
2016-08-01
Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.
Migration And Entrapment Of Mercury In The Subsurface
NASA Astrophysics Data System (ADS)
M, D.; Nambi, I. M.
2009-12-01
Elemental mercury is an immiscible liquid with high density and high surface tension. The movement of mercury in the saturated subsurface region is therefore considered a case of two phase flow involving mercury and water and is expected to be governed by gravity, viscous and capillary forces. Fundamental investigation into the migration and capillary entrapment of mercury in the subsurface was done by controlled laboratory capillary pressure saturation experiments using mercury and water as non wetting and wetting fluid respectively. Residual mercury saturation and van Genuchten’s capillary entrapment parameters were determined independently for different sizes of porous media. Based on the experimental data, theoretical investigations were done on the role of the three predominant forces and their influence on mercury migration and entrapment. The effects of fluid density and interfacial tension and the influence of Capillary and Bond number on mercury entrapment were analyzed with the help of similar capillary pressure - saturation experiments using Tetrachloroethylene (PCE)-water fluid pair. Mercury-water systems exhibited a low residual saturation of 0.02 and 0.07 as compared to 0.16 and 0.27 for PCE-water systems. Less residual mercury saturation, lack of apparent hysteresis in capillary pressure saturation curves and large variation in van Genuchten’s parameters 'α'(inverse of displacement pressure) and ‘n’ (pore size distribution index) for mercury-water systems compared to PCE-water systems were observed. These anomalies between the two systems elucidate that the capillary trapping is equally dependent on the fluid characteristics especially for high density immiscible fluids. Gravity force nevertheless a predominant controlling factor in the migration of highly dense mercury, is counteracted by not less trivial capillary force which was 1.22x104 times higher than gravity force. The capillary forces thus surmount the gravity forces and cause entrapment of mercury in the soil pores even in homogeneous porous medium system. Bond number (Bond number relates gravity and capillary forces) for mercury-water system was found to 2.5 times higher than PCE-water systems. Large density differences between mercury and water lead to high Bond number and thus less residual saturation. Capillary number (Capillary number relates viscous and capillary forces) was found to be less for mercury-water systems. Literature review unveils that low Capillary number does not influence non wetting residual saturation. But for high density mercury with natural infiltration, even low Capillary number influences residual saturation. With the alarming increase in number of mercury spill sites, results of this study showed a better understanding of the capillary entrapment phenomena and the extent of influence of each predominant force during displacement of highly dense mercury. The fundamental inputs to NAPL entrapment models were generated in this study for mercury for the first time. This data will be used to assess the distribution of mercury in contaminated sites and design suitable remedial alternatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.
We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function ofmore » the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.« less
Interfacial tension measurement of immiscible liq uids using a capillary tube
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.
1992-01-01
The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.
SU-E-QI-06: Design and Initial Validation of a Precise Capillary Phantom to Test Perfusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R; Iacobucci, G; Khobragade, P
2014-06-15
Purpose: To design a precise perfusion phantom mimicking capillaries of the brain vasculature which could be used to test various perfusion protocols and algorithms which generate perfusion maps. Methods: A perfusion phantom was designed in Solidworks and built using additive manufacturing. The phantom was an overall cylindrical shape of diameter and height 20mm and containing capillaries of 200μm or 300μm which were parallel and in contact making up the inside volume where flow was allowed. We created a flow loop using a peristaltic pump and contrast agent was injected manually. Digital Subtraction Angiographic images and low contrast images with conemore » beam CT were acquired after the contrast was injected. These images were analyzed by our own code in LabVIEW software and Time-Density Curve, MTT and TTP was calculated. Results: Perfused area was visible in the cone beam CT images; however, individual capillaries were not distinguishable. The Time-Density Curve acquired was accurate, sensitive and repeatable. The parameters MTT, and TTP offered by the phantom were very sensitive to slight changes in the TDC shape. Conclusion: We have created a robust calibrating model for evaluation of existing perfusion data analysis systems. This approach is extremely sensitive to changes in the flow due to the high temporal resolution and could be used as a golden standard to assist developers in calibrating and testing of imaging perfusion systems and software algorithms. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.« less
Zhi, Zhongwei; Chao, Jennifer R.; Wietecha, Tomasz; Hudkins, Kelly L.; Alpers, Charles E.; Wang, Ruikang K.
2014-01-01
Purpose. To evaluate early diabetes-induced changes in retinal thickness and microvasculature in a type 2 diabetic mouse model by using optical coherence tomography (OCT)/optical microangiography (OMAG). Methods. Twenty-two-week-old obese (OB) BTBR mice (n = 10) and wild-type (WT) control mice (n = 10) were imaged. Three-dimensional (3D) data volumes were captured with spectral domain OCT using an ultrahigh-sensitive OMAG scanning protocol for 3D volumetric angiography of the retina and dense A-scan protocol for measurement of the total retinal blood flow (RBF) rate. The thicknesses of the nerve fiber layer (NFL) and that of the NFL to the inner plexiform layer (IPL) were measured and compared between OB and WT mice. The linear capillary densities within intermediate and deep capillary layers were determined by the number of capillaries crossing a 500-μm line. The RBF rate was evaluated using an en face Doppler approach. These quantitative measurements were compared between OB and WT mice. Results. The retinal thickness of the NFL to IPL was significantly reduced in OB mice (P < 0.01) compared to that in WT mice, whereas the NFL thickness between the two was unchanged. 3D depth-resolved OMAG angiography revealed the first in vivo 3D model of mouse retinal microcirculation. Although no obvious differences in capillary vessel densities of the intermediate and deep capillary layers were detected between normal and OB mice, the total RBF rate was significantly lower (P < 0.05) in OB mice than in WT mice. Conclusions. We conclude that OB BTBR mice have significantly reduced NFL–IPL thicknesses and total RBF rates compared with those of WT mice, as imaged by OCT/OMAG. OMAG provides an unprecedented capability for high-resolution depth-resolved imaging of mouse retinal vessels and blood flow that may play a pivotal role in providing a noninvasive method for detecting early microvascular changes in patients with diabetic retinopathy. PMID:24458155
Guiding of High Laser Intensities in Long Plasma Channels
NASA Astrophysics Data System (ADS)
Levin, M.; Eisenmann, S.; Palchan, T.; Zigler, A.; Sugiyama, K.; Nakajima, K.; Kaganovich, D.; Hubbard, R. F.; Ting, A.; Gordon, D. F.; Sprangle, P.; Fraenkel, M.; Maman, S.; Henis, Z.
Plasma channels have been widely used to guide intense laser pulses over many Rayleigh lengths. Using optimized segmented capillary discharges, we demonstrated guided propagation of ultra short (100 fs) high intensity (1016 W/cm-2, limited by the laser system) pulses over distances up to 12.6 cm and intensities above 1018W/cm2 for 1.5cm boron nitride capillary. Both radial and longitudinal density profiles of plasma channels were studied under various discharge conditions. A new diagnostic technique is presented in which the transport of a guided laser pulse at different delay times from the initiation of the discharge is sampled on a single discharge shot. Using external, 10 nsec Nd YAG laser of several tenths of milijoules to ignite polyethylene capillaries we have demonstrated channels of various length in density range of 1017 - 1019 cm-3 and up to 25% deep. The longitudinal profiles were found to be remarkably uniform in both short and long capillaries. The Boron Nitride capillary has provided a guiding medium that can withstand more than 1000 shots. Using these capillaries we have guided laser intensities above 1018W/cm2. The laser ignition of capillary discharge provided reliable almost jitter free approach. The concerns related to influence of relatively high current density flow through capillary on the injected electrons were studied extensively by us both theoretically and experimentally using a simple injection method. The method is based on the interaction of a high intensity laser pulse with a thin wire placed near capillary entrance. The influence of magnetic fields was found to be insignificant. Using this method we have studied transport of electrons though capillary discharge.
Pinhas, Alexander; Razeen, Moataz; Dubow, Michael; Gan, Alexander; Chui, Toco Y.; Shah, Nishit; Mehta, Mitul; Gentile, Ronald C.; Weitz, Rishard; Walsh, Joseph B.; Sulai, Yusufu N.; Carroll, Joseph; Dubra, Alfredo; Rosen, Richard B.
2014-01-01
Purpose. To analyze the foveal microvasculature of young healthy eyes and older vasculopathic eyes, imaged using in vivo adaptive optics scanning light ophthalmoscope fluorescein angiography (AOSLO FA). Methods. AOSLO FA imaging of the superficial retinal microvasculature within an 800-μm radius from the foveal center was performed using simultaneous confocal infrared (IR) reflectance (790 nm) and fluorescence (488 nm) channels. Corresponding IR structural and FA perfusion maps were compared with each other to identify nonperfused capillaries adjacent to the foveal avascular zone. Microvascular densities were calculated from skeletonized FA perfusion maps. Results. Sixteen healthy adults (26 eyes; mean age 25 years, range, 21–29) and six patients with a retinal vasculopathy (six eyes; mean age 55 years, range, 44–70) were imaged. At least one nonperfused capillary was observed in five of the 16 healthy nonfellow eyes and in four of the six vasculopathic eyes. Compared with healthy eyes, capillary nonperfusion in the vasculopathic eyes was more extensive. Microvascular density of the 16 healthy nonfellow eyes was 42.0 ± 4.2 mm−1 (range, 33–50 mm−1). All six vasculopathic eyes had decreased microvascular densities. Conclusions. AOSLO FA provides an in vivo method for estimating foveal microvascular density and reveals occult nonperfused retinal capillaries. Nonperfused capillaries in healthy young adults may represent a normal variation and/or an early sign of pathology. Although limited, the normative data presented here is a step toward developing clinically useful microvascular parameters for ocular and/or systemic diseases. PMID:25414179
Effects of Riot Control Training on Systemic Microvascular Reactivity and Capillary Density.
Pereira, Flavio; de Moraes, Roger; Van Bavel, Diogo; De Lorenzo, Andrea; Tibirica, Eduardo
2018-03-14
The main aim of the present study is to evaluate the effects of strenuous exercise, related to special military training for riot control, on systemic microvascular endothelial function and skin capillary density. Endothelium-dependent microvascular reactivity was evaluated in the forearm skin of healthy military trainees (age 23.4 ± 2.3 yr; n = 15) using laser speckle contrast imaging coupled with cutaneous acetylcholine (ACh) iontophoresis and post-occlusive reactive hyperemia (PORH). Functional capillary density was assessed using high-resolution, intra-vital color microscopy in the dorsum of the middle phalanx. Capillary recruitment (capillary reserve) was evaluated using PORH. Microcirculatory tests were performed before and after a 5-wk special military training for riot control. Microvascular endothelium-dependent vasodilatory responses were markedly and significantly reduced after training, compared with values obtained before training. The peak values of microvascular conductance obtained during iontophoresis of ACh or PORH before training (0.84 ± 0.22 and 0.94 ± 0.72 APU/mmHg, respectively) were markedly reduced after training (0.47 ± 0.11 and 0.71 ± 0.14 APU/mmHg; p < 0.0001 and p = 0.0037, respectively). Endothelium-dependent capillary recruitment was significantly reduced after training (before 101 ± 9 and after 95 ± 8 capillaries/mm2; p = 0.0007). The present study showed that a 5-wk strenuous military training, performed in unfavorable climatic conditions, induces marked systemic microvascular dysfunction, mainly characterized by reduced endothelium-dependent microvascular vasodilation and blunted capillary recruitment.
Quantitative fine structure of capillaries in subregions of the rat subfornical organ.
Shaver, S W; Sposito, N M; Gross, P M
1990-04-01
The differentiated cytology across subregions of the rat subfornical organ (SFO) prompted our hypothesis that ultrastructural features of capillary endothelial cells would vary topographically and quantitatively within this small nucleus. We used electron microscopic and computer-based morphometric methods to assess fine structural dimensions of the capillary endothelium in four distinct subregions of the SFO from Long-Evans and homozygous Brattleboro rats. Three types of capillary were present. Type III capillaries (resembling those of endocrine glands) had an average wall thickness of 0.17 microns, 54% thinner than those of Type I and II capillaries. Pericapillary spaces around Type III capillaries measured 56 microns2, 100% larger than for Type I vessels (resembling those of skeletal muscle). Only Type III capillaries contained fenestrations (9 per microns2 of endothelial cell) and were the predominant type of capillary in central and caudal subregions of the SFO. Type I capillaries, prevalent in the transitional subregion between the central and rostral parts of the SFO, had 10 cytoplasmic vesicles per micron2 of endothelial cell area, a number not different from that of Type III capillaries but 3x the frequency found in Type II vessels. Type II capillaries (those typical of "blood-brain barrier" endothelium) had low vesicular density (3 per microns2), no fenestrations, and no pericapillary spaces. Luminal diameters and the densities of mitochondria and intercellular junctions were not different among capillary types or subregions in the SFO. Furthermore, there were no morphometric differences for any capillary dimensions between Long-Evans and Brattleboro rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Wolfárd, Antal; Császár, József; Gera, László; Petri, András; Simonka, János Aurél; Balogh, Adáa; Boros, Mihály
2002-12-01
To examine the microcirculatory changes in the rat tibial periosteum after hindlimb ischemia and reperfusion and to evaluate the effects of endothelin-A (ET-A) receptor antagonist therapy in this condition. The healing and functioning of vascularized bone autografts depend mainly on the patency of the microcirculation, and the activation of ET-A receptors may be an important component of the tissue response that occurs during ischemia-reoxygenation injuries. Wistar rats were subjected to 1 hour of hindlimb ischemia and 3 hours of reperfusion. The periosteal microcirculation was visualized by intravital fluorescence microscopy. The leukocyte rolling and adherence in the postcapillary venules and the functional capillary density of the periosteum were determined. Two separate groups were treated with the selective ET-A receptor antagonist BQ 610 or the novel ET-A receptor antagonist ETR-p1/fl peptide at the onset of reperfusion. Reperfusion was accompanied by a significant decrease in functional capillary density and by an increase in the primary and secondary leukocyte-endothelial cell interactions. ET-A receptor inhibition reduced the leukocyte rolling and firm adherence and attenuated the decrease in functional capillary density in both treated groups. ET-1 plays a major role in microvascular dysfunction in the periosteum during reperfusion. The ET-1-ET-A receptor system might be an important target for tissue salvage therapy in transplantation surgery.
Chen, Jiqiu; Yaniz-Galende, Elisa; Kagan, Heather J.; Liang, Lifan; Hekmaty, Saboor; Giannarelli, Chiara
2015-01-01
The aim of the present study is to explore the role of capillary disorder in coronary ischemic congestive heart failure (CHF). CHF was induced in rats by aortic banding plus ischemia-reperfusion followed by aortic debanding. Coronary arteries were perfused with plastic polymer containing fluorescent dye. Multiple fluorescent images of casted heart sections and scanning electric microscope of coronary vessels were obtained to characterize changes in the heart. Cardiac function was assessed by echocardiography and in vivo hemodynamics. Stenosis was found in all levels of the coronary arteries in CHF. Coronary vasculature volume and capillary density in remote myocardium were significantly increased in CHF compared with control. This occurred largely in microvessels with a diameter of ≤3 μm. Capillaries in CHF had a tortuous structure, while normal capillaries were linear. Capillaries in CHF had inconsistent diameters, with assortments of narrowed and bulged segments. Their surfaces appeared rough, potentially indicating endothelial dysfunction in CHF. Segments of main capillaries between bifurcations were significantly shorter in length in CHF than in control. Transiently increasing preload by injecting 50 μl of 30% NaCl demonstrated that the CHF heart had lower functional reserve; this may be associated with congestion in coronary microcirculation. Ischemic coronary vascular disorder is not limited to the main coronary arteries, as it occurs in arterioles and capillaries. Capillary disorder in CHF included stenosis, deformed structure, proliferation, and roughened surfaces. This disorder in the coronary artery architecture may contribute to the reduction in myocyte contractility in the setting of heart failure. PMID:25659485
Scardina, Giuseppe Alessandro; Giuseppe Alessandro, Scardina; Cacioppo, Antonino; Antonino, Cacioppo; Messina, Pietro
2009-10-01
There are various types of oral mucosa specific to different parts of the mouth and each of these has a unique histological structure. The variations in the epithelial structure are consistently related to observable differences in the underlying microcirculation: i.e. differences in the course, conformation, and density of capillaries. The aim of this research has been to investigate oral microcirculatory differences between men and women as well as between various age groups, in order to map the oral mucosa, and to highlight changes occurring during aging. A total of 45 healthy subjects were enrolled for this study (12 men and 33 women; mean age 60.37; range 30-82). A complete in-vivo videocapillaroscopic mapping of the oral mucosa was done on each subject. The capillaroscopic patterns of the various areas differ particularly in the course of the loops in relation to the mucosal surface. On the basis of statistical analysis of the collected data, it emerges that there are many differences in capillary loop density between men and women and between different age groups. This study demonstrates the necessity of approaching the investigation of patient microcirculation in different ways depending on sex or age.
Kälsch, Julia; Pott, Leona L; Takeda, Atsushi; Kumamoto, Hideo; Möllmann, Dorothe; Canbay, Ali; Sitek, Barbara; Baba, Hideo A
2017-04-01
Beneficial effects of balneotherapy using naturally occurring carbonated water (CO 2 enriched) have been known since the Middle Ages. Although this therapy is clinically applied for peripheral artery disease and skin disorder, the underlying mechanisms are not fully elucidated.Under controlled conditions, rats were bathed in either CO 2 -enriched water (CO 2 content 1200 mg/L) or tap water, both at 37 °C, for 10 min daily over 4 weeks. Proliferation activity was assessed by Ki67 immunohistochemistry of the epidermis of the abdomen. The capillary density was assessed by immunodetection of isolectin-positive cells. Using cryo-fixed abdominal skin epidermis, follicle cells and stroma tissue containing capillaries were separately isolated by means of laser microdissection and subjected to proteomic analysis using label-free technique. Differentially expressed proteins were validated by immunohistochemistry.Proliferation activity of keratinocytes was not significantly different in the epidermis after bathing in CO 2 -enriched water, and also, capillary density did not change. Proteomic analysis revealed up to 36 significantly regulated proteins in the analyzed tissue. Based on the best expression profiles, ten proteins were selected for immunohistochemical validation. Only one protein, far upstream element binding protein 2 (FUBP2), was similarly downregulated in the epidermis after bathing in CO 2 -enriched water with both techniques. Low FUBP2 expression was associated with low c-Myc immune-expression in keratinocytes.Long-term bathing in CO 2 -enriched water showed a cellular protein response of epithelial cells in the epidermis which was detectable by two different methods. However, differences in proliferation activity or capillary density were not detected in the normal skin.
Inuwa, Ibrahim; Ali, Badreldin H; Al-Lawati, Intisar; Beegam, Sumaya; Ziada, Amal; Blunden, Gerald
2012-05-01
The effects of Hibiscus sabdariffa (HS) in lowering blood pressure in human and animal hypertension have been documented. This study investigated the effect of the water extract of the dried calyx of HS and Hibiscus anthocyanins (HAs) on left ventricular myocardial capillary length and surface area in spontaneously hypertensive rats (SHRs). Twelve-week-old male SHRs were divided into eight groups (six rats in each group). Three groups were given three doses; 10%, 15% and 20% of the water extract of HS in lieu of drinking water for 10 consecutive weeks (HS10, HS15 and HS20) with one group kept as control (C). Another three groups were given three doses of the HAs orally at doses of 50, 100 and 200 mg/kg for five consecutive days with one group kept as a control (C). Systolic (SBP) and diastolic (DBP) blood pressures, as well as heart rate (HR), were measured weekly. After the experimental protocols, the left ventricles (LV) of all rats were obtained. Capillary surface area density and length density were determined by unbiased sterological methods on 3 μm LV tissue samples from perfusion-fixed hearts. HS ingestion significantly reduced SBP, DBP and LV mass in a dose-dependent fashion but did not affect the HR. HS significantly increased surface area and length density of myocardial capillaries by 59%, 65% and 86%, and length density by 57%, 77% and 57%, respectively. Myocyte nuclear volume was significantly decreased in HS-treated rats. There was a decrease (although insignificant) in SBP and DBP with HA ingestion compared with controls. These changes suggest that the observed beneficial effect of HS on high BP in SHRs could be mediated through a reduction in the diffusion distance between capillaries and myocytes, as well as new vessel formation. It is proposed that these effects might be beneficial in restoring myocyte normal nutritional status compromised by the hypertrophic state of hypertension.
Effects of long term supplementation of anabolic androgen steroids on human skeletal muscle.
Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S; Tegner, Yelverton; Malm, Christer
2014-01-01
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression = 0.93 and prediction = 0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement.
Effects of Long Term Supplementation of Anabolic Androgen Steroids on Human Skeletal Muscle
Yu, Ji-Guo; Bonnerud, Patrik; Eriksson, Anders; Stål, Per S.; Tegner, Yelverton; Malm, Christer
2014-01-01
The effects of long-term (over several years) anabolic androgen steroids (AAS) administration on human skeletal muscle are still unclear. In this study, seventeen strength training athletes were recruited and individually interviewed regarding self-administration of banned substances. Ten subjects admitted having taken AAS or AAS derivatives for the past 5 to 15 years (Doped) and the dosage and type of banned substances were recorded. The remaining seven subjects testified to having never used any banned substances (Clean). For all subjects, maximal muscle strength and body composition were tested, and biopsies from the vastus lateralis muscle were obtained. Using histochemistry and immunohistochemistry (IHC), muscle biopsies were evaluated for morphology including fiber type composition, fiber size, capillary variables and myonuclei. Compared with the Clean athletes, the Doped athletes had significantly higher lean leg mass, capillary per fibre and myonuclei per fiber. In contrast, the Doped athletes had significantly lower absolute value in maximal squat force and relative values in maximal squat force (relative to lean body mass, to lean leg mass and to muscle fiber area). Using multivariate statistics, an orthogonal projection of latent structure discriminant analysis (OPLS-DA) model was established, in which the maximal squat force relative to muscle mass and the maximal squat force relative to fiber area, together with capillary density and nuclei density were the most important variables for separating Doped from the Clean athletes (regression = 0.93 and prediction = 0.92, p<0.0001). In Doped athletes, AAS dose-dependent increases were observed in lean body mass, muscle fiber area, capillary density and myonuclei density. In conclusion, long term AAS supplementation led to increases in lean leg mass, muscle fiber size and a parallel improvement in muscle strength, and all were dose-dependent. Administration of AAS may induce sustained morphological changes in human skeletal muscle, leading to physical performance enhancement. PMID:25207812
Sandeu, Maurice M; Bayibéki, Albert N; Tchioffo, Majoline T; Abate, Luc; Gimonneau, Geoffrey; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Diallo, Diadier; Berry, Antoine; Texier, Gaétan; Morlais, Isabelle
2017-08-17
The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.
Optical Coherence Tomography Angiography in Optic Disc Swelling.
Fard, Masoud Aghsaei; Jalili, Jalil; Sahraiyan, Alireza; Khojasteh, Hassan; Hejazi, Marjane; Ritch, Robert; Subramanian, Prem S
2018-05-04
To compare optical coherence tomography angiography (OCT-A) of peripapillary total vasculature and capillaries in patients with optic disc swelling. Cross-sectional study. Twenty nine eyes with acute nonarteritic anterior ischemic optic neuropathy (NAION), 44 eyes with papilledema, 8 eyes with acute optic neuritis, and 48 eyes of normal subjects were imaged using OCT-A. Peripapillary total vasculature information was recorded using a commercial vessel density map. Customized image analysis with major vessel removal was also used to measure whole-image capillary density and peripapillary capillary density (PCD). Mixed models showed that the peripapillary total vasculature density values were significantly lower in NAION eyes, followed by papilledema eyes and control eyes, using commercial software (P < .0001 for all comparisons). The customized software also showed significantly lower PCD of NAION eyes compared with papilledema eyes (all P < .001), but did not show significant differences between papilledema and control subjects. Our software showed significantly lower whole image and PCD in eyes with optic neuritis than papilledema. There was no significant difference between NAION and optic neuritis using our software. The area under the receiver operating curves for discriminating NAION from papilledema eyes and optic neuritis from papilledema eyes was highest for whole-image capillary density (0.94 and 0.80, respectively) with our software, followed by peripapillary total vasculature (0.9 and 0.74, respectively ) with commercial software. OCT-A is helpful to distinguish NAION and papillitis from papilledema. Whole-image capillary density had the greatest diagnostic accuracy for differentiating disc swelling. Copyright © 2018 Elsevier Inc. All rights reserved.
Influence of thyroid state on cardiac and renal capillary density and glomerular morphology in rats.
Rodríguez-Gómez, Isabel; Banegas, Inmaculada; Wangensteen, Rosemary; Quesada, Andrés; Jiménez, Rosario; Gómez-Morales, Mercedes; O'Valle, Francisco; Duarte, Juan; Vargas, Félix
2013-01-01
The purpose was to analyse the cardiac and renal capillary density and glomerular morphology resulting from a chronic excess or deficiency of thyroid hormones (THs) in rats. We performed histopathological, morphometrical and immunohistochemical analyses in hypothyroid and hyperthyroid rats to evaluate the density of mesenteric, renal and cardiac vessels at 4 weeks after induction of thyroid disorders. The main angiogenic factors in plasma, heart and kidney were measured as possible mediators of vascular changes. Mesenteric vessel branching was augmented and decreased in hyper- and hypothyroid rats respectively. The numerical density of CD31-positive capillaries was higher in left and right ventricles and in cortical and medullary kidney from both hyper- and hypothyroid rats vs controls. Numbers of podocytes and glomeruli per square millimetre were similar among groups. Glomerular area and percentage mesangium were greater in the hyperthyroid vs control or hypothyroid groups. No morphological renal lesions were observed in any group. Vascularisation of the mesenteric bed is related to TH levels, but an increased capillarity was observed in heart and kidney in both thyroid disorders. This increase may be produced by higher tissue levels of angiogenic factors in hypothyroid rats, whereas haemodynamic factors would predominate in hyperthyroid rats. Our results also indicate that the renal dysfunctions of thyroid disorders are not related to cortical or medullary microvascular rarefaction and that the proteinuria of hyperthyroidism is not secondary to a podocyte deficit. Finally, TH or its analogues may be useful to increase capillarity in renal diseases associated with microvascular rarefaction.
Karbalaie, Abdolamir; Abtahi, Farhad; Fatemi, Alimohammad; Etehadtavakol, Mahnaz; Emrani, Zahra; Erlandsson, Björn-Erik
2017-09-01
Nailfold capillaroscopy is a practical method for identifying and obtaining morphological changes in capillaries which might reveal relevant information about diseases and health. Capillaroscopy is harmless, and seems simple and repeatable. However, there is lack of established guidelines and instructions for acquisition as well as the interpretation of the obtained images; which might lead to various ambiguities. In addition, assessment and interpretation of the acquired images are very subjective. In an attempt to overcome some of these problems, in this study a new modified technique for assessment of nailfold capillary density is introduced. The new method is named elliptic broken line (EBL) which is an extension of the two previously known methods by defining clear criteria for finding the apex of capillaries in different scenarios by using a fitted elliptic. A graphical user interface (GUI) is developed for pre-processing, manual assessment of capillary apexes and automatic correction of selected apexes based on 90° rule. Intra- and inter-observer reliability of EBL and corrected EBL is evaluated in this study. Four independent observers familiar with capillaroscopy performed the assessment for 200 nailfold videocapillaroscopy images, form healthy subject and systemic lupus erythematosus patients, in two different sessions. The results show elevation from moderate (ICC=0.691) and good (ICC=0.753) agreements to good (ICC=0.750) and good (ICC=0.801) for intra- and inter-observer reliability after automatic correction of EBL. This clearly shows the potential of this method to improve the reliability and repeatability of assessment which motivates us for further development of automatic tool for EBL method. Copyright © 2017 Elsevier Inc. All rights reserved.
Gas-filled capillaries for plasma-based accelerators
NASA Astrophysics Data System (ADS)
Filippi, F.; Anania, M. P.; Brentegani, E.; Biagioni, A.; Cianchi, A.; Chiadroni, E.; Ferrario, M.; Pompili, R.; Romeo, S.; Zigler, A.
2017-07-01
Plasma Wakefield Accelerators are based on the excitation of large amplitude plasma waves excited by either a laser or a particle driver beam. The amplitude of the waves, as well as their spatial dimensions and the consequent accelerating gradient depend strongly on the background electron density along the path of the accelerated particles. The process needs stable and reliable plasma sources, whose density profile must be controlled and properly engineered to ensure the appropriate accelerating mechanism. Plasma confinement inside gas filled capillaries have been studied in the past since this technique allows to control the evolution of the plasma, ensuring a stable and repeatable plasma density distribution during the interaction with the drivers. Moreover, in a gas filled capillary plasma can be pre-ionized by a current discharge to avoid ionization losses. Different capillary geometries have been studied to allow the proper temporal and spatial evolution of the plasma along the acceleration length. Results of this analysis obtained by varying the length and the number of gas inlets will be presented.
He, Jianzheng; Xiu, Minghui; Tang, Xiaolong; Yue, Feng; Wang, Ningbo; Yang, Shaobin; Chen, Qiang
2013-03-01
Phrynocephalus vlangalii is a species of lizard endemic in China, which lives on Qinghai-Tibet Plateau ranging from 2000 to 4600 m above sea level. In this study, P. vlangalii were collected from low altitude (2750 m) and high altitude (4564 m). The lizards from low altitude were acclimatized in simulated hypoxic chamber (equivalent to 4600 m) for 7, 15, and 30 days. The hematological parameters, heart weight, myocardial capillary density, and myocardial enzyme activities were examined. The results showed that acclimatization to hypoxia significantly increased hemoglobin concentration ([Hb]), hematocrit (Hct), heart weight (HW), heart weight to body mass (HW/BM), lactate dehydrogenase (LDH) activity, but markedly decreased mean corpuscular hemoglobin concentration (MCHC) and succinate dehydrogenase (SDH) activity. Red blood cell (RBC) count, body mass (BM), myocardial capillary density did not change markedly during hypoxic acclimatization. On the other hand, [Hb], Hct, MCHC, HW/BM, myocardium capillary density, and SDH activity of P. vlangalii from high altitude were remarkably higher than those from low-altitude; however, LDH activity of high-altitude P. vlangalii was lower than that of low-altitude lizards. There was no significant difference in HW or BM between populations of high-altitude and low-altitude. Based on the present data, we suggest that P. vlangalii has special anatomical, physiological, and biochemical accommodate mechanisms to live in hypoxic environment, and the regulative mechanisms are different between hypoxic acclimatization and adaptation. Copyright © 2013 Wiley Periodicals, Inc.
Advances and challenges in skeletal muscle angiogenesis
Baum, Oliver; Hellsten, Ylva; Egginton, Stuart
2015-01-01
The role of capillaries is to serve as the interface for delivery of oxygen and removal of metabolites to/from tissues. During the past decade there has been a proliferation of studies that have advanced our understanding of angiogenesis, demonstrating that tissue capillary supply is under strict control during health but poorly controlled in disease, resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact on metabolism, endocrine function, and locomotion and is tightly regulated at many different levels. Skeletal muscle is also high adaptable and thus one of the few organ systems that can be experimentally manipulated (e.g., by exercise) to study physiological regulation of angiogenesis. This review will focus on the methodological concerns that have arisen in determining skeletal muscle capillarity and highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes, and ultrastructural rearrangement of capillaries) that identify areas of future research with the greatest potential to expand our understanding of how angiogenesis is normally regulated, and that may also help to better understand conditions of uncontrolled (pathological) angiogenesis. PMID:26608338
Tsuda, Junko; Sugahara, Kazuma; Hori, Takeshi; Kanagawa, Eiju; Takaki, Eiichi; Fujimoto, Mitsuaki; Nakai, Akira; Yamashita, Hiroshi
2016-11-01
This study used Tsumura Suzuki Obese Diabetes (TSOD) mice as a spontaneous type 2 diabetes model and Tsumura Suzuki Non-obesity (TSNO) mice as controls to investigate factors involved in the onset of hearing impairment. Body weight, blood glucose levels, and auditory brainstem responses (ABRs) were measured. The cochleae were excised and evaluated histopathologically. The TSOD mice showed significant hyperglycemia at 2-7 months and severe obesity at 5-10 months; significantly elevated ABR thresholds at 8-10 months; and the capillary lumens in the cochlea stria vascularis were narrower in the TSOD mice than in the TSNO mice. At 17 months, India ink vascular staining of the TSOD mice's cochleae revealed decreased capillary density in the stria vascularis. The vascular area of capillaries in the stria vascularis and the vascular area were significantly smaller in TSOD mice. Histopathological analysis showed vessel wall thickening in the modiolus and narrowed capillaries in the stria vascularis, suggesting reduced blood flow to the inner ear. The diabetes mice model used in our study showed early age-associated hearing loss, and histopathology showed findings of vessel wall thickening in the modiolus, narrowing of capillaries in the stria vascularis, and chronically reduced blood flow in the cochlea.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Khalifah, Peter
2015-02-01
The problem of numerically evaluating absorption correction factors for cylindrical samples has been revisited using a treatment that fully takes advantage of the sample symmetry. It is shown that the path lengths for all points within the sample at all possible diffraction angles can be trivially determined once the angle-dependent distance distribution for a single line of points is calculated. This provides advantages in both computational efficiency and in gaining an intuitive understanding of the effects of absorption on diffraction data. A matrix of absorption coefficients calculated for µR products between 0 and 20 for diffraction angles θ D ofmore » 0° to 90° were used to examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample and R is the capillary radius. Based on this analysis, the optimal sample loading for a capillary experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when the maximum radius capillary compatible with the beam is used, and when the sample density is adjusted to be 3/(4µR) of its original density.« less
Nailfold capillaroscopy in systemic lupus erythematosus: A systematic review and critical appraisal.
Cutolo, Maurizio; Melsens, Karin; Wijnant, Sara; Ingegnoli, Francesca; Thevissen, Kristof; De Keyser, Filip; Decuman, Saskia; Müller-Ladner, Ulf; Piette, Yves; Riccieri, Valeria; Ughi, Nicola; Vandecasteele, Els; Vanhaecke, Amber; Smith, Vanessa
2018-04-01
Nailfold capillaroscopy is an easy, non-invasive technique to assess microvascular involvement in rheumatic diseases. Multiple studies describe capillaroscopic changes in systemic lupus erythematosus (SLE), including a wide range of non-specific findings. On behalf of the European League Against Rheumatism (EULAR) study group on microcirculation in rheumatic diseases, a systematic review was done to obtain all original research studies (in English) in which SLE patients had capillaroscopy. Forty such studies are identified. This article firstly provides a résumé of the results of these studies according to capillaroscopic parameters (density, dimensions, morphology, haemorrhages), semi-quantitative assessment and qualitative assessment of capillaroscopy in SLE patients. Secondly, the correlations between capillaroscopic parameters in SLE patients and clinical and laboratory parameters (including auto-immune parameters) are outlined. The following capillaroscopic parameters are found to be significantly more prevalent in SLE patients compared to healthy controls: tortuous capillaries, abnormal morphology and haemorrhages. Hairpin-shaped capillaries are significantly less prevalent than in healthy persons. The semi-quantitatively determined nailfold capillaroscopic score (NFC score) in SLE patients is also higher than in healthy controls. Several correlations between clinical and laboratory parameters and capillaroscopic parameters are identified in the review. Disease activity is correlated with NFC score in seven studies, with abnormal morphology (i.e. "meandering") in one study and with haemorrhages in one study. Frequent attacks of Raynaud's phenomenon (RP) and gangrene are significantly correlated with dilated capillaries. In two studies a possible correlation between anti-SSA antibodies and lower density of capillaries is withheld. About other immune parameters conflicting results are found. In one study a significant negative correlation is found between 24-hour proteinuria and abnormal morphology (i.e. "meandering"). For the first time, an overview of the nailfold capillaroscopic changes that have been described in SLE and their correlations with clinical and laboratory findings is given. Further large-scale research on the identification of capillaroscopic changes in SLE and their correlations with standardised clinical and laboratory parameters, is ongoing at the EULAR study group on microcirculation in rheumatic diseases. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Qiuying; He, Jiangnan; Hua, Yihong; Fan, Ying
2017-12-01
Identifying changes of peripapillary vessel density in highly myopic eyes with peripapillary intrachoroidal cavitation by optical coherence tomography angiography. To investigate peripapillary vessel density and its relationship with other ocular parameters in highly myopic eyes with peripapillary intrachoroidal cavitation. Hospital-based, cross-sectional study. Thirty-five highly myopic eyes with peripapillary intrachoroidal cavitation, 46 highly myopic eyes without peripapillary intrachoroidal cavitation and 36 normal eyes were included in this study. All participants underwent optical coherence tomography angiography to image the retinal vasculature in the peripapillary areas, including the radial peripapillary capillaries and optic nerve head layer. Correlations between vessel density and ocular metrics were analysed. Peripapillary vessel density. In highly myopic eyes, vessel density was significantly lower in eyes with peripapillary intrachoroidal cavitation than in those without in peripapillary (P = 0.014, P = 0.037), inferotemporal (P < 0.001, P < 0.001) and superotemporal (P = 0.014, P = 0.009) areas. In the radial peripapillary capillaries layer, vessel density was negatively correlated with peripapillary atrophy area (P = 0.012) and myopic maculopathy (P = 0.002), and in the optic nerve head layer, it was negatively associated with a diagnosis of peripapillary intrachoroidal cavitation (P = 0.012) and myopic maculopathy (P < 0.001). In addition, it was positively correlated with retinal nerve fibre layer thickness in both layers (P < 0.001). Highly myopic eyes with peripapillary intrachoroidal cavitation had lower peripapillary vessel densities, especially in the temporal area, than those without. © 2017 Royal Australian and New Zealand College of Ophthalmologists.
ERIC Educational Resources Information Center
Hijnen, Hens
2009-01-01
A theoretical description of the influence of electroosmosis on the effective mobility of simple ions in capillary zone electrophoresis is presented. The mathematical equations derived from the space-charge model contain the pK[subscript a] value and the density of the weak acid surface groups as parameters characterizing the capillary. It is…
Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo
2017-12-01
What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Wu, Yefan; Chen, Jie; Fang, Yun; Zhu, Meng
2016-10-01
Accordance with the previously supposed polyelectrolyte-like behaviour of neutral polymer-anionic surfactant complexes, direct evidence for the formation of the pseudo-polyanions in polyvinylpyrrolidone (PVP)-sodium dodecylsulfate (SDS) solution is put forward in this paper by capillary electrophoresis (CE) experiments in assistance with capillary viscosimetry and conductometry. The contradictory phenomena of the absolute value of relative electrophoretic mobility (re) increasing while the ionization degree (α) decreasing with the increasing specific clusterization [Г] in aqueous PVP-SDS solution are explained by the finding that the PVP-SDS complex is eventually a family of PVP-SDS pseudo-polyanions with different charge densities. And it is found countercations playing an important role in the formation of the PVP-SDS pseudo-polyanions in virtue of bridge effect. Copyright © 2016 Elsevier Inc. All rights reserved.
Zeng, Heng; Vaka, Venkata Ramana; He, Xiaochen; Booz, George W; Chen, Jian-Xiong
2015-08-01
Mitochondrial dysfunction plays an important role in obesity-induced cardiac impairment. SIRT3 is a mitochondrial protein associated with increased human life span and metabolism. This study investigated the functional role of SIRT3 in obesity-induced cardiac dysfunction. Wild-type (WT) and SIRT3 knockout (KO) mice were fed a normal diet (ND) or high-fat diet (HFD) for 16 weeks. Body weight, fasting glucose levels, reactive oxygen species (ROS) levels, myocardial capillary density, cardiac function and expression of hypoxia-inducible factor (HIF)-1α/-2α were assessed. HFD resulted in a significant reduction in SIRT3 expression in the heart. Both HFD and SIRT3 KO mice showed increased ROS formation, impaired HIF signalling and reduced capillary density in the heart. HFD induced cardiac hypertrophy and impaired cardiac function. SIRT3 KO mice fed HFD showed greater ROS production and a further reduction in cardiac function compared to SIRT3 KO mice on ND. Thus, the adverse effects of HFD on cardiac function were not attributable to SIRT3 loss alone. However, HFD did not further reduce capillary density in SIRT3 KO hearts, implicating SIRT3 loss in HFD-induced capillary rarefaction. Our study demonstrates the importance of SIRT3 in preserving heart function and capillary density in the setting of obesity. Thus, SIRT3 may be a potential therapeutic target for obesity-induced heart failure. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Spectral-Domain Optical Coherence Tomographic Angiography in Children With Amblyopia.
Lonngi, Marcela; Velez, Federico G; Tsui, Irena; Davila, Juan Pablo; Rahimi, Mansour; Chan, Clarissa; Sarraf, David; Demer, Joseph L; Pineles, Stacy L
2017-10-01
Amblyopia is the most common cause of visual impairment in childhood, with a prevalence of 1% to 4% in children in the United States. To date, no studies using noninvasive optical coherence tomographic angiography (OCTA) have measured blood flow in the retinal capillary layers in children with amblyopia. To evaluate the retinal and microvascular features using OCTA in children (<18 years) with amblyopia. This observational case-control study enrolled patients from September 1, 2016, through May 31, 2017, and was conducted from September 1, 2016, through June 30, 2017, at the Stein Eye Institute at UCLA (University of California, Los Angeles). Participants included 59 children (<18 years) with amblyopia and without amblyopia examined at a pediatric ophthalmology clinic or referred to the clinic by coinvestigators. All patients underwent comprehensive ophthalmological examination, including visual acuity, refraction, and ocular motility tests; anterior and posterior segment examination; and OCTA. Reduced superficial and deep retinal capillary vessel density on OCTA. Of the 63 eyes evaluated, 13 (21%) were amblyopic and 50 (79%) were control eyes. Of the 59 patients, the mean (SD) age of patients with amblyopia was 8.0 (4.0) years and 10.3 (3.3) years for the controls; 33 patients (56%) were female; and 5 of 13 (39%) and 27 of 46 (54%) patients in the amblyopic and control groups, respectively, were identified as white. The macular vessel density of the superficial capillary plexus was lower in the amblyopic group than in the control group in both 3 × 3-mm and 6 × 6-mm scans. After adjusting for age and refractive error, the mean (SD) difference in the superficial capillary plexus in the 6 × 6-mm scan was statistically significant (49.3% [4.1] vs 51.2% [2.9]; P = .02). Macular vessel density of the deep capillary plexus in the 6 × 6-mm scans was also considerably different between groups: mean (SD) vessel density of the deep retinal capillary plexus was 54.4% (4.7%) in the amblyopia group and 60.1% (3.3%) in the control group, with a difference of 5.7% (95% CI, 3.4%-8.1%; P = .002). The study found that OCTA reveals subnormal superficial and deep retinal capillary density in the macula of patients with amblyopia. Further studies are needed to determine the clinical relevance of this finding.
Importance of Considering the Middle Capillary Plexus on OCT Angiography in Diabetic Retinopathy.
Onishi, Alex C; Nesper, Peter L; Roberts, Philipp K; Moharram, Ganna A; Chai, Haitao; Liu, Lei; Jampol, Lee M; Fawzi, Amani A
2018-04-01
To quantify microvasculature changes in the superficial (SCP), middle (MCP), and deep capillary plexuses (DCP) in diabetic retinopathy (DR). Retrospective cross-sectional study at a tertiary academic referral center, in which 26 controls (44 eyes), 27 diabetic subjects without retinopathy (44 eyes), 32 subjects with nonproliferative retinopathy (52 eyes), and 27 subjects with proliferative retinopathy (40 eyes) were imaged with optical coherence tomography angiography (OCTA). Outcome measures included parafoveal vessel density (VD), percentage area of nonperfusion (PAN), and adjusted flow index (AFI) at the different plexuses. MCP VD and MCP AFI decreased with worsening DR, while PAN increased, mirroring changes within the DCP. The fitted regression line for MCP and DCP AFI were significantly different than the SCP, while DCP PAN differed from SCP PAN with disease progression. Higher SCP AFI and PAN were different in eyes with diabetes without retinopathy compared with controls. Unexpectedly, sex was found to independently influence MCP VD and AFI with worsening disease. OCTA parameters in the MCP and DCP displayed parallel changes with DR progression, different from the SCP, emphasizing the importance of physiologic considerations in the retinal capillaries. Thus, segmentation protocols that include the MCP within the SCP may be confounded. A difference in DCP PAN with worsening DR was unmasked relative to a prior study that included the MCP with SCP. We confirm that SCP AFI and PAN may serve as early indicators of microvascular changes in DR and identify an interaction between sex and the MCP deserving further study.
Nailfold capillaroscopy in 430 patients with rheumatoid arthritis.
Rajaei, Alireza; Dehghan, Pooneh; Amiri, Ali
2017-01-01
Microvascular changes are one of the first obvious steps in numerous inflammatory diseases such as rheumatoid arthritis (RA). Nailfold video capillaroscopy (NFC) is an easy, reliable and safe method for evaluating peripheral microangiopathy. The objective of this study was to examine nailfold microcirculation in RA patients, assess morphological and structural changes quantitatively and qualitatively, and recognize useful changes. A total of 430 patients diagnosed with RA were examined in a period of 4 years. NFC was performed on all fingers of both hands in each patient. Different parameters indicating microvascular changes were detected and analyzed; such as microvascular architecture, capillary distribution disturbances, capillary morphology, capillary density, efferent/afferent limb ratio, subpapillary venular plexus and morphological abnormalities. The obtained results were categorized into normal pattern, nonspecific morphological abnormality and scleroderma pattern. The mean age of participants was 51.03±14.54 (19-87 years) that consisted of 359 females and 71 males. Based on the findings, angiogenesis (74.7%) was the most pathological condition observed after tortuosity (99.5%). 7.2% and 20.9% of patients were categorized into normal and scleroderma pattern group, respectively. Among morphological abnormalities, angiogenesis, isolated enlarged loop, irregular enlarged loop and architectural derangement were significantly more frequent in scleroderma than normal pattern (p<0.001). NFC may play an important role in monitoring RA disease and patients' follow-up. Therefore, in our opinion it could be considered in the course and follow-up of rheumatoid arthritis.
Nailfold capillaroscopy in 430 patients with rheumatoid arthritis
Rajaei, Alireza; Dehghan, Pooneh; Amiri, Ali
2017-01-01
Background: Microvascular changes are one of the first obvious steps in numerous inflammatory diseases such as rheumatoid arthritis (RA). Nailfold video capillaroscopy (NFC) is an easy, reliable and safe method for evaluating peripheral microangiopathy. The objective of this study was to examine nailfold microcirculation in RA patients, assess morphological and structural changes quantitatively and qualitatively, and recognize useful changes. Methods: A total of 430 patients diagnosed with RA were examined in a period of 4 years. NFC was performed on all fingers of both hands in each patient. Different parameters indicating microvascular changes were detected and analyzed; such as microvascular architecture, capillary distribution disturbances, capillary morphology, capillary density, efferent/afferent limb ratio, subpapillary venular plexus and morphological abnormalities. The obtained results were categorized into normal pattern, nonspecific morphological abnormality and scleroderma pattern. Results: The mean age of participants was 51.03±14.54 (19-87 years) that consisted of 359 females and 71 males. Based on the findings, angiogenesis (74.7%) was the most pathological condition observed after tortuosity (99.5%). 7.2% and 20.9% of patients were categorized into normal and scleroderma pattern group, respectively. Among morphological abnormalities, angiogenesis, isolated enlarged loop, irregular enlarged loop and architectural derangement were significantly more frequent in scleroderma than normal pattern (p<0.001). Conclusion: NFC may play an important role in monitoring RA disease and patients’ follow-up. Therefore, in our opinion it could be considered in the course and follow-up of rheumatoid arthritis. PMID:29201317
Amann, Kerstin; Törnig, Johannes; Buzello, Mareike; Kuhlmann, Alexander; Gross, Marie-Luise; Adamczak, Marcin; Buzello, Moriz; Ritz, Eberhard
2002-09-01
Chronic renal failure is characterized by remodeling of the structure of the heart and the vasculature, for example, left ventricular hypertrophy, myocardial fibrosis, capillary/myocyte mismatch, as well as thickening of intramyocardial arteries and of peripheral arteries and veins. Furthermore, uremia is a state of increased oxygen stress. It was the purpose of this study to examine whether these findings are interrelated. To investigate whether antioxidative therapy with dl-alpha-tocopherol (Toco; vitamin E) interferes with the development of abnormal cardiovascular structure in experimental renal failure, 28 male Sprague-Dawley rats were subjected to partial renal ablation (subtotal nephrectomy, SNX) or to sham operation (sham). SNX were either left untreated or received the antioxidant Toco (2 x 1500 IE/kg BW/week in the pellets). Blood pressure was measured using tail plethysmography. The experiment was terminated after 12 weeks. Heart and left ventricular weight were determined and the following parameters were measured using morphometry and stereology: volume densities of cardiomyocytes, capillaries and non-vascular interstitium; length density and total length of cardiac capillaries, wall thickness of intramyocardial arterioles and of the aorta. Systolic blood pressure and body weight were comparable in all groups. Treatment with Toco led to significantly increased plasma concentrations of Toco. Left ventricular weight and wall thickness of intramyocardial arteries were significantly higher in both SNX groups compared to sham controls. Volume density of the cardiac interstitial tissue was significantly higher in untreated SNX than in Toco treated SNX and sham control rats. Length density of capillaries was significantly lower in untreated SNX than in control rats; however, the values were significantly higher, and even higher than in sham controls, when SNX were treated with Toco. Treatment with the antioxidant dl-alpha-tocopherol prevented cardiomyocyte/capillary mismatch, and to some extent also myocardial fibrosis in rats with renal failure. The results point to a role of oxidative stress in the genesis of myocardial interstitial fibrosis and capillary deficit of the heart.
NASA Astrophysics Data System (ADS)
Sampson, Danuta M.; Gong, Peijun; An, Di; Menghini, Moreno; Hansen, Alex; Mackey, David A.; Sampson, David D.; Chen, Fred K.
2017-04-01
We examined the impact of axial length on superficial retinal vessel density (SRVD) and foveal avascular zone area (FAZA) measurement using optical coherence tomography angiography. The SRVD and FAZA were quantified before and after correction for magnification error associated with axial length variation. Although SRVD did not differ before and after correction for magnification error in the parafoveal region, change in foveal SRVD and FAZA were significant. This has implications for clinical trials outcome in diseased eyes where significant capillary dropout may occur in the parafovea.
Pappas, P J; DeFouw, D O; Venezio, L M; Gorti, R; Padberg, F T; Silva, M B; Goldberg, M C; Durán, W N; Hobson, R W
1997-11-01
Ultrastructural assessments of the dermal microcirculation in patients with chronic venous insufficiency have been limited to qualitative morphologic descriptions of venous ulcer edges or venous stasis dermatitis. The purpose of this investigation was to quantify differences in endothelial cell structure and local cell type with emphasis on leukocytes and their relationship to arterioles, capillaries, and postcapillary venules (PCVs). Two 4.0 mm punch biopsies were obtained from areas of dermal stasis skin changes in the gaiter region of the leg, as well as from noninvolved areas of skin in the ipsilateral thigh, from 35 patients: CEAP class 4 (11 patients), class 5 (9 patients), class 6 (10 patients), and five normal skin biopsies from patients without chronic venous insufficiency. Electron microscopy was performed on sections at 6700x and 23,800x magnification. At 6700x endothelial cell thickness was determined, and the number of fibroblasts, leukocytes, and mast cells were recorded relative to their proximity to arterioles, capillaries, and PCVs. Similarly, at 23,800x endothelial cell vesicle density, interendothelial junctional widths, and basal lamina thickness (cuff width) were measured. Preliminary evaluation for the presence of transforming growth factor-beta 1 (TGF-beta 1) was performed on three patients using reverse transcriptase-polymerase chain reaction (RT-PCR). Quantitative measurements demonstrated increased mast cell content for class 4 and 5 patients around arterioles and PCVs and increased macrophage numbers for class 6 patients around PCVs (p < 0.05). Fibroblasts were the most common cells observed; however, no differences were demonstrated between groups. No differences were observed in interendothelial junctional widths or vesicle densities in arterioles, capillaries, or PCVs. Basal lamina thickness was increased only at the capillary level (p < 0.05). The results of RT-PCR for TGF-beta 1 messenger RNA were positive in the three patients studied. Our data suggest that (1) mast cells play a role in the pathogenesis of chronic venous insufficiency; (2) the effects of mast cells, macrophages, or both may be mediated in part by TGF-beta 1; and (3) capillary cuff formation is not associated with widened interendothelial gap junctions, but may be a result of enhanced vesicular transport rate or conformational changes in the interendothelial glycocalyx.
CAPILLARY CONDENSATION IN MMS AND PORE STRUCTURE CHARACTERIZATION. (R825959)
Phenomena of capillary condensation and desorption in siliceous mesoporous molecular sieves (MMS) with cylindrical channels are studied by means of the non-local density functional theory (NLDFT). The results are compared with macroscopic thermodynamic approaches based on Kelv...
Healing process of venous ulcers: the role of microcirculation.
Ambrózy, Ewald; Waczulíková, Iveta; Willfort, Andrea; Böhler, Kornelia; Cauza, Karla; Ehringer, Herbert; Heinz, Gottfried; Koppensteiner, Renate; Marić, Snezana; Gschwandtner, Michael E
2013-02-01
In order to describe adequately the process of healing in the intermediate degrees, we investigated microcirculatory changes in the venous ulcers at well-defined stages of wound repair. We investigated dynamic changes in microcirculation during the healing process of venous ulcers. Ten venous ulcers were investigated in three consecutive clinical stages of wound healing: non granulation tissue (NGTA), GTA and scar. Subpapillary microcirculation was measured by laser Doppler perfusion (LDP) imaging and expressed using LDP values in arbitrary units. Nutritive perfusion by capillary microscopy and expressed as capillary density (CD) - the number of capillaries per square millimetre. Before the development of GTA the LDP was low (median 1·35; lower-upper quartiles 0·71-1·83) accompanied with zero CD in all but one patient who had a density of 1. With the first appearance of GTA in the same area, the LDP was improved (2·22; 1·12-2·33; P = 0·0024) when compared with NGTA, in combination with a significant increase in CD (1·75; 0-3; P = 0·0054). In scar, the LDP was similar to that in the NGTA (1·03; 0·77-1·83; P = 0·278), combined with the highest CD (5·75; 4·5-8) in comparison with the previous stages of the area (for both pairs, P < 0·0001). Venous ulcers are caused by poor nutritive and subpapillary perfusion. Subpapillary perfusion plays a major role in the formation of GTA. In a scar, the increased nutritive perfusion is sufficient to cover the blood supply and keep skin viable while subpapillary perfusion is low. © 2012 The Authors. International Wound Journal © 2012 Blackwell Publishing Ltd and Medicalhelplines.com Inc.
Choi, WooJhon; Waheed, Nadia K; Moult, Eric M; Adhi, Mehreen; Lee, ByungKun; De Carlo, Talisa; Jayaraman, Vijaysekhar; Baumal, Caroline R; Duker, Jay S; Fujimoto, James G
2017-01-01
To investigate the utility of ultrahigh speed, swept source optical coherence tomography angiography in visualizing retinal microvascular and choriocapillaris (CC) changes in diabetic patients. The study was prospective and cross-sectional. A 1,050 nm wavelength, 400 kHz A-scan rate swept source optical coherence tomography prototype was used to perform volumetric optical coherence tomography angiography of the retinal and CC vasculatures in diabetic patients and normal subjects. Sixty-three eyes from 32 normal subjects, 9 eyes from 7 patients with proliferative diabetic retinopathy, 29 eyes from 16 patients with nonproliferative diabetic retinopathy, and 51 eyes from 28 diabetic patients without retinopathy were imaged. Retinal and CC microvascular abnormalities were observed in all stages of diabetic retinopathy. In nonproliferative diabetic retinopathy and proliferative diabetic retinopathy, optical coherence tomography angiography visualized a variety of vascular abnormalities, including clustered capillaries, dilated capillary segments, tortuous capillaries, regions of capillary dropout, reduced capillary density, abnormal capillary loops, and foveal avascular zone enlargement. In proliferative diabetic retinopathy, retinal neovascularization above the inner limiting membrane was visualized. Regions of CC flow impairment in patients with proliferative diabetic retinopathy and nonproliferative diabetic retinopathy were also observed. In 18 of the 51 of eyes from diabetic patients without retinopathy, retinal mircrovascular abnormalities were observed and CC flow impairment was found in 24 of the 51 diabetic eyes without retinopathy. The ability of optical coherence tomography angiography to visualize retinal and CC microvascular abnormalities suggests it may be a useful tool for understanding pathogenesis, evaluating treatment response, and earlier detection of vascular abnormalities in patients with diabetes.
Sohn, Elliott H; van Dijk, Hille W; Jiao, Chunhua; Kok, Pauline H B; Jeong, Woojin; Demirkaya, Nazli; Garmager, Allison; Wit, Ferdinand; Kucukevcilioglu, Murat; van Velthoven, Mirjam E J; DeVries, J Hans; Mullins, Robert F; Kuehn, Markus H; Schlingemann, Reinier Otto; Sonka, Milan; Verbraak, Frank D; Abràmoff, Michael David
2016-05-10
Diabetic retinopathy (DR) has long been recognized as a microvasculopathy, but retinal diabetic neuropathy (RDN), characterized by inner retinal neurodegeneration, also occurs in people with diabetes mellitus (DM). We report that in 45 people with DM and no to minimal DR there was significant, progressive loss of the nerve fiber layer (NFL) (0.25 μm/y) and the ganglion cell (GC)/inner plexiform layer (0.29 μm/y) on optical coherence tomography analysis (OCT) over a 4-y period, independent of glycated hemoglobin, age, and sex. The NFL was significantly thinner (17.3 μm) in the eyes of six donors with DM than in the eyes of six similarly aged control donors (30.4 μm), although retinal capillary density did not differ in the two groups. We confirmed significant, progressive inner retinal thinning in streptozotocin-induced "type 1" and B6.BKS(D)-Lepr(db)/J "type 2" diabetic mouse models on OCT; immunohistochemistry in type 1 mice showed GC loss but no difference in pericyte density or acellular capillaries. The results suggest that RDN may precede the established clinical and morphometric vascular changes caused by DM and represent a paradigm shift in our understanding of ocular diabetic complications.
Associations of serum adiponectin with skeletal muscle morphology and insulin sensitivity.
Ingelsson, Erik; Arnlöv, Johan; Zethelius, Björn; Vasan, Ramachandran S; Flyvbjerg, Allan; Frystyk, Jan; Berne, Christian; Hänni, Arvo; Lind, Lars; Sundström, Johan
2009-03-01
Skeletal muscle morphology and function are strongly associated with insulin sensitivity. The objective of the study was to test the hypothesis that circulating adiponectin is associated with skeletal muscle morphology and that adiponectin mediates the relation of muscle morphology to insulin sensitivity. This was a cross-sectional investigation of 461 men aged 71 yr, participants of the community-based Uppsala Longitudinal Study of Adult Men study. Measures included serum adiponectin, insulin sensitivity measured with euglycemic insulin clamp technique, and capillary density and muscle fiber composition determined from vastus lateralis muscle biopsies. In multivariable linear regression models (adjusting for age, physical activity, fasting glucose, and pharmacological treatment for diabetes), serum adiponectin levels rose with increasing capillary density (beta, 0.30 per 50 capillaries per square millimeter increase; P = 0.041) and higher proportion of type I muscle fibers (beta, 0.27 per 10% increase; P = 0.036) but declined with a higher proportion of type IIb fibers (beta, -0.39 per 10% increase; P = 0.014). Using bootstrap methods to examine the potential role of adiponectin in associations between muscle morphology and insulin sensitivity and the associations of capillary density (beta difference, 0.041; 95% confidence interval 0.001, 0.085) and proportion of type IIb muscle fibers (beta difference, -0.053; 95% confidence interval -0.107, -0.002) with insulin sensitivity were significantly attenuated when adiponectin was included in the models. Circulating adiponectin concentrations were higher with increasing skeletal muscle capillary density and in individuals with higher proportion of slow oxidative muscle fibers. Furthermore, our results indicate that adiponectin could be a partial mediator of the relations between skeletal muscle morphology and insulin sensitivity.
Dupas, Bénédicte; Minvielle, Wilfried; Bonnin, Sophie; Couturier, Aude; Erginay, Ali; Massin, Pascale; Gaudric, Alain; Tadayoni, Ramin
2018-05-10
Capillary dropout is a hallmark of diabetic retinopathy, but its role in visual loss remains unclear. To examine how macular vessel density is correlated with visual acuity (VA) in patients younger than 40 years who have type 1 diabetes without macular edema but who have diabetic retinopathy requiring panretinal photocoagulation. Retrospective cohort study of VA and optical coherence tomography angiography data collected from consecutive patients during a single visit to Lariboisière Hospital, a tertiary referral center in Paris, France. The cohort included 22 eyes of 22 patients with type 1 diabetes without macular edema but with bilateral rapidly progressive diabetic retinopathy that was treated with panretinal photocoagulation between August 15, 2015, and December 30, 2016. Eyes were classified into 2 groups by VA: normal (logMAR, 0; Snellen equivalent, 20/20) and decreased (logMAR, >0; Snellen equivalent, <20/20). The control group included 12 eyes from age-matched healthy participants with normal vision. Visual acuity and mean vessel density in 4 retinal vascular plexuses: the superficial vascular plexus and the deep capillary complex, which comprises the intermediate capillary plexus and the deep capillary plexus. Of the 22 participants, 11 (50%) were men, mean (SD) age was 30 (6) years, and mean (SD) hemoglobin A1c level was 8.9% (1.6%). Of the 22 eyes with diabetic retinopathy, 13 (59%) had normal VA and 9 (41%) had decreased VA (mean [SD]: logMAR, 0.12 [0.04]; Snellen equivalent, 20/25). Mean [SE] vessel density was lower for eyes with diabetic retinopathy and normal VA compared with the control group in the superficial vascular plexus (44.1% [0.9%] vs 49.1% [0.9%]; difference, -5.0% [1.3%]; 95% CI, -7.5% to -2.4%; P < .001), in the deep capillary complex (44.3% [1.2%] vs 50.6% [1.3%]; difference, -6.3% [1.8%]; 95% CI, -9.9% to -2.7%; P = .001), in the intermediate capillary plexus (43.8% [1.2%] vs 49.3% [1.2%]; difference, -5.5% [1.7%]; 95% CI, -9.0% to -2.0%; P = .003), and in the deep capillary plexus (24.5% [1.0%] vs 30.5% [1.0%]; difference, -6.1% [1.4%]; 95% CI, -8.9% to -3.2%; P < .001). Mean vessel density was lower in eyes with diabetic retinopathy and decreased VA compared with eyes with diabetic retinopathy and normal VA; the mean (SE) loss was more pronounced in the deep capillary complex (34.6% [1.5%] vs 44.3% [1.2%]; difference, -9.6% [1.9%]; 95% CI, -13.6% to -5.7%; P < .001), especially in the deep capillary plexus (15.2% [1.2%] vs 24.5% [1.0%]; difference, -9.3% [1.5%]; 95% CI, -12.4% to -6.1%; P < .001), than in the superficial vascular plexus (39.6% [1.1%] vs 44.1% [0.9%]; difference, -4.5% [1.4%]; 95% CI, -7.3% to -1.7%; P = .002). These data suggest that in patients with type 1 diabetes without macular edema but with severe nonproliferative or proliferative diabetic retinopathy, decreased VA may be associated with the degree of capillary loss in the deep capillary complex.
Interfacial layering and capillary roughness in immiscible liquids.
Geysermans, P; Pontikis, V
2010-08-21
The capillary roughness and the atomic density profiles of extended interfaces between immiscible liquids are determined as a function of the interface area by using molecular dynamics and Lennard-Jones (12-6) potentials. We found that with increasing area, the interface roughness diverges logarithmically, thus fitting the theoretical mean-field prediction. In systems small enough for the interfacial roughness not to blur the structural details, atomic density profiles across the fluid interface are layered with correlation length in the range of molecular correlations in liquids. On increasing the system size, the amplitude of the thermally excited position fluctuations of the interface increases, thus causing layering to rapidly vanish, if density profiles are computed without special care. In this work, we present and validate a simple method, operating in the direct space, for extracting from molecular dynamics trajectories the "intrinsic" structure of a fluid interface that is the local density profile of the interface cleaned from capillary wave effects. Estimated values of interfacial properties such as the tension, the intrinsic width, and the lower wavelength limit of position fluctuations are in agreement with results collected from the literature.
Capillary waves and the decay of density correlations at liquid surfaces
NASA Astrophysics Data System (ADS)
Hernández-Muñoz, Jose; Chacón, Enrique; Tarazona, Pedro
2016-12-01
Wertheim predicted strong density-density correlations at free liquid surfaces, produced by capillary wave fluctuations of the interface [M. S. Wertheim, J. Chem. Phys. 65, 2377 (1976), 10.1063/1.433352]. That prediction has been used to search for a link between capillary wave (CW) theory and density functional (DF) formalism for classical fluids. In particular, Parry et al. have recently analyzed the decaying tails of these CW effects moving away from the interface as a clue for the extended CW theory [A. O. Parry et al., J. Phys.: Condens. Matter 28, 244013 (2016), 10.1088/0953-8984/28/24/244013], beyond the strict long-wavelength limit studied by Wertheim. Some apparently fundamental inconsistencies between the CW and the DF theoretical views of the fluid interfaces arose from the asymptotic analysis of the CW signal. In this paper we revisit the problem of the CW asymptotic decay with a separation of local non-CW surface correlation effects from those that are a truly nonlocal propagation of the CW fluctuations from the surface towards the liquid bulk.
de Miranda, Marcos Lopes; Pereira, Sandra J; Santos, Ana O M T; Villela, Nivaldo R; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete
2015-01-01
Apart from its inotropic property, milrinone has vasodilator, anti-inflammatory and antithrombotic effects that could assist in the reversal of septic microcirculatory changes. This paper investigates the effects of milrinone on endotoxemia-related microcirculatory changes and compares them to those observed with the use of norepinephrine. After skinfold chamber implantation procedures and endotoxemia induction by intravenous Escherichia coli lipopolysaccharide administration (2 mg.kg-1), male golden Syrian hamsters were treated with two regimens of intravenous milrinone (0.25 or 0.5 μg.kg-1.min-1). Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables. Macro-hemodynamic, biochemical, and hematological parameters and survival rate were also analyzed. Endotoxemic non-treated animals, endotoxemic animals treated with norepinephrine (0.2 μg.kg-1.min-1), and non-endotoxemic hamsters served as controls. Milrinone (0.5 μg.kg-1.min-1) was effective in reducing lipopolysaccharide-induced arteriolar vasoconstriction, capillary perfusion deficits, and inflammatory response, and in increasing survival. Norepinephrine treated animals showed the best mean arterial pressure levels but the worst functional capillary density values among all endotoxemic groups. Our data suggests that milrinone yielded protective effects on endotoxemic animals' microcirculation, showed anti-inflammatory properties, and improved survival. Norepinephrine did not recruit the microcirculation nor demonstrated anti-inflammatory effects.
Assessment of multislice CT to quantify pulmonary emphysema function and physiology in a rat model
NASA Astrophysics Data System (ADS)
Cao, Minsong; Stantz, Keith M.; Liang, Yun; Krishnamurthi, Ganapathy; Presson, Robert G., Jr.
2005-04-01
Purpose: The purpose of this study is to evaluate multi-slice computed tomography technology to quantify functional and physiologic changes in rats with pulmonary emphysema. Method: Seven rats were scanned using a 16-slice CT (Philips MX8000 IDT) before and after artificial inducement of emphysema. Functional parameters i.e. lung volumes were measured by non-contrast spiral scan during forced breath-hold at inspiration and expiration followed by image segmentation based on attenuation threshold. Dynamic CT imaging was performed immediately following the contrast injection to estimate physiology changes. Pulmonary perfusion, fractional blood volume, and mean transit times (MTTs) were estimated by fitting the time-density curves of contrast material using a compartmental model. Results: The preliminary results indicated that the lung volumes of emphysema rats increased by 3.52+/-1.70mL (p<0.002) at expiration and 4.77+/-3.34mL (p<0.03) at inspiration. The mean lung densities of emphysema rats decreased by 91.76+/-68.11HU (p<0.01) at expiration and low attenuation areas increased by 5.21+/-3.88% (p<0.04) at inspiration compared with normal rats. The perfusion for normal and emphysema rats were 0.25+/-0.04ml/s/ml and 0.32+/-0.09ml/s/ml respectively. The fractional blood volumes for normal and emphysema rats were 0.21+/-0.04 and 0.15+/-0.02. There was a trend toward faster MTTs for emphysema rats (0.42+/-0.08s) than normal rats (0.89+/-0.19s) with p<0.006, suggesting that blood flow crossing the capillaries increases as the capillary volume decreases and which may cause the red blood cells to leave the capillaries incompletely saturated with oxygen if the MTTs become too short. Conclusion: Quantitative measurement using CT of structural and functional changes in pulmonary emphysema appears promising for small animals.
Geometry-induced phase transition in fluids: Capillary prewetting
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2013-02-01
We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.
NASA Technical Reports Server (NTRS)
Huang, N. E.; Long, S. R.; Bliven, L. F.; Tung, C.-C.
1984-01-01
On the basis of the mapping method developed by Huang et al. (1983), an analytic expression for the non-Gaussian joint probability density function of slope and elevation for nonlinear gravity waves is derived. Various conditional and marginal density functions are also obtained through the joint density function. The analytic results are compared with a series of carefully controlled laboratory observations, and good agreement is noted. Furthermore, the laboratory wind wave field observations indicate that the capillary or capillary-gravity waves may not be the dominant components in determining the total roughness of the wave field. Thus, the analytic results, though derived specifically for the gravity waves, may have more general applications.
Zhi, Zhongwei; Cepurna, William; Johnson, Elaine; Jayaram, Hari; Morrison, John; Wang, Ruikang K
2015-09-01
To determine if retinal capillary filling is preserved in the face of acutely elevated intraocular pressure (IOP) in anesthetized rats, despite a reduction in total retinal blood flow (RBF), using optical microangiography/optical coherence tomography (OMAG/OCT). OMAG provided the capability of depth-resolved imaging of the retinal microvasculature down to the capillary level. Doppler OCT was applied to measure the total RBF using an enface integration approach. The microvascular pattern, capillary density, and total RBF were monitored in vivo as the IOP was increased from 10 to 100mmHg in 10mmHg intervals and returned back to 10mmHg. In animals with mean arterial pressure (MAP) of 102±4mmHg (n=10), when IOP was increased from 0 to 100mmHg, the capillary density remained at or above 80% of baseline for the IOP up to 60mmHg [or ocular perfusion pressure (OPP) at 40mmHg]. This was then decreased, achieving 60% of baseline at IOP 70mmHg and OPP of 30mmHg. Total RBF was unaffected by moderate increases in IOP up to 30mmHg, beyond which total RBF decreased linearly, reaching 50% of baseline at IOP 60mmHg and OPP 40mmHg. Both capillary density and total RBF were totally extinguished at 100mmHg, but fully recovered when IOP returned to baseline. By comparison, a separate group of animals with lower MAP (mean=75±6mmHg, n=7) demonstrated comparable decreases in both capillary filling and total RBF at IOPs that were 20mmHg lower than in the initial group. Both were totally extinguished at 80mmHg, but fully recovered when IOP returned to baseline. Relationships of both parameters to OPP were unchanged. Retinal capillary filling and total RBF responses to IOP elevation can be monitored non-invasively by OMAG/OCT and both are influenced by OPP. Retinal capillary filling was relatively preserved down to a perfusion pressure of 40mmHg, despite a linear reduction in total RBF. Copyright © 2015 Elsevier Inc. All rights reserved.
Expanding Taylor bubble under constant heat flux
NASA Astrophysics Data System (ADS)
Voirand, Antoine; Benselama, Adel M.; Ayel, Vincent; Bertin, Yves
2016-09-01
Modelization of non-isothermal bubbles expanding in a capillary, as a contribution to the understanding of the physical phenomena taking place in Pulsating Heat Pipes (PHPs), is the scope of this paper. The liquid film problem is simplified and solved, while the thermal problem takes into account a constant heat flux density applied at the capillary tube wall, exchanging with the liquid film surrounding the bubble and also with the capillary tube outside medium. The liquid slug dynamics is solved using the Lucas-Washburn equation. Mass and energy balance on the vapor phase allow governing equations of bubble expansion to be written. The liquid and vapor phases are coupled only through the saturation temperature associated with the vapor pressure, assumed to be uniform throughout the bubble. Results show an over-heating of the vapor phase, although the particular thermal boundary condition used here always ensures an evaporative mass flux at the liquid-vapor interface. Global heat exchange is also investigated, showing a strong decreasing of the PHP performance to convey heat by phase change means for large meniscus velocities.
Beltrán, E; Toll, A; Pros, A; Carbonell, J; Pujol, R M
2007-05-01
Dermoscopy is a useful tool for dermatologists to study melanocytic lesions. Its possible usefulness in the assessment of capillary nailfold morphological changes (capillaroscopy) has recently been advocated. To assess the practical utility of digital epiluminescence microscopy as a capillaroscopic instrument in patients with Raynaud phenomenon (RP). To compare the sensitivity and specificity rates obtained by epiluminescence microscopy with those previously reported with conventional capillaroscopic devices. Fifty-six consecutive patients with primary RP (PRP; n = 5) or secondary RP (SRP; n = 51) (11 men and 45 women in total) were included in the study. A control group of 10 healthy subjects was also evaluated. Twenty-six patients (46%) had systemic sclerosis (SS), 12 (21%) presystemic sclerosis (pre-SS), one (2%) dermatopolymyositis-SS, one (2%) mixed connective tissue disease, two (4%) Sjögren syndrome, two (4%) an overlap syndrome, one (2%) rheumatoid arthritis and six (11%) other connective tissue diseases. Capillary nailfold changes were studied using a nonportable digital epiluminescence device (magnification x 30). Following a systematized protocol, capillary nailfold morphology, density and distribution were evaluated. Several capillaroscopic patterns were identified (normal, sclerodermic, nonspecific, nondiagnostic) as previously defined. A possible relationship between capillary nailfold changes and the intensity of RP or the presence of associated autoimmune diseases was assessed. The sclerodermic pattern showed a sensitivity of 76.9% and a specificity of 90.9% in SS. A typical capillaroscopic SS pattern was observed in 73% of cases of limited SS and in 82% of cases of diffuse SS. Patients with Sjögren syndrome and dermatopolymyositis-SS showed a nonspecific capillaroscopic pattern. All patients with PRP presented a normal capillaroscopic pattern. A normal capillaroscopic pattern was also observed in 11 of 12 patients with pre-SS. In one of two patients presenting severe sclerodactyly and in all patients showing hand oedema (three of 56), capillaroscopic changes could not be evaluated. Avascular areas correlated significantly with severe RP (P < 0.002), bone resorption (P < 0.007) and diffuse SS (P < 0.008). Digital epiluminescence seems to be a useful and reliable technique in the evaluation of capillary nailfold morphological changes. This technical variation allows the identification of specific capillaroscopic patterns associated with connective tissue diseases. It also permits us to differentiate PRP from SRP. The results obtained with this technique are similar to those previously reported using standard capillaroscopy devices.
