Science.gov

Sample records for change climate-chemistry interactions

  1. Atmospheric Composition Change: Climate-Chemistry Interactions

    NASA Technical Reports Server (NTRS)

    Isaksen, I.S.A.; Granier, C.; Myhre, G.; Bernsten, T. K.; Dalsoren, S. B.; Gauss, S.; Klimont, Z.; Benestad, R.; Bousquet, P.; Collins, W.; hide

    2011-01-01

    Chemically active climate compounds are either primary compounds such as methane (CH4), removed by oxidation in the atmosphere, or secondary compounds such as ozone (O3), sulfate and organic aerosols, formed and removed in the atmosphere. Man-induced climate-chemistry interaction is a two-way process: Emissions of pollutants change the atmospheric composition contributing to climate change through the aforementioned climate components, and climate change, through changes in temperature, dynamics, the hydrological cycle, atmospheric stability, and biosphere-atmosphere interactions, affects the atmospheric composition and oxidation processes in the troposphere. Here we present progress in our understanding of processes of importance for climate-chemistry interactions, and their contributions to changes in atmospheric composition and climate forcing. A key factor is the oxidation potential involving compounds such as O3 and the hydroxyl radical (OH). Reported studies represent both current and future changes. Reported results include new estimates of radiative forcing based on extensive model studies of chemically active climate compounds such as O3, and of particles inducing both direct and indirect effects. Through EU projects such as ACCENT, QUANTIFY, and the AEROCOM project, extensive studies on regional and sector-wise differences in the impact on atmospheric distribution are performed. Studies have shown that land-based emissions have a different effect on climate than ship and aircraft emissions, and different measures are needed to reduce the climate impact. Several areas where climate change can affect the tropospheric oxidation process and the chemical composition are identified. This can take place through enhanced stratospheric-tropospheric exchange of ozone, more frequent periods with stable conditions favouring pollution build up over industrial areas, enhanced temperature-induced biogenic emissions, methane releases from permafrost thawing, and enhanced

  2. Emission Data For Climate-Chemistry Interactions

    NASA Astrophysics Data System (ADS)

    Smith, S. J.

    2012-12-01

    between different physical systems and also between the physical and human systems. Statistical models of system responses are particularly needed both to parameterize interactions in models that cannot simulate particular processes directly, and also to represent uncertainty. Coordinated model experiments are necessary to provide the information needed to develop these representations (i.e. Wild et al 2011). Lamarque, J. F, et al. (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmospheric Chemistry and Physics 10 pp. 7017-7039. doi:10.5194/acp-10-7017-2010 Van Vuuren, D, JA Edmonds, M Kainuma, K Riahi, AM Thomson, KA Hibbard, G Hurtt, T Kram, V Krey, JF Lamarque, matsui, M Meinhausen, N Nakicenovic, SJ Smith, and SK Rose. 2011. "The Representative Concentration Pathways: An Overview." Climatic Change 109 (1-2) 5-31. doi: 10.1007/s10584-011-0148-z. Wild, O., et al. (2012) Modelling future changes in surface ozone: A parameterized approach. Atmos. Chem. Phys., 12, 2037-2054, doi:10.5194/acp-12-2037-2012.

  3. The signature of climate change on surface ozone: Using the Online integrated climate-chemistry model (EnvClimA)

    NASA Astrophysics Data System (ADS)

    Zakey, A. S.; Baklanov, A.; Solmon, F.; Giorgi, F.; Nuterman, R.; Sass, B. H.; Korsholm, U. S.; Nielsen, K. P.; Sørensen, J. H.; Mahura, A.

    2012-04-01

    The signature of climate change on European surface ozone was studied using the online integrated climate-chemistry model for Environmental applications (EnvClimA). The EnvClimA is an environmental version of the regional climate model of the International Centre for Theoretical Physics (ICTP) (RegCM-CHEM4, Shalapy et al., 2012). The model domain has a horizontal resolution of 50 × 50 km and 18 vertical sigma levels. In this study, a 20 year simulation was preformed for the selected European domain for the reference (2000-2009) and future (2040-2049) periods. For both simulations, the initial and boundary conditions for the meteorological fields are provided every six hours from the global ECHAM5-r3 model. The chemical boundary conditions over Europe are provided also every six hours by the Danish Eulerian Hemispheric Model (DEHM). The anthropogenic emissions of nitrogen oxides, sulfur dioxide, ammonia, non-methane volatile organic carbon and carbon monoxide were taken from the IPCC-RCP4.5 future emission scenario. In this simulation the biogenic isoprene emissions are not considered, because the MEGAN module (on-line coupled with the land surface scheme in EnvClimA) tends to overestimate (almost twice) the total emitted biogenic isoprene. The EnvClimA results indicated zonal behavior of average daily maximum concentrations for the surface ozone (O3). In winter, model has a substantial negative bias for both mean and daily maximum O3. This may be due to an underestimation of the winter air temperature over north-eastern Europe and due to feedback (included in the model) of O3 on the meteorological variables. Although the model spatial correlation is rather poor for diurnal average concentration, but for the average of daily maximum O3 concentrations the model showed correlation coefficients higher than 0.8 during summer. The model always showed the highest spatial correlation over central and southern Europe. The general pattern indicated an increase of surface

  4. Climate/chemistry effects of the Pinatubo volcanic eruption simulated by the UIUC stratosphere/troposphere GCM with interactive photochemistry

    NASA Astrophysics Data System (ADS)

    Rozanov, E. V.; Schlesinger, M. E.; Andronova, N. G.; Yang, F.; Malyshev, S. L.; Zubov, V. A.; Egorova, T. A.; Li, B.

    2002-11-01

    The influence of the sulfate aerosol formed following the massive Pinatubo volcanic eruption in June 1991 on the chemical composition, temperature, and dynamics of the atmosphere has been investigated with the University of Illinois at Urbana-Champaign (UIUC) stratosphere-troposphere General Circulation Model (GCM) with interactive photochemistry (ST-GCM/PC). Ensembles of five runs have been performed for the unperturbed (control) and perturbed (experiment) conditions. The simulated repartitioning within the chlorine and nitrogen groups, as well as the ozone changes, are in reasonable quantitative agreement with observations and theoretical expectations. The simulated ozone changes in the tropics reveal the ozone mixing ratio decreases below 28 km and increases in the stratosphere above this level. However, these changes are not statistically significant in the lowermost stratosphere. The simulated total ozone loss reached 15% over the northern middle and high latitudes in winter and early spring. However, the simulated changes are statistically significant only during early winter. The magnitude of the simulated total ozone depletion is generally less than that observed, but some members of the experiment ensemble are in better agreement with the observed ozone anomalies. The model simulates a pronounced stratospheric warming in the tropics, which exceeds the warming derived from observations by 1-2 K. The model matches well the intensification of the polar-night jet (PNJ) in December 1991 and 1992, the statistically significant cooling of the lower stratosphere and warming of the surface air in boreal winter over the United States, northern Europe, and Russia, and the cooling over Greenland, Alaska, and Central Asia.

  5. SPARC-IGAC Symposium on Climate-Chemistry Interactions. Climate Feedback by Water Vapor in the Tropical Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Dessler, A. E.; Minschwaner, K.

    2003-01-01

    The strong greenhouse forcing by atmospheric water vapor is expected to play an important role in shaping the direction of any future changes in climate. We present calculations that provide a new perspective on the sensitivity of upper tropospheric water vapor to changes in surface temperature. Equilibrium states of our atmospheric model show unambiguously that as the surface warms, changes in the vertical distribution and temperature of detraining air parcels from tropical convection lead to higher water vapor mixing ratios in the upper troposphere. However, the increase in mixing ratio is not as large as the increase in saturation mixing ratio due to warmer environmental temperatures, so that the relative humidity decreases. Our analysis suggests that models that maintain a fixed relative humidity are likely overestimating the magnitude of the water vapor feedback.

  6. Assessing the climatic effect of carbon dioxide and other trace gases using an interactive two-dimensional climate-chemistry model. Final report, December 1992--August 1996

    SciTech Connect

    Ko, M.K.W.

    1996-12-31

    In the recent IPCC report, the role of tropospheric aerosols, stratospheric aerosols, and natural solar variability have also been identified as having sizable effects on climate, both by direct perturbation of the radiative balance and indirectly by changing ozone. Although the effect of changing CO{sub 2} is by far the dominant factor on a century time scale, the effects from the other identified factors are important on a decade time scale. It is important to understand the mechanisms that relate these changes to climatic responses. Developing appropriate numerical models with the capability to simulate these mechanisms will enable one to correctly interpret the observed climate changes that have occurred to data, as well as predict future changes in climate. It is presently impractical to run comprehensive 3-D general circulation model simulations of the interactions between atmospheric chemistry and the rest of the climate system on time scales of decades to centuries. Thus, 2-D models and other lower resolution models play an essential role in understanding the complex interactions of the integrated climate system.

  7. Climate Change and Disturbance Interactions

    NASA Astrophysics Data System (ADS)

    McKenzie, Don; Allen, Craig D.

    2007-05-01

    Workshop on Climate Change and Disturbance Interactions in Western North America, Tucson, Ariz., 12-15 February 2007 Warming temperatures across western North America, coupled with increased drought, are expected to exacerbate disturbance regimes, particularly wildfires, insect outbreaks, and invasions of exotic species. Many ecologists and resource managers expect ecosystems to change more rapidly from disturbance effects than from the effects of a changing climate by itself. A particular challenge is to understand the interactions among disturbance regimes; for example, how will massive outbreaks of bark beetles, which kill drought-stressed trees by feeding on cambial tissues, increase the potential for large severe wildfires in a warming climate?

  8. New Development of the Online Integrated Climate-Chemistry model framwork (RegCM-CHEM4)

    NASA Astrophysics Data System (ADS)

    Zakey, A. S.; Shalaby, A. K.; Solmon, F.; Giorgi, F.; Tawfik, A. B.; Steiner, A. L.; Baklanov, A.

    2012-04-01

    The RegCM-CHEM4 is a new online integrated climate-chemistry model based on the regional climate model (RegCM4). The RegCM4 developed at the Abdus Salam International Centre for Theoretical Physics (ICTP), is a hydrostatic, sigma coordinate model. Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism CBM-Z with lumped species that represent broad categories of organics based on carbon bond structure. The computationally rapid radical balance method RBM is coupled as a chemical solver to the gas-phase mechanism. Photolysis rates are determined as a function of meteorological and chemical inputs and interpolated from an array of pre-determined values based on the Tropospheric Ultraviolet-Visible Model (TUV) with cloud cover corrections. Cloud optical depths and cloud altitudes from RegCM-CHEM4 are used in the photolysis calculations, thereby directly coupling the photolysis rates and chemical reactions to meteorological conditions at each model time step. In this study, we evaluate the model over Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000-2005). For the episode analysis, model simulations show a good agreement with the European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. Analysis of the full six years of simulation indicates that the coupled chemistry-climate model can reproduce the seasonal cycle of ozone, with an overestimation of ozone in the non-event years of 5-15 ppb depending on the geographic region. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  9. The evolution of social interactions changes predictions about interacting phenotypes.

    PubMed

    Kazancıoğlu, Erem; Klug, Hope; Alonzo, Suzanne H

    2012-07-01

    In many traits involved in social interactions, such as courtship and aggression, the phenotype is an outcome of interactions between individuals. Such traits whose expression in an individual is partly determined by the phenotype of its social partner are called "interacting phenotypes." Quantitative genetic models suggested that interacting phenotypes can evolve much faster than nonsocial traits. Current models, however, consider the interaction between phenotypes of social partners as a fixed phenotypic response rule, represented by an interaction coefficient (ψ). Here, we extend existing theoretical models and incorporate the interaction coefficient as a trait that can evolve. We find that the evolution of the interaction coefficient can change qualitatively the predictions about the rate and direction of evolution of interacting phenotypes. We argue that it is crucial to determine whether and how the phenotypic response of an individual to its social partner can evolve to make accurate predictions about the evolution of traits involved in social interactions. © 2012 The Author(s).

  10. Education, Interaction, and Social Change.

    ERIC Educational Resources Information Center

    Hodgkinson, Harold L.

    This book examines the interaction of education and other elements in our culture. The social system of education is seen as similar to that of such other formal social institutions as business. Moreover, an understanding of the role and function of education can be achieved through an application of social science theory and research findings.…

  11. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  12. Global Climate Change Interaction Web.

    ERIC Educational Resources Information Center

    Fortner, Rosanne W.

    1998-01-01

    Students investigate the effects of global climate change on life in the Great Lakes region in this activity. Teams working together construct as many links as possible for such factors as rainfall, lake water, evaporation, skiing, zebra mussels, wetlands, shipping, walleye, toxic chemicals, coastal homes, and population. (PVD)

  13. Conceptual Acquisition and Change through Social Interaction.

    ERIC Educational Resources Information Center

    Kobayashi, Yoshikazu

    1994-01-01

    Examines the role of social interaction as a facilitator of learning in general and conceptual change in particular. Three conditions are proposed as necessary for social interaction to facilitate knowledge construction--horizontal information, comparable domain knowledge, and availability of cognitive tools. Suggests that these conditions assure…

  14. An improved parameterisation of ozone dry deposition to the ocean and its impact in a global climate-chemistry model

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Galbally, Ian E.; Woodhouse, Matthew T.; Thatcher, Marcus

    2017-03-01

    Schemes used to parameterise ozone dry deposition velocity at the oceanic surface mainly differ in terms of how the dominant term of surface resistance is parameterised. We examine three such schemes and test them in a global climate-chemistry model that incorporates meteorological nudging and monthly-varying reactive-gas emissions. The default scheme invokes the commonly used assumption that the water surface resistance is constant. The other two schemes, named the one-layer and two-layer reactivity schemes, include the simultaneous influence on the water surface resistance of ozone solubility in water, waterside molecular diffusion and turbulent transfer, and a first-order chemical reaction of ozone with dissolved iodide. Unlike the one-layer scheme, the two-layer scheme can indirectly control the degree of interaction between chemical reaction and turbulent transfer through the specification of a surface reactive layer thickness. A comparison is made of the modelled deposition velocity dependencies on sea surface temperature (SST) and wind speed with recently reported cruise-based observations. The default scheme overestimates the observed deposition velocities by a factor of 2-4 when the chemical reaction is slow (e.g. under colder SSTs in the Southern Ocean). The default scheme has almost no temperature, wind speed, or latitudinal variations in contrast with the observations. The one-layer scheme provides noticeably better variations, but it overestimates deposition velocity by a factor of 2-3 due to an enhancement of the interaction between chemical reaction and turbulent transfer. The two-layer scheme with a surface reactive layer thickness specification of 2.5 µm, which is approximately equal to the reaction-diffusive length scale of the ozone-iodide reaction, is able to simulate the field measurements most closely with respect to absolute values as well as SST and wind-speed dependence. The annual global oceanic deposition of ozone determined using this

  15. Technical Note: On the Parallelization of a Global Climate-Chemistry Modeling System

    SciTech Connect

    Lee, Peter S.; Zaveri, Rahul A.; Easter, Richard C.; Peters, Leonard K.

    1999-02-01

    Coupled climate-chemistry simulations are computationally intensive owing to the spatial and temporal scope of the problem. In global chemistry models, the time integrations encountered in the chemistry and aerosol modules usually comprise the major CPU consumption. Parallelization of these segments of the code can contribute to multifold CPU speed-ups with minimal modification of the original serial code. This technical note presents a single program-multiple data (SPMD) strategy applied to the time-split chemistry modules of a coupled climate--global tropospheric chemistry model. Latitudinal domain decomposition is adopted along with a dynamic load-balancing technique that uses the previous time-step's load/latitude estimates for distributing the latitude bands amongst the processors. The coupled model is manually parallelized using the Message Passing Interface standard (MPI) on a distributed memory platform (IBM-SP2). Load-balancing efficiencies and the associated MPI overheads are discussed. Overall speed-ups and efficiencies are also calculated for a series of runs employing up to eight processors.

  16. Climate change and species interactions: ways forward.

    PubMed

    Angert, Amy L; LaDeau, Shannon L; Ostfeld, Richard S

    2013-09-01

    With ongoing and rapid climate change, ecologists are being challenged to predict how individual species will change in abundance and distribution, how biotic communities will change in structure and function, and the consequences of these climate-induced changes for ecosystem functioning. It is now well documented that indirect effects of climate change on species abundances and distributions, via climatic effects on interspecific interactions, can outweigh and even reverse the direct effects of climate. However, a clear framework for incorporating species interactions into projections of biological change remains elusive. To move forward, we suggest three priorities for the research community: (1) utilize tractable study systems as case studies to illustrate possible outcomes, test processes highlighted by theory, and feed back into modeling efforts; (2) develop a robust analytical framework that allows for better cross-scale linkages; and (3) determine over what time scales and for which systems prediction of biological responses to climate change is a useful and feasible goal. We end with a list of research questions that can guide future research to help understand, and hopefully mitigate, the negative effects of climate change on biota and the ecosystem services they provide. © 2013 New York Academy of Sciences.

  17. Climate Change and Interacting Stressors: Implications for ...

    EPA Pesticide Factsheets

    EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reefs of American Samoa as well as an assessment of potential management responses. This report provides the coral reef managers of American Samoa, as well as other coral reef managers in the Pacific region, with some management options to help enhance the capacity of local coral reefs to resist the negative effects of climate change. This report was designed to take advantage of diverse research and monitoring efforts that are ongoing in American Samoa to: analyze and compile the results of multiple research projects that focus on understanding climate-related stressors and their effects on coral reef ecosystem degradation and recovery; and assess implications for coral reef managment of the combined information, including possible response options.

  18. Responding to Climate Change Interactive Course

    NASA Astrophysics Data System (ADS)

    Pfirman, S. L.; Matter, J. M.; Callahan, P.; Schlosser, P.

    2011-12-01

    While many institutions now have courses that teach climate from an earth or biological systems perspective, it is more challenging to address how to respond to climate change. Implementing adaptation and mitigation measures requires an interdisciplinary approach of involving stakeholders, identifying needs, resolving conflicts and taking action at levels ranging from local, to national and global. Through the upper level undergraduate course "Responding to Climate Change" taught at Barnard College and Columbia University, students engage in a variety of hands-on activities that help them navigate potential options. Activities include games, role play, case studies, scenario development, spatial planning, exploration of analogies, and conflict resolution exercises. Evaluation indicates that this interactive approach empowers students with scientific and technical knowledge, an understanding of how to deal with complexity, and optimism in their capacity to problem solve.

  19. Changes in interacting species with disturbance

    NASA Astrophysics Data System (ADS)

    Cole, Glen F.

    1987-03-01

    Human-influenced changes in the diversity and abundance of native wildlife in a southern boreal forest area, which became a national park in 1975, are used to develop working hypotheses for predicting and subsequently measuring the effects of disturbance or restoration programs on groups of interacting species. Changes from presettlement conditions began with early 1900 hunting, which eliminated woodland caribou ( Rangifer tarandus) and elk ( Cervus elaphus), and reduced moose ( Alces alces) to the low numbers which still persist. Increases in white-tailed deer ( Odocoileus virginianus), as these other cervid species became less abundant or absent, provided enough alternative food to sustain the system's carnivores until plant succession on previously burned or logged areas also caused deer to decline. With increased competition for reduced food, carnivore species also became less abundant or absent and overexploited some prey populations. The abilities of interacting species to maintain dynamically stable populations or persist varied with their different capacities to compensate for increased exploitation or competition. These relationships suggested a possible solution to the problem of predicting the stability of populations in disturbed systems. For the 1976 1985 period, a hypothesis that the increased protection of wildlife from exploitation in a national park would restore a more diverse, abundant, and productive fauna had to be rejected.

  20. Use of the HadGEM2 climate-chemistry model to investigate interannual variability in methane sources

    NASA Astrophysics Data System (ADS)

    Hayman, Garry; O'Connor, Fiona; Clark, Douglas; Huntingford, Chris; Gedney, Nicola

    2013-04-01

    The global mean atmospheric concentration of methane (CH4) has more than doubled during the industrial era [1] and now constitutes ? 20% of the anthropogenic climate forcing by greenhouse gases [2]. The globally-averaged CH4 growth rate, derived from surface measurements, has fallen significantly from a high of 16 ppb yr-1 in the late 1970s/early 1980s and was close to zero between 1999 and 2006 [1]. This overall period of declining or low growth was however interspersed with years of positive growth-rate anomalies (e.g., in 1991-1992, 1998-1999 and 2002-2003). Since 2007, renewed growth has been evident [1, 3], with the largest increases observed over polar northern latitudes and the Southern Hemisphere in 2007 and in the tropics in 2008. The observed inter-annual variability in atmospheric methane concentrations and the associated changes in growth rates have variously been attributed to changes in different methane sources and sinks [1, 4]. In this paper, we report results from runs of the HadGEM2 climate-chemistry model [5] using year- and month-specific emission datasets. The HadGEM2 model includes the comprehensive atmospheric chemistry and aerosol package, the UK Chemistry Aerosol community model (UKCA, http://www.ukca.ac.uk/wiki/index.php). The Standard Tropospheric Chemistry scheme was selected for this work. This chemistry scheme simulates the Ox, HOx and NOx chemical cycles and the oxidation of CO, methane, ethane and propane. Year- and month-specific emission datasets were generated for the period from 1997 to 2009 for the emitted species in the chemistry scheme (CH4, CO, NOx, HCHO, C2H6, C3H8, CH3CHO, CH3CHOCH3). The approach adopted varied depending on the source sector: Anthropogenic: The emissions from anthropogenic sources were based on decadal-averaged emission inventories compiled by [6] for the Coupled Carbon Cycle Climate Model Intercomparison Project (C4MIP). These were then used to derive year-specific emission datasets by scaling the

  1. Changes in Family Interaction Following Widowhood.

    ERIC Educational Resources Information Center

    Morgan, Leslie A.

    1984-01-01

    Examined family reactions to widowhood using data from the Longitudinal Retirement History Study. Found that average frequency of interaction with available kin increased for both married and widowed persons over time, with greatest increase among women who became widowed. (JAC)

  2. Learning to walk changes infants' social interactions.

    PubMed

    Clearfield, Melissa W

    2011-02-01

    The onset of crawling marks a motor, cognitive and social milestone. The present study investigated whether independent walking marks a second milestone for social behaviors. In Experiment 1, the social and exploratory behaviors of crawling infants were observed while crawling and in a baby-walker, resulting in no differences based on posture. In Experiment 2, the social behaviors of independently walking infants were compared to age-matched crawling infants in a baby-walker. Independently walking infants spent significantly more time interacting with the toys and with their mothers, and also made more vocalizations and more directed gestures compared to infants in the walker. Experiment 3 tracked infants' social behaviors longitudinally across the transition from crawling and walking. Even when controlled for age, the transition to independent walking marked increased interaction time with mothers, as well as more sophisticated interactions, including directing mothers' attention to particular objects. The results suggest a developmental progression linking social interactions with milestones in locomotor development.

  3. Changes in Family Interaction Following Widowhood.

    ERIC Educational Resources Information Center

    Morgan, Leslie A.

    1984-01-01

    Examined family reactions to widowhood using data from the Longitudinal Retirement History Study. Found that average frequency of interaction with available kin increased for both married and widowed persons over time, with greatest increase among women who became widowed. (JAC)

  4. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  5. Ocean-Atmosphere Interaction in Climate Changes

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1999-01-01

    The diagram, which attests the El Nino teleconnection observed by the NASA Scatterometer (NSCAT) in 1997, is an example of the results of our research in air-sea interaction - the core component of our three-part contribution to the Climate Variability Program. We have established an interplay among scientific research, which turns spacebased data into knowledge, a push in instrument technology, which improves observations of climate variability, and an information system, which produces and disseminates new data to support our scientific research. Timothy Liu led the proposal for advanced technology, in response to the NASA Post-2002 Request for Information. The sensor was identified as a possible mission for continuous ocean surface wind measurement at higher spatial resolution, and with the unique capability to measure ocean surface salinity. He is participating in the Instrument Incubator Program to improve the antenna technology, and is initiating a study to integrate the concept on Japanese missions. He and his collaborators have set up a system to produce and disseminate high level (gridded) ocean surface wind/stress data from NSCAT and European missions. The data system is being expanded to produce real-time gridded ocean surface winds from Quikscat, and precipitation and evaporation from the Tropical Rain Measuring Mission. It will form the basis for a spacebased data analysis system which will include momentum, heat and water fluxes. The study on 1997 El Nino teleconnection illustrates our interdisciplinary and multisensor approach to study climate variability. The diagram shows that the collapse of trade wind and the westerly wind anomalies in the central equatorial Pacific led to the equatorial ocean warming. The equatorial wind anomalies are connected to the anomalous cyclonic wind pattern in the northeast Pacific. The anomalous warming along the west coast of the United States is the result of the movement of the pre-existing warm sea surface

  6. Students and Colleges: Interaction and Change.

    ERIC Educational Resources Information Center

    Clark, Burton R.; And Others

    This is a study of differential student recruitment and of changes in student characteristics at 3 highly selective, distinguished liberal arts colleges; 3 church-related colleges; and 2 large public institutions. The findings indicate how students changed from institution to institution in relation to their characteristics at entrance. These…

  7. Interaction webs in arctic ecosystems: Determinants of arctic change?

    PubMed

    Schmidt, Niels M; Hardwick, Bess; Gilg, Olivier; Høye, Toke T; Krogh, Paul Henning; Meltofte, Hans; Michelsen, Anders; Mosbacher, Jesper B; Raundrup, Katrine; Reneerkens, Jeroen; Stewart, Lærke; Wirta, Helena; Roslin, Tomas

    2017-02-01

    How species interact modulate their dynamics, their response to environmental change, and ultimately the functioning and stability of entire communities. Work conducted at Zackenberg, Northeast Greenland, has changed our view on how networks of arctic biotic interactions are structured, how they vary in time, and how they are changing with current environmental change: firstly, the high arctic interaction webs are much more complex than previously envisaged, and with a structure mainly dictated by its arthropod component. Secondly, the dynamics of species within these webs reflect changes in environmental conditions. Thirdly, biotic interactions within a trophic level may affect other trophic levels, in some cases ultimately affecting land-atmosphere feedbacks. Finally, differential responses to environmental change may decouple interacting species. These insights form Zackenberg emphasize that the combination of long-term, ecosystem-based monitoring, and targeted research projects offers the most fruitful basis for understanding and predicting the future of arctic ecosystems.

  8. Global climate change and above- belowground insect herbivore interactions

    PubMed Central

    McKenzie, Scott W.; Hentley, William T.; Hails, Rosemary S.; Jones, T. Hefin; Vanbergen, Adam J.; Johnson, Scott N.

    2013-01-01

    Predicted changes to the Earth’s climate are likely to affect above–belowground interactions. Our understanding is limited, however, by past focus on two-species aboveground interactions mostly ignoring belowground influences. Despite their importance to ecosystem processes, there remains a dearth of empirical evidence showing how climate change will affect above–belowground interactions. The responses of above- and belowground organisms to climate change are likely to differ given the fundamentally different niches they inhabit. Yet there are few studies that address the biological and ecological reactions of belowground herbivores to environmental conditions in current and future climates. Even fewer studies investigate the consequences of climate change for above–belowground interactions between herbivores and other organisms; those that do provide no evidence of a directed response. This paper highlights the importance of considering the belowground fauna when making predictions on the effects of climate change on plant-mediated interspecific interactions. PMID:24155750

  9. Perceived Changes in Communicative Interaction in Atypical Parkinsonism

    PubMed Central

    Hartelius, Lena; Lindberg, Johan; Petersson, Lena; Saldert, Charlotta

    2011-01-01

    The aim of this study was to examine if atypical parkinsonism affects the communicative ability in conversational interaction. Fifteen persons close to individuals with atypical parkinsonism answered a questionnaire, “Assessment of Change in Communicative Interaction” (ACCI), estimating perceived change in interactive skills compared to before the onset of the disease. The study also examined if perceived change correlated with disease duration. The results showed that at group level, the participants experienced change in many aspects of conversational interaction, particularly regarding the affected person's speech, body communication, response latency, phrase length, word finding, and ability to make themselves understood. There was no correlation between perceived change and disease duration. In conclusion, results indicated that the communicative interaction of individuals with atypical parkinsonism is significantly affected and that information elicited from significant others can help define specific problem areas or foci of concern that need to be targeted in communicative intervention or at least considered in interaction with these persons. PMID:22389810

  10. Interactions between climate change and contaminants.

    PubMed

    Schiedek, Doris; Sundelin, Brita; Readman, James W; Macdonald, Robie W

    2007-12-01

    There is now general consensus that climate change is a global threat and a challenge for the 21st century. More and more information is available demonstrating how increased temperature may affect aquatic ecosystems and living resources or how increased water levels may impact coastal zones and their management. Many ecosystems are also affected by human releases of contaminants, for example from land based sources or the atmosphere, which also may cause severe effects. So far these two important stresses on ecosystems have mainly been discussed independently. The present paper is intended to increase awareness among scientists, coastal zone managers and decision makers that climate change will affect contaminant exposure and toxic effects and that both forms of stress will impact aquatic ecosystems and biota. Based on examples from different ecosystems, we discuss risks anticipated from contaminants in a rapidly changing environment and the research required to understand and predict how on-going and future climate change may alter risks from chemical pollution.

  11. Coevolution and the effects of climate change on interacting species.

    PubMed

    Northfield, Tobin D; Ives, Anthony R

    2013-10-01

    Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities.

  12. Coevolution and the Effects of Climate Change on Interacting Species

    PubMed Central

    Northfield, Tobin D.; Ives, Anthony R.

    2013-01-01

    Background Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes. Methodology/Principle Findings We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change. Conclusions/Significance Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities. PMID:24167443

  13. Transcriptional changes in Giardia during host-parasite interactions.

    PubMed

    Ringqvist, Emma; Avesson, Lotta; Söderbom, Fredrik; Svärd, Staffan G

    2011-03-01

    Giardia intestinalis is one of the major causes of parasite-induced diarrhea. The disease, giardiasis, is caused by trophozoites attaching to the intestinal epithelium, resulting in apoptosis of intestinal epithelial cells, disrupted epithelial barrier function and malabsorption. Microarray studies have detected extensive gene expression changes in intestinal epithelial cells (IECs) during interaction with Giardia trophozoites in vitro. In the present study, we examined this host-parasite interaction further by transcriptional profiling of interacting trophozoites using Giardia microarrays. A total of 200 Giardia transcripts were significantly changed due to the interaction, lasting up to 18 h in complete growth medium. Quantitative reverse transcriptase PCR confirmed the changes in all 12 genes tested using mRNA isolated in separate experiments. Genes encoding proteins previously suggested to be important during host-parasite interactions such as arginine deiminase, enolase and cysteine proteinases were up-regulated early but down-regulated later during the interaction. Cell division and attachment genes were down-regulated in the late time-points of interaction. The most highly up-regulated genes encode oxygen defense proteins and several members of the high cysteine membrane protein (HCMp) and Gly-rich repeat (GRREAT) families. Putative small RNAs were up-regulated, whereas the 5S rRNA was slightly down-regulated during the interaction with IECs. Thus, there are extensive gene expression changes in Giardia trophozoites and IECs during host-parasite interactions which can be important for establishment of infection and the induction of giardiasis.

  14. Modelling refractive index changes due to molecular interactions

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

  15. Revisiting trough interactions and tropical cyclone intensity change

    NASA Astrophysics Data System (ADS)

    Peirano, C. M.; Corbosiero, K. L.; Tang, B. H.

    2016-05-01

    An updated climatology of Atlantic basin tropical cyclone (TC) intensity change in the presence of upper tropospheric trough forcing is presented. To control for changes in the background thermodynamic environment, a methodology that normalizes intensity change by the potential intensity of the TC is used to more narrowly focus on the effect of troughs compared to previous studies. Relative to the full sample of Atlantic TCs, troughs are a negative influence on intensification: trough interaction cases are 4% less likely to intensify and 5% more likely to weaken. Troughs are especially detrimental compared to TCs without trough forcing: trough interaction cases are 14% less likely to intensify and 13% more likely to weaken. Additionally, eddy flux convergence of angular momentum, previously shown to positively affect TC intensity change, is shown to be a weak predictor of intensity change compared to vertical wind shear, which is enhanced during a trough interaction.

  16. Insect responses to interacting global change drivers in managed ecosystems.

    PubMed

    Scherber, Christoph

    2015-10-01

    Insects are facing an increasingly stressful combination of global change drivers such as habitat fragmentation, agricultural intensification, pollution, or climatic changes. While single-factor studies have yielded considerable insights, multi-factor manipulations have gained momentum recently. Nevertheless, most work to date has remained within particular domains of research, such as 'habitat destruction' or 'climate change', and linkages among subdisciplines within the ecological literature have remained scarce. Here, I provide an overview of the most recent developments in the field, with a focus on main functional groups of insects, but also their interactions with other organisms. All major global change drivers (landscape modification, climate change, agricultural management) are covered both singly and in interaction. The manuscript concludes with concepts on how to statistically and conceptually deal with interactions in experimental and observational work. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Resonant enhancement of flavor-changing neutrino interactions

    SciTech Connect

    Roulet, E.

    1991-10-01

    The resonant amplification of neutrino oscillations in the presence of flavor-changing neutrino interactions with matter is analyzed. It is shown that a significant {mu}-flavor conversion can take place even in the absence of neutrino mixing in vacuum. To account for the solar neutrino deficit, the strength of the new interactions should be {approximately} 10{sup {minus}2}G{sub F} and the resulting neutrino suppression and spectrum is similar to that in the ordinary MSW effect. I discuss some extensions of the standard model where these interactions can be present, taking into account the experimental constraints that arise mainly from the induced leptonic rare decays.

  18. Chronobiology of interspecific interactions in a changing world.

    PubMed

    Kronfeld-Schor, Noga; Visser, Marcel E; Salis, Lucia; van Gils, Jan A

    2017-11-19

    Animals should time activities, such as foraging, migration and reproduction, as well as seasonal physiological adaptation, in a way that maximizes fitness. The fitness outcome of such activities depends largely on their interspecific interactions; the temporal overlap with other species determines when they should be active in order to maximize their encounters with food and to minimize their encounters with predators, competitors and parasites. To cope with the constantly changing, but predictable structure of the environment, organisms have evolved internal biological clocks, which are synchronized mainly by light, the most predictable and reliable environmental cue (but which can be masked by other variables), which enable them to anticipate and prepare for predicted changes in the timing of the species they interact with, on top of responding to them directly. Here, we review examples where the internal timing system is used to predict interspecific interactions, and how these interactions affect the internal timing system and activity patterns. We then ask how plastic these mechanisms are, how this plasticity differs between and within species and how this variability in plasticity affects interspecific interactions in a changing world, in which light, the major synchronizer of the biological clock, is no longer a reliable cue owing to the rapidly changing climate, the use of artificial light and urbanization.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'. © 2017 The Author(s).

  19. Interactive Effects of Nitrogen and Climate Change on Biodiversity

    NASA Astrophysics Data System (ADS)

    Porter, E. M.; Bowman, W. D.; Clark, C. M.; Compton, J. E.; Pardo, L. H.; Soong, J.

    2011-12-01

    Biodiversity has been described as the diversity of life on earth within species, between species and in ecosystems. Biodiversity contributes to regulating ecosystem services like climate, flood, disease, and water quality regulation. Biodiversity also supports and sustains ecosystem services that provide material goods like food, fiber, fuel, timber and water, and to non-material benefits like educational, recreational, spiritual, and aesthetic ecosystem services. The Millennium Ecosystem Assessment estimated that the rate of biodiversity loss due to human activity in the last 50 years has been more rapid than at any other time in human history, and that many of the drivers of biodiversity loss are increasing. The strongest drivers of biodiversity loss include habitat loss, overexploitation, invasive species, climate change, and pollution, including pollution from reactive nitrogen. Of these stressors, climate change and reactive nitrogen from anthropogenic activities are causing some of the most rapid changes. Climate change is causing warming trends that result in consistent patterns of poleward and elevational range shifts of flora and fauna, causing changes in biodiversity. Warming has also resulted in changes in phenology, particularly the earlier onset of spring events, migration, and lengthening of the growing season, disrupting predator-prey and plant-pollinator interactions. In addition to warming, elevated carbon dioxide by itself can affect biodiversity by influencing plant growth, soil water, tissue stoichiometry, and trophic interactions. Nitrogen enrichment also impacts ecosystems and biodiversity in a variety of ways. Nitrogen enhances plant growth, but has been shown to favor invasive, fast-growing species over native species adapted to low nitrogen conditions. Although there have been a limited number of empirical studies on climate change and nitrogen interactions, inferences can be drawn from observed responses to each stressor by itself. For

  20. Climate change can cause spatial mismatch of trophically interacting species.

    PubMed

    Schweiger, Oliver; Settele, Josef; Kudrna, Otakar; Klotz, Stefan; Kühn, Ingolf

    2008-12-01

    Climate change is one of the most influential drivers of biodiversity. Species-specific differences in the reaction to climate change can become particularly important when interacting species are considered. Current studies have evidenced temporal mismatching of interacting species at single points in space, and recently two investigations showed that species interactions are relevant for their future ranges. However, so far we are not aware that the ranges of interacting species may become substantially spatially mismatched. We developed separate ecological-niche models for a monophagous butterfly (Boloria titania) and its larval host plant (Polygonum bistorta) based on monthly interpolated climate data, land-cover classes, and soil data at a 10'-grid resolution. We show that all of three chosen global-change scenarios, which cover a broad range of potential developments in demography, socio-economics, and technology during the 21st century from moderate to intermediate to maximum change, will result in a pronounced spatial mismatch between future niche spaces of these species. The butterfly may expand considerably its future range (by 124-258%) if the host plant has unlimited dispersal, but it could lose 52-75% of its current range if the host plant is not able to fill its projected ecological niche space, and 79-88% if the butterfly also is assumed to be highly dispersal limited. These findings strongly suggest that climate change has the potential to disrupt trophic interactions because co-occurring species do not necessarily react in a similar manner to global change, having important consequences at ecological and evolutionary time scales.

  1. Climate change and ocean acidification-interactions with aquatic toxicology.

    PubMed

    Nikinmaa, Mikko

    2013-01-15

    The possibilities for interactions between toxicants and ocean acidification are reviewed from two angles. First, it is considered how toxicant responses may affect ocean acidification by influencing the carbon dioxide balance. Second, it is introduced, how the possible changes in environmental conditions (temperature, pH and oxygenation), expected to be associated with climate change and ocean acidification, may interact with the toxicant responses of organisms, especially fish. One significant weakness in available data is that toxicological research has seldom been connected with ecological and physiological/biochemical research evaluating the responses of organisms to temperature, pH or oxygenation changes occurring in the natural environment. As a result, although there are significant potential interactions between toxicants and natural environmental responses pertaining to climate change and ocean acidification, it is very poorly known if such interactions actually occur, and can be behind the observed disturbances in the function and distribution of organisms in our seas. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Predator-prey interactions and changing environments: who benefits?

    PubMed

    Abrahams, Mark V; Mangel, Marc; Hedges, Kevin

    2007-11-29

    While aquatic environments have long been thought to be more moderate environments than their terrestrial cousins, environmental data demonstrate that for some systems this is not so. Numerous important environmental parameters can fluctuate dramatically, notably dissolved oxygen, turbidity and temperature. The roles of dissolved oxygen and turbidity on predator-prey interactions have been discussed in detail elsewhere within this issue and will be considered only briefly here. Here, we will focus primarily on the role of temperature and its potential impact upon predator-prey interactions. Two key properties are of particular note. For temperate aquatic ecosystems, all piscine and invertebrate piscivores and their prey are ectothermic. They will therefore be subject to energetic demands that are significantly affected by environmental temperature. Furthermore, the physical properties of water, particularly its high thermal conductivity, mean that thermal microenvironments will not exist so that fine-scale habitat movements will not be an option for dealing with changing water temperature in lentic environments. Unfortunately, there has been little experimental analysis of the role of temperature on such predator-prey interactions, so we will instead focus on theoretical work, indicating that potential implications associated with thermal change are unlikely to be straightforward and may present a greater threat to predators than to their prey. Specifically, we demonstrate that changes in the thermal environment can result in a net benefit to cold-adapted species through the mechanism of predator-prey interactions.

  3. Interactive Sectoring and Animation of Global Change Data

    NASA Technical Reports Server (NTRS)

    Meyer, Paul J.; Buillory, Anthony R.; Atkinson, Robert J.; Jedlovec, Gary J.

    1999-01-01

    In order to analyze and share results of global change data sets, scientists require a venue in which to exchange their results. One appropriate medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes have been developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java and C code which allows the user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces and how they are used for collaborative research.

  4. The effects of microstructural changes on montmorillonite-microbial interactions

    NASA Astrophysics Data System (ADS)

    Spence, Adrian; Robinson, Claion; Hanson, Richard E.

    2014-01-01

    Clay minerals are important natural adsorbents of soil organic matter (SOM) and therefore are natural modulators of soil-atmospheric carbon fluxes. Although such effects have been reported, little is known about the spatial distribution of organic matter (OM) on the surfaces of soil minerals and even less is known about the effects of microstructural changes on clay-organo interactions. Here we employ acid hydrolysis to induce varying degrees of microstructural changes to montmorillonite clay mineral as a function of time and combine IR spectroscopy, X-ray diffraction, and SEM-EDX as primary techniques to independently provide molecular-level information on the effects these changes on microbial interactions with the mineral. We observed that progressive dissolution of octahedral cations and the simultaneous enrichment of amorphous silica are prominent structural changes induced by hydrolysis, and that the adsorption of microbial-derived components (in particular lipids) on the surfaces of acid-treated clay decreases with increasing acid dissolution time. Although the precise mechanism(s) of interactions remains unclear, we speculate that this adsorption behavior is most likely due to spatial co-variation of microbial-derived OM with octahedral cations in the mineral, acid erosion of biochemically active binding sites, and/or a progressive increase in the hydrophilicity of the mineral surfaces by acid attack over time.

  5. Biotic interactions mediate soil microbial feedbacks to climate change.

    PubMed

    Crowther, Thomas W; Thomas, Stephen M; Maynard, Daniel S; Baldrian, Petr; Covey, Kristofer; Frey, Serita D; van Diepen, Linda T A; Bradford, Mark A

    2015-06-02

    Decomposition of organic material by soil microbes generates an annual global release of 50-75 Pg carbon to the atmosphere, ∼7.5-9 times that of anthropogenic emissions worldwide. This process is sensitive to global change factors, which can drive carbon cycle-climate feedbacks with the potential to enhance atmospheric warming. Although the effects of interacting global change factors on soil microbial activity have been a widespread ecological focus, the regulatory effects of interspecific interactions are rarely considered in climate feedback studies. We explore the potential of soil animals to mediate microbial responses to warming and nitrogen enrichment within a long-term, field-based global change study. The combination of global change factors alleviated the bottom-up limitations on fungal growth, stimulating enzyme production and decomposition rates in the absence of soil animals. However, increased fungal biomass also stimulated consumption rates by soil invertebrates, restoring microbial process rates to levels observed under ambient conditions. Our results support the contemporary theory that top-down control in soil food webs is apparent only in the absence of bottom-up limitation. As such, when global change factors alleviate the bottom-up limitations on microbial activity, top-down control becomes an increasingly important regulatory force with the capacity to dampen the strength of positive carbon cycle-climate feedbacks.

  6. Interactive nature of climate change and aerosol forcing

    NASA Astrophysics Data System (ADS)

    Nazarenko, L.; Rind, D.; Tsigaridis, K.; Del Genio, A. D.; Kelley, M.; Tausnev, N.

    2017-03-01

    The effect of changing cloud cover on climate, based on cloud-aerosol interactions, is one of the major unknowns for climate forcing and climate sensitivity. It has two components: (1) the impact of aerosols on clouds and climate due to in situ interactions (i.e., rapid response) and (2) the effect of aerosols on the cloud feedback that arises as climate changes—climate feedback response. We examine both effects utilizing the NASA Goddard Institute for Space Studies ModelE2 to assess the indirect effect, with both mass-based and microphysical aerosol schemes, in transient twentieth century simulations. We separate the rapid response and climate feedback effects by making simulations with a coupled version of the model as well as one with no sea surface temperature or sea ice response ("atmosphere-only" simulations). We show that the indirect effect of aerosols on temperature is altered by the climate feedbacks following the ocean response, and this change differs depending upon which aerosol model is employed. Overall, the effective radiative forcing (ERF) for the "direct effect" of aerosol-radiation interaction (ERFari) ranges between -0.2 and -0.6 W m-2 for atmosphere-only experiments, while the total effective radiative forcing, including the indirect effect (ERFari+aci) varies between about -0.4 and -1.1 W m-2 for atmosphere-only simulations; both ranges are in agreement with those given in Intergovernmental Panel on Climate Change (2013). Including the full feedback of the climate system lowers these ranges to -0.2 to -0.5 W m-2 for ERFari and -0.3 to -0.74 W m-2 for ERFari+aci. With both aerosol schemes, the climate change feedbacks have reduced the global average indirect radiative effect of atmospheric aerosols relative to what the emission changes would have produced, at least partially due to its effect on tropical upper tropospheric clouds.

  7. Climate change effects on beneficial plant-microorganism interactions.

    PubMed

    Compant, Stéphane; van der Heijden, Marcel G A; Sessitsch, Angela

    2010-08-01

    It is well known that beneficial plant-associated microorganisms may stimulate plant growth and enhance resistance to disease and abiotic stresses. The effects of climate change factors such as elevated CO(2), drought and warming on beneficial plant-microorganism interactions are increasingly being explored. This now makes it possible to test whether some general patterns occur and whether different groups of plant-associated microorganisms respond differently or in the same way to climate change. Here, we review the results of 135 studies investigating the effects of climate change factors on beneficial microorganisms and their interaction with host plants. The majority of studies showed that elevated CO(2) had a positive influence on the abundance of arbuscular and ectomycorrhizal fungi, whereas the effects on plant growth-promoting bacteria and endophytic fungi were more variable. In most cases, plant-associated microorganisms had a beneficial effect on plants under elevated CO(2). The effects of increased temperature on beneficial plant-associated microorganisms were more variable, positive and neutral, and negative effects were equally common and varied considerably with the study system and the temperature range investigated. Moreover, numerous studies indicated that plant growth-promoting microorganisms (both bacteria and fungi) positively affected plants subjected to drought stress. Overall, this review shows that plant-associated microorganisms are an important factor influencing the response of plants to climate change.

  8. Plant - microbe interactions under Global Change: the microbial perspective

    NASA Astrophysics Data System (ADS)

    Richter, Andreas

    2017-04-01

    There is ample evidence that both microorganisms and plants will respond to Global Changes, such as enhanced temperatures, increased nitrogen deposition and atmospheric CO2 concentrations, or biodiversity loss. Plant and microbial activities are linked, amongst other factors, by belowground carbon allocation and aboveground nutrient allocation, which may be altered under Global Changes to different extents. The effect of Global Changes on the interaction of plants and microbes is therefore often difficult to predict. In my talk, I will look at plant-microbe interactions from a microbial perspective. I will ask the question what the direct and indirect (plant-mediated) effects of Global Changes are on microbial activities in soil and what this in turn means for plants and for ecosystem-scale fluxes. I will present results from an in-situ drought experiment, from a long-term soil warming experiment and from a plant diversity experiment, where we investigated microbial growth and turnover, carbon and nutrient use efficiency and gross nutrient transformation rates.

  9. Mantle plume interaction with an endothermic phase change

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald; Anderson, Charles; Goldman, Peggy

    1995-01-01

    High spatial resolution numerical simulations of mantle plumes impinging from below on the endothermic phase change at 660-km depth are used to investigate the effects of latent heat release on the plume-phase change interaction. Both axisymmetric and planar upflows are considered, and the strong temperature dependence of mantle viscosity is taken into account. For plume strengths considered, a Clapeyron slope of -4 MPa/K prevents plume penetration of the phase change. Plumes readily penetrate the phase change for a Clapeyron slope of -2 MPa/K and arrive in the upper mantle considerably hotter than if they had not traversed the phase change. For the same amount of thermal drive, i.e., the same excess basal temperature, axisymmetric plumes are hotter upon reaching the upper mantle than are planar upwellings. Heating of plumes by their passage through the spinel-perovskite endothermic phase change can have important consequences for the ability of the plume to thermally thin the lithosphere and cause melting and volcanism.

  10. Deforestation changes land-atmosphere interactions across South American biomes

    NASA Astrophysics Data System (ADS)

    Salazar, Alvaro; Katzfey, Jack; Thatcher, Marcus; Syktus, Jozef; Wong, Kenneth; McAlpine, Clive

    2016-04-01

    South American biomes are increasingly affected by land use/land cover change. However, the climatic impacts of this phenomenon are still not well understood. In this paper, we model vegetation-climate interactions with a focus on four main biomes distributed in four key regions: The Atlantic Forest, the Cerrado, the Dry Chaco, and the Chilean Matorral ecosystems. We applied a three member ensemble climate model simulation for the period 1981-2010 (30 years) at 25 km resolution over the focus regions to quantify the changes in the regional climate resulting from historical deforestation. The results of computed modelling experiments show significant changes in surface fluxes, temperature and moisture in all regions. For instance, simulated temperature changes were stronger in the Cerrado and the Chilean Matorral with an increase of between 0.7 and 1.4 °C. Changes in the hydrological cycle revealed high regional variability. The results showed consistent significant decreases in relative humidity and soil moisture, and increases in potential evapotranspiration across biomes, yet without conclusive changes in precipitation. These impacts were more significant during the dry season, which resulted to be drier and warmer after deforestation.

  11. Changing intensity of interaction can resolve prisoner's dilemmas

    NASA Astrophysics Data System (ADS)

    Li, Jiaqi; Zhang, Chunyan; Sun, Qinglin; Chen, Zengqiang; Zhang, Jianlei

    2016-03-01

    We put forward a computational model which mainly focuses on the effect of changing the intensity of interaction between individuals to study the evolutionary prisoner's dilemma game in social networks. In this model, an individual will unilaterally increase the intensity of interaction from it to some of its neighbors in case it is satisfied with the current income which it obtains from the neighbor; conversely, the individual will unilaterally reduce the intensity of interaction from it to its neighbor. We show that this simple evolutionary rule can effectively shift the survival barrier of cooperators and drastically facilitate the emergence of cooperation. Interestingly, for a fixed temptation to defect, there exists the smallest increment of intensity of interaction, resulting in a plateau of high cooperation level due to the positive feedback mechanism. Furthermore, we find good agreement between simulation results and theoretical predictions obtained from an extended pair-approximation method. Meanwhile, we illustrate the dynamical evolution of cooperators on the network, and investigate the impact of noise during the strategy updates.

  12. Interactive Sectoring and Animation of Global Change Data

    NASA Technical Reports Server (NTRS)

    Meyer, Paul J.; Guillory, Anthony; Atkinson, R. J.; Jedlovec, Gary J.

    1999-01-01

    In order to analyze and share results of global change climate data sets, scientists require a venue in which to exchange their results. The perfect medium for these collaborative efforts is the world wide web. Intuitive and efficient user interfaces, and background processes were developed at the Global Hydrology and Climate Center to interactively view weather satellite, radar, global temperature anomaly, and model output data using the world wide web. These tools combine scripts, Java, and C code, which allows the end user to easily interact with data, to create high resolution sector images, and sectored animation sequences. This paper examines the architecture and interfaces which were designed at the Global Hydrology and Climate Center and how they are used for collaborative research.

  13. Binding interaction between rice glutelin and amylose: Hydrophobic interaction and conformational changes.

    PubMed

    Xu, Xingfeng; Liu, Wei; Zhong, Junzhen; Luo, Liping; Liu, Chengmei; Luo, Shunjing; Chen, Lin

    2015-11-01

    The interaction of rice glutelin (RG) with amylose was characterized by spectroscopic and molecular docking studies. The intrinsic fluorescence of RG increased upon the addition of amylose. The binding sites, binding constant and thermodynamic features indicated that binding process was spontaneous and the main driving force of the interaction was hydrophobic interaction. The surface hydrophobicity of RG decreased with increasing amount of amylose. Furthermore, synchronous fluorescence and circular dichroism (CD) spectra provided data concerning conformational and micro-environmental changes of RG. With the concentration of amylose increasing, the polarity around the tyrosine residues increased while the hydrophobicity decreased. Alteration of protein conformation was observed with increasing of α-helix and reducing of β-sheet. Finally, a visual representation of two binding sites located in the amorphous area of RG was presented by molecular modeling studies. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Shock wave interaction with an abrupt area change

    NASA Technical Reports Server (NTRS)

    Salas, Manuel D.

    1991-01-01

    The wave patterns that occur when a shock wave interacts with an abrupt area changed are analyzed in terms of the incident shock wave Mach number and area-jump ratio. The solutions predicted by a semi-similar models are in good agreement with those obtained numerically from the quasi-one-dimensional time-dependent Euler equations. The entropy production for the wave system is defined and the principle of minimum entropy production is used to resolve a nonuniqueness problem of the self-similar model.

  15. Hemodynamic changes by drug interaction of adrenaline with chlorpromazine.

    PubMed

    Higuchi, Hitoshi; Yabuki, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Miyawaki, Takuya

    2014-01-01

    Adrenaline (epinephrine) is included in dental local anesthesia for the purpose of vasoconstriction. In Japan, adrenaline is contraindicated for use in patients receiving antipsychotic therapy, because the combination of adrenaline and an antipsychotic is considered to cause severe hypotension; however, there is insufficient evidence supporting this claim. The purpose of the present study was to clarify the changes in hemodynamics caused by drug interaction between adrenaline and an antipsychotic and to evaluate the safety of the combined use of adrenaline and an antipsychotic in an animal study. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. A catheter was inserted into the femoral artery to measure blood pressure and pulse rate. Rats were pretreated by intraperitoneal injection of chlorpromazine or chlorpromazine and propranolol, and after 20 minutes, saline or 1 of 3 different doses of adrenaline was administered by intraperitoneal injection. Changes in the ratio of mean arterial blood pressure and pulse rate were measured after the injection of adrenaline. Significant hypotension and tachycardia were observed after the injection of adrenaline in the chlorpromazine-pretreated rats. These effects were in a dose-dependent manner, and 100 μg/kg adrenaline induced significant hemodynamic changes. Furthermore, in the chlorpromazine and propranolol-pretreated rats, modest hypertension was induced by adrenaline, but hypotension and tachycardia were not significantly shown. Hypotension was caused by a drug interaction between adrenaline and chlorpromazine through the activation of the β-adrenergic receptor and showed a dose-dependent effect. Low-dose adrenaline similar to what might be used in human dental treatment did not result in a significant homodynamic change.

  16. Hemodynamic Changes by Drug Interaction of Adrenaline With Chlorpromazine

    PubMed Central

    Higuchi, Hitoshi; Yabuki, Akiko; Ishii-Maruhama, Minako; Tomoyasu, Yumiko; Maeda, Shigeru; Miyawaki, Takuya

    2014-01-01

    Adrenaline (epinephrine) is included in dental local anesthesia for the purpose of vasoconstriction. In Japan, adrenaline is contraindicated for use in patients receiving antipsychotic therapy, because the combination of adrenaline and an antipsychotic is considered to cause severe hypotension; however, there is insufficient evidence supporting this claim. The purpose of the present study was to clarify the changes in hemodynamics caused by drug interaction between adrenaline and an antipsychotic and to evaluate the safety of the combined use of adrenaline and an antipsychotic in an animal study. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital. A catheter was inserted into the femoral artery to measure blood pressure and pulse rate. Rats were pretreated by intraperitoneal injection of chlorpromazine or chlorpromazine and propranolol, and after 20 minutes, saline or 1 of 3 different doses of adrenaline was administered by intraperitoneal injection. Changes in the ratio of mean arterial blood pressure and pulse rate were measured after the injection of adrenaline. Significant hypotension and tachycardia were observed after the injection of adrenaline in the chlorpromazine-pretreated rats. These effects were in a dose-dependent manner, and 100 μg/kg adrenaline induced significant hemodynamic changes. Furthermore, in the chlorpromazine and propranolol–pretreated rats, modest hypertension was induced by adrenaline, but hypotension and tachycardia were not significantly shown. Hypotension was caused by a drug interaction between adrenaline and chlorpromazine through the activation of the β-adrenergic receptor and showed a dose-dependent effect. Low-dose adrenaline similar to what might be used in human dental treatment did not result in a significant homodynamic change. PMID:25517550

  17. Climate change exacerbates interspecific interactions in sympatric coastal fishes.

    PubMed

    Milazzo, Marco; Mirto, Simone; Domenici, Paolo; Gristina, Michele

    2013-03-01

    Biological responses to warming are presently based on the assumption that species will remain within their bioclimatic envelope as environmental conditions change. As a result, changes in the relative abundance of several marine species have been documented over the last decades. This suggests that warming may drive novel interspecific interactions to occur (i.e. invasive vs. native species) or may intensify the strength of pre-existing ones (i.e. warm vs. cold adapted). For mobile species, habitat relocation is a viable solution to track tolerable conditions and reduce competitive costs, resulting in 'winner' species dominating the best quality habitat at the expense of 'loser' species. Here, we focus on the importance of warming in exacerbating interspecific interactions between two sympatric fishes. We assessed the relocation response of the cool-water fish Coris julis (a potential 'loser' species in warming scenarios) at increasing relative dominance of the warm-water fish Thalassoma pavo (a 'winner' species). These wrasses are widespread in the Mediterranean nearshore waters. C. julis tolerates cooler waters and is found throughout the basin. T. pavo is common along southern coasts, although the species range is expanding northwards as the Mediterranean warms. We surveyed habitat patterns along a thermo-latitudinal gradient in the Western Mediterranean Sea and manipulated seawater temperature under two scenarios (present day vs. projected) in outdoor arenas. Our results show that the cool-water species relocates to a less-preferred seagrass habitat and undergoes lower behavioural performance in warmer environments, provided the relative dominance of its warm-water antagonist is high. The results suggest that expected warming will act synergistically with increased relative dominance of a warm-water species to cause a cool-water fish to relocate in a less-preferred habitat within the same thermal environment. Our study highlights the complexity of climate

  18. Noise pollution changes avian communities and species interactions.

    PubMed

    Francis, Clinton D; Ortega, Catherine P; Cruz, Alexander

    2009-08-25

    Humans have drastically changed much of the world's acoustic background with anthropogenic sounds that are markedly different in pitch and amplitude than sounds in most natural habitats. This novel acoustic background may be detrimental for many species, particularly birds. We evaluated conservation concerns that noise limits bird distributions and reduces nesting success via a natural experiment to isolate the effects of noise from confounding stimuli and to control for the effect of noise on observer detection biases. We show that noise alone reduces nesting species richness and leads to different avian communities. Contrary to expectations, noise indirectly facilitates reproductive success of individuals nesting in noisy areas as a result of the disruption of predator-prey interactions. The higher reproductive success for birds within noisy habitats may be a previously unrecognized factor contributing to the success of urban-adapted species and the loss of birds less tolerant of noise. Additionally, our findings suggest that noise can have cascading consequences for communities through altered species interactions. Given that noise pollution is becoming ubiquitous throughout much of the world, knowledge of species-specific responses to noise and the cumulative effects of these novel acoustics may be crucial to understanding and managing human-altered landscapes.