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. sing a density programming and a 50-pm i.d. capillary column, a total of 18 group oligomers was separated. he effects of the operating parameters, such a...
Gavin, Timothy P; Stallings, Howard W; Zwetsloot, Kevin A; Westerkamp, Lenna M; Ryan, Nicholas A; Moore, Rebecca A; Pofahl, Walter E; Hickner, Robert C
2005-01-01
Obesity is associated with lower skeletal muscle capillarization and lower insulin sensitivity. Vascular endothelial growth factor (VEGF) is important for the maintenance of the skeletal muscle capillaries. To investigate whether VEGF and VEGF receptor [kinase insert domain-containing receptor (KDR) and Flt-1] expression are lower with obesity, vastus lateralis muscle biopsies were obtained from eight obese and eight lean young sedentary men before and 2 h after a 1-h submaximal aerobic exercise bout for the measurement of VEGF, KDR, Flt-1, and skeletal muscle fiber and capillary characteristics. There were no differences in VEGF or VEGF receptor mRNA at rest between lean and obese muscle. Exercise increased VEGF (10-fold), KDR (3-fold), and Flt-1 (5-fold) mRNA independent of group. There were no differences in VEGF, KDR, or Flt-1 protein between groups. Compared with lean skeletal muscle, the number of capillary contacts per fiber was the same, but lower capillary density (CD), greater muscle cross sectional area, and lower capillary-to-fiber area ratio were observed in both type I and II fibers in obese muscle. Multiple linear regression revealed that 49% of the variance in insulin sensitivity (homeostasis model assessment) could be explained by percentage of body fat (35%) and maximal oxygen uptake per kilogram of fat-free mass (14%). Linear regression revealed significant relationships between maximal oxygen uptake and both CD and capillary-to-fiber perimeter exchange. Although differences may exist in CD and capillary-to-fiber area ratio between lean and obese skeletal muscle, the present results provide evidence that VEGF and VEGF receptor expression are not different between lean and obese muscle.
SEPARATION OF T-MAZ ETHOXYLATED SORBITAN FATTY ACID ESTERS BY SUPERCRITICAL FLUID CHROMATOGRAPHY
The application of supercritical fluid chromatography (SFC) to the analysis of T-MAZ ethoxylated sorbitan fatty acid esters is described. FC separation methods utilize a density programming technique and a 50 um I.D. capillary column. his work demonstrates that capillary column S...
SEPARATION OF OCTYLPHENOL POLYETHER ALCOHOLS SURFACTANTS BY CAPILLARY COLUMN SFC AND HPLC
Separation of nonionic octylphenol polyether alcohols (OPA) by supercritical fluid chromatography (SFC) and HPLC is described. Using a density programming and a 50-μm i.d. capillary column, a total of 18 group oligomers was separated. The effects of the operating parameters, such...
Laser beam coupling with capillary discharge plasma for laser wakefield acceleration applications
NASA Astrophysics Data System (ADS)
Bagdasarov, G. A.; Sasorov, P. V.; Gasilov, V. A.; Boldarev, A. S.; Olkhovskaya, O. G.; Benedetti, C.; Bulanov, S. S.; Gonsalves, A.; Mao, H.-S.; Schroeder, C. B.; van Tilborg, J.; Esarey, E.; Leemans, W. P.; Levato, T.; Margarone, D.; Korn, G.
2017-08-01
One of the most robust methods, demonstrated to date, of accelerating electron beams by laser-plasma sources is the utilization of plasma channels generated by the capillary discharges. Although the spatial structure of the installation is simple in principle, there may be some important effects caused by the open ends of the capillary, by the supplying channels etc., which require a detailed 3D modeling of the processes. In the present work, such simulations are performed using the code MARPLE. First, the process of capillary filling with cold hydrogen before the discharge is fired, through the side supply channels is simulated. Second, the simulation of the capillary discharge is performed with the goal to obtain a time-dependent spatial distribution of the electron density near the open ends of the capillary as well as inside the capillary. Finally, to evaluate the effectiveness of the beam coupling with the channeling plasma wave guide and of the electron acceleration, modeling of the laser-plasma interaction was performed with the code INF&RNO.
Hybrid Upwinding for Two-Phase Flow in Heterogeneous Porous Media with Buoyancy and Capillarity
NASA Astrophysics Data System (ADS)
Hamon, F. P.; Mallison, B.; Tchelepi, H.
2016-12-01
In subsurface flow simulation, efficient discretization schemes for the partial differential equations governing multiphase flow and transport are critical. For highly heterogeneous porous media, the temporal discretization of choice is often the unconditionally stable fully implicit (backward-Euler) method. In this scheme, the simultaneous update of all the degrees of freedom requires solving large algebraic nonlinear systems at each time step using Newton's method. This is computationally expensive, especially in the presence of strong capillary effects driven by abrupt changes in porosity and permeability between different rock types. Therefore, discretization schemes that reduce the simulation cost by improving the nonlinear convergence rate are highly desirable. To speed up nonlinear convergence, we present an efficient fully implicit finite-volume scheme for immiscible two-phase flow in the presence of strong capillary forces. In this scheme, the discrete viscous, buoyancy, and capillary spatial terms are evaluated separately based on physical considerations. We build on previous work on Implicit Hybrid Upwinding (IHU) by using the upstream saturations with respect to the total velocity to compute the relative permeabilities in the viscous term, and by determining the directionality of the buoyancy term based on the phase density differences. The capillary numerical flux is decomposed into a rock- and geometry-dependent transmissibility factor, a nonlinear capillary diffusion coefficient, and an approximation of the saturation gradient. Combining the viscous, buoyancy, and capillary terms, we obtain a numerical flux that is consistent, bounded, differentiable, and monotone for homogeneous one-dimensional flow. The proposed scheme also accounts for spatially discontinuous capillary pressure functions. Specifically, at the interface between two rock types, the numerical scheme accurately honors the entry pressure condition by solving a local nonlinear problem to compute the numerical flux. Heterogeneous numerical tests demonstrate that this extended IHU scheme is non-oscillatory and convergent upon refinement. They also illustrate the superior accuracy and nonlinear convergence rate of the IHU scheme compared with the standard phase-based upstream weighting approach.
Flow Analysis of Isobutane (R-600A) Inside AN Adiabatic Capillary Tube
NASA Astrophysics Data System (ADS)
Alok, Praveen; Sahu, Debjyoti
2018-02-01
Capillary tubes are simple narrow tubes but the phase change which occurs inside the capillary tubes is complex to analyze. In the present investigation, an attempt is made to analyze the flow of Isobutane (R-600a) inside the coiled capillary tubes for different load conditions by Homogeneous Equilibrium Model. The Length and diameter of the capillary tube not only depend on the pressure and temperature of the condenser and evaporator but also on the cooling load. The present paper investigates the change in dimensions of the coil capillary tube with respect to the change in cooling load on the system for the constant condenser and evaporator conditions. ANSYS CFX (Central Florida Expressway) software is used to study the flow characteristics of the refrigerant. Appropriate helical coil is selected for this analysis.
de Miranda, Marcos Lopes; Pereira, Sandra J.; Santos, Ana O. M. T.; Villela, Nivaldo R.; Kraemer-Aguiar, Luiz Guilherme; Bouskela, Eliete
2015-01-01
Background and Objective Apart from its inotropic property, milrinone has vasodilator, anti-inflammatory and antithrombotic effects that could assist in the reversal of septic microcirculatory changes. This paper investigates the effects of milrinone on endotoxemia-related microcirculatory changes and compares them to those observed with the use of norepinephrine. Materials and Methods After skinfold chamber implantation procedures and endotoxemia induction by intravenous Escherichia coli lipopolysaccharide administration (2 mg.kg-1), male golden Syrian hamsters were treated with two regimens of intravenous milrinone (0.25 or 0.5 μg.kg-1.min-1). Intravital microscopy of skinfold chamber preparations allowed quantitative analysis of microvascular variables. Macro-hemodynamic, biochemical, and hematological parameters and survival rate were also analyzed. Endotoxemic non-treated animals, endotoxemic animals treated with norepinephrine (0.2 μg.kg-1.min-1), and non-endotoxemic hamsters served as controls. Results Milrinone (0.5 μg.kg-1.min-1) was effective in reducing lipopolysaccharide-induced arteriolar vasoconstriction, capillary perfusion deficits, and inflammatory response, and in increasing survival. Norepinephrine treated animals showed the best mean arterial pressure levels but the worst functional capillary density values among all endotoxemic groups. Conclusion Our data suggests that milrinone yielded protective effects on endotoxemic animals’ microcirculation, showed anti-inflammatory properties, and improved survival. Norepinephrine did not recruit the microcirculation nor demonstrated anti-inflammatory effects. PMID:25646813
Irradiation of orderly multiline spectra from linear plasma formed by vacuum discharge capillary
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Hayasi, Yasuomi; Germer, Rudolf; Ojima, Hidenori; Takayama, Kazuyoshi; Ido, Hideaki
2005-03-01
The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate intense soft x rays. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbomolecular pump, and a radiation tube with a capillary. A high-voltage condenser of 200 nF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damped oscillations. The peak values of the voltage and current increased when the charging voltage was increased, and their maximum values were -11.5 kV and 4.7 kA, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs. In the spectrum measurement, we observed orderly multi-line spectra. The line photon energies seldom varied according to changes in the condenser charging voltage and to changes in the electrode element. The line number decreased with corresponding decreases in the capillary length.
Barcelos, Amanda; Tibirica, Eduardo; Lamas, Cristiane
2018-07-01
To evaluate the systemic microcirculation of patients with infective endocarditis (IE). This is a comparative study of patients with definite IE by the modified Duke criteria admitted to our center for treatment. A reference group of sex- and age-matched healthy volunteers was included. Microvascular flow was evaluated in the forearm using a laser speckle contrast imaging system, for noninvasive measurement of cutaneous microvascular perfusion, in combination with skin iontophoresis of acetylcholine (ACh) and sodium nitroprusside (SNP) to test microvascular reactivity. Microvascular density was evaluated using skin video-capillaroscopy. We studied 22 patients with IE; 15 were male and seven female. The mean age and standard deviation (SD) were 45.5 ± 17.3 years. Basal skin microvascular conductance was significantly increased in patients with IE, compared with healthy individuals (0.36 ± 0.13 versus 0.21 ± 0.08 APU/mmHg; P < 0.0001). The increase in microvascular conductance induced by ACh in patients was 0.21 ± 0.17 and in the reference group, it was 0.37 ± 0.14 APU/mmHg (P = 0.0012). The increase in microvascular conductance induced by SNP in patients was 0.18 ± 0.14 and it was 0.29 ± 0.15 APU/mmHg (P = 0.0140) in the reference group. The basal mean skin capillary density of patients (135 ± 24 capillaries/mm 2 ) was significantly higher, compared with controls (97 ± 21 capillaries/mm 2 ; P < 0.0001). The main findings in the microcirculation of patients with IE were greater basal vasodilation and a reduction of the endothelium-dependent and -independent microvascular reactivity, as well as greater functional skin capillary density compared to healthy individuals. Copyright © 2018 Elsevier Inc. All rights reserved.
Digital capillaroscopy as important tool for early diagnostics of arterial hypertension
NASA Astrophysics Data System (ADS)
Gurfinkel, Yu. I.; Sasonko, M. L.; Priezzhev, A. V.
2015-03-01
The study is aimed to determine the digital capillaroscopy possibilities in early diagnostics of an arterial hypertension. A total of 123 adult persons were examined in the study. The first group consisted of 40 patients with prehypertension (BP 130-139/85-89 mm Hg). The second group included 36 patients with 1-2 stage of hypertension (mean systolic BP 152.7±12 mm Hg). Patients in both groups did not receive regular drug therapy. The group of volunteers (n=47) included healthy adults without signs of cardiovascular pathology. The capillary circulation was examined on the nailbed using the optical digital capillaroscope developed by the company "AET", Russia. Diameters of the arterial and venous segments, perivascular zone size, capillary blood velocity, the degree of arterial loops narrowing and the density of the capillary network were estimated. In patients with arterial hypertension and even in patients with prehypertension remodeling and rarefaction of capillaries and the expressed narrowing their arterial loops were manifested. The results of the study revealed the presence of abnormalities of microcirculation parameters in patients of both groups. The capillaries density in both groups of patients was significantly lower than in healthy persons. The significant narrowing of arterial loops was revealed in patients with both arterial hypertension and prehypertension, in comparison with healthy volunteers. Capillary blood velocity did not differ significantly between healthy volunteers group and the group of prehypertensive patients. However in patients with hypertension this parameter was significantly lower in comparison with control group.
Miyazaki, Kazunori; Masamoto, Kazuto; Morimoto, Nobutoshi; Kurata, Tomoko; Mimoto, Takahumi; Obata, Takayuki; Kanno, Iwao; Abe, Koji
2012-03-01
The exact mechanism of selective motor neuron death in amyotrophic lateral sclerosis (ALS) remains still unclear. In the present study, we performed in vivo capillary imaging, directly measured spinal blood flow (SBF) and glucose metabolism, and analyzed whether if a possible flow-metabolism coupling is disturbed in motor neuron degeneration of ALS model mice. In vivo capillary imaging showed progressive decrease of capillary diameter, capillary density, and red blood cell speed during the disease course. Spinal blood flow was progressively decreased in the anterior gray matter (GM) from presymptomatic stage to 0.80-fold of wild-type (WT) mice, 0.61 at early-symptomatic, and 0.49 at end stage of the disease. Local spinal glucose utilization (LSGU) was transiently increased to 1.19-fold in anterior GM at presymptomatic stage, which in turn progressively decreased to 0.84 and 0.60 at early-symptomatic and end stage of the disease. The LSGU/SBF ratio representing flow-metabolism uncoupling (FMU) preceded the sequential pathological changes in the spinal cord of ALS mice and was preferentially found in the affected region of ALS. The present study suggests that this early and progressive FMU could profoundly involve in the whole disease process as a vascular factor of ALS pathology, and could also be a potential target for therapeutic intervention of ALS.
Sillau, A H
1985-01-01
Muscle capillarity, mean and maximal diffusion distances and muscle fibre composition were evaluated in frozen sections stained for myosin ATPase of the soleus and the white area of the gastrocnemius medial head (gastrocnemius) of rats made hypothyroid by the injection of propylthiouracil (PTU) (50 mg kg-1) every day for 21 or 42 days. Oxygen consumption in the presence of excess ADP and Pi with pyruvate plus malate as substrates and the activity of cytochrome c oxidase were measured in muscle homogenates. Treatment with PTU decreased body oxygen consumption and the concentration of triiodothyronine in plasma. The capacity of the soleus and gastrocnemius muscles' homogenates to oxidize pyruvate plus malate and their cytochrome c oxidase activity were reduced after 21 or 42 days of treatment with PTU. Fibre composition in the soleus muscle was changed by treatment with PTU. There was a decrease in the proportion of type IIa or fast glycolytic oxidative fibres and an increase in type I or slow oxidative fibres. After 21 days of PTU administration there was also an increase in the proportion of fibres classified as IIc. The changes in fibre composition are believed to be the result of changes in the types of myosin synthesized by the fibres. Therefore, the fibres classified as IIc are, most probably, IIa fibres in the process of changing their myosin to that of the type I fibres. No changes in fibre composition were evident in the white area of the gastrocnemius medial head, an area made up of IIb or fast glycolytic fibres. The indices of capillarity: capillary density and capillary to fibre ratio, as well as mean and maximal diffusion distances from the capillaries, were not changed by the treatment with PTU in the muscles studied. The lack of changes in capillarity in spite of significant changes in oxidative capacity indicates that in skeletal muscle capillarity is not necessarily related to the oxidative capacity of the fibres. PMID:3989729
Hydrodynamic flow in capillary-channel fiber columns for liquid chromatography.
Stanelle, Rayman D; Sander, Lane C; Marcus, R Kenneth
2005-12-23
The flow characteristics of capillary-channel polymer (C-CP) fiber liquid chromatographic (LC) columns have been investigated. The C-CP fibers are manufactured with eight longitudinal grooves (capillary channels) extending the length of the fibers. Three C-CP fiber examples were studied, with fiber dimensions ranging from approximately 35 microm to 65 microm, and capillary-channel dimensions ranging from approximately 6 microm to 35 microm. The influence of fiber packing density and column inner diameter on peak asymmetry, peak width, and run-to-run reproducibility have been studied for stainless steel LC columns packed with polyester (PET) and polypropylene (PP) C-CP fibers. The van Deemter A-term was evaluated as a function of fiber packing density (approximately 0.3 g/cm(3)-0.75 g/cm(3)) for columns of 4.6 mm inner diameter (i.d.) and at constant packing densities for 1.5 mm, 3.2 mm, 4.6 mm, and 7.7 mm i.d. columns. Although column diameter had little influence on the eluting peak widths, peak asymmetry increased with increasing column diameter. The A-terms for the C-CP fiber packed columns are somewhat larger than current commercial, microparticulate-packed columns, and means for improvement are discussed. Applications in the area of protein (macromolecule) separations appear the most promising at this stage of the system development.
Microvasculature of the Olfactory Organ in the Japanese Monkey (Macaca fuscata fuscata)
NASA Astrophysics Data System (ADS)
Okada, Shigenori; Schraufnagel, Dean E.
2002-06-01
Olfaction is an important and primitive sense. As its importance has changed with evolution, anatomic adjustments have occurred in its structure and vasculature. Primates are a family of vertebrates that have had to develop their visual system to adapt to the arboreal environment and have evolved from a macrosmatic to a microsmatic species as the optic system has enlarged. This has resulted in anatomic changes of a small but critical area at the base of the brain. This paper describes the three-dimensional vascular anatomy of the olfactory organ of the Japanese monkey (Macaca fuscata fuscata). This is best understood by dividing the organ into three parts: the olfactory tract, olfactory bulb, and olfactory nerves in the nasal mucosa. The bulb can be partitioned into an outer or cortical part and inner or medullary part. The vasculature and tissue were examined grossly and with light microscopy and scanning electron microscopy of vascular corrosion casts. The olfactory tract and bulb were supplied by an arteriole from the anterior cerebral artery on each side. The tract was supplied by capillaries running spirally with a coarse network. At the olfactory bulb, the arteriole ramified into the intracortical and medullary branches that formed capillary networks. The bulbar intracortical capillaries were divided into two layers with different densities and vascular patterns. The capillaries of the superficial layer had a ladder-like pattern. The branches that ran into the medulla of the olfactory bulb were more widely spaced. Twigs from the posterior ethmoidal artery ran along the nerve fiber and formed intra- and extrafascicular networks. Each region of the olfactory organ had characteristic three-dimensional vascular patterns that were related to their cellular architecture.
Van Geest, Rob J.; Leeuwis, Jan Willem; Dendooven, Amélie; Pfister, Frederick; Bosch, Klazien; Hoeben, Kees A.; Vogels, Ilse M.C.; Van der Giezen, Dionne M.; Dietrich, Nadine; Hammes, Hans-Peter; Goldschmeding, Roel; Klaassen, Ingeborg; Van Noorden, Cornelis J.F.
2014-01-01
Early retinal vascular changes in the development of diabetic retinopathy (DR) include capillary basal lamina (BL) thickening, pericyte loss and the development of acellular capillaries. Expression of the CCN (connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed) family member CCN2 or connective tissue growth factor (CTGF), a potent inducer of the expression of BL components, is upregulated early in diabetes. Diabetic mice lacking one functional CTGF allele (CTGF+/−) do not show this BL thickening. As early events in DR may be interrelated, we hypothesized that CTGF plays a role in the pathological changes of retinal capillaries other than BL thickening. We studied the effects of long-term (6-8 months) streptozotocin-induced diabetes on retinal capillary BL thickness, numbers of pericytes and the development of acellular capillaries in wild type and CTGF+/− mice. Our results show that an absence of BL thickening of retinal capillaries in long-term diabetic CTGF+/− mice is associated with reduced pericyte dropout and reduced formation of acellular capillaries. We conclude that CTGF is involved in structural retinal vascular changes in diabetic rodents. Inhibition of CTGF in the eye may therefore be protective against the development of DR. PMID:24217924
Tibirica, Eduardo; Barcelos, Amanda; Lamas, Cristiane
2018-06-01
This article represents data associated with a prior publication from our research group, under the title: Evaluation of microvascular endothelial function and capillary density in patients with infective endocarditis using laser speckle contrast imaging and video-capillaroscopy [1]. Patients with definite infective endocarditis, under stable clinical conditions, were prospectively included. The clinical and laboratory features are presented for each of them in raw form. Microvascular reactivity was evaluated using a laser speckle contrast imaging (LSCI) system with a laser wavelength of 785 nm. LSCI was used in combination with the iontophoresis of acetylcholine (ACh) or sodium nitroprusside (SNP) for the noninvasive, continuous measurement of cutaneous microvascular perfusion changes in arbitrary perfusion units (APU). The images were analyzed using the manufacturer's software. One skin site on the ventral surface of the forearm was chosen for the experiment. Microvascular reactivity was also evaluated using post-occlusive reactive hyperemia, whereby arterial occlusion was achieved with supra-systolic pressure (50 mmHg above the systolic arterial pressure) using a sphygmomanometer for three minutes. Following the release of pressure, maximum flux was measured. Data on cutaneous microvascular density were obtained using intravital video-capillaroscopy. The data obtained may be helpful by showing the usefulness of laser-based noninvasive techniques in systemic infectious diseases other than sepsis, in different clinical settings and countries.
Costello, Paula M.; Hollis, Lisa J.; Cripps, Roselle L.; Bearpark, Natasha; Patel, Harnish P.; Sayer, Avan Aihie; Cooper, Cyrus; Hanson, Mark A.; Ozanne, Susan E.
2013-01-01
Suboptimal maternal nutrition and body composition are implicated in metabolic disease risk in adult offspring. We hypothesized that modest disruption of glucose homeostasis previously observed in young adult sheep offspring from ewes of a lower body condition score (BCS) would deteriorate with age, due to changes in skeletal muscle structure and insulin signaling mechanisms. Ewes were fed to achieve a lower (LBCS, n = 10) or higher (HBCS, n = 14) BCS before and during pregnancy. Baseline plasma glucose, glucose tolerance and basal glucose uptake into isolated muscle strips were similar in male offspring at 210 ± 4 weeks. Vastus total myofiber density (HBCS, 343 ± 15; LBCS, 294 ± 14 fibers/mm2, P < .05) and fast myofiber density (HBCS, 226 ± 10; LBCS 194 ± 10 fibers/mm2, P < .05), capillary to myofiber ratio (HBCS, 1.5 ± 0.1; LBCS 1.2 ± 0.1 capillary:myofiber, P < .05) were lower in LBCS offspring. Vastus protein levels of Akt1 were lower (83% ± 7% of HBCS, P < .05), and total glucose transporter 4 was increased (157% ± 6% of HBCS, P < .001) in LBCS offspring, Despite the reduction in total myofiber density in LBCS offspring, glucose tolerance was normal in mature adult life. However, such adaptations may lead to complications in metabolic control in an overabundant postnatal nutrient environment. PMID:23420826
NASA Astrophysics Data System (ADS)
Kuroda, S.; Ishii, N.; Morii, T.
2017-12-01
Capillary barriers have been known as the method to protect subsurface regions against infiltration from soil surface. It is caused by essentially heterogeneous structure in permeability or soil physical property and produce non-uniform infiltration process then, in order to estimate the actual situation of the capillary barrier effect, the site-characterization with imaging technique like geophysical prospecting is effective. In this study, we examine the applicability of GPR to characterization for capillary barriers. We built a sand box with 90x340x90cm in which a thin high-permeable gravel layer was embedded as a capillary barrier. We conducted an infiltration test in the sand box using porous tube array for irrigation. It is expected to lead to non-uniform flow of soil water induced by capillary barrier effects. We monitored this process by various types of GPR measurements, including time-lapsed common offset profiling (COP) with multi- frequency antenna and transmission measurements like cross-borehole radar. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur or not. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil. At first, we conducted GPR common-offset survey. It could show the depth of capillary barrier in sand box. After that we conducted the infiltration test and GPR monitoring for infiltration process. GPR profiles can detect the wetting front and estimate water content change in the soil layer above the capillary barrier. From spatial change in these results we can estimate the effect of capillary barrier and the zone where the break through occur. Based on these results, we will discuss the applicability of GPR for monitoring the phenomena around the capillary barrier of soil.
Variability in sublingual microvessel density and flow measurements in healthy volunteers.
Hubble, Sheena M A; Kyte, Hayley L; Gooding, Kim; Shore, Angela C
2009-02-01
As sublingual microvascular indices are increasingly heralded as new resuscitation end-points, better population data are required to power clinical studies. This paper describes improved methods to quantify sublingual microvessel flow and density in images obtained by sidestream dark field (SDF) technology in healthy volunteers, including vessels under 10 microm in diameter. Measurements of sublingual capillary density and flow were obtained by recording three 15-second images in 20 healthy volunteers over three days. Two independent observers quantified capillary density by using two methods: total vessel length (mm/mm2) and counting (number/mm). Both intraoral and temporal variabilities within subject and observer reproducibilities were determined by using coefficients of variability and reproducibility indices. For small (1-10 microm), medium (11-20 microm), and large (21-50 microm) diameter, mean vessel density with standard deviations (SDs) in volunteers was 21.3(+/- 4.9), 5.2 (+/- 1.2), and 2.7 (+/- 0.9) mm/mm2, respectively. Also, 94.0 +/- 1.4% of small vessels, 94.5 +/- 1.4% of medium vessels, and 94.5+/- 4.0% of large vessels had continuous perfusion. Within subjects, the means of all measurements over three days varied less than 13, 22, and 35% in small, medium, and large vessels, respectively. Interobserver reproducibility was good, especially for capillary (1-10 microm) density and flow measurements. Our methods of microvessel flow and density quantification have low observer variability and confirm the stability of microcirculatory measurements over time. These results facilitate the development of SDF-acquired sublingual microvascular indices as feasible microperfusion markers in shock resuscitation.
Influence of Fiber Type Composition and Capillary Density on Onset of Blood Lactate Accumulation,
1981-03-25
changes referred to as aerobic and anaerobic thresholds as suggested by e.g. Skinner and McLellan (32). To assess the "breaking point", which re- presents...in man. Acta Physiol Scand Suppl 443, 1976. 37 Wasserman K., Whipp B., Koyal S., Beaver t’. : Anaerobic threshold and respiratory gas exchange during...onset of a net accumulation of lactate in blood, has been proposed to represent a metabolic shift from aerobic to revalent anaerobic energy contribution
Publications - GMC 394 | Alaska Division of Geological & Geophysical
, permeability to air, porosity, mercury injection capillary pressure, and grain density) from the E. Simpson #1 (total organic carbon, rock-eval, permeability to air, porosity, mercury injection capillary pressure Files gmc394.pdf (89.0 K) gmc394.zip (1.54 M) Keywords Oil and Gas; Permeability; Porosity; Rock-Eval
Capillary Contact Angle in a Completely Wet Groove
NASA Astrophysics Data System (ADS)
Parry, A. O.; Malijevský, A.; Rascón, C.
2014-10-01
We consider the phase equilibria of a fluid confined in a deep capillary groove of width L with identical side walls and a bottom made of a different material. All walls are completely wet by the liquid. Using density functional theory and interfacial models, we show that the meniscus separating liquid and gas phases at two phase capillary coexistence meets the bottom capped end of the groove at a capillary contact angle θcap(L) which depends on the difference between the Hamaker constants. If the bottom wall has a weaker wall-fluid attraction than the side walls, then θcap>0 even though all the isolated walls are themselves completely wet. This alters the capillary condensation transition which is now first order; this would be continuous in a capped capillary made wholly of either type of material. We show that the capillary contact angle θcap(L) vanishes in two limits, corresponding to different capillary wetting transitions. These occur as the width (i) becomes macroscopically large, and (ii) is reduced to a microscopic value determined by the difference in Hamaker constants. This second wetting transition is characterized by large scale fluctuations and essential critical singularities arising from marginal interfacial interactions.
Kabasakal, Y; Elvins, D M; Ring, E F; McHugh, N J
1996-01-01
OBJECTIVE: To describe and quantify the morphological characteristics of nailfold capillaries that distinguish different forms of connective tissue disease from healthy controls. METHODS: A CCD video microscope with fibreoptic illumination and PC based image processing was used to visualise nailfold capillaries and to quantify findings in 23 patients with systemic sclerosis (SSc), 22 patients with systemic lupus erythematosus (SLE), 21 patients with undifferentiated connective tissue disease (UCTD), and 38 healthy controls. RESULTS: Capillary density was reduced in SSc (5.2 (SD 1.3) capillaries/mm) compared with other patient groups and controls. The average number of enlarged capillaries/finger was high in all disease groups (5.5-6.6) compared with controls (2). However, giant capillaries were most frequent in SSc (43%) and were not present in controls. Mild and moderate avascular areas were present in all groups (35%-68%), but severe avascularity was most frequent in SSc (44%) compared with other patients (18%-19%) and controls (0%). The greatest frequency of extensive haemorrhage was in SSc (35%). CONCLUSIONS: There is a range of abnormal capillary findings in patients with connective tissue disease and healthy controls. However, certain abnormalities such as a reduced number of capillaries, severe avascularity, giant capillaries, and haemorrhage are most commonly associated with SSc. Videomicroscopy with image processing offers many technical advantages that can be exploited in further studies of nailfold capillaries. Images PMID:8774177
Le, D. Elizabeth; Pascotto, Marco; Leong-Poi, Howard; Sari, Ibrahim; Micari, Antonio; Kaul, Sanjiv
2013-01-01
There is controversy regarding the superiority of carvedilol (C) over metoprolol (M) in congestive heart failure. We hypothesized that C is superior to M in chronic ischemic cardiomyopathy because of its better anti-inflammatory and pro-angiogenic effects. In order to test our hypothesis we used a chronic canine model of multivessel ischemic cardiomyopathy where myocardial microcatheters were placed from which interstitial fluid was collected over time to measure leukocyte count and cytokine levels. After development of left ventricular dysfunction, the animals were randomized into four groups: sham (n = 7), placebo (n = 8), M (n = 11), and C (n = 10), and followed for 3 months after treatment initiation. Tissue was examined for immunohistochemistry, oxidative stress, and capillary density. At 3 months both rest and stress wall thickening were better in C compared to the other groups. At the end of 3 months of treatment endsystolic wall stress also decreased the most in C. Similarly resting myocardial blood flow (MBF) improved the most in C as did the stress endocardial/epicardial MBF. Myocardial interstitial fluid showed greater attenuation of leukocytosis with C compared to M, which was associated with less fibrosis and oxidative stress. C also had higher IL-10 level and capillary density. In conclusion, in a chronic canine model of multivessel ischemic cardiomyopathy we found 3 months of C treatment resulted in better resting global and regional function as well as better regional function at stress compared to M. These changes were associated with higher myocardial levels of the anti-inflammatory cytokine IL-10 and less myocardial oxidative stress, leukocytosis, and fibrosis. Capillary density and MBF were almost normalized. Thus in the doses used in this study, C appears to be superior to M in a chronic canine model of ischemic cardiomyopathy from beneficial effects on inflammation and angiogenesis. Further studies are required for comparing additional doses of these drugs. PMID:24072434
Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).
Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M
2015-02-21
This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings.
Complex patchy colloids shaped from deformable seed particles through capillary interactions.
Meester, V; Kraft, D J
2018-02-14
We investigate the mechanisms underlying the reconfiguration of random aggregates of spheres through capillary interactions, the so-called "colloidal recycling" method, to fabricate a wide variety of patchy particles. We explore the influence of capillary forces on clusters of deformable seed particles by systematically varying the crosslink density of the spherical seeds. Spheres with a poorly crosslinked polymer network strongly deform due to capillary forces and merge into large spheres. With increasing crosslink density and therefore rigidity, the shape of the spheres is increasingly preserved during reconfiguration, yielding patchy particles of well-defined shape for up to five spheres. In particular, we find that the aspect ratio between the length and width of dumbbells, L/W, increases with the crosslink density (cd) as L/W = B - A·exp(-cd/C). For clusters consisting of more than five spheres, the particle deformability furthermore determines the patch arrangement of the resulting particles. The reconfiguration pathway of clusters of six densely or poorly crosslinked seeds leads to octahedral and polytetrahedral shaped patchy particles, respectively. For seven particles several geometries were obtained with a preference for pentagonal dipyramids by the rigid spheres, while the soft spheres do rarely arrive in these structures. Even larger clusters of over 15 particles form non-uniform often aspherical shapes. We discuss that the reconfiguration pathway is largely influenced by confinement and geometric constraints. The key factor which dominates during reconfiguration depends on the deformability of the spherical seed particles.
Effect of dispersion forces on the capillary-wave fluctuations of liquid surfaces.
Chacón, Enrique; Fernández, Eva M; Tarazona, Pedro
2014-04-01
We present molecular dynamics evidence for the nonanalytic effects of the long-range dispersion forces on the capillary waves fluctuations of a Lennard-Jones liquid surface. The results of the intrinsic sampling method, for the analysis of the instantaneous interfacial shape, are obtained in large systems for several cut-off distances of the potential tail, and they show good agreement with the theoretical prediction by Napiórkowski and Dietrich, based on a density functional analysis. The enhancement of the capillary waves is quantified to be within 1% for a simple liquid near its triple point.
Characteristics of a capillary-discharge flash x-ray generator
NASA Astrophysics Data System (ADS)
Sato, Eiichi; Hayasi, Yasuomi; Usuki, Tatsumi; Sato, Koetsu; Takayama, Kazuyoshi; Ido, Hideaki
2002-11-01
The fundamental experiments for measuring soft x-ray characteristics from the vacuum capillary are described. These experiments are primarily performed in order to generate line spectra such as x-ray lasers. The generator consists of a high-voltage power supply, a polarity-inversion ignitron pulse generator, a turbo-molecular pump, and a radiation tube with a capillary. A high-voltage condenser of 0.2 μF in the pulse generator is charged up to 20 kV by the power supply, and the electric charges in the condenser are discharged to the capillary in the tube after closing the ignitron. During the discharge, weakly ionized plasma forms on the inner and outer sides of a capillary. In the present work, the pump evacuates air from the tube with a pressure of about 1 mPa, and a demountable capillary was developed in order to measure x-ray spectra according to changes in the capillary length. In this capillary, the anode (target) and cathode elements can be changed corresponding to the objectives. The capillary diameter is 2.0 mm, and the length is adjusted from 1 to 50 mm. When a capillary with aluminum anode and cathode electrodes was employed, both the cathode voltage and the discharge current almost displayed damp oscillations. The peak values of the voltage and current increased when the charging voltage was increased and their maximum values were -10.8 kV and 4.7 kV, respectively. The x-ray durations observed by a 1.6 μm aluminum filter were less than 30 μs, and we detected the aluminum characteristic x-ray intensity using a 6.8 μm aluminum filter. In the spectrum measurement, two sets of aluminum and titanium electrodes were employed, and we observed multi-line spectra. The line photon energies seldom varied according to changes in teh condenser charging voltage and to changes in the electrode element. In the case where the titanium electrode was employed, the line number decreased with corresponding decreases in the capillary length. Compared with incoherent visible light, these rays from the capillary were diffracted greatly after pass through two slits.
Sontheimer, Richard D
2004-03-01
While employing a DermLite dermoscopy unit to assess pigment pattern networks in melanocytic skin lesions, it was observed that this compact, portable dermoscopy unit can also be used to quickly detect nailfold capillary changes when entertaining a diagnosis of autoimmune connective tissue diseases (CTD) such as dermatomyositis (DM), scleroderma/systemic sclerosis (SSc), or systemic lupus erythematosus. Aware that the suppliers of the DermLite dermoscopy unit also market a portable digital microphotography unit based on the DermLite optical principles for efficiently documenting cutaneous pigment network patterns, we investigated whether this unit (DermLite Foto flash unit attached to a Nikon Coolpix digital camera) might be used to photographically document nailfold capillary changes in patients with autoimmune CTD. A DermLite Foto flash unit attached to a Nikon Coolpix digital camera was used in a controlled observational study to obtain digital photographs of nailfold capillaries in a small sequential sample of patients with autoimmune CTD attending a rheumatic skin disease subspecialty clinic in an academic department of dermatology. The digital microphotography system proved to be highly useful in documenting the nailfold vascular changes observed in a small sample of patients with DM. We observed that the nailfold capillary changes seen in patients with clinically amyopathic DM were qualitatively and quantitatively similar to those seen in patients with classical DM. Digital microphotography systems designed for examining pigmented skin lesions can be used easily to document nailfold capillary changes often observed in DM and SSc. Nailfold capillary changes documented in this manner appear to be indistinguishable in clinically amyopathic DM and classical DM.
Intense laser pulse propagation in ionizing gases
NASA Astrophysics Data System (ADS)
Bian, Zhigang
2003-10-01
There have been considerable technological advances in the development of high intensity, short pulse lasers. However, high intensity laser pulses are subject to various laser-plasma instabilities. In this thesis, a theory is developed to study the scattering instability that occurs when a laser pulse propagates through and ionizes a gas. The instability is due to the intensity dependence of the ionization rate, which leads to a transversely structured free electron density. The instability is convective in the frame of laser pulse, but can have a relatively short growth length scaling as Lg˜k0/k2p where k0 is the laser wave number, k2p=w2p/c 2 and op is the plasma frequency. The most unstable perturbations correspond to a scattering angle for which the transverse wave number is around the plasma wave number, k p. The scattered light is frequency upshifted. The comparison between simple analytic theory and numerical simulation shows good agreement. Instabilities can drastically change the shape of the laser pulse and reduce the propagation distance of the laser pulse. Therefore, we change the propagation conditions and reduce the laser-plasma interaction possibilities in applications which require an interaction length well in excess of the Rayleigh length of the laser beam. One of the methods is to use a capillary to propagate the laser pulse. We studied the propagation of short pulses in a glass capillary. The propagation is simulated using the code WAKE, which has been modified to treat the case in which the simulation boundary is the wall of a capillary. Parameters that were examined include transmission efficiency of the waveguides as a function of gas pressure, laser intensity, and waveguide length, which is up to 40 Rayleigh lengths. The transmission efficiency decreases with waveguide length due to energy loss through the side-walls of the capillary. The loss increases with gas pressure due to ionization of the gas and scattering of the radiation. The intensity on the inner wall of the capillary is monitored to assure realistic simulations, consistent with optical breakdown of the waveguide material. Generally speaking the intensity on the wall increases with gas pressure due to the scattering of the lowest order capillary mode. Finally, the high order harmonic generation (HHG) in a capillary is investigated. The phase matching condition is studied to increase the conversion efficiency for high order harmonics generation. The phase matching occurs as a balance of the dispersion of the neutral gas, plasma and the waveguide.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Radhakrishnan, Krishnan; DiCorleto, Paul E.; Leontiev, Dmitry; Anand-Apte, Bela; Albarran, Brian; Farr, Andrew G.
2005-01-01
Vascular endothelial growth factor-165 (VEGF(sub 165)) stimulated angiogenesis in the quail chorioallantoic membrane (CAM) by vessel expansion from the capillary network. However, lymphangiogenesis was stimulated by the filopodial guidance of tip cells located on blind-ended lymphatic sprouts. As quantified by fractal/generational branching analysis using the computer code VESGEN, vascular density increased maximally at low VEGF concentrations, and vascular diameter increased most at high VEGF concentrations. Increased vascular density and diameter were statistically independent events (r(sub s), -0.06). By fluorescence immunohistochemistry of VEGF receptors VEGFR-1 and VEGFR-2, alpha smooth muscle actin ((alpha) SMA) and a vascular/lymphatic marker, VEGF(sub 165) increased the density and diameter of sprouting lymphatic vessels guided by tip cells (accompanied by the dissociation of lymphatics from blood vessels). Isolated migratory cells expressing (alpha)SMA were recruited to blood vessels, whereas isolated cells expressing VEGFR-2 were recruited primarily to lymphatics. In conclusion, VEGF(sub 165) increased lymphatic vessel density by lymphatic sprouting, but increased blood vessel density by vascular expansion from the capillary network.
Kubo, Takuya; Nishimura, Naoki; Furuta, Hayato; Kubota, Kei; Naito, Toyohiro; Otsuka, Koji
2017-11-10
We report novel capillary gel electrophoresis (CGE) with poly(ethylene glycol) (PEG)-based hydrogels for the effective separations of biomolecules containing sugars and DNAs based on a molecular size effect. The gel capillaries were prepared in a fused silica capillary modified with 3-(trimethoxysilyl)propylmethacrylate using a variety of the PEG-based hydrogels. After the fundamental evaluations in CGE regarding the separation based on the molecular size effect depending on the crosslinking density, the optimized capillary provided the efficient separation of glucose ladder (G1 to G20). In addition, another capillary showed the successful separation of DNA ladder in the range of 10-1100 base pair, which is superior to an authentic acrylamide-based gel capillary. For both glucose and DNA ladders, the separation ranges against the molecular size were simply controllable by alteration of the concentration and/or units of ethylene oxide in the PEG-based crosslinker. Finally, we demonstrated the separations of real samples, which included sugars carved out from monoclonal antibodies, mAbs, and then the efficient separations based on the molecular size effect were achieved. Copyright © 2017 Elsevier B.V. All rights reserved.
Enhanced laser radiation pressure acceleration of protons with a gold cone-capillary
NASA Astrophysics Data System (ADS)
Lv, Chong; Xie, Bai-Song; Wan, Feng; Hou, Ya-Juan; Jia, Mo-Ran; Sang, Hai-Bo; Hong, Xue-Ren; Liu, Shi-Bing
2017-03-01
A scheme with a gold cone-capillary is proposed to improve the protons acceleration, and involved problems are investigated by using the two-dimensional particle-in-cell simulations. It is demonstrated that the cone-capillary can efficiently guide and collimate the protons to a longer distance and result in a better beam quality with a dense density ≥ 10 n c , monoenergetic peak energy E k ˜ 1.51 GeV , spatial emittance ˜ 0.0088 mm mrad with divergence angle θ ˜ 1.0 ° and diameter ˜ 0.5 μ m . The enhancement is mainly attributed to the focusing effect by the transverse electric field generated by the cone as well as the capillary, which can prevent greatly the protons from expanding in the transverse direction. Comparable to without the capillary, the protons energy spectra have a stable monoenergetic peak and divergence angle nearby 1.0 ° in longer time. Besides, the efficiency of acceleration depending on the capillary length is explored, and the optimal capillary length is also achieved. Such a target may be beneficial to many applications such as ion fast ignition in inertial fusion, proton therapy and so on.
Nailfold Capillaroscopy of Fingers and Toes - Variations of Normal.
Lambova, Sevdalina Nikolova; Muller-Ladner, Ulf
2018-04-20
Nailfold capillaroscopy is the only method for morphological assessment of nutritive capillaries. The literature data about capillaroscopic findings in healthy individuals are scarce. To evaluate and compare the capillaroscopic findings of fingers and toes in healthy subjects. 22 healthy individuals were included in the study. Capillaroscopic examination was performed with videocapillaroscope Videocap 3.0 (DS Medica). Exclusion criteria were as follows: history of vasospasm, presence of accompanying diseases, taking any medications, arterial hypertension in first degree relatives, overweight or obesity (body mass index > 25kg/m2) and presence of chronic arterial or venous insufficiency. Poor visibility of nailfold capillaries was found significantly more frequently in the toes (22.7%, 5/22) as compared with fingers (0/22). Slight irregularities in capillary distribution and orientation to their parallel axis were significantly more common in the toes (31.8%, 7/22) as compared with fingers (9%, 2/22), (p<0.05). The mean diameter of the arterial (0.012±0.002mm) and the venous limb (0.017±0.002mm) of the toes did not differ significantly as compared to the respective parameters in the fingers (0.013±0.002mm for the arterial limb, p=0.46 and 0.018±0.002mm for the venous limb, p=0.25). The mean capillary density also did not differ significantly in the fingers and toes. The mean capillary length of the toes (0.165±0.096mm) was shorter as compared with hands (0.220±0.079mm), but the difference was not statistically significant (p=0.37). Presence of tortuous capillaries (>10%) was found significantly more often in the toes (12/22) as compared with fingers (6/22, χ2=6.769, p<0.05). Short capillary loops (length<100µm) were observed significantly more often in the toes (11/22 - toes, 1/22 - fingers, χ2=14.666, p<0.05). Capillaroscopic examination of the toes shows some differences as compared to those of the fingers such as greater number of cases with poor visibility and slight irregularities of distribution, greater number of shorter capillaries and increased tortuosity, which might be related to the thicker epidermis of the toes and increased capillary pressure due to gravity. The values of the major capillaroscopic parameters such as capillary diameters and capillary density in fingers and toes do not differ significantly. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Nadeau, Valerie; Potus, Francois; Boucherat, Olivier; Paradis, Renee; Tremblay, Eve; Iglarz, Marc; Paulin, Roxane; Bonnet, Sebastien
2017-01-01
Dysregulated metabolism and rarefaction of the capillary network play a critical role in pulmonary arterial hypertension (PAH) etiology. They are associated with a decrease in perfusion of the lungs, skeletal muscles, and right ventricle (RV). Previous studies suggested that endothelin-1 (ET-1) modulates both metabolism and angiogenesis. We hypothesized that dual ETA/ETB receptors blockade improves PAH by improving cell metabolism and promoting angiogenesis. Five weeks after disease induction, Sugen/hypoxic rats presented severe PAH with pulmonary artery (PA) remodeling, RV hypertrophy and capillary rarefaction in the lungs, RV, and skeletal muscles (microCT angiogram, lectin perfusion, CD31 staining). Two-week treatment with dual ETA/ETB receptors antagonist macitentan (30 mg/kg/d) significantly improved pulmonary hemodynamics, PA vascular remodeling, and RV function and hypertrophy compared to vehicle-treated animals (all P = 0.05). Moreover, macitentan markedly increased lung, RV and quadriceps perfusion, and microvascular density (all P = 0.05). In vitro, these effects were associated with increases in oxidative phosphorylation (oxPhox) and markedly reduced cell proliferation of PAH-PA smooth muscle cells (PASMCs) treated with macitentan without affecting apoptosis. While macitentan did not affect oxPhox, proliferation, and apoptosis of PAH–PA endothelial cells (PAECs), it significantly improved their angiogenic capacity (tube formation assay). Exposure of control PASMC and PAEC to ET-1 fully mimicked the PAH cells phenotype, thus confirming that ET-1 is implicated in both metabolism and angiogenesis abnormalities in PAH. Dual ETA/ETB receptor blockade improved the metabolic changes involved in PAH-PASMCs’ proliferation and the angiogenic capacity of PAH-PAEC leading to an increased capillary density in lungs, RV, and skeletal muscles. PMID:29064353
Dependence of Capillary Properties of Contemporary Clinker Bricks on Their Microstructure
NASA Astrophysics Data System (ADS)
Wesołowska, Maria; Kaczmarek, Anna
2017-10-01
Contemporary clinker bricks are applied for outer layers of walls built from other materials and walls which should have high durability and aesthetic qualities. The intended effect depends not only on the mortar applied but also on clinker properties. Traditional macroscopic tests do not allow to predict clinker behaviour in contact with mortars and external environment. The basic information for this issue is open porosity of material. It defines the material ability to absorb liquids: rain water (through the face wall surface) and grout from mortar (through base surface). The main capillary flow goes on in pores with diameters from 300 to 3000nm. It is possible to define pore distribution and their size using the Mercury Intrusion Porosimetry method. The aim of these research is evaluation of clinker brick capillary properties (initial water absorption and capillary rate) and analysis of differences in microstructure of the face and base wall of a product. Detailed results allowed to show pore distribution in function of their diameters and definition of pore amount responsible for capillary flow. Based on relation between volume function differential and pore diameter, a differential distribution curve was obtained which helped to determine the dominant diameters. The results obtained let us state that face wall of bricks was characterized with the lowest material density and open porosity. In this layer (most burnt) part of pores could be closed by locally appearing liquid phase during brick burning. Thus density is lower comparing to other part of the product.
Local capillary supply in muscle is not determined by local oxidative capacity.
Bosutti, Alessandra; Egginton, Stuart; Barnouin, Yoann; Ganse, Bergita; Rittweger, Jörn; Degens, Hans
2015-11-01
It is thought that the prime determinant of global muscle capillary density is the mean oxidative capacity. However, feedback control during maturational growth or adaptive remodelling of local muscle capillarisation is likely to be more complex than simply matching O2 supply and demand in response to integrated tissue function. We tested the hypothesis that the maximal oxygen consumption (MO2,max) supported by a capillary is relatively constant, and independent of the volume of tissue supplied (capillary domain). We demonstrate that local MO2,max assessed by succinate dehydrogenase histochemistry: (1) varied more than 100-fold between individual capillaries and (2) was positively correlated to capillary domain area in both human vastus lateralis (R=0.750, P<0.001) and soleus (R=0.697, P<0.001) muscles. This suggests that, in contrast to common assumptions, capillarisation is not primarily dictated by local oxidative capacity, but rather by factors such as fibre size, or consequences of differences in fibre size such as substrate delivery and metabolite removal. © 2015. Published by The Company of Biologists Ltd.
Borg, K; Henriksson, J
1991-01-01
Capillary supply and oxidative and glycolytic enzyme activities were determined in muscle biopsies from the tibialis anterior muscle in six prior polio patients and a control group. The polio patients, who had paresis and atrophy, but were able to walk normally by making maximal use of all remaining anterior tibial motor units, showed type I (slow-twitch) muscle fibre predominance with a mean (SD) of 98 (2%) type I fibres versus 81 (8)% in the controls (p less than 0.01) and muscle fibre hypertrophy, the average type I fibre cross-sectional area being 108% (p less than 0.005) larger than in the controls. The number of capillaries per muscle fibre was not significantly different from that in the control group, but with the increased muscle fibre area in the polio patients, the capillary density was significantly lower. The number of capillaries in contact with type I fibres relative to fibre area was 40% lower in the patients than in the controls (p less than 0.005). The levels of citrate synthase and phosphofructokinase were significantly lower (38% and 33%, respectively, p less than 0.05) in the patients than in the controls, indicating decreased oxidative and glycolytic potentials in the muscle fibres of the polio patients. It is proposed that the abnormal high-frequency activation of all remaining motor units during each step cycle recorded in these patients constitutes a stimulus for type I muscle fibre predominance and hypertrophy but that the overall low muscle usage results in a decreased stimulation of capillary proliferation and mitochondrial enzyme synthesis. The low capillary density and decreased oxidative and glycolytic enzyme potentials might be important factors for the development of muscle weakness, fatigue and muscle pain, which are commonly occurring symptoms in patients with prior poliomyelitis. PMID:2030351
Nailfold capillaroscopy by digital microscope in an Indian population with systemic sclerosis.
Bhakuni, Darshan S; Vasdev, Vivek; Garg, M K; Narayanan, Krishanan; Jain, Rahul; Mullick, Gautam
2012-02-01
Nailfold capillaroscopy (NFC) is a simple, non-invasive method with exceptional predictive value for the analysis of microvascular abnormalities, especially in systemic sclerosis (SSc) but remains underutilized due to cost factors of the nailfold videocapillaroscope, lack of expertise and availability issues. The aim of this study was to establish the utility of an inexpensive digital microscope to study NFC changes in SSc in correlation with disease subsets and extent of skin involvement. Twenty-two diffuse cutaneous SSc (DSS), 20 limited cutaneous SSc (LSS) patients and 42 controls were evaluated with NFC using a digital microscope at 30× and 100× magnification. Digital micrographs were used to study qualitative and quantitative changes in microvasculature. The capillary density was significantly less in all cases of SSc as compared to controls (5.3 ± 1.4 vs. 8.7 ± 1.2; P < 0.00001). Disorganized architecture was much more prevalent in DSS versus LSS (86.4%vs. 25%). The vascular deletion score (VDS) was significantly higher in DSS as compared to LSS (P < 0.0001). Scleroderma pattern (SP) was seen in 18 (81.9%) and 15 (75%) of patients with DSS and LSS, respectively. Only 4% of normal subjects showed non-specific pattern and none showed SP. The mean modified Rodnan skin score (MRSS) was positively correlated with vascular deletion score (r = 0.572; P < 0.001) and negatively with capillary density (r = -0.8; P < 0.001). Nailfold capillaroscopy changes in SSc are related to disease subset and MRSS. NFC with digital microscope is a simplified, inexpensive, outpatient procedure with results comparable to previous studies. © 2011 The Authors. International Journal of Rheumatic Diseases © 2011 Asia Pacific League of Associations for Rheumatology and Blackwell Publishing Asia Pty Ltd.
Ruggiero, Anthony J.
2005-05-03
An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.
Capillary transit time heterogeneity and flow-metabolism coupling after traumatic brain injury
Østergaard, Leif; Engedal, Thorbjørn S; Aamand, Rasmus; Mikkelsen, Ronni; Iversen, Nina K; Anzabi, Maryam; Næss-Schmidt, Erhard T; Drasbek, Kim R; Bay, Vibeke; Blicher, Jakob U; Tietze, Anna; Mikkelsen, Irene K; Hansen, Brian; Jespersen, Sune N; Juul, Niels; Sørensen, Jens CH; Rasmussen, Mads
2014-01-01
Most patients who die after traumatic brain injury (TBI) show evidence of ischemic brain damage. Nevertheless, it has proven difficult to demonstrate cerebral ischemia in TBI patients. After TBI, both global and localized changes in cerebral blood flow (CBF) are observed, depending on the extent of diffuse brain swelling and the size and location of contusions and hematoma. These changes vary considerably over time, with most TBI patients showing reduced CBF during the first 12 hours after injury, then hyperperfusion, and in some patients vasospasms before CBF eventually normalizes. This apparent neurovascular uncoupling has been ascribed to mitochondrial dysfunction, hindered oxygen diffusion into tissue, or microthrombosis. Capillary compression by astrocytic endfeet swelling is observed in biopsies acquired from TBI patients. In animal models, elevated intracranial pressure compresses capillaries, causing redistribution of capillary flows into patterns argued to cause functional shunting of oxygenated blood through the capillary bed. We used a biophysical model of oxygen transport in tissue to examine how capillary flow disturbances may contribute to the profound changes in CBF after TBI. The analysis suggests that elevated capillary transit time heterogeneity can cause critical reductions in oxygen availability in the absence of ‘classic' ischemia. We discuss diagnostic and therapeutic consequences of these predictions. PMID:25052556
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higashiguchi, Takeshi; Yugami, Noboru; CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kanagawa, Saitama 332-0012
2010-04-15
We demonstrated the production of an optical waveguide in a capillary discharge-produced plasma using a cylindrical capillary. Plasma parameters of its waveguide were characterized by use of both a Nomarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 400 A. An ultrashort, intense laser pulse was guided by use of this plasma channel.
Growth of arterioles in chronically stimulated adult rat skeletal muscle.
Hansen-Smith, F; Egginton, S; Hudlicka, O
1998-01-01
The purpose of this study was to test the hypothesis that capillary growth induced by chronic electrical stimulation of skeletal muscle is accompanied by the growth of small arterioles. Lower limb flexor muscles of Sprague-Dawley rats were stimulated by electrodes implanted in the vicinity of the peroneal nerve at 10 Hz for 8 h/d for 2 and 7 days. Cryostat sections from the proximal, middle, and distal regions of the extensor digitorum longus muscle (EDL) were fluorescently immunolabeled with alpha-smooth muscle actin (alpha SMA) and myosin heavy chain (MHC) to identify mature (alpha SMA and MHC-positive) and immature (alpha SMA-positive, MHC-negative) arterioles. The fluorescent derivative of the lectin Griffonia simplicifolia I (GSI) was used to identify all microvessels, including arterioles, capillaries, and venules. The number of vessels positive for GSI or alpha SMA surrounding muscle fibers was similar in all three muscle regions (proximal, middle, distal). The mean values +/- SEM for GSI-positive vessels from all regions were similar in control (4.3 +/- 0.07) and 2-day stimulated (4.7 +/- 0.08) but higher in 7-day stimulated muscles (6.7 +/- 0.1, p < 0.05), thus confirming the previous findings on capillary growth. A similar increase was found in the number of alpha SMA positive vessels < or = 10 microns outer diameter (1.3 +/- 0.09 versus 0.4 +/- 0.03 around muscle fibers in controls). The density of terminal arterioles (< or = 10 microns) was slightly but not significantly higher after 2 days of stimulation (19.5 +/- 4 versus 15.6 +/- 2 profiles/mm2 in control muscles) and significantly higher after 7 days (33 +/- 7). While a similar increase was observed in the density of preterminal arterioles > 10 microns (17 +/- 3 control, 22 +/- 3 at 2 days and 40 +/- 5 at 7 days), the density of MHC-positive vessels muscles stimulated for 7 days was unchanged. Seven-day stimulated muscle also had a fivefold higher density of microvessel profiles < or = 10 microns that were only partially surrounded by alpha SMA. This considerably exceeds the relative increase in the number of capillaries and thus supports the concept of arteriolar growth by transformation from capillaries. Chronic electrical stimulation results in an early increase in the number of immature (MHG-negative), but not mature (MHC-positive) arterioles, a process that accompanies the increase in capillarization. The great increase in the number of microvessels only partially covered by alpha SMA suggests arteriolization of capillaries as a contributing mechanism in this growth.
[The diagnostic significance of nailfold video-capillaroscopy in systemic sclerosis].
Li, Lin-Guang; Zhang, Jiang-Lin; Liu, Xiu-Hua; Huang, Feng
2012-05-01
To observe nailfold capillary changes in a cohort of connective tissue disease (CTD) with Raynaud's phenomenon (RP) and to explore the diagnostic value of nailfold video-capillaroscopy (NVC) in systemic sclerosis (SSc). Sixty CTD patients with RP divided into SSc group (n = 36) and non-SSc group (n = 24) were referred to an experienced operator for NVC. The patients had decreased capillary loops in SSc group with the capillary diameter more enlarged in SSc group than non-SSc group. The number of patients in SSc group with giant capillaries was 14, while 3 in non-SSc group. There were 23 patients with haemorrhages in SSc group and 9 in non-SSc group. The number of patients with severe effusion was 15 in SSc group, while 2 in non-SSc group. By using the ROC curves, indexes with AUC at least 0.7 of the input capillary diameter, the output capillary diameter, the middle capillary diameter, blood color and effusion for the diagnostic cutoff points were 18.5 µm, 24.5 µm, 19.5µm, deep red and severe effusion. With at least 2 out of the top 3 indexes, the diagnostic sensitivity and specificity of SSc were higher. CTD Patients with RP of SSc have less capillary loops, more enlarged capillaries, more giant capillaries, more severe effusion and more haemorrhages than non-SSc patients. The characteristics of nailfold capillary changes in SSc patients with RP can be helpful for the diagnosis and the differential diagnosis of SSc.
Mase, Tomoko; Ishibazawa, Akihiro; Nagaoka, Taiji; Yokota, Harumasa; Yoshida, Akitoshi
2016-07-01
We quantitatively analyzed the features of a radial peripapillary capillary (RPC) network visualized using wide-field montage optical coherence tomography (OCT) angiography in healthy human eyes. Twenty eyes of 20 healthy subjects were recruited. En face 3 × 3-mm OCT angiograms of multiple locations in the posterior pole were acquired using the RTVue XR Avanti, and wide-field montage images of the RPC were created. To evaluate the RPC density, the montage images were binarized and skeletonized. The correlation between the RPC density and the retinal nerve fiber layer (RNFL) thickness measured by an OCT circle scan was investigated. The RPC at the temporal retina was detected as far as 7.6 ± 0.7 mm from the edge of the optic disc but not around the perifoveal area within 0.9 ± 0.1 mm of the fovea. Capillary-free zones beside the first branches of the arterioles were significantly (P < 0.0001) narrower than those beside the second ones. The RPC densities at 0.5, 2.5, and 5 mm from the optic disc edge were 13.6 ± 0.8, 11.9 ± 0.9, and 10.4 ± 0.9 mm-1. The RPC density also was correlated significantly (r = 0.64, P < 0.0001) with the RNFL thickness, with the greatest density in the inferotemporal region. Montage OCT angiograms can visualize expansion of the RPC network. The RPC is present in the superficial peripapillary retina in proportion to the RNFL thickness, supporting the idea that the RPC may be the vascular network primarily responsible for RNFL nourishment.
Effect of hypothermic pulmonary artery flushing on capillary filtration coefficient.
Andrade, R S; Wangensteen, O D; Jo, J K; Tsai, M Y; Bolman, R M
2000-07-27
We previously demonstrated that surfactant dilution and inhibition occur immediately after pulmonary artery flushing with hypothermic modified Euro-Collins solution. Consequently, we speculated that increased capillary permeability contributed to these surfactant changes. To test this hypothesis, we evaluated the effects of hypothermic pulmonary artery flushing on the pulmonary capillary filtration coefficient (Kfc), and additionally performed a biochemical analysis of surfactant. We used a murine isolated, perfused lung model to measure the pulmonary capillary filtration coefficient and hemodynamic parameters, to determine the wet to dry weight ratio, and to evaluate surfactant by biochemical analysis of lung lavage fluid. We defined three study groups. In group I (controls), we harvested lungs without hypothermic pulmonary artery flushing, and measured Kfc immediately. In group II (in situ flush), we harvested lungs after hypothermic pulmonary artery flushing with modified Euro-Collins solution, and then measured Kfc. Experiments in groups I and II were designed to evaluate persistent changes in Kfc after pulmonary artery flushing. In group III (ex vivo flush), we flushed lungs ex vivo to evaluate transient changes in Kfc during hypothermic pulmonary artery flushing. Groups I and II did not differ significantly in capillary filtration coefficient and hemodynamics. Group II showed significant alterations on biochemical surfactant analysis and a significant increase in wet-to-dry weight ratio, when compared with group I. In group III, we observed a significant transient increase in capillary filtration coefficient during pulmonary artery flushing. Hypothermic pulmonary artery flushing transiently increases the capillary filtration coefficient, leads to an increase in the wet to dry weight ratio, and induces biochemical surfactant changes. These findings could be explained by the effects of hypothermic modified Euro-Collins solution on pulmonary capillary permeability.
Influence of the capillary on the ignition of the transient spark discharge
NASA Astrophysics Data System (ADS)
Gerling, T.; Hoder, T.; Brandenburg, R.; Bussiahn, R.; Weltmann, K.-D.
2013-04-01
A self-pulsing negative dc discharge in argon generated in a needle-to-plane geometry at open atmosphere is investigated. Additionally, the needle electrode can be surrounded by a quartz capillary. It is shown that the relative position of the capillary end to the needle tip strongly influences the discharge inception and its spatio-temporal dynamics. Without the capillary for the selected working parameters a streamer corona is ignited, but when the capillary surrounds the needle, the transient spark (TS) discharge is ignited after a pre-streamer (PS) occurs. The time between PS and TS discharge depends on the relative capillary end position. The existence of the PS is confirmed by electro-optical characterization. Furthermore, spectrally and spatio-temporally resolved cross-correlation spectroscopy is applied to show the most active region of pre-phase emission activity as indicators for high local electric field strength. The results indicate that with a capillary in place, the necessary energy input of the pre-phase into the system is mainly reduced by additional electrical fields at the capillary edge. Even such a small change as a shift of dielectric surface close to the plasma largely changes the energy balance in the system.
Antonios, Tarek F T; Nama, Vivek; Wang, Duolao; Manyonda, Isaac T
2013-09-01
Preeclampsia is a major cause of maternal and neonatal mortality and morbidity. The incidence of preeclampsia seems to be rising because of increased prevalence of predisposing disorders, such as essential hypertension, diabetes, and obesity, and there is increasing evidence to suggest widespread microcirculatory abnormalities before the onset of preeclampsia. We hypothesized that quantifying capillary rarefaction could be helpful in the clinical prediction of preeclampsia. We measured skin capillary density according to a well-validated protocol at 5 consecutive predetermined visits in 322 consecutive white women, of whom 16 subjects developed preeclampsia. We found that structural capillary rarefaction at 20-24 weeks of gestation yielded a sensitivity of 0.87 with a specificity of 0.50 at the cutoff of 2 capillaries/field with the area under the curve of the receiver operating characteristic value of 0.70, whereas capillary rarefaction at 27-32 weeks of gestation yielded a sensitivity of 0.75 and a higher specificity of 0.77 at the cutoff of 8 capillaries/field with area under the curve of the receiver operating characteristic value of 0.82. Combining capillary rarefaction with uterine artery Doppler pulsatility index increased the sensitivity and specificity of the prediction. Multivariable analysis shows that the odds of preeclampsia are increased in women with previous history of preeclampsia or chronic hypertension and in those with increased uterine artery Doppler pulsatility index, but the most powerful and independent predictor of preeclampsia was capillary rarefaction at 27-32 weeks. Quantifying structural rarefaction of skin capillaries in pregnancy is a potentially useful clinical marker for the prediction of preeclampsia.
Nerve injury affects the capillary supply in rat slow and fast muscles differently.
Cebasek, Vita; Radochová, Barbora; Ribaric, Samo; Kubínová, Lucie; Erzen, Ida
2006-02-01
The goal of this study was to determine the acute effects of permanent denervation on the length density of the capillary network in rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles and the effect of short-lasting reinnervation in slow muscle only. Denervation was performed by cutting the sciatic nerve. Both muscles were excised 2 weeks later. Reinnervation was studied 4 weeks after nerve crush in SOL muscle only. Capillaries and muscle fibres were visualised by triple immunofluorescent staining with antibodies against CD31 and laminin and with fluorescein-labelled Griffonia (Bandeira) simplicifolia lectin. A recently developed stereological approach allowing the estimation of the length of capillaries adjacent to each individual fibre (Lcap/Lfib) was employed. Three-dimensional virtual test grids were applied to stacks of optical images captured with a confocal microscope and their intersections with capillaries and muscle fibres were counted. Interrelationships among capillaries and muscle fibres were demonstrated with maximum intensity projection of the acquired stacks of optical images. The course of capillaries in EDL seemed to be parallel to the fibre axes, whereas in SOL, their preferential direction deviated from the fibre axes and formed more cross-connections among neighbouring capillaries. Lcap/Lfib was clearly reduced in denervated SOL but remained unchanged in EDL, although the muscle fibres significantly atrophied in both muscle types. When soleus muscle was reinnervated, capillary length per unit fibre length was completely restored. The physiological background for the different responses of the capillary network in slow and fast muscle is discussed.
NASA Astrophysics Data System (ADS)
Hsiao, B. S.; Shaw, M. T.; Samulski, E. T.
1987-06-01
A high-pressure apparatus in the form of a modified Instron capillary rheometer capable of measuring differential thermal analysis (DTA) data and pressure-volume-temperature (P-V-T) relations was constructed in our laboratory. Temperatures from 20 to 370 °C and pressures from 1 to 6000 bar are achievable with a data-acquisition and control system based on an APPLE II+ microcomputer. Measurements of pressure to an accuracy of 1%, temperature of 0.5%, and volume change of 0.1% have been obtained. Software was developed to operate the experiments at fixed heating or cooling rates as well as at a constant pressure or with isothermal pressure sweeps. Polymer samples were compressed into rods preceding the experiment by a vacuum molder to eliminate voids. Low-density polyethylene (LDPE) was run as an example to demonstrate the performance of this pressure apparatus. The results revealed an excellent match between our experimental data and the published data.
A three-compartment model of osmotic water exchange in the lung microvasculature.
Seale, K T; Harris, T R
2000-08-01
A bolus injection of hypertonic NaCl into the pulmonary arterial circulation of an isolated perfused dog lung causes the osmotic movement of water first into, and then out of the capillary. The associated changes in blood constituent concentrations and density are referred to as the osmotic transient (OT). Measurement of the sound conduction velocity of effluent blood during an OT is a highly sensitive way to monitor water movement between the vascular and extravascular spaces. It was our objective to develop a mathematical model that adequately describes this transient change in the sound conduction velocity and evaluate its application under conditions of homogeneous and heterogeneous capillary flow distributions. The model accounts for osmotic water exchange between the capillary and two parallel extravascular compartments, and includes as parameters the osmotic conductances (sigmaK1 ,sigmaK2) of the two compartments. The osmotic conductance parameters incorporate the filtration coefficient for water and reflection coefficient for salt for the two pathways of water exchange. The partition of total extravascular lung water (EVLW) between the two extravascular compartments is a third parameter of the model. The homogeneous model parameter estimates (per gram wet lung weight +/-95% confidence limits) from the best-fit analysis of a typical curve were sigmaK1=2.15 +/-0.07, sigmaK2 = 0.03 + 0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)] and V1 = 23.83+/-0.12 ml, with a coefficient of variation (CV) of 0.08. The heterogeneous parameter estimates for a capillary transit time distribution with mean transit time (MTTc) = 1.72 s, and relative dispersion (RDc) = 0.35 were KI = 2.38+/-0.05, or K2 = 0.03+/-0.00 [ml h(-1) (mosmol/liter)(-1) g(-1)], V1 = 23.91+/-0.08 ml, and CV=0.05. EVLW was 42.1 ml for both models. We conclude that the three-compartment mathematical model adequately describes a typical OT under both homogeneous and heterogeneous blood flow assumptions.
NASA Astrophysics Data System (ADS)
Kleinwaechter, Tobias; Goldberg, Lars; Palmer, Charlotte; Schaper, Lucas; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2012-10-01
Laser-driven wakefield acceleration within capillary discharge waveguides has been used to generate high-quality electron bunches with GeV-scale energies. However, owing to fluctuations in laser and plasma conditions in combination with a difficult to control self-injection mechanism in the non-linear wakefield regime these bunches are often not reproducible and can feature large energy spreads. Specialized plasma targets with tailored density profiles offer the possibility to overcome these issues by controlling the injection and acceleration processes. This requires precise manipulation of the longitudinal density profile. Therefore our target concept is based on a capillary structure with multiple gas in- and outlets. Potential target designs are simulated using the fluid code OpenFOAM and those meeting the specified criteria are fabricated using femtosecond-laser machining of structures into sapphire plates. Density profiles are measured over a range of inlet pressures utilizing gas-density profilometry via Raman scattering and pressure calibration with longitudinal interferometry. In combination these allow absolute density mapping. Here we report the preliminary results.
Muscle fiber characteristics and performance correlates of male Olympic-style weightlifters.
Fry, Andrew C; Schilling, Brian K; Staron, Robert S; Hagerman, Fredrick C; Hikida, Robert S; Thrush, John T
2003-11-01
Biopsies fro the vastus lateralis muscle of male weightlifters (WL; n=6; X +/- SE, age=27.0 +/- 2.1 years), and non-weight-trained men (CON; n=7; age=27.0 +/- 2.0 years) were compared for fiber types, myosin heavy chain (MHC) and titin content, and fiber type-specific capillary density. Differences (p<0.05) were observed for percent fiber types IIC (WL=0.4 +/- 0.2, CON=2.4 +/- 0.8); IIA (WL=50.5 +/- 3.2, CON=26.9 +/- 3.7); and IIB (WL=1.7 +/- 1.4, CON=21.0 +/- 5.3), as well as percent MHC IIa (WL=65.3 +/- 2.4, CON=52.1 +/- 4.2) and percent MHC IIB (WL=0.9 +/- 0.9; CON=18.2 +/- 6.1). All WL exhibited only the titin-1 isoform. Capillary density (caps.mm(-2)) for all fiber types combined was greater for the CON subjects (WL=192.7 +/- 17.3; CON=262.9 +/- 26.3), due primarily to a greater capillary density in the IIA fibers. Weightlifting performances and vertical jump power were correlated with type II fiber characteristics. These results suggest that successful weightlifting performance is not dependent on IIB fibers, and that weightlifters exhibit large percentages of type IIA muscle fibers and MHC IIa isoform content.
Cell adhesion during bullet motion in capillaries.
Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger D; Ishikawa, Takuji
2016-08-01
A numerical analysis is presented of cell adhesion in capillaries whose diameter is comparable to or smaller than that of the cell. In contrast to a large number of previous efforts on leukocyte and tumor cell rolling, much is still unknown about cell motion in capillaries. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram was obtained for various values of capillary diameter and receptor density. We found that bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between P-selectin glycoprotein ligand-1 (PSGL-1) and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. Copyright © 2016 the American Physiological Society.
Wijnstok, Nienke; Hoekstra, Trynke; Eringa, Etto; Smulders, Yvo; Twisk, Jos; Serne, Erik
2012-04-01
Microvascular function has been proposed to link body fatness to CVD and DM2. Current knowledge of these relationships is mainly based on studies in selected populations of extreme phenotypes. Whether these findings can be translated to the general population remains to be investigated. To assess the relationship of body fatness and body fat distribution with microvascular function in a healthy population-based cohort. Body fatness parameters were obtained by anthropometry and whole-body dual-X-ray absorptiometry (DEXA) in 2000 and 2006. Microvascular recruitment (i.e., absolute increase in perfused capillaries after arterial occlusion, using nailfold capillaroscopy) was measured in 2006. Linear regression analysis was used to examine the relationship of (changes in) body fatness and body fat distribution with microvascular recruitment. RESULTS Data were available for 259 participants (116 men). Capillary density was higher in women than in men (difference 7.3/ mm(2); p < 0.05). In the total population, the relationship between total body fatness and microvascular recruitment was positive (β = 0.43; p = 0.002), whereas a central pattern of fat distribution (trunk-over-total fatness) showed a negative relationship (β = -26.2; p = 0.032) with microvascular recruitment. However, no association remained apparent after adjustment for gender. In addition, there was no relationship between 6-year changes in body fatness or fat distribution and microvascular recruitment. Women show higher capillary recruitment values than men. This study does not support a linear relationship between microvascular function and body fatness or body fat distribution within a population-based normal range. © 2012 John Wiley & Sons Ltd.
Examining cerebral angiogenesis in response to physical exercise.
Berggren, Kiersten L; Kay, Jacob J M; Swain, Rodney A
2014-01-01
Capillary growth and expansion (angiogenesis) is a prerequisite for many forms of neural and behavioral plasticity. It is commonly observed in both brain and muscle of aerobically exercising animals. As such, several histological methods have been used to quantify capillary density, including perfusion with India ink, various Nissl stains, and immunohistochemistry. In this chapter, we will describe these histological procedures and describe the stereological analysis used to quantify vessel growth in response to aerobic exercise.