  19. Does cadmium pollution change trophic interactions in rockpool food webs?

    SciTech Connect

    Koivisto, S.; Arner, M.; Kautsky, N.

    1997-06-01

    The authors studied the regulation of phytoplankton and zooplankton biomass in rockpool food webs under chronic cadmium pollution. Experimental food webs with two and three trophic levels were composed of phytoplankton, small-bodied zooplankton (Chydorus sphaericus, Cyclops sp., and rotifers), Daphnia magna, and Notonecta sp., a zooplanktivorous predator. Every food web received a control and cadmium treatment allowing a separate study of cadmium and predation effects. After a 3-week stabilization period, cadmium and Notonecta were added and changes in primary productivity, chlorophyll, zooplankton species composition, and biomass were followed during 8 weeks. The results showed that phytoplankton and Daphnia were consumer regulated in both control and cadmium treatments, although resource availability ultimately determined the biomass at each trophic level. Daphnia was the only zooplankton species that reduced phytoplankton and also the only species that was eliminated by Notonecta predation. Notonecta had an indirect positive impact on phytoplankton biomass that increased after the extinction of Daphnia. Cadmium significantly reduced phytoplankton and Daphnia but did not change the trophic interactions between them, i.e., Daphnia and chlorophyll were significantly negatively correlated both in the control and cadmium treatments. Cadmium did not affect the relationship between Daphnia and Notonecta.

  20. Computer Simulations for Top Flavor-changing Neutral Higgs Interactions

    NASA Astrophysics Data System (ADS)

    Sloan, Jackson; Kao, Chung; Jain, Rishabh; McCoy, Brent

    2017-01-01

    Two-Higgs-doublet models (2HDM) are natural extensions to the Standard Model (SM), and a general 2HDM allows tree-level flavor-changing neutral currents (FCNC). We choose this model for our analysis. Since the top quark is heavier than the light Higgs, t -> ch is kinematically possible, and a tch coupling is an accessible example of an FCNC. We look to FCNCs to study physics beyond the Standard Model, and, more specifically, to examine the potential for discovery of a flavor-changing neutral Higgs (FCNH) interaction at the LHC. We examine the discovery potential for the processes pp -> th -> bjjWW -> bjjlνlν + X and pp -> t t -> bjjcWW + X , using MadGraph to generate parton level calculations, Pythia for showering and hadronization, and Delphes for detector simulation. We use ROOT analysis to reconstruct the transverse mass mT (ll ,ET) . We examine these processes and present event rates and significance of the Higgs signal, including SM physics background with realistic acceptance cuts for √{ s} = 13 TeV and √{ s} = 14 TeV. This research was funded in part by NSF award PHY-1359417.

  1. Laser-tissue photothermal interaction and tissue temperature change

    NASA Astrophysics Data System (ADS)

    Ives, Andrea K.; Chen, Wei R.; Jassemnejad, Baha; Bartels, Kenneth E.; Liu, Hong; Nordquist, John A.; Nordquist, Robert E.

    2000-06-01

    Responses of tissue to laser stimulation are crucial in both disease diagnostics and treatment. In general, when tissue absorbs laser energy photothermal interaction occurs. The most important signature of the photothermal reaction is the tissue temperature change during and after the laser irradiation. Experimentally, the tissue reaction to laser irradiation can be measured by numerous methods including direct temperature measurement and measurement of perfusion change. In this study, a multiple-channel temperature probe was used to measure tissue temperature change during irradiation of lasers with different wavelengths at different power settings. Tissue temperature in chicken breast tissue as well as skin and breast tumor of rats was measured during irradiation of an 805-nm diode laser. The vertical profiles of temperature were obtained using simultaneous measurement at several different locations. The absorption of laser energy by tissue was enhanced by injecting laser-absorbing dye into the tissue. A Nd:YAG laser of 1064-nm wavelength was also used to irradiate turkey breast tissue. Our results showed that both laser penetration ability and photothermal reaction depended on the wavelength of lasers. In the case of 805-nm laser, the temperature increased rapidly only in the region close to the laser source and the thermal equilibrium could be reached within a short time period. The laser absorbing dye drastically enhanced the thermal reaction, resulting in approximately 4-fold temperature increase. On the contrary, the laser beam with 1064-nm wavelength penetrated deeply into tissue and the tissue temperature continued increasing even after a 10-minute laser irradiation.

  2. Soil Moisture-Ecosystem-Climate Interactions in a Changing Climate

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E.; Hirschi, M.; Mueller, B.; Orlowsky, B.; Teuling, A.

    2011-12-01

    Soil moisture is a key variable of the climate system. It constrains plant transpiration and photosynthesis in several regions of the world, with consequent impacts on the water, energy and biogeochemical cycles (e.g. Seneviratne et al. 2010). Moreover it is a storage component for precipitation and radiation anomalies, inducing persistence in the climate system. Finally, it is involved in a number of feedbacks at the local, regional and global scales, and plays a major role in climate-change projections. This presentation will provide an overview on these interactions, based on several recent publications (e.g. Seneviratne et al. 2006, Orlowsky and Seneviratne 2010, Teuling et al. 2010, Hirschi et al. 2011). In particular, it will highlight possible impacts of soil moisture-ecosystem coupling for climate extremes such as heat waves and droughts, and the resulting interconnections between biophysical and biogeochemical feedbacks in the context of climate change. Finally, it will also address recent regional- to global-scale trends in land hydrology and ecosystem functioning, as well as issues and potential avenues for investigating these trends (e.g. Jung et al. 2010, Mueller et al. 2011). References Hirschi, M., S.I. Seneviratne, V. Alexandrov, F. Boberg, C. Boroneant, O.B. Christensen, H. Formayer, B. Orlowsky, and P. Stepanek, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nature Geoscience, 4, 17-21, doi:10.1038/ngeo1032. Jung, M., et al., 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951-954. doi:10.1038/nature09396 Mueller, B., S.I. Seneviratne, et al.: Evaluation of global observations-based evapotranspiration datasets and IPCC AR4 simulations, Geophys. Res. Lett., 38, L06402, doi:10.1029/2010GL046230 Orlowsky, B., and S.I. Seneviratne, 2010: Statistical analyses of land-atmosphere feedbacks and their possible pitfalls. J. Climate, 23(14), 3918

  3. Innovative Interactive Visitor Experiences Focused on Climate Change

    NASA Astrophysics Data System (ADS)

    Lettvin, E. E.

    2011-12-01

    Pacific Science Center has adopted a multi-pronged approach to introduce visitors to the concepts of climate change and linkages to human behavior in an informal science education setting. We leverage key fixed exhibit assets derived from collaborations with NOAA: Science on a Sphere and an exhibit kiosk showcasing local CO2 measurements that are adjacent on our exhibit floor. NOAA PMEL Scientists deployed a sensor at the top of the Space Needle that measures variability in atmospheric CO2 over Seattle; the kiosk showcases these near-real-time, daily, weekly and monthly measurements as well as similar observations from a NOAA buoy near Aberdeen, Washington. Displays of these data enable visitors to see first-hand varying CO2 levels in urban and remote marine environments as well as seasonal cycling. It also reveals quantifiable increases in CO2 levels over a relatively short time (~5 years). Trained interpreters help visitors understand linkages between personal behavior and corresponding CO2 footprints. Interpreters discuss connections between local and regional CO2 measurements displayed on the kiosk, and global Sphere datasets including NOAA Carbon Tracker, changing arctic sea ice coverage and sea level rise projections. Portable Discovery Carts, consisting of props and interactive, hands-on activities provide a platform for facilitated interpretation on a series of topics. We have developed two climate focused carts: 'Sinks and Sources' that examines materials and activities that produce and absorb carbon, and 'Ocean Acidification' that shows how absorption of atmospheric CO2 is changing ocean composition and its habitability for marine life. These carts can be deployed anywhere on the exhibit floor but are primarily used adjacent to the Sphere and the kiosk, making it possible to have a range of conversations about global and local CO2 levels, linkages to individual and collective behaviour and associated implications. Additional collaborations with members of

  4. Climate Change Feedbacks from Interactions Between New and Old Carbon

    SciTech Connect

    Dukes, Jeffrey S.; Phillips, Richard P.

    2016-05-24

    plots to simulate root-derived C fluxes. Specifically, we constructed artificial roots attached to an automated peristaltic pump to deliver the compounds to soil semi-continuously during the peak of the growing season. We found that changes in exudate quality had small but significant effects on microbial activities, often interacting with N availability and temperature-induced changes. These results further underscore the importance of priming effects, especially under warming conditions. Collectively, our results provide some of the first field-based estimates of how soil moisture and temperature can directly and indirectly alter root-induced changes in SOM dynamics. This exploratory project lays the groundwork for further research on priming that incorporates effects of plant species and microbial communities to global changes. Such information should enable the development of more mechanistic and better predictive models of SOM decomposition under increased greenhouse gas levels, with the ultimate goal of reducing the level of uncertainty in projections of future climate.

  5. Changing shape of elastic shells via electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Jadhao, Vikram; Thomas, Creighton; Olvera de La Cruz, Monica

    2014-03-01

    Shape plays a key role in the design of synthetic structures such as biomimetic red blood cells, metallic nanocontainers and colloidal building blocks for self-assembly. It is therefore crucial to enhance our current capabilities to synthesize membranes of desired shapes with precision and provide a simple procedure to induce shape modifications. We show that Coulomb interactions can be used as a tool for designing and manipulating shapes of soft elastic shells at the nanoscale. We investigate the minimal-energy conformations of charged, elastic nanoshells subject to the constraint of fixed total volume for a wide range of electrostatic and elastic parameters. We find that the shape of the shell changes when we decrease the electrolyte concentration in the surrounding environment or increase the total charge on the shell surface. We obtain a variety of smooth shapes that include ellipsoids, discs, and bowls. A discussion on the possible origins of these shapes and related procedures to induce shape deformations is also provided. We thank U.S. Department of Energy Award DEFG02-08ER46539 and the Office of the Director of Defense Research and Engineering (DDR&E) and the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-10-1-0167 for financial support.

  6. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarad; H. Yasuhara; A. Alajmi

    2002-04-20

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray micro-tomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the present time, we are developing an inverse process using a simulation model to understand the fluid flow patterns in

  7. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; H. Yasuhara; A. Alajmi; Z. Karpyn

    2002-10-28

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (1) developing the direct experimental measurements of fracture aperture and topology using high-resolution x-ray microtomography, (2) modeling of fracture permeability in the presence of asperities and confining stress, and (3) simulation of two-phase fluid flow in a fracture and a layered matrix. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. The distribution of fracture aperture is a difficult issue that we are studying and developing methods of quantification. The difficulties are both numerical and conceptual. Numerically, the three-dimensional data sets include millions, and sometimes, billions of points, and pose a computational challenge. The conceptual difficulties derive from the rough nature of the fracture surfaces, and the heterogeneous nature of the rock matrix. However, the high-resolution obtained by the imaging system provides us a much needed measuring environment on rock samples that are subjected to simultaneous fluid flow and confining stress. Pilot multi-phase experiments have been performed, proving the ability to detect two phases in certain large fractures. The absolute permeability of a fracture depends on the behavior of the asperities that keep it open. A model is being developed that predicts the permeability and average aperture of a fracture as a function of time under steady flow of water including the pressure solution at the asperity contact points. Several two-phase flow experiments in the presence of a fracture tip were performed in the past. At the

  8. A UNIFYING CONCEPT FOR ASSESSING TOXICOLOGICAL INTERACTIONS: CHANGES IN SLOPE

    EPA Science Inventory

    Robust statistical methods are important to the evaluation of interactions among chemicals in a mixture. However, different concepts of interaction as applied to the statistical analysis of chemical mixture toxicology data or as used in environmental risk assessment often can ap...

  9. A UNIFYING CONCEPT FOR ASSESSING TOXICOLOGICAL INTERACTIONS: CHANGES IN SLOPE

    EPA Science Inventory

    Robust statistical methods are important to the evaluation of interactions among chemicals in a mixture. However, different concepts of interaction as applied to the statistical analysis of chemical mixture toxicology data or as used in environmental risk assessment often can ap...

  10. Asymmetries of Knowledge and Epistemic Change in Social Gaming Interaction

    ERIC Educational Resources Information Center

    Piirainen-Marsh, Arja; Tainio, Liisa

    2014-01-01

    While a growing number of studies investigate the role of knowledge and interactional management of knowledge asymmetries in conversation analysis, the epistemic organization of multilingual and second language interactions is still largely unexplored. This article addresses this issue by investigating how knowledge asymmetries and changing…

  11. Asymmetries of Knowledge and Epistemic Change in Social Gaming Interaction

    ERIC Educational Resources Information Center

    Piirainen-Marsh, Arja; Tainio, Liisa

    2014-01-01

    While a growing number of studies investigate the role of knowledge and interactional management of knowledge asymmetries in conversation analysis, the epistemic organization of multilingual and second language interactions is still largely unexplored. This article addresses this issue by investigating how knowledge asymmetries and changing…

  12. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-07-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) instrument on board the NASA-Aura satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce zonal-mean biases of less than ±3 % for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling zonal-mean biases were also within the insignificant range of ±3 % (that is ±0.14 g kg-1) in both models. Sampling led to a temperature zonal-mean bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8 % bias was

  13. The impact of orbital sampling, monthly averaging and vertical resolution on climate chemistry model evaluation with satellite observations

    NASA Astrophysics Data System (ADS)

    Aghedo, A. M.; Bowman, K. W.; Shindell, D. T.; Faluvegi, G.

    2011-03-01

    Ensemble climate model simulations used for the Intergovernmental Panel on Climate Change (IPCC) assessments have become important tools for exploring the response of the Earth System to changes in anthropogenic and natural forcings. The systematic evaluation of these models through global satellite observations is a critical step in assessing the uncertainty of climate change projections. This paper presents the technical steps required for using nadir sun-synchronous infrared satellite observations for multi-model evaluation and the uncertainties associated with each step. This is motivated by need to use satellite observations to evaluate climate models. We quantified the implications of the effect of satellite orbit and spatial coverage, the effect of variations in vertical sensitivity as quantified by the observation operator and the impact of averaging the operators for use with monthly-mean model output. We calculated these biases in ozone, carbon monoxide, atmospheric temperature and water vapour by using the output from two global chemistry climate models (ECHAM5-MOZ and GISS-PUCCINI) and the observations from the Tropospheric Emission Spectrometer (TES) satellite from January 2005 to December 2008. The results show that sampling and monthly averaging of the observation operators produce biases of less than ±3% for ozone and carbon monoxide throughout the entire troposphere in both models. Water vapour sampling biases were also within the insignificant range of ±3% (that is ±0.14 g kg-1) in both models. Sampling led to a temperature bias of ±0.3 K over the tropical and mid-latitudes in both models, and up to -1.4 K over the boundary layer in the higher latitudes. Using the monthly average of temperature and water vapour operators lead to large biases over the boundary layer in the southern-hemispheric higher latitudes and in the upper troposphere, respectively. Up to 8% bias was calculated in the upper troposphere water vapour due to monthly

  14. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  15. Change Trajectories for Parent-Child Interaction Sequences during Parent-Child Interaction Therapy for Child Physical Abuse

    ERIC Educational Resources Information Center

    Hakman, Melissa; Chaffin, Mark; Funderburk, Beverly; Silovsky, Jane F.

    2009-01-01

    Objective: Parent-child interaction therapy (PCIT) has been found to reduce future child abuse reports among physically abusive parents. Reductions in observed negative parenting behaviors mediated this benefit. The current study examined session-by-session interaction sequences in order to identify when during treatment these changes occur and…

  16. Change Trajectories for Parent-Child Interaction Sequences during Parent-Child Interaction Therapy for Child Physical Abuse

    ERIC Educational Resources Information Center

    Hakman, Melissa; Chaffin, Mark; Funderburk, Beverly; Silovsky, Jane F.

    2009-01-01

    Objective: Parent-child interaction therapy (PCIT) has been found to reduce future child abuse reports among physically abusive parents. Reductions in observed negative parenting behaviors mediated this benefit. The current study examined session-by-session interaction sequences in order to identify when during treatment these changes occur and…

  17. Social interaction is associated with changes in infants’ motor activity

    PubMed Central

    Scola, Céline; Bourjade, Marie; Jover, Marianne

    2015-01-01

    Background In developmental research, infants are commonly assumed to be early stakeholders in interactions with their caregivers. The tools that infants can use to interact with others vary from visual contact to smiling or vocalizing, and also include motor activity. However, surprisingly few studies have explored how the nature and context of social interactions affect infants’ engagement in motor activity. Methods We investigated the kinematic properties of foot and face movements produced by 11 infants aged between 5 and 9 months during six contrasting dyadic episodes (i.e. passive presence of a stranger or the infant's mother, weak or intense interaction with the stranger/mother as she sings a nursery play song). Results The infants’ face and foot motor activity was significantly reduced during the interactive episodes, compared with the episodes without any interaction, in both the mother and stranger conditions. Furthermore, the level of their motor activity was significantly lower in the stranger condition than in the mother one for some parameters. Conclusion These results are in line with those reported by previous studies and confirm the relevance of using motor activity to delineate the early forms of interactive episodes in infants. PMID:26546793

  18. Stages of change: interactions with treatment compliance and involvement.

    PubMed

    DiClemente, C C; Scott, C W

    1997-01-01

    Current perspectives on compliance and involvement in treatment often overlook the fact that treatment occurs in the context of a process of change and not vice versa. Each individual moves at a unique pace through a series of stages of change and in a cyclical fashion over a substantial period of time. Treatment personnel and programs should recognize the diversity of stage status in their clients and address each one in a manner compatible with the client's current stage of change, the tasks needed to move forward in the process of change, and an understanding of the course of change. Such considerations should assist the therapist in developing strategies to increase the engagement of a wide variety of clients, to improve retention of these clients in a realistic course of treatment, and to foster participation in stage-appropriate tasks that promote successful movement through the stages to sustained, long-term change.

  19. Binocular interactions in random chromatic changes at isoluminance.

    PubMed

    Medina, José M

    2006-02-01

    To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.

  20. Binocular interactions in random chromatic changes at isoluminance

    NASA Astrophysics Data System (ADS)

    Medina, José M.

    2006-02-01

    To examine the type of chromatic interactions at isoluminance in the phenomenon of binocular vision, I have determined simple visual reaction times (VRT) under three observational conditions (monocular left, monocular right, and binocular) for different chromatic stimuli along random color axes at isoluminance (simultaneous L-, M-, and S-cone variations). Upper and lower boundaries of probability summation as well as the binocular capacity coefficient were estimated with observed distributions of reaction times. The results were not consistent with the notion of independent chromatic channels between eyes, suggesting the existence of excitatory and inhibitory binocular interactions at suprathreshold isoluminance conditions.

  1. Land Use and climate change interactions in tropical South America

    NASA Astrophysics Data System (ADS)

    Swann, A. L. S.; Longo, M.; Knox, R. G.; Lee, E.; Moorcroft, P. R.

    2015-12-01

    Ongoing agricultural expansion in Amazonia and the surrounding areas of Brazil is expected to continue over the next several decades as global food demand increases. The transition of natural forest and savannah ecosystems to pastureland and agricultural crops is predicted to create warmer and drier atmospheric conditions than the native vegetation. Compounding this effect, climate change is likely to lead to reduced transpiration fluxes as plants become more water efficient under higher atmospheric carbon dioxide (CO2) levels. Here we investigate the expected impacts of predicted future land use on the climate of South America as well as the potential impacts of increasing CO2. We find that the climate response to land use change generally consistent with expectations from previous global modeling simulations with drier conditions resulting from deforestation, however the direct changes in precipitation are relatively small (on order of a few percent). Local drying from land use change is driven primarily by decreases in evapo-transpiration associated with the loss of forest, and concomitant increases in runoff. Significant changes in convectively available potential energy and convective inhibition during the transition to the wet season indicate that the decrease in surface latent heat flux is indeed leading to a drier atmosphere, however these changes occur around a mean climatological state that is already very favorable for convection, and thus lead to relatively small changes in precipitation. The physiological effects of increasing CO2 alone also drive a reduction in precipitation, which is compounded by radiation-driven circulation changes. If these land use changes were to occur under a background state of drier conditions, such as those predicted for the future global climate model experiments, this additional atmospheric drying driven by land use change may be sufficient to decrease precipitation more substantially.

  2. Child-Directed Interaction: Prediction of Change in Impaired Mother-Child Functioning

    ERIC Educational Resources Information Center

    Harwood, Michelle D.; Eyberg, Sheila M.

    2006-01-01

    The first phase of parent-child interaction therapy (PCIT), called child-directed interaction, teaches parents to use positive and differential social attention to improve the parent-child relationship. This study examined predictors of change in mother and child functioning during the child-directed interaction for 100 mother-child dyads. The…

  3. Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa (Final Report)

    EPA Science Inventory

    EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reef...

  4. Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa (Final Report)

    EPA Science Inventory

    EPA announced the release of the final document, Climate Change and Interacting Stressors: Implications for Coral Reef Management in American Samoa. This report provides a synthesis of information on the interactive effects of climate change and other stressors on the reef...

  5. Implications of Glacier Volume Change for Ice-Ocean Interactions

    NASA Astrophysics Data System (ADS)

    Hood, E. W.; O'Neel, S.; Fellman, J.; Bidlack, A.; Arendt, A. A.; Arimitsu, M.; Spencer, R. G.

    2015-12-01

    Changes in climate are forcing complex glaciological responses that can be transmitted to downstream ecosystems via glacier runoff. Along the Gulf of Alaska, rates of glacier mass loss are among the highest measured on Earth. Changes in glacier volume in this region are altering the amount of glacier runoff delivered to the coastal ocean. Moreover, shifts in glacier extent are changing the location of the ice-ocean interface and, in cases where tidewater glaciers become grounded, fundamentally altering circulation in glacierized fjords. The runoff from glacier ecosystems is unique in terms of its physical and chemical properties when compared to runoff from non-glacial ecosystems. For example, the silt and chemical constituents in glacier discharge alter light penetration and the nutrient regime in near-shore marine ecosystems, which, in turn, influence levels of marine primary productivity. Future changes in the magnitude, timing, and location of glacier runoff have important implications for biogeochemical and ecological processes in glacially-dominated fjords and estuaries. This talk will highlight research from glacierized watersheds and fjords to synthesize what is known about the physical, chemical, and biological linkages that characterize icefield-ocean ecosystems along the Gulf of Alaska.

  6. An Interactional Model for Resistance to Change in Educational Institutions.

    ERIC Educational Resources Information Center

    Gjerde, Per F.

    Although schools have served as a major target of both educational and mental-health oriented interventions, they have shown a marked tendency to assimilate innovative programs into existing patterns. This paper analyzes the sources and manifestations of resistance to change in schools and discusses the implications of such resistance for the…

  7. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change

    USGS Publications Warehouse

    McCluney, Kevin E.; Belnap, Jayne; Collins, Scott L.; González, Angélica L.; Hagen, Elizabeth M.; Holland, J. Nathaniel; Kotler, Burt P.; Maestre, Fernando T.; Smith, Stanley D.; Wolf, Blair O.

    2012-01-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  8. Changes in cerebro-cerebellar interaction during response inhibition after performance improvement.

    PubMed

    Hirose, Satoshi; Jimura, Koji; Kunimatsu, Akira; Abe, Osamu; Ohtomo, Kuni; Miyashita, Yasushi; Konishi, Seiki

    2014-10-01

    It has been demonstrated that motor learning is supported by the cerebellum and the cerebro-cerebellar interaction. Response inhibition involves motor responses and the higher-order inhibition that controls the motor responses. In this functional MRI study, we measured the cerebro-cerebellar interaction during response inhibition in two separate days of task performance, and detected the changes in the interaction following performance improvement. Behaviorally, performance improved in the second day, compared to the first day. The psycho-physiological interaction (PPI) analysis revealed the interaction decrease from the right inferior frontal cortex (rIFC) to the cerebellum (lobule VII or VI). It was also revealed that the interaction increased from the same cerebellar region to the primary motor area. These results suggest the involvement of the cerebellum in response inhibition, and raise the possibility that the performance improvement was supported by the changes in the cerebro-cerebellar interaction. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages.

    PubMed

    Radinger, Johannes; Hölker, Franz; Horký, Pavel; Slavík, Ondřej; Dendoncker, Nicolas; Wolter, Christian

    2016-04-01

    River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step-wise boosted regression trees based on 250 m raster grid cells. Species-specific models were built for both 'moderate' and 'extreme' future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7-2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56-85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species

  10. Interactions between environmental changes and brain plasticity in birds.

    PubMed

    Barnea, Anat

    2009-09-01

    Neurogenesis and neuronal recruitment occur in many vertebrates, including humans. Most of the new neurons die before reaching their destination. Those which survive migrate to various brain regions, replace older ones and connect to existing circuits. Evidence suggests that this replacement is related to acquisition of new information. Therefore, neuronal replacement can be seen as a form of brain plasticity that enables organisms to adjust to environmental changes. However, direct evidence of a causal link between replacement and learning remains elusive. Our hypothesis is that increased neuronal recruitment is associated with increase in memory load. Moreover, since neuronal recruitment is part of a turnover process, we assume that the same conditions that favor survival of some neurons induce the death of others. I present studies that investigated the effect of various behaviors and environmental conditions (food-hoarding, social change, reproductive cycle) on neuronal recruitment and survival in adult avian brains, and discuss how these phenomena relate to the life of animals. I offer a frame and rationale for comparing neuronal replacement in the adult brain, in order to uncover the pressures, rules, and mechanisms that govern its constant rejuvenation. The review emphasizes the importance of using various approaches (behavioral, anatomical, cellular and hormonal) in neuroethological research, and the need to study natural populations, in order to fully understand how neurogenesis and neuronal replacement contribute to life of animals. Finally, the review indicates to future directions and ends with the hope that a better understanding of adult neuronal replacement will lead to medical applications.

  11. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  12. Common Processes of Change in Psychotherapy and Seven Other Social Interactions.

    ERIC Educational Resources Information Center

    Lampropoulos, Georgios K.

    2001-01-01

    Argues that change processes in psychotherapy can be understood more clearly by comparing them with other change-inducing social relationships. In showing how this may be done, describes different social interactions and discusses them in terms of a parsimonious set of common factors in change. Stresses the importance of the cross-fertilization of…

  13. Common Processes of Change in Psychotherapy and Seven Other Social Interactions.

    ERIC Educational Resources Information Center

    Lampropoulos, Georgios K.

    2001-01-01

    Argues that change processes in psychotherapy can be understood more clearly by comparing them with other change-inducing social relationships. In showing how this may be done, describes different social interactions and discusses them in terms of a parsimonious set of common factors in change. Stresses the importance of the cross-fertilization of…

  14. Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling: Interactions and Feedbacks

    EPA Science Inventory

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions...

  15. New interaction between dark energy and dark matter changes sign during cosmological evolution

    NASA Astrophysics Data System (ADS)

    Sun, Cheng-Yi; Yue, Rui-Hong

    2012-02-01

    It is found by Cai and Su that the interaction between dark energy and cold dark matter is likely to change the sign during the cosmological evolution. Motivated by this, we suggest a new form of interaction between dark energy and dark matter, which changes from negative to positive as the expansion of or universe changes from decelerated to accelerated. We find that the interacting model is consistent with the second law of thermodynamics and the observational constraints. And, we also discuss the unified adiabatic-squared sound speed of the model.

  16. Complex interactions in Lake Michigan’s rapidly changing ecosystem

    USGS Publications Warehouse

    Vanderploeg, Henry A.; Bunnell, David B.; Carrick, Hunter J.; Hook, Tomas O.

    2015-01-01

    For over 30 years, Lake Michigan’s food web has been in a constant state of transition from reductions in nutrient loading and proliferation of invasive species at multiple trophic levels. In particular, there has been concern about impacts from the invasive predatory cercopagids (Bythotrephes longimanus and Cercopagis pengoi) and expanding dreissenid mussel and round goby populations. This special issue brings together papers that explore the status of the Lake Michigan food web and the factors responsible for these changes, and suggests research paths that must be taken for understanding and predicting system behavior. This introductory paper describes the special issue origin, presents an overview of the papers, and draws overarching conclusions from the papers.

  17. An Interactive Multi-Model for Consensus on Climate Change

    SciTech Connect

    Kocarev, Ljupco

    2014-07-02

    This project purports to develop a new scheme for forming consensus among alternative climate models, that give widely divergent projections as to the details of climate change, that is more intelligent than simply averaging the model outputs, or averaging with ex post facto weighting factors. The method under development effectively allows models to assimilate data from one another in run time with weights that are chosen in an adaptive training phase using 20th century data, so that the models synchronize with one another as well as with reality. An alternate approach that is being explored in parallel is the automated combination of equations from different models in an expert-system-like framework.

  18. The interaction of climate change and methane hydrates

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  19. The interaction of climate change and methane hydrates

    NASA Astrophysics Data System (ADS)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-03-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  20. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studies, and some of the new results are presented in this report. These samples are being scanned in order to

  1. MULTI-PHASE FRACTURE-MATRIX INTERACTIONS UNDER STRESS CHANGES

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarado; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-06-15

    The main objectives of this project are to quantify the changes in fracture porosity and multiphase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) quantifying the effect of confining stress on the distribution of fracture aperture, and (c) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress on the nature of the rock and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual descriptions of the process are shown in the report while detailed analysis of the behavior of the distribution of fracture aperture is in progress. Both extensional and shear fractures are being considered. The initial multi-phase flow tests were done in extensional fractures. Several rock samples with induced shear fracture are being studied, and some of the new results are presented in this report. These samples are being scanned in order to

  2. Irukandji jellyfish polyps exhibit tolerance to interacting climate change stressors.

    PubMed

    Klein, Shannon G; Pitt, Kylie A; Rathjen, Kristen A; Seymour, Jamie E

    2014-01-01

    Increasing ocean temperatures and strengthening boundary currents have caused the poleward migration of many marine species. Cubozoan jellyfish known to cause Irukandji syndrome have historically been confined to tropical waters but may be expanding into subtropical regions. Here, we examine the interactive effects of warming and acidification on the population dynamics of polyps of an Irukandji jellyfish, Alatina nr mordens, and the formation of statoliths in newly metamorphosed medusae, to determine if this jellyfish could tolerate future conditions predicted for southeast Queensland (SEQ), Australia. Two experiments, examining the orthogonal factors of temperature and pH, were undertaken. Experiment 1 mimicked the current, ca. 2050 and ca. 2100 summer temperature and pH conditions predicted for SEQ using A1F1 scenarios (temperature: 25, 27, 29 °C; pH: 7.9, 7.8, 7.6) and Experiment 2 mimicked current and future winter conditions (18 and 22 °C, pH 7.9, 7.8, 7.6). All polyps in Experiment 1 survived and budded. Fewer polyps budded in the lower pH treatments; however, patterns varied slightly among temperature treatments. Statoliths at pH 7.6 were 24% narrower than those at pH 7.8 and 7.9. Most polyps survived the winter conditions mimicked by Experiment 2 but only polyps in the 22 °C, pH 7.9 treatment increased significantly. The current absence of A. nr mordens medusae in SEQ, despite the polyps' ability to tolerate the current temperature and pH conditions, suggests that ecological, rather than abiotic factors currently limit their distribution. Observations that budding was lower under low pH treatments suggest that rates of asexual reproduction will likely be much slower in the future. We consider that A. nr mordens polyps are likely to tolerate future conditions but are unlikely to thrive in the long term. However, if polyps can overcome potential ecological boundaries and acidification proceeds slowly A. nr mordens could expand polewards in the short

  3. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    Altunkaynak, Baris; Hou, Wei-Shu; Kao, Chung; Kohda, Masaya; McCoy, Brent

    2015-12-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 → t c bar + t bar c, where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 125 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos ⁡ (β - α), while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin ⁡ (β - α) ∼ 1. We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies.

  4. Flavor changing heavy Higgs interactions at the LHC

    NASA Astrophysics Data System (ADS)

    McCoy, Brent; Altunkaynak, Baris; Kao, Chung; Hou, Wei-Shou; Kohda, Masaya

    2016-03-01

    A general two Higgs doublet model (2HDM) is adopted to study the signature of flavor changing neutral Higgs (FCNH) decay ϕ0 --> t c + t c , where ϕ0 could be a CP-even scalar (H0) or a CP-odd pseudoscalar (A0). Measurement of the light 126 GeV neutral Higgs boson (h0) couplings at the Large Hadron Collider (LHC) favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such a limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos (β - α) , while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin (β - α) ~ 1 . We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies. Academia Sinica, National Taiwan University; OU Supercomputing Center for Education & Research; U.S. Department of Energy, Grant No. DEFG01-13ER41979; Academic Summit Grants: MOST 103-2745-M-002-001-ASP, NTU-EPR-103R8915, and NSC 102-2112-M-033-007-MY3.

  5. Multi-Phase Fracture-Matrix Interactions Under Stress Changes

    SciTech Connect

    A.S. Grader; D. Elsworth; P.M. Halleck; F. Alvarao; A. Alajmi; Z. Karpyn; N. Mohammed; S. Al-Enezi

    2005-12-07

    The main objectives of this project are to quantify the changes in fracture porosity and multi-phase transport properties as a function of confining stress. These changes will be integrated into conceptual and numerical models that will improve our ability to predict and optimize fluid transport in fractured system. This report details our progress on: (a) developing the direct experimental measurements of fracture aperture and topology and fluid occupancy using high-resolution x-ray micro-tomography, (b) counter-current fluid transport between the matrix and the fracture, (c) studying the effect of confining stress on the distribution of fracture aperture and two-phase flow, and (d) characterization of shear fractures and their impact on multi-phase flow. The three-dimensional surface that describes the large-scale structure of the fracture in the porous medium can be determined using x-ray micro-tomography with significant accuracy. Several fractures have been scanned and the fracture aperture maps have been extracted. The success of the mapping of fracture aperture was followed by measuring the occupancy of the fracture by two immiscible phases, water and decane, and water and kerosene. The distribution of fracture aperture depends on the effective confining stress, on the nature of the rock, and the type and distribution of the asperities that keep the fracture open. Fracture apertures at different confining stresses were obtained by micro-tomography covering a range of about two thousand psig. Initial analysis of the data shows a significant aperture closure with increase in effective confining stress. Visual and detailed descriptions of the process are shown in the report. Both extensional and shear fractures have been considered. A series of water imbibition tests were conducted in which water was injected into a fracture and its migration into the matrix was monitored with CT and DR x-ray techniques. The objective was to understand the impact of the

  6. Gene expression changes during Giardia-host cell interactions in serum-free medium.

    PubMed

    Ferella, Marcela; Davids, Barbara J; Cipriano, Michael J; Birkeland, Shanda R; Palm, Daniel; Gillin, Frances D; McArthur, Andrew G; Svärd, Staffan

    2014-10-01

    Serial Analysis of Gene Expression (SAGE) was used to quantify transcriptional changes in Giardia intestinalis during its interaction with human intestinal epithelial cells (IECs, HT-29) in serum free M199 medium. Transcriptional changes were compared to those in trophozoites alone in M199 and in TYI-S-33 Giardia growth medium. In total, 90 genes were differentially expressed, mainly those involved in cellular redox homeostasis, metabolism and small molecule transport but also cysteine proteases and structural proteins of the giardin family. Only 29 genes changed their expression due to IEC interaction and the rest were due to M199 medium. Although our findings generated a small dataset, it was consistent with our earlier microarray studies performed under different interaction conditions. This study has confined the number of genes in Giardia to a small subset that specifically change their expression due to interaction with IECs.

  7. The Administrative Internship and Role Change: A Study of the Relationship Between Interaction and Attitudes

    ERIC Educational Resources Information Center

    Ferreira, Joseph L.

    1970-01-01

    In interpreting data gathered in an administrative internship program, the author suggests that certain attitude changes, taken as an index of role shift, are associated with interaction patterns with significant others. (Author/MF)

  8. Efficient fold-change detection based on protein-protein interactions.

    PubMed

    Buijsman, W; Sheinman, M

    2014-02-01

    Various biological sensory systems exhibit a response to a relative change of the stimulus, often referred to as fold-change detection. In the past few years, fold-change detecting mechanisms, based on transcriptional networks, have been proposed. Here we present a fold-change detecting mechanism, based on protein-protein interactions, consisting of two interacting proteins. This mechanism does not consume chemical energy and is not subject to transcriptional and translational noise, in contrast to previously proposed mechanisms. We show by analytical and numerical calculations that the mechanism is robust and can have a fast, precise, and efficient response for parameters that are relevant to eukaryotic cells.

  9. Efficient fold-change detection based on protein-protein interactions

    NASA Astrophysics Data System (ADS)

    Buijsman, W.; Sheinman, M.

    2014-02-01

    Various biological sensory systems exhibit a response to a relative change of the stimulus, often referred to as fold-change detection. In the past few years, fold-change detecting mechanisms, based on transcriptional networks, have been proposed. Here we present a fold-change detecting mechanism, based on protein-protein interactions, consisting of two interacting proteins. This mechanism does not consume chemical energy and is not subject to transcriptional and translational noise, in contrast to previously proposed mechanisms. We show by analytical and numerical calculations that the mechanism is robust and can have a fast, precise, and efficient response for parameters that are relevant to eukaryotic cells.

  10. Interacting Components of the Top-of-Atmosphere Energy Balance Affect Changes in Regional Surface Temperature

    NASA Astrophysics Data System (ADS)

    Merlis, T. M.

    2014-12-01

    The role of interactions between components of the top-of-atmosphere (TOA) energy balance in determining regional surface temperature changes is examined in diffusive energy balance model (EBM) simulations. These interactions have implications for the interpretation of local feedback analyses when they are applied to regional surface temperature change. In the EBM, local feedback analysis succeeds at accounting for the EBM-simulated temperature change given the changes in the radiative forcing, atmospheric energy transport, and radiative feedbacks. However, the inferences about the effect of individual components of the TOA energy balance on regional temperature changes do not account for EBM simulations in which individual components are prescribed or "locked". As changes in one component of the TOA energy balance affect others, unambiguous attribution statements relating changes in regional temperature or its intermodel spread to individual terms in the TOA energy balance cannot be made because these interactions between changing components are important. Interactions between change components of the TOA energy balance are also important in general circulation model simulations of climate change.

  11. After Early Autism Diagnosis: Changes in Intervention and Parent-Child Interaction

    ERIC Educational Resources Information Center

    Suma, Katharine; Adamson, Lauren B.; Bakeman, Roger; Robins, Diana L.; Abrams, Danielle N.

    2016-01-01

    This study documents the relation between an autism spectrum disorder (ASD) diagnosis, increases in intervention, and changes in parent-child interaction quality. Information about intervention and observations of interaction were collected before diagnosis and a half year after diagnosis for 79 low-risk toddlers who had screened positive for ASD…

  12. Studying Learning Processes of Student Teachers with Stimulated Recall Interviews through Changes in Interactive Cognitions

    ERIC Educational Resources Information Center

    Schepens, Annemie; Aelterman, Antonia; Van Keer, Hilde

    2007-01-01

    This article describes a qualitative study into student teachers' learning processes through changes in their interactive cognitions. First, theoretical propositions about the relation between learning to teach, professional development, and practical knowledge are defined. Next, the procedure to grasp interactive cognitions as part of practical…

  13. After Early Autism Diagnosis: Changes in Intervention and Parent-Child Interaction

    ERIC Educational Resources Information Center

    Suma, Katharine; Adamson, Lauren B.; Bakeman, Roger; Robins, Diana L.; Abrams, Danielle N.

    2016-01-01

    This study documents the relation between an autism spectrum disorder (ASD) diagnosis, increases in intervention, and changes in parent-child interaction quality. Information about intervention and observations of interaction were collected before diagnosis and a half year after diagnosis for 79 low-risk toddlers who had screened positive for ASD…

  14. How will biotic interactions influence climate change-induced range shifts?

    PubMed

    HilleRisLambers, Janneke; Harsch, Melanie A; Ettinger, Ailene K; Ford, Kevin R; Theobald, Elinore J

    2013-09-01

    Biotic interactions present a challenge in determining whether species distributions will track climate change. Interactions with competitors, consumers, mutualists, and facilitators can strongly influence local species distributions, but few studies assess how and whether these interactions will impede or accelerate climate change-induced range shifts. In this paper, we explore how ecologists might move forward on this question. We first outline the conditions under which biotic interactions can result in range shifts that proceed faster or slower than climate velocity and result in ecological surprises. Next, we use our own work to demonstrate that experimental studies documenting the strength of biotic interactions across large environmental gradients are a critical first step for understanding whether they will influence climate change-induced range shifts. Further progress could be made by integrating results from these studies into modeling frameworks to predict how or generalize when biotic interactions mediate how changing climates influence range shifts. Finally, we argue that many more case studies like those described here are needed to explore the importance of biotic interactions during climate change-induced range shifts. © 2013 New York Academy of Sciences.

  15. Biotic Interactions in the Face of Climate Change: A Comparison of Three Modelling Approaches

    PubMed Central

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Reineking, Björn; Schlumprecht, Helmut; Beierkuhnlein, Carl

    2012-01-01

    Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1) We separately modelled each species based on climatic information, and intersected the future range overlap (‘overlap approach’). (2) We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate (‘explanatory variable approach’). (3) We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species (‘reference area approach’). Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower) than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of

  16. Biotic interactions in the face of climate change: a comparison of three modelling approaches.

    PubMed

    Jaeschke, Anja; Bittner, Torsten; Jentsch, Anke; Reineking, Björn; Schlumprecht, Helmut; Beierkuhnlein, Carl

    2012-01-01

    Climate change is expected to alter biotic interactions, and may lead to temporal and spatial mismatches of interacting species. Although the importance of interactions for climate change risk assessments is increasingly acknowledged in observational and experimental studies, biotic interactions are still rarely incorporated in species distribution models. We assessed the potential impacts of climate change on the obligate interaction between Aeshna viridis and its egg-laying plant Stratiotes aloides in Europe, based on an ensemble modelling technique. We compared three different approaches for incorporating biotic interactions in distribution models: (1) We separately modelled each species based on climatic information, and intersected the future range overlap ('overlap approach'). (2) We modelled the potential future distribution of A. viridis with the projected occurrence probability of S. aloides as further predictor in addition to climate ('explanatory variable approach'). (3) We calibrated the model of A. viridis in the current range of S. aloides and multiplied the future occurrence probabilities of both species ('reference area approach'). Subsequently, all approaches were compared to a single species model of A. viridis without interactions. All approaches projected a range expansion for A. viridis. Model performance on test data and amount of range gain differed depending on the biotic interaction approach. All interaction approaches yielded lower range gains (up to 667% lower) than the model without interaction. Regarding the contribution of algorithm and approach to the overall uncertainty, the main part of explained variation stems from the modelling algorithm, and only a small part is attributed to the modelling approach. The comparison of the no-interaction model with the three interaction approaches emphasizes the importance of including obligate biotic interactions in projective species distribution modelling. We recommend the use of the 'reference

  17. Binding interface change and cryptic variation in the evolution of protein-protein interactions.

    PubMed

    Ames, Ryan M; Talavera, David; Williams, Simon G; Robertson, David L; Lovell, Simon C

    2016-02-18

    Physical interactions between proteins are essential for almost all biological functions and systems. To understand the evolution of function it is therefore important to understand the evolution of molecular interactions. Of key importance is the evolution of binding specificity, the set of interactions made by a protein, since change in specificity can lead to "rewiring" of interaction networks. Unfortunately, the interfaces through which proteins interact are complex, typically containing many amino-acid residues that collectively must contribute to binding specificity as well as binding affinity, structural integrity of the interface and solubility in the unbound state. In order to study the relationship between interface composition and binding specificity, we make use of paralogous pairs of yeast proteins. Immediately after duplication these paralogues will have identical sequences and protein products that make an identical set of interactions. As the sequences diverge, we can correlate amino-acid change in the interface with any change in the specificity of binding. We show that change in interface regions correlates only weakly with change in specificity, and many variants in interfaces are functionally equivalent. We show that many of the residue replacements within interfaces are silent with respect to their contribution to binding specificity. We conclude that such functionally-equivalent change has the potential to contribute to evolutionary plasticity in interfaces by creating cryptic variation, which in turn may provide the raw material for functional innovation and coevolution.

  18. The effects of interactivity on information processing and attitude change: implications for mental health stigma.

    PubMed

    Kim, Hyojin; Stout, Patricia A

    2010-03-01

    Interactive media such as the Web have become a popular and important vehicle for communicating health information. However, little attention has been given to theorizing and empirically testing the effects of interactive media and the theoretical construct of interactivity. In this paper, we clearly identify and define the nature of interactivity examined. We then develop and test a theoretical model of website interactivity on information processing, involvement with communication, and attitude change in the context of stigma of mental illness. The results of an experiment revealed that interactivity of the website had positive main and moderating effects on dependent variables, while involvement with communication played a significant role in explaining the effects of interactivity. Implications for future research and for health communication campaigns for mental illness stigma are discussed.

  19. Phenological overlap of interacting species in a changing climate: an assessment of available approaches.

    PubMed

    Rafferty, Nicole E; Caradonna, Paul J; Burkle, Laura A; Iler, Amy M; Bronstein, Judith L

    2013-09-01

    Concern regarding the biological effects of climate change has led to a recent surge in research to understand the consequences of phenological change for species interactions. This rapidly expanding research program is centered on three lines of inquiry: (1) how the phenological overlap of interacting species is changing, (2) why the phenological overlap of interacting species is changing, and (3) how the phenological overlap of interacting species will change under future climate scenarios. We synthesize the widely disparate approaches currently being used to investigate these questions: (1) interpretation of long-term phenological data, (2) field observations, (3) experimental manipulations, (4) simulations and nonmechanistic models, and (5) mechanistic models. We present a conceptual framework for selecting approaches that are best matched to the question of interest. We weigh the merits and limitations of each approach, survey the recent literature from diverse systems to quantify their use, and characterize the types of interactions being studied by each of them. We highlight the value of combining approaches and the importance of long-term data for establishing a baseline of phenological synchrony. Future work that scales up from pairwise species interactions to communities and ecosystems, emphasizing the use of predictive approaches, will be particularly valuable for reaching a broader understanding of the complex effects of climate change on the phenological overlap of interacting species. It will also be important to study a broader range of interactions: to date, most of the research on climate-induced phenological shifts has focused on terrestrial pairwise resource-consumer interactions, especially those between plants and insects.

  20. Changes in Children's Peer Interactions Following a Natural Disaster: How Predisaster Bullying and Victimization Rates Changed Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Terranova, Andrew M.; Boxer, Paul; Morris, Amanda Sheffield

    2009-01-01

    Youth exposed to disasters experience stress and adjustment difficulties, which likely influence their interactions with peers. In this study, we examined changes in bullying and peer victimization in two cohorts of children. Youth from an area affected by Hurricane Katrina were assessed pre- and postdisaster (n = 96, mean [M] = 10.9 years old,…

  1. Changes in Children's Peer Interactions Following a Natural Disaster: How Predisaster Bullying and Victimization Rates Changed Following Hurricane Katrina

    ERIC Educational Resources Information Center

    Terranova, Andrew M.; Boxer, Paul; Morris, Amanda Sheffield

    2009-01-01

    Youth exposed to disasters experience stress and adjustment difficulties, which likely influence their interactions with peers. In this study, we examined changes in bullying and peer victimization in two cohorts of children. Youth from an area affected by Hurricane Katrina were assessed pre- and postdisaster (n = 96, mean [M] = 10.9 years old,…

  2. Interacting components of the top-of-atmosphere energy balance affect changes in regional surface temperature

    NASA Astrophysics Data System (ADS)

    Merlis, Timothy M.

    2014-10-01

    The role of interactions between components of the top-of-atmosphere (TOA) energy balance in determining regional surface temperature changes, such as polar amplification, is examined in diffusive energy balance model (EBM) simulations. These interactions have implications for the interpretation of local feedback analyses when they are applied to regional surface temperature changes. Local feedback analysis succeeds at accounting for the EBM-simulated temperature change given the changes in the radiative forcing, atmospheric energy transport, and radiative feedbacks. However, the inferences about the effect of individual components of the TOA energy balance on regional temperature changes do not account for EBM simulations in which individual components are prescribed or "locked." As changes in one component of the TOA energy balance affect others, unambiguous attribution statements relating changes in regional temperature or its intermodel spread to individual terms in the TOA energy balance cannot be made.

  3. Climate change effects on above- and below-ground interactions in a dryland ecosystem.

    PubMed

    González-Megías, Adela; Menéndez, Rosa

    2012-11-19

    Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.

  4. Climate change effects on above- and below-ground interactions in a dryland ecosystem

    PubMed Central

    González-Megías, Adela; Menéndez, Rosa

    2012-01-01

    Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore–plant–herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring–early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult. PMID:23045709

  5. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Burkhart, J. F.; Tallaksen, L. M.; Stordal, F.; Berntsen, T.; Westermann, S.; Kristjansson, J. E.; Etzelmuller, B.; Hagen, J. O.; Schuler, T.; Hamran, S. E.; Lande, T. S.; Bryn, A.

    2015-12-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reducing snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. Assessing the influence of climate and land cover changes on water and energy fluxes. Integrating remote earth observations with in-situ data and

  6. Land-Atmosphere Interactions in Cold Environments (LATICE): The role of Atmosphere - Biosphere - Cryosphere - Hydrosphere interactions in a changing climate

    NASA Astrophysics Data System (ADS)

    Tallaksen, Lena M.; Burkhart, John F.; Stordal, Frode

    2015-04-01

    Climate change is impacting the high latitudes more rapidly and significantly than any other region of the Earth because of feedback processes between the atmosphere and the underlying surface. A warmer climate has already led to thawing of permafrost, reduced snow cover and a longer growing season; changes, which in turn influence the atmospheric circulation and the hydrological cycle. Still, many studies rely on one-way coupling between the atmosphere and the land surface, thereby neglecting important interactions and feedbacks. The observation, understanding and prediction of such processes from local to regional and global scales, represent a major scientific challenge that requires multidisciplinary scientific effort. The successful integration of earth observations (remote and in-situ data) and model development requires a harmonized research effort between earth system scientists, modelers and the developers of technologies and sensors. LATICE, which is recognized as a priority research area by the Faculty of Mathematics and Natural Sciences at the University of Oslo, aims to advance the knowledge base concerning land atmosphere interactions and their role in controlling climate variability and climate change at high northern latitudes. The consortium consists of an interdisciplinary team of experts from the atmospheric and terrestrial (hydrosphere, cryosphere and biosphere) research groups, together with key expertise on earth observations and novel sensor technologies. LATICE addresses critical knowledge gaps in the current climate assessment capacity through: i) Improving parameterizations of processes in earth system models controlling the interactions and feedbacks between the land (snow, ice, permafrost, soil and vegetation) and the atmosphere at high latitudes, including the boreal, alpine and artic zone. ii) Assessing the influence of climate and land cover changes on water and energy fluxes. iii) Integrating remote earth observations with in

  7. Moving forward: dispersal and species interactions determine biotic responses to climate change.

    PubMed

    Urban, Mark C; Zarnetske, Phoebe L; Skelly, David K

    2013-09-01

    We need accurate predictions about how climate change will alter species distributions and abundances around the world. Most predictions assume simplistic dispersal scenarios and ignore biotic interactions. We argue for incorporating the complexities of dispersal and species interactions. Range expansions depend not just on mean dispersal, but also on the shape of the dispersal kernel and the population's growth rate. We show how models using species-specific dispersal can produce more accurate predictions than models applying all-or-nothing dispersal scenarios. Models that additionally include species interactions can generate distinct outcomes. For example, species interactions can slow climate tracking and produce more extinctions than models assuming no interactions. We conclude that (1) just knowing mean dispersal is insufficient to predict biotic responses to climate change, and (2) considering interspecific dispersal variation and species interactions jointly will be necessary to anticipate future changes to biological diversity. We advocate for collecting key information on interspecific dispersal differences and strong biotic interactions so that we can build the more robust predictive models that will be necessary to inform conservation efforts as climates continue to change.

  8. Historical and projected interactions between climate change and insect voltinism in a multivoltine species

    Treesearch

    Patrick C. Tobin; Sudha Nagarkatti; Greg Loeb; Michael C. Saunders

    2008-01-01

    Climate change can cause major changes to the dynamics of individual species and to those communities in which they interact. One effect of increasing temperatures is on insect voltinism, with the logical assumption that increases in surface temperatures would permit multivoltine species to increase the number of generations per year. Though insect development is...

  9. Are Madrean ecosystems approaching tipping points? Anticipating interactions of landscape disturbance and climate change

    Treesearch

    Donald A. Falk

    2013-01-01

    Contemporary climate change is driving transitions in many Madrean ecosystems, but the time scale of these changes is accelerated greatly by severe landscape disturbances such as wildfires and insect outbreaks. Landscape-scale disturbance events such as wildfires interact with prior disturbance patterns and landscape structure to catalyze abrupt transitions to novel...

  10. Studying plant–pollinator interactions in a changing climate: A review of approaches1

    PubMed Central

    Byers, Diane L.

    2017-01-01

    Plant–pollinator interactions are potentially at risk due to climate change. Because of the spatial and temporal variation associated with the effects of climate change and the responses of both actors, research to assess this interaction requires creative approaches. This review focuses on assessments of plants’ and pollinators’ altered phenology in response to environmental changes, as phenology is one of the key responses. I reviewed research methods with the goal of presenting the wide diversity of available techniques for addressing changes in these interactions. Approaches ranged from use of historical specimens to multisite experimental community studies; while differing in depth of historical information and community interactions, all contribute to assessment of phenology changes. Particularly insightful were those studies that directly assessed the environmental changes across spatial and temporal scales and the responses of plants and pollinators at these scales. Longer-term studies across environmental gradients, potentially with reciprocal transplants, enable an assessment of climate impacts at both scales. While changes in phenology are well studied, the impacts of phenology changes are not. Future research should include approaches to address this gap. PMID:28690933

  11. Climate change-contaminant interactions in marine food webs: Toward a conceptual framework.

    PubMed

    Alava, Juan José; Cheung, William W L; Ross, Peter S; Sumaila, U Rashid

    2017-10-01

    Climate change is reshaping the way in which contaminants move through the global environment, in large part by changing the chemistry of the oceans and affecting the physiology, health, and feeding ecology of marine biota. Climate change-associated impacts on structure and function of marine food webs, with consequent changes in contaminant transport, fate, and effects, are likely to have significant repercussions to those human populations that rely on fisheries resources for food, recreation, or culture. Published studies on climate change-contaminant interactions with a focus on food web bioaccumulation were systematically reviewed to explore how climate change and ocean acidification may impact contaminant levels in marine food webs. We propose here a conceptual framework to illustrate the impacts of climate change on contaminant accumulation in marine food webs, as well as the downstream consequences for ecosystem goods and services. The potential impacts on social and economic security for coastal communities that depend on fisheries for food are discussed. Climate change-contaminant interactions may alter the bioaccumulation of two priority contaminant classes: the fat-soluble persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), as well as the protein-binding methylmercury (MeHg). These interactions include phenomena deemed to be either climate change dominant (i.e., climate change leads to an increase in contaminant exposure) or contaminant dominant (i.e., contamination leads to an increase in climate change susceptibility). We illustrate the pathways of climate change-contaminant interactions using case studies in the Northeastern Pacific Ocean. The important role of ecological and food web modeling to inform decision-making in managing ecological and human health risks of chemical pollutants contamination under climate change is also highlighted. Finally, we identify the need to develop integrated policies that manage the

  12. The Interactive Effects of Estrogen and Progesterone on Changes in Emotional Eating Across the Menstrual Cycle

    PubMed Central

    Klump, Kelly L.; Keel, Pamela K.; Racine, Sarah E.; Burt, S. Alexandra; Neale, Michael; Sisk, Cheryl L.; Boker, Steven; Hu, Jean Yueqin

    2012-01-01

    Studies suggest that within-person changes in estrogen and progesterone predict changes in binge eating across the menstrual cycle. However, samples have been extremely small (maximum N = 9), and analyses have not examined the interactive effects of hormones that are critical for changes in food intake in animals. The aims of the current study were to examine ovarian hormone interactions in the prediction of within-subject changes in emotional eating in the largest sample of women to date (N = 196). Participants provided daily ratings of emotional eating and saliva samples for hormone measurement for 45 consecutive days. Results confirmed that changes in ovarian hormones predict changes in emotional eating across the menstrual cycle, with a significant estradiol x progesterone interaction. Emotional eating scores were highest during the mid-luteal phase, when progesterone peaks and estradiol demonstrates a secondary peak. Findings extend previous work by highlighting significant interactions between estrogen and progesterone that explain mid-luteal increases in emotional eating. Future work should explore mechanisms (e.g., gene-hormone interactions) that contribute to both within- and between-subject differences in emotional eating. PMID:22889242

  13. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change.

    PubMed

    McCluney, Kevin E; Belnap, Jayne; Collins, Scott L; González, Angélica L; Hagen, Elizabeth M; Nathaniel Holland, J; Kotler, Burt P; Maestre, Fernando T; Smith, Stanley D; Wolf, Blair O

    2012-08-01

    Species interactions play key roles in linking the responses of populations, communities, and ecosystems to environmental change. For instance, species interactions are an important determinant of the complexity of changes in trophic biomass with variation in resources. Water resources are a major driver of terrestrial ecology and climate change is expected to greatly alter the distribution of this critical resource. While previous studies have documented strong effects of global environmental change on species interactions in general, responses can vary from region to region. Dryland ecosystems occupy more than one-third of the Earth's land mass, are greatly affected by changes in water availability, and are predicted to be hotspots of climate change. Thus, it is imperative to understand the effects of environmental change on these globally significant ecosystems. Here, we review studies of the responses of population-level plant-plant, plant-herbivore, and predator-prey interactions to changes in water availability in dryland environments in order to develop new hypotheses and predictions to guide future research. To help explain patterns of interaction outcomes, we developed a conceptual model that views interaction outcomes as shifting between (1) competition and facilitation (plant-plant), (2) herbivory, neutralism, or mutualism (plant-herbivore), or (3) neutralism and predation (predator-prey), as water availability crosses physiological, behavioural, or population-density thresholds. We link our conceptual model to hypothetical scenarios of current and future water availability to make testable predictions about the influence of changes in water availability on species interactions. We also examine potential implications of our conceptual model for the relative importance of top-down effects and the linearity of patterns of change in trophic biomass with changes in water availability. Finally, we highlight key research needs and some possible broader impacts

  14. Ectoparasitic Syndemics: Polymicrobial Tick-borne Disease Interactions in a Changing Anthropogenic Landscape.

    PubMed

    Singer, Merrill; Bulled, Nicola

    2016-12-01

    Based on an assessment of the available research, this article uses syndemic theory to suggest the role of adverse bio-social interactions in increasing the total disease burden of tick-borne infections in local populations. Given the worldwide distribution of ticks, capacity for coinfection, the anthropogenic role in environmental changes that facilitate tick dissemination and contact, evidence of syndemic interaction in tick-borne diseases, and growing impact of ticks on global health, tick-borne syndemics reveal fundamental ways in which human beings are not simply agents of environmental change but objects of that change as well. © 2014 by the American Anthropological Association.

  15. After Early Autism Diagnosis: Changes in Intervention and Parent-Child Interaction.

    PubMed

    Suma, Katharine; Adamson, Lauren B; Bakeman, Roger; Robins, Diana L; Abrams, Danielle N

    2016-08-01

    This study documents the relation between an autism spectrum disorder (ASD) diagnosis, increases in intervention, and changes in parent-child interaction quality. Information about intervention and observations of interaction were collected before diagnosis and a half year after diagnosis for 79 low-risk toddlers who had screened positive for ASD risk during a well-baby checkup. Children diagnosed with ASD (n = 44) were 2.69 times more likely to increase intervention hours. After ASD diagnosis, the relation between intervention and interaction quality was complex: although increases in intervention and interaction quality were only modestly related, the overall amount of intervention after diagnosis was associated with higher quality interactions. Moreover, lower quality interactions before diagnosis significantly increased the likelihood that intervention would increase post-diagnosis.

  16. Dual device therapy in the setting of changing ICD technology: device-device interaction revisited.

    PubMed

    Sheahan, R G; Dorian, P; Poludnikiewicz, M; Newman, D

    1997-06-01

    This case report concerns an adverse device-device interaction between a replacement ICD and a dual chamber rate responsive pacemaker. It was observed that subtle changes in the design of sensing circuits between an older first-generation ICD and the newer third-generation ICD device led to unexpected and dramatic changes in the interactive behavior of a dual device system. The new ICD was connected to chronically implanted hardware. The sensing behavior of the newer ICD included a shorter time constant in the decay of the automatic gain control function, resulting in triple sensing of both the atrial and ventricular paced stimuli and the evoked QRS complex. Physicians should be aware of new design changes in the future so as to anticipate such interactions. In the setting of rapidly changing technology, extra caution must be exercised when choosing to implant two devices in the same patient.

  17. Predator diversity and environmental change modify the strengths of trophic and nontrophic interactions.

    PubMed

    Sentis, Arnaud; Gémard, Charlène; Jaugeon, Baptiste; Boukal, David S

    2016-11-10

    Understanding the dependence of species interaction strengths on environmental factors and species diversity is crucial to predict community dynamics and persistence in a rapidly changing world. Nontrophic (e.g. predator interference) and trophic components together determine species interaction strengths, but the effects of environmental factors on these two components remain largely unknown. This impedes our ability to fully understand the links between environmental drivers and species interactions. Here, we used a dynamical modelling framework based on measured predator functional responses to investigate the effects of predator diversity, prey density, and temperature on trophic and nontrophic interaction strengths within a freshwater food web. We found that (i) species interaction strengths cannot be predicted from trophic interactions alone, (ii) nontrophic interaction strengths vary strongly among predator assemblages, (iii) temperature has opposite effects on trophic and nontrophic interaction strengths, and (iv) trophic interaction strengths decrease with prey density, whereas the dependence of nontrophic interaction strengths on prey density is concave up. Interestingly, the qualitative impacts of temperature and prey density on the strengths of trophic and nontrophic interactions were independent of predator identity, suggesting a general pattern. Our results indicate that taking multiple environmental factors and the nonlinearity of density-dependent species interactions into account is an important step towards a better understanding of the effects of environmental variations on complex ecological communities. The functional response approach used in this study opens new avenues for (i) the quantification of the relative importance of the trophic and nontrophic components in species interactions and (ii) a better understanding how environmental factors affect these interactions and the dynamics of ecological communities.

  18. Sensitive detection of protein-lipid interaction change on bacteriorhodopsin using dodecyl β-D-maltoside.

    PubMed

    Sasaki, Takanori; Demura, Makoto; Kato, Noritaka; Mukai, Yuri

    2011-03-29

    A light-driven proton pump bacteriorhodopsin (bR) forms a two-dimensional hexagonal lattice with about 10 archaeal lipids per monomer bR on purple membrane (PM) of Halobacterium salinarum. In this study, we found that the weakening of the bR-lipid interaction on PM by addition of alcohol can be detected as the significant increase of protein solubility in a nonionic detergent, dodecyl β-D-maltoside (DDM). The protein solubility in DDM was also increased by bR-lipid interaction change accompanied by structural change of the apoprotein after retinal removal and was about 7 times higher in the case of completely bleached membrane than that of intact PM. Interestingly, the cyclic and milliseconds order of structural change of bR under light irradiation also led to increasing the protein solubility and had a characteristic light intensity dependence with a phase transition. These results indicate that there is a photointermediate in which bR-lipid interaction has been changed by its dynamic structural change. Because partial delipidation of PM by CHAPS gave minor influence for the change of the protein solubility compared to intact PM in both dark and light conditions, it is suggested that specific interactions of bR with some lipids which remain on PM even after delipidation treatment have a key role for the change of solubility in DDM induced by alcohol binding, ligand release, and photon absorption on bR.

  19. Environmental Enrichments for a Group of Captive Macaws: Low Interaction Does Not Mean Low Behavioral Changes.

    PubMed

    Reimer, Jéssica; Maia, Caroline Marques; Santos, Eliana Ferraz

    2016-01-01

    Environmental enrichment has been widely used to improve conditions for nonhuman animals in captivity. However, there is no consensus about the best way to evaluate the success of enrichments. This study evaluated whether the proportion of time spent interacting with enrichments indicated the proportion of overall behavioral changes. Six environmental enrichments were introduced in succession to 16 captive macaws, and interaction of the animals with them as well as the behaviors of the group were recorded before and during the enrichments. All of the enrichments affected the proportions of time spent in different behaviors. Macaws interacted more with certain items (hibiscus and food tree) than with others (a toy or swings and stairs), but introduction of the enrichments that invoked the least interaction caused as many behavioral changes as those that invoked the most. Moreover, feeding behavior was only affected by the enrichment that invoked the least interaction, a change not detected by a general analysis of enrichment effects. In conclusion, little interaction with enrichment does not mean little change in behavior, and the effects of enrichments are more complex than previously considered.

  20. How does human-induced environmental change influence host-parasite interactions?

    PubMed

    Budria, Alexandre; Candolin, Ulrika

    2014-04-01

    Host-parasite interactions are an integral part of ecosystems that influence both ecological and evolutionary processes. Humans are currently altering environments the world over, often with drastic consequences for host-parasite interactions and the prevalence of parasites. The mechanisms behind the changes are, however, poorly known. Here, we explain how host-parasite interactions depend on two crucial steps--encounter rate and host-parasite compatibility--and how human activities are altering them and thereby host-parasite interactions. By drawing on examples from the literature, we show that changes in the two steps depend on the influence of human activities on a range of factors, such as the density and diversity of hosts and parasites, the search strategy of the parasite, and the avoidance strategy of the host. Thus, to unravel the mechanisms behind human-induced changes in host-parasite interactions, we have to consider the characteristics of all three parts of the interaction: the host, the parasite and the environment. More attention should now be directed to unfold these mechanisms, focusing on effects of environmental change on the factors that determine encounter rate and compatibility. We end with identifying several areas in urgent need of more investigations.

  1. CHANGES IN THE VERBAL INTERACTION PATTERNS OF SECONDARY SCIENCE STUDENT TEACHERS WHO HAVE HAD TRAINING IN INTERACTION ANALYSIS AND THE RELATIONSHIP OF THESE CHANGES TO THE VERBAL INTERACTION OF THEIR COOPERATING TEACHERS. FINAL REPORT. SUMMARY REPORT.

    ERIC Educational Resources Information Center

    MCLEOD, RICHARD J.

    THE PRIMARY OBJECTIVES OF THIS STUDY WERE--(1) TO IDENTIFY NON-RANDOM CHANGE IN THE VERBAL PATTERNS OF STUDENT TEACHERS OF SECONDARY SCIENCE WHO WERE TRAINED IN THE FLANDERS SYSTEM OF INTERACTION ANALYSIS, (2) TO RELATE THESE CHANGES TO THE VERBAL PATTERNS EXHIBITED BY THE COOPERATING TEACHERS INVOLVED, AND (3) TO COMPARE THE RESULTS WITH THOSE OF…

  2. The Effects of Interactive Stratospheric Chemistry on Antarctic and Southern Ocean Climate Change in an AOGCM

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven; Waugh, Darryn

    2014-01-01

    Stratospheric ozone depletion has played a dominant role in driving Antarctic climate change in the last decades. In order to capture the stratospheric ozone forcing, many coupled atmosphere-ocean general circulation models (AOGCMs) prescribe the Antarctic ozone hole using monthly and zonally averaged ozone field. However, the prescribed ozone hole has a high ozone bias and lacks zonal asymmetry. The impacts of these biases on model simulations, particularly on Southern Ocean and the Antarctic sea ice, are not well understood. The purpose of this study is to determine the effects of using interactive stratospheric chemistry instead of prescribed ozone on Antarctic and Southern Ocean climate change in an AOGCM. We compare two sets of ensemble simulations for the 1960-2010 period using different versions of the Goddard Earth Observing System 5 - AOGCM: one with interactive stratospheric chemistry, and the other with prescribed monthly and zonally averaged ozone and 6 other stratospheric radiative species calculated from the interactive chemistry simulations. Consistent with previous studies using prescribed sea surface temperatures and sea ice concentrations, the interactive chemistry runs simulate a deeper Antarctic ozone hole and consistently larger changes in surface pressure and winds than the prescribed ozone runs. The use of a coupled atmosphere-ocean model in this study enables us to determine the impact of these surface changes on Southern Ocean circulation and Antarctic sea ice. The larger surface wind trends in the interactive chemistry case lead to larger Southern Ocean circulation trends with stronger changes in northerly and westerly surface flow near the Antarctica continent and stronger upwelling near 60S. Using interactive chemistry also simulates a larger decrease of sea ice concentrations. Our results highlight the importance of using interactive chemistry in order to correctly capture the influences of stratospheric ozone depletion on climate

  3. Functional Ecological Gene Networks to Reveal the Changes Among Microbial Interactions Under Elevated Carbon Dioxide Conditions

    SciTech Connect

    Deng, Ye; Zhou, Jizhong; Luo, Feng; He, Zhili; Tu, Qichao; Zhi, Xiaoyang

    2010-05-17

    Biodiversity and its responses to environmental changes is a central issue in ecology, and for society. Almost all microbial biodiversity researches focus on species richness and abundance but ignore the interactions among different microbial species/populations. However, determining the interactions and their relationships to environmental changes in microbial communities is a grand challenge, primarily due to the lack of information on the network structure among different microbial species/populations. Here, a novel random matrix theory (RMT)-based conceptual framework for identifying functional ecological gene networks (fEGNs) is developed with the high throughput functional gene array hybridization data from the grassland microbial communities in a long-term FACE (Free Air CO2 Enrichment) experiment. Both fEGNs under elevated CO2 (eCO2) and ambient CO2 (aCO2) possessed general characteristics of many complex systems such as scale-free, small-world, modular and hierarchical. However, the topological structure of the fEGNs is distinctly different between eCO2 and aCO2, suggesting that eCO2 dramatically altered the interactions among different microbial functional groups/populations. In addition, the changes in network structure were significantly correlated with soil carbon and nitrogen dynamics, and plant productivity, indicating the potential importance of network interactions in ecosystem functioning. Elucidating network interactions in microbial communities and their responses to environmental changes are fundamentally important for research in microbial ecology, systems microbiology, and global change.

  4. Effects of solar UV radiation and climate change on biogeochemical cycling: Interactions and feedbacks

    SciTech Connect

    Erickson III, David J

    2011-01-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO{sub 2} increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  5. Effects of solar UV radiation and climate change on biogeochemical cycling: interactions and feedbacks.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2011-02-01

    Solar UV radiation, climate and other drivers of global change are undergoing significant changes and models forecast that these changes will continue for the remainder of this century. Here we assess the effects of solar UV radiation on biogeochemical cycles and the interactions of these effects with climate change, including feedbacks on climate. Such interactions occur in both terrestrial and aquatic ecosystems. While there is significant uncertainty in the quantification of these effects, they could accelerate the rate of atmospheric CO(2) increase and subsequent climate change beyond current predictions. The effects of predicted changes in climate and solar UV radiation on carbon cycling in terrestrial and aquatic ecosystems are expected to vary significantly between regions. The balance of positive and negative effects on terrestrial carbon cycling remains uncertain, but the interactions between UV radiation and climate change are likely to contribute to decreasing sink strength in many oceanic regions. Interactions between climate and solar UV radiation will affect cycling of elements other than carbon, and so will influence the concentration of greenhouse and ozone-depleting gases. For example, increases in oxygen-deficient regions of the ocean caused by climate change are projected to enhance the emissions of nitrous oxide, an important greenhouse and ozone-depleting gas. Future changes in UV-induced transformations of aquatic and terrestrial contaminants could have both beneficial and adverse effects. Taken in total, it is clear that the future changes in UV radiation coupled with human-caused global change will have large impacts on biogeochemical cycles at local, regional and global scales.

  6. Interactions between above- and belowground organisms modified in climate change experiments

    NASA Astrophysics Data System (ADS)

    Stevnbak, Karen; Scherber, Christoph; Gladbach, David J.; Beier, Claus; Mikkelsen, Teis N.; Christensen, Søren

    2012-11-01

    Climate change has been shown to affect ecosystem process rates and community composition, with direct and indirect effects on belowground food webs. In particular, altered rates of herbivory under future climate can be expected to influence above-belowground interactions. Here, we use a multifactor, field-scale climate change experiment and independently manipulate atmospheric CO2 concentration, air and soil temperature and drought in all combinations since 2005. We show that changes in these factors modify the interaction between above- and belowground organisms. We use an insect herbivore to experimentally increase aboveground herbivory in grass phytometers exposed to all eight combinations of climate change factors for three years. Aboveground herbivory increased the abundance of belowground protozoans, microbial growth and microbial nitrogen availability. Increased CO2 modified these links through a reduction in herbivory and cascading effects through the soil food web. Interactions between CO2, drought and warming can affect belowground protozoan abundance. Our findings imply that climate change affects aboveground-belowground interactions through changes in nutrient availability.

  7. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes.

    PubMed

    Seidl, Rupert; Rammer, Werner

    2017-07-01

    Growing evidence suggests that climate change could substantially alter forest disturbances. Interactions between individual disturbance agents are a major component of disturbance regimes, yet how interactions contribute to their climate sensitivity remains largely unknown. Here, our aim was to assess the climate sensitivity of disturbance interactions, focusing on wind and bark beetle disturbances. We developed a process-based model of bark beetle disturbance, integrated into the dynamic forest landscape model iLand (already including a detailed model of wind disturbance). We evaluated the integrated model against observations from three wind events and a subsequent bark beetle outbreak, affecting 530.2 ha (3.8 %) of a mountain forest landscape in Austria between 2007 and 2014. Subsequently, we conducted a factorial experiment determining the effect of changes in climate variables on the area disturbed by wind and bark beetles separately and in combination. iLand was well able to reproduce observations with regard to area, temporal sequence, and spatial pattern of disturbance. The observed disturbance dynamics was strongly driven by interactions, with 64.3 % of the area disturbed attributed to interaction effects. A +4 °C warming increased the disturbed area by +264.7 % and the area-weighted mean patch size by +1794.3 %. Interactions were found to have a ten times higher sensitivity to temperature changes than main effects, considerably amplifying the climate sensitivity of the disturbance regime. Disturbance interactions are a key component of the forest disturbance regime. Neglecting interaction effects can lead to a substantial underestimation of the climate change sensitivity of disturbance regimes.

  8. Heat tolerance predicts the importance of species interaction effects as the climate changes.

    PubMed

    Diamond, Sarah E; Chick, Lacy; Penick, Clint A; Nichols, Lauren M; Cahan, Sara Helms; Dunn, Robert R; Ellison, Aaron M; Sanders, Nathan J; Gotelli, Nicholas J

    2017-07-01

    Few studies have quantified the relative importance of direct effects of climate change on communities versus indirect effects that are mediated thorough species interactions, and the limited evidence is conflicting. Trait-based approaches have been popular in studies of climate change, but can they be used to estimate direct versus indirect effects? At the species level, thermal tolerance is a trait that is often used to predict winners and losers under scenarios of climate change. But thermal tolerance might also inform when species interactions are likely to be important because only subsets of species will be able to exploit the available warmer climatic niche space, and competition may intensify in the remaining, compressed cooler climatic niche space. Here, we explore the relative roles of the direct effects of temperature change and indirect effects of species interactions on forest ant communities that were heated as part of a large-scale climate manipulation at high- and low-latitude sites in eastern North America. Overall, we found mixed support for the importance of negative species interactions (competition), but found that the magnitude of these interaction effects was predictable based on the heat tolerance of the focal species. Forager abundance and nest site occupancy of heat-intolerant species were more often influenced by negative interactions with other species than by direct effects of temperature. Our findings suggest that measures of species-specific heat tolerance may roughly predict when species interactions will influence responses to global climate change. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  9. Interacting stressors and the potential for adaptation in a changing world: responses of populations and individuals

    PubMed Central

    French, Susannah S.; Brodie, Edmund D.

    2017-01-01

    To accurately predict the impact of environmental change, it is necessary to assay effects of key interacting stressors on vulnerable organisms, and the potential resiliency of their populations. Yet, for the most part, these critical data are missing. We examined the effects of two common abiotic stressors predicted to interact with climate change, salinity and temperature, on the embryonic survival and development of a model freshwater vertebrate, the rough-skinned newt (Taricha granulosa) from different populations. We found that salinity and temperature significantly interacted to affect newt embryonic survival and development, with the negative effects of salinity most pronounced at temperature extremes. We also found significant variation among, and especially within, populations, with different females varying in the performance of their eggs at different salinity–temperature combinations, possibly providing the raw material for future natural selection. Our results highlight the complex nature of predicting responses to climate change in space and time, and provide critical data towards that aim. PMID:28680662

  10. Robust sensorimotor representation to physical interaction changes in humanoid motion learning.

    PubMed

    Shimizu, Toshihiko; Saegusa, Ryo; Ikemoto, Shuhei; Ishiguro, Hiroshi; Metta, Giorgio

    2015-05-01

    This paper proposes a learning from demonstration system based on a motion feature, called phase transfer sequence. The system aims to synthesize the knowledge on humanoid whole body motions learned during teacher-supported interactions, and apply this knowledge during different physical interactions between a robot and its surroundings. The phase transfer sequence represents the temporal order of the changing points in multiple time sequences. It encodes the dynamical aspects of the sequences so as to absorb the gaps in timing and amplitude derived from interaction changes. The phase transfer sequence was evaluated in reinforcement learning of sitting-up and walking motions conducted by a real humanoid robot and compatible simulator. In both tasks, the robotic motions were less dependent on physical interactions when learned by the proposed feature than by conventional similarity measurements. Phase transfer sequence also enhanced the convergence speed of motion learning. Our proposed feature is original primarily because it absorbs the gaps caused by changes of the originally acquired physical interactions, thereby enhancing the learning speed in subsequent interactions.

  11. An entropy-based analysis of lane changing behavior: An interactive approach.

    PubMed

    Kosun, Caglar; Ozdemir, Serhan

    2017-05-19

    As a novelty, this article proposes the nonadditive entropy framework for the description of driver behaviors during lane changing. The authors also state that this entropy framework governs the lane changing behavior in traffic flow in accordance with the long-range vehicular interactions and traffic safety. The nonadditive entropy framework is the new generalized theory of thermostatistical mechanics. Vehicular interactions during lane changing are considered within this framework. The interactive approach for the lane changing behavior of the drivers is presented in the traffic flow scenarios presented in the article. According to the traffic flow scenarios, 4 categories of traffic flow and driver behaviors are obtained. Through the scenarios, comparative analyses of nonadditive and additive entropy domains are also provided. Two quadrants of the categories belong to the nonadditive entropy; the rest are involved in the additive entropy domain. Driving behaviors are extracted and the scenarios depict that nonadditivity matches safe driving well, whereas additivity corresponds to unsafe driving. Furthermore, the cooperative traffic system is considered in nonadditivity where the long-range interactions are present. However, the uncooperative traffic system falls into the additivity domain. The analyses also state that there would be possible traffic flow transitions among the quadrants. This article shows that lane changing behavior could be generalized as nonadditive, with additivity as a special case, based on the given traffic conditions. The nearest and close neighbor models are well within the conventional additive entropy framework. In this article, both the long-range vehicular interactions and safe driving behavior in traffic are handled in the nonadditive entropy domain. It is also inferred that the Tsallis entropy region would correspond to mandatory lane changing behavior, whereas additive and either the extensive or nonextensive entropy region would

  12. Digital video analysis of health professionals' interactions with an electronic whiteboard: a longitudinal, naturalistic study of changes to user interactions.

    PubMed

    Rasmussen, Rasmus; Kushniruk, Andre

    2013-12-01

    As hospital departments continue to introduce electronic whiteboards in real clinical settings a range of human factor issues have emerged and it has become clear that there is a need for improved methods for designing and testing these systems. In this study, we employed a longitudinal and naturalistic method in the usability evaluation of an electronic whiteboard system. The goal of the evaluation was to explore the extent to which usability issues experienced by users change as they gain more experience with the system. In addition, the paper explores the use of a new approach to collection and analysis of continuous digital video recordings of naturalistic "live" user interactions. The method developed and employed in the study included recording the users' interactions with system during actual use using screen-capturing software and analyzing these recordings for usability issues. In this paper we describe and discuss both the method and the results of the evaluation. We found that the electronic whiteboard system contains system-related usability issues that did not change over time as the clinicians collectively gained more experience with the system. Furthermore, we also found user-related issues that seemed to change as the users gained more experience and we discuss the underlying reasons for these changes. We also found that the method used in the study has certain advantages over traditional usability evaluation methods, including the ability to collect analyze live user data over time. However, challenges and drawbacks to using the method (including the time taken for analysis and logistical issues in doing live recordings) should be considered before utilizing a similar approach. In conclusion we summarize our findings and call for an increased focus on longitudinal and naturalistic evaluations of health information systems and encourage others to apply and refine the method utilized in this study.

  13. Short- and Long-term Perspectives of Soil Change: Interactions between Capacity and Intensity (Invited)

    NASA Astrophysics Data System (ADS)

    Johnson, D. W.; Richter, D.

    2009-12-01

    Soil chemical change is usually viewed as a change in one or more of the commonly employed methods for the chemical analysis of the solid phase of the soil (a capacity change). The pools (kg ha-1) of nutrients commonly analyzed in standard soil analyses are often very large and therefore are thought to change very slowly. On the other hand, changes in the solution phase of the soil, although very strongly affected by changes in the solid phase, can take place almost instantaneously (an intensity change). The interactions between capacity and intensity type changes are complex, but chemically consistent with one another (Reuss and Johnson, 1986). This paper reviews laboratory studies, field studies, and modeling exercises which demonstrate the interactions between capacity and intensity-type changes in soil adsorbed cation and anions, both over the short term and long term. Reuss, J.O., and D.W. Johnson. 1986. Acid Deposition and the Acidification of Soil and Water. Ecological Studies No. 59. Springer-Verlag, New York. 118 p.

  14. Clinical handover as an interactive event: informational and interactional communication strategies in effective shift-change handovers.

    PubMed

    Eggins, Suzanne; Slade, Diana

    2012-01-01

    Clinical handover -- the transfer between clinicians of responsibility and accountability for patients and their care (AMA 2006) -- is a pivotal and high-risk communicative event in hospital practice. Studies focusing on critical incidents, mortality, risk and patient harm in hospitals have highlighted ineffective communication -- including incomplete and unstructured clinical handovers -- as a major contributing factor (NSW Health 2005; ACSQHC 2010). In Australia, as internationally, Health Departments and hospital management have responded by introducing standardised handover communication protocols. This paper problematises one such protocol - the ISBAR tool - and argues that the narrow understanding of communication on which such protocols are based may seriously constrain their ability to shape effective handovers. Based on analysis of audio-recorded shift-change clinical handovers between medical staff we argue that handover communication must be conceptualised as inherently interactive and that attempts to describe, model and teach handover practice must recognise both informational and interactive communication strategies. By comparing the communicative performance of participants in authentic handover events we identify communication strategies that are more and less likely to lead to an effective handover and demonstrate the importance of focusing close up on communication to improve the quality and safety of healthcare interactions.

  15. Competing species in a changing climate: effects of recruitment disturbances on two interacting barnacle species.

    PubMed

    Svensson, Carl Johan; Johansson, Emmeli; Aberg, Per

    2006-05-01

    1. The climate is changing and data-based simulation models can be a valuable tool for predicting population response to such changes and investigate the mechanisms of population change. In this study, a data-based two-species matrix model was constructed to explore the possible effects of elevated sea surface temperature (i.e. climate change) on the interaction between open populations of the south Atlantic barnacle species Chthamalus montagui and the boreal species Semibalanus balanoides in the north-east Atlantic. 2. First, the model was used to perform an elasticity analysis to determine the relative importance of recruitment and survival in the interaction. Further, three scenarios of changes in recruitment, related to climate change, were investigated with model simulations: (i) increased frequencies of low recruitment for S. balanoides; (ii) increased frequencies of high recruitment for C. montagui; (iii) a combination of (i) and (ii). 3. Model simulations showed that in present environmental conditions, S. balanoides occupied most of the space and dominated the interaction through high recruitment and survival. These results matched independent field observations, which validated the model for further analyses. 4. The elasticity analyses showed that although free space was available there was competition for space during recruitment intervals. It was also shown that both populations were sensitive to changes in recruitment. 5. Introducing the three scenarios of recruitment disturbances led to large changes in species abundance and free space. The most significant changes were found when scenario (i) and (ii) were combined, producing a shift in species dynamics towards C. montagui dominance. This demonstrates that recruitment can be an important mechanism in the interaction between populations and that the population response to changes in recruitment depends on the added response of interacting species. 6. In a more general context, this model shows that

  16. Interactions of forests, climate, water resources, and humans in a changing environment: research needs

    Treesearch

    Ge Sun; Catalina Segura

    2013-01-01

    The aim of the special issue “Interactions of Forests, Climate, Water Resources, and Humans in a Changing Environment” is to present case studies on the influences of natural and human disturbances on forest water resources under a changing climate. Studies in this collection of six papers cover a wide range of geographic regions from Australia to Nigeria with spatial...

  17. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis.

    PubMed

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-07-28

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant-wild-type and 16 matched SNP--wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation.

  18. Mutation-induced protein interaction kinetics changes affect apoptotic network dynamic properties and facilitate oncogenesis

    PubMed Central

    Zhao, Linjie; Sun, Tanlin; Pei, Jianfeng; Ouyang, Qi

    2015-01-01

    It has been a consensus in cancer research that cancer is a disease caused primarily by genomic alterations, especially somatic mutations. However, the mechanism of mutation-induced oncogenesis is not fully understood. Here, we used the mitochondrial apoptotic pathway as a case study and performed a systematic analysis of integrating pathway dynamics with protein interaction kinetics to quantitatively investigate the causal molecular mechanism of mutation-induced oncogenesis. A mathematical model of the regulatory network was constructed to establish the functional role of dynamic bifurcation in the apoptotic process. The oncogenic mutation enrichment of each of the protein functional domains involved was found strongly correlated with the parameter sensitivity of the bifurcation point. We further dissected the causal mechanism underlying this correlation by evaluating the mutational influence on protein interaction kinetics using molecular dynamics simulation. We analyzed 29 matched mutant–wild-type and 16 matched SNP—wild-type protein systems. We found that the binding kinetics changes reflected by the changes of free energy changes induced by protein interaction mutations, which induce variations in the sensitive parameters of the bifurcation point, were a major cause of apoptosis pathway dysfunction, and mutations involved in sensitive interaction domains show high oncogenic potential. Our analysis provided a molecular basis for connecting protein mutations, protein interaction kinetics, network dynamics properties, and physiological function of a regulatory network. These insights provide a framework for coupling mutation genotype to tumorigenesis phenotype and help elucidate the logic of cancer initiation. PMID:26170328

  19. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    PubMed

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  20. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  1. ENVIRONMENTAL EFFECTS OF OZONE DEPLETION AND ITS INTERACTIONS WITH CLIMATE CHANGE: PROGRESS REPORT 2003

    EPA Science Inventory

    The measures needed for the protection of the Earth's ozone layer are decided regularly by the Parties to the Montreal Protocol. A section of this progress report focuses on the interactive effects of climate change and ozone depletion on biogeochemical cycles.

  2. Predictors of Change in Stress, Interaction Styles, and Depression in Parents of Toddlers with Autism

    ERIC Educational Resources Information Center

    Trocchio, Jennie S.

    2013-01-01

    The purpose of this study was to identify the predictors of change in parental stress (including parent and child factors), depression, and interaction style in parents of toddlers with Autism Spectrum Disorders (ASD), exposed to two types of early intervention (EI) programs, PLAY and Community Standard (CS). This study utilized secondary data of…

  3. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  4. INTERACTIONS OF CHANGING CLIMATE AND ULTRAVIOLET RADIATION IN AQUATIC AND TERRESTRIAL BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade interest has developed in the interactive effects of climate change and UV radiation on aquatic and terrestrial biogeochemical cycles. This talk used selected case studies to illustrate approaches that are being used to investigate these intriguing processe...

  5. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  6. Stress in Marital Interaction and Change in Depression: A Longitudinal Analysis.

    ERIC Educational Resources Information Center

    Schafer, Robert B.; Wickrama, K. A. S.; Keith, Pat M.

    1998-01-01

    A model of the effects of two types of stress in everyday marital interaction on change in depressive symptoms is investigated. Mediating variables are unfavorable reflected appraisals, low competency, self-efficacy, and self-esteem. Participants (N=98 couples) were interviewed twice. The data supported the model. (Author/EMK)

  7. INTERACTIVE EFFECTS OF OZONE DEPLETION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the...

  8. Learning as Longitudinal Interactional Change: From "Other"-Repair to "Self"-Repair in Physiotherapy Treatment

    ERIC Educational Resources Information Center

    Martin, Cathrin; Sahlstrom, Fritjof

    2010-01-01

    The aims of this article are to address how learning is constituted and can be studied as a phenomenon in interaction and to discuss how teaching and learning are related. Theoretically, the article argues for and discusses constraints and affordances for relating sociocultural understandings of learning as changing participation to "conversation…

  9. An Interactive Computer Program to Construct Adaptive Landscapes and to Simulate the Changes Expected with Selection

    ERIC Educational Resources Information Center

    Hull, Peter

    1978-01-01

    Describes an interactive computer program which can be used by students to construct adaptive landscapes of two types as an illustration of the expected effects of selection. Simulates effects of selection on populations of this type and changes of gene frequency can be plotted on the same contour map. (Author/MA)

  10. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  11. SMART Moves? A Case Study of One Teacher's Pedagogical Change through Use of the Interactive Whiteboard

    ERIC Educational Resources Information Center

    Mohon, Elizabeth H.

    2008-01-01

    This case study investigates how the use of an interactive whiteboard (IWB) leads to pedagogical change within a UK secondary school classroom. A teacher's experiences as recorded in a reflective journal, and the responses of students as recorded in a questionnaire, are set within the context of rhetoric about the value of IWBs. It is argued that…

  12. Flavor changing strong interaction effects on top quark physics at the CERN LHC

    SciTech Connect

    Ferreira, P.M.; Santos, R.; Oliveira, O.

    2006-02-01

    We perform a model independent analysis of the flavor changing strong interaction vertices relevant to the LHC. In particular, the contribution of dimension six operators to single top production in various production processes is discussed, together with possible hints for identifying signals and setting bounds on physics beyond the standard model.

  13. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015

    EPA Science Inventory

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, bi...

  14. INTERACTIONS OF CHANGING CLIMATE AND ULTRAVIOLET RADIATION IN AQUATIC AND TERRESTRIAL BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    During the past decade interest has developed in the interactive effects of climate change and UV radiation on aquatic and terrestrial biogeochemical cycles. This talk used selected case studies to illustrate approaches that are being used to investigate these intriguing processe...

  15. Predictors of Change in Stress, Interaction Styles, and Depression in Parents of Toddlers with Autism

    ERIC Educational Resources Information Center

    Trocchio, Jennie S.

    2013-01-01

    The purpose of this study was to identify the predictors of change in parental stress (including parent and child factors), depression, and interaction style in parents of toddlers with Autism Spectrum Disorders (ASD), exposed to two types of early intervention (EI) programs, PLAY and Community Standard (CS). This study utilized secondary data of…

  16. INTERACTIVE EFFECTS OF SOLAR UV RADIATION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLING

    EPA Science Inventory

    This paper assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are o...

  17. INTERACTIVE EFFECTS OF OZONE DEPLETION AND CLIMATE CHANGE ON BIOGEOCHEMICAL CYCLES

    EPA Science Inventory

    The effects of ozone depletion on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the...

  18. Changes of Interaction during the Development of a Mathematical Learning Environment

    ERIC Educational Resources Information Center

    Hoek, Dirk; Gravemeijer, Koeno

    2011-01-01

    Two research questions are answered: how did teacher instructional skills develop during a whole school year? What is the influence of this development on the interactions between students during the co-operative learning moments? From the analysis, it appeared that the teachers' instruction changed from direct instruction to a more process and…

  19. Aboveground-belowground linkages: Biotic interactions, ecosystem processes, and global change

    NASA Astrophysics Data System (ADS)

    Anderson, Laurel J.

    2011-06-01

    The discovery of unexpected connections among organisms that seemingly have nothing to do with one another is one of the most exciting aspects of ecological science. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Change, by Richard Bardgett and David Wardle, reminds readers that interactions among soil microbes, plants, herbivores, predators, and the physical environment represent some of the most fascinating of these discoveries and that much remains to be revealed. Indeed, given the known influences of soils on plant productivity and the global carbon and nitrogen cycles, understanding the mechanisms that link aboveground and belowground processes is critical for accurate assessments of how climate change may affect ecosystem goods and services that support humans. Bardgett and Wardle make the need for further work in this area abundantly clear as they synthesize the current state of knowledge on aboveground and belowground interactions using diverse and interesting examples drawn from an extensive review of the literature.

  20. Interaction of complex fluids and solids: theory, algorithms and application to phase-change-driven implosion

    NASA Astrophysics Data System (ADS)

    Bueno, Jesus; Bona-Casas, Carles; Bazilevs, Yuri; Gomez, Hector

    2015-06-01

    There is a large body of literature dealing with the interaction of solids and classical fluids, but the mechanical coupling of solids and complex fluids remains practically unexplored, at least from the computational point of view. Yet, complex fluids produce much richer physics than classical fluids when they interact with solids, especially at small scales. Here, we couple a nonlinear hyperelastic solid with a single-component two-phase flow, where the fluid can condensate and evaporate naturally due to temperature and/or pressure changes. We propose a fully-coupled fluid-structure interaction algorithm to solve the problem. We illustrate the viability of the theoretical framework and the effectiveness of our algorithms by solving several problems of phase-change-driven implosion, a physical process in which a thin structure collapses due to the condensation of a fluid.

  1. Interactive effects of global change factors on soil respiration and its components: a meta-analysis.

    PubMed

    Zhou, Lingyan; Zhou, Xuhui; Shao, Junjiong; Nie, Yuanyuan; He, Yanghui; Jiang, Liling; Wu, Zhuoting; Hosseini Bai, Shahla

    2016-09-01

    As the second largest carbon (C) flux between the atmosphere and terrestrial ecosystems, soil respiration (Rs) plays vital roles in regulating atmospheric CO2 concentration ([CO2 ]) and climatic dynamics in the earth system. Although numerous manipulative studies and a few meta-analyses have been conducted to determine the responses of Rs and its two components [i.e., autotrophic (Ra) and heterotrophic (Rh) respiration] to single global change factors, the interactive effects of the multiple factors are still unclear. In this study, we performed a meta-analysis of 150 multiple-factor (≥2) studies to examine the main and interactive effects of global change factors on Rs and its two components. Our results showed that elevated [CO2 ] (E), nitrogen addition (N), irrigation (I), and warming (W) induced significant increases in Rs by 28.6%, 8.8%, 9.7%, and 7.1%, respectively. The combined effects of the multiple factors, EN, EW, DE, IE, IN, IW, IEW, and DEW, were also significantly positive on Rs to a greater extent than those of the single-factor ones. For all the individual studies, the additive interactions were predominant on Rs (90.6%) and its components (≈70.0%) relative to synergistic and antagonistic ones. However, the different combinations of global change factors (e.g., EN, NW, EW, IW) indicated that the three types of interactions were all important, with two combinations for synergistic effects, two for antagonistic, and five for additive when at least eight independent experiments were considered. In addition, the interactions of elevated [CO2 ] and warming had opposite effects on Ra and Rh, suggesting that different processes may influence their responses to the multifactor interactions. Our study highlights the crucial importance of the interactive effects among the multiple factors on Rs and its components, which could inform regional and global models to assess the climate-biosphere feedbacks and improve predictions of the future states of the

  2. Changes in divergence-free grid turbulence interacting with a weak spherical shock wave

    NASA Astrophysics Data System (ADS)

    Kitamura, T.; Nagata, K.; Sakai, Y.; Sasoh, A.; Ito, Y.

    2017-06-01

    The characteristics of divergence-free grid turbulence interacting with a weak spherical shock wave with a Mach number of 1.05 are experimentally investigated. Turbulence-generating grids are used to generate nearly isotropic, divergence-free turbulence. The turbulent Reynolds number based on the Taylor microscale R eλ and the turbulent Mach number Mt are 49 ≤R eλ≤159 and 0.709 × 1 0-3≤Mt≤2.803 ×1 0-3, respectively. A spherical shock wave is generated by a diaphragmless shock tube. The instantaneous streamwise velocity before and after the interaction is measured by a hot wire probe. The results show that the root-mean-square value of streamwise velocity fluctuations (r.m.s velocity) increases and the streamwise integral length scale decreases after the interaction. The changes in the r.m.s velocity become small with the increase in R eλ and Mt for the same strength of the shock wave. This tendency is similar to that of the streamwise integral length scale. The continuous wavelet analysis shows that high intensity appears mainly in the low-frequency region and positive and negative wavelet coefficients appear periodically in time before the interaction, whereas such high intensity appears in both the low- and high-frequency regions after the interaction. The spectral analysis reveals that the energy at high wavenumbers increases after the interaction. The change in turbulence after the interaction is explained from the viewpoint of the initial turbulent Mach number. It is suggested that the change is more significant for initial divergence-free turbulence than for curl-free turbulence.

  3. Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators

    NASA Astrophysics Data System (ADS)

    Queiroz, Farinaldo S.; Siqueira, Clarissa; Valle, José W. F.

    2016-12-01

    Within the context of vector mediators, is a new signal observed in flavor changing interactions, particularly in the neutral mesons systems K0 -Kbar0, D0 -Dbar0 and B0 -B0 bar , consistent with dilepton resonance searches at the LHC? In the attempt to address this very simple question, we discuss the complementarity between flavor changing neutral current (FCNC) and dilepton resonance searches at the LHC run 2 at 13 TeV with 3.2 fb-1 of integrated luminosity, in the context of vector mediators at tree level. Vector mediators, are often studied in the flavor changing framework, specially in the light of the recent LHCb anomaly observed at the rare B decay. However, the existence of stringent dilepton bound severely constrains flavor changing interactions, due to restrictive limits on the Z‧ mass. We discuss this interplay explicitly in the well motivated framework of a 3-3-1 scheme, where fermions and scalars are arranged in the fundamental representation of the weak SU(3) gauge group. Due to the paucity of relevant parameters, we conclude that dilepton data leave little room for a possible new physics signal stemming from these systems, unless a very peculiar texture parametrization is used in the diagonalization of the CKM matrix. In other words, if a signal is observed in such flavor changing interactions, it unlikely comes from a 3-3-1 model.

  4. Soil biotic interactions and climate change: consequences for carbon cycle feedbacks

    NASA Astrophysics Data System (ADS)

    Bardgett, Richard

    2015-04-01

    There is currently much interest in understanding the biological mechanisms that regulate carbon exchanges between land and atmosphere, and how these exchanges respond to climate change. Climate change impacts on biogeochemical cycles via a variety of mechanisms; but there is now mounting evidence that biotic interactions between plants and diverse soil communities play a major role in determining carbon cycle responses to climate change across a range of spatial and temporal scales. Over seasonal and annual timescales, climate change impacts the growth and physiology of plants and their roots, with knock on effects for the activity of soil biota and carbon transformations; in the longer term, over tens to hundreds of years, climate change can cause shifts in community composition, and species range expansions and contractions, with cascading impacts on belowground communities and carbon cycling in soil. These responses have local and, potentially, global scale implications for carbon cycle feedbacks. In this talk, I will draw on recent research to illustrate this hierarchy of plant-soil feedback responses to climate change, the mechanisms involved, and consequences for the carbon cycle at local and global scales. I will also discuss how such knowledge on plant-soil interactions might be harnessed to inform management strategies for soil carbon sequestration and mitigation of climate change, and identify some major research challenges for the future.

  5. Effects of interactive global changes on methane uptake in an annual grassland

    NASA Astrophysics Data System (ADS)

    Blankinship, Joseph C.; Brown, Jamie R.; Dijkstra, Paul; Hungate, Bruce A.

    2010-06-01

    The future size of the terrestrial methane (CH4) sink of upland soils remains uncertain, along with potential feedbacks to global warming. Much of the uncertainty lies in our lack of knowledge about potential interactive effects of multiple simultaneous global environmental changes. Field CH4 fluxes and laboratory soil CH4 consumption were measured five times during 3 consecutive years in a California annual grassland exposed to 8 years of the full factorial combination of ambient and elevated levels of precipitation, temperature, atmospheric CO2 concentration, and N deposition. Across all sampling dates and treatments, increased precipitation caused a 61% reduction in field CH4 uptake. However, this reduction depended quantitatively on other global change factors. Higher precipitation reduced CH4 uptake when temperature or N deposition (but not both) increased, and under elevated CO2 but only late in the growing season. Warming alone also decreased CH4 uptake early in the growing season, which was partly explained by a decrease in laboratory soil CH4 consumption. Atmospheric CH4 models likely need to incorporate nonadditive interactions, seasonal interactions, and interactions between methanotrophy and methanogenesis. Despite the complexity of interactions we observed in this multifactor experiment, the outcome agrees with results from single-factor experiments: an increased terrestrial CH4 sink appears less likely than a reduced one.

  6. Local interactions lead to pathogen-driven change to host population dynamics.

    PubMed

    Boots, Michael; Childs, Dylan; Reuman, Daniel C; Mealor, Michael

    2009-10-13

    Individuals tend to interact more strongly with nearby individuals or within particular social groups. Recent theoretical advances have demonstrated that these within-population relationships can have fundamental implications for ecological and evolutionary dynamics. In particular, contact networks are crucial to the spread and evolution of disease. However, the theory remains largely untested experimentally. Here, we manipulate habitat viscosity and thereby the frequency of local interactions in an insect-pathogen model system in which the virus had previously been shown to have little effect on host population dynamics. At high viscosity, the pathogen caused the collapse of dominant and otherwise stable host generation cycles. Modeling shows that this collapse can be explained by an increase in the frequency of intracohort interactions relative to intercohort interactions, leading to more disease transmission. Our work emphasizes that spatial structure can subtly mediate intraspecific competition and the effects of natural enemies. A decrease in dispersal in a population may actually (sometimes rather counterintuitively) intensify the effects of parasites. Broadly, because anthropological and environmental change often cause changes in population mixing, our work highlights the potential for dramatic changes in the effects of parasites on host populations.

  7. Charge-transfer interactions induce surface dependent conformational changes in apolipoprotein biocorona.

    PubMed

    Raghavendra, Achyut J; Alsaleh, Nasser; Brown, Jared M; Podila, Ramakrishna

    2017-03-07

    Upon introduction into a biological system, engineered nanomaterials (ENMs) rapidly associate with a variety of biomolecules such as proteins and lipids to form a biocorona. The presence of "biocorona" influences nano-bio interactions considerably, and could ultimately result in altered biological responses. Apolipoprotein A-I (ApoA-I), the major constituent of high-density lipoprotein (HDL), is one of the most prevalent proteins found in ENM-biocorona irrespective of ENM nature, size, and shape. Given the importance of ApoA-I in HDL and cholesterol transport, it is necessary to understand the mechanisms of ApoA-I adsorption and the associated structural changes for assessing consequences of ENM exposure. Here, the authors used a comprehensive array of microscopic and spectroscopic tools to elucidate the interactions between ApoA-I and 100 nm Ag nanoparticles (AgNPs) with four different surface functional groups. The authors found that the protein adsorption and secondary structural changes are highly dependent on the surface functionality. Our electrochemical studies provided new evidence for charge transfer interactions that influence ApoA-I unfolding. While the unfolding of ApoA-I on AgNPs did not significantly change their uptake and short-term cytotoxicity, the authors observed that it strongly altered the ability of only some AgNPs to generate of reactive oxygen species. Our results shed new light on the importance of surface functionality and charge transfer interactions in biocorona formation.

  8. Altered mechanical interaction between rat plantar flexors due to changes in intermuscular connectivity.

    PubMed

    Bernabei, M; van Dieën, J H; Maas, H

    2017-02-01

    Connective tissue formation following muscle injury and remedial surgery may involve changes in the stiffness and configuration of the connective tissues linking adjacent muscles. We investigated changes in mechanical interaction of muscles by implanting either a tissue-integrating mesh (n = 8) or an adhesion barrier (n = 8) to respectively increase or decrease the intermuscular connectivity between soleus muscle (SO) and the lateral gastrocnemius and plantaris complex (LG+PL) of the rat. As a measure of mechanical interaction, changes in SO tendon forces and proximal-distal LG+PL force differences in response to lengthening LG+PL proximally were assessed 1 and 2 weeks post-surgery. The extent of mechanical interaction was doubled 1 week post-implantation of the tissue-integrating mesh compared to an unaffected compartment (n = 8), and was more than four times higher 2 weeks post-surgery. This was found only for maximally activated muscles, but not when passive. Implanting the adhesion barrier did not result in a reduction of the mechanical interaction between these muscles. Our findings indicate that the ratio of force transmitted via myofascial, rather than myotendinous pathways, can increase substantially when the connectivity between muscles is enhanced. This improves our understanding of the consequences of connective tissue formation at the muscle boundary on skeletal muscle function.

  9. Biotic interactions mediate the expansion of black mangrove (Avicennia germinans) into salt marshes under climate change.

    PubMed

    Guo, Hongyu; Zhang, Yihui; Lan, Zhenjiang; Pennings, Steven C

    2013-09-01

    Many species are expanding their distributions to higher latitudes due to global warming. Understanding the mechanisms underlying these distribution shifts is critical for better understanding the impacts of climate changes. The climate envelope approach is widely used to model and predict species distribution shifts with changing climates. Biotic interactions between species, however, may also influence species distributions, and a better understanding of biotic interactions could improve predictions based solely on climate envelope models. Along the northern Gulf of Mexico coast, USA, subtropical black mangrove (Avicennia germinans) at the northern limit of its distribution grows sympatrically with temperate salt marsh plants in Florida, Louisiana, and Texas. In recent decades, freeze-free winters have led to an expansion of black mangrove into salt marshes. We examined how biotic interactions between black mangrove and salt marsh vegetation along the Texas coast varied across (i) a latitudinal gradient (associated with a winter-temperature gradient); (ii) the elevational gradient within each marsh (which creates different marsh habitats); and (iii) different life history stages of black mangroves (seedlings vs. juvenile trees). Each of these variables affected the strength or nature of biotic interactions between black mangrove and salt marsh vegetation: (i) Salt marsh vegetation facilitated black mangrove seedlings at their high-latitude distribution limit, but inhibited black mangrove seedlings at lower latitudes; (ii) mangroves performed well at intermediate elevations, but grew and survived poorly in high- and low-marsh habitats; and (iii) the effect of salt marsh vegetation on black mangroves switched from negative to neutral as black mangroves grew from seedlings into juvenile trees. These results indicate that the expansion of black mangroves is mediated by complex biotic interactions. A better understanding of the impacts of climate change on ecological

  10. Search for flavor-changing nonstandard neutrino interactions using νe appearance in MINOS

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anghel, I.; Aurisano, A.; Barr, G.; Bishai, M.; Blake, A.; Bock, G. J.; Bogert, D.; Cao, S. V.; Carroll, T. J.; Castromonte, C. M.; Chen, R.; Childress, S.; Coelho, J. A. B.; Corwin, L.; Cronin-Hennessy, D.; de Jong, J. K.; de Rijck, S.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Flanagan, W.; Frohne, M. V.; Gabrielyan, M.; Gallagher, H. R.; Germani, S.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grzelak, K.; Habig, A.; Hahn, S. R.; Hartnell, J.; Hatcher, R.; Holin, A.; Huang, J.; Hylen, J.; Irwin, G. M.; Isvan, Z.; James, C.; Jensen, D.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kordosky, M.; Kreymer, A.; Lang, K.; Ling, J.; Litchfield, P. J.; Lucas, P.; Mann, W. A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Mualem, L.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'Connor, J.; Orchanian, M.; Pahlka, R. B.; Paley, J.; Patterson, R. B.; Pawloski, G.; Perch, A.; Pfützner, M. M.; Phan, D. D.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Qiu, X.; Radovic, A.; Rebel, B.; Rosenfeld, C.; Rubin, H. A.; Sail, P.; Sanchez, M. C.; Schneps, J.; Schreckenberger, A.; Schreiner, P.; Sharma, R.; Sousa, A.; Tagg, N.; Talaga, R. L.; Thomas, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Todd, J.; Tognini, S. C.; Toner, R.; Torretta, D.; Tzanakos, G.; Urheim, J.; Vahle, P.; Viren, B.; Weber, A.; Webb, R. C.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Zwaska, R.; Minos Collaboration

    2017-01-01

    We report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using νe and ν¯e appearance candidate events from predominantly νμ and ν¯μ beams. We used a statistical selection algorithm to separate νe candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. We observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ɛe τ|, and phase, (δC P+δe τ) , using a 30-bin likelihood fit.

  11. Climate change and grazing interact to alter flowering patterns in the Mongolian steppe.

    PubMed

    Spence, Laura A; Liancourt, Pierre; Boldgiv, Bazartseren; Petraitis, Peter S; Casper, Brenda B

    2014-05-01

    Socio-economic changes threaten nomadic pastoralism across the world, changing traditional grazing patterns. Such land-use changes will co-occur with climate change, and while both are potentially important determinants of future ecosystem functioning, interactions between them remain poorly understood. We investigated the effects of grazing by large herbivores and climate manipulation using open-top chambers (OTCs) on flower number and flowering species richness in mountain steppe of northern Mongolia. In this region, sedentary pastoralism is replacing nomadic pastoralism, and temperature is predicted to increase. Grazing and OTCs interacted to affect forb flowering richness, which was reduced following grazing removal, and reduced by OTCs in grazed plots only. This interaction was directly linked to the soil moisture and temperature environments created by the experimental treatments: most species flowered when both soil moisture and temperature levels were high (i.e. in grazed plots without OTCs), while fewer species flowered when either temperature, or moisture, or both, were low. Removal of grazing increased the average number of graminoid flowers produced at peak flowering in Year 1, but otherwise grazing removal and OTCs did not affect community-level flower composition. Of four abundant graminoid species examined individually, three showed increased flower number with grazing removal, while one showed the reverse. Four abundant forb species showed no significant response to either treatment. Our results highlight how climate change effects on mountain steppe could be contingent on land-use, and that studies designed to understand ecosystem response to climate change should incorporate co-occurring drivers of change, such as altered grazing regimes.

  12. Interactive Change Detection Using High Resolution Remote Sensing Images Based on Active Learning with Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Ru, Hui; Yu, Huai; Huang, Pingping; Yang, Wen

    2016-06-01

    Although there have been many studies for change detection, the effective and efficient use of high resolution remote sensing images is still a problem. Conventional supervised methods need lots of annotations to classify the land cover categories and detect their changes. Besides, the training set in supervised methods often has lots of redundant samples without any essential information. In this study, we present a method for interactive change detection using high resolution remote sensing images with active learning to overcome the shortages of existing remote sensing image change detection techniques. In our method, there is no annotation of actual land cover category at the beginning. First, we find a certain number of the most representative objects in unsupervised way. Then, we can detect the change areas from multi-temporal high resolution remote sensing images by active learning with Gaussian processes in an interactive way gradually until the detection results do not change notably. The artificial labelling can be reduced substantially, and a desirable detection result can be obtained in a few iterations. The experiments on Geo-Eye1 and WorldView2 remote sensing images demonstrate the effectiveness and efficiency of our proposed method.

  13. Interactive effects of multiple climate change factors on ammonia oxidizers and denitrifiers in a temperate steppe.

    PubMed

    Zhang, Cuijing; Shen, Jupei; Sun, Yifei; Wang, Juntao; Zhang, Limei; Yang, Zhongling; Han, Hongyan; Wan, Shiqiang; He, Jizheng

    2017-03-15

    Global climate change could have profound effects on belowground microbial communities and subsequently affect soil biogeochemical processes. The interactive effects of multiple co-occurring climate change factors on microbially-mediated processes are not well understood. A four-factorial field experiment with elevated CO2, watering, nitrogen (N) addition and night warming was conducted in a temperate steppe of northern China. Real-time polymerase chain reaction and terminal-restriction fragment length polymorphism, combined with clone library techniques were applied to examine the effects of those climate change factors on N-related microbial abundance and community composition. Only the abundance of ammonia-oxidizing bacteria significantly increased by nitrogen addition and decreased by watering. The interactions of watering × warming on the bacterial amoA community and warming × nitrogen addition on the nosZ community were found. Redundancy analysis indicated that the ammonia-oxidizing archaeal community was affected by total N and total carbon, while the community of bacterial amoA and nosZ were significantly affected by soil pH. According to a structural equation modeling analysis, climate change influenced net primary production indirectly by altering microbial abundance and activities. These results indicated that microbial responses to the combination of chronic global change tend to be smaller than expected from single-factor global change manipulations.

  14. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks

    USGS Publications Warehouse

    Hooper, Michael J.; Ankley, Gerald T.; Cristol, Daniel A.; Maryoung, Lindley A.; Noyes, Pamela D.; Pinkerton, Kent E.

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  15. INTERACTIONS BETWEEN CHEMICAL AND CLIMATE STRESSORS: A ROLE FOR MECHANISTIC TOXICOLOGY IN ASSESSING CLIMATE CHANGE RISKS

    PubMed Central

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical–GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical–climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments. Environ. Toxicol. Chem. 2013;32:32–48. © 2012 SETAC PMID:23136056

  16. Interactions between chemical and climate stressors: a role for mechanistic toxicology in assessing climate change risks.

    PubMed

    Hooper, Michael J; Ankley, Gerald T; Cristol, Daniel A; Maryoung, Lindley A; Noyes, Pamela D; Pinkerton, Kent E

    2013-01-01

    Incorporation of global climate change (GCC) effects into assessments of chemical risk and injury requires integrated examinations of chemical and nonchemical stressors. Environmental variables altered by GCC (temperature, precipitation, salinity, pH) can influence the toxicokinetics of chemical absorption, distribution, metabolism, and excretion as well as toxicodynamic interactions between chemicals and target molecules. In addition, GCC challenges processes critical for coping with the external environment (water balance, thermoregulation, nutrition, and the immune, endocrine, and neurological systems), leaving organisms sensitive to even slight perturbations by chemicals when pushed to the limits of their physiological tolerance range. In simplest terms, GCC can make organisms more sensitive to chemical stressors, while alternatively, exposure to chemicals can make organisms more sensitive to GCC stressors. One challenge is to identify potential interactions between nonchemical and chemical stressors affecting key physiological processes in an organism. We employed adverse outcome pathways, constructs depicting linkages between mechanism-based molecular initiating events and impacts on individuals or populations, to assess how chemical- and climate-specific variables interact to lead to adverse outcomes. Case examples are presented for prospective scenarios, hypothesizing potential chemical-GCC interactions, and retrospective scenarios, proposing mechanisms for demonstrated chemical-climate interactions in natural populations. Understanding GCC interactions along adverse outcome pathways facilitates extrapolation between species or other levels of organization, development of hypotheses and focal areas for further research, and improved inputs for risk and resource injury assessments.

  17. Plant response to climate change varies with topography, interactions with neighbors, and ecotype.

    PubMed

    Liancourt, Pierre; Spence, Laura A; Song, Daniel S; Lkhagva, Ariuntsetseg; Sharkhuu, Anarmaa; Boldgiv, Bazartseren; Helliker, Brent R; Petraitis, Peter S; Casper, Brenda B

    2013-02-01

    Predicting the future of any given species represents an unprecedented challenge in light of the many environmental and biological factors that affect organismal performance and that also interact with drivers of global change. In a three-year experiment set in the Mongolian steppe, we examined the response of the common grass Festuca lenensis to manipulated temperature and water while controlling for topographic variation, plant-plant interactions, and ecotypic differentiation. Plant survival and growth responses to a warmer, drier climate varied within the landscape. Response to simulated increased precipitation occurred only in the absence of neighbors, demonstrating that plant-plant interactions can supersede the effects of climate change. F. lenensis also showed evidence of local adaptation in populations that were only 300 m apart. Individuals from the steep and dry upper slope showed a higher stress/drought tolerance, whereas those from the more productive lower slope showed a higher biomass production and a greater ability to cope with competition. Moreover, the response of this species to increased precipitation was ecotype specific, with water addition benefiting only the least stress-tolerant ecotype from the lower slope origin. This multifaceted approach illustrates the importance of placing climate change experiments within a realistic ecological and evolutionary framework. Existing sources of variation impacting plant performance may buffer or obscure climate change effects.