Structure of Particle Networks in Capillary Suspensions with Wetting and Nonwetting Fluids
2016-01-01
The mechanical properties of a suspension can be dramatically altered by adding a small amount of a secondary fluid that is immiscible with the bulk phase. The substantial changes in the strength of these capillary suspensions arise due to the capillary force inducing a percolating particle network. Spatial information on the structure of the particle networks is obtained using confocal microscopy. It is possible, for the first time, to visualize the different types of percolating structures of capillary suspensions in situ. These capillary networks are unique from other types of particulate networks due to the nature of the capillary attraction. We investigate the influence of the three-phase contact angle on the structure of an oil-based capillary suspension with silica microspheres. Contact angles smaller than 90° lead to pendular networks of particles connected with single capillary bridges or clusters comparable to the funicular state in wet granular matter, whereas a different clustered structure, the capillary state, forms for angles larger than 90°. Particle pair distribution functions are obtained by image analysis, which demonstrate differences in the network microstructures. When porous particles are used, the pendular conformation also appears for apparent contact angles larger than 90°. The complex shear modulus can be correlated to these microstructural changes. When the percolating structure is formed, the complex shear modulus increases by nearly three decades. Pendular bridges lead to stronger networks than the capillary state network conformations, but the capillary state clusters are nevertheless much stronger than pure suspensions without the added liquid. PMID:26807651
Early regimes of water capillary flow in slit silica nanochannels.
Oyarzua, Elton; Walther, Jens H; Mejía, Andrés; Zambrano, Harvey A
2015-06-14
Molecular dynamics simulations are conducted to investigate the initial stages of spontaneous imbibition of water in slit silica nanochannels surrounded by air. An analysis is performed for the effects of nanoscopic confinement, initial conditions of liquid uptake and air pressurization on the dynamics of capillary filling. The results indicate that the nanoscale imbibition process is divided into three main flow regimes: an initial regime where the capillary force is balanced only by the inertial drag and characterized by a constant velocity and a plug flow profile. In this regime, the meniscus formation process plays a central role in the imbibition rate. Thereafter, a transitional regime takes place, in which, the force balance has significant contributions from both inertia and viscous friction. Subsequently, a regime wherein viscous forces dominate the capillary force balance is attained. Flow velocity profiles identify the passage from an inviscid flow to a developing Poiseuille flow. Gas density profiles ahead of the capillary front indicate a transient accumulation of air on the advancing meniscus. Furthermore, slower capillary filling rates computed for higher air pressures reveal a significant retarding effect of the gas displaced by the advancing meniscus.
Design and testing of a high power spacecraft thermal management system
NASA Technical Reports Server (NTRS)
Mccabe, Michael E., Jr.; Ku, Jentung; Benner, Steve
1988-01-01
The design and test results are presented of an ammonia hybrid capillary pumped loop thermal control system which could be used for heat acquisition and transport on future large space platforms and attached payloads, such as those associated with the NASA Space Station. The High Power Spacecraft Thermal Management System (HPSTM) can operate as either a passive, capillary pumped two phase thermal control system, or, when additional pressure head is required, as a mechanically pumped loop. Testing has shown that in the capillary mode, the HPSTM evaporators can acquire a total heat load of between 600 W and 24 kW, transported over 10 meters, at a maximum heat flux density of 4.3 W/sq cm. With the mechanical pump circulating the ammonia, a heat acquisition potential of 52 kW was demonstrated for 15 minutes without an evaporator failure. These results represent a significant improvement over the maximum transport capability previously displayed in other capillary systems. The HPSTM system still retains the proven capillary capabilities of heat load sharing and flow control between evaporator plates, rapid power cycling, and nonuniform heating in both the capillary and hybrid operating modes.
Improvement in Retinal Capillary Rarefaction After Valsartan Treatment in Hypertensive Patients.
Jumar, Agnes; Harazny, Joanna M; Ott, Christian; Kistner, Iris; Friedrich, Stefanie; Schmieder, Roland E
2016-11-01
Decreased capillary density influences vascular resistance and perfusion. The authors aimed to investigate the influence of the renin-angiotensin receptor blocker valsartan on retinal capillary rarefaction in hypertensive patients. Retinal vascular parameters were measured noninvasively and in vivo by scanning laser Doppler flowmetry before and after 4 weeks of treatment with valsartan in 95 patients with hypertension stage 1 or 2 and compared with 55 healthy individuals. Retinal capillary rarefaction was determined with the parameters intercapillary distance (ICD) and capillary area (CapA). In hypertensive patients, ICD decreased (23.4±5.5 μm vs 21.5±5.6 μm, P<.001) and CapA increased (1564±621 vs 1776±795, P=.001) after valsartan treatment compared with baseline. Compared with healthy normotensive controls (ICD 20.2±4.2 μm, CapA 1821±652), untreated hypertensive patients showed greater ICD (P<.001) and smaller CapA (P=.019), whereas treated hypertensive patients showed no difference in ICD (P=.126) and CapA (P=.728). Therapy with valsartan for 4 weeks diminished capillary rarefaction in hypertensive patients. © 2016 Wiley Periodicals, Inc.
Valdivieso, Paola; Toigo, Marco; Hoppeler, Hans; Flück, Martin
2017-01-01
Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise.
Toigo, Marco; Hoppeler, Hans
2017-01-01
Background Mechanical stress, including blood pressure related factors, up-regulate expression of the pro-angiogenic extracellular matrix protein tenascin-C in skeletal muscle. We hypothesized that increased capillarization of skeletal muscle with the repeated augmentation in perfusion during endurance training is associated with blood vessel-related expression of tenascin-C and would be affected by the single-nucleotide polymorphism (SNP) rs2104772, which characterizes the non-synonymous exchange of thymidine (T)-to-adenosine (A) in the amino acid codon 1677 of tenascin-C. Methods Sixty-one healthy, untrained, male white participants of Swiss descent performed thirty 30-min bouts of endurance exercise on consecutive weekdays using a cycling ergometer. Genotype and training interactions were called significant at Bonferroni-corrected p-value of 5% (repeated measures ANOVA). Results Endurance training increased capillary-to-fiber-ratio (+11%), capillary density (+7%), and mitochondrial volume density (+30%) in m. vastus lateralis. Tenascin-C protein expression in this muscle was confined to arterioles and venules (80% of cases) and increased after training in A-allele carriers. Prior to training, volume densities of subsarcolemmal and myofibrillar mitochondria in m. vastus lateralis muscle were 49% and 18%, respectively, higher in A/A homozygotes relative to T-nucleotide carriers (A/T and T/T). Training specifically increased capillary-to-fiber ratio in A-nucleotide carriers but not in T/T homozygotes. Genotype specific regulation of angiogenesis was reflected by the expression response of 8 angiogenesis-associated transcripts after exercise, and confirmed by training-induced alterations of the shear stress related factors, vimentin and VEGF A. Conclusion Our findings provide evidence for a negative influence of T/T homozygosity in rs2104772 on capillary remodeling with endurance exercise. PMID:28384286
Discrete mitochondrial aberrations in the spinal cord of sporadic ALS patients.
Delic, Vedad; Kurien, Crupa; Cruz, Josean; Zivkovic, Sandra; Barretta, Jennifer; Thomson, Avery; Hennessey, Daniel; Joseph, Jaheem; Ehrhart, Jared; Willing, Alison E; Bradshaw, Patrick; Garbuzova-Davis, Svitlana
2018-08-01
Amyotrophic lateral sclerosis (ALS) is an adult onset neurodegenerative disease characterized by progressive motor neuron degeneration in the brain and spinal cord leading to muscle atrophy, paralysis, and death. Mitochondrial dysfunction is a major contributor to motor neuron degeneration associated with ALS progression. Mitochondrial abnormalities have been determined in spinal cords of animal disease models and ALS patients. However, molecular mechanisms leading to mitochondrial dysfunction in sporadic ALS (sALS) patients remain unclear. Also, segmental or regional variation in mitochondrial activity in the spinal cord has not been extensively examined in ALS. In our study, the activity of mitochondrial electron transport chain complex IV was examined in post-mortem gray and white matter of the cervical and lumbar spinal cords from male and female sALS patients and controls. Mitochondrial distribution and density in spinal cord motor neurons, lateral funiculus, and capillaries in gray and white matter were analyzed by immunohistochemistry. Results showed that complex IV activity was significantly decreased only in gray matter in both cervical and lumbar spinal cords from ALS patients. In ALS cervical and lumbar spinal cords, significantly increased mitochondrial density and altered distribution were observed in motor neurons, lateral funiculus, and cervical white matter capillaries. Discrete decreased complex IV activity in addition to changes in mitochondria distribution and density determined in the spinal cord in sALS patients are novel findings. These explicit mitochondrial defects in the spinal cord may contribute to ALS pathogenesis and should be considered in development of therapeutic approaches for this disease. © 2018 Wiley Periodicals, Inc.
Physical exercise restores microvascular function in obese rats with metabolic syndrome.
Machado, Marcus Vinicius; Vieira, Aline Bomfim; Nascimento, Alessandro Rodrigues; Martins, Rômulo Lanza; Daleprane, Julio Beltrame; Lessa, Marcos Adriano; Tibiriçá, Eduardo
2014-11-01
Obesity and metabolic syndrome are related to systemic functional microvascular alterations, including a significant reduction in microvessel density. The aim of this study was to investigate the effects of exercise training on functional capillary density in the skeletal muscle and skin of obese rats with metabolic syndrome. We used male Wistar-Kyoto rats that had been fed a standard commercial diet (CON) or high-fat diet (HFD) for 32 weeks. Animals receiving the HFD were randomly divided into sedentary (HFD+SED) and training groups (HFD+TR) at the 20(th) week. After 12 weeks of aerobic treadmill training, the maximal oxygen uptake (VO2max); hemodynamic, biochemical, and anthropometric parameters; and functional capillary density were assessed. In addition, a maximal exercise test was performed. Exercise training increased the VO2max (69 ± 3 mL/kg per min) and exercise tolerance (30 ± 1 min) compared with the HFD+SED (41 ± 6 mL/kg per min, P < 0.05 and 16 ± 1 min, P < 0.001) and with the CON (52 ± 7 mL/kg per min and 18 ± 1 min, P < 0.05) groups. The HFD+TR group also showed reduced retroperitoneal fat (0.03 ± 0.00 vs. 0.05 ± 0.00 gram/gram, P < 0.001), epididymal fat (0.01 ± 0.00 vs. 0.02 ± 0.00 gram/gram, P < 0.001), and systolic blood pressure (127 ± 2 vs. 150 ± 2 mmHg, P<0.001). The HFD+TR group also demonstrated improved glucose tolerance, as evaluated by an intraperitoneal glucose tolerance test, fasting plasma glucose levels (5.0 ± 0.1 vs. 6.4 ± 0.2 mmol/L, P<0.001) and fasting plasma insulin levels (26.5 ± 2.3 vs. 38.9 ± 3.7 μIU/mL, P < 0.05). Glucose tolerance did not differ between HFD+TR and CON groups. Exercise training also increased the number of spontaneously perfused capillaries in the skeletal muscle (252 ± 9 vs. 207 ± 9 capillaries/mm(2)) of the training group compared with that in the sedentary animals (260 ± 15 capillaries/mm(2)). These results demonstrate that exercise training reverses capillary rarefaction in our experimental model of metabolic syndrome and obesity.
Park, Sei Jin; Schmidt, Aaron J; Bedewy, Mostafa; Hart, A John
2013-07-21
Engineering the density of carbon nanotube (CNT) forest microstructures is vital to applications such as electrical interconnects, micro-contact probes, and thermal interface materials. For CNT forests on centimeter-scale substrates, weight and volume can be used to calculate density. However, this is not suitable for smaller samples, including individual microstructures, and moreover does not enable mapping of spatial density variations within the forest. We demonstrate that the relative mass density of individual CNT microstructures can be measured by optical attenuation, with spatial resolution equaling the size of the focused spot. For this, a custom optical setup was built to measure the transmission of a focused laser beam through CNT microstructures. The transmittance was correlated with the thickness of the CNT microstructures by Beer-Lambert-Bouguer law to calculate the attenuation coefficient. We reveal that the density of CNT microstructures grown by CVD can depend on their size, and that the overall density of arrays of microstructures is affected significantly by run-to-run process variations. Further, we use the technique to quantify the change in CNT microstructure density due to capillary densification. This is a useful and accessible metrology technique for CNTs in future microfabrication processes, and will enable direct correlation of density to important properties such as stiffness and electrical conductivity.
Thomas, Melissa M.; Wang, David C.; D'Souza, Donna M.; Krause, Matthew P.; Layne, Andrew S.; Criswell, David S.; O'Neill, Hayley M.; Connor, Michael K.; Anderson, Judy E.; Kemp, Bruce E.; Steinberg, Gregory R.; Hawke, Thomas J.
2014-01-01
AMP-activated protein kinase (AMPK) is a master regulator of metabolism. While muscle-specific AMPK β1β2 double-knockout (β1β2M-KO) mice display alterations in metabolic and mitochondrial capacity, their severe exercise intolerance suggested a secondary contributor to the observed phenotype. We find that tibialis anterior (TA), but not soleus, muscles of sedentary β1β2M-KO mice display a significant myopathy (decreased myofiber areas, increased split and necrotic myofibers, and increased centrally nucleated myofibers. A mitochondrial- and fiber-type-specific etiology to the myopathy was ruled out. However, β1β2M-KO TA muscles displayed significant (P<0.05) increases in platelet aggregation and apoptosis within myofibers and surrounding interstitium (P<0.05). These changes correlated with a 45% decrease in capillary density (P<0.05). We hypothesized that the β1β2M-KO myopathy in resting muscle resulted from impaired AMPK-nNOSμ signaling, causing increased platelet aggregation, impaired vasodilation, and, ultimately, ischemic injury. Consistent with this hypothesis, AMPK-specific phosphorylation (Ser1446) of nNOSμ was decreased in β1β2M-KO compared to wild-type (WT) mice. The AMPK-nNOSμ relationship was further demonstrated by administration of 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside (AICAR) to β1β2-MKO muscles and C2C12 myotubes. AICAR significantly increased nNOSμ phosphorylation and nitric oxide production (P<0.05) within minutes of administration in WT muscles and C2C12 myotubes but not in β1β2M-KO muscles. These findings highlight the importance of the AMPK-nNOSμ pathway in resting skeletal muscle.—Thomas, M. M., Wang, D. C., D'Souza, D. M., Krause, M. P., Layne, A. S., Criswell, D. S., O'Neill, H. M., Connor, M. K., Anderson, J. E., Kemp, B. E., Steinberg, G. R., and Hawke, T. J. Muscle-specific AMPK β1β2-null mice display a myopathy due to loss of capillary density in nonpostural muscles. PMID:24522207
Kuehlewein, Laura; Tepelus, Tudor C; An, Lin; Durbin, Mary K; Srinivas, Sowmya; Sadda, Srinivas R
2015-06-01
We characterized the foveal avascular zone (FAZ) and the parafoveal capillary network in healthy subjects using swept source OCT optical microangiography (OMAG). We acquired OMAG images of the macula of 19 eyes (13 healthy individuals) using a prototype swept source laser OCT. En face images of the retinal vasculature were generated for superficial and deep inner retinal layers (SRL/DRL) in regions of interest 250 (ROI-250) and 500 (ROI-500) μm from the FAZ border. The mean area (mm2) of the FAZ was 0.304 ± 0.132 for the SRL and 0.486 ± 0.162 for the DRL (P < 0.001). Mean vessel density (%) was 67.3 ± 6.4 for the SRL and 34.5 ± 8.6 for the DRL in the ROI-250 (P < 0.001), and 74.2 ± 3.9 for the SRL and 72.3 ± 4.9 for the DRL in the ROI-500 (P = 0.160). Swept source OMAG images of healthy subjects allowed analysis of the FAZ and the density of the parafoveal capillary network at different retinal layers.
Beigneux, Anne P.; Davies, Brandon S. J.; Gin, Peter; Weinstein, Michael M.; Farber, Emily; Qiao, Xin; Peale, Franklin; Bunting, Stuart; Walzem, Rosemary L.; Wong, Jinny S.; Blaner, William S.; Ding, Zhi-Ming; Melford, Kristan; Wongsiriroj, Nuttaporn; Shu, Xiao; de Sauvage, Fred; Ryan, Robert O.; Fong, Loren G.; Bensadoun, André; Young, Stephen G.
2007-01-01
Summary The triglycerides in chylomicrons are hydrolyzed by lipoprotein lipase (LpL) along the luminal surface of the capillaries. However, the endothelial cell molecule that facilitates chylomicron processing by LpL has not yet been defined. Here, we show that glycosylphosphatidylinositol-anchored high density lipoprotein–binding protein 1 (GPIHBP1) plays a critical role in the lipolytic processing of chylomicrons. Gpihbp1-deficient mice exhibit a striking accumulation of chylomicrons in the plasma, even on a low-fat diet, resulting in milky plasma and plasma triglyceride levels as high as 5,000 mg/dl. Normally, Gpihbp1 is expressed highly in heart and adipose tissue, the same tissues that express high levels of LpL. In these tissues, GPIHBP1 is located on the luminal face of the capillary endothelium. Expression of GPIHBP1 in cultured cells confers the ability to bind both LpL and chylomicrons. These studies strongly suggest that GPIHBP1 is an important platform for the LpL-mediated processing of chylomicrons in capillaries. PMID:17403372
Effect of Capillary Tube’s Shape on Capillary Rising Regime for Viscos Fluids
NASA Astrophysics Data System (ADS)
Soroush, F.; Moosavi, A.
2018-05-01
When properties of the displacing fluid are considered, the rising profile of the penetrating fluid in a capillary tube deviates from its classical Lucas-Washburn profile. Also, shape of capillary tube can affect the rising profile in different aspects. In this article, effect of capillary tube’s shape on the vertical capillary motion in presence of gravity is investigated by considering the properties of the displacing fluid. According to the fact that the differential equation of the capillary rising for a non-simple wall type is very difficult to solve analytically, a finite element simulation model is used for this study. After validation of the simulation model with an experiment that has been done with a simple capillary tube, shape of the capillary tube’s wall is changed in order to understand its effects on the capillary rising and different motion regimes that may appear according to different geometries. The main focus of this article is on the sinusoidal wall shapes and comparing them with a simple wall.
Multiscale modeling of fluid transport in tumors.
Chapman, S Jonathan; Shipley, Rebecca J; Jawad, Rossa
2008-11-01
A model for fluid flow through the leaky neovasculature and porous interstitium of a solid tumor is developed. A network of isolated capillaries is analyzed in the limit of small capillary radius, and analytical expressions for the hydraulic conductivities and fractional leakage coefficients derived. This model is then homogenized to give a continuum description in terms of the vascular density. The resulting equations comprise a double porous medium with coupled Darcy flow through the interstitium and vasculature.
NASA Astrophysics Data System (ADS)
Kantsyrev, V. L.; Kopytok, K. I.; Shlyaptseva, A. S.
1994-03-01
The results are presented dealing with the working out and study of the plasma source of soft X-ray (SXR) of the new type. Experimental set up included compact low-inductance vacuum spark (LIVS) with initial energy supply equal up to 2.5 kJ and glass-capillary concentrator (GCC) of SXR. The characteristics of SXR of vacuum spark and properties of SXR were studied using diagnostic complex. The coefficient of conversion of initial energy supply into SXR (η) amounted to 0.01 in range 1.2nm. Value η had peak dependence on atomic number of anode Za. The spectra were recorded belonging to Ne-like, F-like ions of Fe, Cu ions and He-like, H-like ions of Al, Ti, Fe. Glass capillary concentrator consists of about several hundreds glass capillaries Flux density of SXR in focusing spot was up to 105-106 Wt/cm, density of energy is up to 20-30 mJ/cm2 at diameter of SXR focusing spot equal to about 2-3mm in the range 0.7-1.0 nm. The plasma source of the new type is intended for X-ray microscopy, study of influence of SXR on the surface of solid state. It allows to carry out experiments making only on electron synchrotronic sources of SXR.
Duebener, Lennart F; Hagino, Ikuo; Schmitt, Katharina; Sakamoto, Takahiko; Stamm, Christof; Zurakowski, David; Schäfers, Hans-Joachim; Jonas, Richard A
2003-04-01
Retrograde cerebral perfusion (RCP) is used in some centers during aortic arch surgery for brain protection during hypothermic circulatory arrest. It is still unclear however whether RCP provides adequate microcirculatory blood flow at a capillary level. We used intravital microscopy to directly visualize the cerebral capillary blood flow in a piglet model of RCP. Twelve pigs (weight 9.7 +/- 0.9 kg) were divided into two groups (n = 6 each): deep hypothermic circulatory arrest (DHCA) and RCP. After the creation of a window over the parietal cerebral cortex, pigs underwent 10 minutes of normothermic bypass and 40 minutes of cooling to 15 degrees C on cardiopulmonary bypass ([CPB] pH-stat, hemocrit 30%, pump flow 100 mL x kg(-1) x min(-1)). This was followed by 45 minutes of DHCA and rewarming on CPB to 37 degrees C. In the RCP group the brain was retrogradely perfused (pump flow 30 mL x kg(-1) x min(-1)) during DHCA through the superior vena cava after inferior vena cava occlusion. Plasma was labeled with fluorescein-isothiocyanate-dextran for assessing microvascular diameter and functional capillary density (FCD), defined as total length of erythrocyte-perfused capillaries per observation area. Cerebral tissue oxygenation was determined by nicotinamide adenine dinucleotide hydrogen (NADH) autofluorescence, which increases during tissue ischemia. During normothermic and hypothermic antegrade cerebral perfusion the FCD did not significantly change from base line (97% +/- 14% and 96% +/- 12%, respectively). During retrograde cerebral perfusion the FCD decreased highly significantly to 2% +/- 2% of base line values (p < 0.001). Thus there was no evidence of significant capillary blood flow during retrograde cerebral perfusion. The microvascular diameter of cerebral arterioles that were slowly perfused significantly decreased to 27% +/- 6% of base line levels during RCP. NADH fluorescence progressively and significantly increased during RCP, indicating poorer tissue oxygenation. At the end of retrograde cerebral perfusion there was macroscopic evidence of significant brain edema. RCP does not provide adequate cerebral capillary blood flow and does not prevent cerebral ischemia. Prolonged RCP induces brain edema. However, there might be a role for a short period of RCP to remove air and debris from the cerebral circulation after DHCA because retrograde flow could be detected in cerebral arterioles.
Repeatability of intravital capillaroscopic measurement of capillary density.
Lamah, M; Chaudhry, H; Mortimer, P S; Dormandy, J A
1996-01-01
The reliability of intravital capillaroscopy for determining capillary density (CD) of skin has been questioned because it depends upon the variability of the measuring process and subjective interpretation of data as well as the intrinsic heterogeneity of capillary spacing. The aim of this study was to assess the repeatability of a standardised method for measuring CD of the skin of the dorsum of foot. In each of 30 subjects (10 controls and 20 patients with peripheral vascular disease), the foot was systematically mapped by examining 20 sites on the dorsum of foot and 2 sites on each toe, using white light (native) videomicroscopy at 40 x magnification. Off-line analysis of videoprints was then undertaken to determine CD at each site, by counting capillaries within areas of acceptable photographic quality only, having first defined the criteria for counting capillaries. The mean values were then calculated and taken to represent the CD of the foot or toes. Repeatability of the measuring equipment was first assessed by noting the presence or absence of each corresponding capillary in 2 prints, taken at intervals of hours or days (in 10 subjects) or months (in 2 patients), of an identical area of skin which was marked by a microtattoo on the first occasion. On average, 95% of corresponding capillaries were identified in both prints (from controls and patients), thus implying little intrinsic temporal variation of capillary anatomy as well as excellent repeatability of the measuring equipment. Repeatability of data analysis was assessed by the same observer reading the same 20 prints in a blinded manner on three separate occasions (intraobserver repeatability), and 2 observers reading the same 24 prints (interobserver repeatability). The mean coefficient of intraobserver variation of CD estimate was 5.6% and the interobserver correlation coefficient was 0.94. Finally, overall repeatability of the method was assessed by repeating the procedure on a subsequent occasion (mean time interval of 5 days) in 10 subjects. The rate of agreement in mean CD between the two procedures [defined as 100- (difference between the two measurements/mean of the two measurements) x 100]% ranged from 86.4 to 97.1% (mean 93.5%). Thus using the above methodological technique, native capillaroscopy can be reliably used to determine CD of the dorsum of foot in comparing patient subgroups, as well as in longitudinal studies.
String Vessel Formation is Increased in the Brain of Parkinson Disease.
Yang, Panzao; Pavlovic, Darja; Waldvogel, Henry; Dragunow, Mike; Synek, Beth; Turner, Clinton; Faull, Richard; Guan, Jian
2015-01-01
String vessels are collapsed basement membrane without endothelium and have no function in circulation. String vessel formation contributes to vascular degeneration in Alzheimer disease. By comparing to age-matched control cases we have recently reported endothelial degeneration in brain capillaries of human Parkinson disease (PD). Current study evaluated changes of basement membrane of capillaries, string vessel formation and their association with astrocytes, blood-brain-barrier integrity and neuronal degeneration in PD. Brain tissue from human cases of PD and age-matched controls was used. Immunohistochemical staining for collagen IV, GFAP, NeuN, tyrosine hydroxylase, fibrinogen and Factor VIII was evaluated by image analysis in the substantia nigra, caudate nucleus and middle frontal gyrus. While the basement-membrane-associated vessel density was similar between the two groups, the density of string vessels was significantly increased in the PD cases, particularly in the substantia nigra. Neuronal degeneration was found in all brain regions. Astrocytes and fibrinogen were increased in the caudate nuclei of PD cases compared with control cases. Endothelial degeneration and preservation of basement membrane result in an increase of string vessel formation in PD. The data may suggest a possible role for cerebral hypoperfusion in the neuronal degeneration characteristic of PD, which needs further investigation. Elevated astrocytosis in the caudate nucleus of PD cases could be associated with disruption of the blood-brain barrier in this brain region.
Numerical analysis of cell adhesion in capillary flow
NASA Astrophysics Data System (ADS)
Takeishi, Naoki; Imai, Yohsuke; Ishida, Shunichi; Omori, Toshihiro; Kamm, Roger; Ishikawa, Takuji
2016-11-01
Numerical simulation of cell adhesion was performed for capillaries whose diameter is comparable to or smaller than that of the cell. Despite a lot of works about leukocyte and tumor cell rolling, cell motion in capillaries has remained unclear. The solid and fluid mechanics of a cell in flow was coupled with a slip bond model of ligand-receptor interactions. When the size of a capillary was reduced, the cell always transitioned to "bullet-like" motion, with a consequent decrease in the velocity of the cell. A state diagram is obtained for various values of capillary diameter and receptor density. According to our numerical results, bullet motion enables firm adhesion of a cell to the capillary wall even for a weak ligand-receptor binding. We also quantified effects of various parameters, including the dissociation rate constant, the spring constant, and the reactive compliance on the characteristics of cell motion. Our results suggest that even under the interaction between PSGL-1 and P-selectin, which is mainly responsible for leukocyte rolling, a cell is able to show firm adhesion in a small capillary. These findings may help in understanding such phenomena as leukocyte plugging and cancer metastasis. This research was supported by JSPS KAKENHI Grant Numbers 25000008, 26107703, 14J03967. We also acknowledge support from the Tohoku University Division for International Advanced Research and Education Organization.
Strawberry mark; Vascular skin changes; Angioma cavernosum; Capillary hemangioma; Hemangioma simplex ... at the site. Different types of hemangiomas include: Strawberry hemangiomas (strawberry mark, nevus vascularis, capillary hemangioma, hemangioma ...
Ghonaim, Nour W.; Fraser, Graham M.; Ellis, Christopher G.; Yang, Jun; Goldman, Daniel
2013-01-01
Adenosine triphosphate (ATP) is known to be released from the erythrocyte in an oxygen (O2) dependent manner. Since ATP is a potent vasodilator, it is proposed to be a key regulator in the pathway that mediates micro-vascular response to varying tissue O2 demand. We propose that ATP signaling mainly originates in the capillaries due to the relatively long erythrocyte transit times in the capillary and the short ATP diffusion distance to the electrically coupled endothelium. We have developed a computational model to investigate the effect of delivering or removing O2 to limited areas at the surface of a tissue with an idealized parallel capillary array on total ATP concentration. Simulations were conducted when exposing full surface to perturbations in tissue O2 tension (PO2) or locally using a circular micro-outlet (~100 μm in diameter), a square micro-slit (200 × 200 μm), or a rectangular micro-slit (1000 μm wide × 200 μm long). Results indicated the rectangular micro-slit has the optimal dimensions for altering hemoglobin saturations (SO2) in sufficient number capillaries to generate effective changes in total [ATP]. This suggests a threshold for the minimum number of capillaries that need to be stimulated in vivo by imposed tissue hypoxia to induce a conducted micro-vascular response. SO2 and corresponding [ATP] changes were also modeled in a terminal arteriole (9 μm in diameter) that replaces 4 surface capillaries in the idealized network geometry. Based on the results, the contribution of terminal arterioles to the net change in [ATP] in the micro-vascular network is minimal although they would participate as O2 sources thus influencing the O2 distribution. The modeling data presented here provide important insights into designing a novel micro-delivery device for studying micro-vascular O2 regulation in the capillaries in vivo. PMID:24069001
Bianchi, Enrica; Ripandelli, Guido; Taurone, Samanta; Feher, Janos; Plateroti, Rocco; Kovacs, Illes; Magliulo, Giuseppe; Orlando, Maria Patrizia; Micera, Alessandra; Battaglione, Ezio; Artico, Marco
2016-03-01
Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina.Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry.Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes.These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes. © The Author(s) 2015.
Bianchi, Enrica; Ripandelli, Guido; Taurone, Samanta; Feher, Janos; Plateroti, Rocco; Kovacs, Illes; Magliulo, Giuseppe; Orlando, Maria Patrizia; Micera, Alessandra; Battaglione, Ezio; Artico, Marco
2015-01-01
Normal human aging and diabetes are associated with a gradual decrease of cerebral flow in the brain with changes in vascular architecture. Thickening of the capillary basement membrane and microvascular fibrosis are evident in the central nervous system of elderly and diabetic patients. Current findings assign a primary role to endothelial dysfunction as a cause of basement membrane (BM) thickening, while retinal alterations are considered to be a secondary cause of either ischemia or exudation. The aim of this study was to reveal any initial retinal alterations and variations in the BM of retinal capillaries during diabetes and aging as compared to healthy controls. Moreover, we investigated the potential role of vascular endothelial growth factor (VEGF) and pro-inflammatory cytokines in diabetic retina. Transmission electron microscopy (TEM) was performed on 46 enucleated human eyes with particular attention to alterations of the retinal capillary wall and Müller glial cells. Inflammatory cytokines expression in the retina was investigated by immunohistochemistry. Our electron microscopy findings demonstrated that thickening of the BM begins primarily at the level of the glial side of the retina during aging and diabetes. The Müller cells showed numerous cytoplasmic endosomes and highly electron-dense lysosomes which surrounded the retinal capillaries. Our study is the first to present morphological evidence that Müller cells start to deposit excessive BM material in retinal capillaries during aging and diabetes. Our results confirm the induction of pro-inflammatory cytokines TNF-α and IL-1β within the retina as a result of diabetes. These observations strongly suggest that inflammatory cytokines and changes in the metabolism of Müller glial cells rather than changes in of endothelial cells may play a primary role in the alteration of retinal capillaries BM during aging and diabetes. PMID:26604209
Raleigh, James P; Giles, Matthew D; Islam, Hashim; Nelms, Matthew William; Bentley, Robert F; Jones, Joshua H; Neder, J Alberto; Boonstra, Kristen; Quadrilatero, Joe; Simpson, Craig A; Tschakovsky, Michael E; Gurd, Brendon J
2018-05-07
The current study examined the contribution of central and peripheral adaptations to changes in maximal oxygen uptake (VO2max) following sprint interval training (SIT). Twenty-three males completed four weekly SIT sessions (8 x 20 second cycling bouts at ~170% of work rate at VO2max, 10 second recovery) for four weeks. Following completion of training, the relationship between changes in VO2max and changes in central (cardiac output) and peripheral (a-vO2diff, muscle capillary density, oxidative capacity, fibre-type distribution) adaptations was determined in all participants using correlation analysis. Participants were then divided in to tertiles based on the magnitude of their individual VO2max responses and differences in central/peripheral adaptations were examined in the top (HI; ~10 mL/kg/min increase in VO2max, p<0.05) and bottom (LO; no change in VO2max, p>0.05) tertiles (n=8 each). Training had no impact on Qmax and no differences were observed between the LO and HI groups (p>0.05). A-vO2diff increased in the HI group only (p<0.05) and correlated significantly (r=0.71, p<0.01) with changes in VO2max across all participants. Muscle capillary density (p<0.02) and ß-hydroxyacyl-CoA dehydrogenase maximal activity (p<0.05) increased in both groups, with no between-group differences (p>0.05). Citrate synthase maximal activity (p<0.01) and type IIA fibre composition (p<0.05) increased in the LO group only. Collectively, while the heterogeneity in the observed VO2max response following four weeks of SIT appears to be attributable to individual differences in systemic vascular and/or muscular adaptations, the markers examined in the current study were unable to explain the divergent VO2max responses in the LO and HI groups.
NASA Astrophysics Data System (ADS)
Albertson, Theodore; Troian, Sandra
2017-11-01
Previous studies by Zubarev (2001) and Suvorov and Zubarev (2004) have shown that above a critical field strength, an ideal (inviscid) conducting fluid film will deform into a singular profile characterized by a conic cusp. The governing equations for the electrohydrodynamic response beneath the cusp admit self-similar solutions leading to so-called blow-up behavior in the Maxwell pressure, capillary pressure and kinetic energy density. The runaway behavior in these variables reflects divergence in time characterized by an exponent of -2/3. Here we extend the physical system to include viscous effects and conduct a computational study of the cusp region as a function of increasing electrical Reynolds number ReE . We employ a finite element, moving mesh algorithm to examine the behavior of the film shape, Maxwell pressure and capillary pressure upon approach to the blow-up event. Our study indicates that self-similarity establishes at relatively low ReE despite the presence of vorticity, which is localized to the cusp surface region. With increasing ReE , the period of self-similiarity extends further in time as the exponent changes from about -4/5 to the ideal value of -2/3, with slightly different values distinguishing the Maxwell and capillary stresses. T. Albertson gratefully acknowledges support from a NASA Space Technology Research Fellowship.
Muroi, Eiji; Hara, Toshihide; Yanaba, Koichi; Ogawa, Fumihide; Yoshizaki, Ayumi; Takenaka, Motoi; Shimizu, Kazuhiro; Sato, Shinichi
2011-12-01
Microvascular lesions are a predominant feature in systemic sclerosis (SSc) and seem to play a central pathogenic role. The presence of nailfold capillary abnormalities is useful in diagnosing SSc. Capillaroscopy, however, usually requires special equipment and may be time consuming. Dermatoscope has been presented as a new diagnostic tool for quick and efficient examination of nailfold capillaries for circumstances when standard microscope equipment is not available. To assess the practical utility of dermatoscope for assessment of capillary morphology in patients with SSc, 83 Japanese patients with SSc (68 women, 15 men) and 68 healthy controls were examined in the study. Twenty-one patients (16 women, 5 men) had diffuse cutaneous SSc and 62 (52 women, 10 men) had limited cutaneous SSc. Enlarged capillaries and hemorrhages were evaluated in all 10 fingers with either naked eyes or DermLite(®) DL100 dermatoscope. Enlarged capillaries and hemorrhages were significantly more frequently detected with dermatoscope than without it. These findings were observed most frequently in the fourth finger. The presence of two or more enlarged capillaries in one or more fingers showed 83.1% sensitivity and 100% specificity for SSc. Among patients with SSc with anti-topoisomerase I antibody, the disease duration correlated negatively with the dermatoscopic number of enlarged capillaries and hemorrhages. Dermatoscope allows the easy and rapid identification of capillary nailfold morphological changes in SSc and should be routinely used for diagnosing SSc.
Bernstein, Hans-Gert; Hildebrandt, Jens; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Pahnke, Jens
2016-11-01
There is increasing evidence that microvascular abnormalities and malfunction of the blood-brain barrier (BBB) significantly contribute to schizophrenia pathophysiology. The ATP-binding cassette transporter ABCB1 is an important molecular component of the intact BBB, which has been implicated in a number of neurodegenerative and psychiatric disorders, including schizophrenia. However, the regional and cellular expression of ABCB1 in schizophrenia is yet unexplored. Therefore, we studied ABCB1 protein expression immunohistochemically in twelve human post-mortem brain regions known to play a role in schizophrenia, in 13 patients with schizophrenia and nine controls. In ten out of twelve brain regions under study, no significant differences were found with regard to the numerical density of ABCB1-expressing capillaries between all patients with schizophrenia and control cases. The left and right habenular complex, however, showed significantly reduced capillary densities in schizophrenia patients. In addition, we found a significantly reduced density of ABCB1-expressing neurons in the left habenula. Reduced ABCB1 expression in habenular capillaries might contribute to increased brain levels of proinflammatory cytokines in patients with schizophrenia, while decreased expression of this protein in a subpopulation of medial habenular neurons (which are probably purinergic) might be related to abnormalities of purines and their receptors found in this disease. Copyright © 2015 Elsevier B.V. All rights reserved.
The vascular anatomy of the eustachian tube in the guinea pig.
Voorhees, R L
1976-08-01
Vascular anatomy of the eustachian tube has received little attention in the world's medical literature. Forty guinea pigs were perfused with Berlin Blue as a contrast medium and the eustachian tube microvascular architecture visualized through surface preparations. A diffuse, dense two-layered capillary network was found which followed the distribution of mucous glands. Five animals suffering from suppurative otitis media showed marked capillary congestion with increased vessel to tissue density. Relationships to gross arterial and venous supply as found in the human are discussed.
Scarinci, Fabio; Nesper, Peter L; Fawzi, Amani A
2016-08-01
To report outer retinal structural changes associated with macular capillary nonperfusion at the level of deep capillary plexus (DCP) in diabetic patients. Prospective observational cross-sectional study. The study included 14 eyes of 10 patients who were diagnosed as having diabetic retinopathy. To study the outer retina and localize areas of capillary nonperfusion at the superficial (SCP) or DCP, we used the spectral-domain optical coherence tomography (SDOCT) device (RTVue-XR Avanti; Optovue Inc, Fremont, California, USA) with split-spectrum amplitude-decorrelation angiography (SSADA) software for optical coherence tomography angiography (OCTA). Two independent masked graders (F.S. and A.A.F.) qualitatively evaluated SDOCT scans as either normal or having outer retina disruption. The angiographic images were examined to define the presence and location of capillary nonperfusion. Eight eyes showed outer retinal disruption on SDOCT that co-localized to areas of enlarged foveal avascular zone, areas of no flow between capillaries, and capillary nonperfusion of the DCP. Six eyes without outer retinal changes on SDOCT showed robust perfusion of the DCP. Using OCTA, this study shows that macular photoreceptor disruption on SDOCT in patients with diabetic retinopathy corresponds to areas of capillary nonperfusion at the level of the DCP. This is important in highlighting the contribution of the DCP to the oxygen requirements of the photoreceptors as well as the outer retina in diabetic macular ischemia. Copyright © 2016 Elsevier Inc. All rights reserved.
Bosutti, Alessandra; Salanova, Michele; Blottner, Dieter; Buehlmeier, Judith; Mulder, Edwin; Rittweger, Jörn; Yap, Moi Hoon; Ganse, Bergita; Degens, Hans
2016-10-01
The effectiveness of whey protein plus potassium bicarbonate-enriched diet (WP+KHCO 3 ) in mitigating disuse-induced changes in muscle fiber oxidative capacity and capillarization was investigated in a 21-day crossover design bed rest study. Ten healthy men (31 ± 6 yr) once received WP+KHCO 3 and once received a standardized isocaloric diet. Muscle biopsies were taken 2 days before and during the 19th day of bed rest (BR) from the soleus (SOL) and vastus lateralis (VL) muscle. Whole-body aerobic power (V̇o 2 max ), muscle fatigue, and isometric strength of knee extensor and plantar flexor muscles were monitored. Muscle fiber types and capillaries were identified by immunohistochemistry. Fiber oxidative capacity was determined as the optical density (OD) at 660 nm of succinate dehydrogenase (SDH)-stained sections. The product of fiber cross-sectional area and SDH-OD (integrated SDH) indicated the maximal oxygen consumption of that fiber. The maximal oxygen consumption supported by a capillary was calculated as the integrated SDH in its supply area. BR reduced isometric strength of knee extensor muscles (P < 0.05), and the fiber oxidative capacity (P < 0.001) and V̇o 2 max (P = 0.042), but had no significant impact on muscle capillarization or fatigue resistance of thigh muscles. The maximal oxygen consumption supported by a capillary was reduced by 24% in SOL and 16% in VL (P < 0.001). WP+KHCO 3 attenuated the disuse-induced reduction in fiber oxidative capacity in both muscles (P < 0.01). In conclusion, following 19 days of bed rest, the decrement in fiber oxidative capacity is proportionally larger than the loss of capillaries. WP+KHCO 3 appears to attenuate disuse-induced reductions in fiber oxidative capacity. Copyright © 2016 the American Physiological Society.
Morifuji, Takeshi; Murakami, Shinichiro; Fujita, Naoto; Kondo, Hiroyo; Fujino, Hidemi
2012-01-01
The purpose of this study was to examine whether exercise training can prevent microangiopathy of skeletal muscles in rats with type 2 diabetes and if succinate dehydrogenase (SDH) activity, an indicator of mitochondrial oxidative enzyme activity, is involved in the prevention of microangiopathy. Six-week-old male Goto-Kakizaki (GK) rats and age-matched male Wistar rats (control group (Con)) were used. GK rats were randomly assigned to nonexercise (DB) and exercise (DBEx) groups. The DBEx group was trained on a treadmill 5 times a week for 3 weeks. No significant differences in the capillary-to-fibre ratio or the capillary density were observed between the 3 groups. The luminal capillary diameter of the DB group was significantly lower than that of the Con group, whereas the capillary diameter of the DBEx group was significantly higher than that of the DB group. In addition, SDH activity was significantly higher in the DBEx group than in the Con and DB groups. Microangiopathy of skeletal muscles in type 2 diabetes was correlated with a decrease in the luminal capillary diameter, which was prevented by exercise training. Thus, the mitochondrial oxidative capacity appears to be involved in the overall mechanism by which exercise prevents microangiopathy.
Nailfold capillary patterns in healthy subjects: a real issue in capillaroscopy.
Ingegnoli, Francesca; Gualtierotti, Roberta; Lubatti, Chiara; Bertolazzi, Chiara; Gutierrez, Marwin; Boracchi, Patrizia; Fornili, Marco; De Angelis, Rossella
2013-11-01
Nailfold capillaroscopy has been extensively applied in a broad spectrum of pathologic conditions, but very few data have been published in healthy individuals. The aim of this study was to describe the nailfold capillary findings on a large series of healthy subjects using the video-capillaroscopy technique. Nailfold capillaries were studied based on their morphology, dimensions and density. Then, to evaluate jointly the association between different capillary findings in groups of subjects which were homogeneous for their characteristics, cluster analysis was performed. The results (median) of capillary measurements were as follows: loop length 207μm, external diameter 39μm, internal diameter 17μm, apical diameter 17μm, and intercapillary distance 143μm. Based on the cluster analysis three major "normal" morphologic capillaroscopic patterns were depicted: 1) the "normal" pattern mainly with 2 to 5 U-shaped loops/mm and ≤2 tortuous loops/mm; 2) the "perfect normal" pattern with ≥5 U-shaped loops/mm and 3) the "unusual normal" with at least 1 meandering or bushy loop, or at least 1 microhemorrhage, or with >4 crossed loops/mm. Regarding the loop measurements, the majority of subjects had a median of 7capillaries/mm with a median length of 198μm. © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, H.; Pollyea, R.
2017-12-01
Carbon capture and sequestration (CCS) is one component of a broad carbon management portfolio designed to mitigate adverse effects of anthropogenic CO2 emissions. During CCS, capillary trapping is an important mechanism for CO2 isolation in the disposal reservoir, and, as a result, the distribution of capillary force is an important factor affecting CO2 migration. Moreover, the movement of CO2 being injected to the reservoir is also affected by buoyancy, which results from the density difference between CO2 and brine. In order to understand interactions between capillary force and buoyancy, we implement a parametric modeling experiment of CO2 injections in a sandstone reservoir for combinations of the van Genuchten capillary pressure model that bound the range of capillary pressure-saturation curves measured in laboratory experiments. We simulate ten years supercritical CO2 (scCO2) injections within a 2-D radially symmetric sandstone reservoir for five combinations of the van Genuchten model parameters λ and entry pressure (P0). Results are analyzed on the basis of a modified dimensionless ratio, ω, which is similar to the Bond number and defines the relationship between buoyancy pressure and capillary pressure. We show how parametric variability affects the relationship between buoyancy and capillary force, and thus controls CO2 plume geometry. These results indicate that when ω >1, then buoyancy governs the system and CO2 plume geometry is governed by upward flow. In contrast, when ω <1, then buoyancy is smaller than capillary force and lateral flow governs CO2 plume geometry. As a result, we show that the ω ratio is an easily implemented screening tool for qualitative assessment of reservoir performance.
Self-separation of blood plasma from whole blood during the capillary flow in microchannel
NASA Astrophysics Data System (ADS)
Nunna, Bharath Babu; Zhuang, Shiqiang; Lee, Eon Soo
2017-11-01
Self-separation of blood plasma from whole blood in microchannels is of great importance due to the enormous range of applications in healthcare and diagnostics. Blood is a multiphase complex fluid, composed of cells suspended in blood plasma. RBCs are the suspended particles whose shape changes during the flow of blood. The primary constituents of blood are erythrocytes or red blood cells (RBCs), leukocytes or white blood cells (WBCs), thrombocytes or platelets and blood plasma. The existence of RBCs in blood makes the blood a non-Newtonian fluid. The current study of separation of blood plasma from whole blood during self-driven flows in a single microchannel without bifurcation, by enhancing the capillary effects. The change in the capillary effect results in a change in contact angle which directly influences the capillary flow. The flow velocity directly influences the net force acting on the RBCs and influence the separation process. The experiments are performed on the PDMS microchannels with different contact angles by altering the surface characteristics using plasma treatment. The change in the separation length is studied during the capillary flow of blood in microchannel. Bharath Babu Nunna is a researcher in mechanical engineering and implementing the novel and innovative technologies in the biomedical devices to enhance the sensitivity of the disease diagnosis.
Kristensen, M; Pötzelsberger, B; Scheiber, P; Bergdahl, A; Hansen, C N; Andersen, J L; Narici, M; Salvioli, S; Conte, M; Müller, E; Dela, F
2015-08-01
We investigated the effect of alpine skiing for 12 weeks on skeletal muscle characteristics and biomarkers of glucose homeostasis and cardiovascular risk factors. Twenty-three patients with a total knee arthroplasty (TKA) were studied 2.9 ± 0.9 years (mean ± SD) after the operation. Fourteen patients participated in the intervention group (IG) and nine in the control group (CG). Blood samples and muscle biopsies were obtained before (PRE) and 7.3 ± 0.8 days after (POST) the intervention, and blood samples again after a retention (RET) phase of 8 weeks. With skiing, glucose homeostasis improved in IG (decrease in fasting insulin, increase in muscle glycogen) but not in CG. Fiber type distribution and size, as well as capillary density and number of capillaries around the fibers (CAF), were not different between the operated and the non-operated leg in either group. The relative number of type I fibers increased with skiing in IG with no change in CG. Inflammatory biomarkers, plasma lipids, and mitochondrial proteins and activity did not change. Alpine skiing is metabolically beneficial and can be used as a training modality by elderly people with TKA. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Investigating the time-dependent zeta potential of wood surfaces.
Muff, Livius F; Luxbacher, Thomas; Burgert, Ingo; Michen, Benjamin
2018-05-15
This work reports on streaming potential measurements through natural capillaries in wood and investigates the cause of a time-dependent zeta potential measured during the equilibration of wood cell-walls with an electrolyte solution. For the biomaterial, this equilibration phase takes several hours, which is much longer than for many other materials that have been characterized by electrokinetic measurements. During this equilibration phase the zeta potential magnitude is decaying due to two parallel mechanisms: (i) the swelling of the cell-wall which causes a dimensional change reducing the charge density at the capillary interface; (ii) the transport of ions from the electrolyte solution into the permeable cell-wall which alters the electrical potential at the interface by internal charge compensation. The obtained results demonstrate the importance of equilibration kinetics for an accurate determination of the zeta potential, especially for materials that interact strongly with the measurement electrolyte. Moreover, the change in zeta potential with time can be correlated with the bulk swelling of wood if the effect of electrolyte ion diffusion is excluded. This study shows the potential of streaming potential measurements of wood, and possibly of other hygroscopic and nanoporous materials, to reveal kinetic information about their interaction with liquids, such as swelling and ion uptake. Copyright © 2018 Elsevier Inc. All rights reserved.
Pollock, Ross D; O'Brien, Katie A; Daniels, Lorna J; Nielsen, Kathrine B; Rowlerson, Anthea; Duggal, Niharika A; Lazarus, Norman R; Lord, Janet M; Philp, Andrew; Harridge, Stephen D R
2018-04-01
In this study, results are reported from the analyses of vastus lateralis muscle biopsy samples obtained from a subset (n = 90) of 125 previously phenotyped, highly active male and female cyclists aged 55-79 years in regard to age. We then subsequently attempted to uncover associations between the findings in muscle and in vivo physiological functions. Muscle fibre type and composition (ATPase histochemistry), size (morphometry), capillary density (immunohistochemistry) and mitochondrial protein content (Western blot) in relation to age were determined in the biopsy specimens. Aside from an age-related change in capillary density in males (r = -.299; p = .02), no other parameter measured in the muscle samples showed an association with age. However, in males type I fibres and capillarity (p < .05) were significantly associated with training volume, maximal oxygen uptake, oxygen uptake kinetics and ventilatory threshold. In females, the only association observed was between capillarity and training volume (p < .05). In males, both type II fibre proportion and area (p < .05) were associated with peak power during sprint cycling and with maximal rate of torque development during a maximal voluntary isometric contraction. Mitochondrial protein content was not associated with any cardiorespiratory parameter in either males or females (p > .05). We conclude in this highly active cohort, selected to mitigate most of the effects of inactivity, that there is little evidence of age-related changes in the properties of VL muscle across the age range studied. By contrast, some of these muscle characteristics were correlated with in vivo physiological indices. © 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
Svobodová, Jana; Kofroňová, Olga; Benada, Oldřich; Král, Vladimír; Mikšík, Ivan
2017-09-29
The aim of this article is to study the modification of an inner capillary wall with sol-gel coating (pure silica sol-gel or silica sol-gel containing porphyrin-brucine conjugate) and determine its influence on the separation process using capillary electrophoresis/electrochromatography method. After modification of the inner capillary surface the separation of analytes was performed using two different phosphate buffers (pH 2.5 and 9.0) and finally the changes in electrophoretic mobilities of various samples were calculated. To confirm that the modification of the inner capillary surface was successful, the parts of the inner surfaces of capillaries were observed using scanning electron microscopy. The analytes used as testing samples were oligopeptides, nucleosides, nucleobases and finally nucleotides. Copyright © 2017 Elsevier B.V. All rights reserved.
Testoni, Guilherme Apolinario; Kim, Sihwan; Pisupati, Anurag; Park, Chung Hae
2018-09-01
We propose a new model for the capillary rise of liquid in flax fibers whose diameter is changed by liquid absorption. Liquid absorption into the flax fibers is taken into account in a new modified Washburn equation by considering the mass of the liquid absorbed inside the fibers as well as that imbibed between the fibers. The change of permeability and hydraulic radius of pores in a fibrous medium due to the fiber swelling is modeled by a statistical approach considering a non-uniform distribution of flax fiber diameter. By comparisons between capillary rise test results and modeling results, we prove the validity of the proposed modified Washburn model to take into account the effects from fiber swelling and liquid absorption on the decrease of capillary rise velocity. The experimental observation of long-term capillary rise tests show that the swelling behavior of the fibers highly packed in a closed volume and its influence on the capillary wicking are different from those of an individual single fiber in a free space. The current approach was useful to characterize the swelling of fibers highly packed in a closed volume and its influence of the long-term behavior of capillary wicking. Copyright © 2018 Elsevier Inc. All rights reserved.
Mastropasqua, Leonardo; Borrelli, Enrico; Carpineto, Paolo; Toto, Lisa; Di Antonio, Luca; Mattei, Peter A; Mastropasqua, Rodolfo
2017-06-19
To evaluate superficial capillary plexus (SCP) changes occurring after internal limiting membrane (ILM) peeling for the treatment of idiopathic epiretinal membrane (ERM). A total of 15 eyes of 15 patients affected by idiopathic ERM (eight males and seven females; mean age 59.8 ± 9.6 years) were enrolled in the study. Patients were treated with pars plana vitrectomy followed by ERM and ILM peeling. Subjects were evaluated at baseline and at the week-1 and month-1 follow-up visits. At each visit, patients were evaluated with a complete ophthalmologic evaluation, which included imaging with optical coherence tomography angiography. Overall, the SCP vessel density was 43.0 ± 3.0% at baseline and was stable throughout the follow-up (40.0 ± 4.0% at week-1 and 41.0 ± 4.0% at month-1 follow-up visits; p = 0.087 and p = 0.426, respectively). Nevertheless, the SCP vessel density was reduced at week-1 visit in both the superior and inferior sectors. In these sectors, the superficial vessel density was still reduced at the month-1 follow-up visit. We observed a reduction in the SCP vessel density occurring after pars plana vitrectomy with ILM peeling. The reduction is referred to those areas where other changes (e.g., swelling of the arcuate nerve fiber layer) have been already described. In theory, superficial vessel density modifications may be due to the direct surgical trauma to the inner retina, where the superficial plexus is contained, during the ILM grasping.
Running exercise protects the capillaries in white matter in a rat model of depression.
Chen, Lin-Mu; Zhang, Ai-Pin; Wang, Fei-Fei; Tan, Chuan-Xue; Gao, Yuan; Huang, Chun-Xia; Zhang, Yi; Jiang, Lin; Zhou, Chun-Ni; Chao, Feng-Lei; Zhang, Lei; Tang, Yong
2016-12-01
Running has been shown to improve depressive symptoms when used as an adjunct to medication. However, the mechanisms underlying the antidepressant effects of running are not fully understood. Changes of capillaries in white matter have been discovered in clinical patients and depression model rats. Considering the important part of white matter in depression, running may cause capillary structural changes in white matter. Chronic unpredictable stress (CUS) rats were provided with a 4-week running exercise (from the fifth week to the eighth week) for 20 minutes each day for 5 consecutive days each week. Anhedonia was measured by a behavior test. Furthermore, capillary changes were investigated in the control group, the CUS/Standard group, and the CUS/Running group using stereological methods. The 4-week running increased sucrose consumption significantly in the CUS/Running group and had significant effects on the total volume, total length, and total surface area of the capillaries in the white matter of depression rats. These results demonstrated that exercise-induced protection of the capillaries in white matter might be one of the structural bases for the exercise-induced treatment of depression. It might provide important parameters for further study of the vascular mechanisms of depression and a new research direction for the development of clinical antidepressant means. J. Comp. Neurol. 524:3577-3586, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Balaratnasingam, Chandrakumar; Kang, Min H; Yu, Paula; Chan, Geoffrey; Morgan, William H; Cringle, Stephen J; Yu, Dao-Yi
2014-04-01
Retinal ganglion cell (RGC) axonal structure and function in the optic nerve head (ONH) is predominantly supported by astrocytes and capillaries. There is good experimental evidence to demonstrate that RGC axons are perturbed in a non-uniform manner following ONH injury and it is likely that the pattern of RGC axonal modification bears some correlation with the quantitative properties of astrocytes and capillaries within laminar compartments. Although there have been some excellent topographic studies concerning glial and microvascular networks in the ONH our knowledge regarding the quantitative properties of these structures are limited. This report is an in-depth quantitative, structural analysis of astrocytes and capillaries in the pre laminar, lamina cribrosa and post laminar compartments of the ONH. 49 optic nerves from human (n = 10), pig (n = 12), horse (n = 6), rat (n = 11) and rabbit (n = 10) eyes are studied. Immunohistochemical and high-magnification confocal microscopy techniques are used to co-localise astrocytes, capillaries and nuclei in the mid-portion of the optic nerve. Quantitative methodology is used to determine the area occupied by astrocyte processes, microglia processes, nuclei density and the area occupied by capillaries in each laminar compartment. Comparisons are made within and between species. Relationships between ONH histomorphometry and astrocyte-capillary constitution are also explored. This study demonstrates that there are significant differences in the quantitative properties of capillaries and astrocytes between the laminar compartments of the human ONH. Astrocyte processes occupied the greatest area in the lamina cribrosa compartment of the human ONH implicating it as an area of great metabolic demands. Microglia were found to occupy only a small proportion of tissue in the rat, rabbit and pig optic nerve suggesting that the astrocyte is the predominant glia cell type in the optic nerve. This study also demonstrates that there is significant uniformity, with respect to astrocyte and capillary constitution, in the post laminar region of species with an unmyelinated anterior optic nerve. This implicates an important role served by oligodendrocytes and myelin in governing the structural characteristics of the post laminar optic nerve. Finally, this study demonstrates that eyes with similar lamina cribrosa structure do not necessarily share an identical cellular constitution with respect to astrocytes. The quantitative properties of astrocytes in the pre laminar and lamina cribrosa regions of the rat, which has a rudimentary lamina cribrosa with only a few collagenous beams, shared more similarities to the human eye than the pig or horse. The quantitative properties of astrocytes and capillaries in the laminar compartments of the ONH provide a basis for understanding the pathogenic mechanisms that are involved in diseases such as glaucoma and ischemic optic neuropathy. The findings in this study also provide valuable information about the distinct advantages of different animal models for studying human optic nerve diseases. Utilisation of structural data provided in this report together with emerging in vivo technology may potentially permit the early identification of RGC axonal injury by quantifying changes in ONH capillaries and astrocytes. Copyright © 2014 Elsevier Ltd. All rights reserved.
2012-01-01
Background There is increasing awareness that, aside from producing cerebrospinal fluid, the choroid plexus (CP) might be a key regulator of immune activity in the central nervous system (CNS) during neuroinflammation. Specifically, the CP has recently been posited to control entry of sentinel T cells into the uninflamed CNS during the early stages of neuroinflammatory diseases, like multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE). As the CP is compartmentalized into a stromal core containing fenestrated capillaries devoid of typical blood–brain barrier properties, surrounded by a tight junction-expressing choroidal epithelium, each of these compartments might mount unique responses that instigate the neuroinflammatory process. Methods To discern responses of the respective CP stromal capillary and choroidal epithelial tissues during evolving neuroinflammation, we investigated morphology and in situ expression of 93 immune-related genes during early stages of EAE induced by immunization with myelin oligodendrocyte glycoprotein peptide (MOG35-55). Specifically, 3-D immunofluorescent imaging was employed to gauge morphological changes, and laser capture microdissection was coupled to an Immune Panel TaqMan Low Density Array to detail alterations in gene expression patterns at these separate CP sites on days 9 and 15 post-immunization (p.i.). To resolve CP effects due to autoimmunity against MOG peptide, from those due to complete Freund’s adjuvant (CFA) and pertussis toxin (PTX) included in the immunization, analysis was performed on MOG-CFA/PTX-treated, CFA/PTX-treated, and naïve cohorts. Results The CP became swollen and displayed significant molecular changes in response to MOG-CFA/PTX immunization. Both stromal capillary and choroidal epithelial tissues mounted vigorous, yet different, changes in expression of numerous genes over the time course analyzed - including those encoding adhesion molecules, cytokines, chemokines, statins, interleukins, T cell activation markers, costimulatory molecules, cyclooxygenase, pro-inflammatory transcription factors and pro-apoptotic markers. Moreover, CFA/PTX-treatment, alone, resulted in extensive, though less robust, alterations in both CP compartments. Conclusions MOG-CFA/PTX immunization significantly affects CP morphology and stimulates distinct expression patterns of immune-related genes in CP stromal capillary and epithelial tissues during evolving EAE. CFA/PTX treatment, alone, causes widespread gene alterations that could prime the CP to unlock the CNS to T cell infiltration during neuroinflammatory disease. PMID:22870943
NASA Astrophysics Data System (ADS)
Korenko, Michal
2007-06-01
The interfacial tension (IFT) between aluminium and cryolite melts containing different salt additions (AlF3, NaF,Na2SO4) has been measured during electrolysis by the capillary depression method. The technique is based on the measurement of the capillary depression occurring when a capillary, which is moved vertically down through the molten salt layer, passes through the metal/salt interface. The depression is measured by simultaneous video recording of the immersion height of the alumina capillary. The interfacial tension is strongly dependent on the n(NaF)/n(AlF3) ratio. The addition of Na2SO4 decreases the IFT of the aluminium/electrolyte interface. We also found the different influence of the conditions of electrolysis on the IFT in systems with and without Na2SO4. In systems without Na2SO4 the IFT decreases with increasing current density, and in systems with Na2SO4 it increases.
Riolfi, A; Perbellini, L
2010-01-01
The use of nailfold capillaroscopy combined with skin thermometry in the study of microcirculation of the hands in workers exposed to hand-arm vibration is assessed. Fifty-eight subjects were studied; 40 asymptomatic forestry workers exposed to hand-arm vibration, 13 forestry workers exposed to hand-arm vibration with Raynaud-like symptoms confirmed by skin thermometry; 5 controls. Reduction of capillary density was observed in workers exposed to vibrating tools with respect to controls. Tortuosity of capillary loops was significantly more frequent in subjects exposed to vibrating tools than in controls. No statistically significant difference in capillary vessels of the hands was found between asymptomatic exposed subjects and workers affected by Raynaud-like symptoms. In our sample nailfold capillaroscopy shows good sensibilty and specificity in detecting capillary modifications secondary to exposure to hand-vibration. Weaker evidence is instead given in order to actual disturbances of hands circulation in chronic exposure to vibrating tools.
Optoelectronic Capillary Sensors in Microfluidic and Point-of-Care Instrumentation
Borecki, Michał; Korwin-Pawlowski, Michael L.; Beblowska, Maria; Szmidt, Jan; Jakubowski, Andrzej
2010-01-01
This paper presents a review, based on the published literature and on the authors’ own research, of the current state of the art of fiber-optic capillary sensors and related instrumentation as well as their applications, with special emphasis on point-of-care chemical and biochemical sensors, systematizing the various types of sensors from the point of view of the principles of their construction and operation. Unlike classical fiber-optic sensors which rely on changes in light propagation inside the fiber as affected by outside conditions, optical capillary sensors rely on changes of light transmission in capillaries filled with the analyzed liquid, which opens the possibility of interesting new applications, while raising specific issues relating to the construction, materials and instrumentation of those sensors. PMID:22319325
NASA Astrophysics Data System (ADS)
Coso, Dusan
The first part of the dissertation presents a study that implements micro and nano scale engineered surfaces for enhancement of evaporation and boiling phase change heat transfer in both capillary wick structures and pool boiling systems. Capillary wicking surfaces are integral components of heat pipes and vapor chamber thermal spreaders often used for thermal management of microelectronic devices. In addition, pool boiling systems can be encountered in immersion cooling systems which are becoming more commonly investigated for thermal management applications of microelectronic devices and even data centers. The latent heat associated with the change of state from liquid to vapor, and the small temperature differences required to drive this process yield great heat transfer characteristics. Additionally, since no external energy is required to drive the phase change process, these systems are great for portable devices and favorable for reduction of cost and energy consumption over alternate thermal management technologies. Most state of the art capillary wicks used in these devices are typically constructed from sintered copper media. These porous structures yield high surface areas of thin liquid film where evaporation occurs, thus promoting phase change heat transfer. However, thermal interfaces at particle point contacts formed during the sintering process and complex liquid/vapor flow within these wick structures yield high thermal and liquid flow resistances and limit the maximum heat flux they can dissipate. In capillary wicks the maximum heat flux is typically governed by the capillary or boiling limits and engineering surfaces that delay these limitations and yield structures with large surface areas of thin liquid film where phase change heat transfer is promoted is highly desired. In this study, biporous media consisting of microscale pin fins separated by microchannels are examined as candidate structures for the evaporator wick of a vapor chamber heat pipe. Smaller pores are used to generate high capillary suction, while larger microchannels are used to alleviate flow resistance. The heat transfer coefficient is found to depend on the area coverage of a liquid film with thickness on the order of a few microns near the meniscus of the triple phase contact line. We manipulate the area coverage and film thickness by varying the surface area-to-volume ratio through the use of microstructuring. In some samples, a transition from evaporative heat transfer to nucleate boiling is observed. While it is difficult to identify when the transition occurs, one can identify regimes where evaporation dominates over nucleate boiling and vice versa. Heat fluxes of 277.0 (+/- 9.7) W/cm2 can be dissipated by wicks with heaters of area 1 cm2, while heat fluxes up to 733.1 (+/- 103.4) W/cm2 can be dissipated by wicks with smaller heaters intended to simulate local hot-spots. In pool boiling systems that are encountered in immersion cooling applications, the heat transfer coefficient (HTC) is governed by the bubble nucleation site density and the agitation in the liquid/vapor flow these bubbles produce when they detach from the surface. The nucleation site density and release rate is usually determined by the surface morphology. Another important parameter in pool boiling systems is the maximum heat flux (CHF) that can safely be dissipated. In practice, this quantity is about two orders of magnitude smaller than limitations suggested by kinetic theory. For essentially infinite, smooth, well wetted surfaces, hydrodynamic instability theories capturing liquid/vapor interactions away from the heated surface have been successful in predicting CHF. On finite micro and nano structured surfaces where applying the hydrodynamic theory formulation is not easily justified, other effects may contribute to phase change heat transfer characteristics. Here, we also present a pool boiling study on biporous microstructured surfaces used in capillary wick experiments. Structures are manipulated by reduction of pore size to determine if increased capillary pressure can enhance rewetting from heater edges and delay CHF. A comparative study between the two experimental systems indicates that while the capillary limitation is significant in capillary wick experiments, for these well wetted microstructured surfaces used in pool boiling systems the hydrodynamic limitation defined based on heater size causes the occurrence of CHF. Other hierarchical nanowire surfaces containing periodic microscale cavities are investigated as well and are seen to yield a ˜2.4 fold increase in heat transfer coefficient characteristics while not compromising CHF compared to surfaces where cavities are not present. These studies indicate pathways for enhancement of heat transfer coefficient via implementing hierarchical structures, while no clear method in increasing CHF is determined for finite size surfaces of various morphologies. In the second part of this dissertation, solar energy storage is sought in 'phase change' of photochromic molecular systems: the storage of solar energy in the chemical bonds of photosensitive molecules (a photochemical reaction) and subsequent recovery of the energy in a back reaction in the form of heat, reversibly. These molecular systems are interesting alternatives to photovoltaic and solar thermal technologies which cannot satisfy the needs of load leveling, or for portable municipal heating applications. Typically made of organic compounds, these molecules have become known for rapid decomposition, short energy storage time scales and poor energy storing efficiencies. Thus, they have been abandoned as practical solar energy storage systems in the past several decades. On the other hand, organometallic molecular systems have not been extensively probed for these applications. Recent research has indicated that organometallic (fulvalene)diruthenium FvRu2 has demonstrated excellent energy storage characteristic and durability. Here, we report on a full cycle molecular solar thermal (MOST) microfluidic system based on a bis(1,1-dimethyltridecyl) substituted derivative of FvRu2 that allows for long term solar energy storage (110 J/g), and "on demand" energy release upon exposure to a catalyst. The microfluidic systems developed here are excellent for photoconversion characterization and scrutinizing potential catalysts and can be extended to studying many other molecular systems. The objective of the work presented here is to demonstrate that "on demand" solar energy storage and release in MOST systems is viable and motivate future research on other photochromic organometallic systems.
Wagner, Sylvia; Zensi, Anja; Wien, Sascha L.; Tschickardt, Sabrina E.; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U.; Kreuter, Jörg; von Briesen, Hagen
2012-01-01
Background The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. Methodology/Principal Findings In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. Conclusions/Significance This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier. PMID:22396775
Wagner, Sylvia; Zensi, Anja; Wien, Sascha L; Tschickardt, Sabrina E; Maier, Wladislaw; Vogel, Tikva; Worek, Franz; Pietrzik, Claus U; Kreuter, Jörg; von Briesen, Hagen
2012-01-01
The blood-brain barrier (BBB) represents an insurmountable obstacle for most drugs thus obstructing an effective treatment of many brain diseases. One solution for overcoming this barrier is a transport by binding of these drugs to surface-modified nanoparticles. Especially apolipoprotein E (ApoE) appears to play a major role in the nanoparticle-mediated drug transport across the BBB. However, at present the underlying mechanism is incompletely understood. In this study, the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells was investigated to differentiate between active and passive uptake mechanism by flow cytometry and confocal laser scanning microscopy. Furthermore, different in vitro co-incubation experiments were performed with competing ligands of the respective receptor. This study confirms an active endocytotic uptake mechanism and shows the involvement of low density lipoprotein receptor family members, notably the low density lipoprotein receptor related protein, on the uptake of the ApoE-modified nanoparticles into the brain capillary endothelial cells. This knowledge of the uptake mechanism of ApoE-modified nanoparticles enables future developments to rationally create very specific and effective carriers to overcome the blood-brain barrier.
Ferrando, A; Vila, L; Voces, J A; Cabral, A C; Alvarez, A I; Prieto, J G
1999-04-01
The effect of standardized Panax ginseng extract G115 on enzymatic activities, myotypological composition, capillaries and mitochondrial content was studied in the skeletal muscle of male rats Wistar. Simultaneously to the G115 administration the rats performed exercise. The animals were divided into 4 groups. The dose of the ginseng extract G115 was 50 mg/kg. The length of the experimental period was 12 weeks. After 24 hours of inactivity the muscles of the hindlimb were extracted. With regard to the enzymatic activities of the citrate synthase (CS) and lactate dehydrogenase (LDH), CS increases with exercise, while the LDH undergoes no major variations, either due to the exercise or the treatment. Treatment with G115 increases the capillary density and the mitochondrial content of the red gastrocnemius muscle. The results suggest that prolonged treatment with G115 increases the capillary density and the oxidative capacity of the muscles with greater aerobic potential in a manner similar to the performance of physical exercise. When exercise and treatment are combined, the effects that are obtained separately are not potentiated.
Wave turbulence in a two-layer fluid: Coupling between free surface and interface waves
NASA Astrophysics Data System (ADS)
Falcon, Eric; Issenmann, Bruno; Laroche, Claude
2017-11-01
We experimentally study gravity-capillary wave turbulence on the interface between two immiscible fluids of close density with free upper surface. We locally measure the wave height at the interface between both fluids by means of a highly sensitive laser Doppler vibrometer. We show that the inertial range of the capillary wave turbulence regime is significantly extended when the upper fluid depth is increased: The crossover frequency between the gravity and capillary wave turbulence regimes is found to decrease whereas the dissipative cut-off frequency of the spectrum is found to increase. We explain these observations by the progressive decoupling between waves propagating at the interface and the ones at the free surface, using the full dispersion relation of gravity-capillary waves in a two-layer fluid of finite depths. The cut-off evolution is due to the disappearance of parasitic capillaries responsible for the main wave dissipation for a single fluid. B. Issenmann, C. Laroche & E. Falcon, EPL 116, 64005 (2016) published online 16 feb. 2017. This work has been partially supported by CNRS (1-year postdoctoral funding), ANR Turbulon 12-BS04-0005, and ANR Dysturb 2017.
Nailfold capillaroscopy in diabetes mellitus.
Maldonado, G; Guerrero, R; Paredes, C; Ríos, C
2017-07-01
Diabetes mellitus (DM) is characterized by chronic hyperglycemia states and the development of specific microvascular disorders such as retinopathy and nephropathy. Conventional methods are used to study the vascular compromise of this entity, however, the use of capillaroscopy for the evaluation of capillary microarchitecture is not frequently used. Observational and descriptive study of 65 patients with an established diagnosis of DM and a control group that underwent an initial capillaroscopy examination. The parameters considered were: Capillary diameter (ectasia and giant capillaries), cross-linked, tortuous, arborified capillaries, avascular zones, haemorrhages, dominant morphology, visibility of the subpapillary venous plexus (SPVP), cuticulitis and SD pattern. Capillaroscopy was performed in 65 patients, the findings were: tortous capillaries (63%), crosslinked capillaries (59%), avascular areas (48%), ectasias (39%), giant capillaries (11%). The capillaroscopic findings were evident in the majority of the studied population, 83%, compared to 17% who did not have capillaroscopic alterations. Significant capillaroscopic changes were demonstrated in patients with DM, in turn, we described a specific pattern consisting of: capillary dilatation, avascular zones and tortuous capillaries. Patients with more comorbidities and evolution of the disease showed greater microvascular damage. Copyright © 2017 Elsevier Inc. All rights reserved.
Kattanek, Maria; Richardson, Kenneth C.; Hafez, Hafez Mohamed; Plendl, Johanna; Hünigen, Hana
2017-01-01
In this study the macroscopic and microscopic structure of the heart of a fast growing, meat-type turkey line (British United turkeys BUT Big 6) and a wild-type turkey line (Canadian Wild turkey) were compared. At 8 and 16 weeks of age, 10 birds of each genotype and sex were sampled. The body mass and heart mass of the meat-type turkey both increased at a faster rate than those of the wild-type turkey. However in both turkey lines, the relative heart mass decreased slightly with age, the decrease was statistically significant only in the male turkeys. Furthermore meat-type turkeys had a significantly (p < 0.01) lower relative heart mass and relative thickness of the left ventricle compared to the wild-type turkeys of the same age. The wild-type turkeys showed no significant change in the size of cardiomyocytes (cross sectional area and diameter) from 8 weeks to 16 weeks. In contrast, the size of cardiomyocytes increased significantly (p < 0.001) with age in the meat-type turkeys. The number of capillaries in the left ventricular wall increased significantly (p < 0.001) in wild-type turkeys from 2351 per mm2 at the age of 8 weeks to 2843 per mm2 at 16 weeks. However, in the meat-type turkeys there were no significant changes, capillary numbers being 2989 per mm2 at age 8 weeks and 2915 per mm2 at age 16 weeks. Correspondingly the area occupied by capillaries in the myocardium increased in wild-type turkeys from 8.59% at the age of 8 weeks to 9.15% at 16 weeks, whereas in meat-type turkeys this area decreased from 10.4% at 8 weeks to 9.95% at 16 weeks. Our results indicate a mismatch in development between body mass and heart mass and a compromised cardiac capillary density and architecture in the meat-type turkeys in comparison to the wild-type turkeys. PMID:28118415
NASA Astrophysics Data System (ADS)
Dymond, J. H.; Robertson, J.
1985-01-01
Viscosity coefficients for binary mixtures of hexafluorobenzene with benzene, toluene, para-xylene, and mesitylene have been measured along the saturation line at temperatures from 15 to 120°C using specially designed capillary viscometers. Densities were measured using a pyknometer and volume-change apparatus. Deviations of the viscosities from a rectilinear dependence on mole fraction are consistent with enhanced interactions between unlike species, which increase with increasing number of methyl groups on the aromatic hydrocarbon and decrease with increasing temperature. The application of the Grunberg and Nissan equation, the Hildebrand equation, and energy of activation theories to these results is examined.