  18. Pathways of Understanding: the Interactions of Humanity and Global Environmental Change

    NASA Technical Reports Server (NTRS)

    Jacobson, Harold K.; Katzenberger, John; Lousma, Jack; Mooney, Harold A.; Moss, Richard H.; Kuhn, William; Luterbacher, Urs; Wiegandt, Ellen

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  19. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    PubMed

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  20. The role of belowground plant-microbe interactions in climate change induced range shifts

    NASA Astrophysics Data System (ADS)

    Ramirez, Kelly; Snoek, Basten; van der Putten, Wim

    2017-04-01

    With climate change, plants have been able to shift their ranges into novel environments were conditions have been made suitable due to warming temperature and changes in precipitation. Much belowground range expansion research has focused on either positive plant-soil interactions, such as AMF symbiosis, or on negative plant-soil interactions, such as pathogens. Less focus has been given to the core microbiome of plant hosts. Many unknowns remain in how the soil microbiome may contribute to plant adaptation to climate change, and how this may feedback to plant-soil interactions and ecosystem functions. Using high-throughput Illumina sequencing we assessed soil and root microbial communities under native and range expanding plant species spanning a north-south latitudinal transect in central Europe. As expected, the soil and root microbiomes are both strongly influenced by the plant species under which they grow. Specifically, about 10% of the microbiome could be related to the host plant species. Interestingly, we found that microbiomes associated with range shifting species are less variable than those associated with native species. Further, the enrichment of microbes in roots (from the soil) is stronger with range expanding species than with native plant species. Our research indicates that the soil and root microbiomes can provide insight into plant range shifts and may be important for plant establishment. Our results are also important at a continental and global level, as ecosystems and plant communities worldwide are effected by climate change induced range-expansions.

  1. Interactive effects of global climate change and pollution on marine microbes: the way ahead

    PubMed Central

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Ângela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-01-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future. PMID:23789087

  2. Adaptation of mammalian host-pathogen interactions in a changing arctic environment

    PubMed Central

    2011-01-01

    Many arctic mammals are adapted to live year-round in extreme environments with low winter temperatures and great seasonal variations in key variables (e.g. sunlight, food, temperature, moisture). The interaction between hosts and pathogens in high northern latitudes is not very well understood with respect to intra-annual cycles (seasons). The annual cycles of interacting pathogen and host biology is regulated in part by highly synchronized temperature and photoperiod changes during seasonal transitions (e.g., freezeup and breakup). With a warming climate, only one of these key biological cues will undergo drastic changes, while the other will remain fixed. This uncoupling can theoretically have drastic consequences on host-pathogen interactions. These poorly understood cues together with a changing climate by itself will challenge host populations that are adapted to pathogens under the historic and current climate regime. We will review adaptations of both host and pathogens to the extreme conditions at high latitudes and explore some potential consequences of rapid changes in the Arctic. PMID:21392401

  3. Pathways of understanding: The interactions of humanity and global environmental change

    SciTech Connect

    Jacobson, H.K.; Katzenberger, J.; Lousma, J.; Mooney, H.A.; Moss, R.H.; Kuhn, W.; Luterbacher, U.; Wiegandt, E.

    1992-01-01

    How humans, interacting within social systems, affect and are affected by global change is explored. Recognizing the impact human activities have on the environment and responding to the need to document the interactions among human activities, the Consortium for International Earth Science Information Network (CIESIN) commissioned a group of 12 scientists to develop a framework illustrating the key human systems that contribute to global change. This framework, called the Social Process Diagram, will help natural and social scientists, educators, resource managers and policy makers envision and analyze how human systems interact among themselves and with the natural system. The Social Process Diagram consists of the following blocks that constitute the Diagram's structural framework: (1) fund of knowledge and experience; (2) preferences and expectations; (3) factors of production and technology; (4) population and social structure; (5) economic systems; (6) political systems and institutions; and (7) global scale environmental processes. To demonstrate potential ways the Diagram can be used, this document includes 3 hypothetical scenarios of global change issues: global warming and sea level rise; the environmental impact of human population migration; and energy and the environment. These scenarios demonstrate the Diagram's usefulness for visualizing specific processes that might be studied to evaluate a particular global change issues. The scenario also shows that interesting and unanticipated questions may emerge as links are explored between categories on the Diagram.

  4. Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish.

    PubMed

    Rolls, Robert J; Hayden, Brian; Kahilainen, Kimmo K

    2017-06-01

    Climate change and species invasions represent key threats to global biodiversity. Subarctic freshwaters are sentinels for understanding both stressors because the effects of climate change are disproportionately strong at high latitudes and invasion of temperate species is prevalent. Here, we summarize the environmental effects of climate change and illustrate the ecological responses of freshwater fishes to these effects, spanning individual, population, community and ecosystem levels. Climate change is modifying hydrological cycles across atmospheric, terrestrial and aquatic components of subarctic ecosystems, causing increases in ambient water temperature and nutrient availability. These changes affect the individual behavior, habitat use, growth and metabolism, alter population spawning and recruitment dynamics, leading to changes in species abundance and distribution, modify food web structure, trophic interactions and energy flow within communities and change the sources, quantity and quality of energy and nutrients in ecosystems. Increases in temperature and its variability in aquatic environments underpin many ecological responses; however, altered hydrological regimes, increasing nutrient inputs and shortened ice cover are also important drivers of climate change effects and likely contribute to context-dependent responses. Species invasions are a complex aspect of the ecology of climate change because the phenomena of invasion are both an effect and a driver of the ecological consequences of climate change. Using subarctic freshwaters as an example, we illustrate how climate change can alter three distinct aspects of species invasions: (1) the vulnerability of ecosystems to be invaded, (2) the potential for species to spread and invade new habitats, and (3) the subsequent ecological effects of invaders. We identify three fundamental knowledge gaps focused on the need to determine (1) how environmental and landscape characteristics influence the

  5. Preface - 'Biogeochemistry-ecosystem interaction on changing continental margins in the Anthropocene'

    NASA Astrophysics Data System (ADS)

    Liu, K.-K.; Emeis, Kay-Christian; Levin, Lisa A.; Naqvi, Wajih; Roman, Michael

    2015-01-01

    This special issue is a product of Workshop 1 of IMBIZO III held in Goa, India in January 2013 (Bundy et al., 2013). This IMBIZO (a Zulu word for gathering) has been organized by IMBER (Integrated Marine Biogeochemistry and Ecosystem Research) biannually since 2008. It employs a format of three concurrent but interacting workshops designed to synthesize information on topical research areas in marine science. Workshop 1 addressed the issue, "Biogeochemistry-ecosystem interaction in changing continental margins," which belongs to the purview of the Continental Margins Working Group (CMWG), co-sponsored by IMBER and LOICZ (Land-Ocean Interaction in the Coastal Zone). As a way to explore the emerging issues that concern the CMWG, the workshop had attracted 25 talks and 18 posters that explored the following topics: Human impacts on continental margins

  6. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  7. Revising neutrino oscillation parameter space with direct flavor-changing interactions

    SciTech Connect

    Johnson, Loretta M.; McKay, Douglas W.

    2000-06-01

    We formulate direct, neutrino flavor-changing interactions in a framework that fits smoothly with the parametrization of two- and three-state mixing of massive neutrino states. We show that even small direct interaction strengths could have important consequences on the interpretation of currently running and proposed oscillation experiments. The oscillation amplitude and the borders of the allowed regions in two- and three-flavor mixing parameter space can be sensitive to the presence of direct interactions when the transition probability is small. We use extensively the high sensitivity of the NOMAD experiment to illustrate potentially large effects from small, direct flavor violation. In the purely leptonic sector, we find that the clean {nu}{sub {mu}} and {nu}{sub e} beams from a {mu}{sup +}-{mu}{sup -} collider could provide the sharpest tests of direct flavor violation. (c) 2000 The American Physical Society.

  8. Dynamics of binary and planetary-system interaction with disks - Eccentricity changes

    NASA Technical Reports Server (NTRS)

    Atrymowicz, Pawel

    1992-01-01

    Protostellar and protoplanetary systems, as well as merging galactic nuclei, often interact tidally and resonantly with the astrophysical disks via gravity. Underlying our understanding of the formation processes of stars, planets, and some galaxies is a dynamical theory of such interactions. Its main goals are to determine the geometry of the binary-disk system and, through the torque calculations, the rate of change of orbital elements of the components. We present some recent developments in this field concentrating on eccentricity driving mechanisms in protoplanetary and protobinary systems. In those two types of systems the result of the interaction is opposite. A small body embedded in a disk suffers a decrease of orbital eccentricity, whereas newly formed binary stars surrounded by protostellar disks may undergo a significant orbital evolution increasing their eccentricities.

  9. Climate-chemical interactions and effects of changing atmospheric trace gases

    NASA Technical Reports Server (NTRS)

    Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.

    1987-01-01

    The paper considers trace gas-climate effects including the greenhouse effect of polyatomic trace gases, the nature of the radiative-chemical interactions, and radiative-dynamical interactions in the stratosphere, and the role of these effects in governing stratospheric climate change. Special consideration is given to recent developments in the investigations of the role of oceans in governing the transient climate responses, and a time-dependent estimate of the potential trace gas warming from the preindustrial era to the early 21st century. The importance of interacting modeling and observational efforts is emphasized. One of the problems remaining on the observational front is the lack of certainty in current estimates of the rate of growth of CO, O3, and NOx; the primary challenge is the design of a strategy that will minimize the sampling errors.

  10. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance

    PubMed Central

    Allen, Jessica L.; Chown, Steven L.; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3–0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species’ vulnerability to climate change using a warming tolerance approach. PMID:27933165

  11. Interactions between rates of temperature change and acclimation affect latitudinal patterns of warming tolerance.

    PubMed

    Allen, Jessica L; Chown, Steven L; Janion-Scheepers, Charlene; Clusella-Trullas, Susana

    2016-01-01

    Critical thermal limits form an increasing component of the estimation of impacts of global change on ectotherms. Whether any consistent patterns exist in the interactive effects of rates of temperature change (or experimental ramping rates) and acclimation on critical thermal limits and warming tolerance (one way of assessing sensitivity to climate change) is, however, far from clear. Here, we examine the interacting effects of ramping rate and acclimation on the critical thermal maxima (CTmax) and minima (CTmin) and warming tolerance of six species of springtails from sub-tropical, temperate and polar regions. We also provide microhabitat temperatures from 26 sites spanning 5 years in order to benchmark environmentally relevant rates of temperature change. Ramping rate has larger effects than acclimation on CTmax, but the converse is true for CTmin. Responses to rate and acclimation effects are more consistent among species for CTmax than for CTmin. In the latter case, interactions among ramping rate and acclimation are typical of polar species, less marked for temperate ones, and reduced in species from the sub-tropics. Ramping rate and acclimation have substantial effects on estimates of warming tolerance, with the former being more marked. At the fastest ramping rates (>1.0°C/min), tropical species have estimated warming tolerances similar to their temperate counterparts, whereas at slow ramping rates (<0.4°C/min) the warming tolerance is much reduced in tropical species. Rates of temperate change in microhabitats relevant to the springtails are typically <0.05°C/min, with rare maxima of 0.3-0.5°C/min depending on the site. These findings emphasize the need to consider the environmental setting and experimental conditions when assessing species' vulnerability to climate change using a warming tolerance approach.

  12. Novel Measure of Driver and Vehicle Interaction Demonstrates Transient Changes Related to Alerting

    PubMed Central

    Brooks, Justin R.; Kerick, Scott E.; McDowell, Kaleb

    2015-01-01

    ABSTRACT Driver behavior and vehicle-road kinematics have been shown to change over prolonged periods of driving; however, the interaction between these two indices has not been examined. Here we develop a measure that examines how drivers turn the steering wheel relative to heading error velocity, which the authors call the relative steering wheel compensation (RSWC). The RSWC transiently changes on a short time scale coincident with a verbal query embedded within the study paradigm. In contrast, more traditional variables are dynamic over longer time scales consistent with previous research. The results suggest drivers alter their behavioral output (steering wheel correction) relative to sensory input (vehicle heading error velocity) on a distinct temporal scale and may reflect an interaction of alerting and control. PMID:25356659

  13. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2015.

    PubMed

    2016-02-01

    The Environmental Effects Assessment Panel (EEAP) is one of three Panels that regularly informs the Parties (countries) to the Montreal Protocol on the effects of ozone depletion and the consequences of climate change interactions with respect to human health, animals, plants, biogeochemistry, air quality, and materials. The Panels provide a detailed assessment report every four years. The most recent 2014 Quadrennial Assessment by the EEAP was published as a special issue of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). The next Quadrennial Assessment will be published in 2018/2019. In the interim, the EEAP generally produces an annual update or progress report of the relevant scientific findings. The present progress report for 2015 assesses some of the highlights and new insights with regard to the interactive nature of the effects of UV radiation, atmospheric processes, and climate change.

  14. Irreversible changes in protein conformation due to interaction with superparamagnetic iron oxide nanoparticles.

    PubMed

    Mahmoudi, Morteza; Shokrgozar, Mohammad A; Sardari, Soroush; Moghadam, Mojgan K; Vali, Hojatollah; Laurent, Sophie; Stroeve, Pieter

    2011-03-01

    The understanding of the interactions between nanomaterials and proteins is of extreme importance in medicine. In a biological fluid, proteins can adsorb and associate with nanoparticles, which can have significant impact on the biological behavior of the proteins and the nanoparticles. We report here on the interactions of iron saturated human transferrin protein with both bare and polyvinyl alcohol coated superparamagnetic iron oxide nanoparticles (SPIONs). The exposure of human transferrin to SPIONs results in the release of iron, which changes the main function of the protein, which is the transport of iron among cells. After removal of the magnetic nanoparticles, the original protein conformation is not recovered, indicating irreversible changes in transferrin conformation: from a compact to an open structure.

  15. The smell of change: warming affects species interactions mediated by chemical information.

    PubMed

    Sentis, Arnaud; Ramon-Portugal, Felipe; Brodeur, Jacques; Hemptinne, Jean-Louis

    2015-10-01

    Knowledge of how temperature influences an organism's physiology and behaviour is of paramount importance for understanding and predicting the impacts of climate change on species' interactions. While the behaviour of many organisms is driven by chemical information on which they rely on to detect resources, conspecifics, natural enemies and competitors, the effects of temperature on infochemical-mediated interactions remain largely unexplored. Here, we experimentally show that temperature strongly influences the emission of infochemicals by ladybeetle larvae, which, in turn, modifies the oviposition behaviour of conspecific females. Temperature also directly affects female perception of infochemicals and their oviposition behaviour. Our results suggest that temperature-mediated effects on chemical communication can influence flows across system boundaries (e.g. immigration and emigration) and thus alter the dynamics and stability of ecological networks. We therefore argue that investigating the effects of temperature on chemical communication is a crucial step towards a better understanding of the functioning of ecological communities facing rapid environmental changes.

  16. Nonlinear, interacting responses to climate limit grassland production under global change.

    PubMed

    Zhu, Kai; Chiariello, Nona R; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B

    2016-09-20

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale-a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability.

  17. Nonlinear, interacting responses to climate limit grassland production under global change

    PubMed Central

    Zhu, Kai; Chiariello, Nona R.; Tobeck, Todd; Fukami, Tadashi; Field, Christopher B.

    2016-01-01

    Global changes in climate, atmospheric composition, and pollutants are altering ecosystems and the goods and services they provide. Among approaches for predicting ecosystem responses, long-term observations and manipulative experiments can be powerful approaches for resolving single-factor and interactive effects of global changes on key metrics such as net primary production (NPP). Here we combine both approaches, developing multidimensional response surfaces for NPP based on the longest-running, best-replicated, most-multifactor global-change experiment at the ecosystem scale—a 17-y study of California grassland exposed to full-factorial warming, added precipitation, elevated CO2, and nitrogen deposition. Single-factor and interactive effects were not time-dependent, enabling us to analyze each year as a separate realization of the experiment and extract NPP as a continuous function of global-change factors. We found a ridge-shaped response surface in which NPP is humped (unimodal) in response to temperature and precipitation when CO2 and nitrogen are ambient, with peak NPP rising under elevated CO2 or nitrogen but also shifting to lower temperatures. Our results suggest that future climate change will push this ecosystem away from conditions that maximize NPP, but with large year-to-year variability. PMID:27601643

  18. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins.

    PubMed

    Vinckier, A; Gervasoni, P; Zaugg, F; Ziegler, U; Lindner, P; Groscurth, P; Plückthun, A; Semenza, G

    1998-06-01

    The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding.

  19. Atomic force microscopy detects changes in the interaction forces between GroEL and substrate proteins.

    PubMed Central

    Vinckier, A; Gervasoni, P; Zaugg, F; Ziegler, U; Lindner, P; Groscurth, P; Plückthun, A; Semenza, G

    1998-01-01

    The structure of the Escherichia coli chaperonin GroEL has been investigated by tapping-mode atomic force microscopy (AFM) under liquid. High-resolution images can be obtained, which show the up-right position of GroEL adsorbed on mica with the substrate-binding site on top. Because of this orientation, the interaction between GroEL and two substrate proteins, citrate synthase from Saccharomyces cerevisiae with a destabilizing Gly-->Ala mutation and RTEM beta-lactamase from Escherichia coli with two Cys-->Ala mutations, could be studied by force spectroscopy under different conditions. The results show that the interaction force decreases in the presence of ATP (but not of ATPgammaS) and that the force is smaller for native-like proteins than for the fully denatured ones. It also demonstrates that the interaction energy with GroEL increases with increasing molecular weight. By measuring the interaction force changes between the chaperonin and the two different substrate proteins, we could specifically detect GroEL conformational changes upon nucleotide binding. PMID:9635779

  20. Plant–pollinator interactions under climate change: The use of spatial and temporal transplants1

    PubMed Central

    Morton, Eva M.; Rafferty, Nicole E.

    2017-01-01

    Climate change is affecting both the timing of life history events and the spatial distributions of many species, including plants and pollinators. Shifts in phenology and range affect not only individual plant and pollinator species but also interactions among them, with possible negative consequences for both parties due to unfavorable abiotic conditions or mismatches caused by differences in shift magnitude or direction. Ultimately, population extinctions and reductions in pollination services could occur as a result of these climate change–induced shifts, or plants and pollinators could be buffered by plastic or genetic responses or novel interactions. Either scenario will likely involve altered selection pressures, making an understanding of plasticity and local adaptation in space and time especially important. In this review, we discuss two methods for studying plant–pollinator interactions under climate change: spatial and temporal transplants, both of which offer insight into whether plants and pollinators will be able to adapt to novel conditions. We discuss the advantages and limitations of each method and the future possibilities for this area of study. We advocate for consideration of how joint shifts in both dimensions might affect plant–pollinator interactions and point to key insights that can be gained with experimental transplants. PMID:28690930

  1. Neutrino masses and absence of flavor changing interactions in the 2HDM from gauge principles

    NASA Astrophysics Data System (ADS)

    Campos, Miguel D.; Cogollo, D.; Lindner, Manfred; Melo, T.; Queiroz, Farinaldo S.; Rodejohann, Werner

    2017-08-01

    We propose several Two Higgs Doublet Models with the addition of an Abelian gauge group which free the usual framework from flavor changing neutral interactions and explain neutrino masses through the seesaw mechanism. We discuss the kinetic and mass-mixing gripping phenomenology which encompass several constraints coming from atomic parity violation, the muon anomalous magnetic moment, rare meson decays, Higgs physics, LEP precision data, neutrino-electron scattering, low energy accelerators and LHC probes.

  2. A skin-integrated transparent and stretchable strain sensor with interactive color-changing electrochromic displays.

    PubMed

    Park, Heun; Kim, Dong Sik; Hong, Soo Yeong; Kim, Chulmin; Yun, Jun Yeong; Oh, Seung Yun; Jin, Sang Woo; Jeong, Yu Ra; Kim, Gyu Tae; Ha, Jeong Sook

    2017-06-08

    In this study, we report on the development of a stretchable, transparent, and skin-attachable strain sensor integrated with a flexible electrochromic device as a human skin-inspired interactive color-changing system. The strain sensor consists of a spin-coated conductive nanocomposite film of poly(vinyl alcohol)/multi-walled carbon nanotube/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) on a polydimethylsiloxane substrate. The sensor exhibits excellent performance of high sensitivity, high durability, fast response, and high transparency. An electrochromic device (ECD) made of electrochemically synthesized polyaniline nanofibers and V2O5 on an indium-tin-oxide-coated polyethylene terephthalate film experiences a change in color from yellow to dark blue on application of voltage. The strain sensor and ECD are integrated on skin via an Arduino circuit for an interactive color change with the variation of the applied strain, which enables a real-time visual display of body motion. This integrated system demonstrates high potential for use in interactive wearable devices, military applications, and smart robots.

  3. Get real: putting models of climate change and species interactions in practice.

    PubMed

    Buckley, Lauren B

    2013-09-01

    Forecasts of the ecological impacts of climate change are generally focused on direct impacts to individual species. Theory and case studies suggest that indirect effects associated with species interactions may alter these direct responses. How can we tractably predict in which cases indirect effects are likely to be important and appropriately model the interaction of abiotic and biotic drivers? One viable strategy is to characterize partitioning between species along thermal, temporal, and spatial niche axes. The partitioning can be informed by assessing functional traits. Mechanistic models can then be applied to predict how climate change will alter niche partitioning. I illustrate this approach by asking whether competition has altered the responses of Caribbean Anolis lizards to recent warming and find that forested habitat has become more suitable for a warm-adapted, open species, and less suitable for a cool-adapted forest inhabitant. Competition may result in competitive displacement of the cool-adapted species as the warm-adapted species moves into the forest. Species interactions may accentuate abundance and distribution shifts predicted in response to climate change along the elevation gradient.

  4. Salt-induced conformation and interaction changes of nucleosome core particles.

    PubMed Central

    Mangenot, Stéphanie; Leforestier, Amélie; Vachette, Patrice; Durand, Dominique; Livolant, Françoise

    2002-01-01

    Small angle x-ray scattering was used to follow changes in the conformation and interactions of nucleosome core particles (NCP) as a function of the monovalent salt concentration C(s). The maximal extension (D(max)) of the NCP (145 +/- 3-bp DNA) increases from 137 +/- 5 A to 165 +/- 5 A when C(s) rises from 10 to 50 mM and remains constant with further increases of C(s) up to 200 mM. In view of the very weak increase of the R(g) value in the same C(s) range, we attribute this D(max) variation to tail extension, a proposal confirmed by simulations of the entire I(q) curves, considering an ideal solution of particles with tails either condensed or extended. This tail extension is observed at higher salt values when particles contain longer DNA fragments (165 +/- 10 bp). The maximal extension of the tails always coincides with the screening of repulsive interactions between particles. The second virial coefficient becomes smaller than the hard sphere virial coefficient and eventually becomes negative (net attractive interactions) for NCP(145). Addition of salt simultaneously screens Coulombic repulsive interactions between NCP and Coulombic attractive interactions between tails and DNA inside the NCP. We discuss how the coupling of these two phenomena may be of biological relevance. PMID:11751321

  5. Interactive effects of solar UV radiation and climate change on biogeochemical cycling.

    PubMed

    Zepp, R G; Erickson, D J; Paul, N D; Sulzberger, B

    2007-03-01

    This report assesses research on the interactions of UV radiation (280-400 nm) and global climate change with global biogeochemical cycles at the Earth's surface. The effects of UV-B (280-315 nm), which are dependent on the stratospheric ozone layer, on biogeochemical cycles are often linked to concurrent exposure to UV-A radiation (315-400 nm), which is influenced by global climate change. These interactions involving UV radiation (the combination of UV-B and UV-A) are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B radiation has significant effects on the terrestrial biosphere with implications for the cycling of carbon, nitrogen and other elements. The cycling of carbon and inorganic nutrients such as nitrogen can be affected by UV-B-mediated changes in communities of soil organisms, probably due to the effects of UV-B radiation on plant root exudation and/or the chemistry of dead plant material falling to the soil. In arid environments direct photodegradation can play a major role in the decay of plant litter, and UV-B radiation is responsible for a significant part of this photodegradation. UV-B radiation strongly influences aquatic carbon, nitrogen, sulfur and metals cycling that affect a wide range of life processes. UV-B radiation changes the biological availability of dissolved organic matter to microorganisms, and accelerates its transformation into dissolved inorganic carbon and nitrogen, including carbon dioxide and ammonium. The coloured part of dissolved organic matter (CDOM) controls the penetration of UV radiation into water bodies, but CDOM is also photodegraded by solar UV radiation. Changes in CDOM influence the penetration of UV radiation into water bodies with major consequences for aquatic biogeochemical processes. Changes in aquatic primary productivity and decomposition due to climate-related changes in circulation and nutrient supply occur concurrently with

  6. Enculturating science: Community-centric design of behavior change interactions for accelerating health impact.

    PubMed

    Kumar, Vishwajeet; Kumar, Aarti; Ghosh, Amit Kumar; Samphel, Rigzin; Yadav, Ranjanaa; Yeung, Diana; Darmstadt, Gary L

    2015-08-01

    Despite significant advancements in the scientific evidence base of interventions to improve newborn survival, we have not yet been able to "bend the curve" to markedly accelerate global rates of reduction in newborn mortality. The ever-widening gap between discovery of scientific best practices and their mass adoption by families (the evidence-practice gap) is not just a matter of improving the coverage of health worker-community interactions. The design of the interactions themselves must be guided by sound behavioral science approaches such that they lead to mass adoption and impact at a large scale. The main barrier to the application of scientific approaches to behavior change is our inability to "unbox" the "black box" of family health behaviors in community settings. The authors argue that these are not black boxes, but in fact thoughtfully designed community systems that have been designed and upheld, and have evolved over many years keeping in mind a certain worldview and a common social purpose. An empathetic understanding of these community systems allows us to deconstruct the causal pathways of existing behaviors, and re-engineer them to achieve desired outcomes. One of the key reasons for the failure of interactions to translate into behavior change is our failure to recognize that the content, context, and process of interactions need to be designed keeping in mind an organized community system with a very different worldview and beliefs. In order to improve the adoption of scientific best practices by communities, we need to adapt them to their culture by leveraging existing beliefs, practices, people, context, and skills. The authors present a systems approach for community-centric design of interactions, highlighting key principles for achieving intrinsically motivated, sustained change in social norms and family health behaviors, elucidated with progressive theories from systems thinking, management sciences, cross-cultural psychology, learning

  7. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions.

    PubMed

    Baert, Jan M; Janssen, Colin R; Sabbe, Koen; De Laender, Frederik

    2016-08-18

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity-ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity-productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity-productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions.

  8. Per capita interactions and stress tolerance drive stress-induced changes in biodiversity effects on ecosystem functions

    PubMed Central

    Baert, Jan M.; Janssen, Colin R.; Sabbe, Koen; De Laender, Frederik

    2016-01-01

    Environmental stress changes the relationship between biodiversity and ecosystem functions, but the underlying mechanisms are poorly understood. Because species interactions shape biodiversity–ecosystem functioning relationships, changes in per capita interactions under stress (as predicted by the stress gradient hypothesis) can be an important driver of stress-induced changes in these relationships. To test this hypothesis, we measure productivity in microalgae communities along a diversity and herbicide gradient. On the basis of additive partitioning and a mechanistic community model, we demonstrate that changes in per capita interactions do not explain effects of herbicide stress on the biodiversity–productivity relationship. Instead, assuming that the per capita interactions remain unaffected by stress, causing species densities to only change through differences in stress tolerance, suffices to predict the stress-induced changes in the biodiversity–productivity relationship and community composition. We discuss how our findings set the stage for developing theory on how environmental stress changes biodiversity effects on ecosystem functions. PMID:27534986

  9. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016.

    PubMed

    United Nations Environment Programme Environmental Effects Assessment Panel

    2017-02-15

    The Parties to the Montreal Protocol are informed by three Panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable. Like the other Panels, the EEAP produces a detailed report every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Progress Reports of the relevant scientific findings. The most recent of these was for 2015 (Photochem. Photobiol. Sci., 2016, 15, 141-147). The present Progress Report for 2016 assesses some of the highlights and new insights with regard to the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. The more detailed Quadrennial Assessment will be made available in 2018.

  10. The contribution of plant-soil interactions to biogeochemical cycles in a changing world

    NASA Astrophysics Data System (ADS)

    Pregitzer, K.

    2005-12-01

    -induced changes to the Earth's atmosphere will cascade through plants into the soil, where microbial communities mediate the ecosystem functions that regulate biogeochemical cycles. There are several key research opportunities as we attempt to understand how changes in the Earth's atmosphere cascade through terrestrial ecosystems to alter biogeochemical cycles. For example, far too little attention has been given to how the interactions between changes in atmospheric chemistry (e.g. carbon dioxide and nitrogen, or carbon dioxide and ozone) will impact C transformations in the soil. If we deliberately set out to understand how variable plant and microbial physiology are to interactive changes in atmospheric chemistry, it should be possible to build a deeper understanding of the fundamental processes controlling ecosystem response to global change.

  11. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    PubMed

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.

  12. Built Expansion and Global Climate Change Drive Projected Urban Heat: Relative Magnitudes, Interactions, and Mitigation

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2016-12-01

    Surface climates are projected to warm due to global climate change over the course of the 21st century, and demographic projections suggest urban areas in the United States will continue to expand and develop, with associated local climate outcomes. Interactions between these two drivers of urban heat have not been robustly quantified to date. Here, simulations with the Weather Research and Forecasting model (coupled to a Single-Layer Urban Canopy Model) are performed at 20 km resolution over the continental U.S. for two 10-year periods: contemporary (2000-2009) and end-of-century (2090-2099). Present and end of century urban land use are derived from the Environmental Protection Agency's Integrated Climate and Land-Use Scenarios. Modelled effects on urban climates are evaluated regionally. Sensitivity to climate projection (Community Climate System Model 4.0, RCP 4.5 vs. RCP 8.5) and associated urban development scenarios are assessed. Effects on near-surface urban air temperature of RCP8.5 climate change are greater than those attributable to the corresponding urban development in many regions. Interaction effects vary by region, and while of lesser magnitude, are not negligible. Moreover, urban development and its interactions with RCP8.5 climate change modify the distribution of convective precipitation over the eastern US. Interaction effects result from the different meteorological effects of urban areas under current and future climate. Finally, the potential for design implementations such as green roofs and high albedo roofs to offset the projected warming is considered. Impacts of these implementations on precipitation are also assessed.

  13. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    PubMed Central

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W.F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-01-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots. PMID:26300307

  14. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing.

    PubMed

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W F; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B-H; Bao, Zhenan

    2015-08-24

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  15. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing

    NASA Astrophysics Data System (ADS)

    Chou, Ho-Hsiu; Nguyen, Amanda; Chortos, Alex; To, John W. F.; Lu, Chien; Mei, Jianguo; Kurosawa, Tadanori; Bae, Won-Gyu; Tok, Jeffrey B.-H.; Bao, Zhenan

    2015-08-01

    Some animals, such as the chameleon and cephalopod, have the remarkable capability to change their skin colour. This unique characteristic has long inspired scientists to develop materials and devices to mimic such a function. However, it requires the complex integration of stretchability, colour-changing and tactile sensing. Here we show an all-solution processed chameleon-inspired stretchable electronic skin (e-skin), in which the e-skin colour can easily be controlled through varying the applied pressure along with the applied pressure duration. As such, the e-skin's colour change can also be in turn utilized to distinguish the pressure applied. The integration of the stretchable, highly tunable resistive pressure sensor and the fully stretchable organic electrochromic device enables the demonstration of a stretchable electrochromically active e-skin with tactile-sensing control. This system will have wide range applications such as interactive wearable devices, artificial prosthetics and smart robots.

  16. Interactions of Mean Climate Change and Climate Variability on Food Security Extremes

    NASA Technical Reports Server (NTRS)

    Ruane, Alexander C.; McDermid, Sonali; Mavromatis, Theodoros; Hudson, Nicholas; Morales, Monica; Simmons, John; Prabodha, Agalawatte; Ahmad, Ashfaq; Ahmad, Shakeel; Ahuja, Laj R.

    2015-01-01

    Recognizing that climate change will affect agricultural systems both through mean changes and through shifts in climate variability and associated extreme events, we present preliminary analyses of climate impacts from a network of 1137 crop modeling sites contributed to the AgMIP Coordinated Climate-Crop Modeling Project (C3MP). At each site sensitivity tests were run according to a common protocol, which enables the fitting of crop model emulators across a range of carbon dioxide, temperature, and water (CTW) changes. C3MP can elucidate several aspects of these changes and quantify crop responses across a wide diversity of farming systems. Here we test the hypothesis that climate change and variability interact in three main ways. First, mean climate changes can affect yields across an entire time period. Second, extreme events (when they do occur) may be more sensitive to climate changes than a year with normal climate. Third, mean climate changes can alter the likelihood of climate extremes, leading to more frequent seasons with anomalies outside of the expected conditions for which management was designed. In this way, shifts in climate variability can result in an increase or reduction of mean yield, as extreme climate events tend to have lower yield than years with normal climate.C3MP maize simulations across 126 farms reveal a clear indication and quantification (as response functions) of mean climate impacts on mean yield and clearly show that mean climate changes will directly affect the variability of yield. Yield reductions from increased climate variability are not as clear as crop models tend to be less sensitive to dangers on the cool and wet extremes of climate variability, likely underestimating losses from water-logging, floods, and frosts.

  17. Propagation of the state change induced by external forces in local interactions

    NASA Astrophysics Data System (ADS)

    Lu, Jianjun; Tokinaga, Shozo

    2016-10-01

    This paper analyses the propagation of the state changes of agents that are induced by external forces applied to a plane. In addition, we propose two models for the behavior of the agents placed on a lattice plane, both of which are affected by local interactions. We first assume that agents are allowed to move to another site to maximise their satisfaction. Second, we utilise a model in which the agents choose activities on each site. The results show that the migration (activity) patterns of agents in both models achieve stability without any external forces. However, when we apply an impulsive external force to the state of the agents, we then observe the propagation of the changes in the agents' states. Using simulation studies, we show the conditions for the propagation of the state changes of the agents. We also show the propagation of the state changes of the agents allocated in scale-free networks and discuss the estimation of the agents' decisions in real state changes. Finally, we discuss the estimation of the agents' decisions in real state temporal changes using economic and social data from Japan and the United States.

  18. Cell-to-cell interactions in changed gravity: Ground-based and flight experiments

    NASA Astrophysics Data System (ADS)

    Buravkova, L.; Romanov, Yu.; Rykova, M.; Grigorieva, O.; Merzlikina, N.

    2005-07-01

    Cell-to-cell interactions play an important role in all physiological processes and are mediated by humoral and mechanical factors. Mechanosensitive cells (e.g., osteocytes, chondrocytes, and fibroblasts) can be studied ex vivo to understand the effects of an altered gravity environment. In particular, cultured endothelial cells (EC) are very sensitive to a broad spectrum of mechanical and biochemical stimuli. Earlier, we demonstrated that clinorotation leads to cytoskeletal remodeling in cultured ECs. Long-term gravity vector changes also modulate the expression of surface adhesion molecules (ICAM-1, E-selectin, VCAM-1) on cultured ECs. To study the interactions of geterological cells, we cocultured endothelial monolayers and human lymphocytes, immune cells and myeloleucemic (K-560) cells. It was found that, although clinorotation did not alter the basal adhesion level of non-activated immune cells on endothelial monolayers, the adhesion of PMA-activated lymphocytes was increased. During flight experiments onboard the Russian segment of the International Space Station, we measured the cytotoxic activity of natural killer (NK) cells incubated with labeled target cells. It was found that immune cells in microgravity retained their ability to contact, recognize, and destroy oncogenic cells in vitro. Together, our data concerning the effects of simulated and real microgravity suggest that, despite changes in the cytoskeleton, cell motility, and expression of adhesion molecules, cell-cell interactions are not compromised, thus preserving the critical physiological functions of immune and endothelial cells.

  19. A neurotoxic pesticide changes the outcome of aggressive interactions between native and invasive ants

    PubMed Central

    Barbieri, Rafael F.; Lester, Philip J.; Miller, Alexander S.; Ryan, Ken G.

    2013-01-01

    Neurotoxic pesticides, such as neonicotinoids, negatively affect the cognitive capacity and fitness of non-target species, and could also modify interspecific interactions. We tested whether sublethal contamination with neonicotinoid could affect foraging, colony fitness and the outcome of behavioural interactions between a native (Monomorium antarcticum) and an invasive ant species (Linepithema humile). The foraging behaviour of both ants was not affected by neonicotinoid exposure. Colonies of the invasive species exposed to the neonicotinoid produced significantly fewer brood. In interspecific confrontations, individuals of the native species exposed to the neonicotinoid lowered their aggression towards the invasive species, although their survival probability was not affected. Exposed individuals of the invasive species interacting with non-exposed native ants displayed increased aggression and had their survival probability reduced. Non-exposed individuals of the invasive species were less aggressive but more likely to survive when interacting with exposed native ants. These results suggest that non-target exposure of invaders to neonicotinoids could either increase or decrease the probability of survival according to the exposure status of the native species. Given that, in any community, different species have different food preferences, and thus different exposure to pesticides, non-target exposure could potentially change the dynamics of communities and influence invasion success. PMID:24266038

  20. Thermal acclimation of interactions: differential responses to temperature change alter predator-prey relationship.

    PubMed

    Grigaltchik, Veronica S; Ward, Ashley J W; Seebacher, Frank

    2012-10-07

    Different species respond differently to environmental change so that species interactions cannot be predicted from single-species performance curves. We tested the hypothesis that interspecific difference in the capacity for thermal acclimation modulates predator-prey interactions. Acclimation of locomotor performance in a predator (Australian bass, Macquaria novemaculeata) was qualitatively different to that of its prey (eastern mosquitofish, Gambusia holbrooki). Warm (25°C) acclimated bass made more attacks than cold (15°C) acclimated fish regardless of acute test temperatures (10-30°C), and greater frequency of attacks was associated with increased prey capture success. However, the number of attacks declined at the highest test temperature (30°C). Interestingly, escape speeds of mosquitofish during predation trials were greater than burst speeds measured in a swimming arena, whereas attack speeds of bass were lower than burst speeds. As a result, escape speeds of mosquitofish were greater at warm temperatures (25°C and 30°C) than attack speeds of bass. The decline in the number of attacks and the increase in escape speed of prey means that predation pressure decreases at high temperatures. We show that differential thermal responses affect species interactions even at temperatures that are within thermal tolerance ranges. This thermal sensitivity of predator-prey interactions can be a mechanism by which global warming affects ecological communities.

  1. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons

    PubMed Central

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I.; Castilla, Rocío; Barreto, George E.; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day. PMID:27445788

  2. Search for flavor-changing nonstandard neutrino interactions using νe appearance in MINOS

    DOE PAGES

    Adamson, P.; Anghel, I.; Aurisano, A.; ...

    2017-01-09

    Inmore » this paper, we report new constraints on flavor-changing nonstandard neutrino interactions from the MINOS long-baseline experiment using νe and ν¯e appearance candidate events from predominantly νμ and ν¯μ beams. We used a statistical selection algorithm to separate νe candidates from background events, enabling an analysis of the combined MINOS neutrino and antineutrino data. Finally, we observe no deviations from standard neutrino mixing, and thus place constraints on the nonstandard interaction matter effect, |ϵeτ|, and phase, (δCP + δeτ), using a 30-bin likelihood fit.« less

  3. Metabolic Changes Following Perinatal Asphyxia: Role of Astrocytes and Their Interaction with Neurons.

    PubMed

    Logica, Tamara; Riviere, Stephanie; Holubiec, Mariana I; Castilla, Rocío; Barreto, George E; Capani, Francisco

    2016-01-01

    Perinatal Asphyxia (PA) represents an important cause of severe neurological deficits including delayed mental and motor development, epilepsy, major cognitive deficits and blindness. The interaction between neurons, astrocytes and endothelial cells plays a central role coupling energy supply with changes in neuronal activity. Traditionally, experimental research focused on neurons, whereas astrocytes have been more related to the damage mechanisms of PA. Astrocytes carry out a number of functions that are critical to normal nervous system function, including uptake of neurotransmitters, regulation of pH and ion concentrations, and metabolic support for neurons. In this work, we aim to review metabolic neuron-astrocyte interactions with the purpose of encourage further research in this area in the context of PA, which is highly complex and its mechanisms and pathways have not been fully elucidated to this day.

  4. Biological interactions both facilitate and resist climate-related functional change in temperate reef communities.

    PubMed

    Bates, Amanda E; Stuart-Smith, Rick D; Barrett, Neville S; Edgar, Graham J

    2017-06-14

    Shifts in the abundance and location of species are restructuring life on the Earth, presenting the need to build resilience into our natural systems. Here, we tested if protection from fishing promotes community resilience in temperate reef communities undergoing rapid warming in Tasmania. Regardless of protection status, we detected a signature of warming in the brown macroalgae, invertebrates and fishes, through increases in the local richness and abundance of warm-affinity species. Even so, responses in protected communities diverged from exploited communities. At the local scale, the number of cool-affinity fishes and canopy-forming algal species increased following protection, even though the observation window fell within a period of warming. At the same time, exploited communities gained turf algal and sessile invertebrate species. We further found that the recovery of predator populations following protection leads to marked declines in mobile invertebrates-this trend could be incorrectly attributed to warming without contextual data quantifying community change across trophic levels. By comparing long-term change in exploited and protected reefs, we empirically demonstrate the role of biological interactions in both facilitating and resisting climate-related biodiversity change. We further highlight the potential for trophic interactions to alter the progression of both range expansions and contractions. © 2017 The Author(s).

  5. Sequence-dependent rotation axis changes and interaction torque use in overarm throwing.

    PubMed

    Hansen, Clint; Rezzoug, Nasser; Gorce, Philippe; Venture, Gentiane; Isableu, Brice

    2016-01-01

    We examined the role of rotation axes during an overarm throwing task. Participants performed such task and were asked to throw a ball at maximal velocity at a target. The purpose of this study was to examine whether the minimum inertia axis would be exploited during the throwing phases, a time when internal-external rotations of the shoulder are particularly important. A motion capture system was used to evaluate the performance and to compute the potential axes of rotation (minimum inertia axis, shoulder-centre of mass axis and the shoulder-elbow axis). More specifically, we investigated whether a velocity-dependent change in rotational axes can be observed in the different throwing phases and whether the control obeys the principle of minimum inertia resistance. Our results showed that the limbs' rotational axis mainly coincides with the minimum inertia axis during the cocking phase and with the shoulder-elbow axis during the acceleration phase. Besides these rotation axes changes, the use of interaction torque is also sequence-dependent. The sequence-dependent rotation axes changes associated with the use of interaction torque during the acceleration phase could be a key factor in the production of hand velocity at ball release.

  6. Non-von Neumann computing using plasmon particles interacting with phase change materials (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Saiki, Toshiharu

    2016-09-01

    Control of localized surface plasmon resonance (LSPR) excited on metal nanostructures has drawn attention for applications in dynamic switching of plasmonic devices. As a reversible active media for LSPR control, chalcogenide phase-change materials (PCMs) such as GeSbTe (GST) are promising for high-contrast robust plasmonic switching. Owing to the plasticity and the threshold behavior during both amorphization and crystallization of PCMs, PCM-based LSPR switching elements possess a dual functionality of memory and processing. Integration of LSPR switching elements so that they interact with each other will allow us to build non-von-Neumann computing devices. As a specific demonstration, we discuss the implementation of a cellular automata (CA) algorithm into interacting LSPR switching elements. In the model we propose, PCM cells, which can be in one of two states (amorphous and crystalline), interact with each other by being linked by a AuNR, whose LSPR peak wavelength is determined by the phase of PCM cells on the both sides. The CA program proceeds by irradiating with a light pulse train. The local rule set is defined by the temperature rise in the PCM cells induced by the LSPR of the AuNR, which is subject to the intensity and wavelength of the irradiating pulse. We also investigate the possibility of solving a problem analogous to the spin-glass problem by using a coupled dipole system, in which the individual coupling strengths can be modified to optimize the system so that the exact solution can be easily reached. For this algorithm, we propose an implementation based on an idea that coupled plasmon particles can create long-range spatial correlations, and the interaction of this with a phase-change material allows the coupling strength to be modified.

  7. Carbon and water interactions and the footprint of climate-change activities (Invited)

    NASA Astrophysics Data System (ADS)

    Jackson, R. B.

    2010-12-01

    Although climate change will have profound effects on ecosystems worldwide, climate policies will alter many terrestrial systems more in the coming decade than climate change will. Biofuels, renewable portfolio standards for electricity, and carbon pricing and offsets all change the global carbon cycle by design, competing for land area and land uses in ways that alter native systems. Just as importantly, such activities inevitably - and profoundly - change the Earth’s water cycle. In cases such as reduced emissions from deforestation and degradation (REDD), climate change activities could cut global deforestation rates in half by 2030, preserving 1.5 to 3 billion 9 metric tons of CO2-equivalent (tCO2e) emissions yearly and preserving the benefits of tropical forests for water recycling. In other cases, such as afforestation (tree planting) or biofuels, fundamental trade-offs exist between maximizing net primary production on land and the amounts of water required for such activities. Fundamental biogeochemical knowledge of carbon-water interactions can help to maximize the benefits of climate policies while preserving water resources and other ecosystem services wherever possible.

  8. Interaction of gold nanoparticles with protein: A spectroscopic study to monitor protein conformational changes

    NASA Astrophysics Data System (ADS)

    Wangoo, Nishima; Suri, C. Raman; Shekhawat, G.

    2008-03-01

    Gold nanoparticles (GNPs) conjugated with biomolecules are promising building blocks for assembly into nanostructured functional materials for developing biomarker platforms because of their size dependent optical and electrical properties. Biocompatible GNPs were synthesized using glutamic acid as a reducing agent and the interaction between bovine serum albumin (BSA) and GNPs was investigated using fluorescence and circular dichroism (CD) spectroscopies. The binding constant (Kb) of protein (BSA) to GNPs was determined by measuring the quenching of the fluorescence intensity of tryptophan residues of the protein molecules after conjugation. The conformational change in BSA at its native form after conjugation with GNPs confirmed that protein undergoes a more flexible conformational state on the boundary surface of GNPs after bioconjugation. The CD studies further showed a decrease in the α-helical content after conjugation. The results confirmed that the change in conformation was larger at higher concentrations of GNPs.

  9. Species response to environmental change: impacts of food web interactions and evolution.

    PubMed

    Harmon, Jason P; Moran, Nancy A; Ives, Anthony R

    2009-03-06

    How environmental change affects species abundances depends on both the food web within which species interact and their potential to evolve. Using field experiments, we investigated both ecological and evolutionary responses of pea aphids (Acyrthosiphon pisum), a common agricultural pest, to increased frequency of episodic heat shocks. One predator species ameliorated the decrease in aphid population growth with increasing heat shocks, whereas a second predator did not, with this contrast caused by behavioral differences between predators. We also compared aphid strains with stably inherited differences in heat tolerance caused by bacterial endosymbionts and showed the potential for rapid evolution for heat-shock tolerance. Our results illustrate how ecological and evolutionary complexities should be incorporated into predictions of the consequences of environmental change for species' populations.

  10. The OMI instrument and climate change

    NASA Astrophysics Data System (ADS)

    Veefkind, J.; Levelt, P.; de Haan, J.; Hilsenrath, E.; Leppelmeier, G.

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to the NASA EOS-Aura mission scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance between 270 an 500 nm. With its relatively high spatial resolution (13 × 24 km2 at nadir) and daily global coverage, OMI will make a major contribution to our understanding of atmospheric chemistry and to climate research. OMI will provide data continuity with the TOMS instruments. Total columns of trace gases like ozone, NO2 , BrO, OClO, HCHO and SO2 will be derived from the back-scattered solar radiance using differential absorption spectroscopy (DOAS). The ozone profile will be derived using the optimal estimation method. The spectral aerosol optical depth will be determined from wavelengths between 340 and 500 nm. Besides trace gases and aerosols, also the cloud coverage and cloud height will be determined from the OMI data. OMI's contributions to monitoring of climate change processes lie mainly in the measurements on ozone, aerosols and clouds. Measurements of ozone precursor gases like NO2 , or ozone destruction gases like BrO and OClO are however also important for climate change. During the timeframe of EOS-Aura the predicted ozone layer recovery should start and OMI's global ozone measurements should indicate if this is indeed the case, or if the climate-chemistry interaction is delaying this recovery. The daily global measurements of ozone and trace gases at an unprecedented spatial resolution, will provide information on chemistry and dynamics at spatial scales < 50 km. Processes at these spatial scales are important for stratosphere-troposphere exchange, for the polar vortex, and in the lower troposphere. P. F. Levelt et al; "Science Objectives of EOS-AURA's Ozone Monitoring Instrument (OMI)", Proceedings of the Quadrennial Ozone Symposium, Sapporo 2000, p. 127-128.

  11. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America

    PubMed Central

    Harsch, Melanie A.; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)–despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species’ elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change. PMID:27447834

  12. Climate Warming and Seasonal Precipitation Change Interact to Limit Species Distribution Shifts across Western North America.

    PubMed

    Harsch, Melanie A; HilleRisLambers, Janneke

    2016-01-01

    Using an extensive network of occurrence records for 293 plant species collected over the past 40 years across a climatically diverse geographic section of western North America, we find that plant species distributions were just as likely to shift upwards (i.e., towards higher elevations) as downward (i.e., towards lower elevations)-despite consistent warming across the study area. Although there was no clear directional response to climate warming across the entire study area, there was significant region- to region- variation in responses (i.e. from as many as 73% to as few as 32% of species shifting upward). To understand the factors that might be controlling region-specific distributional shifts of plant species, we explored the relationship between the direction of change in distribution limits and the nature of recent climate change. We found that the direction that distribution limits shifted was explained by an interaction between the rate of change in local summer temperatures and seasonal precipitation. Specifically, species were more likely to shift upward at their upper elevational limit when minimum temperatures increased and snowfall was unchanging or declined at slower rates (<0.5 mm/year). This suggests that both low temperature and water availability limit upward shifts at upper elevation limits. By contrast, species were more likely to shift upwards at their lower elevation limit when maximum temperatures increased, but also shifted upwards under conditions of cooling temperatures when precipitation decreased. This suggests increased water stress may drive upward shifts at lower elevation limits. Our results suggest that species' elevational distribution shifts are not predictable by climate warming alone but depend on the interaction between seasonal temperature and precipitation change.

  13. Analysing change in music therapy interactions of children with communication difficulties

    PubMed Central

    2016-01-01

    Music therapy has been found to improve communicative behaviours and joint attention in children with autism, but it is unclear what in the music therapy sessions drives those changes. We developed an annotation protocol and tools to accumulate large datasets of music therapy, for analysis of interaction dynamics. Analysis of video recordings of improvisational music therapy sessions focused on simple, unambiguous individual and shared behaviours: movement and facing behaviours, rhythmic activity and musical structures and the relationships between them. To test the feasibility of the protocol, early and late sessions of five client–therapist pairs were annotated and analysed to track changes in behaviours. To assess the reliability and validity of the protocol, inter-rater reliability of the annotation tiers was calculated, and the therapists provided feedback about the relevance of the analyses and results. This small-scale study suggests that there are both similarities and differences in the profiles of client–therapist sessions. For example, all therapists faced the clients most of the time, while the clients did not face back so often. Conversely, only two pairs had an increase in regular pulse from early to late sessions. More broadly, similarity across pairs at a general level is complemented by variation in the details. This perhaps goes some way to reconciling client- and context-specificity on one hand and generalizability on the other. Behavioural characteristics seem to influence each other. For instance, shared rhythmic pulse alternated with mutual facing and the occurrence of shared pulse was found to relate to the musical structure. These observations point towards a framework for looking at change in music therapy that focuses on networks of variables or broader categories. The results suggest that even when starting with simple behaviours, we can trace aspects of interaction and change in music therapy, which are seen as relevant by therapists

  14. Analysing change in music therapy interactions of children with communication difficulties.

    PubMed

    Spiro, Neta; Himberg, Tommi

    2016-05-05

    Music therapy has been found to improve communicative behaviours and joint attention in children with autism, but it is unclear what in the music therapy sessions drives those changes. We developed an annotation protocol and tools to accumulate large datasets of music therapy, for analysis of interaction dynamics. Analysis of video recordings of improvisational music therapy sessions focused on simple, unambiguous individual and shared behaviours: movement and facing behaviours, rhythmic activity and musical structures and the relationships between them. To test the feasibility of the protocol, early and late sessions of five client-therapist pairs were annotated and analysed to track changes in behaviours. To assess the reliability and validity of the protocol, inter-rater reliability of the annotation tiers was calculated, and the therapists provided feedback about the relevance of the analyses and results. This small-scale study suggests that there are both similarities and differences in the profiles of client-therapist sessions. For example, all therapists faced the clients most of the time, while the clients did not face back so often. Conversely, only two pairs had an increase in regular pulse from early to late sessions. More broadly, similarity across pairs at a general level is complemented by variation in the details. This perhaps goes some way to reconciling client- and context-specificity on one hand and generalizability on the other. Behavioural characteristics seem to influence each other. For instance, shared rhythmic pulse alternated with mutual facing and the occurrence of shared pulse was found to relate to the musical structure. These observations point towards a framework for looking at change in music therapy that focuses on networks of variables or broader categories. The results suggest that even when starting with simple behaviours, we can trace aspects of interaction and change in music therapy, which are seen as relevant by therapists.

  15. Effects of solar ultraviolet radiation on terrestrial ecosystems. Patterns, mechanisms, and interactions with climate change.

    PubMed

    Ballaré, C L; Caldwell, M M; Flint, S D; Robinson, S A; Bornman, J F

    2011-02-01

    Ultraviolet radiation (UV) is a minor fraction of the solar spectrum reaching the ground surface. In this assessment we summarize the results of previous work on the effects of the UV-B component (280-315 nm) on terrestrial ecosystems, and draw attention to important knowledge gaps in our understanding of the interactive effects of UV radiation and climate change. We highlight the following points: (i) The effects of UV-B on the growth of terrestrial plants are relatively small and, because the Montreal Protocol has been successful in limiting ozone depletion, the reduction in plant growth caused by increased UV-B radiation in areas affected by ozone decline since 1980 is unlikely to have exceeded 6%. (ii) Solar UV-B radiation has large direct and indirect (plant-mediated) effects on canopy arthropods and microorganisms. Therefore, trophic interactions (herbivory, decomposition) in terrestrial ecosystems appear to be sensitive to variations in UV-B irradiance. (iii) Future variations in UV radiation resulting from changes in climate and land-use may have more important consequences on terrestrial ecosystems than the changes in UV caused by ozone depletion. This is because the resulting changes in UV radiation may affect a greater range of ecosystems, and will not be restricted solely to the UV-B component. (iv) Several ecosystem processes that are not particularly sensitive to UV-B radiation can be strongly affected by UV-A (315-400 nm) radiation. One example is the physical degradation of plant litter. Increased photodegradation (in response to reduced cloudiness or canopy cover) will lead to increased carbon release to the atmosphere via direct and indirect mechanisms.

  16. `Our Changing Climate' - A new interactive game about weather, climate, the Earth's energy budget and the impacts caused by climate change

    NASA Astrophysics Data System (ADS)

    Colon-Robles, M.; Lorentz, K.; Ruhlman, K.; Gilman, I.; Chambers, L. H.

    2010-12-01

    ‘Our Changing Climate’ is a brand new game developed at NASA’s Langley Research Center by the Informal Education group and the Science Directorate to educate the public on Earth’s climate system how the Sun, ocean, atmosphere, clouds, ice, land, and life interact with each other, and how these interactions are changing due to anthropogenic effects. The game was designed for students in middle school (5th and 8th grade) between the ages of 10-14 as part of the NASA's Summer of Innovation campaign for excellence in science, technology, engineering and mathematics, or STEM, education. The game, ‘Our Changing Climate’, is composed of a series of interactive boards, featuring the following topics: (1) the difference between weather and climate - “Weather vs Climate”, (2) the interactions of clouds and greenhouse gases on short and long wave radiation - “Greenhouse Gases and Clouds”, and (3) the definition of albedo and the importance of bright surfaces over the Arctic - “Arctic Temperature”. Each interactive board presents a climate system and steps the student or spectator through the climate interaction using “clues” and hands-on items that they need to put correctly on the board to understand the concept. Once the student or spectator finishes this part, they then have a better grasp of the concept and are able to understand how these interactions are changing due to the increase in average global temperature. This knowledge is then tested or “driven home” with interactive questions that show how these interactions in our climate are changing today. The concept is then reinforced with an example of a recent event presented in the media. The game has been piloted in outreach and informal settings, as well as for professional development of educators. The game, interactions and engagement of each of the audiences mentioned will be presented.

  17. Interaction of Insect Defoliation, Wildfires and Climate Change on Carbon Dynamics

    NASA Astrophysics Data System (ADS)

    Hom, J.; van Tuyl, S.; Scheller, R.; Pan, Y.; Clark, K.; Cole, J.; Foster, J.; Patterson, M.; Gallagher, M.

    2009-05-01

    We assess and predict the interactive effects of gypsy moth defoliation, fire management, and climate change on carbon uptake, forest productivity, species composition, and tree mortality in the New Jersey Pine Barrens. This effort will combine carbon flux measurements, a forest landscape disturbance model, and field monitoring data. We will determine how interactions among these disturbances affect current management and potential carbon management goals. The LANDIS-II forest landscape simulation model in this study uses three model extensions or modules: the Dynamic Fire System (DFS) extension, the Biomass Succession extension, and an insect defoliation extension. Parameterization of the DFS and the Biomass Succession extension uses new and existing data sources for the study area. This includes flux tower data from three upland forest types, for annual net ecosystem exchange of carbon taken before and after defoliation as well as during prescribed burns. An intensified grid of FIA-type plots around each tower (up to 24 plots per tower) provides additional biometric information. The study conducted a field mortality survey and canopy foliar analysis to understand the process of forest decline with insect defoliation. This project provides a predictive framework for working through landscape to regional management scenarios in areas with multiple, interacting management priorities that can be applied across the US, especially in areas where both insect and fire disturbances occur.

  18. The influence of phase changes on debris-cloud interactions with protected structures

    SciTech Connect

    Lawrence, R.J.; Kmetyk, L.N.; Chhabildas, L.C.

    1994-05-16

    The physical state of the debris cloud generated by the interaction of a projectile with a thin target depends on the energy balance associated with above the sound speeds of the impact event. At impact velocities well materials involved, the cloud is expected to be primarily molten, but with some vapor present. A series of numerical calculations using the multi-dimensional finite-difference hydrocode CTH has been used to evaluate the effect of phase changes (i.e., different vapor fractions) on these clouds, and their subsequent interaction with backwall structures. In the calculations, higher concentrations of vapor are achieved by increasing the initial temperature of both the projectile and the thin shield while keeping the impact velocity constant, and by actually increasing the impact velocity. The nature of the debris cloud and its subsequent loading on the protected structure depend on both its thermal and physical state. This interaction can cause rupture, spallation or simply bulging of the backwall. These computational results are discussed and compared with new experimental observations obtained at an impact velocity of {approximately}10 km/s. In the experiment, the debris cloud was generated by the impact of a plate-shaped titanium projectile with a thin titanium shield.