Ultrastructural changes of the capillaries of the cat iris in experimental neuroparalytic keratitis.
Saari, M; Huhtala, A; Johansson, G
1975-01-01
In order to study the morphological basis of the increased permeability of the capillaries of the iris in neuroparalytic keratitis the ophthalmic division of the trigeminal nerve in the cat was denervated using a stereotactic method. The homolateral iris was studied by electron microscopy three days after denervation. Abnormally large pinocytotic vacuoles were observed in the endothelial cells of the iris capillaries and the intercellular junctions of the endothelial cells showed widened inter-cellular space and macula occludens. These ultrastructural changes may explain the protein leakage into the anterior chamber in neuroparalytic keratitis.
Bump Bonding Using Metal-Coated Carbon Nanotubes
NASA Technical Reports Server (NTRS)
Lamb, James L.; Dickie, Matthew R.; Kowalczyk, Robert S.; Liao, Anna; Bronikowski, Michael J.
2012-01-01
Bump bonding hybridization techniques use arrays of indium bumps to electrically and mechanically join two chips together. Surface-tension issues limit bump sizes to roughly as wide as they are high. Pitches are limited to 50 microns with bumps only 8-14 microns high on each wafer. A new process uses oriented carbon nanotubes (CNTs) with a metal (indium) in a wicking process using capillary actions to increase the aspect ratio and pitch density of the connections for bump bonding hybridizations. It merges the properties of the CNTs and the metal bumps, providing enhanced material performance parameters. By merging the bumps with narrow and long CNTs oriented in the vertical direction, higher aspect ratios can be obtained if the metal can be made to wick. Possible aspect ratios increase from 1:1 to 20:1 for most applications, and to 100:1 for some applications. Possible pitch density increases of a factor of 10 are possible. Standard capillary theory would not normally allow indium or most other metals to be drawn into the oriented CNTs, because they are non-wetting. However, capillary action can be induced through the ability to fabricate oriented CNT bundles to desired spacings, and the use of deposition techniques and temperature to control the size and mobility of the liquid metal streams and associated reservoirs. This hybridization of two technologies (indium bumps and CNTs) may also provide for some additional benefits such as improved thermal management and possible current density increases.
NASA Technical Reports Server (NTRS)
Palmer, A. J.; Hess, L. D.; Stephens, R. R.
1976-01-01
A theoretical and experimental investigation into the possibility of achieving CW discharge pumped excimer laser oscillation is reported. Detailed theoretical modeling of capillary discharge pumping of the XeF and KXe and K2 excimer systems was carried out which predicted the required discharge parameters for reaching laser threshold on these systems. Capillary discharge pumping of the XeF excimer system was investigated experimentally. The experiments revealed a lower excimer level population density than predicted theoretically by about an order of magnitude. The experiments also revealed a fluorine consumption problem in the discharge in agreement with theory.
Romano, Francesco; Arrigo, Alessandro; Chʼng, Soon Wai; Battaglia Parodi, Maurizio; Manitto, Maria Pia; Martina, Elisabetta; Bandello, Francesco; Stanga, Paulo E
2018-06-05
To assess foveal and parafoveal vasculature at the superficial capillary plexus, deep capillary plexus, and choriocapillaris of patients with X-linked retinoschisis by means of optical coherence tomography angiography. Six patients with X-linked retinoschisis (12 eyes) and seven healthy controls (14 eyes) were recruited and underwent complete ophthalmologic examination, including best-corrected visual acuity, dilated fundoscopy, and 3 × 3-mm optical coherence tomography angiography macular scans (DRI OCT Triton; Topcon Corp). After segmentation and quality review, optical coherence tomography angiography slabs were imported into ImageJ 1.50 (NIH; Bethesda) and digitally binarized. Quantification of vessel density was performed after foveal avascular zone area measurement and exclusion. Patients were additionally divided into "responders" and "nonresponders" to dorzolamide therapy. Foveal avascular zone area resulted markedly enlarged at the deep capillary plexus (P < 0.001), particularly in nonresponders. Moreover, patients disclosed a significant deep capillary plexus rarefaction, when compared with controls (P: 0.04); however, a subanalysis revealed that this damage was limited to the fovea (P: 0.006). Finally, the enlargement of foveal avascular zone area positively correlated with a decline in best-corrected visual acuity (P: 0.01). Prominent foveal vascular impairment is detectable in the deep capillary plexus of patients with X-linked retinoschisis. Our results correlate with functional outcomes, suggesting a possible vascular role in X-linked retinoschisis clinical manifestations.
Age-related morphological changes in the basement membrane in the stria vascularis of C57BL/6 mice.
Suzuki, Mitsuya; Sakamoto, Takashi; Kashio, Akinori; Yamasoba, Tatsuya
2016-01-01
Basement membrane anionic sites (BMAS) are involved in the selective transport of electrically charged macromolecules in cochlear capillaries. Using cationic polyethyleneimine (PEI), we examined age-related changes in BMAS in the cochleae of C57BL/6 mice. The mice were grouped according to age as follows: 3 days, 4 weeks, 8 weeks, 6 months, and 12 months. In the right bony labyrinths, widths of the stria vascularis were measured in paraffin-embedded sections using light microscopy. The left bony labyrinths were immersed in a 0.5 % cationic PEI solution and embedded in epoxy resin. Ultrathin sections of the left cochlea were examined using transmission electron microscopy. A significant difference in stria vascularis width was observed between the 4-week-old and 12-month-old mice. The PEI distribution in the capillary and epithelial basement membranes (BMs) of the cochlea was observed. In all animals, PEI particles were evenly distributed in the capillary BM of the spiral ligament and in the subepithelial BM of Reissner's membrane. In the stria vascularis, PEI particles were evenly distributed in the capillary BM in 3-day-old mice. In 4- and 8-week-old mice, PEI particle sizes were markedly lower than those observed in 3-day-old mice. In 6- and 12-month-old mice, PEI particles were hardly detected in the strial capillary BM. In the strial capillary BM in these mice, the laminae rarae externa and interna disappeared, but the lamina densa became larger. We speculated that age-related changes of strial capillary BMAS may affect electrically charged macromolecule transport systems in the stria vascularis of C57BL/6 mice.
Hudlická, O; Garnham, A; Shiner, R; Egginton, S
2008-01-01
Acute ischaemia–reperfusion disrupts capillary fine structure and increases leukocyte adhesion in postcapillary venules. We determined whether chronic muscle ischaemia has similar consequences, and whether it is possible to ameliorate its effect on muscle performance. Following ischaemia (unilateral ligation, common iliac artery) rat hindlimb muscles were examined without other intervention or following treatment with an xanthine oxidase inhibitor (allopurinol), a Na+/H+ exchange blocker (amiloride), or an oxygen free radical scavenger (vitamin E). No significant leukocyte adhesion or rolling, nor changes in capillary fine structure were observed 3 days postsurgery, when limb use was limited. However, leukocyte rolling and adhesion almost trebled by 7 days (P < 0.001), when normal gait was largely restored. Capillary fine structure was disturbed over a similar time course, e.g. relative endothelial volume (control 46%, 7 days 61%; P < 0.05), that resolved by 5 weeks. Where activity was increased by mild electrical stimulation 3 days after ligation muscles showed enhanced capillary swelling (endothelial volume 66%versus 50%, P < 0.005), but improved fatigue index (52%versus 16%, P < 0.001) as a result of greater blood flow. Muscle fatigue after ligation was related to the extent of contraction-induced hyperaemia (R2= 0.725), but not capillary swelling. Amiloride, and to a lesser extent allopurinol but not vitamin E, significantly decreased leukocyte rolling and adhesion, as well as capillary endothelial swelling. We conclude that increased activity of ischaemic muscles on recovery is likely to accentuate acidosis accompanying changes in microcirculation and contribute to enhanced muscle fatigue, whereas formation of oxygen free radicals may be attenuated by endogenous protective mechanisms. PMID:18755748
Microvascularization of corpus luteum of bovine treated with equine chorionic gonadotropin.
Moura, Carlos Eduardo Bezerra; Rigoglio, Nathia Nathaly; Braz, Janine Karla França S; Machado, Marcello; Baruselli, Pietro S; Papa, Paula De Carvalho
2015-09-01
This study aimed to evaluate the morphological changes in microvascular density and corpus luteum (CL) vascularization in cows treated with eCG during stimulatory and superovulatory protocols. Sixteen cows were synchronized and divided into three groups: control (n = 6), stimulated (n = 4) and superovulated (n =6), one was submitted to estrous synchronization (ES) and received no eCG (control), and those that were submitted to ES and received eCG before or after follicular deviation (superovulation and stimulation of the dominant follicle, respectively). Ovulation was synchronized using a progesterone device-based protocol. After six days of ovulation, the cows were slaughtered and the ovaries and CL were collected. The CLs were processed and photomicrographs were taken under light microscopy to assess the vascular volume density (Vv) by stereology, and scanning electron microscopy (SEM) was used to perform ultrastructural analysis of the microvasculature. The Vv in stimulated and superovulated cows significantly increased (P ≤ 0.0001) when compared to control, indicating that the eCG is able to induce angiogenic activity in bovine CL. However, no significant differences were observed between stimulated and superovulated cows. The SEM demonstrated ratings indicative of angiogenesis, marked by several button-shaped projections in the capillaries, and the presence of more dilated capillaries in CL treated with eCG. These morphological findings are evidence of an angiogenic effect of the eCG treatment in CL of cows. © 2015 Wiley Periodicals, Inc.
Ballak, Sam B; Busé-Pot, Tinelies; Harding, Peter J; Yap, Moi H; Deldicque, Louise; de Haan, Arnold; Jaspers, Richard T; Degens, Hans
2016-04-01
We hypothesize that the attenuated hypertrophic response in old mouse muscle is (1) partly due to a reduced capillarization and angiogenesis, which is (2) accompanied by a reduced oxidative capacity and fatigue resistance in old control and overloaded muscles, that (3) can be rescued by the antioxidant resveratrol. To investigate this, the hypertrophic response, capillarization, oxidative capacity, and fatigue resistance of m. plantaris were compared in 9- and 25-month-old non-treated and 25-month-old resveratrol-treated mice. Overload increased the local capillary-to-fiber ratio less in old (15 %) than in adult (59 %) muscle (P < 0.05). Although muscles of old mice had a higher succinate dehydrogenase (SDH) activity (P < 0.05) and a slower fiber type profile (P < 0.05), the isometric fatigue resistance was similar in 9- and 25-month-old mice. In both age groups, the fatigue resistance was increased to the same extent after overload (P < 0.01), without a significant change in SDH activity, but an increased capillary density (P < 0.05). Attenuated angiogenesis during overload may contribute to the attenuated hypertrophic response in old age. Neither was rescued by resveratrol supplementation. Changes in fatigue resistance with overload and aging were dissociated from changes in SDH activity, but paralleled those in capillarization. This suggests that capillarization plays a more important role in fatigue resistance than oxidative capacity.
Direct Printing of Stretchable Elastomers for Highly Sensitive Capillary Pressure Sensors.
Liu, Wenguang; Yan, Chaoyi
2018-03-28
We demonstrate the successful fabrication of highly sensitive capillary pressure sensors using an innovative 3D printing method. Unlike conventional capacitive pressure sensors where the capacitance changes were due to the pressure-induced interspace variations between the parallel plate electrodes, in our capillary sensors the capacitance was determined by the extrusion and extraction of liquid medium and consequent changes of dielectric constants. Significant pressure sensitivity advances up to 547.9 KPa -1 were achieved. Moreover, we suggest that our innovative capillary pressure sensors can adopt a wide range of liquid mediums, such as ethanol, deionized water, and their mixtures. The devices also showed stable performances upon repeated pressing cycles. The direct and versatile printing method combined with the significant performance advances are expected to find important applications in future stretchable and wearable electronics.
NASA Astrophysics Data System (ADS)
Lu, Xuecong; Li, Baoqiang; Moeini, Mohammad; Lesage, Frédéric
2017-02-01
Gradual changes in brain microvasculature and cerebral capillary blood flow occurring with atherosclerosis may significantly contribute to cognition decline due to their role in brain tissue oxygenation. However, previous stud- ies of the relationship between cerebral capillary blood flow and brain tissue oxygenation are limited. This study aimed to investigate vascular and concomitant changes in brain tissue pO2 with atherosclerosis. Experiments in young healthy C57B1/6 mice (n=6 , WT), young atherosclerotic mice (n=6 , ATX Y) and old atherosclerotic mice (n=6 , ATX O) were performed imaging on the left sensory-motor cortex at resting state under urethane (1.5 g/kg) anesthesia using two-photon fluorescence microscopy. The results showed that pO2 around capillaries, correlated with red blood cell (RBC) flux, increased with atherosclerosis.
Chui, Toco Yuen Ping; Pinhas, Alexander; Gan, Alexander; Razeen, Moataz; Shah, Nishit; Cheang, Eric; Liu, Chun L; Dubra, Alfredo; Rosen, Richard B
2016-05-01
To characterise longitudinal changes in the retinal microvasculature of type 2 diabetes mellitus (T2DM) as exemplified in a patient with proliferative diabetic retinopathy (PDR) using an adaptive optics scanning light ophthalmoscope (AOSLO). A 35-year-old T2DM patient with PDR treated with scatter pan-retinal photocoagulation at the inferior retina 1 day prior to initial AOSLO imaging along with a 24-year-old healthy control were imaged in this study. AOSLO vascular structural and perfusion maps were acquired at four visits over a 20-week period. Capillary diameter and microaneurysm area changes were measured on the AOSLO structural maps. Imaging repeatability was established using longitudinal imaging of microvasculature in the healthy control. Capillary occlusion and recanalisation, capillary dilatation, resolution of local retinal haemorrhage, capillary hairpin formation, capillary bend formation, microaneurysm formation, progression and regression were documented over time in a region 2° superior to the fovea in the PDR patient. An identical microvascular network with same capillary diameter was observed in the control subject over time. High-resolution serial AOSLO imaging enables in vivo observation of vasculopathic changes seen in diabetes mellitus. The implications of this methodology are significant, providing the opportunity for studying the dynamics of the pathological process, as well as the possibility of identifying highly sensitive and non-invasive biomarkers of end organ damage and response to treatment. © 2016 The Authors Ophthalmic & Physiological Optics © 2016 The College of Optometrists.
Huhndorf, Monika; Moussavi, Amir; Kramann, Nadine; Will, Olga; Hattermann, Kirsten; Stadelmann, Christine; Jansen, Olav; Boretius, Susann
2016-01-01
Angiogenesis and anti-angiogenetic medications play an important role in progression and therapy of glioblastoma. In this context, in vivo characterization of the blood-brain-barrier and tumor vascularization may be important for individual prognosis and therapy optimization. We analyzed perfusion and capillary permeability of C6-gliomas in rats at different stages of tumor-growth by contrast enhanced MRI and dynamic susceptibility contrast (DSC) MRI at 7 Tesla. The analyses included maps of relative cerebral blood volume (CBV) and signal recovery derived from DSC data over a time period of up to 35 days after tumor cell injections. In all rats tumor progression was accompanied by temporal and spatial changes in CBV and capillary permeability. A leakage of the blood-brain barrier (slow contrast enhancement) was observed as soon as the tumor became detectable on T2-weighted images. Interestingly, areas of strong capillary permeability (fast signal enhancement) were predominantly localized in the center of the tumor. In contrast, the tumor rim was dominated by an increased CBV and showed the highest vessel density compared to the tumor center and the contralateral hemisphere as confirmed by histology. Substantial regional differences in the tumor highlight the importance of parameter maps in contrast or in addition to region-of-interest analyses. The data vividly illustrate how MRI including contrast-enhanced and DSC-MRI may contribute to a better understanding of tumor development.
Gardiner, Bruce S; Thompson, Sarah L; Ngo, Jennifer P; Smith, David W; Abdelkader, Amany; Broughton, Brad R S; Bertram, John F; Evans, Roger G
2012-09-01
To understand how geometric factors affect arterial-to-venous (AV) oxygen shunting, a mathematical model of diffusive oxygen transport in the renal cortex was developed. Preglomerular vascular geometry was investigated using light microscopy (providing vein shape, AV separation, and capillary density near arteries) and published micro-computed tomography (CT) data (providing vessel size and AV separation; Nordsletten DA, Blackett S, Bentley MD, Ritman EL, Smith NP. IUPS Physiome Project. http://www.physiome.org.nz/publications/nordsletten_blackett_ritman_bentley_smith_2005/folder_contents). A "U-shaped" relationship was observed between the arterial radius and the distance between the arterial and venous lumens. Veins were found to partially wrap around the artery more consistently for larger rather than smaller arteries. Intrarenal arteries were surrounded by an area of fibrous tissue, lacking capillaries, the thickness of which increased from ∼5 μm for the smallest arteries (<16-μm diameter) to ∼20 μm for the largest arteries (>200-μm diameter). Capillary density was greater near smaller arteries than larger arteries. No capillaries were observed between wrapped AV vessel pairs. The computational model comprised a single AV pair in cross section. Geometric parameters critical in renal oxygen transport were altered according to variations observed by CT and light microscopy. Lumen separation and wrapping of the vein around the artery were found to be the critical geometric factors determining the amount of oxygen shunted between AV pairs. AV oxygen shunting increases both as lumen separation decreases and as the degree of wrapping increases. The model also predicts that capillaries not only deliver oxygen, but can also remove oxygen from the cortical parenchyma close to an AV pair. Thus the presence of oxygen sinks (capillaries or tubules) near arteries would reduce the effectiveness of AV oxygen shunting. Collectively, these data suggest that AV oxygen shunting would be favored in larger vessels common to the cortical and medullary circulations (i.e., arcuate and proximal interlobular arteries) rather than the smaller vessels specific to the cortical circulation (distal interlobular arteries and afferent arterioles).
Wells, Shannon R; Jennings, Merilyn H; Rome, Courtney; Hadjivassiliou, Vicky; Papas, Konstantinos A; Alexander, Jonathon S
2010-07-01
Vitamin E, a micronutrient (comprising alpha-, beta-, gamma- and delta-tocopherols, alpha-, beta-, gamma- and delta-tocotrienols), has documented antioxidant and non-antioxidant effects, some of which inhibit inflammation and angiogenesis. We compared the abilities of alpha-, gamma- and delta-tocopherols to regulate human blood cytotoxicity (BEC) and lymphatic endothelial cytotoxicity (LEC), proliferation, invasiveness, permeability, capillary formation and suppression of TNF-alpha-induced VCAM-1 as in vitro models of inflammatory angiogenesis. alpha-, gamma- and delta-tocopherols were not toxic to either cell type up to 40 microM. In BEC, confluent cell density was decreased by all concentrations of delta- and gamma-tocopherol (10-40 microM) but not by alpha-tocopherol. LEC showed no change in cell density in response to tocopherols. delta-Tocopherol (40 microM), but not other isomers, decreased BEC invasiveness. In LEC, all doses of gamma-tocopherol, as well as the highest dose of alpha-tocopherol (40 microM), decreased cell invasiveness. delta-Tocopherol had no effect on LEC invasiveness at any molarity. delta-Tocopherol dose dependently increased cell permeability at 48 h in BEC and LEC; alpha- and gamma-tocopherols showed slight effects. Capillary tube formation was decreased by high dose (40 microM) concentrations of alpha-, gamma- and delta-tocopherol, but showed no effects with smaller doses (10-20 microM) in BEC. gamma-Tocopherol (10-20 microM) and alpha-tocopherol (10 microM), but not delta-tocopherol, increased LEC capillary tube formation. Lastly, in BEC, alpha-, gamma- and delta-tocopherol each dose-dependently reduced TNF-alpha-induced expression of VCAM-1. In LEC, there was no significant change to TNF-alpha-induced VCAM-1 expression with any concentration of alpha-, gamma- or delta-tocopherol. These data demonstrate that physiological levels (0-40 microM) of alpha-, gamma- and delta-tocopherols are nontoxic and dietary tocopherols, especially delta-tocopherol, can limit several BEC and LEC endothelial behaviors associated with angiogenesis. Tocopherols may therefore represent important nutrient-signals that limit cell behaviors related to inflammation/angiogenesis, which when deficient, may predispose individuals to risks associated with elevated angiogenesis such as inflammation and cancer; further differences seen from the tocopherols may be due to their blood or lymphatic cell origin. (c) 2010 Elsevier Inc. All rights reserved.
Developmental changes in metabolism and transport properties of capillaries isolated from rat brain.
Betz, A L; Goldstein, G W
1981-03-01
1. Capillaries were isolated from the brains of 1- to 45-day-old rats in order to study the development of metabolic and transport aspects of the blood-brain barrier. 2. The hydroxyproline content of capillary hydrolysates increased nearly threefold between 5 and 45 days of age. This finding is consistent with histological studies showing thickening of capillary basement membrane during development. 3. The activities of L-DOPA decarboxylase and monoamine oxidase were greatest in capillaries from 10-day-old rat brain. Thus, the metabolic blood-brain barrier for amine precursors is present during early development. 4. Capillaries from all ages were able to metabolize glucose, beta-hydroxybutyrate and palmitate. The rate of glucose oxidation more than doubled between 21 and 30 days of age but subsequently decreased. In contrast, beta-hydroxybutyrate and palmitate oxidation increased throughout development. These data suggest a sparing effect by alternate fuels on glucose metabolism. 5. Capillary glucose uptake was similar at 10 and 30 days of age and activity of the ouabain-sensitive K+ pump (measured using 86Rb+) was relatively constant at all ages. In contrast, Na+-dependent neutral amino acid transport was not present until after 21 days of age. Since this transport system may be responsible for the active efflux of neutral amino acids from brain to blood, it is likely that this process does not occur at the immature blood-brain barrier. 6. We conclude that various aspects of brain capillary functions show distinct developmental patterns which may be related to changes in blood-brain barrier permeability during development.
A thermodynamic approach to link self-organization, preferential flow and rainfall-runoff behaviour
NASA Astrophysics Data System (ADS)
Zehe, E.; Ehret, U.; Blume, T.; Kleidon, A.; Scherer, U.; Westhoff, M.
2013-11-01
This study investigates whether a thermodynamically optimal hillslope structure can, if existent, serve as a first guess for uncalibrated predictions of rainfall-runoff. To this end we propose a thermodynamic framework to link rainfall-runoff processes and dynamics of potential energy, kinetic energy and capillary binding energy in catchments and hillslopes. The starting point is that hydraulic equilibrium in soil corresponds to local thermodynamic equilibrium (LTE), characterized by a local maximum entropy/minimum of free energy of soil water. Deviations from LTE occur either due to evaporative losses, which increase absolute values of negative capillary binding energy of soil water and reduce its potential energy, or due to infiltration of rainfall, which increases potential energy of soil water and reduces the strength of capillary binding energy. The amplitude and relaxation time of these deviations depend on climate, vegetation, soil hydraulic functions, topography and density of macropores. Based on this framework we analysed the free energy balance of hillslopes within numerical experiments that perturbed model structures with respect to the surface density of macropores. These model structures have been previously shown to allow successful long-term simulations of the water balances of the Weiherbach and the Malalcahuello catchments, which are located in distinctly different pedological and climatic settings. Our findings offer a new perspective on different functions of preferential flow paths depending on the pedological setting. Free energy dynamics of soil water in the cohesive soils of the Weiherbach is dominated by dynamics of capillary binding energy. Macropores act as dissipative wetting structures by enlarging water flows against steep gradients in soil water potential after long dry spells. This implies accelerated depletion of these gradients and faster relaxation back towards LTE. We found two local optima in macropore density that maximize reduction rates of free energy of soil water during rainfall-driven conditions. These two optima exist because reduction rates of free energy are, in this case, a second-order polynomial of the wetting rate, which implicitly depends on macroporosity. An uncalibrated long-term simulation of the water balance of the Weiherbach catchment based on the first optimum macroporosity performed almost as well as the best fit when macroporosity was calibrated to match rainfall-runoff. In the Malalcahuello catchment we did not find an apparent optimum density of macropores, because free energy dynamics of soil water during rainfall-driven conditions is dominated by increases of potential energy. Macropores act as dissipative drainage structures by enhancing export of potential energy. No optimum macropore density exists in this case because potential energy change rates scale linearly with the wetting rate. We found, however, a distinguished macroporosity that assures steady-state conditions of the potential energy balance of the soil, in the sense that average storage of potential energy is compensated by average potential energy export. This distinguished macroporosity was close to the value that yielded the best fit of rainfall-runoff behaviour during a calibration exercise and allowed a robust estimate of the annual runoff coefficient. Our findings are promising for predictions in ungauged catchments (PUB) as the optimal/distinguished model structures can serve as a first guess for uncalibrated predictions of rainfall-runoff. They also offer an alternative for classifying catchments according to their similarity of the free energy balance components.
Mahalingam, Sajeni; McClelland, Grant B; Scott, Graham R
2017-07-15
Mitochondrial function changes over time at high altitudes, but the potential benefits of these changes for hypoxia resistance remains unclear. We used high-altitude-adapted populations of deer mice, which exhibit enhanced aerobic performance in hypoxia, to examine whether changes in mitochondrial physiology or intracellular distribution in the muscle contribute to hypoxia resistance. Permeabilized muscle fibres from the gastrocnemius muscle had higher respiratory capacities in high-altitude mice than in low-altitude mice. Highlanders also had higher mitochondrial volume densities, due entirely to an enriched abundance of subsarcolemmal mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. There were several effects of hypoxia acclimation on mitochondrial function, some of which were population specific, but they differed from the evolved changes in high-altitude natives, which probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. High-altitude natives that have evolved to live in hypoxic environments provide a compelling system to understand how animals can overcome impairments in oxygen availability. We examined whether these include changes in mitochondrial physiology or intracellular distribution that contribute to hypoxia resistance in high-altitude deer mice (Peromyscus maniculatus). Mice from populations native to high and low altitudes were born and raised in captivity, and as adults were acclimated to normoxia or hypobaric hypoxia (equivalent to 4300 m elevation). We found that highlanders had higher respiratory capacities in the gastrocnemius (but not soleus) muscle than lowlanders (assessed using permeabilized fibres with single or multiple inputs to the electron transport system), due in large part to higher mitochondrial volume densities in the gastrocnemius. The latter was attributed to an increased abundance of subsarcolemmal (but not intermyofibrillar) mitochondria, such that more mitochondria were situated near the cell membrane and adjacent to capillaries. Hypoxia acclimation had no significant effect on these population differences, but it did increase mitochondrial cristae surface densities of mitochondria in both populations. Hypoxia acclimation also altered the physiology of isolated mitochondria by affecting respiratory capacities and cytochrome c oxidase activities in population-specific manners. Chronic hypoxia decreased the release of reactive oxygen species by isolated mitochondria in both populations. There were subtle differences in O 2 kinetics between populations, with highlanders exhibiting increased mitochondrial O 2 affinity or catalytic efficiency in some conditions. Our results suggest that evolved changes in mitochondrial physiology in high-altitude natives are distinct from the effects of hypoxia acclimation, and probably provide a better indication of adaptive traits that improve performance and hypoxia resistance at high altitudes. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
A three-dimensional neural spheroid model for capillary-like network formation.
Boutin, Molly E; Kramer, Liana L; Livi, Liane L; Brown, Tyler; Moore, Christopher; Hoffman-Kim, Diane
2018-04-01
In vitro three-dimensional neural spheroid models have an in vivo-like cell density, and have the potential to reduce animal usage and increase experimental throughput. The aim of this study was to establish a spheroid model to study the formation of capillary-like networks in a three-dimensional environment that incorporates both neuronal and glial cell types, and does not require exogenous vasculogenic growth factors. We created self-assembled, scaffold-free cellular spheroids using primary-derived postnatal rodent cortex as a cell source. The interactions between relevant neural cell types, basement membrane proteins, and endothelial cells were characterized by immunohistochemistry. Transmission electron microscopy was used to determine if endothelial network structures had lumens. Endothelial cells within cortical spheroids assembled into capillary-like networks with lumens. Networks were surrounded by basement membrane proteins, including laminin, fibronectin and collagen IV, as well as key neurovascular cell types. Existing in vitro models of the cortical neurovascular environment study monolayers of endothelial cells, either on transwell inserts or coating cellular spheroids. These models are not well suited to study vasculogenesis, a process hallmarked by endothelial cell cord formation and subsequent lumenization. The neural spheroid is a new model to study the formation of endothelial cell capillary-like structures in vitro within a high cell density three-dimensional environment that contains both neuronal and glial populations. This model can be applied to investigate vascular assembly in healthy or disease states, such as stroke, traumatic brain injury, or neurodegenerative disorders. Copyright © 2017 Elsevier B.V. All rights reserved.
Desiderio, C; Fanali, S
2000-10-20
In this study capillary electrochromatography (CEC) was utilized for the separation of ten non-steroidal anti-inflammatory drugs (NSAIDs). Experiments were carried out in a commercially available CE instrument using a packed capillary with RP-18 silica particles where the stationary phase completely filled the capillary. The mobile phase consisted of a mixture of ammonium formate buffer pH 2.5 and acetonitrile. Selectivity and resolution were studied changing the pH and the concentration of the buffer, the acetonitrile content mobile phase and the capillary temperature. The optimum experimental conditions for CEC separation of the studied drug mixture were found using 50 mM ammonium formate pH 2.5-acetonitrile (40:60) at 25 degrees C. The CEC capillary was coupled to an electrospray mass spectrometer for the characterization of the NSAIDs. A mobile phase composed by the same buffer but with a higher concentration of acetonitrile (90%) was used in order to speed up the separation of analytes.
Effects of anesthesia on the cerebral capillary blood flow in young and old mice
NASA Astrophysics Data System (ADS)
Moeini, Mohammad; Tabatabaei, Maryam S.; Bélanger, Samuel; Avti, Pramod; Castonguay, Alexandre; Pouliot, Philippe; Lesage, Frédéric
2015-03-01
Despite recent findings on the possible role of age-related cerebral microvasculature changes in cognition decline, previous studies of capillary blood flow in aging (using animal models) are scarce and limited to anesthetized conditions. Since anesthesia can have different effects in young and old animals, it may introduce a confounding effect in aging studies. The present study aimed to eliminate the potential confound introduced by anesthesia by measuring capillary blood flow parameters in both awake conditions and under isoflurane anesthesia. We used 2-photon laser scanning fluorescence microscopy to measure capillary diameter, red blood cell velocity and flux, hematocrit and capillary volumetric flow in individual capillaries in the barrel cortex of 6- and 24-month old C57Bl/6 mice. It was observed that microvascular properties are significantly affected by anesthesia leading to different trends in capillary blood flow parameters with aging when measured under awake or anesthetized conditions. The findings in this study suggest taking extra care in interpreting aging studies from anesthetized animals.
Changes in Lung Capillary Permeability in Renal Failure
Crosbie, W. A.; Snowden, S.; Parsons, V.
1972-01-01
Excess fluid in the lung can be quantified in chronic dialysis patients by using the double indicator dilution technique. The lung capillaries show an increased permeability to sodium when these patents develop pulmonary oedema. PMID:4564763
NASA Astrophysics Data System (ADS)
Byers, R. A.; Maiti, R.; Danby, S. G.; Pang, E. J.; Mitchell, B.; Carré, M. J.; Lewis, R.; Cork, M. J.; Matcher, S. J.
2017-02-01
Background and Aim: With inflammatory skin conditions such as atopic dermatitis (AD), epidermal thickness is mediated by both pathological hyperplasia and atrophy such as that resulting from corticosteroid treatment. Such changes are likely to influence the depth and shape of the underlying microcirculation. Optical coherence tomography (OCT) provides a non-invasive view into the tissue, however structural measures of epidermal thickness are made challenging due to the lack of a delineated dermal-epidermal junction in AD patients. Instead, angiographic extensions to OCT may allow for direct measurement of vascular depth, potentially presenting a more robust method of estimating the degree of epidermal thickening. Methods and results: To investigate microcirculatory changes within AD patients, volumes of angiographic OCT data were collected from 5 healthy volunteers and compared to that of 5 AD patients. Test sites included the cubital and popliteal fossa, which are commonly affected by AD. Measurements of the capillary loop and superficial arteriolar plexus (SAP) depth were acquired and used to estimate the lower and upper bounds of the undulating basement membrane of the dermal-epidermal junction. Furthermore, quantitative parameters such as vessel density and diameter were derived from each dataset and compared between groups. Capillary loop depth increased slightly for AD patients at the poplitial fossa and SAP was found to be measurably deeper in AD patients at both sites, likely due to localized epidermal hyperplasia.
Vacuum injection of hydrogen micro-sphere beams
NASA Astrophysics Data System (ADS)
Trostell, Bertil
1995-02-01
The design, construction and operation of a facility producing hydrogen micro-sphere beams in vacuum are summarized. A scheme is utilized, where a liquid hydrogen jet is broken up into droplets, which are injected into vacuum through a capillary at continuum gas flow conditions. In a typical beam, 40 μm diameter micro-spheres, generated at a frequency of 70 kHz, travel at free flight speeds of 60 m/s. The angular divergence of the beam amounts to ±0.04°. The intention is to use the micro-sphere beams as high luminosity internal targets in the WASA experimental station at the CELSIUS cooler storage ring in Uppsala. A time averaged target density profile, having a FWHM and peak density of 3.5 mm and 5 × 10 16 atoms/cm 2, respectively, is obtained 2.5 m downstream of the capillary exit.
Sublingual microcirculatory blood flow and vessel density in Sherpas at high altitude
Coppel, Jonny; Court, Jo; van der Kaaij, Jildou; Vercueil, Andre; Feelisch, Martin; Levett, Denny; Mythen, Monty; Grocott, Michael P.; Martin, Daniel
2017-01-01
Anecdotal reports suggest that Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, despite exhibiting lower arterial oxygen content than acclimatized lowlanders. This study tested the hypothesis that Sherpas exposed to hypobaric hypoxia on ascent to 5,300 m develop increased microcirculatory blood flow as a means of maintaining tissue oxygen delivery. Incident dark-field imaging was used to obtain images of the sublingual microcirculation from 64 Sherpas and 69 lowlanders. Serial measurements were obtained from participants undertaking an ascent from baseline testing (35 m or 1,300 m) to Everest base camp (5,300 m) and following subsequent descent in Kathmandu (1,300 m). Microcirculatory flow index and heterogeneity index were used to provide indexes of microcirculatory flow, while capillary density was assessed using small vessel density. Sherpas demonstrated significantly greater microcirculatory blood flow at Everest base camp, but not at baseline testing or on return in Kathmandu, than lowlanders. Additionally, blood flow exhibited greater homogeneity at 5,300 and 1,300 m (descent) in Sherpas than lowlanders. Sublingual small vessel density was not different between the two cohorts at baseline testing or at 1,300 m; however, at 5,300 m, capillary density was up to 30% greater in Sherpas. These data suggest that Sherpas can maintain a significantly greater microcirculatory flow per unit time and flow per unit volume of tissue at high altitude than lowlanders. These findings support the notion that peripheral vascular factors at the microcirculatory level may be important in the process of adaptation to hypoxia. NEW & NOTEWORTHY Sherpa highlanders demonstrate extraordinary tolerance to hypoxia at high altitude, yet the physiological mechanisms underlying this tolerance remain unknown. In our prospective study, conducted on healthy volunteers ascending to Everest base camp (5,300 m), we demonstrated that Sherpas have a higher sublingual microcirculatory blood flow and greater capillary density at high altitude than lowlanders. These findings support the notion that the peripheral microcirculation plays a key role in the process of long-term adaptation to hypoxia. PMID:28126908
Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux
Lee, Jonghwan; Jiang, James Y.; Wu, Weicheng; Lesage, Frederic; Boas, David A.
2014-01-01
We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation. PMID:24761298
NASA Astrophysics Data System (ADS)
Ivanov, Roman A.; Melkikh, Alexey V.
2017-09-01
It has been experimentally proved that it is possible to produce a metal capillary structure with significant capillary action and free shape configuration using selective laser melting. Capillaries are created by dividing the solid detail volume into micro-sized parallel walls with roughness as a result of SLM 3D printing. Experiments are conducted on aluminum powder with particle size in the range of 10-40 µm (,) and distances in 3D model between surfaces incapillary generation zone in the range of 50-200 µm. It is showed that products produced from model with 100 µm gaps have the greatest efficiency of fluid lifting as a result of obtaining stable arrays of capillaries of 20-40 µm in size. Change in the direction of (growing) printingthe product doesn't significantly influence on capillary geometry, but it affects on safety of the structure.
NASA Astrophysics Data System (ADS)
Liu, Yawei; Zhang, Xianren
2016-12-01
In this work, we focus on investigating how nanobubbles mediate long-range interaction between neighboring solid substrates in the presence of the contact line pinning effect caused by surface heterogeneities. Using the constrained lattice density functional theory (LDFT), we prove that the nanobubbles, which take the form of vapor bridges here, are stabilized by the pinning effect if the separation between two substrates is less than a critical distance. The critical distance strongly depends on the chemical potential (i.e., the degree of saturation) and could become extremely long at a special chemical potential. Moreover, under the pinning effect, the substrate chemistry only determines the stability of the vapor bridges and the range of the capillary force, but has less influences on the magnitude of the capillary force, indicating that the substrate chemistry or the apparent contact angle for droplets or bubbles on the substrates is no longer a direct parameter to determine the magnitude of capillary force. A qualitative analysis for the two dimensional vapor bridges by considering the feedback mechanism can explain the results from the LDFT calculations.
Kumar, Niyanta N.; Gautam, Mohan; Lochhead, Jeffrey J.; Wolak, Daniel J.; Ithapu, Vamsi; Singh, Vikas; Thorne, Robert G.
2016-01-01
Intranasal administration provides a non-invasive drug delivery route that has been proposed to target macromolecules either to the brain via direct extracellular cranial nerve-associated pathways or to the periphery via absorption into the systemic circulation. Delivering drugs to nasal regions that have lower vascular density and/or permeability may allow more drug to access the extracellular cranial nerve-associated pathways and therefore favor delivery to the brain. However, relative vascular permeabilities of the different nasal mucosal sites have not yet been reported. Here, we determined that the relative capillary permeability to hydrophilic macromolecule tracers is significantly greater in nasal respiratory regions than in olfactory regions. Mean capillary density in the nasal mucosa was also approximately 5-fold higher in nasal respiratory regions than in olfactory regions. Applying capillary pore theory and normalization to our permeability data yielded mean pore diameter estimates ranging from 13–17 nm for the nasal respiratory vasculature compared to <10 nm for the vasculature in olfactory regions. The results suggest lymphatic drainage for CNS immune responses may be favored in olfactory regions due to relatively lower clearance to the bloodstream. Lower blood clearance may also provide a reason to target the olfactory area for drug delivery to the brain. PMID:27558973
Generation of warm dense matter using an argon based capillary discharge laser
NASA Astrophysics Data System (ADS)
Rossall, A. K.; Tallents, G. J.
2015-06-01
Argon based capillary discharge lasers operating in the extreme ultra violet (EUV) at 46.9 nm with output up to 0.5 mJ energy per pulse and repetition rates up to 10 Hz are capable of focused irradiances of 109-1012 W cm-2 and can be used to generate plasma in the warm dense matter regime by irradiating solid material. To model the interaction between such an EUV laser and solid material, the 2D radiative-hydrodynamic code POLLUX has been modified to include absorption via direct photo-ionisation, a super-configuration model to describe the ionization-dependent electronic configurations and a calculation of plasma refractive indices for ray tracing of the incident EUV laser radiation. A simulation study is presented, demonstrating how capillary discharge lasers of 1200 ps pulse duration can be used to generate warm dense matter at close to solid densities with temperatures of a few eV and energy densities up to 1 × 105 J cm-3. Plasmas produced by EUV laser irradiation are shown to be useful for examining the properties of warm dense matter as, for example, plasma emission is not masked by hotter, less dense plasma emission that occurs with visible/infra-red laser target irradiation.
Kim, Wan-Joong; Cho, Hyo Young; Jeong, Bongjin; Byun, Sangwon; Huh, JaeDoo; Kim, Young Jun
2017-01-01
Using gold nanoparticles (AuNPs) on “capillary enzyme-linked immunosorbent assay (ELISA)”, we produced highly sensitive and rapid assays, which are the major attributes for point-of-care applications. First, in order to understand the size effect of AuNPs, AuNPs of varying diameters (5 nm, 10 nm, 15 nm, 20 nm, 30 nm, and 50 nm) conjugated with Horseradish Peroxidase (HRP)-labeled anti-C reactive protein (antiCRP) (AuNP•antiCRP-HRP) were used for well-plate ELISA. AuNP of 10 nm produced the largest optical density, enabling detection of 0.1 ng/mL of CRP with only 30 s of incubation, in contrast to 10 ng/mL for the ELISA run in the absence of AuNP. Then, AuNP of 10 nm conjugated with antiCRP-HRP (AuNP•antiCRP-HRP) was used for “capillary ELISA” to detect as low as 0.1 ng/mL of CRP. Also, kinetic study on both 96-well plates and in a capillary tube using antiCRP-HRP or AuNP•antiCRP-HRP showed a synergistic effect between AuNP and the capillary system, in which the fastest assay was observed from the “AuNP capillary ELISA”, with its maximum absorbance reaching 2.5 min, while the slowest was the typical well-plate ELISA with its maximum absorbance reaching in 13.5 min. PMID:29278402
Kawanishi, Kunio; Honda, Kazuho; Tsukada, Misao; Oda, Hideaki; Nitta, Kosaku
2013-01-01
♦ Background: The effects of novel biocompatible peritoneal dialysis (PD) solutions on human peritoneal membrane pathology have yet to be determined. Quantitative evaluation of human peritoneal biopsy specimens may reveal the effects of the new solutions on peritoneal membrane pathology. ♦ Methods: Peritoneal specimens from 24 PD patients being treated with either acidic solution containing high-glucose degradation products [GDPs (n = 12)] or neutral solution with low GDPs (n = 12) were investigated at the end of PD. As controls, pre-PD peritoneal specimens, obtained from 13 patients at PD catheter insertion, were also investigated. The extent of peritoneal fibrosis, vascular sclerosis, and advanced glycation end-product (AGE) accumulation were evaluated by quantitative or semi-quantitative methods. The average densities of CD31-positive vessels and podoplanin-positive lymphatic vessels were also determined. ♦ Results: Peritoneal membrane fibrosis, vascular sclerosis, and AGE accumulation were significantly suppressed in the neutral group compared with the acidic group. The neutral group also showed lower peritoneal equilibration test scores and preserved ultrafiltration volume. The density of blood capillaries, but not of lymphatic capillaries, was significantly increased in the neutral group compared with the acidic and pre-PD groups. ♦ Conclusions: Neutral solutions with low GDPs are associated with less peritoneal membrane fibrosis and vascular sclerosis through suppression of AGE accumulation. However, contrary to expectation, blood capillary density was increased in the neutral group. The altered contents of the new PD solutions modified peritoneal membrane morphology and function in patients undergoing PD. PMID:23123670
Jin, E; Ghazizadeh, M; Fujiwara, M; Nagashima, M; Shimizu, H; Ohaki, Y; Arai, S; Gomibuchi, M; Takemura, T; Kawanami, O
2001-09-01
Normal alveolar capillary endothelium is quiescent in nature and displays anticoagulant thrombomodulin (TM) on its surface. The cytoplasms of these endothelial cells are ultrastructurally non-fenestrated type, and they barely express von Willebrand factor (vWf). Alveolar fibrosis is accompanied by a capillary endothelium reactive for vWf, and a loss of TM expression. In primary lung adenocarcinoma, neovascularization occurs in association with alveolar fibrosis. In order to study basic factors related to angiogenesis and phenotypic changes of the capillaries located in tumor-bearing alveolar walls, we examined 37 primary lung adenocarcinomas with electron microscopy and confocal laser scanning microscopy with antibodies for TM, vWf, vascular endothelial growth factor (VEGF), and its receptors (KDR and Flt-1), and proliferating markers (Ki-67/proliferating cell nuclear antigen). Tissues microdissected specifically from alveolar walls were used for reverse transcription-polymerase chain reaction (RT-PCR) to assess expressions of mRNA isoforms of VEGF and its receptors. New capillary branching was found by ultrastructural study in the alveolar walls in 12% of the patients. Nuclei of the capillary endothelial cells were reactive for proliferating cell markers. Endothelial fenestrae were developed in 65% of the patients, TM reactivity was lost in the alveolar capillaries, and their cell cytoplasms obtained a reactivity for vWf through a transitional mosaic-like distribution pattern of both antigens. Besides cytoplasmic VEGF expression in neoplastic cells, tumor-bearing alveolar walls showed significant expression of mRNA of VEGF165 and KDR. These findings imply that angiogenesis and phenotypic changes of the alveolar capillaries are closely related to a higher expression of tumor-associated VEGF165 and of KDR in the alveolar walls in primary lung adenocarcinoma.
Electric field measurement in the dielectric tube of helium atmospheric pressure plasma jet
NASA Astrophysics Data System (ADS)
Sretenović, Goran B.; Guaitella, Olivier; Sobota, Ana; Krstić, Ivan B.; Kovačević, Vesna V.; Obradović, Bratislav M.; Kuraica, Milorad M.
2017-03-01
The results of the electric field measurements in the capillary of the helium plasma jet are presented in this article. Distributions of the electric field for the streamers are determined for different gas flow rates. It is found that electric field strength in front of the ionization wave decreases as it approaches to the exit of the tube. The values obtained under presented experimental conditions are in the range of 5-11 kV/cm. It was found that the increase in gas flow above 1500 SCCM could induce substantial changes in the discharge operation. This is reflected through the formation of the brighter discharge region and appearance of the electric field maxima. Furthermore, using the measured values of the electric field strength in the streamer head, it was possible to estimate electron densities in the streamer channel. Maximal density of 4 × 1011 cm-3 is obtained in the vicinity of the grounded ring electrode. Similar behaviors of the electron density distributions to the distributions of the electric field strength are found under the studied experimental conditions.
NASA Astrophysics Data System (ADS)
Digilov, Rafael M.; Reiner, M.
2007-03-01
The operation principle of the mass-controlled capillary viscometer is presented for a Newtonian liquid. The derived equation for the temporal changes of the mass in a liquid column draining under gravity through a discharge capillary tube accounts self-consistently for the inertial convective term associated with the acceleration effect. The viscosity of water measured at different temperatures using the new approach is in good agreement with literature data.
NASA Technical Reports Server (NTRS)
Seidenberg, Benjamin (Inventor); Swanson, Theodore (Inventor)
1989-01-01
A wick for use in a capillary loop pump heat pipe is disclosed. The wick material is an essentially uniformly porous, permeable, open-cell, silicon dioxide/aluminum oxide inorganic ceramic foam having a silica fiber ratio, by weight, of about 78 to 22, respectively, a density of 6 lbs/cu ft, and an average pore size of less than 5 microns. A representative material having these characteristics is Lockheed Missile and Space Company, Inc.'s HTP 6-22. This material is fully compatible with the freons and anhydrous ammonia and allows for the use of these very efficient working fluids, and others, in capillary loops.
Dawson, Terence J; Mifsud, Brock; Raad, Matthew C; Webster, Koa N
2004-07-01
Marsupials and placentals together comprise the Theria, the advanced mammals, but they have had long independent evolutionary histories, with the last common ancestor occurring more than 125 million years ago. Although in the past the marsupials were considered to be metabolically 'primitive', the red kangaroo Macropus rufus has been reported to have an aerobic capacity (VO2max) comparable to that of the most 'athletic' of placentals such as dogs. However, kangaroos travel at moderate speeds with lower relative cost than quadrupedal placentals. Given the long independent evolution of the two therian groups, and their unusual locomotor energetics, do kangaroos achieve their high aerobic capacity using the same structural and functional mechanisms used by (athletic) placentals? Red kangaroo skeletal muscle morphometry matched closely the general aerobic characteristics of placental mammals. The relationship between total mitochondrial volume in skeletal muscle and VO2max during exercise was identical to that in quadrupedal placentals, and differed from that in bipedal humans. As for placentals generally, red kangaroo mitochondrial oxygen consumption at VO2max was 4.7 ml O2 min(-1) ml(-1) of mitochondria. Also, the inner mitochondrial membrane densities were 35.8 +/- 0.7 m2 ml(-1) of mitochondria, which is the same as for placental mammals, and the same pattern of similarity was seen for capillary densities and volumes. The overall data for kangaroos was equivalent to that seen in athletic placentals such as dogs and pronghorns. Total skeletal muscle mass was high, being around 50% of body mass, and was concentrated around the pelvis and lower back. The majority of the muscles sampled had relatively high mitochondrial volume densities, in the range 8.8-10.6% in the major locomotor muscles. Again, capillary densities and capillary blood volumes followed the pattern seen for mitochondria. Our results indicate that the red kangaroo, despite its locomotion and extreme body form, shows fundamental aerobic/muscular relationships that appear common to both marsupials and placentals. The evolution of such metabolic relationships apparently predates the divergence of the therian groups in the early Cretaceous, and perhaps evolved in the mammal-like reptiles during the Triassic (220 million years ago) before the actual evolution of the mammals.
Rispoli, Marco; Savastano, Maria Cristina; Lumbroso, Bruno
2015-11-01
To analyze the foveal microvasculature features in eyes with branch retinal vein occlusion (BRVO) using optical coherence tomography angiography based on split spectrum amplitude decorrelation angiography technology. A total of 10 BRVO eyes (mean age 64.2 ± 8.02 range between 52 years and 76 years) were evaluated by optical coherence tomography angiography (XR-Avanti; Optovue). The macular angiography scan protocol covered a 3 mm × 3 mm area. The focus of angiography analysis were two retinal layers: superficial vascular network and deep vascular network. The following vascular morphological congestion parameters were assessed in the vein occlusion area in both the superficial and deep networks: foveal avascular zone enlargement, capillary non-perfusion occurrence, microvascular abnormalities appearance, and vascular congestion signs. Image analyses were performed by 2 masked observers and interobserver agreement of image analyses was 0.90 (κ = 0.225, P < 0.01). In both superficial and deep network of BRVO, a decrease in capillary density with foveal avascular zone enlargement, capillary non-perfusion occurrence, and microvascular abnormalities appearance was observed (P < 0.01). The deep network showed the main vascular congestion at the boundary between healthy and nonperfused retina. Optical coherence tomography angiography in BRVO allows to detect foveal avascular zone enlargement, capillary nonperfusion, microvascular abnormalities, and vascular congestion signs both in the superficial and deep capillary network in all eyes. Optical coherence tomography angiography technology is a potential clinical tool for BRVO diagnosis and follow-up, providing stratigraphic vascular details that have not been previously observed by standard fluorescein angiography. The normal retinal vascular nets and areas of nonperfusion and congestion can be identified at various retinal levels. Optical coherence tomography angiography provides noninvasive images of the retinal capillaries and vascular networks.
Ford, R M; Lauffenburger, D A
1992-05-01
An individual cell-based mathematical model of Rivero et al. provides a framework for determining values of the chemotactic sensitivity coefficient chi 0, an intrinsic cell population parameter that characterizes the chemotactic response of bacterial populations. This coefficient can theoretically relate the swimming behavior of individual cells to the resulting migration of a bacterial population. When this model is applied to the commonly used capillary assay, an approximate solution can be obtained for a particular range of chemotactic strengths yielding a very simple analytical expression for estimating the value of chi 0, [formula: see text] from measurements of cell accumulation in the capillary, N, when attractant uptake is negligible. A0 and A infinity are the dimensionless attractant concentrations initially present at the mouth of the capillary and far into the capillary, respectively, which are scaled by Kd, the effective dissociation constant for receptor-attractant binding. D is the attractant diffusivity, and mu is the cell random motility coefficient. NRM is the cell accumulation in the capillary in the absence of an attractant gradient, from which mu can be determined independently as mu = (pi/4t)(NRM/pi r2bc)2, with r the capillary tube radius and bc the bacterial density initially in the chamber. When attractant uptake is significant, a slightly more involved procedure requiring a simple numerical integration becomes necessary. As an example, we apply this approach to quantitatively characterize, in terms of the chemotactic sensitivity coefficient chi 0, data from Terracciano indicating enhanced chemotactic responses of Escherichia coli to galactose when cultured under growth-limiting galactose levels in a chemostat.
A Simple Theory of Capillary-Gravity Wave Turbulence
NASA Technical Reports Server (NTRS)
Glazman, Roman E.
1995-01-01
Employing a recently proposed 'multi-wave interaction' theory, inertial spectra of capillary gravity waves are derived. This case is characterized by a rather high degree of nonlinearity and a complicated dispersion law. The absence of scale invariance makes this and some other problems of wave turbulence (e.g., nonlinear inertia gravity waves) intractable by small-perturbation techniques, even in the weak-turbulence limit. The analytical solution obtained in the present work for an arbitrary degree of nonlinearity is shown to be in reasonable agreement with experimental data. The theory explains the dependence of the wave spectrum on wind input and describes the accelerated roll-off of the spectral density function in the narrow sub-range separating scale-invariant regimes of purely gravity and capillary waves, while the appropriate (long- and short-wave) limits yield power laws corresponding to the Zakharov-Filonenko and Phillips spectra.
Measuring Interfacial Tension Between Immiscible Liquids
NASA Technical Reports Server (NTRS)
Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.
1995-01-01
Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.
Intermittent KoldBlue cryotherapy of 3x10 min changes mid-portion Achilles tendon microcirculation.
Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M
2007-06-01
Neovascularisation and microcirculatory changes have been reported in Achilles tendinopathy. Cryotherapy and compression, as part of a rest, ice, compression and elevation regimen, are shown to decrease pain and improve function. However, the microcirculatory changes following a given dosage of cryotherapy on mid-portion Achilles tendon remain unclear. Prospective clinical cohort study, level of evidence 2. 30 people (12 males, 33 (SD 12) years, body mass index 25.6 (5.3) kg/m2) were included in the cohort. 3x10 min KoldBlue ankle-cooling bandages were applied and microcirculation of Achilles tendon mid-portion was real-time and continuously assessed using a laser-Doppler-spectrophotometry system (O2C, Germany). Superficial capillary blood flow was reduced from 42 to 6, 5 and 3 relative units (rU) in the first, second and third cryotherapy periods, respectively (-65%, p = 0.001), with no significant capillary hyperaemia. Deep capillary tendon blood flow was reduced from 180 to 82, 53 and 52 rU (-71%, p = 0.001) within 6-9 min of application without hyperaemia. Superficial tendon oxygen saturation dropped significantly from 43% to 26%, 18% and 11% (p = 0.001) after repetitive cryotherapy, with persisting increase of tendon oxygenation during rewarming (51%, 49% and 54%, p = 0.077) up to 27% of the baseline level. At 8 mm tendon depth, cryotherapy preserved local oxygenation. Relative postcapillary venous tendon filling pressures were favourably reduced from 41 (11) to 31, 28 and 26 rU (-36%, p = 0.001) superficially and from 56 (11) to 45, 46 and 48 rU (-18%, p = 0.001) in deep capillary blood flow during cryotherapy, facilitating capillary venous clearance. Intermittent cryotherapy of 3x10 min significantly decreases local Achilles tendon mid-portion capillary blood flow by 71%. Within 2 min of rewarming, tendon oxygen saturation is re-established following cryotherapy. Postcapillary venous filling pressures are reduced during cryotherapy, favouring capillary venous outflow of the healthy Achilles tendon.
Changes in materials properties explain the effects of humidity on gecko adhesion.
Puthoff, Jonathan B; Prowse, Michael S; Wilkinson, Matt; Autumn, Kellar
2010-11-01
Geckos owe their remarkable stickiness to millions of dry setae on their toes, and the mechanism of adhesion in gecko setae has been the topic of scientific scrutiny for over two centuries. Previously, we demonstrated that van der Waals forces are sufficient for strong adhesion and friction in gecko setae, and that water-based capillary adhesion is not required. However, recent studies demonstrated that adhesion increases with relative humidity (RH) and proposed that surface hydration and capillary water bridge formation is important or even necessary. In this study, we confirmed a significant effect of RH on gecko adhesion, but rejected the capillary adhesion hypothesis. While contact forces of isolated tokay gecko setal arrays increased with humidity, the increase was similar on hydrophobic and hydrophilic surfaces, inconsistent with a capillary mechanism. Contact forces increased with RH even at high shear rates, where capillary bridge formation is too slow to affect adhesion. How then can a humidity-related increase in adhesion and friction be explained? The effect of RH on the mechanical properties of setal β-keratin has escaped consideration until now. We discovered that an increase in RH softens setae and increases viscoelastic damping, which increases adhesion. Changes in setal materials properties, not capillary forces, fully explain humidity-enhanced adhesion, and van der Waals forces remain the only empirically supported mechanism of adhesion in geckos.
Driver-witness electron beam acceleration in dielectric mm-scale capillaries
NASA Astrophysics Data System (ADS)
Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.
2018-05-01
We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.
The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model.
Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe
2013-05-01
The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke.
Some Experiments on Evaporation of High-TDS Phreatic Water in an Arid Area
NASA Astrophysics Data System (ADS)
Li, X.; Jin, M.; Zhou, J.; Liu, Y.; Zhao, Y.
2012-12-01
Most experiments that had been done on evaporation of phreatic water were limited to waters with fresh or low total dissolved solids (TDS, no more than 10g/L). The TDS of phreatic water is always dozens or even hundreds of grams per liter in extremely arid areas. Thus, experiments on phreatic water evaporation of different TDS (3g/L, 30g/L, 100g/L, 250g/L) were carried out in an arid plain of south Xinjiang, China. The results showed that there was significant linear positive correlation between TDS of phreatic water and cumulative salinity in soil profile. The variation of phreatic water evaporation was lag behind the change of surface water measured by E20 equipment, but both of them were more drastic at nighttime than the daytime. The research shows that the daytime evaporation capacity has significant effect on nighttime evaporation, and the soil water vapor condense at profile also is an important driving factor for the nighttime evaporation. Capillary rise is a significant contributor of soil salinity in extremely arid areas. Experiments about effects of different grains of sand soil and TDS of phreatic water (1, 30, 100, 250 g/L) on capillary rise showed that TDS had significant effects on capillary rise in later stage of experiments. For coarse sand, the higher TDS made the lower height of capillary rise. But for fine sand, the height of capillary rise of 1g/L was obviously larger than others. The sequence of height from larger to lower of capillary rise in silt was 30, 100, 250 and 1g/L. At the beginning of experiments on coarse sand, the higher TDS made the lower velocity of capillary rise, but other soil groups were not. Compared to high-TDS, the grain of sand soil was a more primary controlling factor of capillary rise. The research indicates that high-TDS not only changes the gravity of capillary water but also the pore size of soil during the processes of capillary rise in fine sand.
Chen, Fong-Yi; Chang, Wei-Cheng; Jian, Rih-Sheng; Lu, Chia-Jung
2014-06-03
This paper presents the design, assembly, and evaluation of a novel gas chromatographic detector intended to measure the absorbance of the localized surface plasmon resonance (LSPR) of a gold nanoparticle monolayer in response to eluted samples from a capillary column. Gold nanoparticles were chemically immobilized on the inner wall of a glass capillary (i.d. 0.8 mm, length = 5-15 cm). The eluted samples flowed through the glass capillary and were adsorbed onto a gold nanoparticle surface, which resulted in changes in the LSPR absorbance. The LSPR probing light source used a green light-emitting diode (LED; λ(center) = 520 nm), and the light traveled through the glass wall of the capillary with multiple total reflections. The changes in the light intensity were measured by a photodiode at the rear of the glass capillary. The sensitivity of this detector can be improved by using a longer spiral glass capillary. The detector is more sensitive when operated at a lower temperature and at a slower carrier velocity. The calibration lines of 8 preliminary test compounds were all linear (R(2) > 0.99). The detection limits (3σ) ranged from 22 ng (n-butanol) to 174 ng (2-pentanone) depending on the volatility of the chemicals and the affinity to the citrate lignads attached to the gold nanoparticle surface. This detector consumed a very low amount of energy and could be operated with an air carrier gas, which makes this detector a promising option for portable GC or μGC.
Winegarner, Andrew; Wakabayashi, Taku; Fukushima, Yoko; Sato, Tatsuhiko; Hara-Ueno, Chikako; Busch, Caleb; Nishiyama, Issei; Shiraki, Nobuhiko; Sayanagi, Kaori; Nishida, Kentaro; Sakaguchi, Hirokazu; Nishida, Kohji
2018-06-01
To investigate the changes in the retinal microvasculature during the course of anti-VEGF therapy in eyes with macular edema due to retinal vein occlusion (RVO) and their association with visual outcomes. The vessel density (VD) and foveal avascular zone (FAZ) area in the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were quantitatively measured by optical coherence tomography angiography (OCTA) in 48 consecutive eyes with RVO before and 1, 3, 6, 9, and 12 months after anti-VEGF therapy. Anti-VEGF therapy was performed either with ranibizumab or aflibercept following a pro re nata (PRN) regimen. The correlation between post-treatment best-corrected visual acuity (BCVA) and changes in the retinal microvasculature evaluated by OCTA were assessed. The BCVA improved significantly at 12 months (P < 0.001). Better BCVA at 12 months was significantly associated with a better VD in the SCP and DCP both at baseline (R2 = 0.524, P < 0.001 and R2 = 0.457, P < 0.001, respectively) and at 12 months (R2 = 0.521, P < 0.001 and R2 = 0.662, P < 0.001, respectively). Overall, both VD and FAZ did not change significantly during the 12 months. However, the progression of nonperfusion was observed in the SCP in 6 (13%) eyes and in the DCP in 10 (21%) eyes. The number of macular edema recurrence was significantly associated with a decrease in the VD (P = 0.006 [SCP] and P < 0.001 [DCP]) and less visual gain (P = 0.02) after treatment. Anti-VEGF therapy maintains retinal perfusion in most patients with RVO. Preserving retinal perfusion is crucial for better visual outcomes.
NASA Astrophysics Data System (ADS)
Vianna, S. D. B.; Lin, F. Y.; Plum, M. A.; Duran, H.; Steffen, W.
2017-05-01
Using non-invasive, marker-free resonance enhanced dynamic light scattering, the dynamics of capillary waves on ultrathin polystyrene films' coupling to the viscoelastic and mechanical properties have been studied. The dynamics of ultrathin polymer films is still debated. In particular the question of what influence either the solid substrate and/or the fluid-gas interface has on the dynamics and the mechanical properties of films of glass forming liquids as polymers is in the focus of the present research. As a consequence, e.g., viscosity close to interfaces and thus the average viscosity of very thin films are prone to change. This study is focused on atactic, non-entangled polystyrene thin films on the gold surface. A slow dynamic mode was observed with Vogel-Fulcher-Tammann temperature dependence, slowing down with decreasing film thickness. We tentatively attribute this relaxation mode to overdamped capillary waves because of its temperature dependence and the dispersion with a wave vector which was found. No signs of a more mobile layer at the air/polymer interface or of a "dead layer" at the solid/polymer interface were found. Therefore we investigated the influence of an artificially created dead layer on the capillary wave dynamics by introducing covalently bound polystyrene polymer brushes as anchors. The dynamics was slowed down to a degree more than expected from theoretical work on the increase of density close to the solid liquid interface—instead of a "dead layer" of 2 nm, the interaction seems to extend more than 10 nm into the polymer.
Zaccagnini, Germana; Palmisano, Anna; Canu, Tamara; Maimone, Biagina; Lo Russo, Francesco M; Ambrogi, Federico; Gaetano, Carlo; De Cobelli, Francesco; Del Maschio, Alessandro; Esposito, Antonio; Martelli, Fabio
2015-01-01
Magnetic resonance imaging (MRI) provides non-invasive, repetitive measures in the same individual, allowing the study of a physio-pathological event over time. In this study, we tested the performance of 7 Tesla multi-parametric MRI to monitor the dynamic changes of mouse skeletal muscle injury and regeneration upon acute ischemia induced by femoral artery dissection. T2-mapping (T2 relaxation time), diffusion-tensor imaging (Fractional Anisotropy) and perfusion by Dynamic Contrast-Enhanced MRI (K-trans) were measured and imaging results were correlated with histological morphometric analysis in both Gastrocnemius and Tibialis anterior muscles. We found that tissue damage positively correlated with T2-relaxation time, while myofiber regeneration and capillary density positively correlated with Fractional Anisotropy. Interestingly, K-trans positively correlated with capillary density. Accordingly, repeated MRI measurements between day 1 and day 28 after surgery in ischemic muscles showed that: 1) T2-relaxation time rapidly increased upon ischemia and then gradually declined, returning almost to basal level in the last phases of the regeneration process; 2) Fractional Anisotropy dropped upon ischemic damage induction and then recovered along with muscle regeneration and neoangiogenesis; 3) K-trans reached a minimum upon ischemia, then progressively recovered. Overall, Gastrocnemius and Tibialis anterior muscles displayed similar patterns of MRI parameters dynamic, with more marked responses and less variability in Tibialis anterior. We conclude that MRI provides quantitative information about both tissue damage after ischemia and the subsequent vascular and muscle regeneration, accounting for the differences between subjects and, within the same individual, between different muscles.
NASA Astrophysics Data System (ADS)
Altintas, Ahmet A.; Aust, Matthias C.; Krämer, Robert; Vogt, Peter M.; Altintas, Mehmet A.
2016-03-01
Reflectance-mode confocal microscopy (RCM) enables in vivo assessment of the human skin. Impact of overweight on both human skin microcirculation and histomorphology has not been investigated in vivo. The purpose of this study is to evaluate both microcirculation and histomorphology in vivo in overweight. In 10 normotensive overweight nondiabetic individuals (OW-group, BMI 29.1±2.7 kg/m2) and 10 age- and sex-matched healthy lean controls (CO-group, BMI 20.4±1.9 kg/m2) the following parameters were evaluated using RCM: dermal blood cell flow (DBCF), density of dermal capillaries (DDC), epidermal thickness (ET), and epidermal cell size (ECS). DBCF was counted at 63.11±4.14 cells/min in OW-group and at 51.06±3.84 cells/min in CO-group (P<0.05). DDC was reduced in OW-group (4.91±0.39 capillaries/mm2) compared to the controls (6.02±0.64 capillaries/mm2, P<0.05). Histometric evaluation of ET reveals thickening in OW-group compared to the CO-group (54.79±4.25 μm versus 44.03±3.11 μm, P<0.05). ECS differed significantly (P<0.05) in OW-group (821.3±42.02 μm2) compared to the controls (772.6±34.79 μm2). Inverse correlation of dermal capillary density and overweight point to reduced total tissue perfusion while positive related blood cell flow reveals vasodilatation. Increase of both ET and cell size indicates remodeling of cutaneous histomorphology, maybe as an early stage of adiposity-related skin condition.
Effect of ultrasonic capillary dynamics on the mechanics of thermosonic ball bonding.
Huang, Yan; Shah, Aashish; Mayer, Michael; Zhou, Norman Y; Persic, John
2010-01-01
Microelectronic wire bonding is an essential step in today's microchip production. It is used to weld (bond) microwires to metallized pads of integrated circuits using ultrasound with hundreds of thousands of vibration cycles. Thermosonic ball bonding is the most popular variant of the wire bonding process and frequently investigated using finite element (FE) models that simplify the ultrasonic dynamics of the process with static or quasistatic boundary conditions. In this study, the ultrasonic dynamics of the bonding tool (capillary), made from Al(2)O(3), is included in a FE model. For more accuracy of the FE model, the main material parameters are measured. The density of the capillary was measured to be rho(cap) = 3552 +/- 100 kg/m(3). The elastic modulus of the capillary, E(cap) = 389 +/- 11 GPa, is found by comparing an auxiliary FE model of the free vibrating capillary with measured values. A capillary "nodding effect" is identified and found to be essential when describing the ultrasonic vibration shape. A main FE model builds on these results and adds bonded ball, pad, chip, and die attach components. There is excellent agreement between the main model and the ultrasonic force measured at the interface on a test chip with stress microsensors. Bonded ball and underpad stress results are reported. When adjusted to the same ultrasonic force, a simplified model without ultrasonic dynamics and with an infinitely stiff capillary tip is substantially off target by -40% for the maximum underpad stress. The compliance of the capillary causes a substantial inclination effect at the bonding interface between wire and pad. This oscillating inclination effect massively influences the stress fields under the pad and is studied in more detail. For more accurate results, it is therefore recommended to include ultrasonic dynamics of the bonding tool in mechanical FE models of wire bonding.
Riccieri, V; Spadaro, A; Ceccarelli, F; Scrivo, R; Germano, V; Valesini, G
2005-01-01
In systemic lupus erythematosus (SLE) nailfold capillaroscopy (NC) studies have described many different nonspecific patterns. We decided to evaluate NC changes in 44 SLE patients, comparing them with the main clinical, demographic and laboratory parameters, thus to define the real role for NC and its abnormalities in the management of this disease. Fifteen patients (34%) complained of Raynaud's phenomenon; nine of them (20%) showed relevant capillaroscopic changes (capillaroscopic score >1). In details: three patients (6.8%) had loss of capillaries, while 18 (41%) had a capillary length variability, 16 (36.5%) showing shorter and two (4.5%) longer capillaries; tortuous, meandering, bizarre, ramified and/or bushy capillaries were found in 26 (59%), seven (16%), two (4.5%), three (7%) cases, respectively. An irregular distribution of the capillary array was present in six cases (14%) while microhaemorrhages were found in four cases (9%). 4 patients (9%) showed enlarged capillaries and changes of blood flow. A capillaroscopic score >1 was more frequently associated with higher ECLAM (P < 0.005) and SLEDAI (P < 0.01) activity scores, with the presence of anti-cardiolipin (P < 0.04) and anti-Sm (P < 0.04) antibodies, and also with the presence (P < 0.04) and higher titer (P < 0.001) of anti-dsDNA antibodies. No statistically significant correlation was found among the different capillaroscopy findings, age, disease duration, or treatment, nor with any clinical manifestation of the disease, such as cutaneous, renal or neurological. Our findings confirm the importance of the microvascular involvement in SLE. The NC abnormalities seem to be related to the disease activity and to the presence of many different antibodies, highly involved in the expression of SLE. NC proved to be an easy-to-perform noninvasive technique, able to achieve useful data to better evaluate such a pleomorphic disease as SLE.
NASA Technical Reports Server (NTRS)
Prisk, G. K.; Guy, Harold J. B.; Elliott, Ann R.; Deutschman, Robert A., III; West, John B.
1993-01-01
We measured pulmonary diffusing capacity (DL), diffusing capacity per unit lung volume, pulmonary capillary blood volume (Vc), membrane diffusing capacity (Dm), pulmonary capillary blood flow or cardiac output (Qc), and cardiac stroke volume (SV) in four subjects exposed to nine days of microgravity. DL in microgravity was elevated compared with preflight standing values and was higher than preflight supine because of the elevation of both Vc and Dm. The elevation in Vc was comparable to that measured supine in 1 G, but the increase in Dm was in sharp contrast to the supine value. We postulate that, in 0 G, pulmonary capillary blood is evenly distributed throughout the lung, providing for uniform capillary filling, leading to an increase in the surface area available for diffusion. By contrast, in the supine 1-G state, the capillaries are less evenly filled, and although a similar increase in blood volume is observed, the corresponding increase in surface area does not occur. DL and its subdivisions showed no adaptive changes from the first measurement 24 h after the start of 0 G to eight days later. Similarly, there were no trends in the postflight data, suggesting that the principal mechanism of these changes was gravitational. The increase in Dm suggests that subclinical pulmonary edema did not result from exposure to 0 G. Qc was modestly increased inflight and decreased postflight compared with preflight standing. Compared with preflight standing, SV was increased 46 percent inflight and decreased 14 percent in the 1st week postflight. There were temporal changes in Qc and SV during 0 G, with the highest values recorded at the first measurement, 24 h into the flight. The lowest values of Qc and SV occurred on the day of return.
Reddy, D Santhosh; Sivapathasundharam, B; Saraswathi, T R; SriRam, G
2012-01-01
Mast cells are granule containing secretory cells present in oral mucosal and connective tissue environment. Oral lichen planus and oral lichenoid lesions are commonly occurring oral diseases and have some similarity clinically and histologically. Both are characterized by an extensive sub epithelial infiltrate of T cells, together with mast cells, eosinophils and blood capillaries. In this study mast cell and eosinophil densities along with number of blood capillaries were studied to find out if they could aid in histopathological distinction between oral lichen planus and lichenoid mucositis. To enumerate mast cells and compare the status of Mast Cells (Intact or Degranulated) in Lichen planus, Lichenoid mucositis and normal buccal mucosa in tissue sections stained with Toluidine Blue, and also to enumerate Eosinophils and blood capillaries in tissue sections stained with H and E. The study group included 30 cases each of oral lichen planus and oral lichenoid mucositis. 10 cases of clinically normal oral buccal mucosa formed the control group. All the sections were stained with Toluidine blue and H and E separately. Histopathological analysis was done using binocular light microscope equipped with square ocular grid to standardize the field of evaluation. The result of the study showed. · Significant increase in number of mast cells in oral lichen planus and oral lichenoid mucositis compared to normal buccal mucosa. · Significant increase of intact mast cells suepithelially within the inflammatory cell infiltrate in oral lichen planus compared to oral lichenoid mucositis. · Significant increase of degranulated mast cells in oral lichenoid mucositis to oral lichen planus, and increase in number of eosinophil densities in oral lichenoid mucositis compared to oral lichen planus. · Significant increase in number of capillaries in oral lichenoid mucositis compared to oral lichen planus. The findings of increased number of intact mast cells sub epithelially in oral lichen planus to oral lichenoid mucositis and increase in number of degranulated mast cells as well as capillaries subepithelially in oral lichenoid mucositis to oral lichen planus can be used as reliable criteria for histologic distinction between these two lesions. The increase of eosinophils in oral lichenoid mucositis to oral lichen planus could be used as adjunct histologic criterion in the diagnosis of oral lichenoid mucositis.
Avdalovic, Mark V; Tyler, Nancy K; Putney, Lei; Nishio, Susie J; Quesenberry, Sherri; Singh, Parmjit J; Miller, Lisa A; Schelegle, Edward S; Plopper, Charles G; Vu, Thiennu; Hyde, Dallas M
2012-10-01
Exposure to oxidant air pollutants in early childhood, with ozone as the key oxidant, has been linked to significant decrements in pulmonary function in young adults and exacerbation of airway remodeling in asthma. Development of lung parenchyma in rhesus monkeys is rapid during the first 2 years of life (comparable to the first 6 years in humans). Our hypothesis is that ozone inhalation during infancy alters alveolar morphogenesis. We exposed infant rhesus monkeys biweekly to 5, 8 hr/day, cycles of 0.5 ppm ozone with or without house dust mite allergen from 1 to 3 or 1 to 6 months of age. Monkeys were necropsied at 3 and 6 months of age. A morphometric approach was used to quantify changes in alveolar volume and number, the distribution of alveolar size, and capillary surface density per alveolar septa. Quantitative real time PCR was used to measure the relative difference in gene expression over time. Monkeys exposed to ozone alone or ozone combined with allergen had statistically larger alveoli that were less in number at 3 months of age. Alveolar capillary surface density was also decreased in the ozone exposed groups at 3 months of age. At 6 months of age, the alveolar number was similar between treatment groups and was associated with a significant rise in alveolar number from 3 to 6 months of age in the ozone exposed groups. This increase in alveolar number was not associated with any significant increase in microvascular growth as measured by morphometry or changes in angiogenic gene expression. Inhalation of ozone during infancy alters the appearance and timing of alveolar growth and maturation. Understanding the mechanism involved with this altered alveolar growth may provide insight into the parenchymal injury and repair process that is involved with chronic lung diseases such as severe asthma and COPD. Copyright © 2012 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norgaard, J.V.; Olsen, D.; Springer, N.
1995-12-31
A new technique for obtaining water-oil capillary pressure curves, based on NMR imaging of the saturation distribution in flooded cores is presented. In this technique, a steady state fluid saturation profile is developed by flooding the core at a constant flow rate. At the steady state situation where the saturation distribution no longer changes, the local pressure difference between the wetting and non-wetting phases represents the capillary pressure. The saturation profile is measured using an NMR technique and for a drainage case, the pressure in the non-wetting phase is calculated numerically. The paper presents the NMR technique and the proceduremore » for calculating the pressure distribution in the sample. Inhomogeneous samples produce irregular saturation profiles, which may be interpreted in terms of variation in permeability, porosity, and capillary pressure. Capillary pressure curves for North Sea chalk obtained by the new technique show good agreement with capillary pressure curves obtained by traditional techniques.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallon, Mario, E-mail: m.vallon@arcor.de; Rohde, Franziska; Janssen, Klaus-Peter
2010-02-01
Tumor endothelial marker (TEM) 5 is an adhesion G-protein-coupled receptor upregulated in endothelial cells during tumor and physiologic angiogenesis. So far, the mechanisms leading to upregulation of TEM5 and its function during angiogenesis have not been identified. Here, we report that TEM5 expression in endothelial cells is induced during capillary-like network formation on Matrigel, during capillary morphogenesis in a three-dimensional collagen I matrix, and upon confluence on a two-dimensional matrix. TEM5 expression was not induced by a variety of soluble angiogenic factors, including VEGF and bFGF, in subconfluent endothelial cells. TEM5 upregulation was blocked by toxin B from Clostridium difficile,more » an inhibitor of the small GTPases Rho, Rac, and Cdc42. The Rho inhibitor C3 transferase from Clostridium botulinum did not affect TEM5 expression, whereas the Rac inhibitor NSC23766 suppressed TEM5 upregulation. An excess of the soluble TEM5 extracellular domain or an inhibitory monoclonal TEM5 antibody blocked contact inhibition of endothelial cell proliferation resulting in multilayered islands within the endothelial monolayer and increased vessel density during capillary formation. Based on our results we conclude that TEM5 expression during capillary morphogenesis is induced by the small GTPase Rac and mediates contact inhibition of proliferation in endothelial cells.« less
Lennard-Jones fluids in two-dimensional nano-pores. Multi-phase coexistence and fluid structure
NASA Astrophysics Data System (ADS)
Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim
2014-03-01
We present a number of fundamental findings on the wetting behaviour of nano-pores. A popular model for fluid confinement is a one-dimensional (1D) slit pore formed by two parallel planar walls and it exhibits capillary condensation (CC): a first-order phase transition from vapour to capillary-liquid (Kelvin shift). Capping such a pore at one end by a third orthogonal wall forms a prototypical two-dimensional (2D) pore. We show that 2D pores possess a wetting temperature such that below this temperature CC remains of first order, above it becomes a continuous phase transition manifested by a slab of capillary-liquid filling the pore from the capping wall. Continuous CC exhibits hysteresis and can be preceded by a first-order capillary prewetting transition. Additionally, liquid drops can form in the corners of the 2D pore (remnant of 2D wedge prewetting). The three fluid phases, vapour, capillary-liquid slab and corner drops, can coexist at the pore triple point. Our model is based on the statistical mechanics of fluids in the density functional formulation. The fluid-fluid and fluid-substrate interactions are dispersive. We analyze in detail the microscopic fluid structure, isotherms and full phase diagrams. Our findings also suggest novel ways to control wetting of nano-pores. We are grateful to the European Research Council via Advanced Grant No. 247031 for support.
Stress failure of pulmonary capillaries: role in lung and heart disease
NASA Technical Reports Server (NTRS)
West, J. B.; Mathieu-Costello, O.
1992-01-01
Pulmonary capillaries have extremely thin walls to allow rapid exchange of respiratory gases across them. Recently it has been shown that the wall stresses become very large when the capillary pressure is raised, and in anaesthetised rabbits, ultrastructural damage to the walls is seen at pressures of 40 mm Hg and above. The changes include breaks in the capillary endothelial layer, alveolar epithelial layer, and sometimes all layers of the wall. The strength of the thin part of the capillary wall can be attributed to the type IV collagen in the extracellular matrix. Stress failure of pulmonary capillaries results in a high-permeability form of oedema, or even frank haemorrhage, and is apparently the mechanism of neurogenic pulmonary oedema and high-altitude pulmonary oedema. It also explains the exercise-induced pulmonary haemorrhage that occurs in all racehorses. Several features of mitral stenosis are consistent with stress failure. Overinflation of the lung also leads to stress failure, a common cause of increased capillary permeability in the intensive care environment. Stress failure also occurs if the type IV collagen of the capillary wall is weakened by autoantibodies as in Goodpasture's syndrome. Neutrophil elastase degrades type IV collagen and this may be the starting point of the breakdown of alveolar walls that is characteristic of emphysema. Stress failure of pulmonary capillaries is a hitherto overlooked and potentially important factor in lung and heart disease.
Computerized nailfold video capillaroscopy--a new tool for assessment of Raynaud's phenomenon.
Anderson, Marina E; Allen, P Danny; Moore, Tonia; Hillier, Val; Taylor, Christopher J; Herrick, Ariane L
2005-05-01
To develop a computer based nailfold video capillaroscopy system with enhanced image quality and to assess its disease-subgroup resolving power in patients with primary and secondary Raynaud's phenomenon (RP). Using frame registration software, digitized video images from the microscope were combined to form a panoramic mosaic of the nailfold. Capillary dimensions (apex, arterial, venous, and total width) and density were measured onscreen. Significantly, the new system could guarantee analysis of the same set of capillaries by 2 observers. Forty-eight healthy control subjects, 21 patients with primary RP, 40 patients with limited cutaneous systemic sclerosis (lcSSc), and 11 patients with diffuse cutaneous SSc (dcSSc) were studied. Intra- and interobserver variability were calculated in a subset of 30 subjects. The number of loops/mm was significantly lower, and all 4 capillary dimensions significantly greater, in SSc patients versus controls plus primary RP patients (p < 0.001 for all measures). When comparing control (+ primary RP) patients with SSc patients (lcSSc + dcSSc) the most powerful discriminator was found to be the number of loops/mm. Results for intra- and interobserver reproducibility showed that the limits of agreement were closer when both observers measured the same capillaries. The key feature of the newly developed system is that it improves reproducibility of nailfold capillary measurements by allowing reidentification of the same capillaries by different observers. By allowing access to previous measurements, the new system should improve reliability in longitudinal studies, and therefore has the potential of being a valuable outcome measure of microvessel disease/involvement in clinical trials of scleroderma spectrum disorders.
Optical fiber F-P magnetic field sensor based on magnetostrictive effect of magnetic fluid
NASA Astrophysics Data System (ADS)
Shi, Fuquan; Luo, Yan; Che, Jiajia; Ren, Zhijun; peng, Baojin
2018-07-01
magnetic field sensor of air-gap Fabry-Perot fiber interferometersis proposed based on magnetostrictive effect. The sensor is consisted of single-model fiber (SMF), air-gap, no-core fiber (NCF) and magnetic fluid. Those are sealed in the capillary, SMF and NCF are connect with air chamber and magnetic fluid column. With the presence of an external magnetic field, air chamber cavity length changes because of the magneto-volume variation of magnetic fluids. This situation causes a change in the optical path difference. Detection of the drift of interference spectrum leads to the detection of the change in magnetic field. When the magnetic field is parallel to the direction in which the capillary is placed, the sensitivity is 0.2347 nm/mT; when the magnetic fluid is perpendicular to the direction in which the capillary is placed, the sensitivity is 0.325 nm/http://mT.%20In.
NASA Astrophysics Data System (ADS)
Volkov, M. V.; Kostrova, D. A.; Margaryants, N. B.; Gurov, I. P.; Erofeev, N. P.; Dremin, V. V.; Zharkikh, E. V.; Zherebtsov, E. A.; Kozlov, I. O.; Dunaev, A. V.
2017-03-01
Laser Doppler flowmetry (LDF) is widely used for diagnosing blood microcirculation diseases. It is well known that the Doppler shift of laser radiation scattered by moving red blood cells (RBC) can be assessed through analyzing photocurrent produced by a photodetector. LDF signal contains information about regulating blood flow rhythms: myogenic, cardiac, nervous and endothelial. The method of videocapillaroscopy (VCS) allows local capillary blood flow velocity evaluation and, using video data processing algorithms, is able to assess RBC velocity changes into capillary. We present the results of simultaneous investigations of changes in tissue perfusion of the distal phalanx of human finger by the LDF as well as changes in capillary blood flow velocity in the nail bed evaluated by the VCS method during arterial occlusion test. The experimental results confirmed the correspondence between blood perfusion and blood flow velocity.
Perfusion-induced changes in cardiac contractility depend on capillary perfusion.
Dijkman, M A; Heslinga, J W; Sipkema, P; Westerhof, N
1998-02-01
The perfusion-induced increase in cardiac contractility (Gregg phenomenon) is especially found in heart preparations that lack adequate coronary autoregulation and thus protection of changes in capillary pressure. We determined in the isolated perfused papillary muscle of the rat whether cardiac muscle contractility is related to capillary perfusion. Oxygen availability of this muscle is independent of internal perfusion, and perfusion may be varied or even stopped without loss of function. Muscles contracted isometrically at 27 degrees C (n = 7). During the control state stepwise increases in perfusion pressure resulted in all muscles in a significant increase in active tension. Muscle diameter always increased with increased perfusion pressure, but muscle segment length was unaffected. Capillary perfusion was then obstructed by plastic microspheres (15 microns). Flow, at a perfusion pressure of 66.6 +/- 26.2 cmH2O, reduced from 17.6 +/- 5.4 microliters/min in the control state to 3.2 +/- 1.3 microliters/min after microspheres. Active tension developed by the muscle in the unperfused condition before microspheres and after microspheres did not differ significantly (-12.8 +/- 29.4% change). After microspheres similar perfusion pressure steps as in control never resulted in an increase in active tension. Even at the two highest perfusion pressures (89.1 +/- 28.4 and 106.5 +/- 31.7 cmH2O) that were applied a significant decrease in active tension was found. We conclude that the Gregg phenomenon is related to capillary perfusion.
In situ data collection and structure refinement from microcapillary protein crystallization
Yadav, Maneesh K.; Gerdts, Cory J.; Sanishvili, Ruslan; Smith, Ward W.; Roach, L. Spencer; Ismagilov, Rustem F.; Kuhn, Peter; Stevens, Raymond C.
2007-01-01
In situ X-ray data collection has the potential to eliminate the challenging task of mounting and cryocooling often fragile protein crystals, reducing a major bottleneck in the structure determination process. An apparatus used to grow protein crystals in capillaries and to compare the background X-ray scattering of the components, including thin-walled glass capillaries against Teflon, and various fluorocarbon oils against each other, is described. Using thaumatin as a test case at 1.8 Å resolution, this study demonstrates that high-resolution electron density maps and refined models can be obtained from in situ diffraction of crystals grown in microcapillaries. PMID:17468785
Srikuea, Ratchakrit; Symons, T. Brock; Long, Douglas E.; Lee, Jonah D.; Shang, Yu; Chomentowski, Peter J.; Yu, Guoqiang; Crofford, Leslie J.; Peterson, Charlotte A.
2012-01-01
Objective To identify muscle physiological properties that may contribute to post-exertional fatigue and malaise in women with fibromyalgia (FM). Methods Healthy postmenopausal women with (n=11) and without (n=11) fibromyalgia, age 51–70 years, participated in this study. Physical characteristics along with self-reported questionnaires were evaluated. Strength loss and tissue oxygenation in response to a fatiguing exercise protocol were used to quantify fatigability and the local muscle hemodynamic profile. Muscle biopsies were obtained to assess between-group differences in baseline muscle properties using histochemical, immunohistochemical and electron microscopic analyses. Results No significant difference in muscle fatigue in response to exercise was apparent between healthy controls and subjects with FM. However, self-reported fatigue and pain were correlated to prolonged loss of strength following 12-min of recovery in subjects with FM. Although there was no difference in percent SDH positive (type I) and SDH negative (type II) fibers or in mean fiber cross-sectional area between groups, subjects with FM showed greater size variability and altered fiber size distribution. Only in healthy controls, fatigue-resistance was strongly correlated with the size of SDH positive fibers and hemoglobin oxygenation. By contrast, subjects with FM with the highest percentage of SDH positive fibers recovered strength most effectively, which was correlated to capillary density. However, overall, capillary density was lower in subjects with FM. Conclusion Peripheral mechanisms i.e. altered muscle fiber size distribution and decreased capillary density may contribute to post-exertional fatigue in subjects with FM. Understanding these defects in fibromyalgic muscle may provide valuable insight for treatment. PMID:23124535
Revascularization and Muscle Adaptation to Limb Demand Ischemia in Diet Induced Obese Mice
Albadawi, Hassan; Tzika, Aria; Rask-Madsen, Christian; Crowley, Lindsey M.; Koulopoulos, Michael W.; Yoo, Hyung-Jin; Watkins, Michael T.
2016-01-01
Background Obesity and type 2 diabetes are major risk factors for peripheral arterial disease (PAD) in humans which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). Materials and Methods DIO mice (n=7) underwent unilateral femoral artery ligation (FAL) and recovered for 2-weeks followed by 4-weeks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia group (n=7) had FAL without exercise. The contralateral limb muscles of sedentary ischemia served as control. Muscles were examined for capillary density, myofiber cross-sectional area (CSA), cytokine levels, and phosphorylation of STAT3 and ERK1/2. Results Exercise significantly enhanced capillary density (p<0.01) and markedly lowered CSA (p<0.001) in demand ischemia compared to sedentary ischemia. These findings coincided with a significant increase in G-CSF (p<0.001) and IL-7 (p<0.01) levels. In addition, phosphorylation of STAT3 and ERK1/2 (p<0.01) were increased while UCP-1 and MCP-1 protein levels were lower (p<0.05) without altering VEGF and TNFα protein levels. Demand ischemia increased the PGC1α mRNA (p<0.001) without augmenting PGC1α protein levels. Conclusions Exercise induced limb demands ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in TNFα, lower VEGF and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. PMID:27620999
NASA Astrophysics Data System (ADS)
Sakaida, Satoshi; Tabe, Yutaka; Chikahisa, Takemi
2017-09-01
A method for the large-scale simulation with the lattice Boltzmann method (LBM) is proposed for liquid water movement in a gas diffusion layer (GDL) of polymer electrolyte membrane fuel cells. The LBM is able to analyze two-phase flows in complex structures, however the simulation domain is limited due to heavy computational loads. This study investigates a variety means to reduce computational loads and increase the simulation areas. One is applying an LBM treating two-phases as having the same density, together with keeping numerical stability with large time steps. The applicability of this approach is confirmed by comparing the results with rigorous simulations using actual density. The second is establishing the maximum limit of the Capillary number that maintains flow patterns similar to the precise simulation; this is attempted as the computational load is inversely proportional to the Capillary number. The results show that the Capillary number can be increased to 3.0 × 10-3, where the actual operation corresponds to Ca = 10-5∼10-8. The limit is also investigated experimentally using an enlarged scale model satisfying similarity conditions for the flow. Finally, a demonstration is made of the effects of pore uniformity in GDL as an example of a large-scale simulation covering a channel.
Bonner, Jeffrey S.; Lantier, Louise; Hasenour, Clinton M.; James, Freyja D.; Bracy, Deanna P.; Wasserman, David H.
2013-01-01
Muscle insulin resistance is associated with a reduction in vascular endothelial growth factor (VEGF) action and muscle capillary density. We tested the hypothesis that muscle capillary rarefaction critically contributes to the etiology of muscle insulin resistance in chow-fed mice with skeletal and cardiac muscle VEGF deletion (mVEGF−/−) and wild-type littermates (mVEGF+/+) on a C57BL/6 background. The mVEGF−/− mice had an ∼60% and ∼50% decrease in capillaries in skeletal and cardiac muscle, respectively. The mVEGF−/− mice had augmented fasting glucose turnover. Insulin-stimulated whole-body glucose disappearance was blunted in mVEGF−/− mice. The reduced peripheral glucose utilization during insulin stimulation was due to diminished in vivo cardiac and skeletal muscle insulin action and signaling. The decreased insulin-stimulated muscle glucose uptake was independent of defects in insulin action at the myocyte, suggesting that the impairment in insulin-stimulated muscle glucose uptake was due to poor muscle perfusion. The deletion of VEGF in cardiac muscle did not affect cardiac output. These studies emphasize the importance for novel therapeutic approaches that target the vasculature in the treatment of insulin-resistant muscle. PMID:23002035
Raman spectroscopic characterization of CH4 density over a wide range of temperature and pressure
Shang, Linbo; Chou, I-Ming; Burruss, Robert; Hu, Ruizhong; Bi, Xianwu
2014-01-01
The positions of the CH4 Raman ν1 symmetric stretching bands were measured in a wide range of temperature (from −180 °C to 350 °C) and density (up to 0.45 g/cm3) using high-pressure optical cell and fused silica capillary capsule. The results show that the Raman band shift is a function of both methane density and temperature; the band shifts to lower wavenumbers as the density increases and the temperature decreases. An equation representing the observed relationship among the CH4 ν1 band position, temperature, and density can be used to calculate the density in natural or synthetic CH4-bearing inclusions.
Hossler, F E; Olson, K R
1990-06-01
The three-dimensional microvasculature of the nasal salt gland of the duckling was studied by vascular corrosion casting and scanning electron microscopy. Changes in the vascular volume of the gland in response to osmotic stress were also determined using cast weights and densities. The richly vascularized gland is supplied on its medial surface by large branches of the supraorbital and ethmoidal arteries. Numerous arterial branches enter the gland and distribute to lobes via the interlobar connective tissue. Lobar arterioles penetrate to the periductal areas of the lobes before dividing into capillaries supplying the ductal epithelium and secretory tubules. Capillaries envelope the secretory tubules and run radially from the ducts toward the lobe periphery, so that blood flows counter to the tubular secretion. Blood is collected via venous plexuses seen as distinct drainage units on the periphery of each lobe. Veins exhibit large numbers of bicuspid valves. Following 1 day and 4 days of osmotic loading (feeding 1% NaCl), vascular volume of the gland increased fivefold and ninefold, respectively, a response that precedes and exceeds that of the gland weight or Na,K-ATPase activity. When salt water-adapted ducklings were fed fresh water for only 24 hr (deadaptation), vascular volume fell to 2.8 times the control level. Changes in blood flow to the gland during osmotic adaptation and deadaptation are rapid and dramatic and may represent the initial steps in the control of gland secretion.
Numerical Simulations of Crystal Growth of an Alloy Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.; Abbaschian, Reza
1999-01-01
The directional solidification of a dilute binary alloy (Bi-1.0 at.%Sn)is investigated. Results are obtained at a gravity level of I pg. Computations are performed in two dimensions with a fixed, non-uniform grid. The simulation involves a solution of the species concentration equation (modified to account for solute rejection at the interface) and energy equation (modified to account for phase-change) for both the solid and liquid phases, in addition to the constitutive equations for describing convective flow in the melt. The effects of conductive heat transfer in the ampoule and in a capillary tube in the sample are included. To gauge the effects of including this growth capillary tube in the apparatus, simulations both with and without the capillary tube are presented and compared. Fully transient simulations have been performed; no simplifying steady-state approximations are used, however, the influence of solute on the melting temperature at the interface is not included. Both thermal and solutal convective cells are seen to form. Convective velocities are significantly damped inside the capillary, causing less segregation due to convection. As solidification proceeds beyond the capillary tube, longitudinal segregation arises as a result of the change in cross-sectional area of solidifying material. The magnitudes of the velocities in this cell increase significantly once the solid/liquid front passes beyond the end of the capillary tube; this causes a corresponding increase in the level of radial solute segregation in the solidified material.
Neovascularization of the corpus luteum of rats during the estrus cycle.
Tsukada, K; Matsushima, T; Yamanaka, N
1996-06-01
In order to elucidate the chronological morphological changes of the corpus luteum (CL) of rats, as a physiological angiogenesis model, the CL of rat ovaries was studied light microscopically using periodic acid methenamine silver staining (PAM) and immunostaining for type IV collagen, laminin, thrombomodulin (TM), factor VIII related antigen (factor VIII) and alpha-smooth muscle actin (alpha-SMA). The CL was also studied electron microscopically. Female Wistar-Imamichi rats were used, which have a regular 4-day estrous cycle. The histological changes of the CL were observed in 6-hour intervals from 4 h before the ovulation to 28 h post-ovulation during the estrous cycle. Once the basement membrane (BM) of the follicle disintegrated following ovulation, developing capillaries entered into the CL and formed a vascular lumen with a surrounding BM, which showed positive for PAM staining, type IV collagen and laminin. The developing capillaries in the CL showed a weakly positive reaction for TM and factor VIII, but were negative for alpha-SMA. However, the appearance of immature pericytes around the well-developed capillary was obvious with electron microscopy. The study reported here provides detailed descriptions of angiogenesis during luteinization. It is concluded that the angiogenesis of the CL begins at the time of destruction of the BM of the ovarian follicle, and that the capillary BM appears when the capillary forms its lumen. Moreover, it was demonstrated that the capillary does not develop into an arteriole during luteinization.
Effect of sequential release of NAPLs on NAPL migration in porous media
NASA Astrophysics Data System (ADS)
Bang, Woohui; Yeo, In Wook
2016-04-01
NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of porous media. To study the effect of subsequent release of NAPLs, as soon as LNAPL was released to porous medium with 1 mm of glass beads, being buoyant above water table, water table was lowered, which left residuals along the path of LNAPL. DNAPL was subsequently released. DNAPL was breaking through the water table now, which was opposed to only DNAPL release case. This study indicates that sequential release of NAPLs can leads to different migration characteristics of NAPLs, compared with the release of single phase NAPL into porous media.
Use of electromyography to detect muscle exhaustion in finishing barrows fed ractopamine HCl.
Noel, J A; Broxterman, R M; McCoy, G M; Craig, J C; Phelps, K J; Burnett, D D; Vaughn, M A; Barstow, T J; O'Quinn, T G; Woodworth, J C; DeRouchey, J M; Rozell, T G; Gonzalez, J M
2016-06-01
The objectives of this study were to determine the effects of dietary ractopamine HCl (RAC) on muscle fiber characteristics and electromyography (EMG) measures of finishing barrow exhaustion when barrows were subjected to increased levels of activity. Barrows ( = 34; 92 ± 2 kg initial BW) were assigned to 1 of 2 treatments: a conventional swine finishing diet containing 0 mg/kg ractopamine HCl (CON) or a diet formulated to meet the requirements of finishing barrows fed 10 mg/kg RAC (RAC+). After 32 d on feed, barrows were individually moved around a track at 0.79 m/s until subjectively exhausted. Wireless EMG sensors were affixed to the deltoideus (DT), triceps brachii lateral head (TLH), tensor fasciae latae (TFL), and semitendinosus (ST) muscles to measure median power frequency (MdPF) and root mean square (RMS) as indicators of action potential conduction velocity and muscle fiber recruitment, respectively. After harvest, samples of each muscle were collected for fiber type, succinate dehydrogenase (SDH), and capillary density analysis. Speed was not different ( = 0.82) between treatments, but RAC+ barrows reached subjective exhaustion earlier and covered less distance than CON barrows ( < 0.01). There were no treatment × muscle interactions or treatment effects for end-point MdPF values ( > 0.29). There was a treatment × muscle interaction ( = 0.04) for end-point RMS values. The RAC diet did not change end-point RMS values in the DT or TLH ( > 0.37); however, the diet tended to decrease and increase end-point RMS in the ST and TFL, respectively ( < 0.07). There were no treatment × muscle interactions for fiber type, SDH, or capillary density measures ( > 0.10). Muscles of RAC+ barrows tended to have less type I fibers and more capillaries per fiber ( < 0.07). Type I and IIA fibers of RAC+ barrows were larger ( < 0.07). Compared with all other muscles, the ST had more ( < 0.01) type IIB fibers and larger type I, IIA, and IIX fibers ( < 0.01). Type I, IIA, and IIX fibers of the ST also contained less SDH compared with the other muscles ( < 0.01). Barrows fed a RAC diet had increased time to subjective exhaustion due to loss of active muscle fibers in the ST, possibly due to fibers being larger and less oxidative in metabolism. Size increases in type I and IIA fibers with no change in oxidative capacity could also contribute to early exhaustion of RAC+ barrows. Overall, EMG technology can measure real-time muscle fiber loss to help explain subjective exhaustion in barrows.
Investigation of energy dissipation due to contact angle hysteresis in capillary effect
NASA Astrophysics Data System (ADS)
Athukorallage, Bhagya; Iyer, Ram
2016-06-01
Capillary action or Capillarity is the ability of a liquid to flow in narrow spaces without the assistance of, and in opposition to, external forces like gravity. Three effects contribute to capillary action, namely, adhesion of the liquid to the walls of the confining solid; meniscus formation; and low Reynolds number fluid flow. We investigate the dissipation of energy during one cycle of capillary action, when the liquid volume inside a capillary tube first increases and subsequently decreases while assuming quasi-static motion. The quasi-static assumption allows us to focus on the wetting phenomenon of the solid wall by the liquid and the formation of the meniscus. It is well known that the motion of a liquid on an non-ideal surface involves the expenditure of energy due to contact angle hysteresis. In this paper, we derive the equations for the menisci and the flow rules for the change of the contact angles for a liquid column in a capillary tube at a constant temperature and volume by minimizing the Helmholtz free energy using calculus of variations. We describe the numerical solution of these equations and present results from computations for the case of a capillary tube with 1 mm diameter.
Effect of anti-vertigo granule on the opening number and blood flow of mouse ear capillary network
NASA Astrophysics Data System (ADS)
Li, Chongxian; Liu, Xiaobin; Li, Jun; Hao, Shaojun; Wang, Xidong; Li, Wenjun; Zhang, Zhengchen
2018-04-01
To observe the effects of anti-glare particles on the open number and blood flow in the auricle of mice with microcirculation disturbance model. Sixty mice, half male and half female, were randomly divided into 6 groups. The mice were given Kangxuan granule suspension, serum brain granule suspension and normal saline of the same volume, respectively, once a day. The mice were anesthetized by intraperitoneal injection of chloral hydrate at 1 hour after the last administration. The mouse was fixed on the observation platform and the auricle was placed on the transmission stage. BZ-2000 microcirculation microscope and microcirculation analysis system were used to observe the changes of blood velocity and capillary opening volume in auricle of mice before administration. The changes of blood velocity and capillaries opening volume of mouse auricle were observed 2 min after epinephrine injection into tail vein of mice. Bear fruit: Compared with those before epinephrine, the opening number of capillary reticulum of auricle in large dose Kangxuan granule group was significantly decreased (P<0.05), and in normal saline group and middle group. In the small dose Kangxuan granule group, the opening number of capillary network of auricle decreased significantly (P<0.01). Compared with the model group, the large dose Kangxuan granule group could significantly increase the opening number of the auricle capillary network in mice (P<0.01). Yangxuannao granule group could significantly increase the opening number of auricle capillary reticulum in mice (P<0.05), compared with the model group by Ridit test. Both Kangxuan granule group and Yangxuannao granule group could significantly improve the auricle hair of mice with microcirculation disorder. The blood flow in fine blood vessels (P<0.01). Kangxuan granule has a good effect on the opening number of capillary network of auricle and blood flow in mice with microcirculation disorder.
Axisymmetric Liquid Hanging Drops
ERIC Educational Resources Information Center
Meister, Erich C.; Latychevskaia, Tatiana Yu
2006-01-01
The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…
Effects of buoyancy-driven convection on nucleation and growth of protein crystals.
Nanev, Christo N; Penkova, Anita; Chayen, Naomi
2004-11-01
Protein crystallization has been studied in presence or absence of buoyancy-driven convection. Gravity-driven flow was created, or suppressed, in protein solutions by means of vertically directed density gradients that were caused by generating suitable temperature gradients. The presence of enhanced mixing was demonstrated directly by experiments with crustacyanin, a blue-colored protein, and other materials. Combined with the vertical tube position the enhanced convection has two main effects. First, it reduces the number of nucleated hen-egg-white lysozyme (HEWL) crystals, as compared with those in a horizontal capillary. By enabling better nutrition from the protein in the solution, convection results in growth of fewer larger HEWL crystals. Second, we observe that due to convection, trypsin crystals grow faster. Suppression of convection, achieved by decreasing solution density upward in the capillary, can to some extent mimic conditions of growth in microgravity. Thus, impurity supply, which may have a detrimental effect on crystal quality, was avoided.
[Capillary leak syndrome disclosing Ofuji's papuloerythroderma].
Carsuzaa, F; Pierre, C; Morand, J J; Farnarier, C; Marrot, F; Kaplanski, G
1996-01-01
Capillary leak syndrome is a specific entity among syndromes with capillary hyperpermeability. Endothelial cell activation is related to the higt level of adhesion molecules (sICAM-1, sVCAM-&, sCD62E) possibly due to several cytokines (IL-2, TNF ...). An 84-year-old woman was hospitalized for erythroderma. Ofujui papuloerythroderma was diagnosed and edema was attributed to capillary leak. A kinetic study of several cytokines and adhesion molecules sCD62E, sVCAM-1 and sICAM-1 was done. Outcome was favorable with corticopuvatherapy. The capillary leak syndrome reported here is simlar to that described in other erythrodermas with or without lymphoma. The keratinocyte would be activated by the CD4 T lymphocyte via the gamma-interferon mediator. The T cell secretes cytokines (interleukin-1, tumor necrosis factor ...) which activates the endothelium and increases vascular permeability. The level of adhesion molecules and changes observed during the episode of edema demonstrated the endothelial activation.
Takayanagi, Toshio; Motomizu, Shoji
2006-09-01
Cationic polyelectrolyte of chitosan was used for the reversal of electroosmotic flow in capillary zone electrophoresis. The chitosan was dissolved in acetic acid solution, and stable electroosmotic flow was obtained at the chitosan concentrations between 50 and 300 microg/mL. Separation of inorganic anions was carried out using the dynamically coated capillary by capillary zone electrophoresis. Nine kinds of anions were separated and detected with the capillary. The electrophoretic mobility of the analyte anions decreased with increasing concentrations of chitosan in the migrating solution through ion-ion interaction, but the migration order of the analyte anions was not changed in the concentration range of the chitosan examined. The signal shape for the analyte anions was developed by using field-enhanced sample stacking with 10 mM sodium sulfate.
Jillani, Shehzada Muhammad Sajid; Alhooshani, Khalid
2018-03-30
Sol-gel urea functionalized-[bis(hydroxyethyl)amine] terminated polydimethylsiloxane coating was developed for capillary microextraction-high performance liquid chromatographic analysis from aqueous samples. A fused silica capillary is coated from the inside with surface bonded coating material and is created through in-situ sol-gel reaction. The urea-functionalized coating was immobilized to the inner surface of the capillary by the condensation reaction of silanol groups of capillary and sol-solution. The characterization of the coating material was successfully done by using X-ray photoelectron spectroscopy, thermogravimetric analysis, field emission scanning electron microscope, and energy dispersive X-ray spectrometer. To make a setup of online capillary microextraction-high performance liquid chromatography, the urea functionalized capillary was installed in the HPLC manual injection port. The analytes of interest were pre-concentrated in the coated sampling loop, desorbed by the mobile phase, chromatographically separated on C-18 column, and analyzed by UV detector. Sol-gel coated capillaries were used for online extraction and high-performance liquid chromatographic analysis of phenols, ketones, aldehydes, and polyaromatic hydrocarbons. This newly developed coating showed excellent extraction for a variety of analytes ranging from highly polar to non-polar in nature. The analysis using sol-gel coating showed excellent overall sensitivity in terms of lower detection limits (S/N = 3) for the analytes (0.10 ng mL -1 -14.29 ng mL -1 ) with acceptable reproducibility that is less than 12.0%RSD (n = 3). Moreover, the capillary to capillary reproducibility of the analysis was also tested by changing the capillary of the same size. This provided excellent%RSD of less than 10.0% (n = 3). Copyright © 2018 Elsevier B.V. All rights reserved.
Diabetes Mellitus-Induced Microvascular Destabilization in the Myocardium.
Hinkel, Rabea; Howe, Andrea; Renner, Simone; Ng, Judy; Lee, Seungmin; Klett, Katharina; Kaczmarek, Veronika; Moretti, Alessandra; Laugwitz, Karl-Ludwig; Skroblin, Philipp; Mayr, Manuel; Milting, Hendrik; Dendorfer, Andreas; Reichart, Bruno; Wolf, Eckhard; Kupatt, Christian
2017-01-17
Diabetes mellitus causes microcirculatory rarefaction and may impair the responsiveness of ischemic myocardium to proangiogenic factors. This study sought to determine whether microvascular destabilization affects organ function and therapeutic neovascularization in diabetes mellitus. The authors obtained myocardial samples from patients with end-stage heart failure at time of transplant, with or without diabetes mellitus. Diabetic (db) and wild-type (wt) pigs were used to analyze myocardial vascularization and function. Chronic ischemia was induced percutaneously (day 0) in the circumflex artery. At day 28, recombinant adeno-associated virus (rAAV) (5 × 10 12 viral particles encoding vascular endothelial growth factor-A [VEGF-A] or thymosin beta 4 [Tβ4]) was applied regionally. CD31+ capillaries per high power field (c/hpf) and NG2+ pericyte coverage were analyzed. Global myocardial function (ejection fraction [EF] and left ventricular end-diastolic pressure) was assessed at days 28 and 56. Diabetic human myocardial explants revealed capillary rarefaction and pericyte loss compared to nondiabetic explants. Hyperglycemia in db pigs, even without ischemia, induced capillary rarefaction in the myocardium (163 ± 14 c/hpf in db vs. 234 ± 8 c/hpf in wt hearts; p < 0.005), concomitant with a distinct loss of EF (44.9% vs. 53.4% in nondiabetic controls; p < 0.05). Capillary density further decreased in chronic ischemic hearts, as did EF (both p < 0.05). Treatment with rAAV.Tβ4 enhanced capillary density and maturation in db hearts less efficiently than in wt hearts, similar to collateral growth. rAAV.VEGF-A, though stimulating angiogenesis, induced neither pericyte recruitment nor collateral growth. As a result, rAAV.Tβ4 but not rAAV.VEGF-A improved EF in db hearts (34.5 ± 1.4%), but less so than in wt hearts (44.8 ± 1.5%). Diabetes mellitus destabilized microvascular vessels of the heart, affecting the amplitude of therapeutic neovascularization via rAAV.Tβ4 in a translational large animal model of hibernating myocardium. Copyright © 2017 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
The effects of capillary transit time heterogeneity (CTH) on brain oxygenation
Angleys, Hugo; Østergaard, Leif; Jespersen, Sune N
2015-01-01
We recently extended the classic flow–diffusion equation, which relates blood flow to tissue oxygenation, to take capillary transit time heterogeneity (CTH) into account. Realizing that cerebral oxygen availability depends on both cerebral blood flow (CBF) and capillary flow patterns, we have speculated that CTH may be actively regulated and that changes in the capillary morphology and function, as well as in blood rheology, may be involved in the pathogenesis of conditions such as dementia and ischemia-reperfusion injury. The first extended flow–diffusion equation involved simplifying assumptions which may not hold in tissue. Here, we explicitly incorporate the effects of oxygen metabolism on tissue oxygen tension and extraction efficacy, and assess the extent to which the type of capillary transit time distribution affects the overall effects of CTH on flow–metabolism coupling reported earlier. After incorporating tissue oxygen metabolism, our model predicts changes in oxygen consumption and tissue oxygen tension during functional activation in accordance with literature reports. We find that, for large CTH values, a blood flow increase fails to cause significant improvements in oxygen delivery, and can even decrease it; a condition of malignant CTH. These results are found to be largely insensitive to the choice of the transit time distribution. PMID:25669911
The role of the cerebral capillaries in acute ischemic stroke: the extended penumbra model
Østergaard, Leif; Jespersen, Sune Nørhøj; Mouridsen, Kim; Mikkelsen, Irene Klærke; Jonsdottír, Kristjana Ýr; Tietze, Anna; Blicher, Jakob Udby; Aamand, Rasmus; Hjort, Niels; Iversen, Nina Kerting; Cai, Changsi; Hougaard, Kristina Dupont; Simonsen, Claus Z; Von Weitzel-Mudersbach, Paul; Modrau, Boris; Nagenthiraja, Kartheeban; Riisgaard Ribe, Lars; Hansen, Mikkel Bo; Bekke, Susanne Lise; Dahlman, Martin Gervais; Puig, Josep; Pedraza, Salvador; Serena, Joaquín; Cho, Tae-Hee; Siemonsen, Susanne; Thomalla, Götz; Fiehler, Jens; Nighoghossian, Norbert; Andersen, Grethe
2013-01-01
The pathophysiology of cerebral ischemia is traditionally understood in relation to reductions in cerebral blood flow (CBF). However, a recent reanalysis of the flow-diffusion equation shows that increased capillary transit time heterogeneity (CTTH) can reduce the oxygen extraction efficacy in brain tissue for a given CBF. Changes in capillary morphology are typical of conditions predisposing to stroke and of experimental ischemia. Changes in capillary flow patterns have been observed by direct microscopy in animal models of ischemia and by indirect methods in humans stroke, but their metabolic significance remain unclear. We modeled the effects of progressive increases in CTTH on the way in which brain tissue can secure sufficient oxygen to meet its metabolic needs. Our analysis predicts that as CTTH increases, CBF responses to functional activation and to vasodilators must be suppressed to maintain sufficient tissue oxygenation. Reductions in CBF, increases in CTTH, and combinations thereof can seemingly trigger a critical lack of oxygen in brain tissue, and the restoration of capillary perfusion patterns therefore appears to be crucial for the restoration of the tissue oxygenation after ischemic episodes. In this review, we discuss the possible implications of these findings for the prevention, diagnosis, and treatment of acute stroke. PMID:23443173
About Mass Transfer in Capillaries of Biological Systems under Influence of Vibrations
NASA Astrophysics Data System (ADS)
Prisniakov, K.
Vibrations accompany the flight of the manned spacecraft both at a stage of a orbital injection to an orbit, and during long flights (as noise), rendering undesirable physiological influence on crew, reducing serviceability and creating constant discomfort. The report represents attempt to predict a state of the cosmonaut in conditions of influence of vibrations for the period of start and stay in Space, being based on researches of mass transfer processes in capillary systems. For this purpose the original researches on heat and mass transfer processes with evaporation of liquids in capillary - porous structures in conditions of vibration actions and changes of a direction of action of gravitation are generalized. Report demonstrates the existence of modes at which increased or lowered mass transfer is achieved on border of separation "liquid - gas". The possible mechanism of influence of vibrations on evaporation of a liquid in capillaries is examined. The magnitudes of frequencies and amplitudes are submitted at which minimax characteristics are observed. The opportunity of application of the developed mathematical model of heat and mass transfer in capillary - porous structures to forecasting influence of vibrations for biological processes in capillaries of alive essences is analyzed. Such approach is justified on the mechanical nature of harmful influence of vibrations on an organism of the person. In addition the range of vibration frequencies which arise during space flights, corresponds to own resonant frequencies of a human body and his separate organs. Comparison of these resonant frequencies of a body of the person (5-80 Hertz) with vibration frequencies of optimum modes of heat and mass transfer in capillary - porous structures (20-40 Hertz) is shown their ranges of coverage. It gives the basis to assume existence of similar effects in capillaries of human body. It is supposed, that the difficulty of breath, change of a rhythm of breath, the subsequent weariness under vibration action are attributable to infringements of normal mass transfer between the inhaled air and blood. The opportunity of use of the received laws is discussed for assessment of influence of gravitational fields on intensity mass transfer in capillaries of biosystems also.
Wang, X.; Chou, I-Ming; Hu, W.; Burruss, Robert; Sun, Q.; Song, Y.
2011-01-01
Raman spectroscopy is a powerful method for the determination of CO2 densities in fluid inclusions, especially for those with small size and/or low fluid density. The relationship between CO2 Fermi diad split (Δ, cm−1) and CO2 density (ρ, g/cm3) has been documented by several previous studies. However, significant discrepancies exist among these studies mainly because of inconsistent calibration procedures and lack of measurements for CO2fluids having densities between 0.21 and 0.75 g/cm3, where liquid and vapor phases coexist near room temperature.In this study, a high-pressure optical cell and fused silica capillary capsules were used to prepare pure CO2 samples with densities between 0.0472 and 1.0060 g/cm3. The measured CO2 Fermi diad splits were calibrated with two well established Raman bands of benzonitrile at 1192.6 and 1598.9 cm−1. The relationship between the CO2 Fermi diad split and density can be represented by: ρ = 47513.64243 − 1374.824414 × Δ + 13.25586152 × Δ2 − 0.04258891551 × Δ3(r2 = 0.99835, σ = 0.0253 g/cm3), and this relationship was tested by synthetic fluid inclusions and natural CO2-rich fluid inclusions. The effects of temperature and the presence of H2O and CH4 on this relationship were also examined.
Milchev, Andrey; Egorov, Sergei A; Binder, Kurt
2017-03-01
Semiflexible polymers under good solvent conditions interacting with attractive planar surfaces are investigated by Molecular Dynamics (MD) simulations and classical Density Functional Theory (DFT). A bead-spring type potential complemented by a bending potential is used, allowing variation of chain stiffness from completely flexible coils to rod-like polymers whose persistence length by far exceeds their contour length. Solvent is only implicitly included, monomer-monomer interactions being purely repulsive, while two types of attractive wall-monomer interactions are considered: (i) a strongly attractive Mie-type potential, appropriate for a strictly structureless wall, and (ii) a corrugated wall formed by Lennard-Jones particles arranged on a square lattice. It is found that in dilute solutions the former case leads to the formation of a strongly adsorbed surface layer, and the profile of density and orientational order in the z-direction perpendicular to the wall is predicted by DFT in nice agreement with MD. While for very low bulk densities a Kosterlitz-Thouless type transition from the isotropic phase to a phase with power-law decay of nematic correlations is suggested to occur in the strongly adsorbed layer, for larger densities a smectic-C phase in the surface layer is detected. No "capillary nematization" effect at higher bulk densities is found in this system, unlike systems with repulsive walls. This finding is attributed to the reduction of the bulk density (in the center of the slit pore) due to polymer adsorption on the attractive wall, for a system studied in the canonical ensemble. Consequently in a system with two attractive walls nematic order in the slit pore can occur only at a higher density than for a bulk system.
Intermittent KoldBlue cryotherapy of 3×10 min changes mid‐portion Achilles tendon microcirculation
Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M
2007-01-01
Background Neovascularisation and microcirculatory changes have been reported in Achilles tendinopathy. Cryotherapy and compression, as part of a rest, ice, compression and elevation regimen, are shown to decrease pain and improve function. However, the microcirculatory changes following a given dosage of cryotherapy on mid‐portion Achilles tendon remain unclear. Study design Prospective clinical cohort study, level of evidence 2. Methods 30 people (12 males, 33 (SD 12) years, body mass index 25.6 (5.3) kg/m2) were included in the cohort. 3×10 min KoldBlue ankle‐cooling bandages were applied and microcirculation of Achilles tendon mid‐portion was real‐time and continuously assessed using a laser‐Doppler‐spectrophotometry system (O2C, Germany). Results Superficial capillary blood flow was reduced from 42 to 6, 5 and 3 relative units (rU) in the first, second and third cryotherapy periods, respectively (−65%, p = 0.001), with no significant capillary hyperaemia. Deep capillary tendon blood flow was reduced from 180 to 82, 53 and 52 rU (−71%, p = 0.001) within 6–9 min of application without hyperaemia. Superficial tendon oxygen saturation dropped significantly from 43% to 26%, 18% and 11% (p = 0.001) after repetitive cryotherapy, with persisting increase of tendon oxygenation during rewarming (51%, 49% and 54%, p = 0.077) up to 27% of the baseline level. At 8 mm tendon depth, cryotherapy preserved local oxygenation. Relative postcapillary venous tendon filling pressures were favourably reduced from 41 (11) to 31, 28 and 26 rU (−36%, p = 0.001) superficially and from 56 (11) to 45, 46 and 48 rU (−18%, p = 0.001) in deep capillary blood flow during cryotherapy, facilitating capillary venous clearance. Conclusion Intermittent cryotherapy of 3×10 min significantly decreases local Achilles tendon mid‐portion capillary blood flow by 71%. Within 2 min of rewarming, tendon oxygen saturation is re‐established following cryotherapy. Postcapillary venous filling pressures are reduced during cryotherapy, favouring capillary venous outflow of the healthy Achilles tendon. PMID:17138636
Cerebral small vessel disease: Capillary pathways to stroke and cognitive decline
Engedal, Thorbjørn S; Moreton, Fiona; Hansen, Mikkel B; Wardlaw, Joanna M; Dalkara, Turgay; Markus, Hugh S; Muir, Keith W
2015-01-01
Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections. Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD. We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general benefit to patients at risk of SVD, stroke or cognitive decline. PMID:26661176
Study of the water transportation characteristics of marsh saline soil in the Yellow River Delta.
He, Fuhong; Pan, Yinghua; Tan, Lili; Zhang, Zhenhua; Li, Peng; Liu, Jia; Ji, Shuxin; Qin, Zhaohua; Shao, Hongbo; Song, Xueyan
2017-01-01
One-dimensional soil column water infiltration and capillary adsorption water tests were conducted in the laboratory to study the water transportation characteristics of marsh saline soil in the Yellow River Delta, providing a theoretical basis for the improvement, utilization and conservation of marsh saline soil. The results indicated the following: (1) For soils with different vegetation covers, the cumulative infiltration capacity increased with the depth of the soil layers. The initial infiltration rate of soils covered by Suaeda and Tamarix chinensis increased with depth of the soil layers, but that of bare soil decreased with soil depth. (2) The initial rate of capillary rise of soils with different vegetation covers showed an increasing trend from the surface toward the deeper layers, but this pattern with respect to soil depth was relatively weak. (3) The initial rates of capillary rise were lower than the initial infiltration rates, but infiltration rate decreased more rapidly than capillary water adsorption rate. (4) The two-parameter Kostiakov model can very well-simulate the changes in the infiltration and capillary rise rates of wetland saline soil. The model simulated the capillary rise rate better than it simulated the infiltration rate. (5) There were strong linear relationships between accumulative infiltration capacity, wetting front, accumulative capillary adsorbed water volume and capillary height. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yu, Xinting; Hörst, Sarah M.; He, Chao; Bridges, Nathan T.; Burr, Devon M.; Sebree, Joshua A.; Smith, James K.
2017-11-01
Saltation threshold, the minimum wind speed for sediment transport, is a fundamental parameter in aeolian processes. Measuring this threshold using boundary layer wind tunnels, in which particles are mobilized by flowing air, for a subset of different planetary conditions can inform our understanding of physical processes of sediment transport. The presence of liquid, such as water on Earth or methane on Titan, may affect the threshold values to a great extent. Sediment density is also crucial for determining threshold values. Here we provide quantitative data on density and water content of common wind tunnel materials (including chromite, basalt, quartz sand, beach sand, glass beads, gas chromatograph packing materials, walnut shells, iced tea powder, activated charcoal, instant coffee, and glass bubbles) that have been used to study conditions on Earth, Titan, Mars, and Venus. The measured density values for low density materials are higher compared to literature values (e.g., ∼30% for walnut shells), whereas for the high density materials, there is no such discrepancy. We also find that low density materials have much higher water content and longer atmospheric equilibration timescales compared to high density sediments. We used thermogravimetric analysis (TGA) to quantify surface and internal water and found that over 80% of the total water content is surface water for low density materials. In the Titan Wind Tunnel (TWT), where Reynolds number conditions similar to those on Titan can be achieved, we performed threshold experiments with the standard walnut shells (125-150 μm, 7.2% water by mass) and dried walnut shells, in which the water content was reduced to 1.7%. The threshold results for the two scenarios are almost the same, which indicates that humidity had a negligible effect on threshold for walnut shells in this experimental regime. When the water content is lower than 11.0%, the interparticle forces are dominated by adsorption forces, whereas at higher values the interparticle forces are dominated by much larger capillary forces. For materials with low equilibrium water content, like quartz sand, capillary forces dominate. When the interparticle forces are dominated by adsorption forces, the threshold does not increase with increasing relative humidity (RH) or water content. Only when the interparticle forces are dominated by capillary forces does the threshold start to increase with increasing RH/water content. Since tholins have a low methane content (0.3% at saturation, [Curtis, D. B., Hatch, C. D., Hasenkopf, C. A., et al., 2008. Laboratory studies of methane and ethane adsorption and nucleation onto organic particles: Application to Titan's clouds. Icarus, 195, 792. http://dx.doi.org/10.1016/j.icarus.2008.02.003]), we believe tholins would behave similarly to quartz sand when subjected to methane moisture.
A pneumatic device for rapid loading of DNA sequencing gels.
Panussis, D A; Cook, M W; Rifkin, L L; Snider, J E; Strong, J T; McGrane, R M; Wilson, R K; Mardis, E R
1998-05-01
This work describes the design and construction of a device that facilitates the loading of DNA samples onto polyacrylamide gels for detection in the Perkin Elmer/Applied Biosystems (PE/ABI) 373 and 377 DNA sequencing instruments. The device is mounted onto the existing gel cassettes and makes the process of loading high-density gels less cumbersome while the associated time and errors are reduced. The principle of operation includes the simultaneous transfer of the entire batch of samples, in which a spring-loaded air cylinder generates positive pressure and flexible silica capillaries transfer the samples. A retractable capillary array carrier allows the delivery ends of the capillaries to be held up clear of the gel during loader attachment on the gel plates, while enabling their insertion in the gel wells once the device is securely mounted. Gel-loading devices capable of simultaneously transferring 72 samples onto the PE/ABI 373 and 377 are currently being used in our production sequencing groups while a 96-sample transfer prototype undergoes testing.
Nailfold video-capillaroscopy in systemic sclerosis.
Cutolo, M; Pizzorni, C; Sulli, A
2004-12-01
The Raynaud's phenomenon (RP) is the most common and significant clinical condition supporting microvascular analysis as soon as possible. Microvascular involvement is a key feature of RP, and several rheumatic diseases are characterized by the presence of the RP. Nailfold capillary microscopy shows an impressive cost/effectiveness ratio: it is simple, noninvasive and inexpensive.Well-recognized videocapillaroscopic patterns (NVC) have been described mainly in scleroderma (SSc) patients complaining of a secondary RP. The peripheral microvascular damage in SSc is characterized by increasing structural alterations of the capillaries (giant capillaries and microhemorrhages) with progressive decrease of their density. The detection of the scleroderma NCV allows early differentiation between primary RP (functional, not disease associated), and secondary RP (disease associated). Other major NVC patterns have been described in the field of rheumatic diseases. Interestingly, correlations are evident between the NCV and the clinical symptoms, severity of the disease and the laboratory findings. Further clinical and epidemiological studies, as well as a standardized and computerized quantitation of the observed damages are required.
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; McKay, Terri L.; Leontiev, Dmitry; Condrich, Terence K.; DiCorleto, Paul E.
2005-01-01
The development of effective vascular therapies requires the understanding of all modes of vessel formation contributing to vasculogenesis, angiogenesis (here termed hemangiogenesis) and lymphangiogenesis. We show that lymphangiogenesis proceeds by blind-ended vessel sprouting via recruitment of isolated endothelial progenitor cells to the tips of growing vessels, whereas hemangiogenesis occurs by non-sprouting vessel expansion from the capillary network, during middevelopment in the quail chorioallantoic membrane (CAM). Blood vessels expanded out of capillaries that displayed transient expression of alpha smooth muscle actin (alphaSMA), accompanied by mural recruitment of migratory progenitor cells expressing SMA. Lymphatics and blood vessels were identified by confocal/fluorescence microscopy of vascular endothelial growth factor (VEGF) receptors VEGFR-1 and VEGFR-2, alphaSMA (expressed on CAM blood vessels but not on lymphatics), homeobox transcription factor Prox-1 (specific to CAM lymphatic endothelium), and the quail hematopoetic/vascular marker, QH-1. Expression of VEGFR-1 was highly restricted to blood vessels (primarily capillaries). VEGFR-2 was expressed intensely in isolated hematopoietic cells, lymphatic vessels and moderately in blood vessels. Prox-1 was absent from endothelial progenitor cells prior to lymphatic recruitment. Although vascular endothelial growth factor-165 (VEGF(sub 165)) is a key regulator of numerous cellular processes in hemangiogenesis and vasculogenesis, the role of VEGF(sub 165) in lymphangiogenesis is less clear. Exogenous VEGF(sub 165) increased blood vessel density without changing endogenous modes of vascular/lymphatic vessel formation or marker expression patterns. However, VEGF(sub 165) did increase the frequency of blood vascular anastomoses and strongly induced the antimaturational dissociation of lymphatics from blood vessels, with frequent formation of homogeneous lymphatic networks.
Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface
NASA Astrophysics Data System (ADS)
Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun
2018-05-01
The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.
Supersonic plasma jets in experiments for radiophysical testing of bodies flow
NASA Astrophysics Data System (ADS)
Balakirev, B. A.; Bityurin, V. A.; Bocharov, A. N.; Brovkin, V. G.; Vedenin, P. V.; Lashkov, V. A.; Mashek, I. Ch; Pashchina, A. S.; Petrovskiy, V. P.; Khoronzhuk, R. S.; Dobrovolskaya, A. S.
2018-01-01
The action of differently oriented magnetic fields on the parameters of bow shock created in the vicinity of aerodynamic bodies placed into the supersonic gas-plasma flows is studied. For these experiments two types of the high speed plasma jet sources are used—magneto-plasma compressor (MPC) and powerful pulse capillary type discharge. MPC allows to create the plasma jets with gas flow velocity of 10 ± 2 km/s, lifetime 30-50 μs, temperature Te ≈ 3 ± 0.5 eV, electron density about ne ˜ 1016cm-3 and temperature Te ≈ 3 ± 0.5 eV. The jet source based on powerful capillary discharge creates the flows with lifetime 1-20 ms, Mach numbers 3-8, plasma flow velocity 3-10 km/s, vibration and rotation temperatures 9000-14000 and 3800-6000 K respectively. The results of our first experiments show the possibility of using gas-plasma sources based on MPC and powerful capillary discharge for aerodynamic and radiophysical experiments. Comparatively small magnetic field B = 0.23-0.5 T, applied to the obtained bow shocks, essentially modify them. This can lead to a change in shape and an increase in the distance between the detached shock wave and the streamlined body surface if B is parallel to the jet velocity or to decrease this parameter if B is orthogonal to the oncoming flow. Probably, the first case can be useful for reducing the thermal load and aerodynamic drug of streamlined body and the second case can be used to control the radio-transparency of the plasma layer and solving the blackout problem.
Nickerson, Meghan M; Burke, Caitlin W; Meisner, Joshua K; Shuptrine, Casey W; Song, Ji; Price, Richard J
2009-01-01
Chemokine (C-C motif) receptor-2 (CCR2) regulates arteriogenesis and angiogenesis, facilitating the MCP-1-dependent recruitment of growth factor-secreting bone marrow-derived cells (BMCs). Here, we tested the hypothesis that the BMC-specific expression of CCR2 is also required for new arteriole formation via capillary arterialization. Following non-ischemic saphenous artery occlusion, we measured the following in gracilis muscles: monocyte chemotactic protein-1 (MCP-1) in wild-type (WT) C57Bl/6J mice by ELISA, and capillary arterialization in WT-WT and CCR2(-/-)-WT (donor-host) bone marrow chimeric mice, as well as BMC transdifferentiation in EGFP(+)-WT mice, by smooth muscle (SM) alpha-actin immunochemistry. MCP-1 levels were significantly elevated 1 day after occlusion in WT mice. In WT-WT mice at day 7, compared to sham controls, arterial occlusion induced a 34% increase in arteriole length density, a 46% increase in SM alpha-actin(+) vessels, and a 45% increase in the fraction of vessels coated with SM alpha-actin, indicating significant capillary arterialization. However, in CCR2(-/-)-WT mice, no differences were observed between arterial occlusion and sham surgery. In EGFP(+)-WT mice, EGFP and SM alpha-actin never colocalized. We conclude that BMC-specific CCR2 expression is required for skeletal muscle capillary arterialization following arterial occlusion; however, BMCs do not transdifferentiate into smooth muscle.
Retinal angiography with real-time speckle variance optical coherence tomography.
Xu, Jing; Han, Sherry; Balaratnasingam, Chandrakumar; Mammo, Zaid; Wong, Kevin S K; Lee, Sieun; Cua, Michelle; Young, Mei; Kirker, Andrew; Albiani, David; Forooghian, Farzin; Mackenzie, Paul; Merkur, Andrew; Yu, Dao-Yi; Sarunic, Marinko V
2015-10-01
This report describes a novel, non-invasive and label-free optical imaging technique, speckle variance optical coherence tomography (svOCT), for visualising blood flow within human retinal capillary networks. This imaging system uses a custom-built swept source OCT system operating at a line rate of 100 kHz. Real-time processing and visualisation is implemented on a consumer grade graphics processing unit. To investigate the quality of microvascular detail acquired with this device we compared images of human capillary networks acquired with svOCT and fluorescein angiography. We found that the density of capillary microvasculature acquired with this svOCT device was visibly greater than fluorescein angiography. We also found that this svOCT device had the capacity to generate en face images of distinct capillary networks that are morphologically comparable with previously published histological studies. Finally, we found that this svOCT device has the ability to non-invasively illustrate the common manifestations of diabetic retinopathy and retinal vascular occlusion. The results of this study suggest that graphics processing unit accelerated svOCT has the potential to non-invasively provide useful quantitative information about human retinal capillary networks. Therefore svOCT may have clinical and research applications for the management of retinal microvascular diseases, which are a major cause of visual morbidity worldwide. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Behavior of Bubble Interfaces Stabilized by Particles of Different Densities.
Bournival, Ghislain; Ata, Seher; Wanless, Erica J
2016-06-28
Stability of bubbles laden with particles of different densities was investigated. Capillary-held bubbles were produced and coated with particles across the density range of 1.2-3.6 g·cm(-3). The materials used were poly(methyl methacrylate) (PMMA), glass, and anatase. The interaction of the bubbles, once brought into contact, was monitored using high-speed video recording. Visual inspection indicated that denser particles were more easily displaced during the contact of the bubbles and therefore the PMMA particles provided a particle barrier more resistant to coalescence. The coalescence events yielded information on the surface properties of the bubble and the detachment of particles. The attached particles commonly dampen the oscillation of the coalesced bubbles through viscous drag and change in the surface properties (e.g., area-exclusion principle). The dampening of the oscillation generally leads to a reduced mass of particles detaching from the bubble surface. It was found that the different materials investigated did not offer clear evidence of the effect of particle detachment on the bubble surface properties in the present systems. On the other hand, the detachment of different particle materials seemed to be consistent with one another when comparing the attachment and detachment forces exerted on the particles based on their density, size, and hydrophobicity. It was concluded that particles of lower density are more effective in stabilizing interfaces, and thus particle density is an important parameter in the selection of materials for the handling of dispersions.
Metrology and Transport of Multiply Charged Ions
NASA Astrophysics Data System (ADS)
Kulkarni, Dhruva
The transport and interaction of singly- and multiply-charged ions with matter has been studied. The experiments were performed in an ultra-high vacuum environment. The low- and hyperthermal-energy ion beamline was used as a source of singly charged ions, while the CUEBIT facility was used as a source of multiply charged ions. The kinetic energy of the ion beam obtained from the CUEBIT is offset from the nominal value expected from the applied electrostatic potentials. These offsets were studied by measuring the kinetic energy of the beam using a retarding field analyzer (RFA). The offset was attributed to the space charge of the electron beam that is used to create the multiply charged ions. The charge density of the electron beam was varied by changing operational parameters of the electron beam, namely the electron beam current and the energy of the electron beam. Ion beams of Ar4+ and Ar8+ were extracted from the source and the offsets observed in the kinetic energy were related to the variation in the space charge potential of the electron beam. Measurements of these offsets, ranging from 100 eV/Q to 300 eV/Q, are significant and important for experiments that aim to utilize the potential energy of slow multiply charged ions. The transport of ions using capillaries has been studied to investigate the viability of ion-guiding as a means for a novel ion delivery mechanism. Results on transport through large bore capillaries (macrocapillaries) that probe both the geometric and ionguided mechanisms are presented. The angle- and position-dependent transport properties were found to depend on the material of the capillary (specifically, whether metal or insulator) and the geometry of the capillary. Rb+ ions at a kinetic energy of 1 keV were transmitted through metal and glass capillaries that were a few centimeters in length and a few millimeters in diameter. Oscillations were observed in the capillaries made of glass which were absent in the metal capillaries. Calculations based on the geometry of the experimental setup and kinematics of the ions showed that these oscillations could be attributed to the charge patches formed on the capillary walls. Electronic excitations in solids due to energetic ions at low kinetic energy were measured by using Schottky diodes. Hot electron currents measured at the backside of an Ag/n-Si Schottky diode due to ion bombardment on the frontside were found to depend on the kinetic energy (500 eV to 1500 eV) and angle of incidence (+/-30°) of the ion (Rb+) beam. A sharp upturn in the energy dependent yield is consistent with a kinetic emission model for electronic excitations utilizing the device Schottky barrier as determined from current-voltage characteristics. Backside currents measured for ion incident angle are strongly peaked about normal incidence. Accounting for the increased transport distance for excited charges at non-normal incidence, the mean free path for electrons in silver was found to be 5.2 +/- 1.4 nm, which is consistent with values reported in the literature.
Delgado-Rosas, F; Gaytán, M; Morales, C; Gómez, R; Gaytán, F
2009-05-01
The superficial ovarian cortex constitutes the micro-environment where resting and early growing follicles reside. As small follicles do not possess an independent capillary network, both their survival and early growth depend on their proximity to the cortical vessels. Little is known about the possible changes in superficial ovarian cortex vascularization in normal women throughout reproductive life or in pathological conditions such as polycystic ovary syndrome (PCOS) involving abnormal early follicle growth. We studied the vascularization of the superficial and deep cortical stroma (DCS) in normal cycling ovaries from 21 to 50 years of age and in infertile women with PCOS. We used archival ovarian samples and specific CD34 immunostaining to determine blood vessel density and to analyse correlation with age and with the ovarian follicle reserve. Normal cycling ovaries showed an age-related increase in the superficial cortical stroma vascularization that was inversely correlated with the density of small (primordial and primary) follicles. In contrast, blood vessel density in the DCS significantly decreased in women aged >or=40 years. Ovaries from PCOS showed a 2-fold increase in blood vessel density in both superficial cortical stroma and DCS with respect to age-matched controls. The increased vascularization of the superficial cortical stroma in normal ovaries in relation to age and in ovaries from PCOS could have profound effects on cortical metabolic rate, primordial follicle survival/activation and early follicle growth, and may underline changes in follicle dynamics in mid-aged women and in PCOS.
Oxygen binding properties, capillary densities and heart weights in high altitude camelids.
Jürgens, K D; Pietschmann, M; Yamaguchi, K; Kleinschmidt, T
1988-01-01
The oxygen binding properties of the blood of the camelid species vicuna, llama, alpaca and dromedary camel were measured and evaluated with respect to interspecific differences. The highest blood oxygen affinity, not only among camelids but of all mammals investigated so far, was found in the vicuna (P50 = 17.6 Torr compared to 20.3-21.6 Torr in the other species). Low hematocrits (23-34%) and small red blood cells (21-30 microns 3) are common features of all camelids, but the lowest values are found in the Lama species. Capillary densities were determined in heart and soleus muscle of vicuna and llama. Again, the vicuna shows exceptional values (3720 cap/mm2 on average in the heart) for a mammal of this body size. Finally, heart weight as percent of body weight is higher in the vicuna (0.7-0.9%) than in the other camelids studied (0.5-0.7%). The possibility that these parameters, measured in New World tylopodes at sea level, are not likely to change considerably with transfer to high altitude, is discussed. In the vicuna, a unique combination of the following features seems to be responsible for an outstanding physical capability at high altitude: saturation of blood with oxygen in the lung is favored by a high blood oxygen affinity, oxygen supply being facilitated by low diffusion distances in the muscle tissue. Loading, as well as unloading, of oxygen is improved by a relatively high oxygen transfer conductance of the red blood cells, which is due to their small size and which compensates the negative effect of a low hematocrit on the oxygen conductance of blood.(ABSTRACT TRUNCATED AT 250 WORDS)
Schaser, Klaus-Dieter; Disch, Alexander C; Stover, John F; Lauffer, Annette; Bail, Herman J; Mittlmeier, Thomas
2007-01-01
Closed soft tissue injury induces progressive microvascular dysfunction and regional inflammation. The authors tested the hypothesis that adverse trauma-induced effects can be reduced by local cooling. While superficial cooling reduces swelling, pain, and cellular oxygen demand, the effects of cryotherapy on posttraumatic microcirculation are incompletely understood. Controlled laboratory study. After a standardized closed soft tissue injury to the left tibial compartment, male rats were randomly subjected to percutaneous perfusion for 6 hours with 0.9% NaCL (controls; room temperature) or cold NaCL (cryotherapy; 8 degrees C) (n = 7 per group). Uninjured rats served as shams (n = 7). Microcirculatory changes and leukocyte adherence were determined by intravital microscopy. Intramuscular pressure was measured, and invasion of granulocytes and macrophages was assessed by immunohistochemistry. Edema and tissue damage was quantified by gravimetry and decreased desmin staining. Closed soft tissue injury significantly decreased functional capillary density (240 +/- 12 cm(-1)); increased microvascular permeability (0.75 +/- 0.03), endothelial leukocyte adherence (995 +/- 77/cm(2)), granulocyte (182.0 +/- 25.5/mm(2)) and macrophage infiltration, edema formation, and myonecrosis (ratio: 2.95 +/- 0.45) within the left extensor digitorum longus muscle. Cryotherapy for 6 hours significantly restored diminished functional capillary density (393 +/- 35), markedly decreased elevated intramuscular pressure, reduced the number of adhering (462 +/- 188/cm(2)) and invading granulocytes (119 +/- 28), and attenuated tissue damage (ratio: 1.7 +/- 0.17). The hypothesis that prolonged cooling reduces posttraumatic microvascular dysfunction, inflammation, and structural impairment was confirmed. These results may have therapeutic implications as cryotherapy after closed soft tissue injury is a valuable therapeutic approach to improve nutritive perfusion and attenuate leukocyte-mediated tissue destruction. The risk for evolving compartment syndrome may be reduced, thereby preventing further irreversible aggravation.
O-GlcNAcase overexpression reverses coronary endothelial cell dysfunction in type 1 diabetic mice.
Makino, Ayako; Dai, Anzhi; Han, Ying; Youssef, Katia D; Wang, Weihua; Donthamsetty, Reshma; Scott, Brian T; Wang, Hong; Dillmann, Wolfgang H
2015-11-01
Cardiovascular disease is the primary cause of morbidity and mortality in diabetes, and endothelial dysfunction is commonly seen in these patients. Increased O-linked N-acetylglucosamine (O-GlcNAc) protein modification is one of the central pathogenic features of diabetes. Modification of proteins by O-GlcNAc (O-GlcNAcylation) is regulated by two key enzymes: β-N-acetylglucosaminidase [O-GlcNAcase (OGA)], which catalyzes the reduction of protein O-GlcNAcylation, and O-GlcNAc transferase (OGT), which induces O-GlcNAcylation. However, it is not known whether reducing O-GlcNAcylation can improve endothelial dysfunction in diabetes. To examine the effect of endothelium-specific OGA overexpression on protein O-GlcNAcylation and coronary endothelial function in diabetic mice, we generated tetracycline-inducible, endothelium-specific OGA transgenic mice, and induced OGA by doxycycline administration in streptozotocin-induced type 1 diabetic mice. OGA protein expression was significantly decreased in mouse coronary endothelial cells (MCECs) isolated from diabetic mice compared with control MCECs, whereas OGT protein level was markedly increased. The level of protein O-GlcNAcylation was increased in diabetic compared with control mice, and OGA overexpression significantly decreased the level of protein O-GlcNAcylation in MCECs from diabetic mice. Capillary density in the left ventricle and endothelium-dependent relaxation in coronary arteries were significantly decreased in diabetes, while OGA overexpression increased capillary density to the control level and restored endothelium-dependent relaxation without changing endothelium-independent relaxation. We found that connexin 40 could be the potential target of O-GlcNAcylation that regulates the endothelial functions in diabetes. These data suggest that OGA overexpression in endothelial cells improves endothelial function and may have a beneficial effect on coronary vascular complications in diabetes. Copyright © 2015 the American Physiological Society.
Foam shell cryogenic ICF target
Darling, Dale H.
1987-01-01
A uniform cryogenic layer of DT fuel is maintained in a fusion target having a low density, small pore size, low Z rigid foam shell saturated with liquid DT fuel. Capillary action prevents gravitational slumping of the fuel layer. The saturated shell may be cooled to produce a solid fuel layer.
Confocal laser-scanning microscopy of capillaries in normal and psoriatic skin
NASA Astrophysics Data System (ADS)
Archid, Rami; Patzelt, Alexa; Lange-Asschenfeldt, Bernhard; Ahmad, Sufian S.; Ulrich, Martina; Stockfleth, Eggert; Philipp, Sandra; Sterry, Wolfram; Lademann, Juergen
2012-10-01
An important and most likely active role in the pathogenesis of psoriasis has been attributed to changes in cutaneous blood vessels. The purpose of this study was to use confocal laser-scanning microscopy (CLSM) to investigate dermal capillaries in psoriatic and normal skin. The structures of the capillary loops in 5 healthy participants were compared with those in affected skin of 13 psoriasis patients. The diameters of the capillaries and papillae were measured for each group with CLSM. All investigated psoriasis patients showed elongated, widened, and tortuous microvessels in the papillary dermis, whereas all healthy controls showed a single capillary loop in each dermal papilla. The capillaries of the papillary loop and the dermal papilla were significantly enlarged in the psoriatic skin lesions (diameters 24.39±2.34 and 146.46±28.52 μm, respectively) in comparison to healthy skin (diameters 9.53±1.8 and 69.48±17.16 μm, respectively) (P<0.001). CLSM appears to represent a promising noninvasive technique for evaluating dermal capillaries in patients with psoriasis. The diameter of the vessels could be seen as a well-quantifiable indicator for the state of psoriatic skin. CLSM could be useful for therapeutic monitoring to delay possible recurrences.
Lee, Ji Eun; Kim, Hyun Woong; Lee, Sang Joon; Lee, Joo Eun
2015-05-01
To investigate vascular structural changes of choroidal neovascularization (CNV) followed by intravitreal ranibizumab injections using indocyanine green angiography. A total of 31 patients with exudative age-related macular degeneration and CNV whose structures were identifiable in indocyanine green angiography were included. Ranibizumab was injected into the vitreous cavity once a month for 3 months and then as needed for the next 3 months prospectively. Indocyanine green angiography was performed at baseline, 3, and 6 months. Early to midphase images of the indocyanine green angiography in the details of vascular structure of the CNV were discerned the best were used in the image analysis. Vascular structures of CNV were described as arteriovenular and capillary components, and structural changes were assessed. Arteriovenular components were observed in 29 eyes (94%). Regression of the capillary components was observed in most cases. Although regression of arteriovenular component was noted in 14 eyes (48%), complete resolution was not observed. The eyes were categorized into 3 groups according to CNV structural changes: the regressed (Group R, 10 eyes, 31%), the matured (Group M, 7 eyes, 23%), and the growing (Group G, 14 eyes, 45%). In Group R, there was no regrowth of CNV found at 6 months. In Group M, distinct vascular structures were observed at 3 months and persisted without apparent changes at 6 months. In Group G, growth or reperfusion of capillary components from the persisting arteriovenular components was noted at 6 months. Both capillary and arteriovenular components were regressed during monthly ranibizumab injections. However, CNV regrowth was observed in a group of patients during the as-needed treatment phase.
Review: Cerebral microvascular pathology in aging and neurodegeneration
Brown, William R.; Thore, Clara R.
2010-01-01
This review of age-related brain microvascular pathologies focuses on topics studied by this laboratory, including anatomy of the blood supply, tortuous vessels, venous collagenosis, capillary remnants, vascular density, and microembolic brain injury. Our studies feature thick sections, large blocks embedded in celloidin, and vascular staining by alkaline phosphatase (AP). This permits study of the vascular network in three dimensions, and the differentiation of afferent from efferent vessels. Current evidence suggests that there is decreased vascular density in aging, Alzheimer’s disease (AD), and leukoaraiosis (LA), and cerebrovascular dysfunction precedes and accompanies cognitive dysfunction and neurodegeneration. A decline in cerebrovascular angiogenesis may inhibit recovery from hypoxia-induced capillary loss. Cerebral blood flow (CBF) is inhibited by tortuous arterioles and deposition of excessive collagen in veins and venules. Misery perfusion due to capillary loss appears to occur before cell loss in LA, and CBF is also reduced in the normal-appearing white matter. Hypoperfusion occurs early in AD, inducing white matter lesions and correlating with dementia. In vascular dementia, cholinergic reductions are correlated with cognitive impairment, and cholinesterase inhibitors have some benefit. Most lipid microemboli from cardiac surgery pass through the brain in a few days, but some remain for weeks. They can cause what appears to be a type of vascular dementia years after surgery. Donepezil has shown some benefit. Emboli, such as clots, cholesterol crystals, and microspheres can be extruded through the walls of cerebral vessels, but there is no evidence yet that lipid emboli undergo such extravasation. PMID:20946471
Strauss, Juliette A.; Shepherd, Sam O.; Keske, Michelle A.; Cocks, Matthew
2015-01-01
Abstract This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF‐A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age‐related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF‐B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. PMID:25627798
NASA Astrophysics Data System (ADS)
Tanis, J. A.; Keerthisinghe, D.; Wickramarachchi, S. J.; Ikeda, T.; Stolterfoht, N.