  19. Modeling Abrupt Change in Global Sea Level Arising from Ocean - Ice-Sheet Interaction

    SciTech Connect

    Holland, David M

    2011-09-24

    It is proposed to develop, validate, and apply a coupled ocean ice-sheet model to simulate possible, abrupt future change in global sea level. This research is to be carried out collaboratively between an academic institute and a Department of Energy Laboratory (DOE), namely, the PI and a graduate student at New York University (NYU) and climate model researchers at the Los Alamos National Laboratory (LANL). The NYU contribution is mainly in the area of incorporating new physical processes into the model, while the LANL efforts are focused on improved numerics and overall model development. NYU and LANL will work together on applying the model to a variety of modeling scenarios of recent past and possible near-future abrupt change to the configuration of the periphery of the major ice sheets. The project's ultimate goal is to provide a robust, accurate prediction of future global sea level change, a feat that no fully-coupled climate model is currently capable of producing. This proposal seeks to advance that ultimate goal by developing, validating, and applying a regional model that can simulate the detailed processes involved in sea-level change due to ocean ice-sheet interaction. Directly modeling ocean ice-sheet processes in a fully-coupled global climate model is not a feasible activity at present given the near-complete absence of development of any such causal mechanism in these models to date.

  20. Alcohol consumption and lifetime change in cognitive ability: a gene × environment interaction study.

    PubMed

    Ritchie, Stuart J; Bates, Timothy C; Corley, Janie; McNeill, Geraldine; Davies, Gail; Liewald, David C; Starr, John M; Deary, Ian J

    2014-06-01

    Studies of the effect of alcohol consumption on cognitive ability are often confounded. One approach to avoid confounding is the Mendelian randomization design. Here, we used such a design to test the hypothesis that a genetic score for alcohol processing capacity moderates the association between alcohol consumption and lifetime change in cognitive ability. Members of the Lothian Birth Cohort 1936 completed the same test of intelligence at age 11 and 70 years. They were assessed for recent alcohol consumption in later life and genotyped for a set of four single-nucleotide polymorphisms in three alcohol dehydrogenase genes. These variants were unrelated to late-life cognition or to socioeconomic status. We found a significant gene × alcohol consumption interaction on lifetime cognitive change (p = 0.007). Individuals with higher genetic ability to process alcohol showed relative improvements in cognitive ability with more consumption, whereas those with low processing capacity showed a negative relationship between cognitive change and alcohol consumption with more consumption. The effect of alcohol consumption on cognitive change may thus depend on genetic differences in the ability to metabolize alcohol.

  1. Tree mortality from drought, insects, and their interactions in a changing climate

    USGS Publications Warehouse

    Anderegg, William R. L.; Hicke, Jeffrey A.; Fisher, Rosie A.; Allen, Craig D.; Aukema, Juliann E.; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W.; Macalady, Alison K.; McDowell, Nate G.; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D.; Stephenson, Nathan L.; Tague, Christina L.; Zeppel, Melanie

    2015-01-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects – bark beetles and defoliators – which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree–insect interactions will better inform projections of forest ecosystem responses to climate change.

  2. Parallel changes of taxonomic interaction networks in lacustrine bacterial communities induced by a polymetallic perturbation

    PubMed Central

    Laplante, Karine; Sébastien, Boutin; Derome, Nicolas

    2013-01-01

    Heavy metals released by anthropogenic activities such as mining trigger profound changes to bacterial communities. In this study we used 16S SSU rRNA gene high-throughput sequencing to characterize the impact of a polymetallic perturbation and other environmental parameters on taxonomic networks within five lacustrine bacterial communities from sites located near Rouyn-Noranda, Quebec, Canada. The results showed that community equilibrium was disturbed in terms of both diversity and structure. Moreover, heavy metals, especially cadmium combined with water acidity, induced parallel changes among sites via the selection of resistant OTUs (Operational Taxonomic Unit) and taxonomic dominance perturbations favoring the Alphaproteobacteria. Furthermore, under a similar selective pressure, covariation trends between phyla revealed conservation and parallelism within interphylum interactions. Our study sheds light on the importance of analyzing communities not only from a phylogenetic perspective but also including a quantitative approach to provide significant insights into the evolutionary forces that shape the dynamic of the taxonomic interaction networks in bacterial communities. PMID:23789031

  3. Inhibitory effect of naringenin chalcone on inflammatory changes in the interaction between adipocytes and macrophages.

    PubMed

    Hirai, Shizuka; Kim, Young-Il; Goto, Tsuyoshi; Kang, Min-Sook; Yoshimura, Mineka; Obata, Akio; Yu, Rina; Kawada, Teruo

    2007-09-29

    Obese adipose tissue is characterized by an enhanced infiltration of macrophages. It is considered that the paracrine loop involving monocyte chemoattractant protein (MCP)-1 and tumor necrosis factor (TNF)-alpha between adipocytes and macrophages establishes a vicious cycle that augments the inflammatory changes and insulin resistance in obese adipose tissue. Polyphenols, which are widely distributed in fruit and vegetables, can act as antioxidants and some of them are also reported to have anti-inflammatory properties. Tomato is one of the most popular and extensively consumed vegetable crops worldwide, which also contains many flavonoids, mainly naringenin chalcone. We investigated the effect of flavonoids, including naringenin chalcone, on the production of proinflammatory mediators in lipopolysaccharide (LPS)-stimulated macrophages and in the interaction between adipocytes and macrophages. Naringenin chalcone inhibited the production of TNF-alpha, MCP-1, and nitric oxide (NO) by LPS-stimulated RAW 264 macrophages in a dose-dependent manner. Coculture of 3T3-L1 adipocytes and RAW 264 macrophages markedly enhanced the production of TNF-alpha, MCP-1, and NO compared with the control cultures; however, treatment with naringenin chalcone dose-dependently inhibited the production of these proinflammatory mediators. These results indicate that naringenin chalcone exhibits anti-inflammatory properties by inhibiting the production of proinflammatory cytokines in the interaction between adipocytes and macrophages. Naringenin chalcone may be useful for ameliorating the inflammatory changes in obese adipose tissue.

  4. Assessing the Land-Ocean Interaction under Extreme Climate Change Condition - a Modeling Approach

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Wang, T.; Leung, R.; Balaguru, K.; Hibbard, K. A.

    2011-12-01

    Many modeling applications, at global and regional scales, have demonstrated that numerical models are useful tools to quantify the uncertainty and the interactions between natural physical and biogeochemical processes and human activities in coastal regions. A regional integrated assessment modeling framework to investigate the interactions of agriculture and land use, coastal ecological issues, energy supply and effects of climate changes is under development by Pacific Northwest National Laboratory (PNNL), with specific application to the Gulf of Mexico. The Gulf is vulnerable to the direct impacts of climate changes, such as sea level rise, hurricane-induced storm surge and extreme floods due to high precipitation and river run-off. This presentation will focus on the coastal modeling aspect of this integrated modeling approach. An unstructured-grid finite volume coastal ocean model, which has the capability of simulating coastal circulation, wave and storm surges, sediment transport and biogeochemical processes, is applied to simulate hurricane storm surges and extreme flood events in the coastal region of Gulf of Mexico. Specifically, storm surge along the US Southeast coasts and freshwater plume in the Mississippi Delta were simulated and compared to observations. Numerical sensitivity studies with boundary conditions and forcing indicated the urgent need of a real observation network as well as the importance of accurate model predictions at regional scales to drive the model at smaller scales. The implication of natural pressures, such as storm surge and flooding to biogeochemical processes and marine ecosystem will be discussed.

  5. Combined and interactive effects of global climate change and toxicants on populations and communities.

    PubMed

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator-prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities.

  6. Tree mortality from drought, insects, and their interactions in a changing climate.

    PubMed

    Anderegg, William R L; Hicke, Jeffrey A; Fisher, Rosie A; Allen, Craig D; Aukema, Juliann; Bentz, Barbara; Hood, Sharon; Lichstein, Jeremy W; Macalady, Alison K; McDowell, Nate; Pan, Yude; Raffa, Kenneth; Sala, Anna; Shaw, John D; Stephenson, Nathan L; Tague, Christina; Zeppel, Melanie

    2015-11-01

    Climate change is expected to drive increased tree mortality through drought, heat stress, and insect attacks, with manifold impacts on forest ecosystems. Yet, climate-induced tree mortality and biotic disturbance agents are largely absent from process-based ecosystem models. Using data sets from the western USA and associated studies, we present a framework for determining the relative contribution of drought stress, insect attack, and their interactions, which is critical for modeling mortality in future climates. We outline a simple approach that identifies the mechanisms associated with two guilds of insects - bark beetles and defoliators - which are responsible for substantial tree mortality. We then discuss cross-biome patterns of insect-driven tree mortality and draw upon available evidence contrasting the prevalence of insect outbreaks in temperate and tropical regions. We conclude with an overview of tools and promising avenues to address major challenges. Ultimately, a multitrophic approach that captures tree physiology, insect populations, and tree-insect interactions will better inform projections of forest ecosystem responses to climate change. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Situational Motivation and Perceived Intensity: Their Interaction in Predicting Changes in Positive Affect from Physical Activity

    PubMed Central

    Guérin, Eva; Fortier, Michelle S.

    2012-01-01

    There is evidence that affective experiences surrounding physical activity can contribute to the proper self-regulation of an active lifestyle. Motivation toward physical activity, as portrayed by self-determination theory, has been linked to positive affect, as has the intensity of physical activity, especially of a preferred nature. The purpose of this experimental study was to examine the interaction between situational motivation and intensity [i.e., ratings of perceived exertion (RPE)] in predicting changes in positive affect following an acute bout of preferred physical activity, namely, running. Fourty-one female runners engaged in a 30-minute self-paced treadmill run in a laboratory context. Situational motivation for running, pre- and post-running positive affect, and RPE were assessed via validated self-report questionnaires. Hierarchical regression analyses revealed a significant interaction effect between RPE and introjection (P < .05) but not between RPE and identified regulation or intrinsic motivation. At low levels of introjection, the influence of RPE on the change in positive affect was considerable, with higher RPE ratings being associated with greater increases in positive affect. The implications of the findings in light of SDT principles as well as the potential contingencies between the regulations and RPE in predicting positive affect among women are discussed. PMID:22778914

  8. COMBINED AND INTERACTIVE EFFECTS OF GLOBAL CLIMATE CHANGE AND TOXICANTS ON POPULATIONS AND COMMUNITIES

    PubMed Central

    Moe, S Jannicke; De Schamphelaere, Karel; Clements, William H; Sorensen, Mary T; Van den Brink, Paul J; Liess, Matthias

    2013-01-01

    Increased temperature and other environmental effects of global climate change (GCC) have documented impacts on many species (e.g., polar bears, amphibians, coral reefs) as well as on ecosystem processes and species interactions (e.g., the timing of predator–prey interactions). A challenge for ecotoxicologists is to predict how joint effects of climatic stress and toxicants measured at the individual level (e.g., reduced survival and reproduction) will be manifested at the population level (e.g., population growth rate, extinction risk) and community level (e.g., species richness, food-web structure). The authors discuss how population- and community-level responses to toxicants under GCC are likely to be influenced by various ecological mechanisms. Stress due to GCC may reduce the potential for resistance to and recovery from toxicant exposure. Long-term toxicant exposure can result in acquired tolerance to this stressor at the population or community level, but an associated cost of tolerance may be the reduced potential for tolerance to subsequent climatic stress (or vice versa). Moreover, GCC can induce large-scale shifts in community composition, which may affect the vulnerability of communities to other stressors. Ecological modeling based on species traits (representing life-history traits, population vulnerability, sensitivity to toxicants, and sensitivity to climate change) can be a promising approach for predicting combined impacts of GCC and toxicants on populations and communities. Environ. Toxicol. Chem. 2013;32:49–61. © 2012 SETAC PMID:23147390

  9. Bivalve aquaculture-environment interactions in the context of climate change.

    PubMed

    Filgueira, Ramón; Guyondet, Thomas; Comeau, Luc A; Tremblay, Réjean

    2016-12-01

    Coastal embayments are at risk of impacts by climate change drivers such as ocean warming, sea level rise and alteration in precipitation regimes. The response of the ecosystem to these drivers is highly dependent on their magnitude of change, but also on physical characteristics such as bay morphology and river discharge, which play key roles in water residence time and hence estuarine functioning. These considerations are especially relevant for bivalve aquaculture sites, where the cultured biomass can alter ecosystem dynamics. The combination of climate change, physical and aquaculture drivers can result in synergistic/antagonistic and nonlinear processes. A spatially explicit model was constructed to explore effects of the physical environment (bay geomorphic type, freshwater inputs), climate change drivers (sea level, temperature, precipitation) and aquaculture (bivalve species, stock) on ecosystem functioning. A factorial design led to 336 scenarios (48 hydrodynamic × 7 management). Model outcomes suggest that the physical environment controls estuarine functioning given its influence on primary productivity (bottom-up control dominated by riverine nutrients) and horizontal advection with the open ocean (dominated by bay geomorphic type). The intensity of bivalve aquaculture ultimately determines the bivalve-phytoplankton trophic interaction, which can range from a bottom-up control triggered by ammonia excretion to a top-down control via feeding. Results also suggest that temperature is the strongest climate change driver due to its influence on the metabolism of poikilothermic organisms (e.g. zooplankton and bivalves), which ultimately causes a concomitant increase of top-down pressure on phytoplankton. Given the different thermal tolerance of cultured species, temperature is also critical to sort winners from losers, benefiting Crassostrea virginica over Mytilus edulis under the specific conditions tested in this numerical exercise. In general, it is

  10. Impact of future land use and land cover changes on atmospheric chemistry-climate interactions

    NASA Astrophysics Data System (ADS)

    Ganzeveld, Laurens; Bouwman, Lex; Stehfest, Elke; van Vuuren, Detlef P.; Eickhout, Bas; Lelieveld, Jos

    2010-12-01

    To demonstrate potential future consequences of land cover and land use changes beyond those for physical climate and the carbon cycle, we present an analysis of large-scale impacts of land cover and land use changes on atmospheric chemistry using the chemistry-climate model EMAC (ECHAM5/MESSy Atmospheric Chemistry) constrained with present-day and 2050 land cover, land use, and anthropogenic emissions scenarios. Future land use and land cover changes are expected to result in an increase in global annual soil NO emissions by ˜1.2 TgN yr-1 (9%), whereas isoprene emissions decrease by ˜50 TgC yr-1 (-12%). The analysis shows increases in simulated boundary layer ozone mixing ratios up to ˜9 ppbv and more than a doubling in hydroxyl radical concentrations over deforested areas in Africa. Small changes in global atmosphere-biosphere fluxes of NOx and ozone point to compensating effects. Decreases in soil NO emissions in deforested regions are counteracted by a larger canopy release of NOx caused by reduced foliage uptake. Despite this decrease in foliage uptake, the ozone deposition flux does not decrease since surface layer mixing ratios increase because of a reduced oxidation of isoprene by ozone. Our study indicates that the simulated impact of land cover and land use changes on atmospheric chemistry depends on a consistent representation of emissions, deposition, and canopy interactions and their dependence on meteorological, hydrological, and biological drivers to account for these compensating effects. It results in negligible changes in the atmospheric oxidizing capacity and, consequently, in the lifetime of methane. Conversely, we expect a pronounced increase in oxidizing capacity as a consequence of anthropogenic emission increases.

  11. Interaction effects of climate and land use/land cover change on soil organic carbon sequestration.

    PubMed

    Xiong, Xiong; Grunwald, Sabine; Myers, D Brenton; Ross, C Wade; Harris, Willie G; Comerford, Nicolas B

    2014-09-15

    Historically, Florida soils stored the largest amount of soil organic carbon (SOC) among the conterminous U.S. states (2.26 Pg). This region experienced rapid land use/land cover (LULC) shifts and climate change in the past decades. The effects of these changes on SOC sequestration are unknown. The objectives of this study were to 1) investigate the change in SOC stocks in Florida to determine if soils have acted as a net sink or net source for carbon (C) over the past four decades and 2) identify the concomitant effects of LULC, LULC change, and climate on the SOC change. A total of 1080 sites were sampled in the topsoil (0-20 cm) between 2008 and 2009 representing the current SOC stocks, 194 of which were selected to collocate with historical sites (n = 1251) from the Florida Soil Characterization Database (1965-1996) for direct comparison. Results show that SOC stocks significantly differed among LULC classes--sugarcane and wetland contained the highest SOC, followed by improved pasture, urban, mesic upland forest, rangeland, and pineland while crop, citrus and xeric upland forest remained the lowest. The surface 20 cm soils acted as a net sink for C with the median SOC significantly increasing from 2.69 to 3.40 kg m(-2) over the past decades. The SOC sequestration rate was LULC dependent and controlled by climate factors interacting with LULC. Higher temperature tended to accelerate SOC accumulation, while higher precipitation reduced the SOC sequestration rate. Land use/land cover change observed over the past four decades also favored the C sequestration in soils due to the increase in the C-rich wetland area by ~140% and decrease in the C-poor agricultural area by ~20%. Soils are likely to provide a substantial soil C sink considering the climate and LULC projections for this region. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Interactions of forest disturbance-recovery dynamics with a changing climate

    NASA Astrophysics Data System (ADS)

    Anderson-Teixeira, K. J.; Miller, A. D.; Tepley, A. J.; Bennett, A. C.; Wang, M.

    2015-12-01

    As the climate changes, altered disturbance-recovery dynamics in forests worldwide are likely to result in significant biogeochemical and biophysical feedbacks to the climate system. Climate shapes forest disturbance events including tree mortality and fire, with consequent climate feedbacks. For instance, in forests globally, drought increases tree mortality rates, having a stronger impact on larger trees and resulting in greater feedbacks to climate change than would occur if drought sensitivities were equal across tree size classes. Forest regeneration and associated biogeochemical and biophysical feedbacks are also shaped by climate: across the tropics the rate of biomass accumulation is faster in everwet than in seasonally dry climates, and in the Klamath region (N California / S Oregon), post-fire vegetation dynamics and microclimate are shaped by aridity. Forest recovery dynamics will be affected by elevated CO2 and climate change; for instance, models predict that forest regeneration rate, successional dynamics, and climate feedbacks will all be altered under elevated CO2. In combination, climatic impacts on disturbance and recovery can result in dramatic shifts in forest cover on the landscape level. For instance, in fire-prone forested landscapes, forest cover decreases with increasing frequency of high-severity fire and decreasing forest recovery rate, both of which could be altered by climate change, producing rapid loss of forest on the landscape level. Such effects may be amplified by the existence of alternative stable states, which can cause systems to experience non-reversible changes in cover type. Critical transitions in landscape-level forest cover would have significant biogeochemical and biophysical feedbacks. Thus, altered disturbance-recovery dynamics under a changing climate may have sudden and dramatic impacts on forest-climate interactions.

  13. Linkage of subunit interactions, structural changes, and energetics of coenzyme binding in tryptophan synthase.

    PubMed

    Wiesinger, H; Hinz, H J

    1984-10-09

    The energetics of binding of the coenzyme pyridoxal 5'-phosphate (PLP) to both the apo beta 2 subunit and the apo alpha 2 beta 2 complex of tryptophan synthase from Escherichia coli has been investigated as a function of pH and temperature by direct microcalorimetric methods. At 25 degrees C, pH 7.5, the binding process proceeds in the time range of minutes and shows a biphasic heat output which permits resolution of the overall reaction into different reaction steps. Binding studies on the coenzyme analogues pyridoxal (PAL), pyridoxine 5'-phosphate (PNP), and pyridoxine (POL) to the protein as well as a comparison of these results with data from studies on PLP binding to epsilon-aminocaproic acid have led to a deconvolution of the complex heat vs. time curves into fast endothermic contributions from electrostatic interaction and Schiff base formation and slow exothermic contributions from the interactions between PLP and the binding domain. The pH-independent, large negative change in heat capacity of about -9.1 kJ/(mol of beta 2 X K) when binding PLP to beta 2 is indicative of major structural changes resulting from complex formation. The much smaller value of delta Cp = -1.7 kJ/(mol of beta 2 X K) for binding of PLP to alpha 2 beta 2 clearly demonstrates the energetic linkage of protein-protein and protein-ligand interactions. Calorimetric titrations of the apo beta 2 subunit with PLP at 35 degrees C have shown that also at this temperature positive cooperativity between the two binding sites occurs. On the basis of these measurements a complete set of site-specific thermodynamic parameters has been established.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    PubMed Central

    Wenger, Seth J.; Isaak, Daniel J.; Luce, Charles H.; Neville, Helen M.; Fausch, Kurt D.; Dunham, Jason B.; Dauwalter, Daniel C.; Young, Michael K.; Elsner, Marketa M.; Rieman, Bruce E.; Hamlet, Alan F.; Williams, Jack E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species’ physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations. PMID:21844354

  15. Plant genetics and interspecific competitive interactions determine ectomycorrhizal fungal community responses to climate change.

    PubMed

    Gehring, Catherine; Flores-Rentería, Dulce; Sthultz, Christopher M; Leonard, Tierra M; Flores-Rentería, Lluvia; Whipple, Amy V; Whitham, Thomas G

    2014-03-01

    Although the importance of plant-associated microbes is increasingly recognized, little is known about the biotic and abiotic factors that determine the composition of that microbiome. We examined the influence of plant genetic variation, and two stressors, one biotic and one abiotic, on the ectomycorrhizal (EM) fungal community of a dominant tree species, Pinus edulis. During three periods across 16 years that varied in drought severity, we sampled the EM fungal communities of a wild stand of P. edulis in which genetically based resistance and susceptibility to insect herbivory was linked with drought tolerance and the abundance of competing shrubs. We found that the EM fungal communities of insect-susceptible trees remained relatively constant as climate dried, while those of insect-resistant trees shifted significantly, providing evidence of a genotype by environment interaction. Shrub removal altered the EM fungal communities of insect-resistant trees, but not insect-susceptible trees, also a genotype by environment interaction. The change in the EM fungal community of insect-resistant trees following shrub removal was associated with greater shoot growth, evidence of competitive release. However, shrub removal had a 7-fold greater positive effect on the shoot growth of insect-susceptible trees than insect-resistant trees when shrub density was taken into account. Insect-susceptible trees had higher growth than insect-resistant trees, consistent with the hypothesis that the EM fungi associated with susceptible trees were superior mutualists. These complex, genetic-based interactions among species (tree-shrub-herbivore-fungus) argue that the ultimate impacts of climate change are both ecological and evolutionary.

  16. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change

    USGS Publications Warehouse

    Wenger, S.J.; Isaak, D.J.; Luce, C.H.; Neville, H.M.; Fausch, K.D.; Dunham, J.B.; Dauwalter, D.C.; Young, M.K.; Elsner, M.M.; Rieman, B.E.; Hamlet, A.F.; Williams, J.E.

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km2), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  17. Structure and Property Changes in Self-Assembled Lubricin Layers Induced by Calcium Ion Interactions.

    PubMed

    Greene, George W; Thapa, Rajiv; Holt, Stephen A; Wang, Xiaoen; Garvey, Christopher J; Tabor, Rico F

    2017-03-14

    Lubricin (LUB) is a "mucin-like" glycoprotein found in synovial fluids and coating the cartilage surfaces of articular joints, which is now generally accepted as one of the body's primary boundary lubricants and antiadhesive agents. LUB's superior lubrication and antiadhesion are believed to derive from its unique interfacial properties by which LUB molecules adhere to surfaces (and biomolecules, such as hyaluronic acid and collagen) through discrete interactions localized to its two terminal end domains. These regionally specific interactions lead to self-assembly behavior and the formation of a well-ordered "telechelic" polymer brush structure on most substrates. Despite its importance to biological lubrication, detailed knowledge on the LUB's self-assembled brush structure is insufficient and derived mostly from indirect and circumstantial evidence. Neutron reflectometry (NR) was used to directly probe the self-assembled LUB layers, confirming the polymer brush architecture and resolving the degree of hydration and level of surface coverage. While attempting to improve the LUB contrast in the NR measurements, the LUB layers were exposed to a 20 mM solution of CaCl2, which resulted in a significant change in the polymer brush structural parameters consisting of a partial denaturation of the surface-binding end-domain regions, partial dehydration of the internal mucin-domain "loop", and collapse of the outer mucin-domain surface region. A series of atomic force microscopy measurements investigating the LUB layer surface morphology, mechanical properties, and adhesion forces in phosphate-buffered saline and CaCl2 solutions reveal that the structural changes induced by calcium ion interactions also significantly alter key properties, which may have implications to LUB's efficacy as a boundary lubricant and wear protector in the presence of elevated calcium ion concentrations.

  18. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change.

    PubMed

    Wenger, Seth J; Isaak, Daniel J; Luce, Charles H; Neville, Helen M; Fausch, Kurt D; Dunham, Jason B; Dauwalter, Daniel C; Young, Michael K; Elsner, Marketa M; Rieman, Bruce E; Hamlet, Alan F; Williams, Jack E

    2011-08-23

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout across the interior western United States (1.01 million km(2)), based on empirical statistical models built from fish surveys at 9,890 sites. Projections under the 2080s A1B emissions scenario forecast a mean 47% decline in total suitable habitat for all trout, a group of fishes of major socioeconomic and ecological significance. We project that native cutthroat trout Oncorhynchus clarkii, already excluded from much of its potential range by nonnative species, will lose a further 58% of habitat due to an increase in temperatures beyond the species' physiological optima and continued negative biotic interactions. Habitat for nonnative brook trout Salvelinus fontinalis and brown trout Salmo trutta is predicted to decline by 77% and 48%, respectively, driven by increases in temperature and winter flood frequency caused by warmer, rainier winters. Habitat for rainbow trout, Oncorhynchus mykiss, is projected to decline the least (35%) because negative temperature effects are partly offset by flow regime shifts that benefit the species. These results illustrate how drivers other than temperature influence species response to climate change. Despite some uncertainty, large declines in trout habitat are likely, but our findings point to opportunities for strategic targeting of mitigation efforts to appropriate stressors and locations.

  19. Digestibility and supramolecular structural changes of maize starch by non-covalent interactions with gallic acid.

    PubMed

    Chi, Chengdeng; Li, Xiaoxi; Zhang, Yiping; Chen, Ling; Li, Lin; Wang, Zhijiang

    2017-02-22

    The effects of non-covalent interactions between gallic acid (GA) and starch on starch digestibility and supramolecular structural changes (short-range ordered molecular structure, crystalline structure, lamellar structure and fractal structure) were investigated. The results indicated that the digestibility of both starches was substantially reduced in the rapidly digestible starch (RDS) content, but resistant starch (RS) was increased after interacting with GA. The RS content of starch-GA complexes ranged from 17.70 to 50.02%, which is much higher than that of high amylose starch (G50) (11.11%) and normal maize starch (NMS) (4.46%). Compared with native starches, starch-GA complexes possess more ordered and compact structures; furthermore, G50-GA complexes possessed more compact scattering objects, thicker crystalline lamellae and thinner amorphous lamellae than those of NMS-GA complexes. This revealed that more ordered multi-scale structures promote the RS formation. Docking studies were conducted to reveal the mechanism of digestibility variations. It showed that GA would non-covalently interact with starch molecules and contribute to ordered structure formation to somewhat extent; meanwhile, GA had higher binding affinities to α-amylase than to starch chains; during the hydrolytic process, GA could be released from the complex and was more likely to occupy the active sites of Asp197, Asp300, His299 and Glu233 by hydrogen bonds and van der Waals forces, which kept starch out of the active site pocket and reduced starch digestibility. These results demonstrate that the non-covalent interactions between GA and starch could be a promising method of controlling starch structures and starch digestion behaviors.

  20. Free-Energy Landscape of Protein-Ligand Interactions Coupled with Protein Structural Changes.

    PubMed

    Moritsugu, Kei; Terada, Tohru; Kidera, Akinori

    2017-02-02

    Protein-ligand interactions are frequently coupled with protein structural changes. Focusing on the coupling, we present the free-energy surface (FES) of the ligand-binding process for glutamine-binding protein (GlnBP) and its ligand, glutamine, in which glutamine binding accompanies large-scale domain closure. All-atom simulations were performed in explicit solvents by multiscale enhanced sampling (MSES), which adopts a multicopy and multiscale scheme to achieve enhanced sampling of systems with a large number of degrees of freedom. The structural ensemble derived from the MSES simulation yielded the FES of the coupling, described in terms of both the ligand's and protein's degrees of freedom at atomic resolution, and revealed the tight coupling between the two degrees of freedom. The derived FES led to the determination of definite structural states, which suggested the dominant pathways of glutamine binding to GlnBP: first, glutamine migrates via diffusion to form a dominant encounter complex with Arg75 on the large domain of GlnBP, through strong polar interactions. Subsequently, the closing motion of GlnBP occurs to form ligand interactions with the small domain, finally completing the native-specific complex structure. The formation of hydrogen bonds between glutamine and the small domain is considered to be a rate-limiting step, inducing desolvation of the protein-ligand interface to form the specific native complex. The key interactions to attain high specificity for glutamine, the "door keeper" existing between the two domains (Asp10-Lys115) and the "hydrophobic sandwich" formed between the ligand glutamine and Phe13/Phe50, have been successfully mapped on the pathway derived from the FES.

  1. Disentangling climate change effects on species interactions: effects of temperature, phenological shifts, and body size.

    PubMed

    Rudolf, Volker H W; Singh, Manasvini

    2013-11-01

    Climate-mediated shifts in species' phenologies are expected to alter species interactions, but predicting the consequences of this is difficult because phenological shifts may be driven by different climate factors that may or may not be correlated. Temperature could be an important factor determining effects of phenological shifts by altering species' growth rates and thereby the relative size ratios of interacting species. We tested this hypothesis by independently manipulating temperature and the relative hatching phenologies of two competing amphibian species. Relative shifts in hatching time generally altered the strength of competition, but the presence and magnitude of this effect was temperature dependent and joint effects of temperature and hatching phenology were non-additive. Species that hatched relatively early or late performed significantly better or worse, respectively, but only at higher temperatures and not at lower temperatures. As a consequence, climate-mediated shifts in hatching phenology or temperature resulted in stronger or weaker effects than expected when both factors acted in concert. Furthermore, consequences of phenological shifts were asymmetric; arriving relatively early had disproportional stronger (or weaker) effects than arriving relatively late, and this varied with species identity. However, consistent with recent theory, these seemingly idiosyncratic effects of phenological shifts could be explained by species-specific differences in growth rates across temperatures and concordant shifts in relative body size of interacting species. Our results emphasize the need to account for environmental conditions when predicting the effects of phenological shifts, and suggest that shifts in size-structured interactions can mediate the impact of climate change on natural communities.

  2. Contrasting and interacting changes in simulated spring and summer carbon cycle extremes in European ecosystems

    NASA Astrophysics Data System (ADS)

    Sippel, Sebastian; Forkel, Matthias; Rammig, Anja; Thonicke, Kirsten; Flach, Milan; Heimann, Martin; Otto, Friederike E. L.; Reichstein, Markus; Mahecha, Miguel D.

    2017-07-01

    Climate extremes have the potential to cause extreme responses of terrestrial ecosystem functioning. However, it is neither straightforward to quantify and predict extreme ecosystem responses, nor to attribute these responses to specific climate drivers. Here, we construct a factorial experiment based on a large ensemble of process-oriented ecosystem model simulations driven by a regional climate model (12 500 model years in 1985-2010) in six European regions. Our aims are to (1) attribute changes in the intensity and frequency of simulated ecosystem productivity extremes (EPEs) to recent changes in climate extremes, CO2 concentration, and land use, and to (2) assess the effect of timing and seasonal interaction on the intensity of EPEs. Evaluating the ensemble simulations reveals that (1) recent trends in EPEs are seasonally contrasting: spring EPEs show consistent trends towards increased carbon uptake, while trends in summer EPEs are predominantly negative in net ecosystem productivity (i.e. higher net carbon release under drought and heat in summer) and close-to-neutral in gross productivity. While changes in climate and its extremes (mainly warming) and changes in CO2 increase spring productivity, changes in climate extremes decrease summer productivity neutralizing positive effects of CO2. Furthermore, we find that (2) drought or heat wave induced carbon losses in summer (i.e. negative EPEs) can be partly compensated by a higher uptake in the preceding spring in temperate regions. Conversely, however, carry-over effects from spring to summer that arise from depleted soil moisture exacerbate the carbon losses caused by climate extremes in summer, and are thus undoing spring compensatory effects. While the spring-compensation effect is increasing over time, the carry-over effect shows no trend between 1985-2010. The ensemble ecosystem model simulations provide a process-based interpretation and generalization for spring-summer interacting carbon cycle effects

  3. Changing interactions between physician trainees and the pharmaceutical industry: a national survey.

    PubMed

    Austad, Kirsten E; Avorn, Jerry; Franklin, Jessica M; Kowal, Mary K; Campbell, Eric G; Kesselheim, Aaron S

    2013-08-01

    strength of institutional conflict of interest policies was not associated with this variable. Despite recent policy changes, a substantial number of trainees continue to receive gifts from pharmaceutical representatives. We found no relation between these outcomes and a school's policies concerning interactions with industry.

  4. Global change shifts vegetation and plant-parasite interactions in a boreal mire.

    PubMed

    Wiedermann, Magdalena M; Nordin, Annika; Gunnarsson, Urban; Nilsson, Mats B; Ericson, Lars

    2007-02-01

    The aim of this study was to detect vegetation change and to examine trophic interactions in a Sphagnum-dominated mire in response to raised temperature and nitrogen (N) addition. A long-term global-change experiment was established in 1995, with monthly additions of N (30 kg x ha(-1) x yr(-1)) and sulfur (20 kg x ha(-1) x yr(-1)) during the vegetation period. Mean air temperature was raised by 3.6 degrees C with warming chambers. Vegetation responses were negligible for all treatments for the first four years, and no sulfur effect was seen during the course of the experiment. However, after eight years of continuous treatments, the closed Sphagnum carpet was drastically reduced from 100% in 1995 down to 41%, averaged over all N-treated plots. Over the same period, total vascular plant cover (of the graminoid Eriophorum vaginatum and the two dwarf-shrubs Andromeda polifolia and Vaccinium oxycoccos) increased from 24% to an average of 70% in the N plots. Nitrogen addition caused leaf N concentrations to rise in the two dwarf-shrubs, while for E. vaginatum, leaf N remained unchanged, indicating that the graminoid to a larger extent than the dwarf-shrubs allocated supplemented N to growth. Concurrent with foliar N accumulation of the two dwarf-shrubs, we observed increased disease incidences caused by parasitic fungi, with three species out of 16 showing a significant increase. Warming caused a significant decrease in occurrence of three parasitic fungal species. In general, decreased disease incidences were found in temperature treatments for A. polifolia and in plots without N addition for V. oxycoccos. The study demonstrates that both bryophytes and vascular plants at boreal mires, only receiving background levels of nitrogen of about 2 kg x ha(-1) x yr(-1), exhibit a time lag of more than five years in response to nitrogen and temperature rise, emphasizing the need for long-term experiments. Moreover, it shows that trophic interactions are likely to differ

  5. Nectin-like interactions between poliovirus and its receptor trigger conformational changes associated with cell entry.

    PubMed

    Strauss, Mike; Filman, David J; Belnap, David M; Cheng, Naiqian; Noel, Roane T; Hogle, James M

    2015-04-01

    Poliovirus infection is initiated by attachment to a receptor on the cell surface called Pvr or CD155. At physiological temperatures, the receptor catalyzes an irreversible expansion of the virus to form an expanded form of the capsid called the 135S particle. This expansion results in the externalization of the myristoylated capsid protein VP4 and the N-terminal extension of the capsid protein VP1, both of which become inserted into the cell membrane. Structures of the expanded forms of poliovirus and of several related viruses have recently been reported. However, until now, it has been unclear how receptor binding triggers viral expansion at physiological temperature. Here, we report poliovirus in complex with an enzymatically partially deglycosylated form of the 3-domain ectodomain of Pvr at a 4-Å resolution, as determined by cryo-electron microscopy. The interaction of the receptor with the virus in this structure is reminiscent of the interactions of Pvr with its natural ligands. At a low temperature, the receptor induces very few changes in the structure of the virus, with the largest changes occurring within the footprint of the receptor, and in a loop of the internal protein VP4. Changes in the vicinity of the receptor include the displacement of a natural lipid ligand (called "pocket factor"), demonstrating that the loss of this ligand, alone, is not sufficient to induce particle expansion. Finally, analogies with naturally occurring ligand binding in the nectin family suggest which specific structural rearrangements in the virus-receptor complex could help to trigger the irreversible expansion of the capsid. The cell-surface receptor (Pvr) catalyzes a large structural change in the virus that exposes membrane-binding protein chains. We fitted known atomic models of the virus and Pvr into three-dimensional experimental maps of the receptor-virus complex. The molecular interactions we see between poliovirus and its receptor are reminiscent of the nectin

  6. Arctic Sea Ice Changes, Interactions, and Feedbacks on the Arctic Climate during the Satellite Era

    NASA Astrophysics Data System (ADS)

    Wang, X.; Key, J. R.; Liu, Y.

    2011-12-01

    the shortcomings of current climate models in the projections of future climate change and feedback mechanisms at high latitudes. Interactions and feedbacks between clouds, sea ice, and various atmospheric circulation patterns in the Arctic are also investigated based on multi-decadal satellite products, including cloud characteristics and radiation fluxes from the MODerate resolution Imaging Spectroradiometer (MODIS) data and the APP-x dataset, sea ice products from Special Sensor Microwave/Imager (SSM/I), and various atmospheric parameters from reanalysis data sets. Results demonstrate that changes in sea ice concentration and cloud cover played major roles in the magnitude of recent Arctic surface temperature trends. Interactions between sea ice and clouds are strong, such that recent shrinking of sea ice extent might influence future cloud cover changes. Not surprisingly, cloud cover is also affected by changes in large-scale atmospheric circulation patterns. Quantitative analyses of the relationships between trends in these parameters provide new insight into polar climates.

  7. Thermodynamics of heme-induced conformational changes in hemopexin: role of domain-domain interactions.

    PubMed Central

    Wu, M. L.; Morgan, W. T.

    1995-01-01

    Hemopexin is a serum glycoprotein that binds heme with high affinity and delivers heme to the liver cells via receptor-mediated endocytosis. A hinge region connects the two non-disulfide-linked domains of hemopexin, a 35-kDa N-terminal domain (domain I) that binds heme, and a 25-kDa C-terminal domain (domain II). Although domain II does not bind heme, it assumes one structural state in apo-hemopexin and another in heme-hemopexin, and this change is important in facilitating the association of heme-hemopexin with its receptor. In order to elucidate the structure and function of hemopexin, it is important to understand how structural information is transmitted to domain II when domain I binds heme. Here we report a study of the protein-protein interactions between domain I and domain II using analytical ultracentrifugation and isothermal titration calorimetry. Sedimentation equilibrium analysis showed that domain I associates with domain II both in the presence and absence of heme with Kd values of 0.8 microM and 55 microM, respectively. The interaction between heme-domain I and domain II has a calorimetric enthalpy of +11 kcal/mol, a heat capacity (delta Cp) of -720 cal/mol.K, and a calculated entropy of +65 cal/mol.K. By varying the temperature of the centrifugation equilibrium runs, a van't Hoff plot with an apparent change in enthalpy (delta H) of -3.6 kcal/mol and change in entropy (delta S) of +8.1 cal/mol.K for the association of apo-domain I with domain II was obtained.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7773173

  8. Sedimentation of Reversibly Interacting Macromolecules with Changes in Fluorescence Quantum Yield

    NASA Astrophysics Data System (ADS)

    Chaturvedi, Sumit K.; Zhao, Huaying; Schuck, Peter

    2017-04-01

    Sedimentation velocity analytical ultracentrifugation with fluorescence detection has emerged as a powerful method for the study of interacting systems of macromolecules. It combines picomolar sensitivity with high hydrodynamic resolution, and can be carried out with photoswitchable fluorophores for multi-component discrimination, to determine the stoichiometry, affinity, and shape of macromolecular complexes with dissociation equilibrium constants from picomolar to micromolar. A popular approach for data interpretation is the determination of the binding affinity by isotherms of weight-average sedimentation coefficients, sw. A prevailing dogma in sedimentation analysis is that the weight-average sedimentation coefficient from the transport method corresponds to the signal- and population-weighted average of all species. We show that this does not always hold true for systems that exhibit significant signal changes with complex formation - properties that may be readily encountered in practice, e.g., from a change in fluorescence quantum yield. Coupled transport in the reaction boundary of rapidly reversible systems can make significant contributions to the observed migration in a way that cannot be accounted for in the standard population-based average. Effective particle theory provides a simple physical picture for the reaction-coupled migration process. On this basis we develop a more general binding model that converges to the well-known form of sw with constant signals, but can account simultaneously for hydrodynamic co-transport in the presence of changes in fluorescence quantum yield. We believe this will be useful when studying interacting systems exhibiting fluorescence quenching, enhancement or Forster resonance energy transfer with transport methods.

  9. A Web-Based Modelling Platform for Interactive Exploration of Regional Responses to Global Change

    NASA Astrophysics Data System (ADS)

    Holman, I.

    2014-12-01

    Climate change adaptation is a complex human-environmental problem that is framed by the uncertainty in impacts and the adaptation choices available, but is also bounded by real-world constraints such as future resource availability and environmental and institutional capacities. Educating the next generation of informed decision-makers that will be able to make knowledgeable responses to global climate change impacts requires them to have access to information that is credible, accurate, easy to understand, and appropriate. However, available resources are too often produced by inaccessible models for scenario simulations chosen by researchers hindering exploration and enquiry. This paper describes the interactive exploratory web-based CLIMSAVE Integrated Assessment (IA) Platform (www.climsave.eu/iap) that aims to democratise climate change impacts, adaptation and vulnerability modelling. The regional version of the Platform contain linked simulation models (of the urban, agriculture, forestry, water and biodiversity sectors), probabilistic climate scenarios and socio-economic scenarios, that enable users to select their inputs (climate and socioeconomic), rapidly run the models using their input variable settings and view their chosen outputs. The interface of the CLIMSAVE IA Platform is designed to facilitate a two-way iterative process of dialogue and exploration of "what if's" to enable a wide range of users to improve their understanding surrounding impacts, adaptation responses and vulnerability of natural resources and ecosystem services under uncertain futures. This paper will describe the evolution of the Platform and demonstrate how using its holistic framework (multi sector / ecosystem service; cross-sectoral, climate and socio-economic change) will help to assist learning around the challenging concepts of responding to global change.

  10. Flow regime, temperature, and biotic interactions drive differential declines of trout species under climate change [includes Supporting Information

    Treesearch

    Seth J. Wenger; Daniel J. Isaak; Charlie Luce; Helen M. Neville; Kurt D. Fausch; Jason B. Dunham; Daniel C. Dauwalter; Michael K. Young; Marketa M. Elsner; Bruce E. Rieman; Alan F. Hamlet; Jack E. Williams

    2011-01-01

    Broad-scale studies of climate change effects on freshwater species have focused mainly on temperature, ignoring critical drivers such as flow regime and biotic interactions. We use downscaled outputs from general circulation models coupled with a hydrologic model to forecast the effects of altered flows and increased temperatures on four interacting species of trout...

  11. Development and implementation of an integrated, multi-modality, user-centered interactive dietary change program

    PubMed Central

    Glasgow, Russell E.; Christiansen, Steve; Smith, K. Sabina; Stevens, Victor J.; Toobert, Deborah J.

    2009-01-01

    Computer-tailored behavior change programs offer the potential for reaching large populations at a much lower cost than individual or group-based programs. However, few of these programs to date appear to integrate behavioral theory with user choice, or combine different electronic modalities. We describe the development of an integrated CD-ROM and interactive voice response dietary change intervention that combines behavioral problem-solving theory with a high degree of user choice. The program, WISE CHOICES, is being evaluated as part of an ongoing trial. This paper describes the program development, emphasizing how user preferences are accommodated, and presents implementation and user satisfaction data. The program was successfully implemented; the linkages among the central database, the CD-ROM and the automated telephone components were robust, and participants liked the program almost as well as a counselor-delivered dietary change condition. Multi-modality programs that emphasize the strengths of each approach appear to be feasible. Future research is needed to determine the program impact and cost-effectiveness compared with counselor-delivered intervention. PMID:18711204

  12. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2011.

    PubMed

    Andrady, Anthony L; Aucamp, Pieter J; Austin, Amy T; Bais, Alkiviadis F; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; de Gruijl, Frank R; Häder, Donat-P; He, Walter; Ilyas, Mohammad; Longstreth, Janice; Lucas, Robyn; McKenzie, Richard L; Madronich, Sasha; Norval, Mary; Paul, Nigel D; Redhwi, Halim Hamid; Robinson, Sharon; Shao, Min; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Torikai, Ayako; van der Leun, Jan C; Williamson, Craig E; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2012-01-01

    The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with two focal issues. The first focus is the effects of increased UV radiation on human health, animals, plants, biogeochemistry, air quality, and materials. The second focus is on interactions between UV radiation and global climate change and how these may affect humans and the environment. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was published in 2010 (Photochem. Photobiol. Sci., 2011, 10, 173-300). In the years in between, the EEAP produces less detailed and shorter progress reports, which highlight and assess the significance of developments in key areas of importance to the parties. The next full quadrennial report will be published in 2014-2015.

  13. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2009.

    PubMed

    Andrady, Anthony; Aucamp, Pieter J; Bais, Alkiviadis F; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; deGruijl, Frank R; Häder, Donat-P; Ilyas, Mohammad; Kulandaivelu, G; Kumar, H D; Longstreth, Janice; McKenzie, Richard L; Norval, Mary; Paul, Nigel; Redhwi, Halim Hamid; Smith, Raymond C; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Teramura, Alan H; Torikai, Ayako; van der Leun, Jan C; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2010-03-01

    The parties to the Montreal Protocol are informed by three panels of experts. One of these is the Environmental Effects Assessment Panel (EEAP), which deals with UV radiation and its effects on human health, animals, plants, biogeochemistry, air quality and materials. Since 2000, the analyses and interpretation of these effects have included interactions between UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than believed previously. As a result of this, human health and environmental problems will likely be longer-lasting and more regionally variable. Like the other panels, the EEAP produces a detailed report every four years; the most recent was that for 2006 (Photochem. Photobiol. Sci., 2007, 6, 201-332). In the years in between, the EEAP produces a less detailed and shorter progress report, as is the case for this present one for 2009. A full quadrennial report will follow for 2010.

  14. Raised Bed Rivers in Japan -historical scenery of the interaction between environmental changes and society-

    NASA Astrophysics Data System (ADS)

    Toshitaka, Kamai

    2010-05-01

    Raised bed river should be a typical artificial landforms caused by the environmental changes in the upstream region of rivers. Typical raised bed rivers have developed in the western part of Japan, especially Kyoto, Osaka, Nara, Shiga region, induced by artificial fixing of alluvial river channels and increasing of bed load in floods. Inter-disciplinal approach of archaeological and geological investigations in southern Kyoto region, Kizu River, revealed that the raising of river bed started from 14th century and accelerated the raising rate from 17th century. The development of upstream mountainous area, deforestation and keeping grass field in long term period, led to increasing landslides and topsoil erosion in the mountainous slope, so that the bare mountains were common scenery around the advanced developed region in Japan during the ages of raised bed rivers from 14th to 19th century. The backgrounds of the beginning of these exhaustive developments in mountainous slope surrounding of urban region should be reflected in the social changes going on 14th century. Social confusion continues to demise of ancient order forced to take the regional social and economic integration and generated the new integrated villages that they interested to increasing food production by cultivation needed to large quantity of grass supplied from surrounding grass (bare) mountains. The classic landscape of raised bed rivers in Japan initiated from the mediaeval ages shows the history of interaction between environmental changes and ancient society.

  15. Interaction between neuroanatomical and psychological changes after mindfulness-based training.

    PubMed

    Santarnecchi, Emiliano; D'Arista, Sicilia; Egiziano, Eutizio; Gardi, Concetta; Petrosino, Roberta; Vatti, Giampaolo; Reda, Mario; Rossi, Alessandro

    2014-01-01

    Several cross-sectional studies have documented neuroanatomical changes in individuals with a long history of meditation, while a few evidences are available about the interaction between neuroanatomical and psychological changes even during brief exposure to meditation. Here we analyzed several morphometric indexes at both cortical and subcortical brain level, as well as multiple psychological dimensions, before and after a brief -8 weeks- Mindfulness Based Stress Reduction (MBSR) training program, in a group of 23 meditation naïve-subjects compared to age-gender matched subjects. We found a significant cortical thickness increase in the right insula and the somatosensory cortex of MBSR trainees, coupled with a significant reduction of several psychological indices related to worry, state anxiety, depression and alexithymia. Most importantly, an interesting correlation between the increase in right insula thickness and the decrease in alexithymia levels during the MBSR training were observed. Moreover, a multivariate pattern classification approach allowed to identify a cluster of regions more responsive to MBSR training across subjects. Taken together, these findings documented the significant impact of a brief MBSR training on brain structures, as well as stressing the idea of MBSR as a valuable tool for alexithymia modulation, also originally providing a plausible neurobiological evidence of a major role of right insula into mediating the observed psychological changes.

  16. Interaction between Neuroanatomical and Psychological Changes after Mindfulness-Based Training

    PubMed Central

    Santarnecchi, Emiliano; D’Arista, Sicilia; Egiziano, Eutizio; Gardi, Concetta; Petrosino, Roberta; Vatti, Giampaolo; Reda, Mario; Rossi, Alessandro

    2014-01-01

    Several cross-sectional studies have documented neuroanatomical changes in individuals with a long history of meditation, while a few evidences are available about the interaction between neuroanatomical and psychological changes even during brief exposure to meditation. Here we analyzed several morphometric indexes at both cortical and subcortical brain level, as well as multiple psychological dimensions, before and after a brief -8 weeks- Mindfulness Based Stress Reduction (MBSR) training program, in a group of 23 meditation naïve-subjects compared to age-gender matched subjects. We found a significant cortical thickness increase in the right insula and the somatosensory cortex of MBSR trainees, coupled with a significant reduction of several psychological indices related to worry, state anxiety, depression and alexithymia. Most importantly, an interesting correlation between the increase in right insula thickness and the decrease in alexithymia levels during the MBSR training were observed. Moreover, a multivariate pattern classification approach allowed to identify a cluster of regions more responsive to MBSR training across subjects. Taken together, these findings documented the significant impact of a brief MBSR training on brain structures, as well as stressing the idea of MBSR as a valuable tool for alexithymia modulation, also originally providing a plausible neurobiological evidence of a major role of right insula into mediating the observed psychological changes. PMID:25330321

  17. Effects of verbal interaction within cooperative groups on conceptual change in environmental science

    NASA Astrophysics Data System (ADS)

    Lindow, Lynn Eloise

    2000-10-01

    Conceptual change theorists argue that learning occurs as a consequence of students becoming dissatisfied with their initial knowledge and then searching for ideas that are intelligible and plausible. Cooperative groups provide the vehicle for verbal interactions to take place with research indicating improvement in achievement. This study examines the verbal interactions that occur in the cooperative learning setting and how that discourse reflects the components of conceptual change. Cooperative learning groups were videotaped as they participated in active learning sessions in a general science course where the participants experimented with short-term and long-term carbon cycling. Groups were introduced to the guidelines of cooperative learning and group roles were assigned to the groups. Videotaping was followed by stimulated recall interviews with participants from the groups. This data from the videotapes and the stimulated recall interviews were transcribed and assigned categories using the Q. S. R. NUD·IST software program to gain insights into the process of science learning. Interpretations were made based on the findings from the data. Prior knowledge or information gathered by participants in preparation for the active learning session was the starting point for discussions about scientific concepts. Once the discussions began, group members with confidence in their understanding of scientific concepts tended to participate and defend their ideas with examples. The recorder role was the most significant role as the recorder usually directed the discussions in order to develop complete responses. As the discussions continued, explanations by those who were confident assisted other group members with learning scientific concepts---peer teaching. As discourse occurred, conflicts in ideas generated discussion, clarifying ideas, elaborating on ideas, and reformulating science concepts until they were able to reach consensus. Through this process

  18. Predicting species distribution and abundance responses to climate change: why it is essential to include biotic interactions across trophic levels

    PubMed Central

    Van der Putten, Wim H.; Macel, Mirka; Visser, Marcel E.

    2010-01-01

    Current predictions on species responses to climate change strongly rely on projecting altered environmental conditions on species distributions. However, it is increasingly acknowledged that climate change also influences species interactions. We review and synthesize literature information on biotic interactions and use it to argue that the abundance of species and the direction of selection during climate change vary depending on how their trophic interactions become disrupted. Plant abundance can be controlled by aboveground and belowground multitrophic level interactions with herbivores, pathogens, symbionts and their enemies. We discuss how these interactions may alter during climate change and the resulting species range shifts. We suggest conceptual analogies between species responses to climate warming and exotic species introduced in new ranges. There are also important differences: the herbivores, pathogens and mutualistic symbionts of range-expanding species and their enemies may co-migrate, and the continuous gene flow under climate warming can make adaptation in the expansion zone of range expanders different from that of cross-continental exotic species. We conclude that under climate change, results of altered species interactions may vary, ranging from species becoming rare to disproportionately abundant. Taking these possibilities into account will provide a new perspective on predicting species distribution under climate change. PMID:20513711

  19. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    NASA Astrophysics Data System (ADS)

    Chen, C.-X.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H. J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T. G.; Insolia, A.; Jones, F. C.; Knott, C. N.; Lindstrom, P. J.; Mitchell, J. W.; Potenza, R.; Romanski, J.; Russo, G. V.; Soutoul, A.; Testard, O.; Tull, C. E.; Tuvé, C.; Waddington, C. J.; Webber, W. R.; Wefel, J. P.; Zhang, X.

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, 22Ne to 58Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  20. Interactions in hydrogen of relativistic neon to nickel projectiles: Total charge-changing cross sections

    SciTech Connect

    Chen, C.; Albergo, S.; Caccia, Z.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Engelage, J.; Ferrando, P.; Fonte, R.; Greiner, L.; Guzik, T.G.; Insolia, A.; Jones, F.C.; Knott, C.N.; Lindstrom, P.J.; Mitchell, J.W.; Potenza, R.; Romanski, J.; Russo, G.V.; Soutoul, A.; Testard, O.; Tull, C.E.; Tuve, C.; Waddington, C.J.; Webber, W.R.; Wefel, J.P.; Zhang, X. Space Science Laboratory, University of California, Berkeley, California 94720 Service d'Astrophysique, Centre d'Etudes de Saclay, 91191 Gif-sur-Yvette, Cedex Dipartimento di Fisica, Universita di Catania, Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, I 95129-Catania NASA

    1994-06-01

    A liquid hydrogen target was used to study the nuclear fragmentation of beams of relativistic heavy ions, [sup 22]Ne to [sup 58]Ni, over an energy range 400 to 900 MeV/nucleon. The experiments were carried out at the Lawrence Berkeley Laboratory Bevalac HISS facility, using the charge-velocity-rigidity method to identify the charged fragments. Here we describe the general concept of the experiment and present total charge-changing cross sections obtained from 17 separate runs. These new measured cross sections display an energy dependence which follows semiempirical model predictions. The mass dependence of the cross sections behaves as predicted by optical models, but within the experimental energy range, the optical model parameters display a clear energy dependence. The isospin of the projectile nuclei also appears to be an important factor in the interaction process.

  1. Argument structure, argument content, and cognitive change in children's peer interaction.

    PubMed

    Leman, Patrick J

    2002-03-01

    In this experimental study, the author examined whether children's conversations play a role in the processes of influence between peers. Children, aged 8 to 10 years, who were at different levels of moral development participated. The conversations of 120 children were coded and analyzed in terms of argument structure and content. Results indicated that the differences in structure between boys' and girls' arguments are stylistic and do not influence conversation outcomes. The children's use of the structural features of conversations suggested that when a more advanced position is adopted, the arguments themselves appear to inspire cognitive change. However, when a less advanced position is adopted, the children who influence their peers invoke a particular and insistent conversational style. Results are discussed in terms of transmission and constructivist accounts of the role of social interaction in cognitive development.

  2. Marine reserves reestablish lost predatory interactions and cause community changes in rocky reefs.

    PubMed

    Guidetti, Paolo

    2006-06-01

    In the last decades, marine reserves have dramatically increased in number worldwide. Here I examined the potential of no-take marine reserves to reestablish lost predatory interactions and, in turn, cause community-wide changes in Mediterranean rocky reefs. Protected locations supported higher density and size of the most effective fish preying on sea urchins (the sea breams Diplodus sargus and D. vulgaris) than unprotected locations. Density of sea urchins (Paracentrotus lividus and Arbacia lixula) was lower at protected than at unprotected locations. Size structure of P. lividus was bimodal (a symptom of predation on medium-sized urchins) only at the protected locations. Coralline barrens were less extended at protected than at unprotected locations, whereas turf-forming and erect-branched algae showed an opposite pattern. Erect-unbranched and erect-calcified algae and conspicuous zoobenthic organisms did not show any pattern related to protection. Tethering experiments showed that predation impact on urchins was (1) higher at protected than at unprotected locations, (2) higher on P. lividus than on A. lixula, and (3) higher on medium-sized (2-3.5 cm test diameter) than large-sized (>3.5 cm) urchins. Sea urchins preyed on by fish in natural conditions were smaller at unprotected than at protected locations. The analysis of sea urchin remains found in Diplodus fish stomachs revealed that medium-sized P. lividus were the most frequently preyed upon urchins and that size range of consumed sea urchins expanded with increasing size of Diplodus fish. These results suggest that (1) depletion and size reduction of predatory fish caused by fishing alter patterns of predation on sea urchins, and that (2) fishing bans (e.g., within no-take marine reserves) may reestablish lost interactions among strongly interactive species in temperate rocky reefs with potential community-wide effects.

  3. Interaction of galactoglucomannan oligosaccharides with auxin involves changes in flavonoid accumulation.

    PubMed

    Kučerová, Danica; Kollárová, Karin; Vatehová, Zuzana; Lišková, Desana

    2016-01-01

    Galactoglucomannan oligosaccharides (GGMOs) are signalling molecules originating from plant cell walls influencing plant growth and defence reactions. The present study focused on their interaction with exogenous IAA (indole-3-acetic acid). GGMOs acted as auxin antagonists and diminished the effect of IAA on Arabidopsis primary root growth. Their effect is associated with meristem enlargement and prolongation of the elongation zone. Reduction of the elongation zone was a consequence of the IAA action, but IAA did not affect the size of the meristem. In the absence of auxin, GGMOs stimulated root growth, meristem enlargement and elongation zone prolongation. It is assumed that the effect of GGMOs in the absence of exogenous auxin resulted from their interaction with the endogenous form. In the presence of auxin transport inhibitor GGMOs did not affect root growth. It is known that flavonoids are auxin transport modulators but this is the first study suggesting the role of flavonoids in GGMOs' signalling. The accumulation of flavonoids in the meristem and elongation zone decreased in GGMOs' treatments in comparison with the control. These oligosaccharides also diminished the effect of IAA on the flavonoids' elevation. The fact that GGMOs decreased the accumulation of flavonoids, known to be modulators of auxin transport, and the loss of GGMOs' activity in the presence of the auxin transport inhibitor indicates that the root growth stimulation caused by GGMOs could be related to changes in auxin transport, possibly mediated by flavonoids.