2018-05-01
Charge deposition dependences of electron transmission through insulating PET nanocapillaries and a tapered glass microcapillary are reported and differences with HCI transmission are noted. Investigations were conducted for electrons with incident energies 500-1000 eV, corresponding to energies per charge similar to those used for HCI studies, incident on (1) an array of PET nanocapillaries (density ∼5 × 108/cm2) with diameters 100 nm in a foil of thickness 12 μm, and (2) on a tapered glass microcapillary with inlet/outlet diameters of 800/100 μm and a length of ∼35 mm. The transmission was measured for incident electrons at small sample tilt angles ranging from 0° to 5° with respect to the beam direction. For most angles, including those near zero degrees, there was an initial quiet period during which essentially no transmission was observed, followed by large rises in the transmission during relatively short periods of charge deposition before equilibrium of the transmission was reached. The resulting equilibrium was stable, blocked or had frequent oscillations depending on the incident energy and the capillary used. Observations for both capillaries show that a negative charge patch is needed to guide incident electrons through the capillaries similar to the manner in which HCIs are guided through capillaries.
Kanitakis, Jean; Petruzzo, Palmina; Gazarian, Aram; Karayannopoulou, Georgia; Buron, Fannie; Dubois, Valérie; Thaunat, Olivier; Badet, Lionel; Morelon, Emmanuel
2016-04-01
Vascularized composite tissue allografts (VCA) can undergo rejection, manifesting pathologically with skin changes that form the basis of the Banff 2007 classification of VCA rejection. We have followed 10 human VCA recipients (7 with hand allografts, 3 with face allografts) for pathological signs of rejection. All of them developed episodes of acute rejection. Two patients with hand allografts presented in some of their skin biopsies an as yet unreported pathological finding in human VCA, consisting of capillary thromboses (CT) in the upper dermis. Capillary thrombosis was associated with other typical changes of grade II to III VCA rejection, namely, perivascular T cell infiltrates, but not with vascular C4d deposits (in formalin-fixed tissue). Clinically, the lesions presented as red or violaceous (lichenoid) cutaneous maculopapules. The first patient had several episodes of acute rejection during the 7-year follow-up. The second patient developed donor-specific antibodies; some months after CT were first observed, he developed chronic rejection leading to partial amputation of the allograft. Pathological examination of the skin showed graft vasculopathy and occasional C4d deposits in cutaneous capillaries. Capillary thrombosis seems to be a novel pathologic finding associated with human VCA rejection. Although its mechanism (immunologic vs nonimmunologic) remains unclear, this finding could carry an unfavorable prognostic significance, prompting close monitoring of the patients for severe/chronic rejection.
Yamabe, Hirotatsu; Tsuji, Takeshi; Liang, Yunfeng; Matsuoka, Toshifumi
2015-01-06
CO2 geosequestration in deep aquifers requires the displacement of water (wetting phase) from the porous media by supercritical CO2 (nonwetting phase). However, the interfacial instabilities, such as viscous and capillary fingerings, develop during the drainage displacement. Moreover, the burstlike Haines jump often occurs under conditions of low capillary number. To study these interfacial instabilities, we performed lattice Boltzmann simulations of CO2-water drainage displacement in a 3D synthetic granular rock model at a fixed viscosity ratio and at various capillary numbers. The capillary numbers are varied by changing injection pressure, which induces changes in flow velocity. It was observed that the viscous fingering was dominant at high injection pressures, whereas the crossover of viscous and capillary fingerings was observed, accompanied by Haines jumps, at low injection pressures. The Haines jumps flowing forward caused a significant drop of CO2 saturation, whereas Haines jumps flowing backward caused an increase of CO2 saturation (per injection depth). We demonstrated that the pore-scale Haines jumps remarkably influenced the flow path and therefore equilibrium CO2 saturation in crossover domain, which is in turn related to the storage efficiency in the field-scale geosequestration. The results can improve our understandings of the storage efficiency by the effects of pore-scale displacement phenomena.
MACULAR MICROVASCULAR NETWORKS IN HEALTHY PEDIATRIC SUBJECTS.
Borrelli, Enrico; Lonngi, Marcela; Balasubramanian, Siva; Tepelus, Tudor C; Baghdasaryan, Elmira; Iafe, Nicholas A; Pineles, Stacy L; Velez, Federico G; Sarraf, David; Sadda, SriniVas R; Tsui, Irena
2018-02-22
To report optical coherence tomography angiography (OCTA) values in healthy pediatric eyes and to identify factors that may modify these values. In this prospective observational cross-sectional study, macular OCTA images were acquired from healthy pediatric patients. Main outcome measures were 1) foveal avascular zone (FAZ) area at the level of the superficial retinal capillary plexus (SCP); 2) SCP and deep retinal capillary plexus (DCP) perfusion density (based on the area of vessels); 3) SCP and DCP vessel density (based on a map with vessels of 1-pixel width); and 4) CC perfusion density. Multiple regression analysis was performed to assess the effect of age, sex, ethnicity, refraction, and foveal macular thickness (FMT) on OCTA parameters. Seventy-seven eyes from 52 subjects (23 male and 29 female) were included in analysis. Mean age was 11.1 ± 3.3 years (range = 5.0-17.0 years). Twenty-nine (55.8%) subjects were white, 14 (27.0%) Hispanic, 8 (15.4%) Asian, and 1 (1.8%) African-American. Mean refraction was -0.1 ± 2.4 diopters (D) (range = -5.75 to +9.0 D). Mean FMT was 248.6 ± 18.6 μm. Larger FAZ area was significantly associated with older age (P = 0.014). Furthermore, larger FAZ area was associated with reduced FMT (P < 0.0001). Male sex was associated only with increased SCP perfusion density (P = 0.042). Increased CC perfusion density was associated with younger age (P = 0.022). We report data for pediatric OCTA parameters in healthy subjects. Several variables influence the density of macular microvascular networks, and these factors should be considered in the OCTA study of pediatric eye disorders.
Time Evolution of Sublingual Microcirculatory Changes in Recreational Marathon Runners
Arstikyte, Justina; Vaitkaitiene, Egle; Vaitkaitis, Dinas
2017-01-01
We aimed to evaluate changes in sublingual microcirculation induced by a marathon race. Thirteen healthy male controls and 13 male marathon runners volunteered for the study. We performed sublingual microcirculation, using a Cytocam-IDF device (Braedius Medical, Huizen, Netherlands), and systemic hemodynamic measurements four times: 24 hours prior to their participation in the Kaunas Marathon (distance: 41.2 km), directly after finishing the marathon, 24 hours after the marathon, and one week after the marathon. The marathon runners exhibited a higher functional capillary density (FCD) and total vascular density of small vessels at the first visit compared with the controls. Overall, we did not find any changes in sublingual microcirculation of the marathon runners at any of the other visits. However, in a subgroup of marathon runners with a decreased FCD compared to the subgroup with increased FCD, the subgroup with decreased FCD had shorter running time (190.37 ± 30.2 versus 221.80 ± 23.4 min, p = 0.045), ingested less fluids (907 ± 615 versus 1950 ± 488 mL, p = 0.007) during the race, and lost much more weight (−2.4 ± 1.3 versus −1.0 ± 0.8 kg, p = 0.041). Recreational marathon running is not associated with an alteration of sublingual microcirculation. However, faster running and dehydration may be crucial for further impairing microcirculation. PMID:28828386
Imbibition of ``Open Capillary'': Fundamentals and Applications
NASA Astrophysics Data System (ADS)
Tani, Marie; Kawano, Ryuji; Kamiya, Koki; Okumura, Ko
2015-11-01
Control or transportation of small amount of liquid is one of the most important issues in various contexts including medical sciences or pharmaceutical industries to fuel delivery. We studied imbibition of ``open capillary'' both experimentally and theoretically, and found simple scaling laws for both statics and dynamics of the imbibition, similarly as that of imbibition of capillary tubes. Furthermore, we revealed the existence of ``precursor film,'' which developed ahead of the imbibing front, and the dynamics of it is described well by another scaling law for capillary rise in a corner. Then, to show capabilities of open capillaries, we demonstrated two experiments by fabricating micro mixing devices to achieve (1) simultaneous multi-color change of the Bromothymol blue (BTB) solution and (2) expression of the green florescent protein (GFP). This research was partly supported by ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan). M. T. is supported by the Japan Society for the Promotion of Science Research Fellowships for Young Scientists.
RETINAL DEEP CAPILLARY ISCHEMIA ASSOCIATED WITH AN OCCLUDED CONGENITAL RETINAL MACROVESSEL.
Hasegawa, Taiji; Ogata, Nahoko
2017-01-01
To report the case of a patient with an occluded congenital retinal macrovessel accompanied by retinal deep capillary ischemia. A 38-year-old woman presented with a 2-day history of a paracentral scotoma of her right eye. Fundus photograph showed a dilated congenital retinal macrovessel with arteriovenous anastomosis, an intravascular white region indicating the thrombus at arteriovenous anastomotic region, and an area of retinal whitening temporal to the fovea. The spectral domain optical coherence tomography images through the area of retinal whitening showed a thickening and highly reflectivity at the level of the inner nuclear layer, which is likely due to the deep capillary ischemia. After 6 weeks, spectral domain optical coherence tomography images through the same area demonstrated a thinning and atrophy of only the inner nuclear layer, and the patient's paracentral scotoma persisted. Acute capillary hemodynamic changes caused deep capillary ischemia. The spectral domain optical coherence tomography showed a highly reflective lesion at the level of the inner nuclear layer in the acute phase.
Huguenin, Grazielle V B; Moreira, Annie S B; Siant'Pierre, Tatiana D; Gonçalves, Rodrigo A; Rosa, Glorimar; Oliveira, Glaucia M M; Luiz, Ronir R; Tibirica, Eduardo
2015-11-01
To investigate the effects of dietary supplementation with GBNs on microvascular endothelial function in hypertensive and dyslipidemic patients. Ninety-one patients of both sexes aged 62.1 ± 9.3 years received 13 g/day of GBNs or a placebo for three months with a washout period of one month between treatments. Microvascular endothelial function was assessed using LSCI coupled with iontophoresis of ACh and PORH. We also used skin video capillaroscopy to measure capillary density and recruitment at rest and during PORH. Plasma concentrations of NOx were also measured as a marker of nitric oxide bioavailability. Supplementation with GBNs significantly increased the plasma levels of Se (p < 0.05) and NOx (p < 0.05). However, we did not observe any effects of GBN consumption on microvascular vasodilator responses to ACh or PORH (p > 0.05), and GBNs did not improve capillary density at baseline or recruitment during PORH (p > 0.05). Supplementation with GBNs induced significant increases in the plasma Se concentration and systemic bioavailability of nitric oxide. Nevertheless, GBN supplementation did not lead to any improvement in systemic microvascular reactivity or density in patients with arterial hypertension and dyslipidemia who were undergoing multiple drug therapies. © 2015 John Wiley & Sons Ltd.
Lewandowski, Adam J; Davis, Esther F; Yu, Grace; Digby, Janet E; Boardman, Henry; Whitworth, Polly; Singhal, Atul; Lucas, Alan; McCormick, Kenny; Shore, Angela C; Leeson, Paul
2015-03-01
Preterm-born individuals have elevated blood pressure. We tested the hypothesis that this associates with an enhanced antiangiogenic circulating profile and that this association is mediated by variations in capillary density. We studied 204 adults aged 25 years (range, 20-30 years), of which 102 had been followed up prospectively since very preterm birth (mean gestational age, 30.3±2.5 weeks) and 102 were born term to uncomplicated pregnancies. A panel of circulating biomarkers, including soluble endoglin and soluble fms-like tyrosine kinase-1, were compared between groups and related to perinatal history and adult cardiovascular risk. Associations with cardiovascular phenotype were studied in 90 individuals who had undergone detailed assessment of microvascular, macrovascular, and cardiac structure and function. Preterm-born individuals had elevations in soluble endoglin (5.64±1.03 versus 4.06±0.85 ng/mL; P<0.001) and soluble fms-like tyrosine kinase-1 (88.1±19.0 versus 73.0±15.3 pg/mL; P<0.001) compared with term-born individuals, proportional to elevations in resting and ambulatory blood pressure, as well as degree of prematurity (P<0.05). Maternal hypertensive pregnancy disorder was associated with additional increases in soluble fms-like tyrosine kinase-1 (P=0.002). Other circulating biomarkers, including those of inflammation and endothelial activation, were not related to blood pressure. There was a specific graded association between soluble endoglin and degree of functional and structural capillary rarefaction (P=0.002 and P<0.001), and in multivariable analysis, there were capillary density-mediated associations between soluble endoglin and blood pressure. Preterm-born individuals exhibit an enhanced antiangiogenic state in adult life that is specifically related to elevations in blood pressure. The association seems to be mediated through capillary rarefaction and is independent of other cardiovascular structural and functional differences in the offspring. © 2014 American Heart Association, Inc.
Miniaturized technology for DNA typing: cassette PCR.
Manage, Dammika P; Pilarski, Linda M
2015-01-01
With the smaller size, low cost, and rapid testing capabilities, miniaturized lab-on-a-chip devices can change the way medical diagnostics are currently performed in the health-care system. We have demonstrated such a device that is self-contained, simple, disposable, and inexpensive. It is capable of performing DNA amplification on an inexpensive instrument suitable for near point of care settings. This technology will enable on the spot evaluation of patients in the clinic for faster medical decision-making and more informed therapeutic choices. Our device, a gel capillary cassette, termed cassette PCR, contains capillary reaction units each holding a defined primer set, with arrays of capillary reaction units for simultaneously detecting multiple targets. With the exception of the sample to be tested, each capillary reaction unit holds all the reagents needed for PCR in a desiccated form that can be stored at room temperature for up to 3 months and even longer in colder conditions. It relies on capillary forces for sample delivery of microliter volumes through capillaries, hence avoiding the need for pumps or valves. In the assembled cassette, the wax architecture supporting the capillaries melts during the PCR and acts as a vapor barrier as well as segregating capillaries with different primer sets. No other chip sealing techniques are required. Cassette PCR accepts raw samples such as urine, genital swabs, and blood. The cassette is made with off-the-shelf components and contains integrated positive and negative controls.
Peripapillary vessel density changes in Leber's Hereditary Optic Neuropathy: a new biomarker.
Balducci, Nicole; Cascavilla, Maria Lucia; Ciardella, Antonio; La Morgia, Chiara; Triolo, Giacinto; Parisi, Vincenzo; Bandello, Francesco; Sadun, Alfredo A; Carelli, Valerio; Barboni, Piero
2018-05-22
The contribution of the microvascular supply to the pathogenesis of Leber's Hereditary Optic Neuropathy (LHON) is poorly understood. We aimed at measuring the peripapillary capillary vessel density (VD) using optical coherence tomography angiography (OCT-A) at different stages of LHON. Prospective, cross-sectional, multicenter, observational study. Twenty-two LHON patients divided in 4 groups: unaffected mutation carriers (LHON-u); early subacute stage (LHON-e); late subacute stage (LHON-l); chronic stage (LHON-ch). OCT-A scans centered on the optic disc were obtained by spectral domain OCT system. VD, retinal nerve fiber layer (RNFL) and ganglion cell inner plexiform layer (GC-IPL) thickness were compared between groups. Significant VD changes were detected in every sector (p<0.0001). In LHON-e, the VD was reduced in the temporal sector compared with LHON-u and in the temporal and inferotemporal sectors compared with controls. In LHON-l, VD was reduced in whole, temporal, superotemporal and inferotemporal sectors compared with LHON-u and controls. In LHON-ch, the VD was reduced in all sectors compared to the other groups. An asynchronous pattern emerged in the temporal sector with VD changes occurring earlier than RNFL thickness changes and together with GC-IPL thinning. Significant peripapillary miscrovascular changes were detected over the different stages of LHON. Studying the vascular network separately from fibers revealed that microvascular changes in the temporal sector preceded the changes of RNFL and mirrored the GC-IPL changes. Measurements of the peripapillary vascular network may become a useful biomarker to monitor the disease process, evaluate therapeutic efficacy and elucidate pathophysiology. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Konangi, S.; Palakurthi, N. K.; Karadimitriou, N.; Comer, K.; Ghia, U.
2017-12-01
We present results of pore-scale direct numerical simulations (DNS) of drainage and imbibition in a quasi-two-dimensional (40µm thickness) porous medium with a randomly distributed packing of cylindrical obstructions. The Navier-Stokes (NS) equations are solved in the pore space on an Eulerian mesh using the open-source finite-volume computational fluid dynamics (CFD) code, OpenFOAM. The Volume-of-Fluid (VOF) method is employed to track the evolution of the fluid-fluid interface; a static contact angle is used to account for wall adhesion. From the DNS data, we focus on the macroscopic capillary pressure-saturation (Pc-Sw) relation, which is known to be hysteretic, i.e., this relation is flow process (such as drainage, imbibition and scanning curves) and history dependent. In order to overcome the problem of hysteresis, extended theories of multiphase flow hypothesized that the inclusion of specific interfacial area as a state variable will result in a unique relation between capillary pressure, saturation and interfacial area (Pc-Sw-awn). We study the role of specific interfacial area on hysteresis in the macroscopic Pc-Sw relation under non-equilibrium (dynamic) conditions. Under dynamic conditions, capillary pressure depends on the rate of change of the wetting phase saturation, and the dynamic Pc-Sw relation includes the changes caused by viscous effects. Simulations of drainage and imbibition are performed for two capillary numbers by controlling the flow rate of the non-wetting (polydimenthlysiloxane oil) and wetting (water) fluids. From these simulations, the Pc-Sw curves will be estimated; the Pc-S-awn surface will be constructed to determine whether the data points from drainage and imbibition processes fall on a unique surface under transient conditions. Different macroscopic capillary pressure definitions based on phase-averaged pressures and interfacial area will be evaluated. Understanding macroscopic capillary pressure definitions and the uniqueness of the Pc-S- awn relation is step towards complete description of two-phase flow at the Darcy scale.
NASA Astrophysics Data System (ADS)
Nigodjuk, V. E.; Sulinov, A. V.
2018-01-01
The article presents the results of an experimental study of the hydraulic characteristics of capillary elements of the injector head of jet engines in isothermal fluid flow and the proposed method of their calculation. The main geometric dimensions of the capillaries in the experiment were changed in the following range: Inner diameter from 0.16 to 0.36 mm, length from 4.3 to 158 mm and relative length from 25 to 614 and the inlet edge of the capillaries: sharp or smooth the leading edge. As the working fluid during the tests were distilled water, acetone and ethyl alcohol. Based on the results of a study of the dependences for calculation of ultimate losses in laminar and turbulent flow regimes in capillary tubes with smooth and sharp edges input. The influence of surface tension forces on loss of input on a sharp cutting edge. Experimentally confirmed the possibility of calculating the linear coefficient of hydraulic resistance of capillary tubes with a diameter of 0.16-0.36 mm in isothermal stable during the known dependencies that are valid for hydrodynamically smooth round tube.
Bakirci Ureyen, Sibel; Kara, Rabia Oztas; Erturk, Zeynep; Yaldiz, Mahizer
2018-05-02
The objective of this study is to evaluate the link between nail fold vessel resistive index (NVRI) measured by ultrasound (US) and capillary loops diameters measured using nailfold videocapillarascopy (NVC), and to assess the morphological appearance of the nail bed in patients with psoriatic nail disease (PND) as compared with healthy controls (HCs). This study was conducted in patients with PND and HCs. General demographic data were collected and clinical assessments were performed for all subjects. The nail plate thickness (NPT) was measured on gray scale using US. The NVRI was measured using color Doppler (CD) US. The measurements of the apical, arterial, venous limb diameters and morpho-structural changes (tortuous, cross-linked capillaries) were assessed using NVC. Thirty-four patients with PND and 15 HCs were enrolled in this study. The two groups were matched for age and body mass index (BMI). Patients with PND had higher NPT and NVRI in comparison with HCs [(20 (17-23) vs 14 (14-15), p<0.001), (0.55 (0.51-0.61) vs 0.43 (0.38-0.49), p<0.001), respectively]. A higher proportion of patients with PND had tortuous capillaries than HCs (62% and 20% respectively, p=0.005). The mean NVRI was higher in patients with PND who had tortuous capillaries than patients who did not have tortuous capillaries (0.58 (0.7) and 0.52 (0.09), respectively p=0.033). Microvascular changes can be detected easily using non-invasive methods such as US and NVC. These methods can provide an objective data to better assess PND.
Panazzolo, Diogo G; Sicuro, Fernando L; Clapauch, Ruth; Maranhão, Priscila A; Bouskela, Eliete; Kraemer-Aguiar, Luiz G
2012-11-13
We aimed to evaluate the multivariate association between functional microvascular variables and clinical-laboratorial-anthropometrical measurements. Data from 189 female subjects (34.0 ± 15.5 years, 30.5 ± 7.1 kg/m2), who were non-smokers, non-regular drug users, without a history of diabetes and/or hypertension, were analyzed by principal component analysis (PCA). PCA is a classical multivariate exploratory tool because it highlights common variation between variables allowing inferences about possible biological meaning of associations between them, without pre-establishing cause-effect relationships. In total, 15 variables were used for PCA: body mass index (BMI), waist circumference, systolic and diastolic blood pressure (BP), fasting plasma glucose, levels of total cholesterol, high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), insulin, C-reactive protein (CRP), and functional microvascular variables measured by nailfold videocapillaroscopy. Nailfold videocapillaroscopy was used for direct visualization of nutritive capillaries, assessing functional capillary density, red blood cell velocity (RBCV) at rest and peak after 1 min of arterial occlusion (RBCV(max)), and the time taken to reach RBCV(max) (TRBCV(max)). A total of 35% of subjects had metabolic syndrome, 77% were overweight/obese, and 9.5% had impaired fasting glucose. PCA was able to recognize that functional microvascular variables and clinical-laboratorial-anthropometrical measurements had a similar variation. The first five principal components explained most of the intrinsic variation of the data. For example, principal component 1 was associated with BMI, waist circumference, systolic BP, diastolic BP, insulin, TG, CRP, and TRBCV(max) varying in the same way. Principal component 1 also showed a strong association among HDL-c, RBCV, and RBCV(max), but in the opposite way. Principal component 3 was associated only with microvascular variables in the same way (functional capillary density, RBCV and RBCV(max)). Fasting plasma glucose appeared to be related to principal component 4 and did not show any association with microvascular reactivity. In non-diabetic female subjects, a multivariate scenario of associations between classic clinical variables strictly related to obesity and metabolic syndrome suggests a significant relationship between these diseases and microvascular reactivity.
Interferometer density measurements of a high-velocity plasmoid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Case, A.; Messer, S.; Bomgardner, R.
2010-05-15
The plasmoid produced by a half-scale contoured gap coaxial plasma accelerator using ablative polyethylene capillary plasma injectors is measured using a quadrature heterodyne HeNe interferometer. The plasmoid is found to have a sharp rise in density at the leading edge, with a gradual falloff after the peak density. For this early test series, an average bulk density of 5x10{sup 14} cm{sup -3} is observed, with densities up to 8x10{sup 14} cm{sup -3} seen on some shots. Although plasmoid mass is only about 58 mug due to the low current and injected mass used in these tests, good shot-to-shot repeatability ismore » attained making analysis relatively straightforward, thus providing a solid foundation for interpreting future experimental results.« less
Wang, Xuchun; Li, Guangyong; Hong, Guo; Guo, Qiang; Zhang, Xuetong
2017-11-29
Phase change materials, changing from solid to liquid and vice versa, are capable of storing and releasing a large amount of thermal energy during the phase change, and thus hold promise for numerous applications including thermal protection of electronic devices. Shaping these materials into microspheres for additional fascinating properties is efficient but challenging. In this regard, a novel phase change microsphere with the design for electrical-regulation and thermal storage/release properties was fabricated via the combination of monodispersed graphene aerogel microsphere (GAM) and phase change paraffin. A programmable method, i.e., coupling ink jetting-liquid marbling-supercritical drying (ILS) techniques, was demonstrated to produce monodispersed graphene aerogel microspheres (GAMs) with precise size-control. The resulting GAMs showed ultralow density, low electrical resistance, and high specific surface area with only ca. 5% diameter variation coefficient, and exhibited promising performance in smart switches. The phase change microspheres were obtained by capillary filling of phase change paraffin inside the GAMs and exhibited excellent properties, such as low electrical resistance, high latent heat, well sphericity, and thermal buffering. Assembling the phase change microsphere into the microcircuit, we found that this tiny device was quite sensitive and could respond to heat as low as 0.027 J.
Melt fracture of linear low-density polyethylenes: Die geometry and molecular weight characteristics
NASA Astrophysics Data System (ADS)
Ebrahimi, Marzieh; Tomkovic, Tanja; Liu, Guochang; Doufas, Antonios A.; Hatzikiriakos, Savvas G.
2018-05-01
The melt fracture phenomena of three linear low-density polyethylenes are investigated as a function of die geometry (capillary, slit, and annular) and molecular weight and its distribution. The onset of melt fracture instabilities is determined by using capillary rheometry, mainly studying the extrudate appearance using optical microscopy. It is found that the onset of flow instabilities (melt fracture phenomena) is significantly affected by die geometry and molecular weight characteristics of the polymers. Use of annular die eliminates the stick-slip transition (oscillating melt fracture) and delays the onset of sharkskin to higher values of shear rate and shear stress. Moreover, it is shown that the molecular weight characteristics of the polymers are well correlated with critical conditions for the onset of flow instabilities based on a criterion proposed in the literature [A. Allal et al., "Relationships between molecular structure and sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 134, 127-135 (2006) and A. Allal and B. Vergnes, "Molecular design to eliminate sharkskin defect for linear polymers," J. Non-Newtonian Fluid Mech. 146, 45-50 (2007)].
Investigation of transient dynamics of capillary assisted particle assembly yield
NASA Astrophysics Data System (ADS)
Virganavičius, D.; Juodėnas, M.; Tamulevičius, T.; Schift, H.; Tamulevičius, S.
2017-06-01
In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm2 square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional
NASA Astrophysics Data System (ADS)
Chacón, Enrique; Tarazona, Pedro
2016-06-01
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Capillary wave Hamiltonian for the Landau-Ginzburg-Wilson density functional.
Chacón, Enrique; Tarazona, Pedro
2016-06-22
We study the link between the density functional (DF) formalism and the capillary wave theory (CWT) for liquid surfaces, focused on the Landau-Ginzburg-Wilson (LGW) model, or square gradient DF expansion, with a symmetric double parabola free energy, which has been extensively used in theoretical studies of this problem. We show the equivalence between the non-local DF results of Parry and coworkers and the direct evaluation of the mean square fluctuations of the intrinsic surface, as is done in the intrinsic sampling method for computer simulations. The definition of effective wave-vector dependent surface tensions is reviewed and we obtain new proposals for the LGW model. The surface weight proposed by Blokhuis and the surface mode analysis proposed by Stecki provide consistent and optimal effective definitions for the extended CWT Hamiltonian associated to the DF model. A non-local, or coarse-grained, definition of the intrinsic surface provides the missing element to get the mesoscopic surface Hamiltonian from the molecular DF description, as had been proposed a long time ago by Dietrich and coworkers.
Transport equations for linear surface waves with random underlying flows
NASA Astrophysics Data System (ADS)
Bal, Guillaume; Chou, Tom
1999-11-01
We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.
Gould, S J; Howard, S
1988-10-01
The characteristics of the germinal matrix vasculature were studied in the developing fetal brain using immunocytochemical methods. A preliminary comparative immunocytochemical study was made on six fetal brains to compare endothelial staining by Ulex europaeus I lectin with that of antibody to Factor VIII related antigen. Ulex was found to stain germinal layer vessels better than Factor VIII related antigen. Subsequently, the germinal layers of a further 15 fetal and preterm infant brains ranging from 13 to 35 weeks' gestation were stained with Ulex europaeus I to demonstrate the vasculature. With increasing gestation, there was a gradual increase in vessel density, particularly of capillaries. This was not a uniform process. A plexus of capillaries was prominent immediately beneath the ependyma while the more central parts of the germinal matrix contained fewer, but often larger diameter, vessels. The variation in vessel density which was a feature of the later gestation brains may have implications for local blood flow and may be a factor in haemorrhage at this site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mansson Broberg, Agneta; Grinnemo, Karl-Henrik; Genead, Rami
Aims were to explore if darbepoietin-{alpha} in mouse can induce angiogenesis and if moderate doses after myocardial infarction stimulates periinfarct capillary and arteriolar densities, cell proliferation, and apoptosis. Myocardial infarction was induced by ligation of LAD. Mouse aortic rings (0.8 mm) were cultured in matrigel and the angiogenic sprouting was studied after addition of darbepoietin-{alpha} with and without VEGF-165. After 12 days the hemoglobin concentration was 25% higher in the darbepoietin-{alpha} treated mice than in the control group. No difference in capillary densities in the periinfarct or noninfarcted areas was seen with darbepoietin-{alpha}. Cell proliferation was about 10 times highermore » in the periinfarct area than in the noninfarcted wall. Darbepoietin-{alpha} treatment led to a decrease of cell proliferation (BrdU, (p < 0.02)) and apoptosis (TUNEL, p < 0.005) with about 30% in the periinfarct area. Darbepoietin-{alpha} and VEGF-165 both independently induced sprouting from aortic rings. The results suggest that darbepoietin-{alpha} can induce angiogenesis but that moderate doses after myocardial infarction are not angiogenic but antiapoptotic.« less
Flight Testing of the Capillary Pumped Loop 3 Experiment
NASA Technical Reports Server (NTRS)
Ottenstein, Laura; Butler, Dan; Ku, Jentung; Cheung, Kwok; Baldauff, Robert; Hoang, Triem
2002-01-01
The Capillary Pumped Loop 3 (CAPL 3) experiment was a multiple evaporator capillary pumped loop experiment that flew in the Space Shuttle payload bay in December 2001 (STS-108). The main objective of CAPL 3 was to demonstrate in micro-gravity a multiple evaporator capillary pumped loop system, capable of reliable start-up, reliable continuous operation, and heat load sharing, with hardware for a deployable radiator. Tests performed on orbit included start-ups, power cycles, low power tests (100 W total), high power tests (up to 1447 W total), heat load sharing, variable/fixed conductance transition tests, and saturation temperature change tests. The majority of the tests were completed successfully, although the experiment did exhibit an unexpected sensitivity to shuttle maneuvers. This paper describes the experiment, the tests performed during the mission, and the test results.
Microcirculation of the pancreas. A quantitative study of physiology and changes in pancreatitis.
Klar, E; Endrich, B; Messmer, K
1990-02-01
A rabbit model was designed to study the microcirculation of the pancreas with special reference to changes occurring during acute pancreatitis. Intravital microscopy was used in conjunction with video techniques allowing for continuous observation and off-line evaluation of microvessel diameters and blood cell velocities. Based on the microvessel geometry a functional microvascular unit could be defined at the level of the pancreatic lobule consisting of intralobular arteries and veins and an arcade-like preferential pathway framing the capillary network. Experimental acute pancreatitis resulted in immediate leakage of the macromolecular plasma marker (FITC-Dextran 70) from the microvasculature suggesting increased permeability. In contrast to control conditions, pancreatic capillaries were excluded from the circulation during acute pancreatitis starting 30 min after induction with only single capillaries remaining perfused after 3 hours. At the same time, there was constant blood flow through the preferential pathways representing shunt perfusion.
NASA Astrophysics Data System (ADS)
Pons, A.; David, C.; Fortin, J.; Stanchits, S.; MenéNdez, B.; Mengus, J. M.
2011-03-01
To investigate the effect of compaction bands (CB) on fluid flow, capillary imbibition experiments were performed on Bentheim sandstone specimens (initial porosity ˜22.7%) using an industrial X-ray scanner. We used a three-step procedure combining (1) X-ray imaging of capillary rise in intact Bentheim sandstone, (2) formation of compaction band under triaxial tests, at 185 MPa effective pressure, with acoustic emissions (AE) recording for localization of the induced damage, and (3) again X-ray imaging of capillary rise in the damaged specimens after the unloading. The experiments were performed on intact cylindrical specimens, 5 cm in diameter and 10.5 cm in length, cored in different orientations (parallel or perpendicular to the bedding). Analysis of the images obtained at different stages of the capillary imbibition shows that the presence of CB slows down the imbibition and disturbs the geometry of water flow. In addition, we show that the CB geometry derived from X-ray density maps analysis is well correlated with the AE location obtained during triaxial test. The analysis of the water front kinetics was conducted using a simple theoretical model, which allowed us to confirm that compaction bands act as a barrier for fluid flow, not fully impermeable though. We estimate a contrast of permeability of a factor of ˜3 between the host rock and the compaction bands. This estimation of the permeability inside the compaction band is consistent with estimations done in similar sandstones from field studies but differs by 1 order of magnitude from estimations from previous laboratory measurements.
Equation of state of wet granular matter.
Fingerle, A; Herminghaus, S
2008-01-01
An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb. The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T), of wet granular matter for D=2, valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures T
Equation of state of wet granular matter
NASA Astrophysics Data System (ADS)
Fingerle, A.; Herminghaus, S.
2008-01-01
An expression for the near-contact pair correlation function of D -dimensional weakly polydisperse hard spheres is presented, which arises from elementary free-volume arguments. Its derivative at contact agrees very well with our simulations for D=2 . For jammed states, the expression predicts that the number of exact contacts is equal to 2D, in agreement with established simulations. When the particles are wetted, they interact by the formation and rupture of liquid capillary bridges. Since formation and rupture events of capillary bonds are well separated in configuration space, the interaction is hysteretic with a characteristic energy loss Ecb . The pair correlation is strongly affected by this capillary interaction depending on the liquid-bond status of neighboring particles. A theory is derived for the nonequilibrium probability currents of the capillary interaction which determines the pair correlation function near contact. This finally yields an analytic expression for the equation of state, P=P(N/V,T) , of wet granular matter for D=2 , valid in the complete density range from gas to jamming. Driven wet granular matter exhibits a van der Waals-like unstable branch at granular temperatures T
Abbey, Colette A; Bayless, Kayla J
2014-09-01
This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs integrate signals from multiple exogenous factors, including changes in matrix density, to accomplish successful sprouting responses. We show here for the first time that zyxin limited the formation and extension of fine peripheral processes used by ECs for matrix interrogation, providing a molecular explanation for altered EC responses to high and low density collagen matrices. Copyright © 2014 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.
Yao, Yuyu; Sheng, Zulong; Li, YeFei; Fu, Cong; Ma, Genshan; Liu, Naifeng; Chao, Julie; Chao, Lee
2013-05-01
Endothelial progenitor cells (EPCs) have been shown to enhance angiogenesis not only by incorporating into the vasculature but also by secreting cytokines, thereby serving as an ideal vehicle for gene transfer. As tissue kallikrein (TK) has pleiotropic effects in inhibiting apoptosis and oxidative stress, and promoting angiogenesis, we evaluated the salutary potential of kallikrein-modified human EPCs (hEPCs; Ad.hTK-hEPCs) after acute myocardial infarction (MI). We genetically modified hEPCs with a TK gene and evaluated cell survival, engraftment, revascularization, and functional improvement in a nude mouse left anterior descending ligation model. hEPCs were manipulated to overexpress the TK gene. In vitro, the antiapoptotic and paracrine effects were assessed under oxidative stress. TK protects hEPCs from oxidative stress-induced apoptosis via inhibition of activation of caspase-3 and -9, induction of Akt phosphorylation, and secretion of vascular endothelial growth factor. In vivo, the Ad.hTK-hEPCs were transplanted after MI via intracardiac injection. The surviving cells were tracked after transplantation using near-infrared optical imaging. Left ventricular (LV) function was evaluated by transthoracic echocardiography. Capillary density was quantified using immunohistochemical staining. Engrafted Ad.hTK-hEPCs exhibited advanced protection against ischemia by increasing LV ejection fraction. Compared with Ad.Null-hEPCs, transplantation with Ad.hTK-hEPCs significantly decreased cardiomyocyte apoptosis in association with increased retention of transplanted EPCs in the myocardium. Capillary density and arteriolar density in the infarct border zone was significantly higher in Ad.hTK-hEPC-transplanted mice than in Ad.Null-hEPC-treated mice. Transplanted hEPCs were clearly incorporated into CD31(+) capillaries. These results indicate that implantation of kallikrein-modified EPCs in the heart provides advanced benefits in protection against ischemia-induced MI by enhanced angiogenesis and reducing apoptosis.
1989-01-01
The angiogenic factor, basic fibroblast growth factor (FGF), either stimulates endothelial cell growth or promotes capillary differentiation depending upon the microenvironment in which it acts. Analysis of various in vitro models of spontaneous angiogenesis, in combination with time-lapse cinematography, demonstrated that capillary tube formation was greatly facilitated by promoting multicellular retraction and cell elevation above the surface of the rigid culture dish or by culturing endothelial cells on malleable extracellular matrix (ECM) substrata. These observations suggested to us that mechanical (i.e., tension-dependent) interactions between endothelial cells and ECM may serve to regulate capillary development. To test this hypothesis, FGF-stimulated endothelial cells were grown in chemically defined medium on bacteriological (nonadhesive) dishes that were precoated with different densities of fibronectin. Extensive cell spreading and growth were promoted by fibronectin coating densities that were highly adhesive (greater than 500 ng/cm2), whereas cell rounding, detachment, and loss of viability were observed on dishes coated with low fibronectin concentrations (less than 100 ng/cm2). Intermediate fibronectin coating densities (100-500 ng/cm2) promoted cell extension, but they could not completely resist cell tractional forces. Partial retraction of multicellular aggregates resulted in cell shortening, cessation of growth, and formation of branching tubular networks within 24-48 h. Multicellular retraction and subsequent tube formation also could be elicited on highly adhesive dishes by overcoming the mechanical resistance of the substratum using higher cell plating numbers. Dishes coated with varying concentrations of type IV collagen or gelatin produced similar results. These results suggest that ECM components may act locally to regulate the growth and pattern- regulating actions of soluble FGF based upon their ability to resist cell-generated mechanical loads. Thus, we propose that FGF-stimulated endothelial cells may be "switched" between growth, differentiation, and involution modes during angiogenesis by altering the adhesivity or mechanical integrity of their ECM. PMID:2473081
The HO-1/CO system regulates mitochondrial-capillary density relationships in human skeletal muscle.
Pecorella, Shelly R H; Potter, Jennifer V F; Cherry, Anne D; Peacher, Dionne F; Welty-Wolf, Karen E; Moon, Richard E; Piantadosi, Claude A; Suliman, Hagir B
2015-10-15
The heme oxygenase-1 (HO-1)/carbon monoxide (CO) system induces mitochondrial biogenesis, but its biological impact in human skeletal muscle is uncertain. The enzyme system generates CO, which stimulates mitochondrial proliferation in normal muscle. Here we examined whether CO breathing can be used to produce a coordinated metabolic and vascular response in human skeletal muscle. In 19 healthy subjects, we performed vastus lateralis muscle biopsies and tested one-legged maximal O2 uptake (V̇o2max) before and after breathing air or CO (200 ppm) for 1 h daily for 5 days. In response to CO, there was robust HO-1 induction along with increased mRNA levels for nuclear-encoded mitochondrial transcription factor A (Tfam), cytochrome c, cytochrome oxidase subunit IV (COX IV), and mitochondrial-encoded COX I and NADH dehydrogenase subunit 1 (NDI). CO breathing did not increase V̇o2max (1.96 ± 0.51 pre-CO, 1.87 ± 0.50 post-CO l/min; P = not significant) but did increase muscle citrate synthase, mitochondrial density (139.0 ± 34.9 pre-CO, 219.0 ± 36.2 post-CO; no. of mitochondrial profiles/field), myoglobin content and glucose transporter (GLUT4) protein level and led to GLUT4 localization to the myocyte membrane, all consistent with expansion of the tissue O2 transport system. These responses were attended by increased cluster of differentiation 31 (CD31)-positive muscle capillaries (1.78 ± 0.16 pre-CO, 2.37 ± 0.59 post-CO; capillaries/muscle fiber), implying the enrichment of microvascular O2 reserve. The findings support that induction of the HO-1/CO system by CO not only improves muscle mitochondrial density, but regulates myoglobin content, GLUT4 localization, and capillarity in accordance with current concepts of skeletal muscle plasticity. Copyright © 2015 the American Physiological Society.
Revascularization and muscle adaptation to limb demand ischemia in diet-induced obese mice.
Albadawi, Hassan; Tzika, A Aria; Rask-Madsen, Christian; Crowley, Lindsey M; Koulopoulos, Michael W; Yoo, Hyung-Jin; Watkins, Michael T
2016-09-01
Obesity and type 2 diabetes are major risk factors for peripheral arterial disease in humans, which can result in lower limb demand ischemia and exercise intolerance. Exercise triggers skeletal muscle adaptation including increased vasculogenesis. The goal of this study was to determine whether demand ischemia modulates revascularization, fiber size, and signaling pathways in the ischemic hind limb muscles of mice with diet-induced obesity (DIO). DIO mice (n = 7) underwent unilateral femoral artery ligation and recovered for 2 wks followed by 4 wks with daily treadmill exercise to induce demand ischemia. A parallel sedentary ischemia (SI) group (n = 7) had femoral artery ligation without exercise. The contralateral limb muscles of SI served as control. Muscles were examined for capillary density, myofiber cross-sectional area, cytokine levels, and phosphorylation of STAT3 and ERK1/2. Exercise significantly enhanced capillary density (P < 0.01) and markedly lowered cross-sectional area (P < 0.001) in demand ischemia compared with SI. These findings coincided with a significant increase in granulocyte colony-stimulating factor (P < 0.001) and interleukin-7 (P < 0.01) levels. In addition, phosphorylation levels of STAT3 and ERK1/2 (P < 0.01) were increased, whereas UCP1 and monocyte chemoattractant protein-1 protein levels were lower (P < 0.05) without altering vascular endothelial growth factor and tumor necrosis factor alpha protein levels. Demand ischemia increased the PGC1α messenger RNA (P < 0.001) without augmenting PGC1α protein levels. Exercise-induced limb demand ischemia in the setting of DIO causes myofiber atrophy despite an increase in muscle capillary density. The combination of persistent increase in tumor necrosis factor alpha, lower vascular endothelial growth factor, and failure to increase PGC1α protein may reflect a deficient adaption to demand ischemia in DIO. Copyright © 2016 Elsevier Inc. All rights reserved.
Weight-controlled capillary viscometer
NASA Astrophysics Data System (ADS)
Digilov, Rafael M.; Reiner, M.
2005-11-01
The draining of a water column through a vertical discharge capillary tube is examined with the aid of a force sensor. The change of the mass of the liquid in the column with time is found to be not purely exponential as implied by Poiseuille's law. Using observed residuals associated with a kinetic energy correction, an approximate formula for the mass as a function of time is derived and excellent agreement with experimental data is attained. These results are verified by a viscosity test of distilled water at room temperature. A simple and inexpensive weight-controlled capillary viscometer is proposed that is especially suitable for undergraduate physics and chemistry laboratories.
Filling of single-walled carbon nanotubes by CuI nanocrystals via capillary technique
NASA Astrophysics Data System (ADS)
Chernysheva, M. V.; Eliseev, A. A.; Lukashin, A. V.; Tretyakov, Yu. D.; Savilov, S. V.; Kiselev, N. A.; Zhigalina, O. M.; Kumskov, A. S.; Krestinin, A. V.; Hutchison, J. L.
2007-03-01
The present study is focused on the synthesis and investigation of the nanocomposite CuI@SWNT obtained by the filling of metallic single-walled carbon nanotubes (SWNTs) (inner diameter 1-1.4 nm) by wide-gap semiconducting CuI nanocrystals using so-called capillary technique. The method is based on the impregnation of pre-opened SWNTs by molten CuI in vacuum with subsequent slow cooling to room temperature. SWNTs and CuI@SWNT nanocomposites were studied by nitrogen capillary adsorption method, EDX microanalysis, HRTEM microscopy and Raman spectroscopy. The changing of electronic properties of CuI@SWNT as compare to row nanotubes was observed.
Interfacial Bubble Deformations
NASA Astrophysics Data System (ADS)
Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert
Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.
Diabetic microangiopathy in capillaroscopic examination of juveniles with diabetes type 1.
Kaminska-Winciorek, Grażyna; Deja, Grażyna; Polańska, Joanna; Jarosz-Chobot, Przemysława
2012-01-30
The aim of this work was a quantitative and qualitative assessment of a selected part of the microcirculation in children with diabetes type 1 using videocapillaroscopy technique. The authors tested a group consisting of 145 children (70 boys, 75 girls) diagnosed and treated for diabetes type 1 in the Diabetic Clinic of GCZD in Katowice for at least one year. The study included history, clinical examination (including dermatological examination) and videocapillaroscopy. Capillaroscopy, a non-invasive, painless and easily repeatable test, was performed using videocapillaroscopy with digital storage of the obtained images. All nailfolds were examined in all children using videocapillaroscopy, and the obtained images were assessed quantitatively and qualitatively for changes in capillary loops in the tested children according to the defined diagnostic procedure. The analysis of capillaroscopic images described selected quantitative and qualitative characteristics. The conducted analysis showed an increase in the number of capillaries and their elongation, the presence of megacapillaries and Raynaud loops, which were accompanied by an intensive red background, indicating possible neoangiogenesis. The increase in the number of capillaries, disturbances in distribution of capillaries and the presence of abnormal capillaries were correlated with the longer duration of diabetes. Raynaud loops were more frequently found in the cases of increased mean values of HbA1c. Higher values of HbA1c influenced the capillaroscopic images, mainly the number of vessels, including Raynaud loops. Videocapillaroscopy technique could be a useful tool to detect the early changes of microangiopathy in children with diabetes type 1.
Development of novel separation techniques for biological samples in capillary electrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Huan -Tsung
1994-07-27
This dissertation includes three different topics: general introduction of capillary electrophoresis (CE); gradient in CE and CE in biological separations; and capillary gel electrophoresis (CGE) for DNA separation. Factors such as temperature, viscosity, pH, and the surface of capillary walls affecting the separation performance are demonstrated. A pH gradient between 3.0 and 5.2 is useful to improve the resolution among eight different organic acids. A flow gradient due to the change in the concentration of surfactant, which is able to coat to the capillary wall to change the flow rate and its direction, is also shown as a good waymore » to improve the resolution for organic compounds. A temperature gradient caused by joule heat is shown by voltage programming to enhance the resolution and shorten the separation time for several phenolic compounds. The author also shows that self-regulating dynamic control of electroosmotic flow in CE by simply running separation in different concentrations of surfactant has less matrix effect on the separation performance. One of the most important demonstrations in this dissertation is that the author proposes on-column reaction which gives several advantages including the use of a small amount of sample, low risk of contamination, and time saving and kinetic features. The author uses this idea with laser induced fluorescence (LIF) as a detection mode to detect an on-column digestion of sub-ng of protein. This technique also is applied to single cell analysis in the group.« less
NASA Astrophysics Data System (ADS)
Chen, Pengzhen; Wang, Xiaoqing; Liu, Li; Chong, Jinsong
2016-06-01
According to Bragg theory, capillary waves are the predominant scatterers of high-frequency band (such as Ka-band) microwave radiation from the surface of the ocean. Therefore, understanding the modulation mechanism of capillary waves is an important foundation for interpreting high-frequency microwave remote sensing images of the surface of the sea. In our experiments, we discovered that modulations of capillary waves are significantly larger than the values predicted by the classical theory. Further, analysis shows that the difference in restoring force results in an inflection point while the phase velocity changes from gravity waves region to capillary waves region, and this results in the capillary waves being able to resonate with gravity waves when the phase velocity of the gravity waves is equal to the group velocity of the capillary waves. Consequently, we propose a coupling modulation model in which the current modulates the capillary wave indirectly by modulating the resonant gravity waves, and the modulation of the former is approximated by that of the latter. This model very effectively explains the results discovered in our experiments. Further, based on Bragg scattering theory and this coupling modulation model, we simulate the modulation of normalized radar cross section (NRCS) of typical internal waves and show that the high-frequency bands are superior to the low-frequency bands because of their greater modulation of NRCS and better radiometric resolution. This result provides new support for choice of radar band for observation of wave-current modulation oceanic phenomena such as internal waves, fronts, and shears.
A compact, low cost Marx bank for generating capillary discharge plasmas.
Dyson, A E; Thornton, C; Hooker, S M
2016-09-01
We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈10 18 cm -3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.
A compact, low cost Marx bank for generating capillary discharge plasmas
NASA Astrophysics Data System (ADS)
Dyson, A. E.; Thornton, C.; Hooker, S. M.
2016-09-01
We describe in detail a low power Compact Marx Bank (CMB) circuit that can provide 20 kV, 500 A pulses of approximately 100-200 ns duration. One application is the generation of capillary discharge plasmas of density ≈1018 cm-3 used in laser plasma accelerators. The CMB is triggered with a high speed solid state switch and gives a high voltage output pulse with a ns scale rise time into a 50 Ω load (coaxial cable) with <4 ns voltage jitter. Its small size (10 cm × 25 cm × 5 cm) means that it can be placed right next to the capillary discharge in the target chamber to avoid the need to impedance match. The electrical energy required per discharge is <1 J, and the CMB can be run at shot repetition rates of ≳1 Hz. This low power requirement means that the circuit can easily be powered by a small lead acid battery and, therefore, can be floated relative to laboratory earth. The CMB is readily scalable and pulses >45 kV are demonstrated in air discharges.
Amphibious fish jump better on land after acclimation to a terrestrial environment.
Brunt, Emily M; Turko, Andy J; Scott, Graham R; Wright, Patricia A
2016-10-15
Air and water differ dramatically in density and viscosity, posing different biomechanical challenges for animal locomotion. We asked how terrestrial acclimation influences locomotion in amphibious fish, specifically testing the hypothesis that terrestrial tail flip performance is improved by plastic changes in the skeletal muscle. Mangrove rivulus Kryptolebias marmoratus, which remain largely inactive out of water, were exposed to water or air for 14 days and a subgroup of air-exposed fish was also recovered in water. Tail flip jumping performance on land improved dramatically in air-acclimated fish, they had lower lactate levels compared with control fish, and these effects were mostly reversible. Muscle plasticity significantly increased oxidative muscle cross-sectional area and fibre size, as well as the number of capillaries per fibre. Our results show that reversible changes to the oxidative skeletal muscle of K. marmoratus out of water enhance terrestrial locomotory performance, even in the absence of exercise training. © 2016. Published by The Company of Biologists Ltd.
Meyer, A M; Reed, J J; Neville, T L; Taylor, J B; Reynolds, L P; Redmer, D A; Vonnahme, K A; Caton, J S
2012-08-01
Objectives were to investigate effects of nutritional plane and Se supply during gestation on visceral organ mass and intestinal growth and vascularization in ewes at parturition and during early lactation. Primiparous Rambouillet ewes (n = 84) were allocated to 2 × 3 × 2 factorial arrangement of treatments. Factors included dietary Se [adequate Se (ASe, 11.5 μg/kg BW) or high Se (HSe, 77.0 μg/kg BW)], nutritional plane [60% (restricted; RES), 100% (control; CON), or 140% (high; HIH)], and physiological stage at necropsy (parturition or d 20 of lactation). At parturition, lambs were removed and 42 ewes (7 per treatment) were necropsied. Remaining ewes were transitioned to a common diet which met lactation requirements and mechanically milked for 20 d. In the absence of interactions (P > 0.10), main effects are reported. At parturition, stomach complex and liver masses were greatest for HIH, intermediate for CON, and least for RES (P < 0.02). Small intestinal mass was greater (P ≤ 0.002) for HIH than RES and CON, and greater (P < 0.01) for ASe than HSe. During early lactation, RES and CON gastrointestinal masses increased disproportionally to BW (P < 0.05). At parturition, jejunal mucosal density was less (P ≤ 0.01) for RES than CON and HIH, whereas CON had greater (P < 0.003) jejunal mucosal RNA concentration and RNA:DNA than RES and HIH. Although there were no differences (P > 0.17) at parturition, jejunal cell percent proliferation was greatest in RES, intermediate in CON, and least in HIH (P ≤ 0.09) at d 20 lactation. At both stages, RES had less (P = 0.01) jejunal capillary area density than HIH and less (P ≤ 0.03) capillary surface density than CON and HIH. During lactation, jejunal capillary size was greater (P = 0.04) for ewes previously fed HSe compared with ASe. At parturition, ASe-HIH had greater (P < 0.02) jejunal mucosal endothelial nitric oxide synthase 3 mRNA than all other treatments and greater (P = 0.10) vascular endothelial growth factor (VEGF) than all treatments, except ASe-RES. In addition, CON had less (P ≤ 0.08) jejunal VEGF receptor-1 (FLT1) mRNA compared with RES and HIH, and ASe had greater (P = 0.003) FLT1 than HSe at parturition. Ewes fed HIH had greater (P = 0.04) jejunal VEGF receptor-2 mRNA compared with RES. Results indicate that maternal intestinal growth and vascularization are responsive to nutritional plane and dietary Se during gestation and undergo changes postpartum when under similar lactational management.
In vitro analysis of human periodontal microvascular endothelial cells.
Tsubokawa, Mizuki; Sato, Soh
2014-08-01
Endothelial cells (ECs) participate in key aspects of vascular biology, such as maintenance of capillary permeability, initiation of coagulation, and regulation of inflammation. According to previous reports, ECs have revealed highly specific characteristics depending on the organs and tissues. However, some reports have described the characteristics of the capillaries formed by human periodontal ECs. Therefore, the aim of the present study is to examine the functional characteristics of the periodontal microvascular ECs in vitro. Human periodontal ligament-endothelial cells (HPDL-ECs) and human gingiva-endothelial cells (HG-ECs) were isolated by immunoprecipitation with magnetic beads conjugated to a monoclonal anti-CD31 antibody. The isolated HPDL-ECs and HG-ECs were characterized to definitively demonstrate that these cell cultures represented pure ECs. Human umbilical-vein ECs and human dermal microvascular ECs were used for comparison. These cells were compared according to the proliferation potential, the formation of capillary-like tubes, the transendothelial electric resistance (TEER), and the expression of tight junction proteins. HPDL-ECs and HG-ECs with characteristic cobblestone monolayer morphology were obtained, as determined by light microscopy at confluence. Furthermore, the HPDL-ECs and HG-ECs expressed the EC markers platelet endothelial cell adhesion molecule-1 (also known as CD31), von Willebrand factor, and Ulex europaeus agglutinin 1, and the cells stained strongly positive for CD31 and CD309. In addition, the HPDL-ECs and HG-ECs were observed to form capillary-like tubes, and they demonstrated uptake of acetylated low-density lipoprotein. Functional analyses of the HPDL-ECs and HG-ECs showed that, compared to the control cells, tube formation persisted for only a brief period of time, and TEER was substantially reduced at confluence. Furthermore, the cells exhibited delocalization of zonula occludens-1 and occludin at cell-cell contact sites. The present results provide new evidence that HPDL-ECs and HG-ECs have characteristics of fenestrated capillaries. Therefore, capillaries in human periodontal tissues have functional characteristics of fenestrated capillaries, which might be related to the onset and the progression of systemic diseases and inflammation.
Impact of Major Pulmonary Resections on Right Ventricular Function: Early Postoperative Changes.
Elrakhawy, Hany M; Alassal, Mohamed A; Shaalan, Ayman M; Awad, Ahmed A; Sayed, Sameh; Saffan, Mohammad M
2018-01-15
Right ventricular (RV) dysfunction after pulmonary resection in the early postoperative period is documented by reduced RV ejection fraction and increased RV end-diastolic volume index. Supraventricular arrhythmia, particularly atrial fibrillation, is common after pulmonary resection. RV assessment can be done by non-invasive methods and/or invasive approaches such as right cardiac catheterization. Incorporation of a rapid response thermistor to pulmonary artery catheter permits continuous measurements of cardiac output, right ventricular ejection fraction, and right ventricular end-diastolic volume. It can also be used for right atrial and right ventricular pacing, and for measuring right-sided pressures, including pulmonary capillary wedge pressure. This study included 178 patients who underwent major pulmonary resections, 36 who underwent pneumonectomy assigned as group (I) and 142 who underwent lobectomy assigned as group (II). The study was conducted at the cardiothoracic surgery department of Benha University hospital in Egypt; patients enrolled were operated on from February 2012 to February 2016. A rapid response thermistor pulmonary artery catheter was inserted via the right internal jugular vein. Preoperatively the following was recorded: central venous pressure, mean pulmonary artery pressure, pulmonary capillary wedge pressure, cardiac output, right ventricular ejection fraction and volumes. The same parameters were collected in fixed time intervals after 3 hours, 6 hours, 12 hours, 24 hours, and 48 hours postoperatively. For group (I): There were no statistically significant changes between the preoperative and postoperative records in the central venous pressure and mean arterial pressure; there were no statistically significant changes in the preoperative and 12, 24, and 48 hour postoperative records for cardiac index; 3 and 6 hours postoperative showed significant changes. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index, in all postoperative records. For group (II): There were no statistically significant changes between the preoperative and all postoperative records for the central venous pressure, mean arterial pressure and cardiac index. There were statistically significant changes between the preoperative and postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index in all postoperative records. There were statistically significant changes between the two groups in all postoperative records for heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction and right ventricular end diastolic volume index. There is right ventricular dysfunction early after major pulmonary resection caused by increased right ventricular afterload. This dysfunction is more present in pneumonectomy than in lobectomy. Heart rate, mean pulmonary artery pressure, pulmonary capillary wedge pressure, pulmonary vascular resistance, right ventricular ejection fraction, and right ventricular end diastolic volume index are significantly affected by pulmonary resection.
Low Volume Resuscitation with Cell Impermeants
2016-04-01
to rise) and a fall in peripheral vascular resistance . In this model, hemorrhage and blood loss was controlled so any changes in hemoglobin...appealing. The increase in capillary filling together with reduced resistance to flow in these peripheral beds leads to increased blood flow and oxygen...delivery. The low resistance , compared to saline controls, likely represents a physical decompression of the capillary beds by controlling cell and
NASA Astrophysics Data System (ADS)
Indekeu, Joseph O.; Van Thu, Nguyen; Lin, Chang-You; Phat, Tran Huu
2018-04-01
The localized low-energy interfacial excitations, or interfacial Nambu-Goldstone modes, of phase-segregated binary mixtures of Bose-Einstein condensates are investigated analytically. To this end a double-parabola approximation (DPA) is performed on the Lagrangian density in Gross-Pitaevskii theory for a system in a uniform potential. This DPA entails a model in which analytic expressions are obtained for the excitations underlying capillary waves or ripplons for arbitrary strength K (>1 ) of the phase segregation. The dispersion relation ω (k ) ∝k3 /2 is derived directly from the Bogoliubov-de Gennes equations in the limit that the wavelength 2 π /k is much larger than the interface width. The proportionality constant in the dispersion relation provides the static interfacial tension. A correction term in ω (k ) of order k5 /2 is calculated analytically within the DPA model. The combined result is tested against numerical diagonalization of the exact Bogoliubov-de Gennes equations. Satisfactory agreement is obtained in the range of physically relevant wavelengths. The ripplon dispersion relation is relevant to state-of-the-art experiments using (quasi)uniform optical-box traps. Furthermore, within the DPA model explicit expressions are obtained for the structural deformation of the interface due to the passing of the capillary wave. It is found that the amplitude of the wave is enhanced by an amount that is quadratic in the ratio of the phase velocity ω /k to the sound velocity c . For generic mixtures consisting of condensates with unequal healing lengths, an additional modulation is predicted of the common value of the condensate densities at the interface.
Wagenmakers, Anton J M; Strauss, Juliette A; Shepherd, Sam O; Keske, Michelle A; Cocks, Matthew
2016-04-15
This review concludes that a sedentary lifestyle, obesity and ageing impair the vasodilator response of the muscle microvasculature to insulin, exercise and VEGF-A and reduce microvascular density. Both impairments contribute to the development of insulin resistance, obesity and chronic age-related diseases. A physically active lifestyle keeps both the vasodilator response and microvascular density high. Intravital microscopy has shown that microvascular units (MVUs) are the smallest functional elements to adjust blood flow in response to physiological signals and metabolic demands on muscle fibres. The luminal diameter of a common terminal arteriole (TA) controls blood flow through up to 20 capillaries belonging to a single MVU. Increases in plasma insulin and exercise/muscle contraction lead to recruitment of additional MVUs. Insulin also increases arteriolar vasomotion. Both mechanisms increase the endothelial surface area and therefore transendothelial transport of glucose, fatty acids (FAs) and insulin by specific transporters, present in high concentrations in the capillary endothelium. Future studies should quantify transporter concentration differences between healthy and at risk populations as they may limit nutrient supply and oxidation in muscle and impair glucose and lipid homeostasis. An important recent discovery is that VEGF-B produced by skeletal muscle controls the expression of FA transporter proteins in the capillary endothelium and thus links endothelial FA uptake to the oxidative capacity of skeletal muscle, potentially preventing lipotoxic FA accumulation, the dominant cause of insulin resistance in muscle fibres. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.
The impact of capillary backpressure on spontaneous counter-current imbibition in porous media
NASA Astrophysics Data System (ADS)
Foley, Amir Y.; Nooruddin, Hasan A.; Blunt, Martin J.
2017-09-01
We investigate the impact of capillary backpressure on spontaneous counter-current imbibition. For such displacements in strongly water-wet systems, the non-wetting phase is forced out through the inlet boundary as the wetting phase imbibes into the rock, creating a finite capillary backpressure. Under the assumption that capillary backpressure depends on the water saturation applied at the inlet boundary of the porous medium, its impact is determined using the continuum modelling approach by varying the imposed inlet saturation in the analytical solution. We present analytical solutions for the one-dimensional incompressible horizontal displacement of a non-wetting phase by a wetting phase in a porous medium. There exists an inlet saturation value above which any change in capillary backpressure has a negligible impact on the solutions. Above this threshold value, imbibition rates and front positions are largely invariant. A method for identifying this inlet saturation is proposed using an analytical procedure and we explore how varying multiphase flow properties affects the analytical solutions and this threshold saturation. We show the value of this analytical approach through the analysis of previously published experimental data.
ssDNA degradation along capillary electrophoresis process using a Tris buffer.
Ric, Audrey; Ong-Meang, Varravaddheay; Poinsot, Verena; Martins-Froment, Nathalie; Chauvet, Fabien; Boutonnet, Audrey; Ginot, Frédéric; Ecochard, Vincent; Paquereau, Laurent; Couderc, François
2017-06-01
Tris-Acetate buffer is currently used in the selection and the characterization of ssDNA by capillary electrophoresis (CE). By applying high voltage, the migration of ionic species into the capillary generates a current that induces water electrolysis. This phenomenon is followed by the modification of the pH and the production of Tris derivatives. By injecting ten times by capillary electrophoresis ssDNA (50 nM), the whole oligonucleotide was degraded. In this paper, we will show that the Tris buffer in the running vials is modified along the electrophoretic process by electrochemical reactions. We also observed that the composition of the metal ions changes in the running buffer vials. This phenomenon, never described in CE, is important for fluorescent ssDNA analysis using Tris buffer. The oligonucleotides are degraded by electrochemically synthesized species (present in the running Tris vials) until it disappears, even if the separation buffer in the capillary is clean. To address these issues, we propose to use a sodium phosphate buffer that we demonstrate to be electrochemically inactive. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chan, Iatneng
2012-02-01
In general the exchange of gases or other material in capillary system is conceptualized by the diffusion effect. But in this model, we investigate a micro-flow pattern by simulation and computation on a micro-exchange model in which the blood cell is a considered factor, especially on its shape. It shows that the cell benefits the circulation while it is moving in the capillary. In the study, the flow detail near the cell surface is mathematically analyzed, such that the Navier-Stokes equations are applied and the viscous factor is also briefly considered. For having a driven force to the motion of micro-circulation, a breathing mode is suggested to approximately compute on the flow rate in the blood capillary during the transfer of cell. The rate is also used to estimate the enhancement to the circulation in additional to the outcome of diffusion. Moreover in the research, the shape change of capillary wall under pressure influence is another element in the beginning calculation for the effect in the assistance to cell motion.
Harvesting liquid from unsaturated vapor - nanoflows induced by capillary condensation
NASA Astrophysics Data System (ADS)
Vincent, Olivier; Marguet, Bastien; Stroock, Abraham
2016-11-01
A vapor, even subsaturated, can spontaneously form liquid in nanoscale spaces. This process, known as capillary condensation, plays a fundamental role in various contexts, such as the formation of clouds or the dynamics of hydrocarbons in the geological subsurface. However, large uncertainties remain on the thermodynamics and fluid mechanics of the phenomenon, due to experimental challenges as well as outstanding questions about the validity of macroscale physics at the nanometer scale. We studied experimentally the spatio-temporal dynamics of water condensation in a model nanoporous medium (pore radius 2 nm), taking advantage of the color change of the material upon hydration. We found that at low relative humidities (< 60 % RH), capillary condensation progressed in a diffusive fashion, while it occurred through a well-defined capillary-viscous imbibition front at > 60 % RH, driven by a balance between the pore capillary pressure and the condensation stress given by Kelvin equation. Further analyzing the imbibition dynamics as a function of saturation allowed us to extract detailed information about the physics of nano-confined fluids. Our results suggest excellent extension of macroscale fluid dynamics and thermodynamics even in pores 10 molecules in diameter.
NASA Astrophysics Data System (ADS)
Gill, Jatinder; Singh, Jagdev
2018-07-01
In this work, an experimental investigation is carried out with R134a and LPG refrigerant mixture for depicting mass flow rate through straight and helical coil adiabatic capillary tubes in a vapor compression refrigeration system. Various experiments were conducted under steady-state conditions, by changing capillary tube length, inner diameter, coil diameter and degree of subcooling. The results showed that mass flow rate through helical coil capillary tube was found lower than straight capillary tube by about 5-16%. Dimensionless correlation and Artificial Neural Network (ANN) models were developed to predict mass flow rate. It was found that dimensionless correlation and ANN model predictions agreed well with experimental results and brought out an absolute fraction of variance of 0.961 and 0.988, root mean square error of 0.489 and 0.275 and mean absolute percentage error of 4.75% and 2.31% respectively. The results suggested that ANN model shows better statistical prediction than dimensionless correlation model.
NASA Astrophysics Data System (ADS)
Geng, Xiaolong; Heiss, James W.; Michael, Holly A.; Boufadel, Michel C.
2017-12-01
A combined field and numerical study was conducted to investigate dynamics of subsurface flow and moisture response to waves in the swash zone of a sandy beach located on Cape Henlopen, DE. A density-dependent variably saturated flow model MARUN was used to simulate subsurface flow beneath the swash zone. Values of hydraulic conductivity (K) and characteristic pore size (α, a capillary fringe property) were varied to evaluate their effects on subsurface flow and moisture dynamics in response to swash motions in beach aquifers. The site-specific modeling results were validated against spatiotemporal measurements of moisture and pore pressure in the beach. Sensitivity analyses indicated that the hydraulic conductivity and capillary fringe thickness of the beach greatly influenced groundwater flow pathways and associated transit times in the swash zone. A higher value of K enhanced swash-induced seawater infiltration into the beach, thereby resulting in a faster expansion of a wedge of high moisture content induced by swash cycles, and a flatter water table mound beneath the swash zone. In contrast, a thicker capillary fringe retained higher moisture content near the beach surface, and thus, significantly reduced the available pore space for infiltration of seawater. This attenuated wave effects on pore water flow in the unsaturated zone of the beach. Also, a thicker capillary fringe enhanced horizontal flow driven by the larger-scale hydraulic gradient caused by tides.
Recombination-pumped XUV lasing in capillary discharges and dynamic z-pinches
NASA Astrophysics Data System (ADS)
Pöckl, M.; Hebenstreit, M.; Fertner, R.; Neger, T.; Aumayr, F.
1996-08-01
A fully time-dependent collisional - radiative model is employed to calculate relevant population densities in a recombining carbon/hydrogen z-pinch plasma. In particular, the dependence of the small signal gain G on the maximum electron temperature and cooling rate, as well as the influence of Lyman-0022-3727/29/8/005/img8 reabsorption, are studied. Although in conditions typical for dynamic z-pinches the maximum electron temperature and cooling rates would, in principle, be sufficiently high, gain on the Balmer-0022-3727/29/8/005/img8 transition is strongly reduced by Lyman-0022-3727/29/8/005/img8 reabsorption. In order to investigate vacuum spark capillary discharges, the system of rate equations is coupled with balance equations of the plasma energy and the total number of heavy particles. The resulting set of equations is solved self-consistently. Results are presented that show the systematic dependence of the small signal gain on electrical input power, wall material, and capillary geometry. High gain coefficients 0022-3727/29/8/005/img11 could be achieved by modelling high-voltage discharges with short ringing periods through capillaries containing boron or carbon. While the maximum achievable gain coefficient for lithium is rather poor 0022-3727/29/8/005/img12 the duration of population inversion would be long enough (a few tens of nanoseconds) to make multi-pass operation possible.
Predictors of cardiovascular fitness in sedentary men.
Riou, Marie-Eve; Pigeon, Etienne; St-Onge, Josée; Tremblay, Angelo; Marette, André; Weisnagel, S John; Joanisse, Denis R
2009-04-01
The relative contribution of anthropometric and skeletal muscle characteristics to cardiorespiratory fitness was studied in sedentary men. Cardiorespiratory fitness (maximal oxygen consumption) was assessed using an incremental bicycle ergometer protocol in 37 men aged 34-53 years. Vastus lateralis muscle biopsy samples were used to assess fiber type composition (I, IIA, IIX) and areas, capillary density, and activities of glycolytic and oxidative energy metabolic pathway enzymes. Correlations (all p < 0.05) were observed between maximal oxygen consumption (L.min-1) and body mass (r = 0.53), body mass index (r = 0.39), waist circumference (r = 0.34), fat free mass (FFM; r = 0.68), fat mass (r = 0.33), the enzyme activity of cytochrome c oxidase (COX; r = 0.39), muscle type IIA (r = 0.40) and IIX (r = 0.50) fiber area, and the number of capillaries per type IIA (r = 0.39) and IIX (r = 0.37) fiber. When adjusted for FFM in partial correlations, all correlations were lost, with the exception of COX (r = 0.48). Stepwise multiple regression revealed that maximal oxygen consumption was independently predicted by FFM, COX activity, mean capillary number per fiber, waist circumference, and, to a lesser extent, muscle capillary supply. In the absence of regular physical activity, cardiorespiratory fitness is strongly predicted by the potential for aerobic metabolism of skeletal muscle and negatively correlated with abdominal fat deposition.
NASA Technical Reports Server (NTRS)
Ingber, D. E.
1992-01-01
Angiogenesis, the growth of blood capillaries, is regulated by soluble growth factors and insoluble extracellular matrix (ECM) molecules. Soluble angiogenic mitogens act over large distances to initiate capillary growth whereas changes in ECM govern whether individual cells will grow, differentiate, or involute in response to these stimuli in the local tissue microenvironment. Analysis of this local control mechanism has revealed that ECM molecules switch capillary endothelial cells between differentiation and growth by both binding specific transmembrane integrin receptors and physically resisting cell-generated mechanical loads that are applied to these receptors. Control of capillary endothelial cell form and function therefore may be exerted by altering the mechanical properties of the ECM as well as its chemical composition. Understanding of this mechanochemical control mechanism has led to the development of new angiogenesis inhibitors that may be useful for the treatment of cancer.
Erythrocytes Are Oxygen-Sensing Regulators of the Cerebral Microcirculation.
Wei, Helen Shinru; Kang, Hongyi; Rasheed, Izad-Yar Daniel; Zhou, Sitong; Lou, Nanhong; Gershteyn, Anna; McConnell, Evan Daniel; Wang, Yixuan; Richardson, Kristopher Emil; Palmer, Andre Francis; Xu, Chris; Wan, Jiandi; Nedergaard, Maiken
2016-08-17
Energy production in the brain depends almost exclusively on oxidative metabolism. Neurons have small energy reserves and require a continuous supply of oxygen (O2). It is therefore not surprising that one of the hallmarks of normal brain function is the tight coupling between cerebral blood flow and neuronal activity. Since capillaries are embedded in the O2-consuming neuropil, we have here examined whether activity-dependent dips in O2 tension drive capillary hyperemia. In vivo analyses showed that transient dips in tissue O2 tension elicit capillary hyperemia. Ex vivo experiments revealed that red blood cells (RBCs) themselves act as O2 sensors that autonomously regulate their own deformability and thereby flow velocity through capillaries in response to physiological decreases in O2 tension. This observation has broad implications for understanding how local changes in blood flow are coupled to synaptic transmission. Copyright © 2016 Elsevier Inc. All rights reserved.
Capillary condenser/evaporator
NASA Technical Reports Server (NTRS)
Valenzuela, Javier A. (Inventor)
2010-01-01
A heat transfer device is disclosed for transferring heat to or from a fluid that is undergoing a phase change. The heat transfer device includes a liquid-vapor manifold in fluid communication with a capillary structure thermally connected to a heat transfer interface, all of which are disposed in a housing to contain the vapor. The liquid-vapor manifold transports liquid in a first direction and conducts vapor in a second, opposite direction. The manifold provides a distributed supply of fluid (vapor or liquid) over the surface of the capillary structure. In one embodiment, the manifold has a fractal structure including one or more layers, each layer having one or more conduits for transporting liquid and one or more openings for conducting vapor. Adjacent layers have an increasing number of openings with decreasing area, and an increasing number of conduits with decreasing cross-sectional area, moving in a direction toward the capillary structure.
Scale-dependent coupling of hysteretic capillary pressure, trapping, and fluid mobilities
NASA Astrophysics Data System (ADS)
Doster, F.; Celia, M. A.; Nordbotten, J. M.
2012-12-01
Many applications of multiphase flow in porous media, including CO2-storage and enhanced oil recovery, require mathematical models that span a large range of length scales. In the context of numerical simulations, practical grid sizes are often on the order of tens of meters, thereby de facto defining a coarse model scale. Under particular conditions, it is possible to approximate the sub-grid-scale distribution of the fluid saturation within a grid cell; that reconstructed saturation can then be used to compute effective properties at the coarse scale. If both the density difference between the fluids and the vertical extend of the grid cell are large, and buoyant segregation within the cell on a sufficiently shorte time scale, then the phase pressure distributions are essentially hydrostatic and the saturation profile can be reconstructed from the inferred capillary pressures. However, the saturation reconstruction may not be unique because the parameters and parameter functions of classical formulations of two-phase flow in porous media - the relative permeability functions, the capillary pressure -saturation relationship, and the residual saturations - show path dependence, i.e. their values depend not only on the state variables but also on their drainage and imbibition histories. In this study we focus on capillary pressure hysteresis and trapping and show that the contribution of hysteresis to effective quantities is dependent on the vertical length scale. By studying the transition from the two extreme cases - the homogeneous saturation distribution for small vertical extents and the completely segregated distribution for large extents - we identify how hysteretic capillary pressure at the local scale induces hysteresis in all coarse-scale quantities for medium vertical extents and finally vanishes for large vertical extents. Our results allow for more accurate vertically integrated modeling while improving our understanding of the coupling of capillary pressure and relative permeabilities over larger length scales.