  4. Can ozone depletion and global warming interact to produce rapid climate change?

    PubMed Central

    Hartmann, Dennis L.; Wallace, John M.; Limpasuvan, Varavut; Thompson, David W. J.; Holton, James R.

    2000-01-01

    The atmosphere displays modes of variability whose structures exhibit a strong longitudinally symmetric (annular) component that extends from the surface to the stratosphere in middle and high latitudes of both hemispheres. In the past 30 years, these modes have exhibited trends that seem larger than their natural background variability, and may be related to human influences on stratospheric ozone and/or atmospheric greenhouse gas concentrations. The pattern of climate trends during the past few decades is marked by rapid cooling and ozone depletion in the polar lower stratosphere of both hemispheres, coupled with an increasing strength of the wintertime westerly polar vortex and a poleward shift of the westerly wind belt at the earth's surface. Annular modes of variability are fundamentally a result of internal dynamical feedbacks within the climate system, and as such can show a large response to rather modest external forcing. The dynamics and thermodynamics of these modes are such that strong synergistic interactions between stratospheric ozone depletion and greenhouse warming are possible. These interactions may be responsible for the pronounced changes in tropospheric and stratospheric climate observed during the past few decades. If these trends continue, they could have important implications for the climate of the 21st century. PMID:10677475

  5. Probing Induced Structural Changes in Biomimetic Bacterial Cell Membrane Interactions with Divalent Cations

    SciTech Connect

    Holt, Allison M; Standaert, Robert F; Jubb, Aaron M; Katsaras, John; Johs, Alexander

    2017-01-01

    Biological membranes, formed primarily by the self-assembly of complex mixtures of phospholipids, provide a structured scaffold for compartmentalization and structural processes in living cells. The specific physical properties of phospholipid species present in a given membrane play a key role in mediating these processes. Phosphatidylethanolamine (PE), a zwitterionic lipid present in bacterial, yeast, and mammalian cell membranes, is exceptional. In addition to undergoing the standard lipid polymorphic transition between the gel and liquid-crystalline phase, it can also assume an unusual polymorphic state, the inverse hexagonal phase (HII). Divalent cations are among the factors that drive the formation of the HII phase, wherein the lipid molecules form stacked tubular structures by burying the hydrophilic head groups and exposing the hydrophobic tails to the bulk solvent. Most biological membranes contain a lipid species capable of forming the HII state suggesting that such lipid polymorphic structural states play an important role in structural biological processes such as membrane fusion. In this study, the interactions between Mg2+ and biomimetic bacterial cell membranes composed of PE and phosphatidylglycerol (PG) were probed using differential scanning calorimetry (DSC), small-angle x-ray scattering (SAXS), and fluorescence spectroscopy. The lipid phase transitions were examined at varying ratios of PE to PG and upon exposure to physiologically relevant concentrations of Mg2+. An understanding of these basic interactions enhances our understanding of membrane dynamics and how membrane-mediated structural changes may occur in vivo.

  6. Hydrophilic-hydrophobic polymer blend for modulation of crystalline changes and molecular interactions in solid dispersion.

    PubMed

    Van Ngo, Hai; Nguyen, Phuc Kien; Van Vo, Toi; Duan, Wei; Tran, Van-Thanh; Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh

    2016-11-20

    This research study aimed to develop a new strategy for using a polymer blend in solid dispersion (SD) for dissolution enhancement of poorly water-soluble drugs. SDs with different blends of hydrophilic-hydrophobic polymers (zein/hydroxypropyl methylcellulose - zein/HPMC) were prepared using spray drying to modulate the drug crystal and polymer-drug interactions in SDs. Physicochemical characterizations, including power X-ray diffraction and Fourier transform infrared spectroscopy, were performed to elucidate the roles of the blends in SDs. Although hydrophobic polymers played a key role in changing the model drug from a crystal to an amorphous state, the dissolution rate was limited due to the wetting property. Fortunately, the hydrophilic-hydrophobic blend not only reduced the drug crystallinity but also resulted in a hydrogen bonding interaction between the drugs and the polymer for a dissolution rate improvement. This work may contribute to a new generation of solid dispersion using a blend of hydrophilic-hydrophobic polymers for an effective dissolution enhancement of poorly water-soluble drugs.

  7. Plant defences limit herbivore population growth by changing predator-prey interactions.

    PubMed

    Kersch-Becker, Mônica F; Kessler, André; Thaler, Jennifer S

    2017-09-13

    Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates. On high-resistance plants, the predator community was less diverse and abundant, resulting in low predator consumption rate. Plant resistance only directly regulated aphid population growth on predator-excluded plants. When predators were present, plant resistance indirectly regulated herbivore population growth by changing the impact of predators on the herbivorous prey. A possible mechanism for the interaction between plant resistance and predation is that methyl salicylate, a herbivore-induced plant volatile attractive to predators, was more strongly induced in low-resistance plants. Increased plant resistance reduced predator attractant lures, preventing predators from locating their prey. Low-resistance plants may regulate herbivore populations via predators by providing reliable information on prey availability and increasing the effectiveness of predators. © 2017 The Author(s).

  8. Thermodynamic and structural changes associated with the interaction of a dirhamnolipid biosurfactant with bovine serum albumin.

    PubMed

    Sánchez, Marina; Aranda, Francisco J; Espuny, María J; Marqués, Ana; Teruel, José A; Manresa, Angeles; Ortiz, Antonio

    2008-06-01

    The interaction of a dirhamnolipid biosurfactant secreted by Pseudomonas aeruginosa with bovine serum albumin was studied by means of various physical techniques. Binding of the biosurfactant to bovine serum albumin was first characterized by isothermal titration calorimetry, showing that one or two molecules of dirhamnolipid, in the monomer state, bound to one molecule of the protein with high affinity. These results were confirmed by surface tension measurements in the absence and presence of bovine serum albumin. As seen by differential scanning calorimetry, dirhamnolipid shifted the temperature of the thermal unfolding of bovine serum albumin toward higher values, thus increasing the stability of the protein on heating. The impact of dirhamnolipid on the structure of the native protein was low, since most of the secondary structure remained unaffected upon interaction with the biosurfactant, as shown by FTIR spectroscopy. However, 2D correlation infrared spectroscopy indicated that the sequence of temperature-induced structural changes in native bovine serum albumin was modified by the presence of the biosurfactant. The consequences of these results in relation to possible applications of these dirhamnolipid biosurfactants for protein studies are discussed.

  9. Temperature and Soil Moisture Interactions in Quantifying Corn Yield Responses to Climate Change

    NASA Astrophysics Data System (ADS)

    Urban, D.; Lobell, D. B.

    2011-12-01

    Corn yields have been shown to decline nonlinearly under particularly hot growing season conditions, and quantifying potential yield variability under different climate change scenarios remains a key question for global food security. Evidence from both empirical studies and process-based crop models suggest that in addition to the nonlinear effects of temperature on yield, an interaction between soil moisture and temperature might also be present. Exceptionally dry soils exacerbate the negative effect of high temperatures on yields, while high moisture content can buffer against heat stress, thereby mitigating yield loss. Precipitation has so far been an important variable in modeling yields because it acts as a proxy for soil moisture, which is more directly correlated with a crop's productivity, and because more reliable historical data exist for precipitation than for soil moisture. Furthermore, temperature and precipitation interact in complex ways in determining soil moisture, and hydrologic models are therefore needed to estimate soil moisture levels if these are to be incorporated into a statistical crop model based on historical data. We combine such a statistical model of corn yields in the U.S., downscaled and bias corrected temperature and precipitation outputs of 15 different climate models, and soil moisture datasets to quantify the importance of soil moisture in predicting yields. We also analyze the sensitivity of these results to the uncertainties associated with soil moisture measurement error and climate model spread.

  10. Accelerating Convergence by Change of Basis for No-Core Configuration Interaction Calculations

    NASA Astrophysics Data System (ADS)

    Flores, Abraham R.; Caprio, Mark A.; Constantinou, Chrysovalantis

    2016-09-01

    Ab initio no-core configuration interaction (NCCI) calculations attempt to describe the structure of nuclei using realistic internucleon interactions. However, we can only describe these many-body systems within the limits of our computational power. As the number of nucleons increases, the calculations require more memory and processing power to reach convergence. Being able to accelerate convergence is crucial in extending the reach of NCCI calculations. Convergence can be obtained through a change of basis, for which we need to compute the overlaps of the radial functions for the new basis with those for the old basis. A large number of overlaps must be computed in order to accurately transform the many-body problem. Using alternative bases also requires the calculation of the one-body matrix elements for operators such as r2 and p2 in the new basis. We report a computer code that uses cubic spline interpolation to compute radial overlaps and radial integrals. This code facilitates using new bases to accelerate the convergence of NCCI calculations. Supported by the US NSF under Grant NSF-PHY05-52843 the US DOE under Grant DE-FG02-95ER-40934.

  11. Changes in secondary metabolic profiles of Microcystis aeruginosa strains in response to intraspecific interactions

    PubMed Central

    Briand, Enora; Bormans, Myriam; Gugger, Muriel; Dorrestein, Pieter C.; Gerwick, William H.

    2016-01-01

    Summary The cyanobacteria Microcystis proliferate in freshwater ecosystems and produce bioactive compounds including the harmful toxins microcystins (MC). These secondary metabolites play an important role in shaping community composition through biotic interactions although their role and mode of regulation are poorly understood. As natural cyanobacterial populations include producing and non-producing strains, we tested if the production of a range of peptides by coexisting cells could be regulated through intraspecific interactions. With an innovative co-culturing chamber together with advanced mass spectrometry (MS) techniques, we monitored the growth and compared the metabolic profiles of a MC-producing as well as two non-MC-producing Microcystis strains under mono- and co-culture conditions. In monocultures, these strains grew comparably; however, the non-MC-producing mutant produced higher concentrations of cyanopeptolins, aerucyclamides and aeruginosins than the wild type. Physiological responses to co-culturing were reflected in a quantitative change in the production of the major peptides. Using a MS/MS-based molecular networking approach, we identified new analogues of known classes of peptides as well as new compounds. This work provides new insights into the factors that regulate the production of MC and other secondary metabolites in cyanobacteria, and suggests interchangeable or complementary functions allowing bloom-forming cyanobacteria to efficiently colonize and dominate in fluctuating aquatic environments. PMID:25980449

  12. Effects of interactive global changes on soil N-fluxes in managed grassland

    NASA Astrophysics Data System (ADS)

    Deltedesco, Evi; Gerding, Merle; Naynar, Maria; Zechmeister-Boltenstern, Sophie; Gorfer, Markus; Bahn, Michael; Pötsch, Erich M.; Herndl, Markus; Keiblinger, Katharina M.

    2017-04-01

    Climate projections for the next decades expect a significant increase in air temperature, atmospheric CO2 concentrations and the frequency and intensity of extreme weather events. The impact of individual environmental factors (warming and elevated CO2) on biogeochemical cycles of ecosystems is moderately well studied. However, the quantification of the impact of these combined environmental changes on N-cycling functions of ecosystems and their biogeochemical feedbacks to the climate system is still fraught with uncertainty, both in terms of magnitude and the interactions. The aim of the present study is the evaluation of the response of warming, elevated CO2 concentrations and their combined effect on N-gas emissions, microbial community structure and function in a managed grassland site. This project is implemented in a complex field experiment in a mountain region (Raumberg-Gumpenstein) and consists of a factorial approach. Individual and combined effects of air temperature (ambient, warming of 1.5 and 3˚ C) and atmospheric CO2-concentrations (ambient, +150 and +300 ppm) on N-pools and N-gas emissions is examined and related to soil microbial processes. In order to achieve our objectives, soil was sampled in autumn 2016. Intact soil cores were incubated at constant temperature to analyze N2O, NOx and NH3 emissions in a lab incubation experiment. Simultaneously, soil samples were taken to examine different N pools (DON, Nmic, NH4+ and NO3-). In addition the abundance of ammonia oxidizing bacteria and archaea (amoA) together with expression levels of involved N-cycling target genes (nirK, nirS, norB and nosZ) was evaluated. Variation in N-fluxes was observed and will be discussed. This research provides new insights on microbial processes in response to factorial climate change effects, and will enable us to evaluate changes through non-linear and non-additive effects of multiple factors of climate change.

  13. Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors.

    PubMed

    Caldwell, Martyn M; Ballaré, Carlos L; Bornman, Janet F; Flint, Stephan D; Björn, Lars Olof; Teramura, Alan H; Kulandaivelu, G; Tevini, Manfred

    2003-01-01

    Based on research to date, we can state some expectations about terrestrial ecosystem response as several elements of global climate change develop in coming decades. Higher plant species will vary considerably in their response to elevated UV-B radiation, but the most common general effects are reductions in height of plants, decreased shoot mass if ozone reduction is severe, increased quantities of some phenolics in plant tissues and, perhaps, reductions in foliage area. In some cases, the common growth responses may be lessened by increasing CO2 concentrations. However, changes in chemistry of plant tissues will generally not be reversed by elevated CO2. Among other things, changes in plant tissue chemistry induced by enhanced UV-B may reduce consumption of plant tissues by insects and other herbivores, although occasionally consumption may be increased. Pathogen attack on plants may be increased or decreased as a consequence of elevated UV-B, in combination with other climatic changes. This may be affected both by alterations in plant chemistry and direct damage to some pathogens. Water limitation may decrease the sensitivity of some agricultural plants to UV-B, but for vegetation in other habitats, this may not apply. With global warming, the repair of some types of UV damage may be improved, but several other interactions between warming and enhanced UV-B may occur. For example, even though warming may lead to fewer killing frosts, with enhanced UV-B and elevated CO2 levels, some plant species may have increased sensitivity to frost damage.

  14. Accessible, interactive visualizations of climate change data from local to national scale

    NASA Astrophysics Data System (ADS)

    Battaile, B.; Rao, M.

    2016-12-01

    Weather information has wide appeal across a range of scales, from the local scale (e.g., historical highs and lows for a city) to the national or global (e.g., national weather maps). The public discussion of climate change can benefit from building on this appeal, through presentation of the abundantly available historical weather records. Visualizations of temporal patterns in these records at large scales can show climate trends already in progress; the appeal and relevance of these visualizations can be enhanced by linking them to detailed information on local weather history. We are developing a web site with interactive maps of weather trends for the contiguous US, based on GHCN (Global Historical Climatology Network) data. There are over 6000 GHCN stations in the contiguous US with records spanning at least 40 years, and 2000 with records over a century. With this rich data set we enable users to visualize large scale trends and also to explore the underlying local data and its connection to the larger context. We provide visualizations for a wide variety of trends, using metrics such as days above 95F, annual number of record-setting days, peak temperatures, and number of days annually above historical mean. Users can query points on the map to get a graphical analysis of the trend at local stations, thus linking local observations with national trends. We hope that interactive maps such as these, which allow exploration of local trends within the context of national or global trends, and which are based on local observations, will encourage informed engagement with climate change issues.

  15. Multitrophic interactions mediate the effects of climate change on herbivore abundance.

    PubMed

    Robinson, Ayla; Inouye, David W; Ogilvie, Jane E; Mooney, Emily H

    2017-09-11

    Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.

  16. Effect of hydrothermal processing on carrot carotenoids changes and interactions with dietary fiber.

    PubMed

    Borowska, Julitta; Kowalska, Marta; Czaplicki, Sylwester; Zadernowski, Ryszard

    2003-02-01

    The aim of the studies was to determine the effect of different methods of heat treatment on carotenoids changes and their interactions with insoluble and soluble dietary fiber. Three industrial varieties of carrot--Simba, Caropak and Fayette constituted the experimental material. Carrot cubes were subjected to heat treatment by putting in water with or without citric acid, or in a convection-type steam furnace. The total content of alpha- and beta-carotene was determined in all kinds of pureed carrots. Its amount bounded with insoluble dietary fiber and pectins was also determined. Changes in soluble and insoluble fractions of dietary fiber during hydrothermal treatment were also determined. It was found that the content of trans alpha- and beta-carotene in carrots decreased significantly (p < 0.05) after heat treatment, compared with the control sample. The loss observed during heat treatment in water was higher (up to 50%) than in the case of a convection-type steam furnace. The highest decrease in the content of insoluble fraction of dietary fiber and the highest increase in soluble fraction were observed after treatment with the use of steam. An analysis of interactions between carotenoids and dietary fiber fractions after hydrothermal processing shows their stronger affinity to forming bonds with pectins than with insoluble fiber. It was also found that the effect of heat treatment parameters was significant--the highest (by six times) increase in the content of beta-carotene bounded with pectins was noted in pureed carrots processed in a convection-type steam furnace.

  17. Species-environment interactions changed by introduced herbivores in an oceanic high-mountain ecosystem.

    PubMed

    Seguí, Jaume; López-Darias, Marta; Pérez, Antonio J; Nogales, Manuel; Traveset, Anna

    2017-01-05

    Summit areas of oceanic islands constitute some of the most isolated ecosystems on earth, highly vulnerable to climate change and introduced species. Within the unique high-elevation communities of Tenerife (Canary Islands), reproductive success and thus long-term survival of species may depend on environmental suitability as well as threat by introduced herbivores. By experimentally modifying the endemic and vulnerable species Viola cheiranthifolia along its entire altitudinal occurrence range, we studied plant performance, autofertility, pollen limitation and visitation rate and the interactive effect of grazing by non-native rabbits on them. We assessed the grazing effects by recording (1) the proportion of consumed plants and flowers along the gradient, (2) comparing fitness traits of herbivore-excluded plants along the gradient, and (3) comparing fitness traits, autofertility and pollen limitation between plants excluded from herbivores with unexcluded plants at the same locality. Our results showed that V. cheiranthifolia performance is mainly affected by inter-annual and microhabitat variability along the gradient, especially in the lowest edge. Despite the increasingly adverse environmental conditions, the plant showed no pollen limitation with elevation, which is attributed to the increase in autofertility levels (≥ 50% of reproductive output) and decrease in competition for pollinators at higher elevations. Plant fitness is, however, extremely reduced owing to the presence of non-native rabbits in the area (consuming more than 75% of the individuals in some localities), which in turn change plant trait-environment interactions along the gradient. Taken together, these findings indicate that the elevational variation found on plant performance results from the combined action of non-native rabbits with the microhabitat variability, exerting intricate ecological influences that threaten the survival of this violet species. Published by Oxford University

  18. Impacts of Aerosol-Cloud Interactions on Climate Change in East Asia

    NASA Astrophysics Data System (ADS)

    Shim, S.; Jung, Y.; Baek, H.; Cho, C.

    2013-12-01

    Climate impact by anthropogenic drivers gives high concerns in climate change simulation. IPCC AR4 emphasized the role of aerosol on climate besides the GHGs due to its negative significant radiative forcing. We find that climate feedback of anthropogenic aerosols over East Asia through direct and indirect (aerosol-cloud interaction) radiative process using HadGEM2-AO developed by the UK Met office. Due to the industrial revolution and population growth, total anthropogenic aerosol emissions have grown dramatically over East Asia; sulfate aerosol is the dominant component accounting for about 50% of total aerosol optical depth at 550nm (Figure 1). An increased amount of aerosols might increase the CCN number concentration and lead to more, but smaller, cloud droplets for fixed liquid water content. This increases the albedo of the cloud, resulting in enhance reflection and a cooling effect. And smaller drops require longer growth times to reach size at which they easily fall as precipitation. This effect called the cloud lifetime effect may enhance the cloud cover (Figure 2), with a persistent positive correlation between cloud cover and aerosol optical depth. Particularly, aerosols have an influence on the amount of cloud cover (SC, ST, and NS) through the interaction with precipitation efficiency of low level clouds. As a result of perturbations of East Asia aerosols from preindustrial to present day, a net radiative flux at the top of atmosphere is estimated to be -4 W/m2, with a regional mean surface cooling of 1.2 K. More detailed analysis will be shown at the conference. Fig. 1. (a) Total AOD distributions (b) Changes in decadal mean AOD over East Asia. Fig 2. Cloud cover distributions classified by ISCCP cloud types.

  19. Interactive effects of ozone depletion and climate change on biogeochemical cycles.

    PubMed

    Zepp, Richard G; Callaghan, Terry V; Erickson, David J

    2003-01-01

    The effects of ozone depiction on global biogeochemical cycles, via increased UV-B radiation at the Earth's surface, have continued to be documented over the past 4 years. In this report we also document various effects of UV-B that interact with global climate change because the detailed interactions between ozone depletion and climate change are central to the prediction and evaluation of future Earth environmental conditions. There is increasing evidence that elevated UV-B has significant effects on the terrestrial biosphere with important implications for the cycling of carbon, nitrogen and other elements. Increased UV has been shown to induce carbon monoxide production from dead plant matter in terrestrial ecosystems, nitrogen oxide production from Arctic and Antarctic snowpacks, and halogenated substances from several terrestrial ecosystems. New studies on UV effects on the decomposition of dead leaf material confirm that these effects are complex and species-specific. Decomposition can be retarded, accelerated or remain unchanged. It has been difficult to relate effects of UV on decomposition rates to leaf litter chemistry, as this is very variable. However, new evidence shows UV effects on some fungi, bacterial communities and soil fauna that could play roles in decomposition and nutrient cycling. An important new result is that not only is nitrogen cycling in soils perturbed significantly by increased UV-B, but that these effects persist for over a decade. As nitrogen cycling is temperature dependent, this finding clearly links the impacts of ozone depletion to the ability of plants to use nitrogen in a warming global environment. There are many other potential interactions between UV and climate change impacts on terrestrial biogeochemical cycles that remain to be quantified. There is also new evidence that UV-B strongly influences aquatic carbon, nitrogen, sulfur, and metals cycling that affect a wide range of life processes. UV-B accelerates the

  20. The role of ocean-atmosphere interaction in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Nour-Eddine, Omrani; Keenlyside Noel, S.; Richard, Greatbatch

    2015-04-01

    Here, we present an analysis of North Atlantic ocean-atmosphere interaction in a warming climate, based on a long-term coupled general circulation model experiment forced by the RCP 8.5 (Representative Concentration Pathways 8.5) scenario. In addition to globally strongly increased SSTs as a direct response to the radiative forcing, the model run shows a distinct change of the local sea surface temperature (SST hereafter) pattern in the Gulf Stream region. This includes changes of the SST gradients in the region of the Gulf Stream SST front, likely as a response of the wind-driven part of the oceanic surface circulation. As a consequence of a massive slow-down of the Atlantic Meridional Overturning Circulation the northern North Atlantic furthermore shows a much weaker warming than the other oceans. The feedback of these changes on the atmosphere was studied in a set of sensitivity experiments based on the SST climatology of the coupled runs. The set consists of four runs: a control experiment based on the historical run, a run using the full SST from coupled RCP 8.5 run and two runs, where where we deconstructed the SST signal into a homogenous mean warming part and a local SST pattern change. In the region of the precipitation maximum in the historical run the future scenario shows an increase of absolute SSTs, but a a significant decrease in local precipitation. We show evidence that the local response in that region is connected to the (with respect to the historical run) weakened SST gradients rather than to the absolute SST. Consistently, the model shows enhanced precipitation north of this region, where the SST gradients are enhanced. The warming causes a decreased low-level convergence and upward motion in the region with reduced SST gradient. However, the signal restricts to the low and mid-troposphere and does not reach the higher model levels. There is little evidence for a large-scale response to the SST pattern changes in the Gulf Stream region

  1. Changes in end-to-end interactions of tropomyosin affect mouse cardiac muscle dynamics.

    PubMed

    Gaffin, Robert D; Gokulan, Kuppan; Sacchettini, James C; Hewett, Timothy E; Klevitsky, Raisa; Robbins, Jeffrey; Sarin, Vandana; Zawieja, David C; Meininger, Gerald A; Muthuchamy, Mariappan

    2006-08-01

    The ends of striated muscle tropomyosin (TM) are integral for thin filament cooperativity, determining the cooperative unit size and regulating the affinity of TM for actin. We hypothesized that altering the alpha-TM carboxy terminal overlap end to the beta-TM counterpart would affect the amino-terminal association, which would alter the end-to-end interactions of TM molecules in the thin filament regulatory strand and affect the mechanisms of cardiac muscle contraction. To test this hypothesis, we generated transgenic (TG) mouse lines that express a mutant form of alpha-TM in which the first 275 residues are from alpha-TM and the last nine amino acids are from beta-TM (alpha-TM9aaDeltabeta). Molecular analyses show that endogenous alpha-TM mRNA and protein are nearly completely replaced with alpha-TM9aaDeltabeta. Working heart preparations data show that the rates of contraction and relaxation are reduced in alpha-TM9aaDeltabeta hearts. Left ventricular pressure and time to peak pressure are also reduced (-12% and -13%, respectively). The ratio of maximum to minimum first derivatives of change in left ventricular systolic pressure with respect to time (ratio of +dP/dt to -dP/dt, respectively) is increased, but tau is not changed significantly. Force-intracellular calcium concentration ([Ca2+]i) measurements from intact papillary fibers demonstrate that alpha-TM9aaDeltabeta TG fibers produce less force per given [Ca2+]i compared with nontransgenic fibers. Taken together, the data demonstrate that the rate of contraction is primarily affected in TM TG hearts. Protein docking studies show that in the mutant molecule, the overall carbon backbone is perturbed about 1.5 A, indicating that end-to-end interactions are altered. These results demonstrate that the localized flexibility present in the coiled-coil structures of TM isoforms is different, and that plays an important role in interacting with neighboring thin filament regulatory proteins and with differentially

  2. How Continuous Monitoring Changes the Interaction of Patients with a Mobile Telemedicine System

    PubMed Central

    Martínez-Sarriegui, Iñaki; García-Sáez, Gema; Rigla, Mercedes; Brugués, Eulalia; de Leiva, Alberto; Gómez, Enrique J.; Hernando, M. Elena

    2011-01-01

    Background The combination of telemedicine systems integrating mobile technologies with the use of continuous glucose monitors improves patients’ glycemic control but demands a higher interaction with information technology tools that must be assessed. In this article, we analyze patients’ behavior from the use-of-the-system point of view, identifying how continuous monitoring may change the interaction of patients with the mobile telemedicine system. Methods Patients’ behavior were evaluated in a clinical experiment consisting of a 2-month crossover randomized study with 10 type 1 diabetes patients. During the entire experiment, patients used the DIABTel telemedicine system, and during the intervention phase, they wore a continuous glucose monitor. Throughout the experiment, all user actions were automatically registered. This article analyzes the occurrence of events and the behavior patterns in blood glucose (BG) self-monitoring and insulin adjustments. A subjective evaluation was also performed based on the answers of the patients to a questionnaire delivered at the end of the study. Results The number of sessions established with the mobile Smart Assistant was considerably higher during the intervention period than in the control period (29.0 versus 18.8, p < .05), and it was also higher than the number of Web sessions (29.0 versus 22.2, p < .01). The number of daily boluses was higher during the intervention period than in the control period (5.27 versus 4.40, p < .01). The number of daily BG measurements was also higher during the intervention period (4.68 versus 4.05, p < .05) and, in percentage, patients increased the BG measurements not associated to meals while decreasing the percentage of preprandial measurements. The subjective evaluation shows that patients would recommend the use of DIABTel in routine care. Conclusions The use of a continuous glucose monitor changes the way patients manage their diabetes, as observed in the increased number of

  3. Changes in hyphal morphology and activity of phenoloxidases during interactions between selected ectomycorrhizal fungi and two species of Trichoderma.

    PubMed

    Mucha, Joanna

    2011-06-01

    Patterns of phenoloxidase activity can be used to characterize fungi of different life styles, and changes in phenoloxidase synthesis were suspected to play a role in the interaction between ectomycorrhizal and two species of Trichoderma. Confrontation between the ectomycorrhizal fungi Amanita muscaria and Laccaria laccata with species of Trichoderma resulted in induction of laccase synthesis, and the laccase enzyme was bound to mycelia of ectomycorrhizal fungi. Tyrosinase release was noted only during interaction of L. laccata strains with Trichoderma harzianum and T. virens. Ectomycorrhizal fungi, especially strains of Suillus bovinus and S. luteus, inhibited growth of Trichoderma species and caused morphological changes in its colonies in the zone of interaction. In contrast, hyphal changes occurred less often in the ectomycorrhizal fungi tested. Species of Suillus are suggested to present a different mechanism in their interaction with other fungi than A. muscaria and L. laccata.

  4. Conformational changes induced in Hoxb-8/Pbx-1 heterodimers in solution and upon interaction with specific DNA.

    PubMed Central

    Sánchez, M; Jennings, P A; Murre, C

    1997-01-01

    Two classes of homeodomain proteins, Hox and Pbx gene products, have the ability to bind cooperatively to DNA. In Hox proteins, the homeodomain and a highly conserved hexapeptide are required for cooperative DNA binding. In Pbx, the homeodomain and a region immediately C terminal of the homeodomain are essential for cooperativity. Using fluorescence and circular dichroism spectroscopy, we demonstrated that Hox and Pbx proteins interact in the absence of DNA. The interaction in solution is accompanied by conformational changes. Furthermore, upon interaction with specific DNA, additional conformational changes are induced in the Pbx-1/Hoxb-8 heterodimer. These data indicate that prior to DNA binding, Hox-Pbx interaction in solution is accompanied by structural alterations. We propose that these conformational changes modulate the DNA binding properties of these proteins, ultimately resulting in cooperative DNA binding. PMID:9271414

  5. Dust aerosol-radiation-clouds-precipitation interactions over the Mediterranean

    NASA Astrophysics Data System (ADS)

    Valentini, Chiara; Baró, Rocío; Palacios-Peña, Laura; José Gómez-Navarro, Juan; María López-Romero, José; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2017-04-01

    Dust intrusions from African desert regions have an impact on the whole Mediterranean Basin and its climate. They cause an anomalous increase of aerosol load in the tropospheric column and have the potential to change the energy fluxes in the Earth-atmosphere system by modifying cloud microphysical properties, such as the cloud liquid water path (CLWP), cloud fraction (CFRAC), cloud top temperature (CTT), droplet number concentration (CDNC), or cloud particle size distribution (CPSD). Through aerosol-radiation-cloud interactions, dust can modify convective and large-scale precipitation under certain conditions, thus affecting the hydrological cycle. In this work, desert dust outbreaks occurred in October2010 over the whole Mediterranean Basin has been studied with the objective of quantifying the influence of including dust interactions in a regional on-line coupled climate/chemistry model on several variables: convective precipitation, CLWP, CFRAC and CDNC. The focus is set on characterizing the impacts of aerosol indirect effects on the radiative budget. A set of three WRF-Chem simulations differing only in the inclusion (or not) of aerosol-radiation (ARI) and the aerosol-cloud interactions (ACI) has been carried out. The comparison between simulation results show a satisfying agreement when compared with satellite observations, and supports the skills of the model to estimate the African dust contribution over the Mediterranean. Differences between the ARI+ACI and the base case (not including aerosol-radiation-cloud interactions) suggest variations around +/- 15 mm/day in convective precipitation for several events. For instance, considering ARI+ACI leads to a generalized reduction of the cloud liquid water path (-50 kg/kg over the areas affected by the dust aerosols) and modified patterns of clouds (differences between -65% and +35% in the CFRAC). Also, the low estimated significance of the changes observed between the diverse simulations over certain areas

  6. Entertainment-Education and Social Change: An Analysis of Parasocial Interaction, Social Learning, Collective Efficacy, and Paradoxical Communication.

    ERIC Educational Resources Information Center

    Papa, Michael J.; Singhal, Arvind; Law, Sweety; Pant, Saumya; Sood, Suruchi; Rogers, Everett M.; Shefner-Rogers, Corinne L.

    2000-01-01

    Explores processes of social change initiated by an entertainment-education radio soap opera by studying its effects in an observational case study in one rural village in India. Investigates the paradoxes, contradictions, and audience members' struggles in the process of media-stimulated change, a process involving parasocial interaction, peer…

  7. Entertainment-Education and Social Change: An Analysis of Parasocial Interaction, Social Learning, Collective Efficacy, and Paradoxical Communication.

    ERIC Educational Resources Information Center

    Papa, Michael J.; Singhal, Arvind; Law, Sweety; Pant, Saumya; Sood, Suruchi; Rogers, Everett M.; Shefner-Rogers, Corinne L.

    2000-01-01

    Explores processes of social change initiated by an entertainment-education radio soap opera by studying its effects in an observational case study in one rural village in India. Investigates the paradoxes, contradictions, and audience members' struggles in the process of media-stimulated change, a process involving parasocial interaction, peer…

  8. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2007.

    PubMed

    2008-01-01

    This year the Montreal Protocol celebrates its 20th Anniversary. In September 1987, 24 countries signed the Montreal Protocol on Substances that Deplete the Ozone Layer. Today 191 countries have signed and have met strict commitments on phasing out of ozone depleting substances with the result that a 95% reduction of these substances has been achieved. The Montreal Protocol has also contributed to slowing the rate of global climate change, since most of the ozone depleting substances are also effective greenhouse gases. Even though much has been achieved, the future of the stratospheric ozone layer relies on full compliance of the Montreal Protocol by all countries for the remaining substances, including methyl bromide, as well as strict monitoring of potential risks from the production of substitute chemicals. Also the ozone depleting substances existing in banks and equipment need special attention to prevent their release to the stratosphere. Since many of the ozone depleting substances already in the atmosphere are long-lived, recovery cannot be immediate and present projections estimate a return to pre-1980 levels by 2050 to 2075. It has also been predicted that the interactions of the effects of the ozone layer and that of other climate change factors will become increasingly important.

  9. Groundwater-surface water interactions in the hyporheic zone under climate change scenarios.

    PubMed

    Zhou, Shangbo; Yuan, Xingzhong; Peng, Shuchan; Yue, Junsheng; Wang, Xiaofeng; Liu, Hong; Williams, D Dudley

    2014-12-01

    Slight changes in climate, such as the rise of temperature or alterations of precipitation and evaporation, will dramatically influence nearly all freshwater and climate-related hydrological behavior on a global scale. The hyporheic zone (HZ), where groundwater (GW) and surface waters (SW) interact, is characterized by permeable sediments, low flow velocities, and gradients of physical, chemical, and biological characteristics along the exchange flows. Hyporheic metabolism, that is biogeochemical reactions within the HZ as well as various processes that exchange substances and energy with adjoining systems, is correlated with hyporheic organisms, habitats, and the organic matter (OM) supplied from GW and SW, which will inevitably be influenced by climate-related variations. The characteristics of the HZ in acting as a transition zone and in filtering and purifying exchanged water will be lost, resulting in a weakening of the self-purification capacity of natural water bodies. Thus, as human disturbances intensify in the future, GW and SW pollution will become a greater challenge for mankind than ever before. Biogeochemical processes in the HZ may favor the release of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4) under climate change scenarios. Future water resource management should consider the integrity of aquatic systems as a whole, including the HZ, rather than independently focusing on SW and GW.

  10. The Future Interaction of Science and Innovation Policy for Climate Change and National Security

    SciTech Connect

    Malone, Elizabeth L.; Cowell, Andrew J.; Riensche, Roderick M.

    2009-10-01

    Recent efforts to characterize the interactions among climate change and national security issues raise challenges of relating disparate bodies of scientific (both physical and social) knowledge as well as determining the role of innovation in meeting these challenges. Technological innovation has been called for to combat climate change, increase food production, and discover new ways of generating energy, and proposals for increased investments in R&D and technology deployment are to be met with everywhere. However, such policy decisions in one domain have impacts in other domains—often unexpected, often negative, but often capable of being addressed in planning stages. The technological tools described here allow users to embody the knowledge of different domains, to keep that knowledge up to date, and to define relationships, via both a model and an analytic game, such that policymakers can foresee problems and plan to forestall or mitigate them. Capturing and dynamically updating knowledge is the accomplishment of the Knowledge Encapsulation Framework. A systems dynamic model, created in STELLA®, simulates the relationships among different domains, so that relevant knowledge is applied to a seemingly independent issue. An analytic game provides a method to use that knowledge as it might be used in real-world settings.

  11. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies

    NASA Astrophysics Data System (ADS)

    Oliver, Tom H.; Marshall, Harry H.; Morecroft, Mike D.; Brereton, Tom; Prudhomme, Christel; Huntingford, Chris

    2015-10-01

    Climate change is expected to increase the frequency of some climatic extremes. These may have drastic impacts on biodiversity, particularly if meteorological thresholds are crossed, leading to population collapses. Should this occur repeatedly, populations may be unable to recover, resulting in local extinctions. Comprehensive time series data on butterflies in Great Britain provide a rare opportunity to quantify population responses to both past severe drought and the interaction with habitat area and fragmentation. Here, we combine this knowledge with future projections from multiple climate models, for different Representative Concentration Pathways (RCPs), and for simultaneous modelled responses to different landscape characteristics. Under RCP8.5, which is associated with `business as usual’ emissions, widespread drought-sensitive butterfly population extinctions could occur as early as 2050. However, by managing landscapes and particularly reducing habitat fragmentation, the probability of persistence until mid-century improves from around zero to between 6 and 42% (95% confidence interval). Achieving persistence with a greater than 50% chance and right through to 2100 is possible only under both low climate change (RCP2.6) and semi-natural habitat restoration. Our data show that, for these drought-sensitive butterflies, persistence is achieved more effectively by restoring semi-natural landscapes to reduce fragmentation, rather than simply focusing on increasing habitat area, but this will only be successful in combination with substantial emission reductions.

  12. Climate change impact modelling needs to include cross-sectoral interactions

    NASA Astrophysics Data System (ADS)

    Harrison, Paula A.; Dunford, Robert W.; Holman, Ian P.; Rounsevell, Mark D. A.

    2016-09-01

    Climate change impact assessments often apply models of individual sectors such as agriculture, forestry and water use without considering interactions between these sectors. This is likely to lead to misrepresentation of impacts, and consequently to poor decisions about climate adaptation. However, no published research assesses the differences between impacts simulated by single-sector and integrated models. Here we compare 14 indicators derived from a set of impact models run within single-sector and integrated frameworks across a range of climate and socio-economic scenarios in Europe. We show that single-sector studies misrepresent the spatial pattern, direction and magnitude of most impacts because they omit the complex interdependencies within human and environmental systems. The discrepancies are particularly pronounced for indicators such as food production and water exploitation, which are highly influenced by other sectors through changes in demand, land suitability and resource competition. Furthermore, the discrepancies are greater under different socio-economic scenarios than different climate scenarios, and at the sub-regional rather than Europe-wide scale.

  13. Interactive effects of global and regional change on a coastal ecosystem

    NASA Astrophysics Data System (ADS)

    Reise, Karsten; van Beusekom, Justus E. E.

    2008-03-01

    Shallow waters and lowland meet at the same level in the Wadden Sea, but are separated by walls of coastal defense. What are the prospects of this coastal ecosystem in a warmer world? We focus on tidal waters and inshore sedimentary bottoms, expect nutrient supply from land to decline and species introductions, temperature and sea level to rise. The effects are interrelated and will have an increasing likelihood of abrupt and irreversible developments. The biotic interactions are hardly predictable but we anticipate the following changes to be more likely than others: blooms of phytoplankton will be weak mainly because of increasing pelagic and benthic grazing pressure, both facilitated by warming. Possibly birds feeding on mollusks will encounter decreasing resource availability while fish-eaters benefit. Extensive reefs of Pacific oysters could facilitate aquatic macrophytes. Sea level rise and concomitant hydrodynamics above tidal flats favor well-anchored suspension feeders as well as burrowing fauna adapted to dynamic permeable sand. With high shares of immigrants from overseas and the south, species richness will increase; yet the ecosystem stability may become lower. We suggest that for the next decades invasions of introduced species followed by warming and declining nutrient supply will be the most pressing factor on the changes in the Wadden Sea ecosystem, and the effects of sea level rise to be the key issue on the scale of the whole century and beyond.

  14. Interactive effects of reactive nitrogen and climate change on US water resources

    NASA Astrophysics Data System (ADS)

    Baron, J.; Bernhardt, E. S.; Finlay, J. C.; Chan, F.; Nolan, B. T.; Howarth, B.; Hall, E.; Boyer, E. W.

    2011-12-01

    Water resources and aquatic ecosystems are increasingly strained by withdrawals for agriculture and drinking water supply, nitrogen and other pollutant inputs, and climate change. We describe current and projected effects of the interactions of reactive nitrogen (N) and climate change on water resources of the United States. As perturbations to the N cycle intensify in a warmer less predictable climate, interactions will negatively affect the services we expect of our water resources. There are also feedbacks to the climate system itself through the production of greenhouse gases. We conclude: 1. Nitrogen concentrations will increase in the nation's waters from increased N loading and higher N mineralization rates. N export from terrestrial to aquatic ecosystems exhibits a high sensitivity to climate variations. 2. Consequences range from eutrophication and acidification, which reduce natural biodiversity and harm economically valuable fisheries, to adverse impacts on human health. 3. Extreme flood events have the potential to transport N rapidly long distances downstream from its source. 4. A recent national assessment found 67% of streams derived more than 37% of their total nitrate load from base flow often derived from groundwater. Long residence times for groundwater nitrate below agricultural fields may cause benefits from proper N management practices to take decades to be realized under current and future climates. 5. Streams, wetlands, rivers, lakes, estuaries and continental shelves are hotspots for denitrification. Maintenance of N removal capacity thus a critical component of eutrophication management under changing climate and land use conditions. 6. The amount of N inputs from fertilizer and manure use, human population, and deposition is tightly coupled with hydrology to influence the rates and proportion of N emitted to the atmosphere as N2O. About 20% of global N2O emissions come from groundwater, lakes, rivers, and estuaries; stream and wetland

  15. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    DOE PAGES

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; ...

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allowmore » co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.« less

  16. Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead?

    SciTech Connect

    Classen, Aimée T.; Sundqvist, Maja K.; Henning, Jeremiah A.; Newman, Gregory S.; Moore, Jessica A. M.; Cregger, Melissa A.; Moorhead, Leigh C.; Patterson, Courtney M.

    2015-08-07

    Global change is altering species distributions and thus interactions among organisms. Organisms live in concert with thousands of other species, some beneficial, some pathogenic, some which have little to no effect in complex communities. Since natural communities are composed of organisms with very different life history traits and dispersal ability it is unlikely they will all respond to climatic change in a similar way. Disjuncts in plant-pollinator and plant-herbivore interactions under global change have been relatively well described, but plant-soil microorganism and soil microbe-microbe relationships have received less attention. Since soil microorganisms regulate nutrient transformations, provide plants with nutrients, allow co-existence among neighbors, and control plant populations, changes in soil microorganism-plant interactions could have significant ramifications for plant community composition and ecosystem function. Finally, in this paper we explore how climatic change affects soil microbes and soil microbe-plant interactions directly and indirectly, discuss what we see as emerging and exciting questions and areas for future research, and discuss what ramifications changes in these interactions may have on the composition and function of ecosystems.

  17. Impacts of aerosol-cloud interactions on past and future changes in tropospheric composition

    SciTech Connect

    Unger, N.; Menon, S.; Shindell, D. T.; Koch, D. M.

    2009-02-02

    The development of effective emissions control policies that are beneficial to both climate and air quality requires a detailed understanding of all the feedbacks in the atmospheric composition and climate system. We perform sensitivity studies with a global atmospheric composition-climate model to assess the impact of aerosols on tropospheric chemistry through their modification on clouds, aerosol-cloud interactions (ACI). The model includes coupling between both tropospheric gas-phase and aerosol chemistry and aerosols and liquid-phase clouds. We investigate past impacts from preindustrial (PI) to present day (PD) and future impacts from PD to 2050 (for the moderate IPCC A1B scenario) that embrace a wide spectrum of precursor emission changes and consequential ACI. The aerosol indirect effect (AIE) is estimated to be -2.0 Wm{sup -2} for PD-PI and -0.6 Wm{sup -2} for 2050-PD, at the high end of current estimates. Inclusion of ACI substantially impacts changes in global mean methane lifetime across both time periods, enhancing the past and future increases by 10% and 30%, respectively. In regions where pollution emissions increase, inclusion of ACI leads to 20% enhancements in in-cloud sulfate production and {approx}10% enhancements in sulfate wet deposition that is displaced away from the immediate source regions. The enhanced in-cloud sulfate formation leads to larger increases in surface sulfate across polluted regions ({approx}10-30%). Nitric acid wet deposition is dampened by 15-20% across the industrialized regions due to ACI allowing additional re-release of reactive nitrogen that contributes to 1-2 ppbv increases in surface ozone in outflow regions. Our model findings indicate that ACI must be considered in studies of methane trends and projections of future changes to particulate matter air quality.

  18. Influences on the drinking of heavier drinkers: Interactional realities in seeking to 'change drinking cultures'.

    PubMed

    Room, Robin; Callinan, Sarah; Dietze, Paul

    2015-06-29

    'Changing drinking culture' is a prominent goal in the Australian state of Victoria's current alcohol strategy-seeking a shift so that 'excessive drinking isn't seen as the norm'. As a social activity, there is a strong collective aspect to drinking and associated behaviour: customs within the drinking group and at the level of social worlds of drinking operate both to increase and to control drinking patterns and associated behaviours. The paper considers how risky drinkers and those in social worlds of heavy drinking experience others' expectations about drinking. Using Victorian population survey responses (n = 2092 adults who had consumed alcohol in previous year) to identify those in a social world of group drinking, and a subcategory who are also risky drinkers, the paper explores pressures on those in these categories both to drink more and to drink less, whether from family members, from work colleagues, or from friends. Those who are both risky and social drinkers are much more likely than other drinkers to report pressures to drink more from friends and workmates, and even from family members, although they more often report pressures from family members to drink less than to drink more. Efforts to change a drinking culture, it is argued, must take account of the collective nature of drinking and of the interplay of influences at interpersonal and subcultural levels if they are to be effective in reducing rates of heavy drinking and alcohol problems. [Room R, Callinan S, Dietze P. Influences on the drinking of heavier drinkers: Interactional realities in seeking to 'change drinking cultures'. Drug Alcohol Rev 2015]. © 2015 Australasian Professional Society on Alcohol and other Drugs.

  19. Climate change threatens endangered plant species by stronger and interacting water-related stresses

    NASA Astrophysics Data System (ADS)

    Bartholomeus, Ruud P.; Witte, Jan-Philip M.; van Bodegom, Peter M.; van Dam, Jos C.; Aerts, Rien

    2011-12-01

    Atmospheric CO2-concentration, temperature and rainfall variability are all expected to increase in the near future. The resulting increased dynamics of soil moisture contents, together with increased plant physiological demands for both oxygen and water, will lead to an increased occurrence of wet and dry extremes of plant stresses, i.e., of oxygen and drought stress, respectively, alone and in interaction. The use of indirect environmental variables in previous studies and a focus on individual stresses rather than their combined effects has hampered understanding of the causal impact of climate change on plant species composition through changes in abiotic site conditions. Here, we use process-based simulations of oxygen and drought stresses in conjunction with a downscaled national version of IPCC scenarios in order to show that these stresses will increase (on average by ˜20% at sites where both stresses occur) in a warmer and more variable future (2050) climate. These two types of stresses will increasingly coincide, i.e. both stresses will occur more often (but not at the same time) within a single vegetation plot. We further show that this increased coincidence of water-related stresses will negatively affect the future occurrence of currently endangered plant species (causing a reduction of ˜16%), while apparently no such decrease will occur among common species. Individual stresses did not appear to affect the occurrence of endangered plant species. Consequently, our study demonstrates that species that are already threatened under the current climate will suffer most from the effects of climate change.

  20. Ecosystem-groundwater interactions under changing land uses: Linking water, salts, and carbon across central Argentina

    NASA Astrophysics Data System (ADS)

    Jobbagy, E. G.; Nosetto, M. D.; Santoni, C. S.; Jackson, R. B.

    2007-05-01

    onset of recharge, as evidenced by vadose zones getting wetter and leached of atmospheric chloride. Cropping may cause water table raises leading to a two-way coupling of ecosystems and groundwater in the future, as it has been documented for similar settings in Australia and the Sahel. In the Pampas land use change interacts with groundwater consumption leading to higher carbon uptake (humid and subhumid grasslands) and salt accumulation (subhumid grasslands). In the Espinal (semiarid forest) land use change currently involves a one-way effect on groundwater recharge that may switch to a reciprocal connection if regional water table raises occur. Neglecting the role of groundwater in flat sedimentary plains can obscure our understanding of carbon and salt cycling and curtail our attempts to sustain soil and water resources under changing land uses.

  1. Direct and interaction-mediated effects of environmental changes on peatland bryophytes.

    PubMed

    Bu, Zhao-Jun; Rydin, Håkan; Chen, Xu

    2011-06-01

    Ecosystem processes of northern peatlands are largely governed by the vitality and species composition in the bryophyte layer, and may be affected by global warming and eutrophication. In a factorial experiment in northeast China, we tested the effects of raised levels of nitrogen (0, 1 and 2 g m(-2) year(-1)), phosphorus (0, 0.1 and 0.2 g m(-2) year(-1)) and temperature (ambient and +3°C) on Polytrichum strictum, Sphagnum magellanicum and S. palustre, to see if the effects could be altered by inter-specific interactions. In all species, growth declined with nitrogen addition and increased with phosphorus addition, but only P. strictum responded to raised temperature with increased production of side-shoots (branching). In Sphagnum, growth and branching changed in the same direction, but in Polytrichum, the two responses were uncoupled: with nitrogen addition there was a decrease in growth (smaller than in Sphagnum) but an increase in branching; with phosphorus addition growth increased but branching was unaffected. There were no two-way interactions among the P, N and T treatments. With increasing temperature, our results indicate that S. palustre should decrease relative to P. strictum (Polytrichum increased its branching and had a negative neighbor effect on S. palustre). With a slight increase in phosphorus availability, the increase in length growth and production of side-shoots in P. strictum and S. magellanicum may give them a competitive superiority over S. palustre. The negative response in Sphagnum to nitrogen could favor the expansion of vascular plants, but P. strictum may endure thanks to its increased branching.

  2. Simulating interactive effects of symbiotic nitrogen fixation, carbon dioxide elevation, and climatic change on legume growth.

    PubMed

    Yu, Mei; Gao, Q; Shaffer, M J

    2002-01-01

    The underlying mechanisms of interaction between the symbiotic nitrogen-fixation process and main physiological processes, such as assimilation, nutrient allocation, and structural growth, as well as effects of nitrogen fixation on plant responses to global change, are important and still open to more investigation. Appropriate models have not been adequately developed. A dynamic ecophysiological model was developed in this study for a legume plant [Glycine max (L.) Merr.] growing in northern China. The model synthesized symbiotic nitrogen fixation and the main physiological processes under variable atmospheric CO2 concentration and climatic conditions, and emphasized the interactive effects of these processes on seasonal biomass dynamics of the plant. Experimental measurements of ecophysiological quantities obtained in a CO2 enrichment experiment on soybean plants, were used to parameterize and validate the model. The results indicated that the model simulated the experiments with reasonable accuracy. The R2 values between simulations and observations are 0.94, 0.95, and 0.86 for total biomass, green biomass, and nodule biomass, respectively. The simulations for various combinations of atmospheric CO2 concentration, precipitation, and temperature, with or without nitrogen fixation, showed that increasing atmospheric CO2 concentration, precipitation, and efficiency of nitrogen fixation all have positive effects on biomass accumulation. On the other hand, an increased temperature induced lower rates of biomass accumulation under semi-arid conditions. In general, factors with positive effects on plant growth tended to promote each other in the simulation range, except the relationship between CO2 concentration and climatic factors. Because of the enhanced water use efficiency with a higher CO2 concentration, more significant effects of CO2 concentration were associated with a worse (dryer and warmer in this study) climate.

  3. Distinct Transcriptional Changes and Epithelial-stromal Interactions are Altered in Early Stage Colon Cancer Development

    PubMed Central

    Mo, Allen; Jackson, Stephen; Varma, Kamini; Carpino, Alan; Giardina, Charles; Devers, Thomas J.; Rosenberg, Daniel W.

    2016-01-01

    While the progression of mutated colonic cells is dependent upon interactions between the initiated epithelium and surrounding stroma, the nature of these interactions is poorly understood. Here the development of an ultra-sensitive laser-capture microdissection (LCM)/RNA-seq approach for studying the epithelial and stromal compartments of aberrant crypt foci (ACF) is described. ACF are the earliest identifiable pre-neoplastic lesion found within the human colon and are detected using high-definition endoscopy with contrast dye-spray. The current analysis focused on the epithelium of ACF with somatic mutations to either KRAS, BRAF, or APC, with expression patterns compared to normal mucosa from each patient. By comparing gene expression patterns between groups, an increase in a number of pro-inflammatory NF-κB target genes were identified that were specific to ACF epithelium, including TIMP1, RELA and RELB. Distinct transcriptional changes associated with each somatic mutation were observed and a subset display a BRAFV600E-mediated senescence-associated transcriptome characterized by increased expression of CDKN2A. Finally, LCM-captured ACF-associated stroma was found to be transcriptionally distinct from normal stroma, with an up-regulation of genes related to immune cell infiltration and fibroblast activation. Immunofluorescence confirmed increased CD3+ T cells within the stromal microenvironment of ACF and an abundance of activated fibroblasts. Collectively, these results provide new insight into the cellular interplay that occurs at the earliest stages of colonic neoplasia, highlighting the important role of NF-kB, activated stromal fibroblasts and lymphocyte infiltration. Implications Fibroblasts and immune cells in the stromal microenvironment play an important role during the earliest stages of colon carcinogenesis. PMID:27353028

  4. Human-water interactions in Myanmar's Dry Zone under climate change

    NASA Astrophysics Data System (ADS)

    Taft, Linda; Evers, Mariele

    2016-04-01

    Understanding human-water interactions is particularly essential in countries where the economy and the people's well-being and income strongly depend on the availability and quality of sufficient water resources. Such a strong dependency on water is existent in Myanmar's Dry Zone located in the central Ayeyarwady River basin. In this area, rainfall is associated with high heterogeneity across space and time. Precipitation amounts in the Dry Zone (500-1000 mm annually) are generally less compared to other regions in Myanmar (up to 4000-6000 mm). Following the Global Climate Risk Index, Myanmar is one of the countries which were most affected by extreme weather events between 1994 and 2013. Severe drought periods e.g in the years 1997-1998, 2010 and 2014 led to crop failures and water shortage in the Dry Zone, where more than 14 mio people predominantly practice agriculture. Due to the high variability of rainfalls, farming is only possible with irrigation, mainly conducted by canal systems from the rivers and groundwater withdrawal. Myanmar is recently facing big challenges which result from comprehensive political and economic reforms since 2011. These may also include increasing water use by new industrial zones and urbanization. However, not only policy and economy modify the need for water. Variability of river runoff and changes in seasonality are expected as a result of climate change. The overarching goal of the study is to understand and increase the knowledge on human-water-climate interactions and to elaborate possible future scenarios for Myanmar's Dry Zone. It is not well studied yet how current and future climate change and increasing human impact will influence the country's abundant water resources including groundwater. Therefore, the first step of this study is to identify the major drivers within the central Ayeyarwady River basin. We are in the process of collecting and analyzing data sets and information including hydrologic and eco

  5. Changes in the sexual behavior and testosterone levels of male rats in response to daily interactions with estrus females

    PubMed Central

    Shulman, Leanne M.; Spritzer, Mark D.

    2014-01-01

    Male rat sexual behavior has been intensively studied over the past 100 years, but few studies have examined how sexual behavior changes over the course of several days of interactions. In this experiment, adult male rats (n = 12) were given daily access to estrus females for 30 min per day for 15 consecutive days and control males did not interact with females. Ovariectomized females were induced into estrus with hormonal injections, and males interacted with a different female each day. The amount of sexual activity (mounts, intromissions, and ejaculations) was found to cycle with a period of approximately 4 days in most male rats. Additionally, blood was collected every other day following sexual interactions to assess serum testosterone levels. Testosterone was found to peak on the first day of interaction and then fell back to near the level of control rats that did not interact with females. Following the initial peak, testosterone concentrations fluctuated less in males exposed to females than in controls. Sexual activity was not found to predict testosterone concentration. We conclude that when male rats have daily sexual interactions, sexual behavior tends to show cyclic changes and testosterone is significantly elevated only on the first day of interactions. PMID:24813700

  6. Heat-capacity changes in host-guest complexation by Coulomb interactions in aqueous solution.

    PubMed

    Kano, Koji; Ishida, Yoshiyuki; Kitagawa, Kohei; Yasuda, Mayuko; Watanabe, Maki

    2007-10-01

    Heat-capacity changes (deltaC(p)0) were determined for the complexation of 1-alkanecarboxylates with protonated hexakis(6-amino-6-deoxy)-alpha-cyclodextrin (per-NH3(+)-alpha-CD) and heptakis(6-amino-6-deoxy)-beta-cyclodextrin (per-NH3(+)-beta-CD). DeltaC(p)0 decreased with an increase in the binding constant (K) and plateaued at K = 4000 M(-1). The complexes of 1-pentanoate, 1-hexanoate, and 1-heptanoate with per-NH3(+)-alpha-CD are classified as the host-guest system in which the size of the guest fits the CD cavity well. In such a system, van der Waals interaction is the major force for complexation, leading to a negative deltaH0 value. Simultaneously, the water molecules around the hydrophobic alkyl chain of the guest and inside the CD cavity are released to the aqueous bulk phase, leading to a positive deltaS0 value. The negative deltaC(p)0 value in such complexation is ascribed to dehydration of the hydrophobic alkyl chain of the guest and extrusion of the water molecules inside the CD cavity. Meanwhile, the complexes that show positive deltaC(p)0 values are characterized by complexation in which the guest molecules are significantly smaller than the CD cavities. In such a case, the complexation is endothermic and driven by the entropy gain. When the guest is much smaller than the CD cavity, the main binding force should be Coulomb interaction. To form an ionic bond, dehydration of the charged groups must occur. This process is endothermic and leads to positive deltaH0 and deltaS0 values. As the top of the CD cavity is capped by a small but hydrophobic alkyl chain, the water molecules inside the CD cavity may form the iceberg structure. This process must be accompanied by a positive deltaC(p)0 value. Hence, the complexation of a small guest with the CD with a large cavity through Coulomb interactions shows positive and large deltaC(p)0 values. These conclusions were applied to the electrostatic binding of proteins with an anionic ligand.

  7. Climate change may affect fish through an interaction of parental and juvenile environments

    NASA Astrophysics Data System (ADS)

    Donelson, J. M.; Munday, P. L.; McCormick, M. I.