O'Neal, Wesley T; Griffin, William F; Kent, Susan D; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A I
2014-01-01
EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy.
O'Neal, Wesley T.; Griffin, William F.; Kent, Susan D.; Faiz, Filza; Hodges, Jonathan; Vuncannon, Jackson; Virag, Jitka A. I.
2014-01-01
EphrinA1-EphA-receptor signaling is protective during myocardial infarction (MI). The EphA2-receptor (EphA2-R) potentially mediates cardiomyocyte survival. To determine the role of the EphA2-R in acute non-reperfused myocardial injury in vivo, infarct size, inflammatory cell density, NF-κB, p-AKT/Akt, and MMP-2 protein levels, and changes in ephrinA1/EphA2-R gene expression profile were assessed 4 days post-MI in B6129 wild-type (WT) and EphA2-R-mutant (EphA2-R-M) mice lacking a functional EphA2-R. Fibrosis, capillary density, morphometry of left ventricular chamber and infarct dimensions, and cardiac function also were measured 4 weeks post-MI to determine the extent of ventricular remodeling. EphA2-R-M infarct size and area of residual necrosis were 31.7% and 113% greater than WT hearts, respectively. Neutrophil and macrophage infiltration were increased by 46% and 84% in EphA2-R-M hearts compared with WT, respectively. NF-κB protein expression was 1.9-fold greater in EphA2-R-M hearts at baseline and 56% less NF-κB after infarction compared with WT. EphA6 gene expression was 2.5-fold higher at baseline and increased 9.8-fold 4 days post-MI in EphA2-R-M hearts compared with WT. EphrinA1 gene expression in EphA2-R-M hearts was unchanged at baseline and decreased by 42% 4 days post-MI compared with WT hearts. EphA2-R-M hearts had 66.7% less expression of total Akt protein and 59% less p-Akt protein than WT hearts post-MI. EphA2-R-M hearts 4 weeks post-MI had increased chamber dilation and interstitial fibrosis and decreased MMP-2 expression and capillary density compared with WT. In conclusion, the EphA2-R is necessary to appropriately modulate the inflammatory response and severity of early injury during acute MI, thereby influencing the progression of ischemic cardiomyopathy. PMID:24795639
Improving Warfighters’ Sustainment and Performance in Extreme Environmental Conditions
2008-02-18
Physiol, 485 ( Pt 2) (1995) 525-530. 9. Puchowicz,M.A., Xu,K., Sun,X., Ivy,A., Emancipator,D., and LaManna,J.C., Diet-induced ketosis increases...2002) 1131-1139. 27. Puchowicz,M.A., Xu,K., Sun,X., Ivy,A., Emancipator,D., and LaManna,J.C., Diet-induced ketosis increases capillary density
Usmanov, Dilshadbek T; Yu, Zhan; Chen, Lee Chuin; Hiraoka, Kenzo; Yamabe, Shinichi
2016-02-01
In this work, a low-pressure air dielectric-barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), 1,3,5,7-tetranitroperhydro-1,3,5,7-tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low-pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO3 ](-) even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.
The effect of a microscale fracture on dynamic capillary pressure of two-phase flow in porous media
NASA Astrophysics Data System (ADS)
Tang, Mingming; Lu, Shuangfang; Zhan, Hongbin; Wenqjie, Guo; Ma, Huifang
2018-03-01
Dynamic capillary pressure (DCP) effects, which is vital for predicting multiphase flow behavior in porous media, refers to the injection rate dependence capillary pressure observed during non-equilibrium displacement experiments. However, a clear picture of the effects of microscale fractures on DCP remains elusive. This study quantified the effects of microscale fractures on DCP and simulated pore-scale force and saturation change in fractured porous media using the multiphase lattice Boltzmann method (LBM). Eighteen simulation cases were carried out to calculate DCP as a function of wetting phase saturation. The effects of viscosity ratio and fracture orientation, aperture and length on DCP and DCP coefficient τ were investigated, where τ refers to the ratio of the difference of DCP and static capillary pressure (SCP) over the rate of wetting-phase saturation change versus time. Significant differences in τ values were observed between unfractured and fractured porous media. The τ values of fractured porous media were 1.1 × 104 Pa ms to 5.68 × 105 Pa ms, which were one or two orders of magnitude lower than those of unfractured porous media with a value of 4 × 106 Pa. ms. A horizontal fracture had greater effects on DCP and τ than a vertical fracture, given the same fracture aperture and length. This study suggested that a microscale fracture might result in large magnitude changes in DCP for two-phase flow.
Affinity capillary electrophoresis for studying interactions in life sciences.
Olabi, Mais; Stein, Matthias; Wätzig, Hermann
2018-05-10
Affinity capillary electrophoresis (ACE) analyzes noncovalent interactions between ligands and analytes based on changes in their electrophoretic mobility. This technique has been widely used to investigate various biomolecules, mainly proteins, polysaccharides and hormones. ACE is becoming a technique of choice to validate high throughput screening results, since it is very predictively working in realistic and relevant media, e.g. in body fluids. It is highly recommended to incorporate ACE as a powerful analytical tool to properly prepare animal testing and preclinical studies. The interacting molecules can be found free in solution or can be immobilized to a solid support. Thus, ACE is classified in two modes, free solution ACE and immobilized ACE. Every ACE mode has advantages and disadvantages. Each can be used for a variety of applications. This review covers literature of scopus and SciFinder data base in the period from 2016 until beginning 2018, including the keywords "affinity capillary electrophoresis", "immunoaffinity capillary electrophoresis", "immunoassay capillary electrophoresis" and "immunosorbent capillary electrophoresis". More than 200 articles have been found and 112 have been selected and thoroughly discussed. During this period, the data processing and the underlying calculations in mobility shift ACE (ms ACE), frontal analysis ACE (FA ACE) and plug-plug kinetic capillary electrophoresis (ppKCE) as mostly applied free solution techniques have substantially improved. The range of applications in diverse free solution and immobilized ACE techniques has been considerably broadened. Copyright © 2018. Published by Elsevier Inc.
Soil water retention and maximum capillary drive from saturation to oven dryness
Morel-Seytoux, Hubert J.; Nimmo, John R.
1999-01-01
This paper provides an alternative method to describe the water retention curve over a range of water contents from saturation to oven dryness. It makes two modifications to the standard Brooks and Corey [1964] (B-C) description, one at each end of the suction range. One expression proposed by Rossi and Nimmo [1994] is used in the high-suction range to a zero residual water content. (This Rossi-Nimmo modification to the Brooks-Corey model provides a more realistic description of the retention curve at low water contents.) Near zero suction the second modification eliminates the region where there is a change in suction with no change in water content. Tests on seven soil data sets, using three distinct analytical expressions for the high-, medium-, and low-suction ranges, show that the experimental water retention curves are well fitted by this composite procedure. The high-suction range of saturation contributes little to the maximum capillary drive, defined with a good approximation for a soil water and air system as HcM = ∫0∞ Krwdhc , where krw is relative permeability (or conductivity) to water and hc is capillary suction, a positive quantity in unsaturated soils. As a result, the modification suggested to describe the high-suction range does not significantly affect the equivalence between Brooks-Corey (B-C) and van Genuchten [1980] parameters presented earlier. However, the shape of the retention curve near “natural saturation” has a significant impact on the value of the capillary drive. The estimate using the Brooks-Corey power law, extended to zero suction, will exceed that obtained with the new procedure by 25 to 30%. It is not possible to tell which procedure is appropriate. Tests on another data set, for which relative conductivity data are available, support the view of the authors that measurements of a retention curve coupled with a speculative curve of relative permeability as from a capillary model are not sufficient to accurately determine the (maximum) capillary drive. The capillary drive is a dynamic scalar, whereas the retention curve is of a static character. Only measurements of infiltration rates with time can determine the capillary drive with precision for a given soil.
Dimino, Michael L; Palmer, Andre F
2007-01-01
Hemopure (Biopure; Cambridge, MA) and PolyHeme (Northfield Laboratories; Evanston, IL) are two acellular hemoglobin-based O2 carriers (HBOCs) currently in phase III clinical trials for use as red blood cell substitutes. The most common adverse side effect that these HBOCs exhibit is increased vasoconstriction. Autoregulatory theory has been presented as a possible explanation for this physiological effect, where it is hypothesized that low-affinity HBOCs over-deliver O2 to tissues surrounding arterioles, thereby eliciting vasoconstriction. In this paper, we wanted to investigate HBOC oxygenation of tissue surrounding a capillary, which is the smallest element of the circulatory system. An a priori model has been developed in which the performance of mixtures of acellular HBOCs (synthesized by our group and others) and human red blood cells (hRBCs) has been simulated using a Krogh tissue cylinder model (KTCM) comprising a capillary surrounded by a capillary membrane and skeletal muscle tissue in cylindrical coordinates with specified tissue O2 consumption rates and Michaelis-Menten kinetics. In this study, the total hemoglobin (hRBCs and HBOCs) concentration was kept constant. The HBOCs studied possessed O2 affinities that were higher and lower compared to hRBCs (P50's spanned 5-55 mmHg), and the equilibrium binding/release of oxygen to/from the HBOCs was modeled using the Adair equation. At normoxic inlet pO2's, there was no correlation between O2 flux out of the capillary and the O2 affinity of the HBOC. However, a correlation was found between the average pO2 tension in the capillary and the O2 affinity of the HBOC. Additionally, we studied the change in the O2 equilibrium curve of HBOCs with different O2 affinities over a wide range of inlet pO2's and found that changing the inlet pO2 greatly affected which HBOC, having a unique O2 affinity, best delivered O2 to the surrounding tissue. The analysis of oxygen transport presented could lead to a better prediction of which acellular HBOC is best suited for a specific transfusion application that many times depends on the capillary inlet pO2 tension.
Lapii, G A; Yakovleva, A Yu; Neimark, A I
2017-02-01
Structural characteristics of the vaginal mucosa in stress incontinence and its correction by IncontiLase technology were studied. Studies of vaginal biopsy specimens before the exposure showed degenerative and atrophic changes in the stratified squamous epithelium, disorganization of fibrillar structures of the intercellular matrix, and microcirculatory disorders. Studies after Er:YAG laser exposure showed signs of neocollagenogenesis and elastogenesis, foci of neoangiogenesis, reduction of epithelial degeneration and atrophy, and an increase of the fibroblast population. Morphometry showed that the volume density of blood capillaries and the thickness of the epithelial layer increased by 61.1 and 64.5%, respectively. The use of IncontiLase technology in stress incontinence led to structural reorganization of the vaginal mucosa, improving its morphology and function and alleviating the symptoms of incontinence.
Two-phase convective CO 2 dissolution in saline aquifers
Martinez, Mario J.; Hesse, Marc A.
2016-01-30
Geologic carbon storage in deep saline aquifers is a promising technology for reducing anthropogenic emissions into the atmosphere. Dissolution of injected CO 2 into resident brines is one of the primary trapping mechanisms generally considered necessary to provide long-term storage security. Given that diffusion of CO 2 in brine is woefully slow, convective dissolution, driven by a small increase in brine density with CO 2 saturation, is considered to be the primary mechanism of dissolution trapping. Previous studies of convective dissolution have typically only considered the convective process in the single-phase region below the capillary transition zone and have eithermore » ignored the overlying two-phase region where dissolution actually takes place or replaced it with a virtual region with reduced or enhanced constant permeability. Our objective is to improve estimates of the long-term dissolution flux of CO 2 into brine by including the capillary transition zone in two-phase model simulations. In the fully two-phase model, there is a capillary transition zone above the brine-saturated region over which the brine saturation decreases with increasing elevation. Our two-phase simulations show that the dissolution flux obtained by assuming a brine-saturated, single-phase porous region with a closed upper boundary is recovered in the limit of vanishing entry pressure and capillary transition zone. For typical finite entry pressures and capillary transition zone, however, convection currents penetrate into the two-phase region. As a result, this removes the mass transfer limitation of the diffusive boundary layer and enhances the convective dissolution flux of CO 2 more than 3 times above the rate assuming single-phase conditions.« less
Jirkovská, Marie; Kučera, Tomáš; Dvořáková, Veronika; Jadrníček, Martin; Moravcová, Milena; Žižka, Zdeněk; Krejčí, Vratislav
2016-04-01
Maternal diabetes mellitus changes morphology and impairs function of placental capillaries. Here, quantitative parameters characterizing cell proliferation using detection of Ki67, differentiation reflected by nestin expression and apoptosis in placental capillary bed with active caspase 3 as a marker were compared in normal term placentas and placentas from pregnancies complicated by Type 1 maternal diabetes mellitus. Specimens of sixteen diabetic placentas and eight control placentas were collected by systematic uniform random sampling. Immunohistochemical detections of Ki67, nestin, and active caspase 3 were performed in histological sections of five haphazardly chosen blocks per placenta. Twenty fields of view per section, i.e. one hundred fields of view per placenta, were used for analysis of proliferation as well as of apoptosis, and in approximately 70 capillary cross-sections per placenta the nestin-positive segments of their circumference were measured. The percentage of Ki67-positive cells counted in the capillary wall was significantly lower in diabetic group. The counts of Ki67-labelled nuclei per villous area unit were significantly lower in cytotrophoblast and capillary wall of terminal villi in diabetic placenta. The proportion of nestin-labeled segments of capillary circumference was significantly higher in placentas of diabetic group. No differences in the numbers of apoptotic cells were found between studied groups. The results show that the term placenta in Type 1 diabetes has lower potential to enlarge the surface area of structures involved in maternofetal transport, and that the villous capillary bed displays delayed differentiation. Those factors may participate in decreased ability of diabetic placenta to comply with fetal requirements in the final stage of pregnancy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Belcaro, G; D'Aulerio, A; Rulo, A; Candiani, C
1988-01-01
A new system to study capillary permeability, the VSC (vacuum suction chamber) device has been developed to evaluate the variations of capillary permeability in postphlebitic limbs. The VSC device produces by negative pressure [obtained in a plastic chamber applied to the skin at the perimalleolar region] a wheal which disappears in normals in less than one hour. In twelve patients with moderate [superficial] venous hypertension and in twelve patients with postphlebitic limbs the time of disappearance of the wheals was significantly longer in comparison with ten normal limbs. There was also a significantly increased time of disappearance of the wheals in postphlebitic legs in comparison with those with superficial incompetence. The validation of the VSC technique with venous occlusion plethysmography (VOP) showed that the increase of time of disappearance of the wheals is well correlated with the increase of capillary permeability demonstrated by VOP. After 2 weeks treatment with Venoruton (at the dosage of 1000 mg t.i.d.) the time of disappearance of the wheal was significantly reduced in both groups of patients (while it was unchanged in normals). Laser-Doppler parameters used together with the VSC device to evaluate the microcirculatory changes associated with an altered capillary permeability also showed a significant improvement of the laser-Doppler parameters after treatment. In conclusion there is evidence by the VSC device that capillary permeability [which is abnormally increased] in chronic venous hypertension is improved [decreased] after treatment for two weeks with Venoruton. This study demonstrated also the efficacy of the VSC device to study capillary permeability and the effects of drugs active on capillary permeability.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2016-06-17
250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Reconfigurable modified surface layers using plasma capillaries around the neutral inclusion regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varault, S.; Universite Paul Sabatier—CNRS-Laplace 118, Route de Narbonne, F-31062 Toulouse Cedex 9; Gabard, B.
We show both theoretically and experimentally reconfigurable properties achieved by plasma inclusions placed in modified surface layers generally used to tailor the transmission and beaming properties of electromagnetic bandgap based waveguiding structures. A proper parametrization of the plasma capillaries allows to reach the neutral inclusion regime, where the inclusions appear to be electromagnetically transparent, letting the surface mode characteristics unaltered. Varying the electron density of the plasma inclusions provoques small perturbations around this peculiar regime, and we observe significant modifications of the transmission/beaming properties. This offers a way to dynamically select the enhanced transmission frequency or to modify the radiationmore » pattern of the structure, depending on whether the modified surface layer is placed at the entrance/exit of the waveguide.« less
NASA Astrophysics Data System (ADS)
Markeviciute, Vilda; White, Nicholas; Troian, Sandra
2017-11-01
Although spontaneous capillary flow can be an especially rapid process in slender open microchannels resembling V-grooves, enhanced flow control is possible through implementation of electric field distributions which generate opposing electrohydrodynamic pressures along the air/liquid interface to modulate the capillary pressures. Important fundamental work by Romero and Yost (1996) and Weislogel(1996) has elucidated the behavior of Newtonian films in slender V-grooves driven to flow solely by the streamwise change in capillary pressure due to the change in radius of curvature of the circular arc describing the interface of wetting or non-wetting fluids. Here we augment the Romero and Yost model with inclusion of Maxwell stresses for perfectly conducting wetting films and examine which electric field distributions allow formation of steady state film shapes for various inlet and outlet boundary conditions. We investigate the stability of these steady solutions to small perturbations in film thickness using a generalized stability analysis. These results reveal how the ratio of Maxwell to capillary stresses influences the degree of linearized transient growth or decay for thin films confined to flow within an open V-groove. Funding from the 2017 Caltech Summer Undergraduate Research Fellowship Program (Markeviciute) as well as a 2017 NASA Space Technology Research Fellowship (White) is gratefully acknowledged.
FEM numerical model study of heating in magnetic nanoparticles
NASA Astrophysics Data System (ADS)
Pearce, John A.; Cook, Jason R.; Hoopes, P. Jack; Giustini, Andrew
2011-03-01
Electromagnetic heating of nanoparticles is complicated by the extremely short thermal relaxation time constants and difficulty of coupling sufficient power into the particles to achieve desired temperatures. Magnetic field heating by the hysteresis loop mechanism at frequencies between about 100 and 300 kHz has proven to be an effective mechanism in magnetic nanoparticles. Experiments at 2.45 GHz show that Fe3O4 magnetite nanoparticle dispersions in the range of 1012 to 1013 NP/mL also heat substantially at this frequency. An FEM numerical model study was undertaken to estimate the order of magnitude of volume power density, Qgen (W m-3) required to achieve significant heating in evenly dispersed and aggregated clusters of nanoparticles. The FEM models were computed using Comsol Multiphysics; consequently the models were confined to continuum formulations and did not include film nano-dimension heat transfer effects at the nanoparticle surface. As an example, the models indicate that for a single 36 nm diameter particle at an equivalent dispersion of 1013 NP/mL located within one control volume (1.0 x 10-19 m3) of a capillary vessel a power density in the neighborhood of 1017 (W m-3) is required to achieve a steady state particle temperature of 52°C - the total power coupled to the particle is 2.44 μW. As a uniformly distributed particle cluster moves farther from the capillary the required power density decreases markedly. Finally, the tendency for particles in vivo to cluster together at separation distances much less than those of the uniform distribution further reduces the required power density.
Xu, Yin-Yin; Lv, Wen-Juan; Ren, Cui-Ling; Niu, Xiao-Ying; Chen, Hong-Li; Chen, Xing-Guo
2018-01-12
The popularity of novel nanoparticles coated capillary column has aroused widespread attention of researchers. Metal organic frameworks (MOFs) with special structure and chemical properties have received great interest in separation sciences. This work presents the investigation of HKUST-1 (Hong Kong University of Science and Technology-1, called Cu 3 (BTC) 2 or MOF-199) nanoparticles as a new type of coating material for capillary electrochromatography. For the first time, three layers coating (3-LC), five layers coating (5-LC), ten layers coating (10-LC), fifteen layers coating (15-LC), twenty layers coating(20-LC) and twenty-five layers coating (25-LC) capillary columns coated with HKUST-1 nanoparticles were synthesized by covalent bond with in situ, layer-by-layer self-assembly approach. The results of scanning electron microscopy (SEM), X-ray diffraction (XRD) and plasma atomic emission spectrometry (ICP-AES) indicated that HKUST-1 was successfully grafted on the inner wall of the capillary. The separating performances of 3-LC, 5-LC, 10-LC, 15-LC, 20-LC and 25-LC open tubular (OT) capillary columns were studied with some neutral small organic molecules. The results indicated that the neutral small organic molecules were separated successfully with 10-LC, 15-LC and 20-LC OT capillary columns because of the size selectivity of lattice aperture and hydrophobicity of organic ligands. In addition, 10-LC and 15-LC OT capillary columns showed better performance for the separation of certain phenolic compounds. Furthermore, 10-LC, 15-LC and 20-LC OT capillary columns exhibited good intra-day repeatability with the relative standard deviations (RSDs; %) of migration time and peak areas lying in the range of 0.3-1.2% and 0.5-4.2%, respectively. For inter-day reproducibility, the RSDs of the three OT capillary columns were found to be lying in the range of 0.3-5.5% and 0.3-4.5% for migration time and peak area, respectively. The RSDs of retention times for column-to-column for three batches of 10-LC, 15-LC and 20-LC OT capillary columns were in the range from 2.3% to 7.2%. Moreover, the fabricated 10-LC, 15-LC and 20-LC OT capillary columns exhibited good repeatability and stability for separation, which could be used successively for more than 120 runs with no observable changes on the separation efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shlyaptseva, Alla; Kantsyrev, Victor; Inozemtsev, Andrei; Petrukhin, Oleg
1994-06-01
The results are presented dealing with the working out and study of the SXR compact plasma source. The experimental set up included a compact new 'gas-puff' source with parameters being better than the traditional ones and a new type of SXR source - low-inductance vacuum spark (LIVS) with glass-capillary converters (GCC) of SXR. The compact plasma 'gas-puff' source had the high value of the z approx. (1-2) 10(exp -2) (conversion coefficient of initial energy supply into SXR); a small effective size of emission region and greater resource. The characteristics of LIVS with GCC were studied. GCC consisting of about several hundreds of glass capillaries allowed us to focus SXR, to change the cross section of SXR beams to plasma sources, and to change SXR spectrum. The possibility was shown of using of GCC in plasma diagnostics of powerful plasma devices: for X-ray microscopy and to study the influence of SXR on the solid state surface.
Optical coherence tomography angiography of normal skin and inflammatory dermatologic conditions.
Deegan, Anthony J; Talebi-Liasi, Faezeh; Song, Shaozhen; Li, Yuandong; Xu, Jingjiang; Men, Shaojie; Shinohara, Michi M; Flowers, Mary E; Lee, Stephanie J; Wang, Ruikang K
2018-03-01
In clinical dermatology, the identification of subsurface vascular and structural features known to be associated with numerous cutaneous pathologies remains challenging without the use of invasive diagnostic tools. To present an advanced optical coherence tomography angiography (OCTA) method to directly visualize capillary-level vascular and structural features within skin in vivo. An advanced OCTA system with a 1310 nm wavelength was used to image the microvascular and structural features of various skin conditions. Subjects were enrolled and OCTA imaging was performed with a field of view of approximately 10 × 10 mm. Skin blood flow was identified using an optical microangiography (OMAG) algorithm. Depth-resolved microvascular networks and structural features were derived from segmented volume scans, representing tissue slabs of 0-132, 132-330, and 330-924 μm, measured from the surface of the skin. Subjects with both healthy and pathological conditions, such as benign skin lesions, psoriasis, chronic graft-versus-host-disease (cGvHD), and scleroderma, were OCTA scanned. Our OCTA results detailed variations in vascularization and local anatomical characteristics, for example, depth-dependent vascular, and structural alterations in psoriatic skin, alongside their resolve over time; vascular density changes and distribution irregularities, together with corresponding structural depositions in the skin of cGvHD patients; and vascular abnormalities in the nail folds of a patient with scleroderma. OCTA can image capillary blood flow and structural features within skin in vivo, which has the potential to provide new insights into the pathophysiology, as well as dynamic changes of skin diseases, valuable for diagnoses, and non-invasive monitoring of disease progression and treatment. Lasers Surg. Med. 50:183-193, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs.
Wang, Ching-Jen; Huang, Hsuan-Ying; Pai, Chun-Hwan
2002-01-01
The purpose of the research was to study the phenomenon of neovascularization at the Achilles tendon-bone junction after low-energy shock wave application. The study was performed on eight mongrel dogs. The control specimens were obtained from the medial one-third of the right Achilles tendon-bone unit before shock wave application. Low-energy shock waves of 1000 impulses at 14 kV (equivalent to 0.18 mJ/mm2 energy flux density) were applied to the right Achilles bone-tendon junction. Biopsies were taken from the middle one-third of the Achilles tendon-bone junction at 4 weeks and from the lateral one-third at 8 weeks, respectively, after shock wave application. The features of microscopic examination included the number of new capillaries and muscularized vessels, the presence and arrangements of myofibroblasts, and the changes in bone. New capillary and muscularized vessels were seen in the study specimens which were obtained in 4 weeks and in 8 weeks after shock wave application, but none were seen in the control specimens before shock wave application. There was a considerable geographic variation in the number of new vessels within the same specimen. Myofibroblasts were not seen in the control specimens. Myofibroblasts with haphazard appearance and intermediate orientation fibers were seen in all study specimens obtained at 4 weeks and predominantly intermediate orientation myofibroblast fibers at 8 weeks. There were no changes in bone matrix, osteocyte activity, and vascularization within the bone. Two pathologists reviewed each specimen and concurrence was achieved in all cases. The results of the study suggested that low-energy shock wave enhanced the phenomenon of neovascularization at the bone-tendon junction in dogs.
Futschik, K; Ammann, M; Bachmayer, S; Kenndler, E
1993-08-06
The ionic species that are formed during the microbial growth of Escherichia coli were determined by capillary isotachophoresis as a function of the time of cultivation. This formation was indicated by the change in a sum parameter, the impedance of the nutrient broth, measured by a special electrode system. Based on the determination of the individual ions formed under the given conditions (identified as acetate, lactate, alpha-ketoglutarate, fumarate, ammonium and probably a simple amine), the change in conductivity was calculated and compared with that obtained by the impedance measurement of the bulk medium. From the results it can be concluded that the change in the sum parameter as a function of time is originated by the ions determined.
Mastropasqua, Rodolfo; Borrelli, Enrico; Agnifili, Luca; Toto, Lisa; Di Antonio, Luca; Senatore, Alfonso; Palmieri, Michele; D'Uffizi, Alessandro; Carpineto, Paolo
2017-01-01
To investigate radial peripapillary capillary (RPC) network in patients affected by retinitis pigmentosa (RP). Eleven patients (22 eyes) with previous diagnosis of RP and 16 age-matched healthy subjects (16 eyes) were enrolled. The diagnosis of RP was made based on both clinical features and electrophysiological examination. All patients underwent a complete ophthalmologic examination, including optical coherence tomography angiography and visual field (VF). The primary outcomes were the RPC vessel density in the peripapillary and disk areas; the secondary outcomes were the peripapillary retinal nerve fiber layer (RNFL) thickness and the mean defect at VF. A total of 19 eyes of 11 RP patients (5 males, 6 females) and 16 eyes of 16 healthy subjects (10 males, 6 females) were included for the analysis. RPC vessel density in the disk area was 46.5 ± 7.1% in the RP group and 45.4 ± 10.6% in the control group ( p = 0.754). RPC vessel density in the peripapillary area was significantly reduced in the RP group after the comparison with the control group (52.5 ± 5.0 and 57.2 ± 5.1%, respectively, p = 0.011). RNFL thickness was 85.9 ± 20.4 μm in the RP group and 104.0 ± 6.4 μm in the control group ( p = 0.002). RPC vessel density was significantly correlated with RNFL thickness values in RP patients, both in the disk and in the peripapillary area (Rho = 0.599 and p = 0.007 in the disk area, Rho = 0.665 and p = 0.002 in the peripapillary area, respectively). We showed that density of RPC is reduced in these patients in the peripapillary area. Moreover, the RPC vessel density correlates with the RNFL thickness.
Sultanian, R; Deng, Y; Kaufman, S
2001-05-15
The spleen is an important site of atrial natriuretic factor (ANF)-induced fluid extravasation into the systemic lymphatic system. The mechanism underlying this process was studied in a blood-perfused (1 ml min(-1)) rat spleen using the double occlusion technique. To ensure that our observations were spleen specific, a similar protocol was repeated in the hindquarters. Rat ANF(1-28), infused into the splenic artery of anaesthetized male rats, caused a dose-dependent (0.3-59 pmol min(-1)) increase in microvascular pressure from 11.3 +/- 0.7 to 14.9 +/- 0.5 mmHg and in post-capillary resistance from 7.2 +/- 0.6 to 10.1 +/- 1.1 mmHg ml(-1). ANF elicited no change in splenic pre-capillary resistance or in hindquarter haemodynamics. Intrasplenic ANF (6.5 pmol min(-1)) caused a sustained increase in intrasplenic fluid efflux from 0.1 +/- 0.1 to 0.3 +/- 0.1 ml min(-1), and in capillary filtration coefficient (Kf) from 1.2 +/- 0.5 to 2.4 +/- 0.6 ml mmHg-1 min-1 (100 g tissue)-1. Mechanical elevation of splenic intravascular pressure (from 11.3 +/- 0.7 to 22.4 +/- 0.2 mmHg) significantly increased intrasplenic fluid extravasation (from 0.4 +/- 0.3 to 1.4 +/- 0.3 ml min(-1)). The natriuretic peptide receptor-C (NPRC)-specific agonist C-ANF(4-23) (12.5 and 125 pmol min(-1)) did not alter splenic intravascular pressure or pre-/post-capillary resistance. The ANF antagonist A71915 (8.3 and 83 pmol min-1), which blocks ANF-stimulated cGMP production via natriuretic peptide receptor-A (NPRA), inhibited the ANF-induced changes in splenic microvascular pressure and post-capillary resistance. It is concluded that ANF enhances the extravasation of isoncotic fluid from the splenic vasculature both by raising intrasplenic microvascular pressure (increased post-capillary resistance) and by increasing filtration area. The constrictive activity of ANF on the splenic vasculature is mediated through NPRA.
Magneto-capillary valve for integrated purification and enrichment of nucleic acids and proteins.
den Dulk, Remco C; Schmidt, Kristiane A; Sabatté, Gwénola; Liébana, Susana; Prins, Menno W J
2013-01-07
We describe the magneto-capillary valve (MCV) technology, a flexible approach for integrated biological sample preparation within the concept of stationary microfluidics. Rather than moving liquids in a microfluidic device, discrete units of liquid are present at fixed positions in the device and magnetic particles are actuated between the fluids. The MCV concept is characterized by the use of two planar surfaces at a capillary mutual distance, with specific features to confine the fluids by capillary forces, and the use of a gas or a phase-change material separating the stationary aqueous liquids. We have studied the physics of magneto-capillary valving by quantifying the magnetic force as a function of time and position, which reveals the balance of magnetic, capillary and frictional forces in the system. By purification experiments with a fluorescent tracer we have measured the amount of co-transported liquid, which is a key parameter for efficient purification. To demonstrate the versatility of the technology, several MCV device architectures were tested in a series of biological assays, showing the purification and enrichment of nucleic acids and proteins. Target recovery comparable to non-miniaturized commercial kits was observed for the extraction of DNA from human cells in buffer, using a device architecture with patterned air valves. Experiments using an enrichment module and patterned air valves demonstrate a 40-fold effective enrichment of DNA in buffer. DNA was also successfully purified from blood plasma using paraffin phase-change valves. Finally, the enrichment of a protein biomarker (prostate-specific antigen) using geometrical air valves resulted in a 7-fold increase of detection signal. The MCV technology is versatile, offers extensive freedom for the design of fully integrated systems, and is expected to be manufacturable in a cost-effective way. We conclude that the MCV technology can become an important enabling technology for point-of-care systems with sample in-result out performance.
Zhaodong Li; Chunhua Yao; Yi-Cheng Wang; Solomon Mikael; Sundaram Gunasekaran; Zhenqiang Ma; Zhiyong Cai; Xudong Wang
2016-01-01
Aldehyde-functionalized cellulose nanofibers (CNFs) were applied to synthesize Pt nanoparticles (NPs) on CNF surfaces via on-site Pt ion reduction and achieve high concentration and uniform Pt NP loading. ALD could then selectively deposit TiO2 on CNFs and keep the Pt NPs uncovered due to their drastically different hydro-affinity properties. The...
External and intralesional photocoagulation of hemangioma in children with infrared diode laser
NASA Astrophysics Data System (ADS)
Abushkin, Ivan A.; Privalov, Valery A.; Lappa, Alexander V.; Besshtanko, Evgeny L.
2005-08-01
Infra-red diode laser with wavelength 1060 nm was used for combined treatment of 163 children aged from 21 days to 13 years with 221 hemangiomas. For interstitial coagulation a power of 1.8-2 W and a power density of 5-90 J/cm3 were used in continuous mode. For distant coagulation pulse mode was applied with pulse/pause duration 30-50/200-250 ms, average power 1.3-2 W, and power density 65-450 J/cm2. 197 (89.1 %) hemangiomas were capillary, 7 (3.2 %) cavernous, and 17 (7.7 %) combined (combination of capillary and cavernous hemangiomas). The area of hemangiomas ranged from 6 mm2 to 48 cm2. For the majority (193, 87.3 %) of hemangiomas one session of photocoagulation was enough to achieve a good cosmetic effect. However, 28 (12.7 %) hemangiomas were treated repeatedly, 11 (5%) of them needed 4-7 sessions. In 8 children with cavernous and combined hemangiomas both distant and interstitial laser coagulation were used. In all, good or excellent results were obtained in 96,3 % of the patients. In 6 (3.7%) patients with extensive combined hematomas the considerable improvement was achieved.
Exploring the mechanism of microarteriogenesis in porous silk fibroin film.
Bai, Lun; Wang, Guangqian; Tan, Xiaoyan; Xu, Jianmei
2012-01-01
Purpose. Based on the experiment of the microarteriogenesis that is associated with angiogenesis during tissue repair process in porous silk fibroin films (PSFFs), we investigate the characteristics of micro-arteriogenesis and explore its mechanism. Methods. After the porous silk fibroin materials are implanted into the back hypodermal tissue of SD rats, the arteriole development and the morphogenesis of smooth muscle cell are histologically monitored and the micro-arteriogenesis is quantitatively analyzed. Results. 10 days after implantation, the arteriole density reaches the highest level in the junction of silk fibroin materials with tissues. Three weeks later, the arteriolar density in the materials reaches the maximum, and the arterioles in the junction of materials with tissues appear to be in a mature and upgrading state. Modeling of Microarteriogenesis. The arterioles in materials are generated after capillary angiogenesis. It is inferred that arteriolar development does not start until the network of the capillaries is formed. At first, the arterioles grow in the conjunct area of precapillaries with arterioles. Then with the extension of the arterioles, the upgrade of arterioles in connecting area is observed at a later stage. Based on the observation, the conditions and the mechanism of microarterializations as well as the upgrade of arterioles are analyzed.
Co-Transplantation of Nanofat Enhances Neovascularization and Fat Graft Survival in Nude Mice.
Yu, Qian; Cai, Yizuo; Huang, He; Wang, Zhenxing; Xu, Peng; Wang, Xiangsheng; Zhang, Lu; Zhang, Wenjie; Li, Wei
2018-05-15
Autologous fat grafting is commonly used for soft-tissue augmentation and reconstruction. However, this technique is limited by a high rate of graft absorption. Thus, approaches to improve fat graft survival that promote neovascularization are of great interest. Nanofat has several beneficial features that may render it more suitable for clinical applications than other stem-cell based approaches. We aimed to determine whether nanofat could enhance new vessel formation and improve the long-term retention of fat grafts. Nanofat was processed via mechanical emulsification and filtration. Fat grafts were transplanted subcutaneously under the scalps of nude mice with different nanofat volumes or without nanofat. The grafted fat was dissected 12 weeks after transplantation. Graft weight and volume were measured, and histological evaluations, including capillary density measurement, were performed. The co-transplantation of fat with nanofat showed higher graft weight and volume retention, better histological structure, and higher capillary density compared to that in controls. However, there were no significant differences between the two nanofat volumes utilized. Nanofat can enhance neovascularization and improve fat graft survival, providing a potential clinically viable approach to fat graft supplementation in plastic and reconstructive surgery.
Cheng, Cynthia; Lee, Chadd W; Daskalakis, Constantine
2015-10-27
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient's microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.(1) This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique.
Daskalakis, Constantine
2015-01-01
Capillaroscopy is a non-invasive, efficient, relatively inexpensive and easy to learn methodology for directly visualizing the microcirculation. The capillaroscopy technique can provide insight into a patient’s microvascular health, leading to a variety of potentially valuable dermatologic, ophthalmologic, rheumatologic and cardiovascular clinical applications. In addition, tumor growth may be dependent on angiogenesis, which can be quantitated by measuring microvessel density within the tumor. However, there is currently little to no standardization of techniques, and only one publication to date reports the reliability of a currently available, complex computer based algorithms for quantitating capillaroscopy data.1 This paper describes a new, simpler, reliable, standardized capillary counting algorithm for quantitating nailfold capillaroscopy data. A simple, reproducible computerized capillaroscopy algorithm such as this would facilitate more widespread use of the technique among researchers and clinicians. Many researchers currently analyze capillaroscopy images by hand, promoting user fatigue and subjectivity of the results. This paper describes a novel, easy-to-use automated image processing algorithm in addition to a reproducible, semi-automated counting algorithm. This algorithm enables analysis of images in minutes while reducing subjectivity; only a minimal amount of training time (in our experience, less than 1 hr) is needed to learn the technique. PMID:26554744
Three-phase fracturing in granular material
NASA Astrophysics Data System (ADS)
Campbell, James; Sandnes, Bjornar
2015-04-01
There exist numerous geo-engineering scenarios involving the invasion of a gas into a water-saturated porous medium: in fracking, this may occur during the fracking process itself or during subsequent gas penetration into propant beds; the process is also at the heart of carbon dioxide sequestration. We use a bed of water-saturated glass beads confined within a Hele-Shaw cell as a model system to illuminate these processes. Depending on packing density, injection rate and other factors, air injected into this system may invade in a broad variety of patterns, including viscous fingering, capillary invasion, bubble formation and fracturing. Here we focus primarily on the latter case. Fracturing is observed when air is injected into a loosely packed bed of unconsolidated granular material. Our approach allows us to image the complete fracture pattern as it forms, and as such to study both the topographical properties of the resulting pattern (fracture density, braching frequency etc) and the dynamics of its growth. We present an overview of the fracturing phenomenon within the context of pattern formation in granular fluids as a whole. We discuss how fracturing arises from an interplay between frictional, capillary and viscous forces, and demonstrate the influence of various parameters on the result.
Retinovascular physiology and pathophysiology: new experimental approach/new insights
Puro, Donald G.
2012-01-01
An important challenge in visual neuroscience is understand the physiology and pathophysiology of the intra-retinal vasculature, whose function is required for ophthalmoception by humans and most other mammals. In the quest to learn more about this highly specialized portion of the circulatory system, a newly developed method for isolating vast microvascular complexes from the rodent retina has opened the way for using techniques such as patch-clamping, fluorescence imaging and time-lapse photography to elucidate the functional organization of a capillary network and its pre-capillary arteriole. For example, the ability to obtain dual perforated-patch recordings from well-defined sites within an isolated microvascular complex permitted the first characterization of the electrotonic architecture of a capillary/arteriole unit. This analysis revealed that this operational unit is not simply a homogenous synctium, but has a complex functional organization that is dynamically modulated by extracellular signals such as angiotensin II. Another recent discovery is that a capillary and its pre-capillary arteriole have distinct physiological differences; capillaries have an abundance of ATP-sensitive potassium (KATP) channels and a dearth of voltage-dependent calcium channels (VDCCs) while the converse is true for arterioles. In addition, voltage transmission between abluminal cells and the endothelium is more efficient in the capillaries. Thus, the capillary network is well-equipped to generate and transmit voltages, and the pre-capillary arteriole is well-adapted to transduce a capillary-generated voltage into a change in abluminal cell calcium and thereby, a vasomotor response. Use of microvessels isolated from the diabetic retina has led to new insights concerning retinal vascular pathophysiology. For example, soon after the onset of diabetes, the efficacy of voltage transmission through the endothelium is diminished; arteriolar VDCCs is inhibited, and there is increased vulnerability to purinergic vasotoxicity, which is a newly identified pathobiological mechanism. Other recent studies reveal that KATP channels not only have an essential physiological role in generating vasomotor responses, but their activation substantially boosts the lethality of hypoxia. Thus, the pathophysiology of the retinal microvasculature is closely linked with its physiology. PMID:22333041
Wang, Yi Kun; Jin, Ai Wu; Fang, Sheng Zuo
2017-05-18
Soil infiltration, soil physical and chemical properties, root length density and soil fauna diversity were studied in Phyllostachys heterocycla forests with different mulching times in southwest Zhejiang Province, China. Significant differences of soil infiltration capability were found among the forests with different mulching times and among soil layers. Soil infiltration capability generally declined in the deeper soil layers. With mulching management, soil infiltration capability increased under the first mulching, and then declined with the increase of mulching times. The Kostiakov model was suitable for simulating soil infiltration process. With the extending of mulching times (4 to 6 years), soil pH and total/non-capillary porosity decreased, while soil bulk density, soil orga-nic matter and total nitrogen contents increased significantly. Soil initial, steady, and average infiltration rates as well as the cumulative infiltration amount correlated closely with the length density of roots with diameter from 0.5 mm to 5.0 mm, showing a decreasing tendency with the decrease in root length density. Soil fauna density was highest in the forest under the first mulching, and was lowest after third mulching. The decreased numbers of large and meso-arthropods, including Symphyla, Chilopoda, Diplopoda, Hymenoptera and pseudoscorpions, and the micro-arthropods, including Oribatida, Mesostigmata, Onychiuridae, Neanuridae, Cyphoderidae, and Entomobryidae, showed negative effects on soil infiltration. In conclusion, long-term mulching changed soil physical and chemical properties, decreased soil infiltration capability, and suppressed the development of soil fauna, which might cause the decline ofP. heterocycla forests.
Kubo, Yoshiyuki; Seko, Narumi; Usui, Takuya; Akanuma, Shin-Ichi; Hosoya, Ken-Ichi
2016-01-01
Lysosomal trapping was investigated in the retinal capillary endothelial cells that are responsible for the inner blood-retinal barrier (BRB) using LysoTracker(®) Red (LTR). Using confocal microscopy on TR-iBRB2 cells, an in vitro model of the inner BRB, the presence of lysosomal trapping in retinal capillary endothelial cells was suggested since TR-iBRB2 cells exhibited punctuate intracellular localization of LTR that was attenuated by NH4Cl treatment. The study confirmed that LTR uptake by retinal capillary endothelial cells took place in a time- and temperature-dependent manner, and exhibited the 1.58-fold greater uptake at pH 8.4 than that at pH 7.4 while there was no change in uptake between pH 6.4 and pH 7.4, suggesting that passive diffusion is not enough to explain LTR uptake. The inhibition study showed the possible influence of lysosomal trapping on cationic drug transport by retinal capillary endothelial cells since LTR uptake was significantly inhibited by cationic amphiphilic drugs. Inhibition profiling and the estimation of IC50 suggested the influence of lysosomal trapping on propranolol and low-affinity pyrilamine transport while lysosomal trapping had only a partial effect on verapamil, clonidine, nicotine and high-affinity pyrilamine transport in retinal capillary endothelial cells.
Chen, Linmu; Zhou, Chunni; Tan, Chuanxue; Wang, Feifei; Gao, Yuan; Huang, Chunxia; Zhang, Yi; Jiang, Lin; Tang, Yong
2017-01-01
Running exercise is an effective method to improve depressive symptoms when combined with drugs. However, the underlying mechanisms are not fully clear. Cerebral blood flow perfusion in depressed patients is significantly lower in the hippocampus. Physical activity can achieve cerebrovascular benefits. The purpose of this study was to evaluate the impacts of running exercise on capillaries in the hippocampal CA1 and dentate gyrus (DG) regions. The chronic unpredictable stress (CUS) depression model was used in this study. CUS rats were given 4 weeks of running exercise from the fifth week to the eighth week (20 min every day from Monday to Friday each week). The sucrose consumption test was used to measure anhedonia. Furthermore, stereological methods were used to investigate the capillary changes among the control group, CUS/Standard group and CUS/Running group. Sucrose consumption significantly increased in the CUS/Running group. Running exercise has positive effects on the capillaries parameters in the hippocampal CA1 and DG regions, such as the total volume, total length and total surface area. These results demonstrated that capillaries are protected by running exercise in the hippocampal CA1 and DG might be one of the structural bases for the exercise-induced treatment of depression-like behavior. These results suggest that drugs and behavior influence capillaries and may be considered as a new means for depression treatment in the future.
Bernal, D; Sepulveda, C; Mathieu-Costello, O; Graham, J B
2003-08-01
Tunas (family Scombridae) and sharks in the family Lamnidae are highly convergent for features commonly related to efficient and high-performance (i.e. sustained, aerobic) swimming. High-performance swimming by fishes requires adaptations augmenting the delivery, transfer and utilization of O(2) by the red myotomal muscle (RM), which powers continuous swimming. Tuna swimming performance is enhanced by a unique anterior and centrally positioned RM (i.e. closer to the vertebral column) and by structural features (relatively small fiber diameter, high capillary density and greater myoglobin concentration) increasing O(2) flux from RM capillaries to the mitochondria. A study of the structural and biochemical features of the mako shark (Isurus oxyrinchus) RM was undertaken to enable performance-capacity comparisons of tuna and lamnid RM. Similar to tunas, mako RM is positioned centrally and more anterior in the body. Another lamnid, the salmon shark (Lamna ditropis), also has this RM distribution, as does the closely related common thresher shark (Alopias vulpinus; family Alopiidae). However, in both the leopard shark (Triakis semifasciata) and the blue shark (Prionace glauca), RM occupies the position where it is typically found in most fishes; more posterior and along the lateral edge of the body. Comparisons among sharks in this study revealed no differences in the total RM quantity (approximately 2-3% of body mass) and, irrespective of position within the body, RM scaling is isometric in all species. Sharks thus have less RM than do tunas (4-13% of body mass). Relative to published data on other shark species, mako RM appears to have a higher capillary density, a greater capillary-to-fiber ratio and a higher myoglobin concentration. However, mako RM fiber size does not differ from that reported for other shark species and the total volume of mitochondria in mako RM is similar to that reported for other sharks and for tunas. Lamnid RM properties thus suggest a higher O(2) flux capacity than in other sharks; however, lamnid RM aerobic capacity appears to be less than that of tuna RM.
NASA Astrophysics Data System (ADS)
Bede, Andrea; Ardelean, Ioan
2017-12-01
Varying the amount of water in a concrete mix will influence its final properties considerably due to the changes in the capillary porosity. That is why a non-destructive technique is necessary for revealing the capillary pore distribution inside hydrated cement based materials and linking the capillary porosity with the macroscopic properties of these materials. In the present work, we demonstrate a simple approach for revealing the differences in capillary pore size distributions introduced by the preparation of cement paste with different water-to-cement ratios. The approach relies on monitoring the nuclear magnetic resonance transverse relaxation distribution of cyclohexane molecules confined inside the cement paste pores. The technique reveals the whole spectrum of pores inside the hydrated cement pastes, allowing a qualitative and quantitative analysis of different pore sizes. The cement pastes with higher water-to-cement ratios show an increase in capillary porosity, while for all the samples the intra-C-S-H and inter-C-S-H pores (also known as gel pores) remain unchanged. The technique can be applied to various porous materials with internal mineral surfaces.
Lücker, Adrien; Secomb, Timothy W; Weber, Bruno; Jenny, Patrick
2017-04-01
Oxygen transport to parenchymal cells occurs mainly at the microvascular level and depends on convective RBC flux, which is proportional in an individual capillary to the product of capillary hematocrit and RBC velocity. This study investigates the relative influence of these two factors on tissue PO 2 . A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity, and RBC flow on tissue oxygenation around capillaries. Predicted tissue PO 2 levels are compared with a detailed computational model. Hematocrit is shown to have a larger influence on tissue PO 2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained, and the discrepancies are explained. Significant dependence of MTCs on RBC velocity at low hematocrit is demonstrated. For a given RBC flux in a capillary, the PO 2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing IVR to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as those that occur in functional hyperemia in the brain. © 2016 John Wiley & Sons Ltd.
Endurance Exercise Improves Molecular Pathways of Aerobic Metabolism in Patients With Myositis.
Munters, Li Alemo; Loell, Ingela; Ossipova, Elena; Raouf, Joan; Dastmalchi, Maryam; Lindroos, Eva; Chen, Yi-Wen; Esbjörnsson, Mona; Korotkova, Marina; Alexanderson, Helene; Nagaraju, Kanneboyina; Crofford, Leslie J; Jakobsson, Per-Johan; Lundberg, Ingrid E
2016-07-01
Endurance exercise demonstrates beneficial effects in polymyositis/dermatomyositis (PM/DM); however, the molecular effects of exercise on skeletal muscle are incompletely understood. We undertook this controlled pilot study to investigate the effects of a 12-week endurance exercise training program on the molecular profile of skeletal muscle in patients with established PM/DM compared to a nonexercised control group of patients with established PM/DM. Fifteen patients (7 in the exercise group and 8 in the control group) with paired baseline and 12-week follow-up muscle biopsy samples were included. Messenger RNA expression profiling, mass spectrometry-based quantitative proteomics, and immunohistochemical analyses were performed on muscle biopsy samples to determine molecular adaptations associated with changes in clinical measurements induced by endurance exercise. Compared to the control group, the exercise group improved in minutes of cycling time (P < 0.01) and Vo2 max (P < 0.05). The exercise group also had reduced disease activity (P < 0.05) and reduced lactate levels at exhaustion (P < 0.05). Genes related to capillary growth, mitochondrial biogenesis, protein synthesis, cytoskeletal remodeling, and muscle hypertrophy were up-regulated in the exercise group, while genes related to inflammation/immune response and endoplasmic reticulum stress were down-regulated. Mitochondrial pathways including the oxidative phosphorylation metabolic pathway were most affected by the endurance exercise, as demonstrated by proteomics analysis. The exercise group also showed a higher number of capillaries per mm(2) in follow-up biopsy samples (P < 0.05). Our data indicate that endurance exercise in patients with established PM and DM may activate an aerobic phenotype and promote muscle growth and simultaneously suppress the inflammatory response in these patients' muscles, as supported by a combination of data on gene expression, proteomics, and capillary density in repeated muscle biopsies. © 2016, American College of Rheumatology.
Dynamics and Stability of Capillary Surfaces: Liquid Switches at Small Scales
NASA Technical Reports Server (NTRS)
Steen, Paul H.; Bhandar, Anand; Vogel, Michael J.; Hirsa, Amir H.
2004-01-01
The dynamics and stability of systems of interfaces is central to a range of technologies related to the Human Exploration and Development of Space (HEDS). Our premise is that dramatic shape changes can be manipulated to advantage with minimal input, if the system is near instability. The primary objective is to develop the science base to allow novel approaches to liquid management in low-gravity based on this premise. HEDS requires efficient, reliable and lightweight technologies. Our poster will highlight our progress toward this goal using the capillary switch as an example. A capillary surface is a liquid/liquid or liquid/gas interface whose shape is determined by surface tension. For typical liquids (e.g., water) against gas on earth, capillary surfaces occur on the millimeterscale and smaller where shape deformation due to gravity is unimportant. In low gravity, they can occur on the centimeter scale. Capillary surfaces can be combined to make a switch a system with multiple stable states. A capillary switch can generate motion or effect force. To be practical, the energy barriers of such a switch must be tunable, its switching time (kinetics) short and its triggering mechanism reliable. We illustrate these features with a capillary switch that consists of two droplets, coupled by common pressure. As long as contact lines remained pinned, motions are inviscid, even at sub-millimeter scales, with consequent promise of low-power consumption at the device level. Predictions of theory are compared to experiment on i) a soap-film prototype at centimeter scale and ii) a liquid droplet switch at millimeter-scale.
NASA Astrophysics Data System (ADS)
Wang, Shibo; Tokunaga, Tetsu K.; Wan, Jiamin; Dong, Wenming; Kim, Yongman
2016-08-01
Capillary pressure (Pc)-saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, 17 sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23°C) and reservoir (12.0 MPa, 45°C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.
NASA Astrophysics Data System (ADS)
Tokunaga, T. K.; Wang, S.; Wan, J.; Dong, W.; Kim, Y.
2016-12-01
Capillary pressure (Pc) - saturation (Sw) relations are essential for predicting equilibrium and flow of immiscible fluid pairs in soils and deeper geologic formations. In systems that are difficult to measure, behavior is often estimated based on capillary scaling of easily measured Pc-Sw relations (e.g., air-water, and oil-water), yet the reliability of such approximations needs to be examined. In this study, seventeen sets of brine drainage and imbibition curves were measured with air-brine, decane-brine, and supercritical (sc) CO2-brine in homogeneous quartz and carbonate sands, using porous plate systems under ambient (0.1 MPa, 23 °C) and reservoir (12.0 MPa, 45 °C) conditions. Comparisons between these measurements showed significant differences in residual nonwetting phase saturation, Snw,r. Through applying capillary scaling, changes in interfacial properties were indicated, particularly wettability. With respect to the residual trapping of the nonwetting phases, Snwr, CO2 > Snwr, decane > Snwr, air. Decane-brine and scCO2-brine Pc-Sw curves deviated significantly from predictions assuming hydrophilic interactions. Moreover, neither the scaled capillary behavior nor Snw,r for scCO2-brine were well represented by decane-brine, apparently because of differences in wettability and viscosities, indicating limitations for using decane (and other organic liquids) as a surrogate fluid in studies intended to apply to geological carbon sequestration. Thus, challenges remain in applying scaling for predicting capillary trapping and multiphase displacement processes across such diverse fields as vadose zone hydrology, enhanced oil recovery, and geologic carbon sequestration.
Why Rudolph’s nose is red: observational study
van Kuijen, Anne-Marije; Milstein, Dan M J; Yürük, Koray; Folkow, Lars P; Fokkens, Wytske J; Blix, Arnoldus S
2012-01-01
Objective To characterise the functional morphology of the nasal microcirculation in humans in comparison with reindeer as a means of testing the hypothesis that the luminous red nose of Rudolph, one of the most well known reindeer pulling Santa Claus’s sleigh, is due to the presence of a highly dense and rich nasal microcirculation. Design Observational study. Setting Tromsø, Norway (near the North Pole), and Amsterdam, the Netherlands. Participants Five healthy human volunteers, two adult reindeer, and a patient with grade 3 nasal polyposis. Main outcome measures Architecture of the microvasculature of the nasal septal mucosa and head of the inferior turbinates, kinetics of red blood cells, and real time reactivity of the microcirculation to topical medicines. Results Similarities between human and reindeer nasal microcirculation were uncovered. Hairpin-like capillaries in the reindeers’ nasal septal mucosa were rich in red blood cells, with a perfused vessel density of 20 (SD 0.7) mm/mm2. Scattered crypt or gland-like structures surrounded by capillaries containing flowing red blood cells were found in human and reindeer noses. In a healthy volunteer, nasal microvascular reactivity was demonstrated by the application of a local anaesthetic with vasoconstrictor activity, which resulted in direct cessation of capillary blood flow. Abnormal microvasculature was observed in the patient with nasal polyposis. Conclusions The nasal microcirculation of reindeer is richly vascularised, with a vascular density 25% higher than that in humans. These results highlight the intrinsic physiological properties of Rudolph’s legendary luminous red nose, which help to protect it from freezing during sleigh rides and to regulate the temperature of the reindeer’s brain, factors essential for flying reindeer pulling Santa Claus’s sleigh under extreme temperatures. PMID:23247980
NASA Technical Reports Server (NTRS)
Brooks, Carolyn A.; Sharma, Govind C.; Beyl, Caula A.
1990-01-01
A desire for fresh vegetables for consumption during long term space missions has been foreseen. To meet this need in a microgravity environment within the limited space and energy available on Space Station requires highly productive vegetable cultivars of short stature to optimize vegetable production per volume available. Special water and nutrient delivery systems must also be utilized. As a first step towards fresh vegetable production in the microgravity of Space Station, several soil-less capillary action media were evaluated for the ability to support growth of two root crops (radish and carrot) which are under consideration for inclusion in a semi-automated system for production of salad vegetables in a microgravity environment (Salad Machine). In addition, productivity of different cultivars of radish was evaluated as well as the effect of planting density and cultivar on carrot production and size. Red Prince radish was more productive than Cherry Belle and grew best on Jiffy Mix Plus. During greenhouse studies, vermiculite and rock wool supported radish growth to a lesser degree than Jiffy Mix Plus but more than Cellular Rooting Sponge. Comparison of three carrot cultivars (Planet, Short n Sweet, and Goldinhart) and three planting densities revealed that Short n Sweet planted at 25.6 sq cm/plant had the greatest root fresh weight per pot, the shortest mean top length, and intermediate values of root length and top fresh weight per pot. Red Prince radish and Short n Sweet carrot showed potential as productive cultivars for use in a Salad Machine. Results of experiments with solid capillary action media were disappointing. Further research must be done to identify a solid style capillary action media which can productively support growth of root crops such as carrot and radish.
Hypolipidaemic Effect of Hericium erinaceum Grown in Artemisia capillaris on Obese Rats
Choi, Won-Sik; Kim, Young-Sun; Park, Byeoung-Soo; Kim, Jang-Eok
2013-01-01
In this study, ethanolic extracts from Hericium erinaceum cultivated with Artemisia capillaris (HEAC) were assessed for their ability to lower the cholesterol levels of male Sprague-Dawley rats fed a high-fat diet. Rats were randomly subdivided into seven test groups. Each group contained eight rats fed a high-fat diet during a growth period lasting 4 wk. Supplementation with the extracts was performed once a day for 2 wk after the high-fat diet. The control group (rats fed a high-fat diet) showed a high efficiency ratio (feed efficiency ratio) value compared to the normal group. Biochemical parameters, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and triglyceride (TG) levels dramatically increased in the control group compared to the normal group. High-density lipoprotein-cholesterol (HDL-c) content in the control group was also significantly lower relative to the normal group. Two positive control groups, treated with simvastatin and atorvastatin, had lowered TC, LDL-c, and TG levels, and increased HDL-c content compared to the control group. Treatment with the tested extracts, including HEAC, ethanolic extracts from Hericium erinaceum, and ethanolic extracts from Artemisia capillaris reduced TC, LDL-c, and TG levels and elevated HDL-c content in the hyperlipidemia rats. The atherogenic index and cardiac risk factor values for the HEAC-treated group were 0.95 and 1.95, respectively. Simvastatin- and atorvastatin-treated groups showed atherogenic index values of 1.56 and 1.69, respectively, and cardiac risk factor values of 2.56 and 2.69, respectively. These results show HEAC possesses an ability to cure hyperlipidemia in rats and may serve as an effective natural medicine for treating hyperlipidemia in humans. PMID:23874132
Hypolipidaemic Effect of Hericium erinaceum Grown in Artemisia capillaris on Obese Rats.
Choi, Won-Sik; Kim, Young-Sun; Park, Byeoung-Soo; Kim, Jang-Eok; Lee, Sung-Eun
2013-06-01
In this study, ethanolic extracts from Hericium erinaceum cultivated with Artemisia capillaris (HEAC) were assessed for their ability to lower the cholesterol levels of male Sprague-Dawley rats fed a high-fat diet. Rats were randomly subdivided into seven test groups. Each group contained eight rats fed a high-fat diet during a growth period lasting 4 wk. Supplementation with the extracts was performed once a day for 2 wk after the high-fat diet. The control group (rats fed a high-fat diet) showed a high efficiency ratio (feed efficiency ratio) value compared to the normal group. Biochemical parameters, including total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-c), and triglyceride (TG) levels dramatically increased in the control group compared to the normal group. High-density lipoprotein-cholesterol (HDL-c) content in the control group was also significantly lower relative to the normal group. Two positive control groups, treated with simvastatin and atorvastatin, had lowered TC, LDL-c, and TG levels, and increased HDL-c content compared to the control group. Treatment with the tested extracts, including HEAC, ethanolic extracts from Hericium erinaceum, and ethanolic extracts from Artemisia capillaris reduced TC, LDL-c, and TG levels and elevated HDL-c content in the hyperlipidemia rats. The atherogenic index and cardiac risk factor values for the HEAC-treated group were 0.95 and 1.95, respectively. Simvastatin- and atorvastatin-treated groups showed atherogenic index values of 1.56 and 1.69, respectively, and cardiac risk factor values of 2.56 and 2.69, respectively. These results show HEAC possesses an ability to cure hyperlipidemia in rats and may serve as an effective natural medicine for treating hyperlipidemia in humans.
Preissler, Gerhard; Eichhorn, Martin; Waldner, Helmut; Winter, Hauke; Kleespies, Axel; Massberg, Steffen
2012-10-01
After pancreas transplantation (PTx), early capillary malperfusion and leukocyte recruitment indicate the manifestation of severe ischemia/reperfusion injury (IRI). Oscillatory blood-flow redistribution (intermittent capillary perfusion, IP), leading to an overall decrease in erythrocyte flux, precedes complete microvascular perfusion failure with persistent blood flow cessation. We addressed the role of intercellular adhesion molecule-1 (ICAM-1) for leukocyte-endothelial interactions (LEIs) after PTx and evaluated the contribution of IP and malperfusion. Pancreas transplantation was performed in rats after 18-hour preservation, receiving either isotype-matched IgG or monoclonal anti-ICAM-1 antibodies (10 mg/kg intravenously) once before reperfusion. Leukocyte-endothelial interaction, IP, erythrocyte flux, and functional capillary density, respectively, were examined in vivo during 2-hour reperfusion. Nontransplanted animals served as controls. Tissue samples were analyzed by histomorphometry. In grafts of IgG-treated animals, IP was encountered already at an early stage after reperfusion and steadily increased over 2 hours, whereas erythrocyte flux declined continuously. In contrast, inhibition of ICAM-1 significantly improved erythrocyte flux and delayed IP appearance by 2 hours. Further, anti-ICAM-1 significantly reduced LEI and leukocyte tissue infiltration when compared to IgG; edema development was less pronounced in response to anti-ICAM-1 monoclonal antibody. Intercellular adhesion molecule-1 blockade significantly attenuates IRI via immediate reduction of LEI and concomitant improvement of capillary perfusion patterns, emphasizing its central role during IRI in PTx.
Jet dynamics post drop impact on a deep pool
NASA Astrophysics Data System (ADS)
Michon, Guy-Jean; Josserand, Christophe; Séon, Thomas
2017-02-01
We investigate experimentally the jet formed by the collapse of a cavity created by the impact of a drop on a pool of the same aqueous liquid. We show that jets can emerge with very different shapes and velocities, depending on the impact parameters, thus generating droplets with various initial sizes and velocities. After presenting the jet velocity and top drop radius variation as a function of the impact parameters, we discuss the influence of the liquid parameters on the jet velocity. This allows us to define two different regimes: the singular jet and the cavity jet regimes, where the mechanisms leading to the cavity retraction and subsequent jet dynamics are drastically different. In particular, we demonstrate that in the first regime, a singular capillary wave collapse sparks the whole jet dynamics, making the jet's fast, thin, liquid parameters dependent and barely reproducible. On the contrary, in the cavity jet regime, defined for higher impact Froude numbers, the jets are fat and slow. We show that jet velocity is simply proportional to the capillary velocity √{γ /ρlDd }, where γ is the liquid surface tension, ρl the liquid density, and Dd the impacting drop diameter, and it is in particular independent of viscosity, impact velocity, and gravity, even though the cavity is larger than the capillary length. Finally, we demonstrate that capillary wave collapse and cavity retraction are correlated in the singular regime and decorrelated in the cavity jet regime.
The Dynamics of Miscible Interfaces: Simulations
NASA Technical Reports Server (NTRS)
Meiburg, Eckart
2002-01-01
The goal of this experimental/computational investigation (joint with Prof Maxworthy at USC) has been to study the dynamics of miscible interfaces, both from a scientific and a practical point of view, and to prepare a related experiment to be flown on the International Space Station. In order to address these effects, we have focused experimental and computational investigations on miscible displacements in cylindrical capillary tubes, as well as in Hele-Shaw cells. Regarding the flow in a capillary tube, the question was addressed as to whether Korteweg stresses and/or divergence effects can potentially account for discrepancies observed between conventional Stokes flow simulations and experiments for miscible flows in capillary tubes. An estimate of the vorticity and streamfunction fields induced by the Kortewegs stresses was derived, which shows these stresses to result in the formation of a vortex ring structure near the tip of the concentration front. Through this mechanism the propagation velocity of the concentration front is reduced, in agreement with the experimental observations. Divergence effects, on the other hand, were seen to be very small, and they have a negligible influence on the tip velocity. As a result, it can be concluded that they are not responsible for the discrepancies between experiments and conventional Stokes simulations. A further part of our investigation focussed on the development of high-accuracy three-dimensional spectral element simulation techniques for miscible flows in capillary tubes, including the effects of variable density and viscosity. Towards this end, the conservation equations are treated in cylindrical coordinates.
Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong
2016-12-28
Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and deformation of RBCs in capillaries. Simulation results reveal that the condition of blood flow stopping depends on the pressure gradient of the capillary and the severity of stenosis of the capillary. In addition, this model is capable of predicting the critical diameter which prevents motion of RBCs for different blood pressures.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
Ybarra, J; James, R W; Makoundou, V; Bioletto, S; Golay, A
2001-12-01
We assessed the efficacy of a modest weight loss (1.5 +/- 0.3 kg) and simultaneous rapid improvement in glycemic control on fasting an post-prandial lipoprotein sub-fractions in nine overweight (BMI=28 +/- 1.7 kg/m(2)) well controlled Type 2 diabetic patients (HbA(1c)=7.3 +/- 0.1%). They followed a non-drastical hypocaloric balanced diet (1 561 +/- 39 kcal/day) over ten days in hospital. The fat content of the diet was significantly lowered from 96 +/- 12 g/day to 62 +/- 4 g/day (p<0.03). Plasma lipid and lipoprotein levels were measured in fasting and four hours after standard breakfast and four hours after standard lunch twice before and after ten days of hospitalization. The sub-fractions of very low density and low density lipoprotein were obtained by cumulative flotation ultracentrifugation. This weight loss reduced two well known independent cardiovascular risk factors such as the post-prandial glycemic excursions (p<0.05) and the post-prandial lipemia (p<0.05). Multiple linear regression analyses identified weight loss as an independent variable accounting for the ability to predict post-prandial capillary triglyceride clearance (p<0.05). Improvements in post-prandial glycemic excursions which was also entered as a parameter did not appear as a variable being able to predict these changes (p=0.4). In addition to the 23% improvement in post-prandial capillary triglyceride clearance (p<0.02), a decrement in post-prandial VLDL-2 triglyceride enrichment was found (p<0.05). Finally, fasting and post-prandial LDL-3 cholesterol levels were diminished (p<0.05) and the LDL-2/LDL-3 mass ratio post-prandial kinetics were improved (p<0.05). Even a modest weight loss in overweight, average controlled type 2 diabetic patients can achieve a significant improvement in two cardiovascular risk factors, namely post-prandial triglyceride excursions and the LDL-2/LDL-3 mass ratio kinetics independently from glycemic control improvements.
Effect of Foam on Liquid Phase Mobility in Porous Media
NASA Astrophysics Data System (ADS)
Eftekhari, A. A.; Farajzadeh, R.
2017-03-01
We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge.
Mechanics of Stimulated Neutrophils: Cell Stiffening Induces Retention in Capillaries
NASA Astrophysics Data System (ADS)
Worthen, G. Scott; Schwab, Bill; Elson, Elliot L.; Downey, Gregory P.
1989-07-01
The effect of peptide chemoattractants on neutrophil mechanical properties was studied to test the hypothesis that stimulated neutrophils (diameter, 8 micrometers) are retained in pulmonary capillaries (5.5 micrometers) as a result of a decreased ability of the cell to deform within the capillary in response to the hydrodynamic forces of the bloodstream. Increased neutrophil stiffness, actin assembly, and retention in both 5-micrometer pores and the pulmonary vasculature were seen in response to N-formylmethionyl-leucyl-phenylalanine. These changes were abolished in cells that had been incubated with 2 micromolar cytochalasin D, an agent that disrupts cellular actin organization. A monoclonal antibody directed at the CD11-CD18 adhesive glycoprotein complex did not inhibit the increase in stiffness or retention in pores. These data suggest that neutrophil stiffening may be both necessary and sufficient for the retention that is observed. Hence, neutrophil sequestration in lung and other capillaries in the acute inflammatory process may be the result of increased stiffness stimulated by chemoattractants.
On-demand control of microfluidic flow via capillary-tuned solenoid microvalve suction.
Zhang, Qiang; Zhang, Peiran; Su, Yetian; Mou, Chunbo; Zhou, Teng; Yang, Menglong; Xu, Jian; Ma, Bo
2014-12-21
A simple, low-cost and on-demand microfluidic flow controlling platform was developed based on a unique capillary-tuned solenoid microvalve suction effect without any outer pressure source. The suction effect was innovatively employed as a stable and controllable driving force for the manipulation of the microfluidic system by connecting a piece of capillary between the microvalve and the microfluidic chip, which caused significant hydrodynamic resistance differences among the solenoid valve ports and changed the flowing mode inside the valve. The volume of sucked liquid could be controlled from microliters even down to picoliters either by decreasing the valve energized duration (from a maximum energized duration to the valve response time of 20 ms) or by increasing the inserted capillary length (i.e., its hydrodynamic resistance). Several important microfluidic unit operations such as cell/droplet sorting and on-demand size-controllable droplet generation have been demonstrated on the developed platform and both simulations and experiments confirmed that this platform has good controllability and stability.
Gas Flow and Ion Transfer in Heated ESI Capillary Interfaces
NASA Astrophysics Data System (ADS)
Bernier, Laurent; Pinfold, Harry; Pauly, Matthias; Rauschenbach, Stephan; Reiss, Julius
2018-02-01
Transfer capillaries are the preferred means to transport ions, generated by electrospray ionization, from ambient conditions to vacuum. During the transfer of ions through the narrow, long tubes into vacuum, substantial losses are typical. However, recently it was demonstrated that these losses can be avoided altogether. To understand the experimental observation and provide a general model for the ion transport, here, we investigate the ion transport through capillaries by numerical simulation of interacting ions. The simulation encompasses all relevant factors, such as space charge, diffusion, gas flow, and heating. Special attention is paid to the influence of the gas flow on the transmission and especially the change imposed by heating. The gas flow is modeled by a one-dimensional gas dynamics description. A large number of ions are treated as point particles in this gas flow. This allows to investigate the influence of the capillary heating on the gas flow and by this on the ion transport. The results are compared with experimental findings. [Figure not available: see fulltext.
Effect of Foam on Liquid Phase Mobility in Porous Media
Eftekhari, A. A.; Farajzadeh, R.
2017-01-01
We investigate the validity of the assumption that foam in porous media reduces the mobility of gas phase only and does not impact the liquid-phase mobility. The foam is generated by simultaneous injection of nitrogen gas and a surfactant solution into sandstone cores and its strength is varied by changing surfactant type and concentration. We find, indeed, that the effect of foam on liquid-phase mobility is not pronounced and can be ignored. Our new experimental results and analyses resolve apparent discrepancies in the literature. Previously, some researchers erroneously applied relative permeability relationships measured at small to moderate capillary numbers to foam floods at large capillary number. Our results indicate that the water relative permeability in the absence of surfactant should be measured with the capillary pressure ranging up to values reached during the foam floods. This requires conducting a steady-state gas/water core flood with capillary numbers similar to that of foam floods or measuring the water relative-permeability curve using a centrifuge. PMID:28262795
Li, Chenxi; Wang, Ruikang
2017-04-01
We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes.
Theoretical and experimental separation dynamics in capillary zone electrophoresis
NASA Technical Reports Server (NTRS)
Thormann, Wolfgang; Michaud, Jon-Pierre; Mosher, Richard A.
1986-01-01
The mathematical model of Bier et al. (1983) is used in a computer aided analysis of the conditions in capillary zone electrophoresis (ZE) under which sample zones migrate noninteractively with the carrier electrolyte. The monitoring of sample zones with a capillary analyzer that features both on-line conductivity and UV detection at the end of the separation trough is discussed. Data from a ZE analysis of a 5-component mixture are presented, and it is noted that all five components can be monitored via their conductivity change if enough sample is present. It is suggested from the results that the concentration ratio of background buffer to sample should be a minimum of 100:1 to effectively apply the plate concept to ZE.
NASA Astrophysics Data System (ADS)
Missiaen, Jean-Michel; Raharijaona, Jean-Joël; Delannay, Francis
2016-11-01
A model is developed to compute the capillary pressure for the migration of the liquid phase out or into a uniform solid-liquid-vapor system. The capillary pressure is defined as the reduction of the overall interface energy per volume increment of the transferred fluid phase. The model takes into account the particle size of the solid particle aggregate, the packing configuration (coordination number, porosity), the volume fractions of the different phases, and the values of the interface energies in the system. The model is used for analyzing the stability of the composition profile during processing of W-Cu functionally graded materials combining a composition gradient with a particle size gradient. The migration pressure is computed with the model in two stages: (1) just after the melting of copper, i.e., when sintering and shape accommodation of the W particle aggregate can still be neglected and (2) at high temperature, when the system is close to full density with equilibrium particle shape. The model predicts well the different stages of liquid-phase migration observed experimentally.
Macro-to-micro cortical vascular imaging underlies regional differences in ischemic brain
NASA Astrophysics Data System (ADS)
Dziennis, Suzan; Qin, Jia; Shi, Lei; Wang, Ruikang K.
2015-05-01
The ability to non-invasively monitor and quantify hemodynamic responses down to the capillary level is important for improved diagnosis, treatment and management of neurovascular disorders, including stroke. We developed an integrated multi-functional imaging system, in which synchronized dual wavelength laser speckle contrast imaging (DWLS) was used as a guiding tool for optical microangiography (OMAG) to test whether detailed vascular responses to experimental stroke in male mice can be evaluated with wide range sensitivity from arteries and veins down to the capillary level. DWLS enabled rapid identification of cerebral blood flow (CBF), prediction of infarct area and hemoglobin oxygenation over the whole mouse brain and was used to guide the OMAG system to hone in on depth information regarding blood volume, blood flow velocity and direction, vascular architecture, vessel diameter and capillary density pertaining to defined regions of CBF in response to ischemia. OMAG-DWLS is a novel imaging platform technology to simultaneously evaluate multiple vascular responses to ischemic injury, which can be useful in improving our understanding of vascular responses under pathologic and physiological conditions, and ultimately facilitating clinical diagnosis, monitoring and therapeutic interventions of neurovascular diseases.