    2012-09-01

    Changes to tropical sea surface temperature and plankton communities are expected to occur over the next 100 years due to climate change. There is a limited understanding of how these environmental changes are likely to impact coral reef fishes, especially in terms of population replenishment through the quality of progeny produced. The present study investigated the effect that elevated sea water temperature and changes to food availability may have on the production of offspring by the reef fish Acanthochromis polyacanthus (Pomacentridae), as well as the performance of progeny in environments of varying food availability. An orthogonal design of three water temperatures and two food availabilities (high and low ration) was used, with water temperatures being the current-day average for the collection location (28.5 °C), +1.5 °C (30.0 °C) and +3.0 °C (31.5 °C), representing likely temperatures by 2100. Generally, an increase in the water temperature for adults resulted in a reduction in the size, weight and amount of yolk possessed by newly hatched offspring. Offspring whose parents were maintained under elevated temperature (30.0 °C high ration) had lower survival than offspring produced by parents at the current-day temperature (28.5 °C high ration) at 15 days post-hatching, but only when juveniles were reared under conditions of low food availability. In contrast, by 30 days post-hatching, the growth and condition of these offspring produced by parents held under elevated temperature (30.0 °C high ration) were the best of all treatment groups in all levels of juvenile food availability. This result illustrates the potential for initial parental effects to be modified by compensatory growth early in life (within 1 month) and that parental effects are not necessarily long lasting. These findings suggest that the performance of juvenile reef fish in future ocean conditions may not only depend on initial parental effects, but the interaction between their

  8. Classroom Demonstration and Interactive Model of Sea-Level Control on Lateral and Vertical Facies Changes

    NASA Astrophysics Data System (ADS)

    Smith, C.; Pound, K. S.; Jones, M. H.; Schmitt, L.; Campbell, K.

    2005-12-01

    Students often have difficulty understanding and visualizing the role that relative sea-level change plays in controlling vertical and lateral facies changes; they also struggle with explanations of regional facies patterns and changes as sea-level dependant. This interactive, dynamic, in-class model has been developed to build their understanding both of this topic, and of the nature of predictive scientific models. The model can be used as a follow-up to field observations, or to pre-teach concepts. The model assumes a land-ocean transect that is divided into 5 sedimentary settings. Each setting in the land-ocean transect is associated with sediment grain size that decreases basinward; the most basinward component is carbonate. In the model, seven 10-cm diameter see-through tubes are set up to represent `cores' spread along the land-ocean transect. Brightly-colored plastic beads are used to represent sediment deposited in each of the sedimentary settings. At the start, the position of the shoreline (sea level) is fixed between the fluvial (tube 2) and beach (tube 3) sediments. Students then deposit beads that represent their sediment type in the each tube. Other students control the sea-level marker, which can be raised or lowered, and students with the sediment (beads) move shoreward or basinward accordingly, and deposit their sediments (beads) in the appropriate tube. This produces a simple visual record (tubes with layers of distinctly colored beads) that show the idealized sedimentary consequences of relative sea-level change. After large-scale patterns in facies changes have been demonstrated and discussed, students can manipulate variables such as supply and rate. Students can fill a basin using a sequence of events they determine, and other student groups can interpret their cores. The learning and approach of this model can be extended to include real sediment (gravel, sand, silt, mud) deposited in cardboard tubes that are then opened and treated as cores

  9. Terrestrial ecosystems, increased solar ultraviolet radiation, and interactions with other climate change factors.

    PubMed

    Caldwell, M M; Bornman, J F; Ballaré, C L; Flint, S D; Kulandaivelu, G

    2007-03-01

    , such as diminished growth, acclimation responses of plants to UV-B radiation and interactions of plants with consumer organisms such as insects and plant pathogens. The response to UV-B radiation involves both the initial stimulus by solar radiation and transmission of signals within the plants. Resulting changes in gene expression induced by these signals may have elements in common with those elicited by other environmental factors, and generate overlapping functional (including acclimation) responses. Concurrent responses of terrestrial systems to the combination of enhanced UV-B radiation and other global change factors (increased temperature, CO2, available nitrogen and altered precipitation) are less well understood. Studies of individual plant responses to combinations of factors indicate that plant growth can be augmented by higher CO2 levels, yet many of the effects of UV-B radiation are usually not ameliorated by the elevated CO2. UV-B radiation often increases both plant frost tolerance and survival under extreme high temperature conditions. Conversely, extreme temperatures sometimes influence the UV-B radiation sensitivity of plants directly. Plants that endure water deficit stress effectively are also likely to be tolerant of high UV-B flux. Biologically available nitrogen is exceeding historical levels in many regions due to human activities. Studies show that plants well supplied with nitrogen are generally more sensitive to UV-B radiation. Technical issues concerning the use of biological spectral weighting functions (BSWFs) have been further elucidated. The BSWFs, which are multiplication factors assigned to different wavelengths giving an indication of their relative biological effectiveness, are critical to the proper conduct and interpretation of experiments in which organisms are exposed to UV radiation, both in the field and in controlled environment facilities. The characteristics of BSWFs vary considerably among different plant processes, such

  10. The Arctic as a model for anticipating, preventing, and mitigating climate change impacts on host-parasite interactions.

    PubMed

    Kutz, Susan J; Jenkins, Emily J; Veitch, Alasdair M; Ducrocq, Julie; Polley, Lydden; Elkin, Brett; Lair, Stephane

    2009-08-07

    Climate change is influencing the structure and function of natural ecosystems around the world, including host-parasite interactions and disease emergence. Understanding the influence of climate change on infectious disease at temperate and tropical latitudes can be challenging because of numerous complicating biological, social, and political factors. Arctic and Subarctic regions may be particularly good models for unraveling the impacts of climate change on parasite ecology because they are relatively simple systems with low biological diversity and few other complicating anthropogenic factors. We examine some changing dynamics of host-parasite interactions at high latitudes and use these to illustrate a framework for approaching understanding, preventing, and mitigating climate change impacts on infectious disease, including zoonoses, in wildlife.

  11. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior.

    PubMed

    Pearson, Dean E

    2009-03-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa), has fundamentally altered the architecture of native grassland vegetation. Here, I use long-term monitoring, observational studies, and field experiments to document how changes in vegetation architecture have affected native web spider populations and predation rates. Native spiders that use vegetation as web substrates were collectively 38 times more abundant in C. maculosa-invaded grasslands than in uninvaded grasslands. This increase in spider abundance was accompanied by a large shift in web spider community structure, driven primarily by the strong response of Dictyna spiders to C. maculosa invasion. Dictyna densities were 46-74 times higher in C. maculosa-invaded than native grasslands, a pattern that persisted over 6 years of monitoring. C. maculosa also altered Dictyna web building behavior and foraging success. Dictyna webs on C. maculosa were 2.9-4.0 times larger and generated 2.0-2.3 times higher total prey captures than webs on Achillea millefolium, their primary native substrate. Dictyna webs on C. maculosa also captured 4.2 times more large prey items, which are crucial for reproduction. As a result, Dictyna were nearly twice as likely to reproduce on C. maculosa substrates compared to native substrates. The overall outcome of C. maculosa invasion and its transformative effects on vegetation architecture on Dictyna density and web building behavior were to increase Dictyna predation on invertebrate prey >/=89 fold. These results indicate that invasive plants that change the architecture of native vegetation can substantially impact native food webs via nontraditional plant --> predator --> consumer

  12. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.

    PubMed

    Santonja, Mathieu; Minguez, Laetitia; Gessner, Mark O; Sperfeld, Erik

    2016-12-29

    Increasing inputs of colored dissolved organic matter (cDOM), which is mainly composed of humic substances (HS), are a widespread phenomenon of environmental change in aquatic ecosystems. This process of brownification alters the chemical conditions of the environment, but knowledge is lacking of whether elevated cDOM and HS levels interfere with the ability of prey species to evade chemical predator cues and thus affect predator-prey interactions. We assessed the effects of acute and prolonged exposure to HS at increasing concentrations on the ability of freshwater zooplankton to avoid predator threat (imposed by fish kairomones) in laboratory trials with two calanoid copepods (Eudiaptomus gracilis and Heterocope appendiculata). Populations of both species clearly avoided water containing fish kairomones. However, the avoidance behavior weakened with increasing HS concentration, suggesting that HS affected the ability of copepods to perceive or respond to the predator cue. The behavioral responses of the two copepod populations to increasing HS concentrations differed, with H. appendiculata being more sensitive than E. gracilis in an acute exposure scenario, whereas E. gracilis responded more strongly after prolonged exposure. Both showed similar physiological impairment after prolonged exposure, as revealed by their oxidative balance as a stress indicator, but mortality increased more strongly for H. appendiculata when the HS concentration increased. These results indicate that reduced predator threat evasion in the presence of cDOM could make copepods more susceptible to predation in future, with variation in the strength of responses among populations leading to changes in zooplankton communities and lake food-web structure.

  13. BISPHENOL A EXPOSURE DURING EARLY DEVELOPMENT INDUCES SEX-SPECIFIC CHANGES IN ADULT ZEBRAFISH SOCIAL INTERACTIONS

    PubMed Central

    Weber, Daniel N.; Hoffmann, Raymond G.; Hoke, Elizabeth S.; Tanguay, Robert L.

    2014-01-01

    Developmental bisphenol A (BPA) exposure is associated with adverse behavioral effects, although underlying modes of action remain unclear. Because BPA is a suspected xenoestrogen, the objective was to identify sex-based changes in adult zebrafish social behavior developmentally exposed to BPA (0.0, 0.1 or 1 μM) or one of two control compounds (0.1μM 17β-estradiol [E2], and 0.1 μM GSK4716, a synthetic estrogen-related receptor γ ligand). A test chamber was divided lengthwise so each arena held one fish unable to detect the presence of the other fish. A mirror was inserted at one end of each arena; baseline activity levels were determined without mirror. Arenas were divided into 3, computer-generated zones to represent different distances from mirror image. Circadian rhythm patterns were evaluated at 1–3 (= AM) and 5–8 (= PM) hr postprandial. Adult zebrafish were placed into arenas and monitored by digital camera for 5 min. Total distance traveled, % time spent at mirror image, and number of attacks on mirror image were quantified. E2, GSK4716, and all BPA treatments dampened male activity and altered male circadian activity patterns; there was no marked effect on female activity. BPA induced non-monotonic effects (response curve changes direction within range of concentrations examined) on male % time at mirror only in AM. All treatments produced increased % time at the mirror during PM. Male attacks on the mirror were reduced by BPA exposure only during AM. There were sex-specific effects of developmental BPA on social interactions and time-of-day of observation affected results. PMID:25424546

  14. Locating the sources for cross-modal interactions and decision making during judging the visual-affected auditory intensity change.

    PubMed

    Li, Xuan; Ge, Xiaoli; Sun, Junfeng; Tong, Shanbao

    2011-01-01

    Audiovisual interaction has been one of the most important topics in cognitive neurosciences. Visual stimuli could significantly impact the auditory perception, and vice versa. Nevertheless, how much the change in visual stimuli would influence the perception of auditory change remains to be investigated. In this paper, we designed an audiovisual experiment in which subjects were required to judge whether there is a change in the intensities of two sounds with 150 ms interval, while there are two simultaneously presented size-changed visual stimuli. Behavioral results demonstrated that incongruent audiovisual change could result in the illusory perception of the change in sound intensity. For the correctly judged trials, source analysis showed two characteristic windows post the first auditory stimulus, i.e., (i) the 160-200 ms window including the auditory P200 and visual N100 wave, which was related to audiovisual interaction and working memory of the first stimulus with localized sources in insula and agranular retrolimbic area; and (ii) the 300-400 ms window for P300 with sources in premotor cortex and caudate nucleus, which were related to later audiovisual interaction, change discrimination and working memory. These preliminary results implied two stages in the audiovisual change perception task, with the involvement of insula, agranular retrolimbic, premotor cortex and caudate nucleus.

  15. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions?

    PubMed

    Davies, Thomas W; Bennie, Jonathan; Inger, Richard; de Ibarra, Natalie Hempel; Gaston, Kevin J

    2013-05-01

    Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment.

  16. Environmental effects of ozone depletion and its interactions with climate change: progress report, 2008.

    PubMed

    Andrady, Anthony; Aucamp, Pieter J; Bais, Alkiviadis; Ballaré, Carlos L; Björn, Lars Olof; Bornman, Janet F; Caldwell, Martyn; Cullen, Anthony P; Erickson, David J; de Gruijl, Frank R; Häder, Donat-P; Ilyas, Mohammad; Kulandaivelu, G; Kumar, H D; Longstreth, Janice; McKenzie, Richard L; Norval, Mary; Paul, Nigel; Redhwi, Halim Hamid; Smith, Raymond C; Solomon, Keith R; Sulzberger, Barbara; Takizawa, Yukio; Tang, Xiaoyan; Teramura, Alan H; Torikai, Ayako; van der Leun, Jan C; Wilson, Stephen R; Worrest, Robert C; Zepp, Richard G

    2009-01-01

    After the enthusiastic celebration of the 20th Anniversary of the Montreal Protocol on Substances that Deplete the Ozone Layer in 2007, the work for the protection of the ozone layer continues. The Environmental Effects Assessment Panel is one of the three expert panels within the Montreal Protocol. This EEAP deals with the increase of the UV irradiance on the Earth's surface and its effects on human health, animals, plants, biogeochemistry, air quality and materials. For the past few years, interactions of ozone depletion with climate change have also been considered. It has become clear that the environmental problems will be long-lasting. In spite of the fact that the worldwide production of ozone depleting chemicals has already been reduced by 95%, the environmental disturbances are expected to persist for about the next half a century, even if the protective work is actively continued, and completed. The latest full report was published in Photochem. Photobiol. Sci., 2007, 6, 201-332, and the last progress report in Photochem. Photobiol. Sci., 2008, 7, 15-27. The next full report on environmental effects is scheduled for the year 2010. The present progress report 2008 is one of the short interim reports, appearing annually.

  17. Monitoring the petroleum bitumen characteristics changes during their interaction with the polymers

    NASA Astrophysics Data System (ADS)

    Belyaev, P. S.; Mishchenko, S. V.; Belyaev, V. P.; Frolov, V. A.

    2017-08-01

    The subject of the study is the characteristics (penetration, softening temperature, ductility and elasticity) of a road binder based on petroleum bitumen. The work purpose is to monitor the changes in the characteristics of petroleum bitumen when it interacting with polymers: thermoplastic elastomer, low-density polyethylene, including the adhesive additive presence. To carry out the research a special laboratory facility was designed and manufactured with two blade mixers providing intensive turbulent mixing and the possibility to effect on the transition process of combining the components in a polymer-bitumen binder. To construct a mathematical model of the polymer-bitumen binder characteristics dependence from the composition, methods of statistical experiments planning were used. The possibility of the expensive thermoplastic elastomers replacement with polyethylene is established while maintaining acceptable polymer-bitumen binder quality parameters. The obtained results are proposed for use in road construction. They allow to reduce the roads construction cost with solving the problem of recycling long-term waste packaging from polyethylene.

  18. Plant genotypes affect aboveground and belowground herbivore interactions by changing chemical defense.

    PubMed

    Li, Xiaoqiong; Guo, Wenfeng; Siemann, Evan; Wen, Yuanguang; Huang, Wei; Ding, Jianqing

    2016-12-01

    Spatially separated aboveground (AG) and belowground (BG) herbivores are closely linked through shared host plants, and both patterns of AG-BG interactions and plant responses may vary among plant genotypes. We subjected invasive (USA) and native (China) genotypes of tallow tree (Triadica sebifera) to herbivory by the AG specialist leaf-rolling weevil Heterapoderopsis bicallosicollis and/or the root-feeding larvae of flea beetle Bikasha collaris. We measured leaf damage and leaves rolled by weevils, quantified beetle survival, and analyzed flavonoid and tannin concentrations in leaves and roots. AG and BG herbivores formed negative feedbacks on both native and invasive genotypes. Leaf damage by weevils and the number of beetle larvae emerging as adults were higher on invasive genotypes. Beetles reduced weevil damage and weevils reduced beetle larval emergence more strongly for invasive genotypes. Invasive genotypes had lower leaf and root tannins than native genotypes. BG beetles decreased leaf tannins of native genotypes but increased root tannins of invasive genotypes. AG herbivory increased root flavonoids of invasive genotypes while BG herbivory decreased leaf flavonoids. Invasive genotypes had lower AG and BG herbivore resistance, and negative AG-BG herbivore feedbacks were much stronger for invasive genotypes. Lower tannin concentrations explained overall better AG and BG herbivore performances on invasive genotypes. However, changes in tannins and flavonoids affected AG and BG herbivores differently. These results suggest that divergent selection on chemical production in invasive plants may be critical in regulating herbivore performances and novel AG and BG herbivore communities in new environments.

  19. Artificial light pollution: are shifting spectral signatures changing the balance of species interactions?

    PubMed Central

    Davies, Thomas W; Bennie, Jonathan; Inger, Richard; Ibarra, Natalie Hempel; Gaston, Kevin J

    2013-01-01

    Technological developments in municipal lighting are altering the spectral characteristics of artificially lit habitats. Little is yet known of the biological consequences of such changes, although a variety of animal behaviours are dependent on detecting the spectral signature of light reflected from objects. Using previously published wavelengths of peak visual pigment absorbance, we compared how four alternative street lamp technologies affect the visual abilities of 213 species of arachnid, insect, bird, reptile and mammal by producing different wavelength ranges of light to which they are visually sensitive. The proportion of the visually detectable region of the light spectrum emitted by each lamp was compared to provide an indication of how different technologies are likely to facilitate visually guided behaviours such as detecting objects in the environment. Compared to narrow spectrum lamps, broad spectrum technologies enable animals to detect objects that reflect light over more of the spectrum to which they are sensitive and, importantly, create greater disparities in this ability between major taxonomic groups. The introduction of broad spectrum street lamps could therefore alter the balance of species interactions in the artificially lit environment. PMID:23505141

  20. Prevalence of Temperature Dependent Heat Capacity Changes in Protein-DNA Interactions

    SciTech Connect

    Liu, C.-C.; Richard, A.J.; Kausiki, D.; LiCata, V.J.

    2009-05-19

    A large, negative {Delta}Cp of DNA binding is a thermodynamic property of the majority of sequence-specific DNA-protein interactions, and a common, but not universal property of non-sequence-specific DNA binding. In a recent study of the binding of Taq polymerase to DNA, we showed that both the full-length polymerase and its 'Klentaq' large fragment bind to primed-template DNA with significant negative heat capacities. Herein, we have extended this analysis by analyzing this data for temperature-variable heat capacity effects ({Delta}{Delta}Cp), and have similarly analyzed an additional 47 protein-DNA binding pairs from the scientific literature. Over half of the systems examined can be easily fit to a function that includes a {Delta}{Delta}Cp parameter. Of these, 90% display negative {Delta}{Delta}Cp values, with the result that the {Delta}Cp of DNA binding will become more negative with rising temperature. The results of this collective analysis have potentially significant consequences for current quantitative theories relating {Delta}Cp values to changes in accessible surface area, which rely on the assumption of temperature invariance of the {Delta}Cp of binding. Solution structural data for Klentaq polymerase demonstrate that the observed heat capacity effects are not the result of a coupled folding event.

  1. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor

    PubMed Central

    Drakulic, Srdja; Wang, Liping; Cuéllar, Jorge; Guo, Qing; Velázquez, Gilberto; Martín-Benito, Jaime; Sousa, Rui; Valpuesta, José M.

    2014-01-01

    Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand. PMID:25183523

  2. Yeast mitochondrial RNAP conformational changes are regulated by interactions with the mitochondrial transcription factor.

    PubMed

    Drakulic, Srdja; Wang, Liping; Cuéllar, Jorge; Guo, Qing; Velázquez, Gilberto; Martín-Benito, Jaime; Sousa, Rui; Valpuesta, José M

    2014-01-01

    Mitochondrial RNA polymerases (MtRNAPs) are members of the single-subunit RNAP family, the most well-characterized member being the RNAP from T7 bacteriophage. MtRNAPs are, however, functionally distinct in that they depend on one or more transcription factors to recognize and open the promoter and initiate transcription, while the phage RNAPs are capable of performing these tasks alone. Since the transcriptional mechanisms that are conserved in phage and mitochondrial RNAPs have been so effectively characterized in the phage enzymes, outstanding structure-mechanism questions concern those aspects that are distinct in the MtRNAPs, particularly the role of the mitochondrial transcription factor(s). To address these questions we have used both negative staining and cryo-EM to generate three-dimensional reconstructions of yeast MtRNAP initiation complexes with and without the mitochondrial transcription factor (MTF1), and of the elongation complex. Together with biochemical experiments, these data indicate that MTF1 uses multiple mechanisms to drive promoter opening, and that its interactions with the MtRNAP regulate the conformational changes undergone by the latter enzyme as it traverses the template strand.

  3. Changes in chemical interactions and protein conformation during heat-induced wheat gluten gel formation.

    PubMed

    Wang, Kai-Qiang; Luo, Shui-Zhong; Zhong, Xi-Yang; Cai, Jing; Jiang, Shao-Tong; Zheng, Zhi

    2017-01-01

    In order to elucidate the heat-induced wheat gluten gel formation mechanism, changes in chemical interactions and protein conformation were investigated during gelation. The contribution of ionic and hydrogen bonds were found to decrease from 0.746 and 4.133g/L to 0.397 and 2.733g/L, respectively, as the temperature increased from 25 to 90°C. Moreover, the free SH content remarkably decreased from 37.91 to 19.79μmol/g during gelation. Ultraviolet absorption spectra and intrinsic fluorescence spectra suggested that wheat gluten unfolded during the heating process. In addition, wheat gluten gels treated at 80 and 90°C exhibited a "steric hindrance" effect, which can be attributed to the formation of aggregates. Fourier transform infrared spectra suggested that the random coil content increased at low temperatures (40 and 50°C), whereas the content of intermolecular β-sheets due to protein aggregation increased from 38.10% to 44.28% when the gelation temperature was 90°C.

  4. Land-atmosphere interactions and climate change: Recent results and new perspectives (Invited)

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Davin, E. L.; Greve, P.; Gudmundsson, L.; Guillod, B.; Hirschi, M.; Mittelbach, H.; Mueller, B.; Mystakidis, S.; Orlowsky, B.; Orth, R.; Wilhelm, M.

    2013-12-01

    simulations. Manuscript in preparation. Seneviratne, S.I., D. Lüthi, M. Litschi, and C. Schär, 2006: Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209. Seneviratne, S.I., T. Corti, E.L. Davin, M. Hirschi, E.B. Jaeger, I. Lehner, B. Orlowsky, and A.J. Teuling, 2010: Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Science Reviews, 99, 3-4, 125-161, doi:10.1016/j.earscirev.2010.02.004. Seneviratne, S.I., M. Wilhelm, T. Stanelle, B.J.J.M. van den Hurk, S. Hagemann, A. Berg, F. Cheruy, M.E. Higgins, A. Meier, V. Brovkin, M. Claussen, A. Ducharne, J.-L. Dufresne, K.L. Findell, J. Ghattas, D.M. Lawrence, S. Malyshev, M. Rumukainen, and B. Smith, 2013: Impact of soil moisture-climate feedbacks on CMIP5 projections: First results from the GLACE-CMIP5 experiment. Submitted to Geophys. Res. Lett.

  5. The Effectiveness of Parent-Child Interaction Therapy with Depressive Mothers: The Changing Relationship as the Agent of Individual Change

    ERIC Educational Resources Information Center

    Timmer, Susan G.; Ho, Lareina K. L.; Urquiza, Anthony J.; Zebell, Nancy M.; Fernandez y Garcia, Erik; Boys, Deanna

    2011-01-01

    This study uses a multi-method approach to investigate the effectiveness of Parent-Child Interaction Therapy (PCIT) in reducing children's behavior problems when parents report clinical levels of depressive symptoms. Participants were 132 children, 2-7 years of age, and their biological mothers, who either reported low (N = 78) or clinical levels…

  6. The Effectiveness of Parent-Child Interaction Therapy with Depressive Mothers: The Changing Relationship as the Agent of Individual Change

    ERIC Educational Resources Information Center

    Timmer, Susan G.; Ho, Lareina K. L.; Urquiza, Anthony J.; Zebell, Nancy M.; Fernandez y Garcia, Erik; Boys, Deanna

    2011-01-01

    This study uses a multi-method approach to investigate the effectiveness of Parent-Child Interaction Therapy (PCIT) in reducing children's behavior problems when parents report clinical levels of depressive symptoms. Participants were 132 children, 2-7 years of age, and their biological mothers, who either reported low (N = 78) or clinical levels…

  7. Fibromyalgia interacts with age to change the brain☆☆☆

    PubMed Central

    Ceko, Marta; Bushnell, M. Catherine; Fitzcharles, Mary-Ann; Schweinhardt, Petra

    2013-01-01

    Although brain plasticity in the form of gray matter increases and decreases has been observed in chronic pain, factors determining the patterns of directionality are largely unknown. Here we tested the hypothesis that fibromyalgia interacts with age to produce distinct patterns of gray matter differences, specifically increases in younger and decreases in older patients, when compared to age-matched healthy controls. The relative contribution of pain duration was also investigated. Regional gray matter was measured in younger (n = 14, mean age 43, range 29–49) and older (n = 14; mean age 55, range 51–60) female fibromyalgia patients and matched controls using voxel-based morphometry and cortical thickness analysis of T1-weighted magnetic resonance images. To examine their functional significance, gray matter differences were compared with experimental pain sensitivity. Diffusion-tensor imaging was used to assess whether white matter changed in parallel with gray matter, and resting-state fMRI was acquired to examine whether pain-related gray matter changes are associated with altered functional connectivity. Older patients showed exclusively decreased gray matter, accompanied by compromised white matter integrity. In contrast, younger patients showed exclusively gray matter increases, namely in the basal ganglia and insula, which were independent of pain duration. Associated white matter changes in younger patients were compatible with gray matter hypertrophy. In both age groups, structural brain alterations were associated with experimental pain sensitivity, which was increased in older patients but normal in younger patients. Whereas more pronounced gray matter decreases in the posterior cingulate cortex were related to increased experimental pain sensitivity in older patients, insular gray matter increases in younger patients correlated with lower pain sensitivity, possibly indicating the recruitment of endogenous pain modulatory mechanisms. This is

  8. Separating the role of biotic interactions and climate in determining adaptive response of plants to climate change.

    PubMed

    Tomiolo, Sara; Van der Putten, Wim H; Tielbörger, Katja

    2015-05-01

    Altered rainfall regimes will greatly affect the response of plant species to climate change. However, little is known about how direct effects of changing precipitation on plant performance may depend on other abiotic factors and biotic interactions. We used reciprocal transplants between climatically very different sites with simultaneous manipulation of soil, plant population origin, and neighbor conditions to evaluate local adaptation and possible adaptive response of four Eastern Mediterranean annual plant species to climate change. The effect of site on plant performance was negligible, but soil origin had a strong effect on fecundity, most likely due to differential water retaining ability. Competition by neighbors strongly reduced fitness. We separated the effects of the abiotic and biotic soil properties on plant performance by repeating the field experiment in a greenhouse under homogenous environmental conditions and including a soil biota manipulation treatment. As in the field, plant performance differed among soil origins and neighbor treatments. Moreover, we found plant species-specific responses to soil biota that may be best explained by the differential sensitivity to negative and positive soil biota effects. Overall, under the conditions of our experiment with two contrasting sites, biotic interactions had a strong effect on plant fitness that interacted with and eventually overrode climate. Because climate and biotic interactions covary, reciprocal transplants and climate gradient studies should consider soil biotic interactions and abiotic conditions when evaluating climate change effects on plant performance.

  9. Assessing the climatic effect of carbon dioxide and other trace gases using an interactive two-dimensional climate-chemistry model. Progress report, December 1, 1992--November 30, 1993

    SciTech Connect

    Ko, M.K.W.; Molnar, G.I.; Zhou, Shun-Tai

    1993-10-01

    This report covers work on grant DE-FG02-86ER60485 and consists of two parts: (1) progress for the period 12/1/92--5/31/93 and (2) the work plan for the remaining period 6/1/93--11/30/93. The project includes four tasks, two of which are addressed in the first project year: ``Model Interface`` and ``Climate Sensitivity.``

  10. Changes in algal community structure via density- and trait-mediated indirect interactions in a marine ecosystem.

    PubMed

    Wada, Yoko; Iwasaki, Keiji; Yusa, Yoichi

    2013-11-01

    In various terrestrial and aquatic ecosystems, predators affect resources indirectly via intermediate prey. Such indirect interactions involve reducing the density of the prey (density-mediated indirect interactions, DMIIs) or changing the behavioral, morphological, or life history traits of the prey (trait-mediated indirect interactions, TMIIs). Although the importance of TMIIs has been highlighted recently, the strengths of both DMIIs and TMIIs under natural conditions have rarely been evaluated, especially in the context of resource community structure. We studied a three-level marine food chain involving the carnivorous snail Thais clavigera, its limpet prey Siphonaria sirius, and the limpet's food sources, the algae Lithoderma sp. and Ulva sp. We measured the strengths of DMIIs and TMIIs and observed how the algal community changes under the pressure of natural predation by T. clavigera on S. sirius. Neither DMIIs nor TMIIs affected the total algal cover or chlorophyll content per unit area. However, both types of indirect interactions caused similar changes in algal composition by increasing the cover of Ulva and decreasing the cover of Lithoderma. This change in the algal community was caused by a reduction in the limpet's preferential consumption of the competitively dominant Ulva over Lithoderma. These results suggest that both DMIIs and TMIIs have similar effects on the changes in resource community structure under natural conditions.

  11. On their best behavior: how animal behavior can help determine the combined effects of species interactions and climate change.

    PubMed

    Harmon, Jason P; Barton, Brandon T

    2013-09-01

    The increasingly appreciated link between climate change and species interactions has the potential to help us understand and predict how organisms respond to a changing environment. As this connection grows, it becomes even more important to appreciate the mechanisms that create and control the combined effect of these factors. However, we believe one such important set of mechanisms comes from species' behavior and the subsequent trait-mediated interactions, as opposed to the more often studied density-mediated effects. Behavioral mechanisms are already well appreciated for mitigating the separate effects of the environment and species interactions. Thus, they could be at the forefront for understanding the combined effects. In this review, we (1) show some of the known behaviors that influence the individual and combined effects of climate change and species interactions; (2) conceptualize general ways behavior may mediate these combined effects; and (3) illustrate the potential importance of including behavior in our current tools for predicting climate change effects. In doing so, we hope to promote more research on behavior and other mechanistic factors that may increase our ability to accurately predict climate change effects. © 2013 New York Academy of Sciences.

  12. Dynamics of Defense Responses and Cell Fate Change during Arabidopsis-Pseudomonas syringae Interactions

    PubMed Central

    Hamdoun, Safae; Liu, Zhe; Gill, Manroop; Yao, Nan; Lu, Hua

    2013-01-01

    changes of defense phenotypes and cell fate determination during Arabidopsis-P. syringae interactions, contributing to a better understanding of plant defense mechanisms. PMID:24349466

  13. Dynamic changes in host-virus interactions associated with colony founding and social environment in fire ant queens (Solenopsis invicta).

    PubMed

    Manfredini, Fabio; Shoemaker, DeWayne; Grozinger, Christina M

    2016-01-01

    The dynamics of host-parasite interactions can change dramatically over the course of a chronic infection as the internal (physiological) and external (environmental) conditions of the host change. When queens of social insects found a colony, they experience changes in both their physiological state (they develop their ovaries and begin laying eggs) and the social environment (they suddenly stop interacting with the other members of the mother colony), making this an excellent model system for examining how these factors interact with chronic infections. We investigated the dynamics of host-viral interactions in queens of Solenopsis invicta (fire ant) as they transition from mating to colony founding/brood rearing to the emergence of the first workers. We examined these dynamics in naturally infected queens in two different social environments, where queens either founded colonies as individuals or as pairs. We hypothesized that stress associated with colony founding plays an important role in the dynamics of host-parasite interactions. We also hypothesized that different viruses have different modalities of interaction with the host that can be quantified by physiological measures and genomic analysis of gene expression in the host. We found that the two most prevalent viruses, SINV-1 and SINV-2, are associated with different fitness costs that are mirrored by different patterns of gene expression in the host. In fact SINV-2, the virus that imposes the significant reduction of a queen's reproductive output is also associated with larger changes of global gene expression in the host. These results show the complexity of interactions between S. invicta and two viral parasites. Our findings also show that chronic infections by viral parasites in insects are dynamic processes that may pose different challenges in the host, laying the groundwork for interesting ecological and evolutionary considerations.

  14. Allosteric changes in the TCR/CD3 structure upon interaction with extra- or intra-cellular ligands.

    PubMed

    Rubin, B; Knibiehler, M; Gairin, J E

    2007-01-01

    T lymphocytes are activated by the interaction between the T-cell antigen receptor (TCR) and peptides presented by major histocompatibility complex (MHC) molecules. The avidity of this TCR-pMHC interaction is very low. Therefore, several hypotheses have been put forward to explain how T cells become specifically activated despite this handicap: conformational change model, aggregation model, kinetic segregation model, sequential interaction model and permissive geometry model. In the present paper, we conducted experiments to distinguish between the TCR-aggregation model and the TCR-conformational change model. The results obtained using a TCR capture ELISA with Brij 98-solubilized TCR molecules from normal or activated T cells showed that the ligand-TCR interaction causes structural changes in the CD3 epsilon cytoplasmic tail as well as in the extracellular TCR beta FG loop region. Size-fractionation experiments with Brij 98-solubilized TCR/CD3/co-receptor complexes from naïve or activated CD4(+) or CD8(+) T cells demonstrated that such complexes are found as either dimers or tetramers. No monomers or multimers were detected. We propose that: (1) ligand-TCR interaction results in conformational changes in the CD3 epsilon cytoplasmic tail leading to T-cell activation; (2) CD3 epsilon cytoplasmic tail interaction with intracellular proteins may dissociate pMHC and co-receptors (CD4 or CD8) from TCR/CD3 complexes, thus leading to the arrest of T-cell activation; and (3) T-cell activation appears to occur among dimers or tetramers of TCR/CD3/co-receptor complexes interacting with self and non-self (foreign) peptide-MHC complexes.

  15. How Will Aerosol-Cloud Interactions Change in an Ice-Free Arctic Summer?

    NASA Astrophysics Data System (ADS)

    Gilgen, Anina; Katty Huang, Wan Ting; Ickes, Luisa; Lohmann, Ulrike

    2016-04-01

    Future temperatures in the Arctic are expected to increase more than the global mean temperature, which will lead to a pronounced retreat in Arctic sea ice. Before mid-century, most sea ice will likely have vanished in late Arctic summers. This will allow ships to cruise in the Arctic Ocean, e.g. to shorten their transport passage or to extract oil. Since both ships and open water emit aerosol particles and precursors, Arctic clouds and radiation may be affected via aerosol-cloud and cloud-radiation interactions. The change in radiation feeds back on temperature and sea ice retreat. In addition to aerosol particles, also the temperature and the open ocean as a humidity source should have a strong effect on clouds. The main goal of this study is to assess the impact of sea ice retreat on the Arctic climate with focus on aerosol emissions and cloud properties. To this purpose, we conducted ensemble runs with the global climate model ECHAM6-HAM2 under present-day and future (2050) conditions. ECHAM6-HAM2 was coupled with a mixed layer ocean model, which includes a sea ice model. To estimate Arctic aerosol emissions from ships, we used an elaborated ship emission inventory (Peters et al. 2011); changes in aerosol emissions from the ocean are calculated online. Preliminary results show that the sea salt aerosol and the dimethyl sulfide burdens over the Arctic Ocean significantly increase. While the ice water path decreases, the total water path increases. Due to the decrease in surface albedo, the cooling effect of the Arctic clouds becomes more important in 2050. Enhanced Arctic shipping has only a very small impact. The increase in the aersol burden due to shipping is less pronounced than the increase due to natural emissions even if the ship emissions are increased by a factor of ten. Hence, there is hardly an effect on clouds and radiation caused by shipping. References Peters et al. (2011), Atmos. Chem. Phys., 11, 5305-5320

  16. Sea-ice loss boosts visual search: fish foraging and changing pelagic interactions in polar oceans.

    PubMed

    Langbehn, Tom J; Varpe, Øystein

    2017-06-28

    Light is a central driver of biological processes and systems. Receding sea ice changes the lightscape of high-latitude oceans and more light will penetrate into the sea. This affects bottom-up control through primary productivity and top-down control through vision-based foraging. We model effects of sea-ice shading on visual search to develop a mechanistic understanding of how climate-driven sea-ice retreat affects predator-prey interactions. We adapt a prey encounter model for ice-covered waters, where prey-detection performance of planktivorous fish depends on the light cycle. We use hindcast sea-ice concentrations (past 35 years) and compare with a future no-ice scenario to project visual range along two south-north transects with different sea-ice distributions and seasonality, one through the Bering Sea and one through the Barents Sea. The transect approach captures the transition from sub-Arctic to Arctic ecosystems and allows for comparison of latitudinal differences between longitudes. We find that past sea-ice retreat has increased visual search at a rate of 2.7% to 4.2% per decade from the long-term mean; and for high latitudes, we predict a 16-fold increase in clearance rate. Top-down control is therefore predicted to intensify. Ecological and evolutionary consequences for polar marine communities and energy flows would follow, possibly also as tipping points and regime shifts. We expect species distributions to track the receding ice-edge, and in particular expect species with large migratory capacity to make foraging forays into high-latitude oceans. However, the extreme seasonality in photoperiod of high-latitude oceans may counteract such shifts and rather act as a zoogeographical filter limiting poleward range expansion. The provided mechanistic insights are relevant for pelagic ecosystems globally, including lakes where shifted distributions are seldom possible but where predator-prey consequences would be much related. As part of the discussion

  17. Diagnosing the Land-Atmosphere Interactions of Tibetan Plateau and Their Impact on the Subsequent Climate Changes over Asia

    NASA Astrophysics Data System (ADS)

    Liu, D.

    2015-12-01

    As one typical unit in the global climate system, Tibetan Plateau has sensitive and rapid responses to the global climate change. Meanwhile, such changes would conversely influence the climate over the adjacent area, Asia or even the global according to the land-atmosphere interactions. This research aims to investigate the mechanisms of land-atmosphere interactions over Tibetan Plateau and their impact on the subsequent climate changes over Asia. Numerical modeling and statistical analysis methods are adopted. Regional climate models (e.g., RegCM4, WRF) as well as kinds of data resources (obeserved data, reanalysis data, remote sensing data) are used. The field experiments and statistical analysis methods are firstly applied to analyze the characteristics of climate changes over Tibetan Plateau to obtain the land-atmosphere interaction mechanisms. Then, the regional climate model and land surface model are coupled to develop the Land-Atmosphere coupling model. To improve the model's capability over Tibetan Plateau, data assimilation methods are adopted to construct the Land-Atmosphere coupling model data assimilation system with multi-data resources. The land-atmosphere coupling strength over Tibetan Plateau and their impacts on the subsequent climate changes over Asia are diagnosed with numerical sensitivity experiments based on the coupling models. The results would contribute to the improvement of weather and climate extremes prediction over China and the understanding of the influence of human activities on the climate changes.

  18. Land-atmosphere interactions due to anthropogenic and natural changes in the land surface: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Yang, Zhao

    Alterations to the land surface can be attributed to both human activity and natural variability. Human activities, such as urbanization and irrigation, can change the conditions of the land surface by altering albedo, soil moisture, aerodynamic roughness length, the partitioning of net radiation into sensible and latent heat, and other surface characteristics. On the other hand, natural variability, manifested through changes in atmospheric circulation, can also induce land surface changes. These regional scale land surface changes, induced either by humans or natural variability, can effectively modify atmospheric conditions through land-atmosphere interactions. However, only in recent decades have numerical models begun to include representations of the critical processes driving changes at the land surface, and their associated effects on the overlying atmosphere. In this work we explore three mechanisms by which changes to the land surface - both anthropogenic and naturally induced - impact the overlying atmosphere and affect regional hydroclimate. (Abstract shortened by ProQuest.).

  19. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity

    EPA Science Inventory

    Climate change and Nr from anthropogenic activities are causing some of the most rapid changes in biodiversity in recent times. Climate change is causing warming trends that result in poleward and elevational range shiftsof flora and fauna, and changes in phenology, particularly ...

  20. Interactive effects of anthropogenic nitrogen enrichment and climate change on terrestrial and aquatic biodiversity

    EPA Science Inventory

    Climate change and Nr from anthropogenic activities are causing some of the most rapid changes in biodiversity in recent times. Climate change is causing warming trends that result in poleward and elevational range shiftsof flora and fauna, and changes in phenology, particularly ...

  1. Interactions between MAOA Genotype and Receipt of Public Assistance: Predicting Change in Depressive Symptoms and Body Mass Index

    ERIC Educational Resources Information Center

    Marmorstein, Naomi R.; Hart, Daniel

    2011-01-01

    Response to stress is determined in part by genetically influenced regulation of the monoamine system (MAOA). We examined the interaction of a stressor (receipt of public assistance) and a gene regulating MAOA in the prediction of change in adolescent depressive symptoms and body mass index (BMI). Participants were drawn from the National…

  2. Morphological changes from silica tubules to hollow spheres controlled by the intermolecular interactions within block copolymer micelle templates.

    PubMed

    Lee, Hyemin; Char, Kookheon

    2009-04-01

    The morphological changes from tubules to large hollow spheres to (micelle-sized) small hollow-spherical silica were realized by polystyrene-block-poly(vinylpyridine) (PS-b-PVP) block copolymer micelle templates by controlling the intermolecular interactions with the corona chains. PS-b-PVP with weak intermolecular interactions among PVP corona chains yields the coexistence of tubules, large hollow spheres, and small hollow spheres. The coexistence of the three phases arises from the direct aggregation of block copolymer micelles during hydrolytic condensation of a silica precursor (tetraethylorthosilicate), as evidenced by transmission electron microscopy. When the degree of intermolecular interactions within the PVP corona blocks is increased by a change in either the degree of quaternization of the PVP blocks or the dielectric constant of the medium, small hollow spherical silica, with size equivalent to the block copolymer micelles, were solely obtained. We believe that this morphological change is due to the fact that the dipole-dipole interactions among quaternized PVP blocks physically cross-link the PVP coronas in micelles resisting the curvature change during the silica condensation.

  3. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  4. Predicting Day-to-Day Changes in Students' School-Related Affect from Daily Academic Experiences and Social Interactions

    ERIC Educational Resources Information Center

    Altermatt, Ellen Rydell

    2015-01-01

    This study examined the role that everyday academic successes and failures--and the interactions with family members and peers that follow these events--play in predicting day-to-day changes in children's emotional responses to school. Middle school students (N = 101; mean age = 11.62 years) completed daily assessments of their academic…

  5. Predicting Day-to-Day Changes in Students' School-Related Affect from Daily Academic Experiences and Social Interactions

    ERIC Educational Resources Information Center

    Altermatt, Ellen Rydell

    2015-01-01

    This study examined the role that everyday academic successes and failures--and the interactions with family members and peers that follow these events--play in predicting day-to-day changes in children's emotional responses to school. Middle school students (N = 101; mean age = 11.62 years) completed daily assessments of their academic…

  6. "It's Not a Political Issue!" The Interaction of Subject and Politics on Professors' Beliefs in Human-Induced Climate Change

    ERIC Educational Resources Information Center

    Nussbaum, E. Michael; Owens, Marissa C.; Cordova, Jacqueline R.

    2016-01-01

    This study examines the interaction of political orientation with academic discipline on beliefs in anthropogenic climate change (ACC) among higher education faculty. Over 300 faculty members at two research institutions in the United States were surveyed on topics concerning ACC and the results were analyzed with multiple regression. Even among…

  7. Interactions between MAOA Genotype and Receipt of Public Assistance: Predicting Change in Depressive Symptoms and Body Mass Index

    ERIC Educational Resources Information Center

    Marmorstein, Naomi R.; Hart, Daniel

    2011-01-01

    Response to stress is determined in part by genetically influenced regulation of the monoamine system (MAOA). We examined the interaction of a stressor (receipt of public assistance) and a gene regulating MAOA in the prediction of change in adolescent depressive symptoms and body mass index (BMI). Participants were drawn from the National…

  8. The Changes of Energy Interactions between Nucleus Function and Mitochondria Functions Causing Transmutation of Chronic Inflammation into Cancer Metabolism.

    PubMed

    Ponizovskiy, Michail R

    2016-01-01

    Interactions between nucleus and mitochondria functions induce the mechanism of maintenance stability of cellular internal energy according to the first law of thermodynamics in able-bodied cells and changes the mechanisms of maintenance stability of cellular internal energy creating a transition stationary state of ablebodied cells into quasi-stationary pathologic states of acute inflammation transiting then into chronic inflammation and then transmuting into cancer metabolism. The mechanisms' influences of intruding etiologic pathologic agents (microbe, virus, etc.) lead to these changes of energy interactions between nucleus and mitochondria functions causing general acute inflammation, then passing into local chronic inflammation, and reversing into cancer metabolism transmutation. Interactions between biochemical processes and biophysical processes of cellular capacitors' operations create a supplementary mechanism of maintenance stability of cellular internal energy in the norm and in pathology. Discussion of some scientific works eliminates doubts of the authors of these works.

  9. Stability and Change in Early Childhood Classroom Interactions during the First Two Hours of a Day

    ERIC Educational Resources Information Center

    Curby, Timothy W.; Grimm, Kevin J.; Pianta, Robert C.

    2010-01-01

    Early childhood classrooms support children's learning in a variety of ways. Of critical importance are the interactions teachers have with children. The type and quality of classroom interactions vary and can be grouped into three domains: instructional, organizational, and emotional. The purpose of this study is to examine the extent to which…

  10. The human health effects of ozone depletion and interactions with climate change.

    PubMed

    Norval, M; Lucas, R M; Cullen, A P; de Gruijl, F R; Longstreth, J; Takizawa, Y; van der Leun, J C

    2011-02-01

    for a range of internal cancers, this is not yet conclusive, but strongest for colorectal cancer, at present. A role for vitamin D in protection against several autoimmune diseases has been studied, with the most convincing results to date for multiple sclerosis. Vitamin D is starting to be assessed for its protective properties against several infectious and coronary diseases. Current methods for protecting the eye and the skin from the adverse effects of solar UV radiation are evaluated, including seeking shade, wearing protective clothing and sunglasses, and using sunscreens. Newer possibilities are considered such as creams that repair UV-induced DNA damage, and substances applied topically to the skin or eaten in the diet that protect against some of the detrimental effects of sun exposure. It is difficult to provide easily understandable public health messages regarding "safe" sun exposure, so that the positive effects of vitamin D production are balanced against the negative effects of excessive exposure. The international response to ozone depletion has included the development and deployment of replacement technologies and chemicals. To date, limited evidence suggests that substitutes for the ozone-depleting substances do not have significant effects on human health. In addition to stratospheric ozone depletion, climate change is predicted to affect human health, and potential interactions between these two parameters are considered. These include altering the risk of developing skin tumours, infectious diseases and various skin diseases, in addition to altering the efficiency by which pathogenic microorganisms are inactivated in the environment.

  11. Impacts of future changes in phenology on land-atmosphere interactions in temperate and boreal regions

    NASA Astrophysics Data System (ADS)

    Kaduk, Jörg; Los, Sietse

    2010-05-01

    ), which suggest an advance of more than six days average. The observed relationship between chilling and warming at the time of green-up indicates an element of regional adaptation of the warming required for leaf out in biomes covering large areas. The phenological models were implemented in the Joint UK Land Environment Simulator (JULES). In the model the advance in green up leads to a longer growing season with longer leaf display. In regions where soil moisture is mainly fed by spring rain and snow melt, however, there is only a limited increase of photosynthesis as it is determined by soil water availability. A longer summer dry period is resulting. Simulations including a Fire Weather Index indicate that the longer dry summers lead to an increase in the forest fire risk under future climate change in considerable areas. While this increase results partially from the changed climate, partially also the earlier leaf appearance contributes to the increased risk. Also there is a significant difference between simulations using only SWMs in contrast to employing also a chilling dependency. The results highlight the necessity of including appropriate phenology models in climate models for correct predictions of land-atmosphere interactions.

  12. Evolutionary response to global change: Climate and land use interact to shape color polymorphism in a woodland salamander.

    PubMed

    Cosentino, Bradley J; Moore, Jean-David; Karraker, Nancy E; Ouellet, Martin; Gibbs, James P

    2017-07-01

    Evolutionary change has been demonstrated to occur rapidly in human-modified systems, yet understanding how multiple components of global change interact to affect adaptive evolution remains a critical knowledge gap. Climate change is predicted to impose directional selection on traits to reduce thermal stress, but the strength of directional selection may be mediated by changes in the thermal environment driven by land use. We examined how regional climatic conditions and land use interact to affect genetically based color polymorphism in the eastern red-backed salamander (Plethodon cinereus). P. cinereus is a woodland salamander with two primary discrete color morphs (striped, unstriped) that have been associated with macroclimatic conditions. Striped individuals are most common in colder regions, but morph frequencies can be variable within climate zones. We used path analysis to analyze morph frequencies among 238,591 individual salamanders across 1,170 sites in North America. Frequency of striped individuals was positively related to forest cover in populations occurring in warmer regions (>7°C annually), a relationship that was weak to nonexistent in populations located in colder regions (≤7°C annually). Our results suggest that directional selection imposed by climate warming at a regional scale may be amplified by forest loss and suppressed by forest persistence, with a mediating effect of land use that varies geographically. Our work highlights how the complex interaction of selection pressures imposed by different components of global change may lead to divergent evolutionary trajectories among populations.

  13. Debris Flows in a Changing Climate: Experimental and Field Investigations of the Influence of Changes in Moisture on Matrix Properties, Interparticle Interactions, and Subsequent Debris Flow Behaviors

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Densmore, A.; Longjas, A.; Mullenbach, J.; Fouty, T.; Fei, M.; Zhou, G.; Sun, Q.

    2016-12-01

    Debris flows, rapid gravity-driven mixtures of sediment (boulders, gravels, sands, and mud) and water, are important geomorphological agents of landscape change and common natural hazards in mountainous regions. Worldwide, there is evidence that the frequency and magnitude of debris flows are increasing under recent changes in macro and micro climate. We investigate the influence of moisture differences associated with climate change on debris flow behaviors at the field and laboratory scales. Field measurements of debris flow fan deposits in Owens Valley during glacial and interglacial periods - likely corresponding to periods of higher and lower levels of water content in the soil and flows - show marked differences in avulsion frequencies, channel aspect ratios, sorting in the deposits and depositional geometries. These measurements suggest that differing moisture levels change the density and rheology of the matrix - the watery / muddy interstitial fluid - which, in turn, can significantly alter the dynamic behavior of the debris flow itself. This supports recent experimental results (Kaitna et al., 2014 & 2015) that changing the properties of the matrix of experimental flows appears to change the nature and relative importance of interparticle interactions compared to those associated with the fluid and subsequently influence the flow dynamics. We test these hypotheses using controlled laboratory experiments in flumes of two different sizes and where we systematically vary interstitial fluid properties and scale of the experiments. In both flumes we present high speed particle tracking and measurements of pore pressure and stress at the bed to show how the flow and entrainment behavior varies as the flow transitions from inertial to viscous, that is, as pore pressures and other fluid effects become increasingly dominant over inter-particle interactions, reflected in the Bagnold (1954) number. We also demonstrate that some effects, like bed fabric and fragility

  14. Main and interactive effects of multiple global-change factors on soil respiration and its components: a meta-analysis

    NASA Astrophysics Data System (ADS)

    Zhou, Xuhui

    2014-05-01

    Global change usually involves simultaneous changes in multiple environmental factors, which may considerably affect ecosystem structure and functioning and alter ecosystem services to human society. With increased awareness of their potential interactions, some multi-factorial studies have been conducted to investigate their main and interactive effects on carbon (C) cycling in terrestrial ecosystem. However, how multiple global-change factors affected soil respiration (Rs) and its components (i.e., autotrophic (Ra) and heterotrophic respiration (Rh)) remains controversial among individual studies. In this study, we conducted a meta-analysis to examine the main and possible 2- or 3-factor interactive effects with warming (W), elevated CO2 (E), nitrogen addition (N), increased precipitation (I) and drought (D) on Rs and its components from 150 published papers. Our results show that E, W, I and N significantly stimulated Rs by 29.23%, 7.19%, 22.95%, and 16.90% (p<0.05), respectively, while I depressed it by 16.90% (p<0.01). E consistently induced a significant positive effect on both Ra and Rh, while I affected them with an opposite trend. Among nine two-way interactive effects on Rs, synergistic interaction (i.e., the effect of combined treatment > the additive effects of single two main factors) occurred in E×N, E×W, I×N, and D×W, while neutral interaction (i.e., the effect of combined treatment ≡ the additive one) and antagonistic interaction (i.e., the effect of combined treatment < the additive one)was rare, only in I×W for neutral one and in N×W and I×E for the latter. In addition, E×W and E×N displayed synergistic interactions on Rh. The more dominance of synergistic interactions in two-way interactive effects on Rs and Rh may determine a central positive tendency of Rs in future, and affect the feedback of terrestrial C cycle to the climate system correspondingly.

  15. Interaction between GIC and S. sanguis biofilms: antibacterial properties and changes of surface hardness.

    PubMed

    Hengtrakool, C; Pearson, G J; Wilson, M

    2006-09-01

    The aim of this study was to investigate the interaction of Streptococcus sanguis with two glass-ionomer formulations (GIC:A containing fluoride and GIC:B without fluoride) with particular reference to bacterial growth and changes in hardness of the cement with respect to time. Discs of two water activated glass-ionomer cements were prepared according to the manufacturer's instruction. Hydroxyapatite discs (HA) were used as controls. 3D laser scanning technique was used to characterize surface roughness and area of the substrate prior to growing biofilms. Surface hardness was evaluated before and after biofilm growth. A constant depth film fermenter system (CDFF) was used to grow S. sanguis biofilms on the specimens in a similar manner to that described previously by Wilson et al. in 1995. For susceptibility measurement, specimens were removed from CDFF aseptically over periods up to 14d after the first colonization with bacteria. Counts of viable bacterial in the accumulating biofilm layer on each surface were measured and converted to colony forming units per unit surface area. To determine the effect of storage media, hardness discs were exposed to distilled water, lactic acid pH 4, lactic acid pH 5, citric acid pH 5, artificial saliva and S. sanguis biofilms. Twenty-four hours after preparing and subsequent autoclaving, specimens were transferred to a vessel containing 40 ml storage medium. The specimens were investigated for periods up to 7d. The viable counts of S. sanguis per mm2 on GIC:A were significantly less than those on HA and GIC:B during the first 5d (p<0.05). The viable counts of bacteria on the surface of GIC:B were lower during the initial 5d when compared to HA. Exposure of GIC:A and GIC:B to different medium produced softening to the surface of cement. It is apparent that the effects of the biofilms are significantly greater than storage in water but similar to storage in lactic acid pH 5. This investigation showed that the growth of S. sanguis

  16. The Interactive Effects of Atmospheric N Deposition and Climate Change on a Subalpine Lake

    NASA Astrophysics Data System (ADS)

    Baron, J.; Hall, E.; Fegel, T. S.; Gundersen, G.; Seeback, A.; Windom, L.; Woodwell, J. R.; Boot, C. M.

    2013-12-01

    Climate change has resulted in a trend of warmer lake water at high elevations of the Colorado Front Range. Maximum surface water temperatures now exceed 14 °C in July and August, while mean surface water temperatures have increased by 2 °C since 1983 in July and 1 °C in August in The Loch, a subalpine lake at 3100 m in Rocky Mountain National Park. Laboratory studies suggest a temperature threshold near 13 °C above which algae and microbes can readily exploit nitrate as a source for nitrogen. Since nitrate is elevated in The Loch from atmospheric N deposition, there is potential for increased eutrophication in this already mesotrophic lake. In 2012 we initiated a study of lake processes coupled with laboratory assays to determine whether the interaction of increased temperature and nutrient availability can stimulate primary productivity and microbial activity. We report initial findings from a grid of continuous temperature sensors and 10 weekly sample stations around The Loch collected from June through September. The range of summer 2012 weekly temperatures varied by lake location, with the warmest temperatures in bays and at the outlet, and coolest temperatures at the inlet. The north bay (0.9 m mean depth) had high diurnal temperature variability, whereas the east bay (0.2 m mean depth) had a lower diurnal temperature range. Lake temperatures were responsive to storms, cooling during and after precipitation events, and warming in-between. The warmest month for water temperature was August, and by end of September The Loch had cooled uniformly to 6.0 °C. The average weekly nitrate-N concentration was 0.21 mg N L-1 (SD 0.02 mg N L-1) from June-September. Nitrate-N was temporally, but not spatially, variable, and was correlated with precipitation events. This suggests internal lake processes were less important than watershed processes. Average weekly ammonium-N concentrations were 0.02 mg N L-1 (SD 0.1 mg N L-1) and were spatially distributed, suggesting

  17. TERENO-SoilCan - Soil-Atmosphere Interactions Induced by Land Use Changes as a Result of Global Change

    NASA Astrophysics Data System (ADS)

    Puetz, T.; Burauel, P.; Bogena, H.; Vereecken, H.

    2009-04-01

    Based on the TERENO infrastructure, SoilCan (Soil can make a difference in climate policy) is designed as a long-term large scale experiment to study the effects of land use changes of terrestrial systems caused by Global Change. The soil and ground water, in particular the water and matter fluxes in soil, are the main focuses of SoilCan. Primary objectives of SoilCan are: • Further development of the instrumentation of the TERENO-observatories to study the effects of land use changes on soils • Collection of comprehensive long-term data to monitor Global Change on the regional scale • Provision of high-quality data to develop and improve the prognosis of regional climate models with the aim to develop and implement options for management strategies. In the frame of SoilCan, fully automated lysimeter systems will be installed on several highly equipped experimental field sites of the TERENO-observatories and the relevant status variables of each ecosystem will be monitored (e.g. climate, hydrology, biosphere-atmosphere exchange, biodiversity, etc.). The TERENO-observatories are placed in four different regions of Germany: • "Rur" observatory - moderate atlantic climate • "Ammer" observatory - alpine climate • "Bode" observatory - continental climate • "Müritz" observatory - baltic climate The field sites will have a radio-based technology for automatic monitoring and data communication. In total, 90 lysimeters (1.5 m depth, 1m2 surface) will be filled with soil monoliths at the four TERENO-observatories. The lysimeters will be partly transplanted along the existing natural temperature and rainfall gradients. The transplantation of lysimeters inside an observatory as well as between the four different observatories is of utmost importance for SoilCan. In case of the "Rur" observatory, three intensively instrumented field sites ("Wüstebach", "Rollesbroich" und "Selhausen") will be equipped with lysimeter stations. Along with a temperature and rainfall

  18. Changes in social interaction over 20 years and the effects of community resources use among community-dwelling elderly persons.