Salas, Matthias; Augustin, Marco; Ginner, Laurin; Kumar, Abhishek; Baumann, Bernhard; Leitgeb, Rainer; Drexler, Wolfgang; Prager, Sonja; Hafner, Julia; Schmidt-Erfurth, Ursula; Pircher, Michael
2017-01-01
The purpose of this work is to investigate the benefits of adaptive optics (AO) technology for optical coherence tomography angiography (OCTA). OCTA has shown great potential in non-invasively enhancing the contrast of vessels and small capillaries. Especially the capability of the technique to visualize capillaries with a lateral extension that is below the transverse resolution of the system opens unique opportunities in diagnosing retinal vascular diseases. However, there are some limitations of this technology such as shadowing and projection artifacts caused by overlying vasculature or the inability to determine the true extension of a vessel. Thus, the evaluation of the vascular structure and density based on OCTA alone can be misleading. In this paper we compare the performance of AO-OCT, AO-OCTA and OCTA for imaging retinal vasculature. The improved transverse resolution and the reduced depth of focus of AO-OCT and AO-OCTA greatly reduce shadowing artifacts allowing for a better differentiation and segmentation of different vasculature layers of the inner retina. The comparison is done on images recorded in healthy volunteers and in diabetic patients with distinct pathologies of the retinal microvasculature.
González, F R; Pérez-Parajón, J; García-Domínguez, J A
2002-04-12
Gas-liquid chromatographic columns were prepared coating silica capillaries with poly(oxyethylene) polymers of different molecular mass distributions, in the range of low number-average molar masses, where the density still varies significantly. A novel, high-temperature, rapid evaporation method was developed and applied to the static coating of the low-molecular-mass stationary phases. The analysis of alkanes retention data from these columns reveals that the dependence of the partition coefficient with the solvent macroscopic density is mainly due to a variation of entropy. Enthalpies of solute transfer contribute poorly to the observed variations of retention. Since the alkanes solubility diminishes with the increasing solvent density, and this variation is weakly dependent with temperature, it is concluded that the decrease of free-volume in the liquid is responsible for this behavior.
Water Displacement in Oil-Wet Tight Reservoirs by Dynamic Network Simulation
NASA Astrophysics Data System (ADS)
Wang, Y.; Li, M.; Chen, M.
2017-12-01
Pore network simulation is an effective tool for studying the multiphase flow in porous media. Based on the topological information and pore-throat size distribution obtained from the analysis of Scanning Electron Microscope (SEM) and constant-rate mercury injection (CRMI) for tight cores (composed by micro-nano scale throats and micro scale pores), a simple cubic (SC) pore-throat network was built with equilateral triangular cross-section throats and cubic bodies. Rules for oil and water movement and redistribution were devised in accordance with the physics process at pore-throat scale. Water flooding from oil-saturated under irreducible water were simulated by considering the changing displacement rate and viscosity ratio at the slightly oil-wet condition (the static contact angle ranges between π/2 to 2π/3). Different from the double pressure field algorithm, a single pressure field which solved by using successive over relaxation method was used with the flow of irreducible water in corners was ignored while its swilling was take into consideration. Dynamic of displacement fronts, relative permeability curves and residual oil saturation were obtained. It showed that there were obviously snap-off at low capillary number (Nc<10-5) and fingering at high capillary number (Nc<10-4) even at a favorable viscosity ratio (M=1). The magnitude of viscosity ratio effect on relative permeability depended largely on the capillary number, which the effect wasn't noticeable for a high capillary number. For residual oil saturation Sor, it showed that Sor decreased with the increase of capillary number at different viscosity ratio. Changing of residual oil saturation from simulation was in good agreement with the experimental results in a certain range, which indicated that this network model could be used to character the water flooding in tight reservoirs.
Thermal and capillary effects on the caprock mechanical stability at In Salah, Algeria
Vilarrasa, Víctor; Rutqvist, Jonny; Rinaldi, Antonio Pio
2015-04-20
Thermo-mechanical effects are important in geologic carbon storage because CO 2 will generally reach the storage formation colder than the rock, inducing thermal stresses. Capillary functions, i.e., retention and relative permeability curves, control the CO 2 plume shape, which may affect overpressure and thus, caprock stability. To analyze these thermal and capillary effects, we numerically solve non-isothermal injection of CO 2 in deformable porous media considering the In Salah, Algeria, CO 2 storage site. Here, we find that changes in the capillary functions have a negligible effect on overpressure and thus, caprock stability is not affected by capillary effects. But,more » we show that for the strike slip stress regime prevalent at In Salah, stability decreases in the lowest parts of the caprock during injection due to cooling-induced thermal stresses. Simulations show that shear slip along pre-existing fractures may take place in the cooled region, whereas tensile failure is less likely to occur. Indeed, only the injection zone and the lowest tens of meters of the 900-m-thick caprock at In Salah might be affected by cooling effects, which would thus not jeopardize the overall sealing capacity of the caprock. Furthermore, faults are likely to remain stable far away from the injection well because outside the cooled region the injection-induced stress changes are not sufficient to exceed the anticipated shear strength of minor faults. Nonetheless, we recommend that thermal effects should be considered in the site characterization and injection design of future CO 2 injection sites to assess caprock stability and guarantee a permanent CO 2 storage.« less
Unekawa, Miyuki; Tomita, Yutaka; Toriumi, Haruki; Masamoto, Kazuto; Kanno, Iwao; Suzuki, Norihiro
2013-04-01
Cortical spreading depression (CSD) is a repetitive, propagating profile of mass depolarization of neuronal and glial cells, followed by sustained suppression of spontaneous neuronal activity. We have reported a long-lasting suppressive effect on red blood cell (RBC) velocities in intraparenchymal capillaries. Here, to test the hypothesis that the prolonged decrease of RBC velocity in capillaries is due to suppression of neuronal activity, we measured CSD-elicited changes in the electroencephalogram (EEG) as an index of neuronal activity. In isoflurane-anesthetized rats, DC potential, EEG, partial pressure of oxygen (PO₂), and cerebral blood flow (CBF) were simultaneously recorded in the temporo-parietal region. The velocities of fluorescently labeled RBCs were evaluated by high-speed camera laser scanning confocal fluorescence microscopy with our original software, KEIO-IS2. Transient deflection of DC potential and PO₂ and increase of CBF were repeatedly detected only in the ipsilateral hemisphere following topical KCl application. On the other hand, the relative spectral power of EEG was reduced bilaterally, showing the lowest value at 5 min after KCl application, when the other parameters had already returned to the baseline after the passage of CSD. Mean RBC velocity in capillaries was slightly but significantly reduced during and after passage of CSD in the ipsilateral hemisphere but did not change in the contralateral hemisphere in the same rats. We suggest that mass depolarization of neuronal and glial cells might transiently decelerate RBCs in nearby capillaries, but the sustained reduction of ipsilateral RBC velocity might be a result of the prolonged effect of CSD, not of neuronal suppression alone. Copyright © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Zhu, Hongying; Dale, Paul S.; Fan, Xudong
2009-05-01
Breast cancer is the most frequently diagnosed malignancy in women worldwide. Because of its great impact on society, a lot of research funding has been used to develop novel detection tools for aiding breast cancer diagnosis and prognosis. In this work, we demonstrated a simple, fast, and sensitive detection of circulating breast cancer biomarker CA15-3 with opto-fluidic ring resonator (OFRR) sensors. The OFRR sensor employs a thin-walled capillary with wall thickness less than 4 μm. The circular cross section of the capillary forms the optical ring resonator, in which the light circulates in the form of whispering gallery modes (WGMs). The capillary wall is thin enough that the evanescent field of the WGM extends into the capillary core and responds to refractive index changes in the capillary core or close to its interior surface. The WGM spectral position will change when the biomolecules bind to the surface, yielding quantitative and kinetic information about the biomolecule interaction. Here, the direct immunoassay method was employed for the detection of CA15-3 antigen without any signal amplification steps. The sensor performance in both PBS buffer and human serum were investigated, respectively. The experimental detection limit was 5 units/mL in PBS buffer and 30 units/mL for CA15-3 spiked in serum, both of which satisfied clinical diagnosis requirements. The potential use of the OFRR as the point-of-care device for breast cancer detection was tested by measuring the CA15-3 level in blood samples collected from stage IV breast cancer patients and the results were compared with standard clinical test.
NASA Technical Reports Server (NTRS)
Elliott, A. R.; Fu, Z.; Tsukimoto, K.; Prediletto, R.; Mathieu-Costello, O.; West, J. B.
1992-01-01
We previously showed that when the pulmonary capillaries in anesthetized rabbits are exposed to a transmural pressure (Ptm) of approximately 40 mmHg, stress failure of the walls occurs with disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers. The present study was designed to determine whether some of the ultrastructural changes are rapidly reversible when the capillary pressure is reduced. To test this, the Ptm was raised to 52.5 cmH2O for 1 min of blood perfusion and then reduced to 12.5 cmH2O for 3 min of saline-dextran perfusion, followed by intravascular fixation at the same pressure. In another group of animals, the pressure was elevated for 1 min of blood and 3 min of saline-dextran before being reduced. The results were compared with previous studies in which the capillary pressures were maintained elevated at 52.5 cmH2O during the entire procedure. Control studies were also done at sustained low pressures. The results showed that the number of endothelial and epithelial breaks per millimeter and the total fraction area of the breaks were reduced when the pressure was lowered. For example, the number of endothelial breaks per millimeter decreased from 7.1 +/- 2.1 to 2.4 +/- 0.7, and the number of epithelial breaks per millimeter fell from 11.4 +/- 3.7 to 3.4 +/- 0.7. There was evidence that the breaks that closed were those that were initially small and were associated with an intact basement membrane. The results suggest that cells can move along their underlying matrix by rapid disengagement and reattachment of cell adhesion molecules, causing breaks to open or close within minutes.(ABSTRACT TRUNCATED AT 250 WORDS).
Shenavandeh, S; Habibi, S
2017-08-01
Introduction The clinical expression of systemic lupus erythematosus (SLE) is the consequence of endothelial cell damage leading to serious multiple organ dysfunction. The aim of this study was to assess the association between nailfold capillaroscopic changes and disease activity, skin and renal involvement in patients with SLE. Methods Demographic variables, clinical manifestations and laboratory data of 108 patients with SLE were investigated. Nailfold capillaroscopy (NFC) was performed in all patients. Result Morphological changes in NFC were observed in 102 out of 108 (94.4%) SLE patients. Minor changes were found in 33 (30.6%) and major changes in 69 (63.9%) cases. The disease activity was significantly higher in the patients with major changes ( p < 0.002). A higher incidence of microhaemorrhages was seen in patients with active SLE disease ( p < 0.04). In SLE patients with active skin involvement, the disturbed distribution ( p < 0.004) was more frequent and subtle changes ( p < 0.009) were less frequently observed as compared with patients without active skin involvement. In the group of SLE patients with renal involvement, no correlation was found between the capillary abnormalities and the presence of renal involvement ( p > 0.05), except for the elongated capillary loops, which were seen more often in patients with renal involvement than in patients without it ( p < 0.03). Conclusion The results of the study showed that capillary changes (abnormal capillaroscopy) were very common in patients with SLE, although there were no specific patterns like the ones in scleroderma patients, and some changes may be associated with disease activity, especially in patients with active skin involvement.
Physical structure changes of solid medium by steam explosion sterilization.
Zhao, Zhi-Min; Wang, Lan; Chen, Hong-Zhang
2016-03-01
Physical structure changes of solid medium were investigated to reveal effects of steam explosion sterilization on solid-state fermentation (SSF). Results indicated that steam explosion changed the structure of solid medium at both molecular and three-dimensional structural levels, which exposed hydrophilic groups and enlarged pores and cavities. It was interesting to find that pores where capillary water located were the active sites for SSF, due to the close relationship among capillary water relaxation time, specific surface area and fermentation performance. Therefore, steam explosion sterilization increased the effective contact area for microbial cells on solid medium, which contributed to improving SSF performance. Combined with the previous research, mechanisms of SSF improvement by steam explosion sterilization contained both chemical and physical effects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gas-Driven Fracturing of Saturated Granular Media
NASA Astrophysics Data System (ADS)
Campbell, James M.; Ozturk, Deren; Sandnes, Bjørnar
2017-12-01
Multiphase flows in deformable porous materials are important in numerous geological and geotechnical applications; however, the complex flow behavior makes subsurface transport processes difficult to control—or even characterize. Here, we study gas-driven (pneumatic) fracturing of a wet unconsolidated granular packing confined in a Hele-Shaw cell, and we present an in-depth analysis of both pore-scale phenomena and large-scale pattern formation. The process is governed by a complex interplay among pressure, capillary, frictional, and viscous forces. At low gas-injection rates, fractures grow in a stick-slip fashion and branch out to form a simply connected network. We observe the emergence of a characteristic length scale—the separation distance between fracture branches—creating an apparent uniform spatial fracture density. We conclude that the well-defined separation distance is the result of local compaction fronts surrounding fractures and keeping them apart. A scaling argument is presented that predicts fracture density as a function of granular friction, grain size, and capillary interactions. We study the influence of the gas-injection rate and find that the system undergoes a fluidization transition above a critical injection rate, resulting in directional growth of the fractures, and a fracture density that increases with an increasing rate. A dimensionless fluidization number F is defined as the ratio of viscous to frictional forces, and our experiments reveal a frictional regime for F <1 characterized by stick-slip, rate-independent growth, with a transition to a viscous regime (F >1 ) characterized by continuous growth in several fracture branches simultaneously.
NASA Technical Reports Server (NTRS)
Ravi, K. V.; Serreze, H. B.; Bates, H. E.; Morrison, A. D.; Jewett, D. N.; Ho, J. C. T.; Schwuttke, G. H.; Ciszek, T. F.; Kran, A.
1975-01-01
Continuous growth methodology for silicon solar cell ribbons deals with capillary effects, die effects, thermal effects and crystal shape effects. Emphasis centers on the shape of the meniscus at the ribbon edge as a factor contributing to ribbon quality with respect to defect densities. Structural and electrical characteristics of edge defined, film-fed grown silicon ribbons are elaborated. Ribbon crystal solar cells produce AMO efficiencies of 6 to 10%.
Physical training in the prophylaxis and treatment of obesity, hypertension and diabetes.
Krotkiewski, M
1983-01-01
The results of physical training in 600 obese and 100 diabetic patients are described and discussed. Three months of physical training (55 min 3 times/week) without dietary restriction did not result in any change in body weight and composition either in obese or diabetic female patients. However, the male patients remained their body weight unchanged and body fat decreased and lean body mass increased after training. The combination of exercise with a very low calorie diet in obese women neither prevents the erosion of lean body mass nor the diet-induced decrease in oxygen uptake. Local exercise could not evoke a local decrease in the thickness of adipose tissue. The addition of physical training to the low calorie diet leads to better social and psychological compliance and a more equal distribution of adipose tissue. A close relationship has been found between the muscle morphology and glucose metabolism in obese patients. Insulin concentration appeared to be positively correlated to the percentage of FTb fibers and inversely correlated to the capillary density. The decrease in the percentage of FTb muscle fibers and the increase in the number of capillaries were correlated to the decrease in plasma insulin levels. The capillary density appeared to be reduced with decreasing degrees of glucose tolerance. In patients with diabetes type I it was found diminished so much that the diffusion distance in muscle increased after training. The most interesting results related to glucose metabolism were found otherwise as follows: The sum of insulin (276.4 +/- 20.1 before and 255.1 +/- 19.0 after p less than 0.05) and glucose levels (but not fasting values) decreased (28.3 +/- 1.6 before and 27.8 +/- 1.4 after p less than 0.01) after training in obesity. In obese and diabetic patients with initially high insulin values physical training resulted in a decrease in insulin level, while in those patients with initially low values it resulted in an increase. As judged from the insulin C-peptide ratio, patients who decreased their insulin levels after training increased their liver uptake of insulin. The increased hepatic extraction of insulin without the decrease of insulin production was also noted in patients with diabetes type II. After training both obese patients and those with diabetes I and II increased their glucose metabolism (disposal rate) during insulin euglycemic clamp. Patients with diabetes type II showed initially lower basal and insulin-stimulated glucose incorporation into triglycerides.(ABSTRACT TRUNCATED AT 400 WORDS)
2014-01-01
Background CLIC4, a member of the CLIC family of proteins, was recently demonstrated to translocate to the nucleus in differentiating keratinocytes where it potentiates TGFβ-driven gene regulation. Since TGFβ signaling is known to play important roles in the fibrotic response to acute kidney injury, and since CLIC4 is abundantly expressed in kidney, we hypothesized that CLIC4 may play a role in the response to acute kidney injury. Methods Previously described Clic4 null mice were analyzed for the effect of absence of CLIC4 on growth, development and response to kidney injury. Kidney size, glomerular counts and density of peritubular capillaries of matched WT and Clic4 null mice were determined. Cohorts of WT and Clic4 null mice were subjected to the folic acid model of acute kidney injury. Extent of acute injury and long term functional recovery were assessed by plasma blood urea nitrogen (BUN); long term fibrosis/scarring was determined by histochemical assessment of kidney sections and by residual renal mass. Activation of the TGFβ signaling pathway was assessed by semi-quantitative western blots of phosphorylated SMADs 2 and 3. Results CLIC4 is abundantly expressed in the apical pole of renal proximal tubule cells, and in endothelial cells of glomerular and peritubular capillaries. CLIC4 null mice are small, have smaller kidneys with fewer glomeruli and less dense peritubular capillary networks, and have increased proteinuria. The Clic4 null mice show increased susceptibility to folic acid-induced acute kidney injury but no difference in recovery from acute injury, no nuclear redistribution of CLIC4 following injury, and no significant difference in activation of the TGFβ-signaling pathway as reflected in the level of phosphorylation of SMADs 2 and 3. Conclusions Absence of CLIC4 results in morphologic changes consistent with its known role in angiogenesis. These changes may be at least partially responsible for the increased susceptibility to acute kidney injury. However, the absence of CLIC4 has no significant impact on the extent of functional recovery or fibrosis following acute injury, indicating that CLIC4 does not play a major non-redundant role in the TGFβ signaling involved in response to acute kidney injury. PMID:24708746
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
Longitudinal gas-density profilometry for plasma-wakefield acceleration targets
NASA Astrophysics Data System (ADS)
Schaper, Lucas; Goldberg, Lars; Kleinwächter, Tobias; Schwinkendorf, Jan-Patrick; Osterhoff, Jens
2014-03-01
Precise tailoring of plasma-density profiles has been identified as one of the critical points in achieving stable and reproducible conditions in plasma wakefield accelerators. Here, the strict requirements of next generation plasma-wakefield concepts, such as hybrid-accelerators, with densities around 1017 cm-3 pose challenges to target fabrication as well as to their reliable diagnosis. To mitigate these issues we combine target simulation with fabrication and characterization. The resulting density profiles in capillaries with gas jet and multiple in- and outlets are simulated with the fluid code OpenFOAM. Satisfactory simulation results then are followed by fabrication of the desired target shapes with structures down to the 10 μm level. The detection of Raman scattered photons using lenses with large collection solid angle allows to measure the corresponding longitudinal density profiles at different number densities and allows a detection sensitivity down to the low 1017 cm-3 density range at high spatial resolution. This offers the possibility to gain insight into steep density gradients as for example in gas jets and at the plasma-to-vacuum transition.
Admittance detector for high impedance systems: design and applications.
Zhang, Min; Stamos, Brian N; Dasgupta, Purnendu K
2014-12-02
We describe an admittance detector for high impedance systems (small capillary bore and/or low solution specific conductance). Operation in the low frequency range (≤1 kHz, much lower than most relevant publications) provides optimum response to conductance changes in capillaries ≤20 μm in bore. The detector design was based on studies described in a preceding companion paper ( Zhang, M.; Stamos, B. N.; Amornthammarong, N.; Dasgupta, P. K. Anal. Chem. 2014, 8 , DOI 10.1021/ac503245a.). The highest S/N for detecting 100 μM KCl (5.5 μM peak concentration, ∼0.8 μS/cm) injected into water flowing through a capillary of 7.5 μm inner radius (r) was observed at 500-750 Hz. A low bias current operational amplifier in the transimpedance configuration permitted high gain (1 V/nA) to measure pA-nA level currents in the detection cell. Aside from an oscillator, an offset-capable RMS-DC converter formed the complete detection circuitry. Limits of detection (LODs) of KCl scaled inversely with the capillary cross section and were 2.1 and 0.32 μM injected KCl for r = 1 and 2.5 μm capillaries, respectively. When used as a detector on an r = 8 μm bore poly(methyl methacrylate) capillary in a split effluent stream from a suppressed ion chromatograph, the LOD was 27 nM bromide (Vex 22 V p-p), compared to 14 nM observed with a commercial bipolar pulse macroscale conductivity detector with an actively thermostated cell. We also show applications of the detector in electrophoresis in capillaries with r = 1 and 2.5 μm. Efficient heat dissipation permits high concentrations of the background electrolyte and sensitive detection because of efficient electrostacking.
Radioprotective effect of a metalloporphyrin compound in rat eye model.
Mao, X W; Crapo, J D; Mekonnen, T; Lindsey, N; Martinez, P; Gridley, D S; Slater, J M
2009-01-01
The purpose of this study was to evaluate the efficacy of the antioxidant Mn (III) tetrakis (N-ethylpyridinium-2-yl) porphyrin (MnTE-2-PyP) in protecting ocular tissue and retinal microvasculature from radiation damage. 75 rats were treated with Mn TE-2-PyP at 2.5 micro g/injection into one eye an hour before proton irradiation. The radiation was delivered in a single fraction to total doses of 8 Gray (Gy) or 28 Gy; Rats were sacrificed 3 days and 3, 6, 9, and 12 months thereafter for histology and quantification of photoreceptor cell populations and retinal capillary changes. By 6 months following radiation, there was significant loss of retinal outer and inner nuclear layers in eyes receiving radiation only (8 and 28 Gy) (p < 0.05) compared to their controls and to the eyes of rats treated with radiation plus metalloporphyrin. Retinal microvessel length density decreased significantly 6 months following 28 Gy (p < 0.05) compared to their controls and to MnTE-2-PyP treated rats. By 12 months following irradiation, irradiated eyes showed extensive damage to the photoreceptor layer, whereas the eyes of animals receiving radiation plus MnTE-2-PyP showed almost no morphological damage. MnTE-2-PyP treatment also suppressed radiation-induced apoptosis in our study. These results demonstrated that MnTE-2-PyP protected both photoreceptors and retinal capillaries from radiation damage, suggesting that this metalloporphyrin antioxidant is effective in regulating the damage induced by proton radiation.
Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete
2016-01-01
Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.
MEMBRANE POTENTIAL OF THE SQUID GIANT AXON DURING CURRENT FLOW
Cole, Kenneth S.; Curtis, Howard J.
1941-01-01
The squid giant axon was placed in a shallow narrow trough and current was sent in at two electrodes in opposite sides of the trough and out at a third electrode several centimeters away. The potential difference across the membrane was measured between an inside fine capillary electrode with its tip in the axoplasm between the pair of polarizing electrodes, and an outside capillary electrode with its tip flush with the surface of one polarizing electrode. The initial transient was roughly exponential at the anode make and damped oscillatory at the sub-threshold cathode make with the action potential arising from the first maximum when threshold was reached. The constant change of membrane potential, after the initial transient, was measured as a function of the total polarizing current and from these data the membrane potential is obtained as a function of the membrane current density. The absolute value of the resting membrane resistance approached at low polarizing currents is about 23 ohm cm.2. This low value is considered to be a result of the puncture of the axon. The membrane was found to be an excellent rectifier with a ratio of about one hundred between the high resistance at the anode and the low resistance at the cathode for the current range investigated. On the assumption that the membrane conductance is a measure of its ion permeability, these experiments show an increase of ion permeability under a cathode and a decrease under an anode. PMID:19873234
Acute ethanol treatment increases level of progesterone in ovariectomized rats.
Budec, Mirela; Koko, Vesna; Milovanović, Tatjana; Balint-Perić, Ljiljana; Petković, Aleksandra
2002-04-01
To determine whether an increased level of progesterone in adult female rats after acute ethanol treatment, described previously in our study, is the result of activation of adrenal glands, we analyzed adrenal cortex morphologically and measured serum levels of corticosterone and progesterone in ovariectomized rats. In addition, a possible involvement of the opioid system in an observed phenomenon was tested. Adult female Wistar rats were ovariectomized, and 3 weeks after surgery they were treated intraperitoneally with (a) ethanol (4 g/kg), (b) naltrexone (5 mg/kg), followed by ethanol (4 g/kg) 45 min later, and (c) naltrexone (5 mg/kg), followed by saline 45 min later. Untreated and saline-injected rats were used as controls. The animals were killed 0.5 h after ethanol administration. Morphometric analysis was carried out on paraffin sections of adrenal glands, stained with hematoxylin-eosin, and the following parameters were determined: absolute volume of the zona glomerulosa, the zona fasciculata, and the zona reticularis; numerical density, volume, and the mean diameter of adrenocortical cells and of their nuclei; and mean diameter and length of capillaries. The results showed that acute ethanol treatment significantly increased absolute volume of the zona fasciculata and length of its capillaries but did not alter other stereological parameters. Also, serum levels of corticosterone and progesterone were enhanced. Pretreatment with naltrexone had no effect on ethanol-induced changes. These findings are consistent with our previous hypothesis that an ethanol-induced increase of the progesterone level in adult female rats originates from the adrenal cortex.
Josephides, Dimitris N; Sajjadi, Shahriar
2015-01-27
Glass capillary based microfluidic devices are able to create extremely uniform droplets, when formed under the dripping regime, at low setup costs due to their ease of manufacture. However, as they are rarely parallelized, simple methods to increase droplet production from a single device are sought. Surfactants used to stabilize drops in such systems often limit the maximum flow rate that highly uniform drops can be produced due to the lowering interfacial tension causing jetting. In this paper we show that by simple design changes we can limit the interactions of surfactants and maximize uniform droplet production. Three flow-focused configurations are explored: a standard glass capillary device (consisting of a single round capillary inserted into a square capillary), a nozzle fed device, and a surfactant shielding device (both consisting of two round capillaries inserted into either end of a square capillary). In principle, the maximum productivity of uniform droplets is achieved if surfactants are not present. It was found that surfactants in the standard device greatly inhibit droplet production by means of interfacial tension lowering and tip-streaming phenomena. In the nozzle fed configuration, surfactant interactions were greatly limited, yielding flow rates comparable to, but lower than, a surfactant-free system. In the surfactant shielding configuration, flow rates were equal to that of a surfactant-free system and could make uniform droplets at rates an order of magnitude above the standard surfactant system.
Retinitis Pigmentosa Associated with Vasoproliferative Tumors and Coats-like Fundus
Ghassemi, Fariba; Akbari-Kamrani, Marjan
2013-01-01
Purpose To report two cases of retinitis pigmentosa (RP) associated with vasoproliferative tumors (VPTs) and Coats-like fundus. Case Reports Two patients with RP presented with recent loss of vision due to combined VPTs and Coats-like retinal vascular alterations. One patient had two VPTs with adjacent capillary nonperfusion, telangiectasia and aneurysmal vascular changes in one eye. The other patient had prominent VPT with Coats-like retinal vascular alterations in both eyes. These lesions received treatment resulting in improved vision in both patients. Conclusion Although rare, VPTs and Coats-like retinal vascular alterations including retinal exudation associated with telangiectatic vessels, aneurysmal changes and capillary nonperfusion may occur in patients with RP. PMID:24349671
Capillary-Driven Heat Transfer Experiment: Keeping It Cool in Space
NASA Technical Reports Server (NTRS)
Lekan, Jack F.; Allen, Jeffrey S.
1998-01-01
Capillary-pumped loops (CPL's) are devices that are used to transport heat from one location to another--specifically to transfer heat away from something. In low-gravity applications, such as satellites (and possibly the International Space Station), CPL's are used to transfer heat from electrical devices to space radiators. This is accomplished by evaporating one liquid surface on the hot side of the CPL and condensing the vapor produced onto another liquid surface on the cold side. Capillary action, the phenomenon that causes paper towels to absorb spilled liquids, is used to "pump" the liquid back to the evaporating liquid surface (hot side) to complete the "loop." CPL's require no power to operate and can transfer heat over distances as large as 30 ft or more. Their reliance upon evaporation and condensation to transfer heat makes them much more economical in terms of weight than conventional heat transfer systems. Unfortunately, they have proven to be unreliable in space operations, and the explanation for this unreliability has been elusive. The Capillary-Driven Heat Transfer (CHT) experiment is investigating the fundamental fluid physics phenomena thought to be responsible for the failure of CPL's in low-gravity operations. If the failure mechanism can be identified, then appropriate design modifications can be developed to make capillary phase-change heat-transport devices a more viable option in space applications. CHT was conducted onboard the Space Shuttle Columbia during the first Microgravity Science Laboratory (MSL-1) mission, STS-94, which flew from July 1 to 17, 1997. The CHT glovebox investigation, which was conceived by Dr. Kevin Hallinan and Jeffrey Allen of the University of Dayton, focused on studying the dynamics associated with the heating and cooling at the evaporating meniscus within a capillary phase-change device in a low-gravity environment. The CHT experimental hardware was designed by a small team of engineers from Aerospace Design & Fabrication (ADF), the NASA Lewis Research Center, and the University of Dayton. The hardware consisted of two experiment modules that each contained an instrumented test loop (idealized capillary-pumped loop), a base unit for power conversion and backlighting, a display unit with 15 LED's (light-emitting diodes) to display temperatures, pressure, heater power, and time, a control unit to select heaters and heater settings, a cooling fan, and associated cables.
Cetin, Ebru Nevin; Demirtaş, Önder; Özbakış, Nihal Cesur; Pekel, Gökhan
2018-06-20
Macular contraction after anti-vascular endothelial growth factor (anti-VEGF) injections for diabetic macular edema (DME) was evaluated by documenting the displacement of macular capillary vessels and epiretinal membrane (ERM) formation. A total of 130 eyes were included in this retrospective study. The study group consisted of 63 eyes which had intravitreal anti-VEGF injections for DME, and the control group included 67 eyes without central DME. The study and the control groups were well balanced in terms of diabetes duration and HbA1c. The distances between the bifurcation of the macular capillary retinal vessels were measured, and ERM status was evaluated based on spectral-OCT findings on the initial and final visit. In the study group, the mean number of injections was 4.7 ± 2.6 (3-14). The mean follow-up time was 16.7 ± 7.8 months in the study group whereas it was 20.7 ± 10.9 months in the control group (p = 0.132). The change in distance measurements between the reference points on macular capillary vessels was significant in all lines except line c (p < 0.05 for lines a, b, d, e, and f) in the study group whereas it was significant in only line e in the control group (p = 0.007, paired samples test). However, when the change in macular thickness was accounted as a confounding factor, the change in distances between the references points from the initial visit to the final visit lost its significance (repeated measures ANCOVA, p > 0.05). During follow-up, the number of cases with ERM changed from 10 to 12 in the study group whereas it remained three in the control group. There was a displacement of macular capillary vessels which was associated with the change in macular thickness in eyes having anti-VEGF injections for DME. The number of ERM cases did not change significantly during the follow-up.
Siplivyĭ, V A; Grinchenko, S V; Gorgol', N I; Dotsenko, V V; Evtushenko, A V
2014-01-01
Experimental comparative morphological investigation of hemomicrocirculation bed (HMCB) of the small and large bowel wall was performed in dynamics of an acute serous peritonitis. Spreaded aseptic peritonitis was simulated using injection of 5 ml of gamma-caraginen (Sigma, USA) in 1 ml of isotonic solution of sodium chloride. On the early stage of peritonitis (in 12 h from beginning of the experiment) in mucosa of small bowel nonsignificant venuls dilatation and the capillary lumen reduction were observed. In 1 day (reactive stage of peritonitis) in mucosa the quantity of capillars have had reduced significantly, comparing with such observed previously. On the 2-nd day (toxic stage of peritonitis) some capillary dilatation in intestinal villi and crypts coexistant with the blood rheology disorders in a form of stasis, change in permeability of the vessels walls, predominantly of the venous, was noted. On the 3-d day (late stage) the arteriol's spasm have had reduced, capillary paralytic dilatation was revealed. The staged course of experimental peritonitis with the HMCB changes, characteristic for every stage, was confirmed, basing on analysis of the investigation result.
Diffuse Reflectance Spectroscopy: Getting the Capillary Refill Test Under One's Thumb.
Henricson, Joakim; Toll John, Rani; Anderson, Chris D; Björk Wilhelms, Daniel
2017-12-02
The capillary refill test was introduced in 1947 to help estimate circulatory status in critically ill patients. Guidelines commonly state that refill should occur within 2 s after releasing 5 s of firm pressure (e.g., by the physician's finger) in the normal healthy supine patient. A slower refill time indicates poor skin perfusion, which can be caused by conditions including sepsis, blood loss, hypoperfusion, and hypothermia. Since its introduction, the clinical usefulness of the test has been debated. Advocates point out its feasibility and simplicity and claim that it can indicate changes in vascular status earlier than changes in vital signs such as heart rate. Critics, on the other hand, stress that the lack of standardization in how the test is performed and the highly subjective nature of the naked eye assessment, as well as the test's susceptibility to ambient factors, markedly lowers the clinical value. The aim of the present work is to describe in detail the course of the refill event and to suggest potentially more objective and exact endpoint values for the capillary refill test using diffuse polarization spectroscopy.
Velocity gap mode of capillary electrophoresis developed for high-resolution chiral separations.
Li, Xue; Li, Youxin; Zhao, Lumeng; Shen, Jianguo; Zhang, Yong; Bao, James J
2014-10-01
A new CE method based on velocity gap (VG) theory has been developed for high-resolution chiral separations. In VG, two consecutive electric fields are adopted to drive analytes passing through two capillaries, which are linked together through a joint. The joint is immersed inside another buffer vial which has conductivity communication with the buffer inside the capillary. By adjusting the field strengths onto the two capillaries, it is possible to observe different velocities of an analyte when it passes through those two capillaries and there would be a net velocity change (NVC) for the same analyte. Different analytes may have different NVC which may be specifically meaningful for enantioseparations because enantiomers are usually hard to resolve. By taking advantage of this NVC, it is possible to enhance the resolution of a chiral separation if a proper voltage program is applied. The feasibility of using NVC to enhance chiral separation was demonstrated in the separations of three pairs of enantiomers: terbutaline, chlorpheniramine, and promethazine. All separations started with partial separation in a conventional CE and were significantly improved under the same experimental conditions. The results indicated that VG has the potential to be used to improve the resolving power of CE in chiral separations. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lücker, Adrien; Secomb, Timothy W.; Weber, Bruno; Jenny, Patrick
2016-01-01
Objective Oxygen transport to parenchymal cells occurs mainly at the microvascular level, and depends on convective red blood cell (RBC) flux, which is proportional in an individual capillary to the product of capillary hematocrit and red blood cell velocity. This study investigates the relative influence of these two factors on tissue oxygen partial pressure (Po2). Methods A simple analytical model is used to quantify the respective influences of hematocrit, RBC velocity and flow on tissue oxygenation around capillaries. Predicted tissue Po2 levels are compared with a detailed computational model. Results Hematocrit is shown to have a larger influence on tissue Po2 than RBC velocity. The effect of RBC velocity increases with distance from the arterioles. Good agreement between analytical and numerical results is obtained and the discrepancies are explained. Significant dependence of mass transfer coefficients on RBC velocity at low hematocrit is demonstrated. Conclusions For a given RBC flux in a capillary, the Po2 in the surrounding tissue increases with increasing hematocrit, as a consequence of decreasing intravascular resistance to diffusive oxygen transport from RBCs to tissue. These results contribute to understanding the effects of blood flow changes on oxygen transport, such as occur in functional hyperemia in the brain. PMID:27893186
Psychological Stress Alters Ultrastructure and Energy Metabolism of Masticatory Muscle in Rats
Chen, Yong-Jin; Huang, Fei; Zhang, Min; Shang, Hai-Yan
2010-01-01
To investigate the effects of psychological stress on the masticatory muscles of rats, a communication box was applied to induce the psychological stress (PS) in rats. The successful establishment of psychological stimulation was confirmed by elevated serum levels of adrenocorticotropic hormone (ACTH) and changed behaviors in the elevated plusmaze apparatus. The energy metabolism of the bilateral masseter muscles was tested via chemocolorimetric analysis, whereas muscle ultrastructure was assessed by electron microscopy. In comparison to the control group, the PS group showed evidence of swollen mitochondria with cristae loss and reduced matrix density in the masticatory muscles after three weeks of stimulation; after five weeks of stimulation, severe vacuolar changes to the mitochondria were observed. Increased vascular permeability of the masticatory muscle capillaries was found in the five-week PS rats. In addition, there was decreased activity of Na+-K+ATPase and Ca2+-ATPase and a simultaneous increase in the activity of lactate dehydrogenase and lactic acid in the masticatory muscles of PS rats. Together, these results indicate that psychological stress induces alterations in the ultrastructure and energy metabolism of masticatory muscles in rats. PMID:21052548
Effects of volume change on the unsaturated hydraulic conductivity of Sphagnum moss
NASA Astrophysics Data System (ADS)
Golubev, V.; Whittington, P.
2018-04-01
Due to the non-vascular nature of Sphagnum mosses, the capitula (growing surface) of the moss must rely solely on capillary action to receive water from beneath. Moss subsides and swells in accordance with water table levels, an effect called "mire-breathing", which has been thought to be a self-preservation mechanism, although no systematic studies have been done to demonstrate exactly how volume change affects hydrophysical properties of moss. In this study, the unsaturated hydraulic conductivity (Kunsat) and water content of two different species of Sphagnum moss were measured at different compression rates, up to the maximum of 77%. The findings show that the Kunsat increases by up to an order of magnitude (10×) with compression up to a certain bulk density of the moss, after which higher levels of compression result in lowered unsaturated hydraulic conductivity. This was coupled with an increase in soil water retention with increased compression. The increase of the Kunsat with compression suggests that the mire-breathing effect should be considered a self-preservation mechanism to provide sufficient amount of water to growing moss in times of low water availability.
Li, Chenxi; Wang, Ruikang
2017-01-01
Abstract. We propose an approach to measure heterogeneous velocities of red blood cells (RBCs) in capillary vessels using full-field time-varying dynamic speckle signals. The approach utilizes a low coherent laser speckle imaging system to record the instantaneous speckle pattern, followed by an eigen-decomposition-based filtering algorithm to extract dynamic speckle signal due to the moving RBCs. The velocity of heterogeneous RBC flows is determined by cross-correlating the temporal dynamic speckle signals obtained at adjacent locations. We verify the approach by imaging mouse pinna in vivo, demonstrating its capability for full-field RBC flow mapping and quantifying flow pattern with high resolution. It is expected to investigate the dynamic action of RBCs flow in capillaries under physiological changes. PMID:28384709
Effects of capillary heterogeneity on vapor-liquid counterflow in porous media
NASA Astrophysics Data System (ADS)
Stubos, A. K.; Satik, C.; Yortsos, Y. C.
1992-06-01
Based on a continuum description, the effect of capillary heterogeneity, induced by variation in permeability, on the steady state, countercurrent, vapor-liquid flow in porous media is analyzed. It is shown that the heterogeneity acts as a body force that may enhance or diminish gravity effects on heat pipes. Selection rules that determine the steady states reached in homogeneous, gravity-driven heat pipes are also formulated. It is shown that the 'infinite' two-phase zone may terminate by a substantial change in the permeability somewhere in the medium. The two possible sequences, liquid-liquid dominated-dry, or liquid-vapor dominated-dry find applications in geothermal systems. Finally, it is shown that although weak heterogeneity affects only gravity controlled flows, stronger variations in permeability can give rise to significant capillary effects.
Arrhenius plot for a reaction catalyzed by a single molecule of β-galactosidase.
Craig, Douglas B; Chase, Linden N
2012-02-21
The activity of a single enzyme molecule of Escherichia coli β-galactosidase was measured using a capillary electrophoresis continuous flow assay. As the enzyme molecule traversed the capillary the incubation temperature was increased from 27 to 37 °C, providing a continuous record of the change in rate with temperature. This data was used to develop a single enzyme molecule Arrhenius plot, from which the activation energy of the reaction was determined to be 31 kJ mol(-1).
Capillary surfaces in a wedge: Differing contact angles
NASA Technical Reports Server (NTRS)
Concus, Paul; Finn, Robert
1994-01-01
The possible zero-gravity equilibrium configurations of capillary surfaces u(x, y) in cylindrical containers whose sections are (wedge) domains with corners are investigated mathematically, for the case in which the contact angles on the two sides of the wedge may differ. In such a situation the behavior can depart in significant qualitative ways from that for which the contact angles on the two sides are the same. Conditions are described under which such qualitative changes must occur. Numerically computed surfaces are depicted to indicate the behavior.
Declèves, Anne-Emilie; Rychak, Joshua J; Smith, Dan J; Sharma, Kumar
2013-11-01
Obesity-related kidney disease occurs as a result of complex interactions between metabolic and hemodynamic effects. Changes in microvascular perfusion may play a major role in kidney disease; however, these changes are difficult to assess in vivo. Here, we used perfusion ultrasound imaging to evaluate cortical blood flow in a mouse model of high-fat diet-induced kidney disease. C57BL/6J mice were randomized to a standard diet (STD) or a high-fat diet (HFD) for 30 wk and then treated either with losartan or a placebo for an additional 6 wk. Noninvasive ultrasound perfusion imaging of the kidney was performed during infusion of a microbubble contrast agent. Blood flow within the microvasculature of the renal cortex and medulla was derived from imaging data. An increase in the time required to achieve full cortical perfusion was observed for HFD mice relative to STD. This was reversed following treatment with losartan. These data were concurrent with an increased glomerular filtration rate in HFD mice compared with STD- or HFD-losartan-treated mice. Losartan treatment also abrogated fibro-inflammatory disease, assessed by markers at the protein and messenger level. Finally, a reduction in capillary density was found in HFD mice, and this was reversed upon losartan treatment. This suggests that alterations in vascular density may be responsible for the elevated perfusion time observed by imaging. These data demonstrate that ultrasound contrast imaging is a robust and sensitive method for evaluating changes in renal microvascular perfusion and that cortical perfusion time may be a useful parameter for evaluating obesity-related renal disease.
NASA Astrophysics Data System (ADS)
Yanes, Enrique G.; Miller-Ihli, Nancy J.
2004-06-01
A low flow, parallel path Mira Mist CE nebulizer designed for capillary electrophoresis (CE) was evaluated as a function of make-up solution flow rate, composition, and concentration, as well as the nebulizer gas flow rate. This research was conducted in support of a project related to the separation and quantification of cobalamin (vitamin B-12) species using microseparation techniques combined with inductively coupled plasma mass spectrometry (ICP-MS) detection. As such, Co signals were monitored during the nebulizer characterization process. Transient effects in the ICP were studied to evaluate the suitability of using gradients for microseparations and the benefit of using methanol for the make-up solution was demonstrated. Co signal response changed significantly as a function of changing methanol concentrations of the make-up solution and maximum signal enhancement was seen at 20% methanol with a 15 μl/min flow rate. Evaluation of the effect of changing the nebulizer gas flow rates showed that argon flows from 0.8 to 1.2 l/min were equally effective. The Mira Mist CE parallel path nebulizer was then evaluated for interfacing capillary microseparation techniques including capillary electrophoresis (CE) and micro high performance liquid chromatography (μHPLC) to inductively coupled plasma mass spectrometry (ICP-MS). A mixture of four cobalamin species standards (cyanocobalamin, hydroxocobalamin, methylcobalamin, and 5' deoxyadenosylcobalamin) and the corrinoid analogue cobinamide dicyanide were successfully separated using both CE-ICP-MS and μHPLC-ICP-MS using the parallel path nebulizer with a make-up solution containing 20% methanol with a flow rate of 15 μl/min.
Koutny, Tomas
2013-11-01
This study suggests an approach for the comparison and evaluation of particular compartments with modest experimental setup costs. A glucose level prediction model was used to evaluate the compartment's glucose transport rate across the blood capillary membrane and the glucose utilization rate by the cells. The glucose levels of the blood, subcutaneous tissue, skeletal muscle tissue, and visceral fat were obtained in experiments conducted on hereditary hypertriglyceridemic rats. After the blood glucose level had undergone a rapid change, the experimenter attempted to reach a steady blood glucose level by manually correcting the glucose infusion rate and maintaining a constant insulin infusion rate. The interstitial fluid glucose levels of subcutaneous tissue, skeletal muscle tissue, and visceral fat were evaluated to determine the reaction delay compared with the change in the blood glucose level, the interstitial fluid glucose level predictability, the blood capillary permeability, the effect of the concentration gradient, and the glucose utilization rate. Based on these data, the glucose transport rate across the capillary membrane and the utilization rate in a particular tissue were determined. The rates obtained were successfully verified against positron emission tomography experiments. The subcutaneous tissue exhibits the lowest and the most predictable glucose utilization rate, whereas the skeletal muscle tissue has the greatest glucose utilization rate. In contrast, the visceral fat is the least predictable and has the shortest reaction delay compared with the change in the blood glucose level. The reaction delays obtained for the subcutaneous tissue and skeletal muscle tissue were found to be approximately equal using a metric based on the time required to reach half of the increase in the interstitial fluid glucose level. © 2013 Published by Elsevier Ltd.
Niwa, O; Horiuchi, T; Torimitsu, K
1997-01-01
A small volume L-glutamate online sensor was developed in order to monitor changes in the local concentration of L-glutamate released from cultured nerve cells. Syringe pump in the suction mode is used to sample extracellular fluid continuously from a glass micro-capillary and the concentration of L-glutamate can be determined by using a glassy carbon (GC) electrode modified with an Os-polyvinylpyridine mediator bottom film containing horseradish peroxidase and a bovine serum albumin top layer containing L-glutamate oxidase. The overall efficiency of L-glutamate detection with a sensor is 71% under optimum conditions due to an efficient enzymatic reaction at the modified electrode in the thin layer radial flow cell. As a result, we achieved a detection limit of 7-15 nM and a linear range of 50 nM to 10 microM. In an in vitro experiment, the extracellular fluid near a particular nerve cell can be sampled with this micro-pipet and continuously introduced into the modified GC electrode in the radial flow cell via suction provided by a syringe pump. The nerve cells are stimulated by the KCl in a glass capillary and the L-glutamate concentration change can be monitored by changing the distance between the sampling pipet and the nerve cells.
Houben, David; Sonnet, Philippe
2015-11-01
Rhizosphere interactions are deemed to play a key role in the success of phytoremediation technologies. Here, the effects of biochar and root-induced changes in the rhizosphere of Agrostis capillaris L. and Lupinus albus L. on metal (Cd, Pb and Zn) dynamics were investigated using a biotest on a 2mm soil layer and a sequential extraction procedure (Tessier's scheme). In the bulk soil, the application of 5% biochar significantly reduced the exchangeable pool of metals primarily due to a liming effect which subsequently promoted the metal shift into the carbonate-bound pool. However, metals were re-mobilized in the rhizosphere of both A. capillaris and L. albus due to root-induced acidification which counteracted the liming effect of biochar. As a result, the concentrations of metals in roots and shoots of both plants were not significantly reduced by the application of biochar. Although the study should be considered a worst-case scenario because experimental conditions induced the intensification of rhizosphere processes, the results highlight that changes in rhizosphere pH can impact the effectiveness of biochar to immobilize metals in soil. Biochar has thus a potential as amendment for reducing metal uptake by plants, provided the acidification of the rhizosphere is minimized. Copyright © 2014 Elsevier Ltd. All rights reserved.
The margination propensity of spherical particles for vascular targeting in the microcirculation
Gentile, Francesco; Curcio, Antonio; Indolfi, Ciro; Ferrari, Mauro; Decuzzi, Paolo
2008-01-01
The propensity of circulating particles to drift laterally towards the vessel walls (margination) in the microcirculation has been experimentally studied using a parallel plate flow chamber. Fluorescent polystyrene particles, with a relative density to water of just 50 g/cm3comparable with that of liposomal or polymeric nanoparticles used in drug delivery and bio-imaging, have been used with a diameter spanning over three order of magnitudes from 50 nm up to 10 μm. The number n∼s of particles marginating per unit surface have been measured through confocal fluorescent microscopy for a horizontal chamber, and the corresponding total volume V∼s of particles has been calculated. Scaling laws have been derived as a function of the particle diameter d. In horizontal capillaries, margination is mainly due to the gravitational force for particles with d > 200 nm and V∼s increases with d4; whereas for smaller particles V∼s increases with d3. In vertical capillaries, since the particles are heavier than the fluid they would tend to marginate towards the walls in downward flows and towards the center in upward flows, with V∼s increasing with d9/2. However, the margination in vertical capillaries is predicted to be much smaller than in horizontal capillaries. These results suggest that, for particles circulating in an external field of volume forces (gravitation or magnetic), the strategy of using larger particles designed to marginate and adhere firmly to the vascular walls under flow could be more effective than that of using particles sufficiently small (d < 200 nm) to hopefully cross a discontinuous endothelium. PMID:18702833
Modeling of nanoscale liquid mixture transport by density functional hydrodynamics
NASA Astrophysics Data System (ADS)
Dinariev, Oleg Yu.; Evseev, Nikolay V.
2017-06-01
Modeling of multiphase compositional hydrodynamics at nanoscale is performed by means of density functional hydrodynamics (DFH). DFH is the method based on density functional theory and continuum mechanics. This method has been developed by the authors over 20 years and used for modeling in various multiphase hydrodynamic applications. In this paper, DFH was further extended to encompass phenomena inherent in liquids at nanoscale. The new DFH extension is based on the introduction of external potentials for chemical components. These potentials are localized in the vicinity of solid surfaces and take account of the van der Waals forces. A set of numerical examples, including disjoining pressure, film precursors, anomalous rheology, liquid in contact with heterogeneous surface, capillary condensation, and forward and reverse osmosis, is presented to demonstrate modeling capabilities.
Phase diagram and universality of the Lennard-Jones gas-liquid system.
Watanabe, Hiroshi; Ito, Nobuyasu; Hu, Chin-Kun
2012-05-28
The gas-liquid phase transition of the three-dimensional Lennard-Jones particles system is studied by molecular dynamics simulations. The gas and liquid densities in the coexisting state are determined with high accuracy. The critical point is determined by the block density analysis of the Binder parameter with the aid of the law of rectilinear diameter. From the critical behavior of the gas-liquid coexisting density, the critical exponent of the order parameter is estimated to be β = 0.3285(7). Surface tension is estimated from interface broadening behavior due to capillary waves. From the critical behavior of the surface tension, the critical exponent of the correlation length is estimated to be ν = 0.63(4). The obtained values of β and ν are consistent with those of the Ising universality class.
Functional adaptations of the coronary microcirculation to anaemia in fetal sheep.
Jonker, Sonnet S; Davis, Lowell; Soman, Divya; Belcik, J Todd; Davidson, Brian P; Atkinson, Tamara M; Wilburn, Adrienne; Louey, Samantha; Giraud, George D; Lindner, Jonathan R
2016-11-01
In fetuses, chronic anaemia stimulates cardiac growth; simultaneously, blood flow to the heart muscle itself is increased, and reserve blood flow capacity of the coronary vascular bed is preserved. Here we examined functional adaptations of the capillaries and small blood vessels responsible for delivering oxygen to the anaemic fetal heart muscle using contrast-enhanced echocardiography. We demonstrate that coronary microvascular flux rate doubled in anaemic fetuses compared to control fetuses, both at rest and during maximal flow, suggesting reduced microvascular resistance consistent with capillary widening. Cardiac fractional microvascular blood volume was not greater in anaemic fetuses, suggesting that growth of new microvascular vessels does not contribute to the increased flow per volume of myocardium. These unusual changes in microvascular function during anaemia may indicate novel adaptive strategies in the fetal heart. Fetal anaemia causes cardiac adaptations that have immediate and life-long repercussions on heart function and health. It is known that resting and maximal coronary conductance both increase during chronic fetal anaemia, but the coronary microvascular changes responsible for the adaptive response are unknown. Until recently, technical limitations have prevented quantifying functional capillary-level adaptations in the in vivo fetal heart. Our objective was to characterise functional microvascular adaptations in chronically anaemic fetal sheep. Chronically instrumented fetuses were randomized to a control group (n = 11) or were made anaemic by isovolumetric haemorrhage (n = 12) for 1 week prior to myocardial contrast echocardiography at 85% of gestation. Anaemia augmented cardiac mass by 23% without changing body weight. In anaemic fetuses, microvascular blood flow per volume of myocardium was twice that of control fetuses at rest, during vasodilatory hyperaemia, and during hyperaemia plus increased aortic pressure. The elevated blood flow was attributable almost entirely to an increase in microvascular blood flux rate whereas microvascular blood volumes were not different between groups at baseline, during hyperaemia, or with hyperaemia plus increased aortic pressure. Increased coronary microvascular flux rate in response to chronic fetal anaemia is consistent with expected reductions in capillary resistance from capillary diameter widening detected in earlier histological studies. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Cassiman, Catherine; Casteels, Ingele; Stalmans, Peter; Legius, Eric; Jacob, Julie
2017-01-01
Purpose To report 3 cases of neurofibromatosis type 1 (NF1) with choroidal nodules associated with retinal microvascular changes imaged with optical coherence tomography angiography (OCTA). Methods Small case series in 3 NF1 patients. OCTA examinations were performed by a trained examiner (J.J.) after pupillary dilation. A standard scan, centered over the macula measuring 6 × 6 mm and 3 × 3 mm was obtained according to the findings on standard color photography. Additional scans were obtained in the zones with microvascular abnormalities. The segmentation provided by the machine software was used. Results Corkscrew retinal vessels were observed in association with “placoid”-type choroidal nodules as shown by near-infrared reflectance imaging. In all cases, multiple lesions were found. They were second- or third-order tortuous vessels originating from the superior or inferior temporal veins. OCTA demonstrated that the tortuous venules were located in the superficial capillary plexus, and no abnormalities were found in the deep capillary plexus. Discussion Corkscrew retinal vessels are part of a spectrum of retinal microvascular alterations seen in association, sometimes overlying choroidal nodules in patients with NF1 and are visualized in the superficial capillary plexus on OCTA. We demonstrated with OCTA that they are not associated with flow loss or ischemia in the superficial and deep capillary plexus. The link between the underlying nodule remains unclear. Since neovascularization was described in choroidal ganglioneuroma, we hypothesize that corresponding secretory substances from Schwann cells, ganglion cells, or melanocytes in choroidal nodules might alter the retinal vasculature. Conclusion We report on 3 cases of NF1 with choroidal nodules in association with retinal microvascular changes imaged with OCTA. OCTA demonstrated preservation of the blood flow in the deep and superficial capillary plexus of the retina. We hypothesize that angiogenic factors secreted by the underlying choroidal nodules could have an effect on the retinal vasculature. Further immunohistological studies in NF1 patients with choroidal nodules to detect angiogenic factors (such as VEGF) are necessary to confirm this hypothesis. PMID:28512424
Capillary Flow of Liquid Metals in Brazing
NASA Astrophysics Data System (ADS)
Dehsara, Mohammad
Capillary flow is driven or controlled by capillary forces, exerted at the triple line where the fluid phases meet the solid boundary. Phase field (PF) models naturally accommodate diffusive triple line motion with variable contact angle, thus allowing for the no-slip boundary condition without the stress singularities. Moreover, they are uniquely suited for modeling of topological discontinuities which often arise during capillary flows. In this study, we consider diffusive triple line motion within two PF models: the compositionally compressible (CC) and the incompressible (IC) models. We derive the IC model as a systematic approximation to the CC model, based on a suitable choice of continuum velocity field. The CC model, applied to the fluids of dissimilar mass densities, exhibits a computational instability at the triple line. The IC model perfectly represents the analytic equilibria. We develop the parameter identification procedure and show that the triple line kinetics can be well represented by the IC model's diffusive boundary condition. The IC model is first tested by benchmarking the phase-field and experimental kinetics of water, and silicone oil spreading over the glass plates in which two systems do not interact with the substrate. Then, two high-temperature physical settings involving spreading of the molten Al-Si alloy: one over a rough wetting substrate, the other over a non-wetting substrate are modeled in a T-joint structure which is a typical geometric configuration for many brazing and soldering applications. Surface roughness directly influences the spreading of the molten metal by causing break-ups of the liquid film and trapping the liquid away from the joint. In the early stages of capillary flow over non-wetting surface, the melting and flow are concurrent, so that the kinetics of wetting is strongly affected by the variations in effective viscosity of the partially molten metal. We define adequate time-dependent functions for the variations of Al-Si alloy viscosity and triple line mobility to describe the wetting kinetics.
Prospective study on microangiopathy in type 2 diabetic foot ulcer.
Fiordaliso, Fabio; Clerici, Giacomo; Maggioni, Serena; Caminiti, Maurizio; Bisighini, Cinzia; Novelli, Deborah; Minnella, Daniela; Corbelli, Alessandro; Morisi, Riccardo; De Iaco, Alberto; Faglia, Ezio
2016-07-01
We investigated the significance of microangiopathy in the development of foot ulcer, which is still disputed. We assessed microangiopathy by histological analysis of the capillary ultrastructure using transmission electron microscopy and capillary density and arteriolar morphology in paraffin-embedded sections from the skin of type 2 diabetic patients: 30 neuroischaemic patients (Isc) revascularised with peripheral angioplasty and 30 neuropathic patients (Neu) with foot ulcer, compared with ten non-diabetic volunteers. In the diabetic patients, capillaries in the dermal papillary layer were fewer (-22.2%, 159 ± 43 vs 205 ± 52 mm(2) in non-diabetic volunteers, p < 0.01). They also showed detrimental remodelling, with a 2.2-fold increase in capillary basement membrane thickness (3.44 ± 1.19 vs 1.53 ± 0.34 μm in non-diabetic volunteers, p < 0.001) and a 57.7% decrease in lumen area (14.6 ± 11.1 vs 34.7 ± 27.5 μm(2), p < 0.001). No differences were observed between the diabetic Isc or Neu patients. Isc were more prone to develop arteriolar occlusion than Neu (16.8 ± 6.9% vs 6.7 ± 3.7%, respectively, p < 0.001). No patient had been amputated at 30 days and healing time was significantly longer in Isc (180 ± 120 vs 64 ± 50 days in Neu, p < 0.001). Capillary microangiopathy is present in equal measure in neuroischaemic and neuropathic diabetic foot skin. The predominance of arteriolar occlusions with neuroischaemia indicated the existence of an additional 'small vessel disease' that did not affect an effective revascularisation and did not worsen the prognosis of major amputations but slowed the healing process of the neuroischaemic foot ulcer. ClinicalTrials.gov NCT02610036.
Webster, Koa N; Dawson, Terence J
2012-09-15
We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.
Fuel From Algae: Scaling and Commercialization of Algae Harvesting Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-15
Broad Funding Opportunity Announcement Project: Led by CEO Ross Youngs, AVS has patented a cost-effective dewatering technology that separates micro-solids (algae) from water. Separating micro-solids from water traditionally requires a centrifuge, which uses significant energy to spin the water mass and force materials of different densities to separate from one another. In a comparative analysis, dewatering 1 ton of algae in a centrifuge costs around $3,400. AVS’s Solid-Liquid Separation (SLS) system is less energy-intensive and less expensive, costing $1.92 to process 1 ton of algae. The SLS technology uses capillary dewatering with filter media to gently facilitate water separation, leavingmore » behind dewatered algae which can then be used as a source for biofuels and bio-products. The biomimicry of the SLS technology emulates the way plants absorb and spread water to their capillaries.« less
The VUV dimer spectra excited in condensed krypton
NASA Astrophysics Data System (ADS)
Gerasimov, Gennady N.; Krylov, Boris E.; Hallin, Reinhold
2004-05-01
The vacuum ultraviolet (VUV) emission spectra of krypton homonuclear molecules (dimers) were observed in the wavelength range 120-200 nm. The krypton dimers were excited in a DC capillary discharge and the wall of tube could be cooled with liquid nitrogen. The homogeneous DC discharge was a straight channel in the middle of capillary tube. The gas krypton pressure in the discharge channel could be stabilized in the pressure range from 3 hPa to 1000 hPa. The DC discharge current density and the electron concentration were ~ 10 A/cm2 and ~ 2-4 1014 cm-3, respectively. The VUV krypton spectra excited in vicinity of solid krypton were compared with the spectra recorded without condensed krypton. The VUV spectral lines intensities were observed as nonlinear function of the discharge length. This nonlinear increase of intensity with the length of the tube has still to be explained.
NASA Astrophysics Data System (ADS)
Subhash, Hrebesh M.; O'Gorman, Sean; Neuhaus, Kai; Leahy, Martin
2014-03-01
In this paper we demonstrate a novel application of correlation mapping optical coherence tomography (cm-OCT) for volumetric nailfold capillaroscopy (NFC). NFC is a widely used non-invasive diagnostic method to analyze capillary morphology and microvascular abnormalities of nailfold area for a range of disease conditions. However, the conventional NFC is incapable of providing volumetric imaging, when volumetric quantitative microangiopathic parameters such as plexus morphology, capillary density, and morphologic anomalies of the end row loops most critical. cm-OCT is a recently developed well established coherence domain magnitude based angiographic modality, which takes advantage of the time-varying speckle effect, which is normally dominant in the vicinity of vascular regions compared to static tissue region. It utilizes the correlation coefficient as a direct measurement of decorrelation between two adjacent B-frames to enhance the visibility of depth-resolved microcirculation.
Samal, Juhi; Weinandy, Stefan; Weinandy, Agnieszka; Helmedag, Marius; Rongen, Lisanne; Hermanns-Sachweh, Benita; Kundu, Subhas C; Jockenhoevel, Stefan
2015-10-01
A successful strategy to enhance the in vivo survival of engineered tissues would be to prevascularize them. In this study, fabricated silk fibroin scaffolds from mulberry and non-mulberry silkworms are investigated and compared for supporting the co-culture of human umbilical vein endothelial cells and human foreskin fibroblasts. Scaffolds are cytocompatible and when combined with fibrin gel support capillary-like structure formation. Density and interconnectivity of the formed structures are found to be better in mulberry scaffolds. ELISA shows that levels of vascular endothelial growth factor (VEGF) released in co-cultures with fibrin gel are significantly higher than in co-cultures without fibrin gel. RT PCR shows an increase in VEGFR2 expression in mulberry scaffolds indicating these scaffolds combined with fibrin provide a suitable microenvironment for the development of capillary-like structures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nonlinear extension of a hemodynamic linear model for coherent hemodynamics spectroscopy.
Sassaroli, Angelo; Kainerstorfer, Jana M; Fantini, Sergio
2016-01-21
In this work, we are proposing an extension of a recent hemodynamic model (Fantini, 2014a), which was developed within the framework of a novel approach to the study of tissue hemodynamics, named coherent hemodynamics spectroscopy (CHS). The previous hemodynamic model, from a signal processing viewpoint, treats the tissue microvasculature as a linear time-invariant system, and considers changes of blood volume, capillary blood flow velocity and the rate of oxygen diffusion as inputs, and the changes of oxy-, deoxy-, and total hemoglobin concentrations (measured in near infrared spectroscopy) as outputs. The model has been used also as a forward solver in an inversion procedure to retrieve quantitative parameters that assess physiological and biological processes such as microcirculation, cerebral autoregulation, tissue metabolic rate of oxygen, and oxygen extraction fraction. Within the assumption of "small" capillary blood flow velocity oscillations the model showed that the capillary and venous compartments "respond" to this input as low pass filters, characterized by two distinct impulse response functions. In this work, we do not make the assumption of "small" perturbations of capillary blood flow velocity by solving without approximations the partial differential equation that governs the spatio-temporal behavior of hemoglobin saturation in capillary and venous blood. Preliminary comparison between the linear time-invariant model and the extended model (here identified as nonlinear model) are shown for the relevant parameters measured in CHS as a function of the oscillation frequency (CHS spectra). We have found that for capillary blood flow velocity oscillations with amplitudes up to 10% of the baseline value (which reflect typical scenarios in CHS), the discrepancies between CHS spectra obtained with the linear and nonlinear models are negligible. For larger oscillations (~50%) the linear and nonlinear models yield CHS spectra with differences within typical experimental errors, but further investigation is needed to assess the effect of these differences. Flow oscillations larger than 10-20% are not typically induced in CHS; therefore, the results presented in this work indicate that a linear hemodynamic model, combined with a method to elicit controlled hemodynamic oscillations (as done for CHS), is appropriate for the quantitative assessment of cerebral microcirculation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Can Supersaturation Affect Protein Crystal Quality?
NASA Technical Reports Server (NTRS)
Gorti, Sridhar
2013-01-01
In quiescent environments (microgravity, capillary tubes, gels) formation of a depletion zone is to be expected, due either to limited sedimentation, density driven convection or a combination of both. The formation of a depletion zone can: Modify solution supersaturation near crystal; Give rise to impurity partitioning. It is conjectured that both supersaturation and impurity partitioning affect protein crystal quality and size. Further detailed investigations on various proteins are needed to assess above hypothesis.
Exploring the Mechanism of Microarteriogenesis in Porous Silk Fibroin Film
Bai, Lun; Wang, Guangqian; Tan, Xiaoyan; Xu, Jianmei
2012-01-01
Purpose. Based on the experiment of the microarteriogenesis that is associated with angiogenesis during tissue repair process in porous silk fibroin films (PSFFs), we investigate the characteristics of micro-arteriogenesis and explore its mechanism. Methods. After the porous silk fibroin materials are implanted into the back hypodermal tissue of SD rats, the arteriole development and the morphogenesis of smooth muscle cell are histologically monitored and the micro-arteriogenesis is quantitatively analyzed. Results. 10 days after implantation, the arteriole density reaches the highest level in the junction of silk fibroin materials with tissues. Three weeks later, the arteriolar density in the materials reaches the maximum, and the arterioles in the junction of materials with tissues appear to be in a mature and upgrading state. Modeling of Microarteriogenesis. The arterioles in materials are generated after capillary angiogenesis. It is inferred that arteriolar development does not start until the network of the capillaries is formed. At first, the arterioles grow in the conjunct area of precapillaries with arterioles. Then with the extension of the arterioles, the upgrade of arterioles in connecting area is observed at a later stage. Based on the observation, the conditions and the mechanism of microarterializations as well as the upgrade of arterioles are analyzed. PMID:23304150
Measurement of ozone production scaling in a helium plasma jet with oxygen admixture
NASA Astrophysics Data System (ADS)
Sands, Brian; Ganguly, Biswa
2012-10-01
Capillary dielectric barrier plasma jet devices that generate confined streamer-like discharges along a rare gas flow can produce significant quantities of reactive oxygen species with average input powers ranging from 100 mW to >1 W. We have measured spatially-resolved ozone production in a He plasma jet with O2 admixture concentrations up to 5% using absorption spectroscopy of the O3 Hartley band system. A 20-ns risetime, 10-13 kV positive unipolar voltage pulse train was used to power the discharge, with pulse repetition rates varied from 1-20 kHz. The discharge was operated in a transient glow mode to scale the input power by adjusting the gap width between the anode and downstream cathodic plane. Peak ozone number densities in the range of 10^16 - 10^17 cm-3 were measured. At a given voltage, the density of ozone increased monotonically up to 3% O2 admixture (6 mm gap) as the peak discharge current decreased by an order of magnitude. Ozone production increased with distance from the capillary, consistent with observations by other groups. Atomic oxygen production inferred from O-atom 777 nm emission intensity did not scale with ozone as the input power was increased. The spatial distribution of ozone and scaling with input power will be presented.
Gender-related differences in β-adrenergic receptor-mediated cardiac remodeling.
Zhu, Baoling; Liu, Kai; Yang, Chengzhi; Qiao, Yuhui; Li, Zijian
2016-12-01
Cardiac remodeling is the pathological basis of various cardiovascular diseases. In this study, we found gender-related differences in β-adrenergic receptor (AR)-mediated pathological cardiac remodeling. Cardiac remodeling model was established by subcutaneous injection of isoprenaline (ISO) for 14 days. Heart rate (HR), mean arterial pressure (MAP), and echocardiography were obtained on 7th and 14th days during ISO administration. Myocardial cross-sectional area and the ratio of heart mass to tibia length (HM/TL) were detected to assess cardiac hypertrophy. Picro-Sirius red staining (picric acid + Sirius red F3B) was used to evaluate cardiac fibrosis. Myocardial capillary density was assessed by immunohistochemistry for von Willebrand factor. Further, real-time PCR was used to measure the expression of β1-AR and β2-AR. Results showed that ISO induced cardiac remodeling, the extent of which was different between female and male mice. The extent of increase in cardiac wall thickness, myocardial cross-sectional area, and collagen deposition in females was less than that in males. However, no gender-related difference was observed in HR, MAP, cardiac function, and myocardial capillary density. The distinctive decrease of β2-AR expression, rather than a decrease of β1-AR expression, seemed to result in gender-related differences in cardiac remodeling.
Xiong, Yan; Wang, Chengjie; Tao, Tao; Duan, Ming; Tan, Jun; Wu, Jiayi; Wang, Dong
2016-05-10
Fluoride concentration is a key aspect of water quality and essential for human health. Too much or too little fluoride intake from water supplies is harmful to public health. In this study, a capillary waveguide integrated fiber-optic sensor was fabricated for fluoride measurement in water samples. The sensor was modularly designed with three parts, i.e., a light source, capillary flow cell and detector. When light propagated from a light emitting diode (LED) to the capillary waveguide cell through an excitation fiber, it interacted with the sensing reagent, and its intensity changed with different fluoride concentrations. Then, the light propagated to the detector through a detection fiber for absorption determination of fluoride according to Beer's law. This miniaturized sensor showed advantages of fast analysis (9.2 s) and small reagent demand (200 μL) per sample, and it also had a low detection limit (8 ppb) and high selectivity for fluoride determination. The sensor was applied to fluoride determination in different water samples. The results obtained were compared with those obtained by conventional spectrophotometry and ion chromatography, showing agreement and validating the sensor's potential application.
Koriyama, Takuya; Asoh, Taka-Aki; Kikuchi, Akihiko
2016-11-01
To develop aqueous microseparation columns for bioactive compounds, a thermoresponsive polymer grafted polymer monolith was prepared inside silica capillaries having an I.D. of 100μm by polymerization of styrene (St) with m/p-divinylbenzene (DVB) in the presence of polydimethylsiloxane as porogen, followed by surface-initiated atom transfer radical polymerization (SI-ATRP) of N-isopropylacrylamide (NIPAAm). SEM analysis indicated that the resulting poly(N-isopropylacrylamide) (PNIPAAm) grafted polystyrene monolith had a consecutive three-dimensionally interconnected structure and through-pores, similar to the base polystyrene (PSt) monolith. The elution behavior of steroids with different hydrophobicity was evaluated using micro-high-performance liquid chromatography in sole aqueous mobile phase. Temperature dependent interaction changes were observed between steroids and the PNIPAAm modified surfaces. Furthermore, the interaction between bioactive compounds and the PNIPAAm grafted PSt surfaces was controlled and eventually separate these molecules with different hydrophobicities by simple temperature modulation in aqueous environment. The PNIPAAm grafted PSt monolithic capillary showed improved separation properties of bioactive compounds, compared with a PNIPAAm grafted hollow capillary in aqueous environment. Copyright © 2016 Elsevier B.V. All rights reserved.
IB-LBM simulation of the haemocyte dynamics in a stenotic capillary.
Yuan-Qing, Xu; Xiao-Ying, Tang; Fang-Bao, Tian; Yu-Hua, Peng; Yong, Xu; Yan-Jun, Zeng
2014-01-01
To study the behaviour of a haemocyte when crossing a stenotic capillary, the immersed boundary-lattice Boltzmann method was used to establish a quantitative analysis model. The haemocyte was assumed to be spherical and to have an elastic cell membrane, which can be driven by blood flow to adopt a highly deformable character. In the stenotic capillary, the spherical blood cell was stressed both by the flow and the wall dimension, and the cell shape was forced to be stretched to cross the stenosis. Our simulation investigated the haemocyte crossing process in detail. The velocity and pressure were anatomised to obtain information on how blood flows through a capillary and to estimate the degree of cell damage caused by excessive pressure. Quantitative velocity analysis results demonstrated that a large haemocyte crossing a small stenosis would have a noticeable effect on blood flow, while quantitative pressure distribution analysis results indicated that the crossing process would produce a special pressure distribution in the cell interior and to some extent a sudden change between the cell interior and the surrounding plasma.
N2 and CO2 capillary breakthrough experiments on Opalinus Clay
NASA Astrophysics Data System (ADS)
Amann, Alexandra; Busch, Andreas; Krooss, Bernhard M.
2013-04-01
The aim of this project was to identify the critical capillary pressures on the drainage and the imbibition path for clay-rich rocks, at a burial depth of 1500 m (30 MPa confining pressure, 45°C). The experiments were performed on fully water-saturated sample plugs of 38 mm diameter and 5 to 20 mm length. The capillary breakthrough pressure was determined by step-wise increase of the differential pressure (drainage), the capillary snap-off pressure was determined from the final pressure difference at the end of a spontaneous imbibition phase. The confining pressure was kept constant throughout the experiment, which resulted in a continuous change of effective stress. The measurements were performed in a closed system and the pressure response was interpreted in terms of different flow mechanisms (diffusion-controlled vs. viscous flow). In total, four breakthrough experiments with N2 and five experiments with CO2 were conducted. Because of very low flow rates and high critical capillary pressures the experiments took rather long. In some cases the experiments were allowed to run for half a year (drainage experiments). Substantial differences were observed between gas breakthrough (drainage) and snap-off (imbibition) pressures. As expected, breakthrough pressures were always higher than the snap-off pressures. For three samples a pbreakthrough/psnap-off ratio of 1.6 to 1.9 was observed, for one sample a ratio of 4. A clear permeability-capillary pressure relationship could not be identified. Based on (omnidirectional) Hg-injection porosimetry results, and assuming perfectly water wet mineral surfaces, gas breakthrough pressures were predicted to occur at approximately 16 MPa for N2 and 5.7 MPa for CO2. The gas breakthrough experiments, however, produced different results. Even though a relatively homogeneous sample set was chosen, with permeability coefficients ranging between 1E-21 and 6E-21 m², the critical capillary breakthrough pressures for nitrogen ranged between 3.4 and 12.3 MPa and snap-off pressures from 0.5 to 6.4 MPa. The CO2 experiments yielded breakthrough pressures of 14.0 to 17.5 MPa and snap-off pressures of 3.5 to 10 MPa. No significant changes in single-phase water permeability coefficients before and after the gas breakthrough experiments were observed. In our contribution we will discuss the following points: 1. Gas fluxes occurring during gas breakthrough experiments may be extremely low. Therefore an unambigous identification of gas breakthrough is not always possible. Besides viscous or diffusive transport, dissolution of CO2 in the pore water may affect the observed pressure changes in the upstream and downstream compartments. All of these processes occur simultaneously and can only be partly discriminated. Gas fluxes detected during the diffusion-controlled flow regimes result in nominal effective gas permeability coefficients as low as 6E-25 m² to 7E-24m². 2. The application of purely capillary-controlled flow models may not be justified. o Gas breakthrough is controlled by effective stress, i.e. the opening of pores or small fissures. o Assumptions about wettability (completely water-wet mineral surfaces) may be incorrect.