    PubMed

    Watanabe, Kumi; Tanaka, Emiko; Wu, Bailiang; Kobayashi, Zyunko; Mochizuki, Yukiko; Kim, Yeon; Watanabe, Taeko; Okumura, Rika; Ito, Sumio; Anme, Tokie

    2017-01-01

    Objectives Recently, social isolation has been reported to be a critical problem among Japanese elderly persons. However, few studies have compared social interaction in the past and the present or investigated its predictive factors. This study aimed to clarify the transitional changes in social interaction over 20 years and explore the factors related to social interaction focusing on the use of community resources.Methods The participants were community-dwelling elderly persons aged 65 years and over. A survey was conducted 8 times from 1994 to 2014 in the suburban area of Tobishima, Japan. The Index of Social Interaction Scale was used and each subscale and the total score were calculated. Subsequently, the 2014 scores were compared with the 1994 scores using the Wilcoxon rank sum test. Logistic regression analysis was conducted to clarify the factors related to social interaction, focusing on the association between the use of community resources (local elderly management center, health care center, health promotion facility, library) in 2011 and social interaction 3 years later. Age, gender, disease, and mobility were also entered into the model as control variables.Results Comparing social interaction in 1994 and 2014, total scores were found to have significantly increased in all age groups. Independence scores significantly increased in the overall group and in females aged 75-84. Curiosity scores also increased in both males and females. These results show that social interaction has increased over 2 decades. In addition, the use of local elderly management and health care centers, and health promotion facilities was associated with total social interaction scores 3 years later.Conclusion The current study clarified changes in social interaction, both comprehensively and for each of its aspects, among community-dwelling elderly adults. Increasing social isolation has been reported in recent years; however, the current study showed that social

  19. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  20. Interactions of Changing Solar Ultraviolet Radiation and Climate with Light Induced Chemical Reactions in Aquatic Environments

    EPA Science Inventory

    Changes in the ozone layer over the past two decades have resulted in increases in solar ultraviolet radiation that reach the surface of North American aquatic environments. Concurrent changes in atmospheric CO2 are resulting in changes in stratification and precipitation that ar...

  1. Global change effects on plant-insect interactions: The role of phytochemistry

    Treesearch

    Mary A. Jamieson; Laura A. Burkle; Jessamyn S. Manson; Justin B. Runyon; Amy M. Trowbridge; Joseph Zientek

    2017-01-01

    Natural and managed ecosystems are undergoing rapid environmental change due to a growing human population and associated increases in industrial and agricultural activity. Global environmental change directly and indirectly impacts insect herbivores and pollinators. In this review, we highlight recent research examining how environmental change factors affect plant...

  2. Atmospheric response to the observed increase of solar UV radiation from solar minimum to solar maximum simulated by the University of Illinois at Urbana-Champaign climate-chemistry model

    NASA Astrophysics Data System (ADS)

    Rozanov, E. V.; Schlesinger, M. E.; Egorova, T. A.; Li, B.; Andronova, N.; Zubov, V. A.

    2004-01-01

    The University of Illinois at Urbana-Champaign general circulation model with interactive photochemistry has been applied to estimate the changes in ozone, temperature and dynamics caused by the observed enhancement of the solar ultraviolet radiation during the 11-year solar activity cycle. Two 15-yearlong runs with spectral solar UV fluxes for the minimum and maximum solar activity cases have been performed. It was obtained that due to the imposed changes in spectral solar UV fluxes the annual-mean ozone mixing ratio increases 3% over the southern middle latitudes in the upper stratosphere and 2% in the northern lower stratosphere. The model also shows a statistically significant warming of 1.2 K in the stratosphere and an acceleration of the polar-night jets in both hemispheres. The most pronounced changes were found in November and March over the Northern Hemisphere and in September-October over the Southern Hemisphere. The magnitude and seasonal behavior of the simulated changes resemble the most robust features of the solar signal obtained from observational data analysis; however, they do not exactly coincide. The simulated zonal wind and temperature response during late fall to early spring contains the observed downward and poleward propagation of the solar signal, however its structure and phase are different from those observed. The response of the surface air temperature in December consists of warming over northern Europe, USA, and eastern Russia, and cooling over Greenland, Alaska, and central Asia. This pattern resembles the changes of the surface winter temperature after a major volcanic eruption. Model results for September-October show an intensification of ozone loss by up to 10% and expansion of the "ozone hole" toward South America.

  3. Competition-interaction landscapes for the joint response of forests to climate change.

    PubMed

    Clark, James S; Bell, David M; Kwit, Matthew C; Zhu, Kai

    2014-06-01

    The recent global increase in forest mortality episodes could not have been predicted from current vegetation models that are calibrated to regional climate data. Physiological studies show that mortality results from interactions between climate and competition at the individual scale. Models of forest response to climate do not include interactions because they are hard to estimate and require long-term observations on individual trees obtained at frequent (annual) intervals. Interactions involve multiple tree responses that can only be quantified if these responses are estimated as a joint distribution. A new approach provides estimates of climate–competition interactions in two critical ways, (i) among individuals, as a joint distribution of responses to combinations of inputs, such as resources and climate, and (ii) within individuals, due to allocation requirements that control outputs, such as demographic rates. Application to 20 years of data from climate and competition gradients shows that interactions control forest responses, and their omission from models leads to inaccurate predictions. Species most vulnerable to increasing aridity are not those that show the largest growth response to precipitation, but rather depend on interactions with the local resource environment. This first assessment of regional species vulnerability that is based on the scale at which climate operates, individual trees competing for carbon and water, supports predictions of potential savannification in the southeastern US.

  4. Decadal changes in zooplankton abundance and phenology of Long Island Sound reflect interacting changes in temperature and community composition.

    PubMed

    Rice, Edward; Stewart, Gillian

    2016-09-01

    Between 1939 and 1982, several surveys indicated that zooplankton in Long Island Sound, NY (LIS) appeared to follow an annual cycle typical of the Mid-Atlantic coast of North America. Abundance peaked in both early spring and late summer and the peaks were similar in magnitude. In recent decades, this cycle appeared to have shifted. Only one large peak tended to occur, and summer copepod abundance was consistently reduced by ∼60% from 1939 to 1982 levels. In other Mid-Atlantic coastal systems such a dramatic shift has been attributed to the earlier appearance of ctenophores, particularly Mnemiopsis leidyi, during warmer spring months. However, over a decade of surveys in LIS have consistently found near-zero values in M. leidyi biomass during spring months. Our multiple linear regression model indicates that summer M. leidyi biomass during this decade explains <25% of the variation in summer copepod abundance. During these recent, warmer years, summer copepod community shifts appear to explain the loss of copepod abundance. Although Acartia tonsa in 2010-2011 appeared to be present all year long, it was no longer the dominant summer zooplankton species. Warmer summers have been associated with an increase in cyanobacteria and flagellates, which are not consumed efficiently by A. tonsa. This suggests that in warming coastal systems multiple environmental and biological factors interact and likely underlie dramatic alterations to copepod phenology, not single causes.

  5. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    NASA Astrophysics Data System (ADS)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  6. Native structure of a retroviral envelope protein and its conformational change upon interaction with the target cell.

    PubMed

    Riedel, Christiane; Vasishtan, Daven; Siebert, C Alistair; Whittle, Cathy; Lehmann, Maik J; Mothes, Walther; Grünewald, Kay

    2017-02-01

    Enveloped viruses enter their host cells by membrane fusion. The process of attachment and fusion in retroviruses is mediated by a single viral envelope glycoprotein (Env). Conformational changes of Env in the course of fusion are a focus of intense studies. Here we provide further insight into the changes occurring in retroviral Env during its initial interaction with the cell, employing murine leukemia virus (MLV) as model system. We first determined the structure of both natively membrane anchored MLV Env and MLV Env tagged with YFP in the proline rich region (PRR) by electron cryo tomography (cET) and sub-volume averaging. At a resolution of ∼20Å, native MLV Env presents as a hollow trimer (height ∼85Å, diameter ∼120Å) composed of step-shaped protomers. The major difference to the YFP-tagged protein was in regions outside of the central trimer. Next, we focused on elucidating the changes in MLV Env upon interaction with a host cell. Virus interaction with the plasma membrane occurred over a large surface and Env clustering on the binding site was observed. Sub-volume averaging did yield a low-resolution structure of Env interacting with the cell, which had lost its threefold symmetry and was elongated by ∼35Å in comparison to the unbound protein. This indicates a major rearrangement of Env upon host cell binding. At the site of virus interaction, the otherwise clearly defined bilayer structure of the host cell plasma membrane was much less evident, indicative of integral membrane protein accumulation and/or a change in membrane lipid composition.

  7. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    SciTech Connect

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2016-08-19

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. - Highlights: • Nopp140 is intrinsically disordered protein (IDP). • Conformation of Nopp140 became more rigid conformation due to interaction with CK2α. • smFRET and EPR could be applied to analyze the structural changes of IDPs.

  8. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  9. Biophysical characterization of the structural change of Nopp140, an intrinsically disordered protein, in the interaction with CK2α

    PubMed Central

    Na, Jung-Hyun; Lee, Won-Kyu; Kim, Yuyoung; Jeong, Cherlhyun; Song, Seung Soo; Cha, Sun-Shin; Han, Kyou-Hoon; Shin, Yeon-Kyun; Yu, Yeon Gyu

    2017-01-01

    Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568–596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574–589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners. PMID:27297113

  10. Physical and Chemical Interactions with Conspecifics Mediate Sex Change in a Protandrous Gastropod Crepidula fornicata.

    PubMed

    Cahill, Abigail E; Juman, Alia Rehana; Pellman-Isaacs, Aaron; Bruno, William T

    2015-12-01

    The protandrous marine snail Crepidula fornicata has been a theoretical and empirical model for studies of sex change for many decades. We investigated the social conditions under which sex change occurs in this species by manipulating physical and chemical contact with conspecifics. Male snails were either in physical and chemical contact with females or in chemical contact with, but physically isolated from, females. Males were tested both with living females and with empty, sterilized shells. Males that were physically touching a living female were less likely to change sex than the isolated controls, while males in chemical (but not physical) contact with females changed sex no slower than the isolated controls. These results provide experimental evidence that the factor controlling sex change in C. fornicata is due to a contact-borne inhibitor associated with female conspecifics. These findings serve as a basis for future studies of sex change in this model system.

  11. Interactive Effects of Urban Land Use and Climate Change on Biogeochemical Cycles (Invited)

    NASA Astrophysics Data System (ADS)

    Pouyat, R. V.

    2009-12-01

    Urban land-use change can affect biogeochemical cycles through altered disturbance regimes, landscape management practices (e.g., irrigation and fertilization), built structures, and altered environments (heat island effect, pollution, introduction of non-native species, loss of native species). As a result, the conversion of native to urban ecological systems has been shown to significantly affect carbon, nitrogen, and water cycles at local, regional, and global scales. These changes have created novel habitats and ecosystems, which have no analogue in the history of life. Nonetheless, some of the environmental changes occurring in urban areas are analogous to the changes expected in climate by the end of the century, e.g. atmospheric increase in CO2 and an increase in air temperatures, which can be utilized as a “natural experiment” to investigate global change effects on large scale ecosystem processes. Moreover, as analogues of expected future environments, urban ecological systems may act as reservoirs of plant and animal species for adjoining landscapes that are expected to undergo relatively rapid climate changes in the next 100 years. Urban land-use change by itself may contribute to changes in regional weather patterns and long-term changes in global climate, which will depend on the net effect of converting native systems to urban systems and the comparison of per capita “footprints” between urban, suburban, and rural inhabitants. My objectives are to 1) assess the impact of changes in urban land-use on climate change and in turn how climate change may affect urban biogeochemical cycles and 2) discuss the potential for urban ecosystems to mitigate green house gas emissions.

  12. Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils

    NASA Astrophysics Data System (ADS)

    Bastidas, Oscar H.; Green, Benjamin; Sprague, Mary; Peters, Michael H.

    2016-11-01

    The pathology of Alzheimer’s disease can ultimately be traced to the increased aggregation stability of Aβ42 peptides which possess two extra residues (Ile 41 & Ala 42) that the non-pathological strain (Aβ40) lacks. We have found Aβ42 fibrils to exhibit stronger energies in inter-chain interactions and we have also identified the cause for this increase to be the result of different Ramachandran angle values in certain residues of the Aβ42 strain compared to Aβ40. These unique angle configurations result in the peptide planes in the fibril structures to be more vertical along the fibril axis for Aβ42 which thus reduces the inter-atomic distance between interacting atoms on vicinal peptide chains thereby increasing the electrostatic interaction energies. We lastly postulate that these different Ramachandran angle values could possibly be traced to the unique conformational folding avenues sampled by the Aβ42 peptide owing to the presence of its two extra residues.

  13. Salts employed in hydrophobic interaction chromatography can change protein structure - insights from protein-ligand interaction thermodynamics, circular dichroism spectroscopy and small angle X-ray scattering.

    PubMed

    Komaromy, Andras Z; Kulsing, Chadin; Boysen, Reinhard I; Hearn, Milton T W

    2015-03-01

    Key requirements of protein purification by hydrophobic interaction chromatography (HIC) are preservation of the tertiary/quaternary structure, maintenance of biological function, and separation of the correctly folded protein from its unfolded forms or aggregates. This study examines the relationship between the HIC retention behavior of hen egg white lysozyme (HEWL) in high concentrations of several kosmotropic salts and its conformation, assessed by circular dichroism (CD) spectroscopy. Further, the physicochemical properties of HEWL in the presence of high concentrations of ammonium sulfate, sodium chloride and magnesium chloride were investigated by small angle X-ray scattering (SAXS) at different temperatures. Radii of gyration were extrapolated from Guinier approximations and the indirect transform program GNOM with protein-protein interaction and contrast variation taken into account. A bead model simulation provided information on protein structural changes using ab initio reconstruction with GASBOR. These results correlated to the secondary structure content obtained from CD spectroscopy of HEWL. These changes in SAXS and CD data were consistent with heat capacity ΔCp -values obtained from van't Hoff plot analyses of the retention data. Collectively, these insights enable informed decisions to be made on the choice of chromatographic conditions, leading to improved separation selectivity and opportunities for innovative column-assisted protein refolding methods.

  14. Using interactive behavior change technology to intervene on physical activity and nutrition with adolescents.

    PubMed

    Mauriello, Leanne M; Sherman, Karen J; Driskell, Mary-Margaret H; Prochaska, Janice M

    2007-08-01

    The use of interactive technologies to promote health behaviors is a rapidly expanding field. Yet, the integration of these technologies in the development of physical activity and nutrition interventions for adolescents is in its infancy. Health in Motion, a multimedia obesity-prevention program for adolescents, is described as a case example of a Web-based interactive program for promoting physical activity and fruit and vegetable consumption among high school students. Lessons gathered from existing programs are summarized and used to offer future direction for advancing the development of adolescent interventions in this field.

  15. Evaluation of the colour change in enamel and dentine promoted by the interaction between 2% chlorhexidine and auxiliary chemical solutions.

    PubMed

    Souza, Matheus; Cecchin, Doglas; Barbizam, Joao V B; Almeida, José F A; Zaia, Alexandre Augusto; Gomes, Brenda P F A; Ferraz, Caio C R

    2013-12-01

    To evaluate the colour change in enamel and dentine, promoted by interaction of 2% chlorhexidine gluconate (CHX) with 5.25% sodium hypochlorite (NaOCl) and 17% ethylenediaminetetraacetic acid (EDTA). Fragments containing enamel and dentine were obtained from the crowns of extracted bovine incisors. Before and after immersion of the samples in the substances, they were evaluated with reference to the colour of the enamel and dentine. The values obtained in numerical scores were subjected to statistical analysis using Wilcoxon test. A colour change in the enamel and dentine in groups treated with CHX gel + NaOCl and CHX gel + NaOCl + EDTA, and a change in colour only in the dentine in groups treated with CHX solution + NaOCl and CHX solution + NaOCl + EDTA. When used prior to NaOCl, CHX has the ability to induce a colour change in dental structures.

  16. cNMA: a framework of encounter complex-based normal mode analysis to model conformational changes in protein interactions

    PubMed Central

    Oliwa, Tomasz; Shen, Yang

    2015-01-01

    Motivation: It remains both a fundamental and practical challenge to understand and anticipate motions and conformational changes of proteins during their associations. Conventional normal mode analysis (NMA) based on anisotropic network model (ANM) addresses the challenge by generating normal modes reflecting intrinsic flexibility of proteins, which follows a conformational selection model for protein–protein interactions. But earlier studies have also found cases where conformational selection alone could not adequately explain conformational changes and other models have been proposed. Moreover, there is a pressing demand of constructing a much reduced but still relevant subset of protein conformational space to improve computational efficiency and accuracy in protein docking, especially for the difficult cases with significant conformational changes. Method and results: With both conformational selection and induced fit models considered, we extend ANM to include concurrent but differentiated intra- and inter-molecular interactions and develop an encounter complex-based NMA (cNMA) framework. Theoretical analysis and empirical results over a large data set of significant conformational changes indicate that cNMA is capable of generating conformational vectors considerably better at approximating conformational changes with contributions from both intrinsic flexibility and inter-molecular interactions than conventional NMA only considering intrinsic flexibility does. The empirical results also indicate that a straightforward application of conventional NMA to an encounter complex often does not improve upon NMA for an individual protein under study and intra- and inter-molecular interactions need to be differentiated properly. Moreover, in addition to induced motions of a protein under study, the induced motions of its binding partner and the coupling between the two sets of protein motions present in a near-native encounter complex lead to the improved

  17. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    PubMed Central

    Dewald, Justine H.; Colomb, Florent; Bobowski-Gerard, Marie; Groux-Degroote, Sophie; Delannoy, Philippe

    2016-01-01

    Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling. PMID:27916834

  18. Developmental and organ-specific changes in promoter DNA-protein interactions in the tomato rbcS gene family.

    PubMed

    Manzara, T; Carrasco, P; Gruissem, W

    1991-12-01

    The five genes encoding ribulose-1,5-bisphosphate carboxylase (rbcS) from tomato are differentially expressed. Transcription of the genes is organ specific and developmentally regulated in fruit and light regulated in cotyledons and leaves. DNase I footprinting assays were used to map multiple sites of DNA-protein interaction in the promoter regions of all five genes and to determine whether the differential transcriptional activity of each gene correlated with developmental or organ-specific changes in DNA-protein interactions. We show organ-specific differences in DNase I protection patterns, suggesting that differential transcription of rbcS genes is controlled at least in part at the level of DNA-protein interactions. In contrast, no changes were detected in the DNase I footprint pattern generated with nuclear extracts from dark-grown cotyledons versus cotyledons exposed to light, implying that light-dependent regulation of rbcS transcription is controlled by protein-protein interactions or modification of DNA binding proteins. During development of tomato fruit, most DNA-protein interactions in the rbcS promoter regions disappear, coincident with the transcriptional inactivation of the rbcS genes. In nuclear extracts from nonphotosynthetic roots and red fruit, the only detectable DNase I protection corresponds to a G-box binding activity. Detection of other DNA binding proteins in extracts from these organs and expression of nonphotosynthetic genes exclude the possibility that roots and red fruit are transcriptionally inactive. The absence of complex promoter protection patterns in these organs suggests either that cooperative interactions between different DNA binding proteins are necessary to form functional transcription complexes or that there is developmental and organ-specific regulation of several rbcS-specific transcription factors in these organs. The DNase I-protected DNA sequences defined in this study are discussed in the context of conserved DNA

  19. Probing the conformational changes and peroxidase-like activity of cytochrome c upon interaction with iron nanoparticles.

    PubMed

    Jafari Azad, Vida; Kasravi, Shahab; Alizadeh Zeinabad, Hojjat; Memar Bashi Aval, Mehri; Saboury, Ali Akbar; Rahimi, Arash; Falahati, Mojtaba

    2016-09-15

    Herein, the interaction of iron nanoparticle (Fe-NP) with cytochrome c (Cyt c) was investigated, and a range of techniques such as dynamic light scattering (DLS), zeta potential measurements, static and synchronous fluorescence spectroscopy, near and far circular dichroism (CD) spectroscopy, and ultraviolet-visible (UV-vis) spectroscopy were used to analyze the interaction between Cyt c and Fe-NP. DLS and zeta potential measurements showed that the values of hydrodynamic radius and charge distribution of Fe-NP are 83.95 ± 3.7 nm and 4.5 ± .8 mV, respectively. The fluorescence spectroscopy results demonstrated that the binding of Fe-NP with Cyt c is mediated by hydrogen bonds and van der Waals interactions. Also Fe-NP induced conformational changes in Cyt c and reduced the melting temperature value of Cyt c from 79.18 to 71.33°C. CD experiments of interaction between Fe-NP and Cyt c revealed that the secondary structure of Cyt c with the dominant α-helix structures remained unchanged whereas the tertiary structure and heme position of Cyt c are subjected to remarkable changes. Absorption spectroscopy at 695 nm revealed that Fe-NP considerably disrupt the Fe…S(Met80) bond. In addition, the UV-vis experiment showed the peroxidase-like activity of Cyt c upon interaction with Fe-NP. Hence, the data indicate the Fe-NP results in unfolding of Cyt c and subsequent peroxidase-like activity of denatured species. It was concluded that a comprehensive study of the interaction of Fe-NP with biological system is a crucial step for their potential application as intracellular delivery carriers and medicinal agents.

  20. Impact of flavor-changing neutral current top quark interactions on BR(t{yields}bW)

    SciTech Connect

    Ferreira, P. M.; Santos, R.

    2009-12-01

    We study the effect that flavor-changing neutral current interactions of the top quark will have on the branching ratio of charged decays of the top quark. We have performed an integrated analysis using Tevatron and B-factories data and with just the further assumption that the Cabibbo-Kobayashi-Maskawa matrix is unitary, we can obtain very restrictive bounds on the strong and electroweak flavor-changing neutral current branching ratios Br(t{yields}qX)<4.0x10{sup -4}, where X is any vector boson and a sum in q=u, c is implied.

  1. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies.

    PubMed

    Mundim, Fabiane M; Bruna, Emilio M

    2016-09-01

    Climate change can drive major shifts in community composition and interactions between resident species. However, the magnitude of these changes depends on the type of interactions and the biome in which they take place. We review the existing conceptual framework for how climate change will influence tropical plant-herbivore interactions and formalize a similar framework for the temperate zone. We then conduct the first biome-specific tests of how plant-herbivore interactions change in response to climate-driven changes in temperature, precipitation, ambient CO2, and ozone. We used quantitative meta-analysis to compare predicted and observed changes in experimental studies. Empirical studies were heavily biased toward temperate systems, so testing predicted changes in tropical plant-herbivore interactions was virtually impossible. Furthermore, most studies investigated the effects of CO2 with limited plant and herbivore species. Irrespective of location, most studies manipulated only one climate change factor despite the fact that different factors can act in synergy to alter responses of plants and herbivores. Finally, studies of belowground plant-herbivore interactions were also rare; those conducted suggest that climate change could have major effects on belowground subsystems. Our results suggest that there is a disconnection between the growing literature proposing how climate change will influence plant-herbivore interactions and the studies testing these predictions. General conclusions will also be hampered without better integration of above- and belowground systems, assessing the effects of multiple climate change factors simultaneously, and using greater diversity of species in experiments.

  2. Applying Large-Group Interaction Methods in the Planning and Implementation of Major Change Efforts.

    ERIC Educational Resources Information Center

    Bryson, John M.; Anderson, Sharon R.

    2000-01-01

    Compares the assumptions, strengths, and weaknesses of seven approaches frequently used in the public sector to involve large numbers of people in planning and implementing change. The approaches are real-time strategic change, search conferences, future searches, strategic options development and analysis, strategic choice, technology of…

  3. Environmental effects of ozone depletion and its interactions with climate change: Progress report, 2016

    EPA Science Inventory

    When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously believed. As a result of this, human health and environmental issues will be longer-lasting and more regionally variable...

  4. Applying Large-Group Interaction Methods in the Planning and Implementation of Major Change Efforts.

    ERIC Educational Resources Information Center

    Bryson, John M.; Anderson, Sharon R.

    2000-01-01

    Compares the assumptions, strengths, and weaknesses of seven approaches frequently used in the public sector to involve large numbers of people in planning and implementing change. The approaches are real-time strategic change, search conferences, future searches, strategic options development and analysis, strategic choice, technology of…

  5. Changes in the Properties of Wheat Leaf Cuticle During Interactions with Hessian Fly

    USDA-ARS?s Scientific Manuscript database

    Infestation of wheat by Hessian fly larvae causes a variety of physiological and biochemical changes in the host plant. We report here that these include changes in cuticle permeability, lipid composition and gene transcript abundance and that these responses differ substantially between resistant a...

  6. Evaluation of a Sex Education Program for Children and Their Parents: Attitude and Interactional Changes

    ERIC Educational Resources Information Center

    Carton, Jacqueline; Carton, John

    1971-01-01

    Within a small group of ten and eleven year-old children, and a separate group of their parents, changes occurred in attitudes in parent child communications following participation in a planned sex education program. Attitude changes pointed to movement in both groups from lesser to greater permissiveness. (Author)

  7. Progressive and regressive developmental changes in neural substrates for face processing: Testing specific predictions of the Interactive Specialization account

    PubMed Central

    Joseph, Jane E.; Gathers, Ann D.; Bhatt, Ramesh S.

    2010-01-01

    Face processing undergoes a fairly protracted developmental time course but the neural underpinnings are not well understood. Prior fMRI studies have only examined progressive changes (i.e., increases in specialization in certain regions with age), which would be predicted by both the Interactive Specialization (IS) and maturational theories of neural development. To differentiate between these accounts, the present study also examined regressive changes (i.e., decreases in specialization in certain regions with age), which is predicted by the IS but not maturational account. The fMRI results show that both progressive and regressive changes occur, consistent with IS. Progressive changes mostly occurred in occipital-fusiform and inferior frontal cortex whereas regressive changes largely emerged in parietal and lateral temporal cortices. Moreover, inconsistent with the maturational account, all of the regions involved in face viewing in adults were active in children, with some regions already specialized for face processing by 5 years of age and other regions activated in children but not specifically for faces. Thus, neurodevelopment of face processing involves dynamic interactions among brain regions including age-related increases and decreases in specialization and the involvement of different regions at different ages. These results are more consistent with IS than maturational models of neural development. PMID:21399706

  8. Change over Time in Police Interactions and HIV Risk Behavior Among Female Sex Workers in Andhra Pradesh, India

    PubMed Central

    Reed, Elizabeth; Blankenship, Kim M.

    2015-01-01

    Little is known about the effectiveness of intervening to change interactions between female sex workers (FSWs) and police in order to reduce HIV risk. Using data collected in the context of a HIV prevention intervention that included components to change policing practices (n = 1,680), we examine the association of FSWs’ reports of negative police interactions and HIV risk behaviors and whether these associations varied over time. Results show negative police interactions declined significantly over time. FSWs who had more than one negative police interaction were more likely to experience STI symptoms (AOR 2.97 [95 % CI 2.27–3.89]), inconsistently use condoms with their clients (AOR 1.36 [95 % CI 1.03–1.79]), and accept more money for condomless sex (AOR 2.37 [95 % CI 1.76–3.21]). Over time, these associations were stable or increased. Even where interventions have reduced the number of police incidents experienced by FSWs, stakeholders in HIV prevention must remain vigilant in challenging these incidents. PMID:25354735

  9. The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints

    NASA Astrophysics Data System (ADS)

    Greff, Stéphane; Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.; Thomas, Olivier P.; Pérez, Thierry

    2017-02-01

    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non–indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta–barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.

  10. Change over Time in Police Interactions and HIV Risk Behavior Among Female Sex Workers in Andhra Pradesh, India.

    PubMed

    Erausquin, Jennifer Toller; Reed, Elizabeth; Blankenship, Kim M

    2015-06-01

    Little is known about the effectiveness of intervening to change interactions between female sex workers (FSWs) and police in order to reduce HIV risk. Using data collected in the context of a HIV prevention intervention that included components to change policing practices (n = 1,680), we examine the association of FSWs' reports of negative police interactions and HIV risk behaviors and whether these associations varied over time. Results show negative police interactions declined significantly over time. FSWs who had more than one negative police interaction were more likely to experience STI symptoms (AOR 2.97 [95 % CI 2.27-3.89]), inconsistently use condoms with their clients (AOR 1.36 [95 % CI 1.03-1.79]), and accept more money for condomless sex (AOR 2.37 [95 % CI 1.76-3.21]). Over time, these associations were stable or increased. Even where interventions have reduced the number of police incidents experienced by FSWs, stakeholders in HIV prevention must remain vigilant in challenging these incidents.

  11. The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints.

    PubMed

    Greff, Stéphane; Aires, Tânia; Serrão, Ester A; Engelen, Aschwin H; Thomas, Olivier P; Pérez, Thierry

    2017-02-20

    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non-indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta-barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral.

  12. The interaction between the proliferating macroalga Asparagopsis taxiformis and the coral Astroides calycularis induces changes in microbiome and metabolomic fingerprints

    PubMed Central

    Greff, Stéphane; Aires, Tânia; Serrão, Ester A.; Engelen, Aschwin H.; Thomas, Olivier P.; Pérez, Thierry

    2017-01-01

    Mediterranean Sea ecosystems are considered as hotspots of biological introductions, exposed to possible negative effects of non–indigenous species. In such temperate marine ecosystems, macroalgae may be dominant, with a great percentage of their diversity represented by introduced species. Their interaction with temperate indigenous benthic organisms have been poorly investigated. To provide new insights, we performed an experimental study on the interaction between the introduced proliferative red alga Asparagopsis taxiformis and the indigenous Mediterranean coral Astroides calycularis. The biological response measurements included meta–barcoding of the associated microbial communities and metabolomic fingerprinting of both species. Significant changes were detected among both associated microbial communities, the interspecific differences decreasing with stronger host interaction. No short term effects of the macroalga on the coral health, neither on its polyp activity or its metabolism, were detected. In contrast, the contact interaction with the coral induced a change in the macroalgal metabolomic fingerprint with a significant increase of its bioactivity against the marine bacteria Aliivibrio fischeri. This induction was related to the expression of bioactive metabolites located on the macroalgal surface, a phenomenon which might represent an immediate defensive response of the macroalga or an allelopathic offense against coral. PMID:28218290

  13. The Electronic Mirror: Human-Computer Interaction and Change in Self-Appraisals.

    ERIC Educational Resources Information Center

    De Laere, Kevin H.; Lundgren, David C.; Howe, Steven R.

    1998-01-01

    Compares humanlike versus machinelike interactional styles of computer interfaces, testing hypotheses that evaluative feedback conveyed through a humanlike interface will have greater impact on individuals' self-appraisals. Reflected appraisals were more influenced by computer feedback than were self-appraisals. Humanlike and machinelike interface…

  14. Covering #SAE: A Mobile Reporting Class's Changing Patterns of Interaction on Twitter over Time

    ERIC Educational Resources Information Center

    Jones, Julie

    2015-01-01

    This study examined the social network that emerged on Twitter surrounding a mobile reporting class as they covered a national breaking news event. The work introduces pedagogical strategies that enhance students' learning opportunities. Through NodeXL and social network cluster analysis, six groups emerged from the Twitter interactions tied to…

  15. Changing learning with new interactive and media-rich instruction environments: virtual labs case study report.

    PubMed

    Huang, Camillan

    2003-01-01

    Technology has created a new dimension for visual teaching and learning with web-delivered interactive media. The Virtual Labs Project has embraced this technology with instructional design and evaluation methodologies behind the simPHYSIO suite of simulation-based, online interactive teaching modules in physiology for the Stanford students. In addition, simPHYSIO provides the convenience of anytime web-access and a modular structure that allows for personalization and customization of the learning material. This innovative tool provides a solid delivery and pedagogical backbone that can be applied to developing an interactive simulation-based training tool for the use and management of the Picture Archiving and Communication System (PACS) image information system. The disparity in the knowledge between health and IT professionals can be bridged by providing convenient modular teaching tools to fill the gaps in knowledge. An innovative teaching method in the whole PACS is deemed necessary for its successful implementation and operation since it has become widely distributed with many interfaces, components, and customizations. This paper will discuss the techniques for developing an interactive-based teaching tool, a case study of its implementation, and a perspective for applying this approach to an online PACS training tool.

  16. Developmental Changes in the Use of Interactional Resources: Persuading the Reader in FL Book Reviews

    ERIC Educational Resources Information Center

    Ryshina-Pankova, Marianna

    2011-01-01

    Negotiating stance and carrying on social interaction in writing in educational contexts has been characterized by the choice of linguistic means away from explicit expressions of opinion representative of the informal relationship with the addressee towards the language that strives to conceal a subjective viewpoint and construes a formal…

  17. Parental Behaviors during Family Interactions Predict Changes in Depression and Anxiety Symptoms during Adolescence

    ERIC Educational Resources Information Center

    Schwartz, Orli S.; Dudgeon, Paul; Sheeber, Lisa B.; Yap, Marie B. H.; Simmons, Julian G.; Allen, Nicholas B.

    2012-01-01

    This study investigated the prospective, longitudinal relations between parental behaviors observed during parent-adolescent interactions, and the development of depression and anxiety symptoms in a community-based sample of 194 adolescents. Positive and negative parental behaviors were examined, with negative behaviors operationalized to…

  18. Covering #SAE: A Mobile Reporting Class's Changing Patterns of Interaction on Twitter over Time

    ERIC Educational Resources Information Center

    Jones, Julie

    2015-01-01

    This study examined the social network that emerged on Twitter surrounding a mobile reporting class as they covered a national breaking news event. The work introduces pedagogical strategies that enhance students' learning opportunities. Through NodeXL and social network cluster analysis, six groups emerged from the Twitter interactions tied to…

  19. Changing Classroom Practice through the English National Literacy Strategy: A Micro-Interactional Perspective

    ERIC Educational Resources Information Center

    Lefstein, Adam

    2008-01-01

    How and why is national policy translated into interactions between teachers and pupils? This article examines the enactment of the English National Literacy Strategy (NLS) in a case study of two literacy lessons, which are drawn from a yearlong ethnographic study of the NLS in one school. Although the teacher taught directly from and adhered…

  20. Effects of Teacher-Child Interaction Training (TCIT) on Teacher Ratings of Behavior Change

    ERIC Educational Resources Information Center

    Garbacz, Lauren L.; Zychinski, Kristen E.; Feuer, Rachel M.; Carter, Jocelyn S.; Budd, Karen S.

    2014-01-01

    Problem behaviors in preschool-aged children negatively affect teacher-child relationships and children's skill development. In this clinical replication of an initial study, we implemented Teacher-Child Interaction Training (TCIT), a teacher-delivered, universal intervention designed for early childhood settings. The initial study evaluated…

  1. Changing Times in South Africa: Remodeling Interactive Learning. LearnTech Case Study Series, No. 8.

    ERIC Educational Resources Information Center

    Leigh, Stuart

    This case study looks at the way in which the fundamental principles and practices of a well-established model of interactive radio instruction (IRI) were examined in light of the way that South Africa now wishes to teach language and mathematics. At stake was IRI's capacity to reinvent itself and still find a useful role for radio in the context…

  2. Developmental Changes in the Use of Interactional Resources: Persuading the Reader in FL Book Reviews

    ERIC Educational Resources Information Center

    Ryshina-Pankova, Marianna

    2011-01-01

    Negotiating stance and carrying on social interaction in writing in educational contexts has been characterized by the choice of linguistic means away from explicit expressions of opinion representative of the informal relationship with the addressee towards the language that strives to conceal a subjective viewpoint and construes a formal…

  3. Parental Behaviors during Family Interactions Predict Changes in Depression and Anxiety Symptoms during Adolescence

    ERIC Educational Resources Information Center

    Schwartz, Orli S.; Dudgeon, Paul; Sheeber, Lisa B.; Yap, Marie B. H.; Simmons, Julian G.; Allen, Nicholas B.

    2012-01-01

    This study investigated the prospective, longitudinal relations between parental behaviors observed during parent-adolescent interactions, and the development of depression and anxiety symptoms in a community-based sample of 194 adolescents. Positive and negative parental behaviors were examined, with negative behaviors operationalized to…

  4. Invasive plant architecture alters trophic interactions by changing predator abundance and behavior

    Treesearch

    Dean E. Pearson

    2009-01-01

    As primary producers, plants are known to influence higher trophic interactions by initiating food chains. However, as architects, plants may bypass consumers to directly affect predators with important but underappreciated trophic ramifications. Invasion of western North American grasslands by the perennial forb, spotted knapweed (Centaurea maculosa...

  5. Climate change alters stability and species potential interactions in a large marine ecosystem.

    PubMed

    Griffith, Gary P; Strutton, Peter G; Semmens, Jayson M

    2017-09-04

    We have little empirical evidence of how large-scale overlaps between large numbers of marine species may have altered in response to human impacts. Here, we synthesized all available distribution data (>1 million records) since 1992 for 61 species of the East Australian marine ecosystem, a global hot spot of ocean warming and continuing fisheries exploitation. Using a novel approach, we constructed networks of the annual changes in geographical overlaps between species. Using indices of changes in species overlap, we quantified changes in the ecosystem stability, species robustness, species sensitivity and structural keystone species. We then compared the species overlap indices with environmental and fisheries data to identify potential factors leading to the changes in distributional overlaps between species. We found that the structure of the ecosystem has changed with a decrease in asymmetrical geographical overlaps between species. This suggests that the ecosystem has become less stable and potentially more susceptible to environmental perturbations. Most species have shown a decrease in overlaps with other species. The greatest decrease in species overlap robustness and sensitivity to the loss of other species has occurred in the pelagic community. Some demersal species have become more robust and less sensitive. Pelagic structural keystone species, predominately the tunas and billfish, have been replaced by demersal fish species. The changes in species overlap were strongly correlated with regional oceanographic changes, in particular increasing ocean warming and the southward transport of warmer and saltier water with the East Australian Current (EAC), but less correlated with fisheries catch. Our study illustrates how large-scale multispecies distribution changes can help identify structural changes in marine ecosystems associated with climate change. This article is protected by copyright. All rights reserved. This article is protected by copyright. All

  6. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    NASA Astrophysics Data System (ADS)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  7. Feeling the heat: the effect of acute temperature changes on predator-prey interactions in coral reef fish.

    PubMed

    Allan, Bridie J M; Domenici, Paolo; Munday, Phillip L; McCormick, Mark I

    2015-01-01

    Recent studies demonstrate that the elevated temperatures predicted to occur by the end of the century can affect the physiological performance and behaviour of larval and juvenile fishes; however, little is known of the effect of these temperatures on ecological processes, such as predator-prey interactions. Here, we show that exposure to elevated temperatures significantly affected the predator-prey interactions of a pair of common reef fish, the planktivorous damselfish (Pomacentrus wardi) and the piscivorous dottyback (Pseudochromis fuscus). When predators exposed to elevated temperatures interacted with prey exposed in a similar manner, maximal attack speeds increased. This effect coupled with decreasing prey escape speeds and escape distances led to increased predation rates. Prey exposed to elevated temperatures also had decreased reaction distances and increased apparent looming threshold, suggesting that their sensory performance was affected. This occurred despite the increase in maximal attack speeds, which in other species has been shown to increase reaction distances. These results suggest that the escape performance of prey is sensitive to short-term increases in ambient temperature. As marine environments become more thermally variable in the future, our results demonstrate that some predators may become more successful, suggesting that there will be strong selection for the maintenance of maximal escape performance in prey. In the present era of rapid climate change, understanding how changes to individual performance influence the relationships between predators and their prey will be increasingly important in predicting the effects of climate change within ecosystems.

  8. Evaluating a home-based dyadic intervention: Changes in postpartum depression, maternal perceptions, and mother-infant interactions.

    PubMed

    Paris, Ruth; Bolton, Rendelle E; Spielman, Eda

    2011-05-01

    Psychotherapeutic treatments that focus on improving the relational processes between mothers with postpartum depression (PPD) and their infants, as well as the mother's individual therapeutic needs, have a great potential to positively impact the mother, her infant, and their relationship (K.J. Nylen, T.E. Moran, C.L. Franklin, & M. O'Hara, 2006). Utilizing pilot data from an evaluation of a home-based dyadic therapy for mothers with PPD and their infants, this article reports on a recent academic-community partnership study. The effectiveness of the intervention was examined, specifically regarding changes in mother's mood, parenting experience, and relationship with her infant. In addition, associations were examined among maternal self-report variables measuring change from pre- to posttreatment in PPD, psychological distress, and maternal perceptions of parenting and those variables measuring change in observer ratings of maternal-infant interactions. Results showed improvements in mothers' depression, distress, and perceptions of parenting as well as many ratings of mothers' interactions with their infants. However, only improvements in maternal perceptions of parenting, such as maternal self-esteem and parenting stress, were associated with better mother--infant interactions. Importance of this research for the field of infant mental health as well as clinical implications are discussed. Copyright © 2011 Michigan Association for Infant Mental Health.

  9. Structure of the active N-terminal domain of Ezrin. Conformational and mobility changes identify keystone interactions.

    PubMed

    Smith, William James; Nassar, Nicolas; Bretscher, Anthony; Cerione, Richard A; Karplus, P Andrew

    2003-02-14

    Ezrin is a member of the ERM (ezrin, radixin, moesin) family of proteins that cross-link the actin cytoskeleton to the plasma membrane and also may function in signaling cascades that regulate the assembly of actin stress fibers. Here, we report a crystal structure for the free (activated) FERM domain (residues 2-297) of recombinant human ezrin at 2.3 A resolution. Structural comparison among the dormant moesin FERM domain structure and the three known active FERM domain structures (radixin, moesin, and now ezrin) allows the clear definition of regions that undergo structural changes during activation. The key regions affected are residues 135-150 and 155-180 in lobe F2 and residues 210-214 and 235-267 in lobe F3. Furthermore, we show that a large increase in the mobilities of lobes F2 and F3 accompanies activation, suggesting that their integrity is compromised. This leads us to propose a new concept that we refer to as keystone interactions. Keystone interactions occur when one protein (or protein part) contributes residues that allow another protein to complete folding, meaning that it becomes an integral part of the structure and would rarely dissociate. Such interactions are well suited for long-lived cytoskeletal protein interactions. The keystone interactions concept leads us to predict two specific docking sites within lobes F2 and F3 that are likely to bind target proteins.

  10. Cognition-emotion interactions: patterns of change and implications for math problem solving.

    PubMed

    Trezise, Kelly; Reeve, Robert A

    2014-01-01

    Surprisingly little is known about whether relationships between cognitive and emotional states remain stable or change over time, or how different patterns of stability and/or change in the relationships affect problem solving abilities. Nevertheless, cross-sectional studies show that anxiety/worry may reduce working memory (WM) resources, and the ability to minimize the effects anxiety/worry is higher in individuals with greater WM capacity. To investigate the patterns of stability and/or change in cognition-emotion relations over time and their implications for problem solving, 126 14-year-olds' algebraic WM and worry levels were assessed twice in a single day before completing an algebraic math problem solving test. We used latent transition analysis to identify stability/change in cognition-emotion relations, which yielded a six subgroup solution. Subgroups varied in WM capacity, worry, and stability/change relationships. Among the subgroups, we identified a high WM/low worry subgroup that remained stable over time and a high WM/high worry, and a moderate WM/low worry subgroup that changed to low WM subgroups over time. Patterns of stability/change in subgroup membership predicted algebraic test results. The stable high WM/low worry subgroup performed best and the low WM capacity-high worry "unstable across time" subgroup performed worst. The findings highlight the importance of assessing variations in cognition-emotion relationships over time (rather than assessing cognition or emotion states alone) to account for differences in problem solving abilities.

  11. Threshold responses to interacting global changes in a California grassland ecosystem

    SciTech Connect

    Field, Christopher; Mooney, Harold; Vitousek, Peter

    2015-02-02

    Building on the history and infrastructure of the Jasper Ridge Global Change Experiment, we conducted experiments to explore the potential for single and combined global changes to stimulate fundamental type changes in ecosystems that start the experiment as California annual grassland. Using a carefully orchestrated set of seedling introductions, followed by careful study and later removal, the grassland was poised to enable two major kinds of transitions that occur in real life and that have major implications for ecosystem structure, function, and services. These are transitions from grassland to shrubland/forest and grassland to thistle patch. The experiment took place in the context of 4 global change factors – warming, elevated CO2, N deposition, and increased precipitation – in a full-factorial array, present as all possible 1, 2, 3, and 4-factor combinations, with each combination replicated 8 times.

  12. Changing Teacher-Child Dyadic Interactions to Improve Preschool Children's Externalizing Behaviors.

    PubMed

    Williford, Amanda P; LoCasale-Crouch, Jennifer; Whittaker, Jessica Vick; DeCoster, Jamie; Hartz, Karyn A; Carter, Lauren M; Wolcott, Catherine Sanger; Hatfield, Bridget E

    2016-12-19

    A randomized controlled trial was used to examine the impact of an attachment-based, teacher-child, dyadic intervention (Banking Time) to improve children's externalizing behavior. Participants included 183 teachers and 470 preschool children (3-4 years of age). Classrooms were randomly assigned to Banking Time, child time, or business as usual (BAU). Sparse evidence was found for main effects on child behavior. Teachers in Banking Time demonstrated lower negativity and fewer positive interactions with children compared to BAU teachers at post assessment. The impacts of Banking Time and child time on reductions of parent- and teacher-reported externalizing behavior were greater when teachers evidenced higher-quality, classroom-level, teacher-child interactions at baseline. An opposite moderating effect was found for children's positive engagement with teachers.

  13. Weak-field ELF magnetic interactions: Implications for biological change during paleomagnetic reversals.

    PubMed

    Liboff, Abraham R

    2013-12-01

    Contrary to the belief that paleomagnetic reversals are not biologically significant, we find good reason to think otherwise. Attention is drawn to polarity transitions, time intervals a few thousand years long that follow the collapse of the existing geomagnetic dipole moment and precede the establishment of the new, oppositely directed moment. The geomagnetic field during transitions is reduced to a maximal mean intensity about 10% of the stable field and can exhibit low-frequency perturbations comparable to numerous laboratory-based extremely low frequency (ELF) studies reporting biological interactions, making it very likely that similar interactions must occur over the course of a polarity transition. This conclusion is strengthened by reports of medical problems that significantly correlate with intense solar winds, events that also generate ELF perturbations similar to those that can occur during polarity transitions.

  14. Changing restoration rules: exotic bivalves interact with residence time and depth to control phytoplankton productivity

    USGS Publications Warehouse

    Lucas, Lisa V.; Thompson, Janet K.

    2012-01-01

    Non-native species are a prevalent ecosystem stressor that can interact with other stressors to confound resource management and restoration. We examine how interactions between physical habitat attributes and a particular category of non-native species (invasive bivalves) influence primary production in aquatic ecosystems. Using mathematical models, we show how intuitive relationships between phytoplankton productivity and controllable physical factors (water depth, hydraulic transport time) that hold in the absence of bivalves can be complicated—and even reversed—by rapid bivalve grazing. In light-limited environments without bivalves, shallow, hydrodynamically “slow” habitats should generally have greater phytoplankton biomass and productivity than deeper, “faster” habitats. But shallower, slower environments can be less productive than deeper, faster ones if benthic grazing is strong. Moreover, shallower and slower waters exhibit a particularly broad range of possible productivity outcomes that can depend on whether bivalves are present. Since it is difficult to predict the response of non-native bivalves to habitat restoration, outcomes for new shallow, slow environments can be highly uncertain. Habitat depth and transport time should therefore not be used as indicators of phytoplankton biomass and production where bivalve colonization is possible. This study provides for ecosystem management a particular example of a broad lesson: abiotic ecosystem stressors should be managed with explicit consideration of interactions with other major (including biotic) stressors. We discuss the applicability and management implications of our models and results for a range of aquatic system types, with a case study focused on the Sacramento-San Joaquin Delta (California, USA). Simple mathematical models like those used here can illuminate interactions between ecosystem stressors and provide process-based guidance for resource managers as they develop strategies

  15. Interaction of ligands with pig heart citrate synthase: conformational changes and catalysis.

    PubMed

    Johnson, J K; Srivastava, D K

    1991-06-01

    The fluorescence polarization of 8-hydroxypyrene (1,3,6)trisulfonate (HPT) increases upon interaction with pig heart citrate synthase. Titration of HPT with increasing concentrations of citrate synthase exhibits a hyperbolic saturation behavior, from which the dissociation constant of the enzyme-HPT complex (3.64 +/- 0.3 microM) was determined. The enzyme-HPT interaction is competitively inhibited by oxaloacetate (but not affected by acetyl CoA) with a Ki of 4.3 +/- 1.8 microM. This value is similar to the dissociation constant (Kd = 4.5 +/- 1.6 microM) for the enzyme-oxalocetate complex (determined in the absence of any effector ligand), as well as to the Km for oxaloacetate (3.9 +/- 0.7 microM) in a steady-state citrate synthase catalyzed reaction at a saturating concentration of acetyl CoA. However, the dissociation constant for the citrate synthase-oxaloacetate complex determined by the urea denaturation method is at least 25-fold lower than those determined by the other methods. This suggests an effector role of urea in strengthening the enzyme-oxaloacetate interaction. At low nondenaturing concentrations, urea inhibits the citrate synthase catalyzed reaction in an uncompetitive manner with respect to oxaloacetate, i.e., the Km for oxaloacetate decreases with an increase in urea concentration. This further suggests that urea stabilizes the interaction between citrate synthase and oxaloacetate. The effect of urea is specific for the substrate oxaloacetate, and not for the substrate analogue, HPT, although both these ligands bind citrate synthase with equal affinities, and protect the enzyme against thermal denaturation with equal magnitudes. The results presented herein are discussed in the light of known conformational states of the enzyme.

  16. Extracellular matrix-associated proteome changes during non-host resistance in citrus-Xanthomonas interactions.

    PubMed

    Swaroopa Rani, Tirupaati; Podile, Appa Rao

    2014-04-01

    Non-host resistance (NHR) is a most durable broad-spectrum resistance employed by the plants to restrict majority of pathogens. Plant extracellular matrix (ECM) is a critical defense barrier. Understanding ECM responses during interaction with non-host pathogen will provide insights into molecular events of NHR. In this study, the ECM-associated proteome was compared during interaction of citrus with pathogen Xanthomonas axonopodis pv. citri (Xac) and non-host pathogen Xanthomonas oryzae pv. oryzae (Xoo) at 8, 16, 24 and 48 h post inoculation. Comprehensive analysis of ECM-associated proteins was performed by extracting wall-bound and soluble ECM components using both destructive and non-destructive procedures. A total of 53 proteins was differentially expressed in citrus-Xanthomonas host and non-host interaction, out of which 44 were identified by mass spectrometry. The differentially expressed proteins were related to (1) defense-response (5 pathogenesis-related proteins, 3 miraculin-like proteins (MIR, MIR1 and MIR2) and 2 proteases); (2) enzymes of reactive oxygen species (ROS) metabolism [Cu/Zn superoxide dismutase (SOD), Fe-SOD, ascorbate peroxidase and 2-cysteine-peroxiredoxin]; (3) signaling (lectin, curculin-like lectin and concanavalin A-like lectin kinase); and (4) cell-wall modification (α-xylosidase, glucan 1, 3 β-glucosidase, xyloglucan endotransglucosylase/hydrolase). The decrease in ascorbate peroxidase and cysteine-peroxiredoxin could be involved in maintenance of ROS levels. Increase in defense, cell-wall remodeling and signaling proteins in citrus-Xoo interaction suggests an active involvement of ECM in execution of NHR. Partially compromised NHR in citrus against Xoo, upon Brefeldin A pre-treatment supported the role of non-classical secretory proteins in this phenomenon. © 2013 Scandinavian Plant Physiology Society.

  17. Interactions of pulmonary surfactant protein A with phospholipid monolayers change with pH.

    PubMed Central

    Ruano, M L; Nag, K; Casals, C; Pérez-Gil, J; Keough, K M

    1999-01-01

    The interaction of pulmonary surfactant protein A (SP-A) labeled with Texas Red (TR-SP-A) with monolayers containing zwitterionic and acidic phospholipids has been studied at pH 7.4 and 4.5 using epifluorescence microscopy. At pH 7.4, TR-SP-A expanded the pi-A isotherms of film of dipalmitoylphosphatidylcholine (DPPC). It interacted at high concentration at the edges of condensed-expanded phase domains, and distributed evenly at lower concentration into the fluid phase with increasing pressure. At pH 4.5, TR-SP-A expanded DPPC monolayers to a slightly lower extent than at pH 7.4. It interacted primarily at the phase boundaries but it did not distribute into the fluid phase with increasing pressure. Films of DPPC/dipalmitoylphosphatidylglycerol (DPPG) 7:3 mol/mol were somewhat expanded by TR-SP-A at pH 7.4. The protein was distributed in aggregates only at the condensed-expanded phase boundaries at all surface pressures. At pH 4.5 TR-SP-A caused no expansion of the pi-A isotherm of DPPC/DPPG, but its fluorescence was relatively homogeneously distributed throughout the expanded phase at all pressures studied. These observations can be explained by a combination of factors including the preference for SP-A aggregates to enter monolayers at packing dislocations and their disaggregation in the presence of lipid under increasing pressure, together with the influence of pH on the aggregation state of SP-A and the interaction of SP-A with zwitterionic and acidic lipid. PMID:10465757

  18. Interactive Puzzles for the mean climate dyanmics and climate change with the Monash Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2014-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model that simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations. Despite its simplicity the model simulates the mean climate and its response to external forcings, such as doubling of the CO2 concentrations very realistically.The Monash simple climate model web-interface allows you to do some entertaining and educational puzzles about the interaction of climate dynamics. By turning switches OFF and ON you control physical processes in the climate system, but you do not know what these processes. By testing a number of experiments you learn about the interactions in the climate system and thereby figure out which switch controls what process in the climate system. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  19. Non-specific interactions between soluble and induce irreversible changes in the properties of bilayers.

    PubMed

    Ruggeri, Francesca; Zhang, Fan; Lind, Tania; Bruce, Erica D; Lau, Boris L T; Cárdenas, Marité

    2013-03-27

    Soluble in the extracellular matrix experience a crowded environment. However, most of the biophysical studies performed to date have focused on concentrations within the dilute regime (well below the mM range). Here, we systematically studied the interaction of model cell membrane systems (giant unilamellar vesicles and supported bilayers) with soluble globular , bovine serum albumin, and lysozyme at physiologically relevant concentrations. To mimic the extracellular environment more closely, we also used fetal bovine serum as a good representative of a biomimetic mixture. We found that regardless of the used (and thus of their biological function), the interactions between a model cell membrane and these are determined by their physico-chemical characteristics, mainly their dipolar character (or charged patches). In this paper we discuss the specificity and reversibility of these interactions and their potential implications on the living cells. In particular, we report initial evidence for an additional role of in cell membranes: that of reducing the effects of non-specific of soluble on the cell membrane.

  20. Changes in the speed of ants as a result of aggressive interactions.

    PubMed

    Ślipiński, Piotr; Żmihorski, Michał

    2017-10-01

    Subordinate ant species utilize different tactics to reduce competition with the stronger, larger and more aggressive individuals of a dominant species. In our experimental study, we assessed the behavioral response of individual workers of 4 subordinate ant species during their co-occurrence with workers of a single dominant species. Contrary to most classical experiments focused on aggressive interactions, we assessed workers' speed as a crucial factor in the outcome of co-occurrence. Generally, there was a large intraspecific variation in the speed of the studied species-each had slow and fast individuals. Workers of all studied species moved faster just after interaction, suggesting that contact between 2 hostile workers is a stressful stimulus, generating a behavioral reaction of increasing speed. Also, the number of aggressive contacts experienced by a given individual positively affected its speed. Moreover, workers which were fast when exploring territory were also fast after interspecific interactions. The duration of aggression was significantly reduced by the speed and body size of a subordinate species worker-the more quickly a worker reacted and bigger it was, the shorter was the time of cumulative aggression. To our knowledge, this is the first study of this type to be conducted on ants and we conclude that speed is an overlooked and important characteristic of species and also individuals, therefore it should be considered as a driver of patterns of co-occurrence in ant assemblages. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  1. Few Ramachandran Angle Changes Provide Interaction Strength Increase in Aβ42 versus Aβ40 Amyloid Fibrils

    PubMed Central

    Bastidas, Oscar H.; Green, Benjamin; Sprague, Mary; Peters, Michael H.

    2016-01-01

    The pathology of Alzheimer’s disease can ultimately be traced to the increased aggregation stability of Aβ42 peptides which possess two extra residues (Ile 41 & Ala 42) that the non-pathological strain (Aβ40) lacks. We have found Aβ42 fibrils to exhibit stronger energies in inter-chain interactions and we have also identified the cause for this increase to be the result of different Ramachandran angle values in certain residues of the Aβ42 strain compared to Aβ40. These unique angle configurations result in the peptide planes in the fibril structures to be more vertical along the fibril axis for Aβ42 which thus reduces the inter-atomic distance between interacting atoms on vicinal peptide chains thereby increasing the electrostatic interaction energies. We lastly postulate that these different Ramachandran angle values could possibly be traced to the unique conformational folding avenues sampled by the Aβ42 peptide owing to the presence of its two extra residues. PMID:27808259

  2. Spatial interactions and cooperation can change the speed of evolution of complex phenotypes

    PubMed Central

    Komarova, Natalia L.

    2014-01-01

    Complex traits arise from the interactions among multiple gene products. In the case where the complex phenotype is separated from the wild type by a fitness valley or a fitness plateau, the generation of a complex phenotype may take a very long evolutionary time. Interestingly, the rate of evolution depends in nontrivial ways on various properties of the underlying stochastic process, such as the spatial organization of the population and social interactions among cells. Here we review some of our recent work that investigates these phenomena in asexual populations. The role of spatial constraints is quite complex: there are realistic cases where spatial constrains can accelerate or delay evolution, or even influence it in a nonmonotonic fashion, where evolution works fastest for intermediate-range constraints. Social interactions among cells can be studied in the context of the division-of-labor games. Under a range of circumstances, cooperation among cells can lead to a relatively fast creation of a complex phenotype as an emerging (distributed) property. If we further assume the presence of cheaters, we observe the emergence of a fully mutated population of cells possessing the complex phenotype. Applications of these ideas to cancer initiation and biofilm formation in bacteria are discussed. PMID:25024187

  3. Contributions of soil moisture interactions to future precipitation changes in the GLACE-CMIP5 experiment

    NASA Astrophysics Data System (ADS)

    May, Wilhelm; Rummukainen, Markku; Chéruy, Frederique; Hagemann, Stefan; Meier, Arndt

    2017-09-01

    Changes in soil moisture are likely to contribute to future changes in latent heat flux and various characteristics of daily precipitation. Such contributions during the second half of the twenty-first century are assessed using the simulations from the GLACE-CMIP5 experiment, applying a linear regression analysis to determine the magnitude of these contributions. As characteristics of daily precipitation, mean daily precipitation, the fre