Sample records for change distribution spatiale

  1. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE PAGES

    Leng, Guoyong; Huang, Maoyi

    2017-05-03

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  2. Crop yield response to climate change varies with crop spatial distribution pattern

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leng, Guoyong; Huang, Maoyi

    The linkage between crop yield and climate variability has been confirmed in numerous studies using statistical approaches. A crucial assumption in these studies is that crop spatial distribution pattern is constant over time. Here, we explore how changes in county-level corn spatial distribution pattern modulate the response of its yields to climate change at the state level over the Contiguous United States. Our results show that corn yield response to climate change varies with crop spatial distribution pattern, with distinct impacts on the magnitude and even the direction at the state level. Corn yield is predicted to decrease by 20~40%more » by 2050s when considering crop spatial distribution pattern changes, which is 6~12% less than the estimates with fixed cropping pattern. The beneficial effects are mainly achieved by reducing the negative impacts of daily maximum temperature and strengthening the positive impacts of precipitation. Our results indicate that previous empirical studies could be biased in assessing climate change impacts by ignoring the changes in crop spatial distribution pattern. As a result, this has great implications for understanding the increasing debates on whether climate change will be a net gain or loss for regional agriculture.« less

  3. Analysis of shifts in the spatial distribution of vegetation due to climate change

    NASA Astrophysics Data System (ADS)

    del Jesus, Manuel; Díez-Sierra, Javier; Rinaldo, Andrea; Rodríguez-Iturbe, Ignacio

    2017-04-01

    Climate change will modify the statistical regime of most climatological variables, inducing changes on average values and in the natural variability of environmental variables. These environmental variables may be used to explain the spatial distribution of functional types of vegetation in arid and semiarid watersheds through the use of plant optimization theories. Therefore, plant optimization theories may be used to approximate the response of the spatial distribution of vegetation to a changing climate. Predicting changes in these spatial distributions is important to understand how climate change may affect vegetated ecosystems, but it is also important for hydrological engineering applications where climate change effects on water availability are assessed. In this work, Maximum Entropy Production (MEP) is used as the plant optimization theory that describes the spatial distribution of functional types of vegetation. Current climatological conditions are obtained from direct observations from meteorological stations. Climate change effects are evaluated for different temporal horizons and different climate change scenarios using numerical model outputs from the CMIP5. Rainfall estimates are downscaled by means of a stochastic point process used to model rainfall. The study is carried out for the Rio Salado watershed, located within the Sevilleta LTER site, in New Mexico (USA). Results show the expected changes in the spatial distribution of vegetation and allow to evaluate the expected variability of the changes. The updated spatial distributions allow to evaluate the vegetated ecosystem health and its updated resilience. These results can then be used to inform the hydrological modeling part of climate change assessments analyzing water availability in arid and semiarid watersheds.

  4. Detecting changes in the spatial distribution of nitrate contamination in ground water

    USGS Publications Warehouse

    Liu, Z.-J.; Hallberg, G.R.; Zimmerman, D.L.; Libra, R.D.

    1997-01-01

    Many studies of ground water pollution in general and nitrate contamination in particular have often relied on a one-time investigation, tracking of individual wells, or aggregate summaries. Studies of changes in spatial distribution of contaminants over time are lacking. This paper presents a method to compare spatial distributions for possible changes over time. The large-scale spatial distribution at a given time can be considered as a surface over the area (a trend surface). The changes in spatial distribution from period to period can be revealed by the differences in the shape and/or height of surfaces. If such a surface is described by a polynomial function, changes in surfaces can be detected by testing statistically for differences in their corresponding polynomial functions. This method was applied to nitrate concentration in a population of wells in an agricultural drainage basin in Iowa, sampled in three different years. For the period of 1981-1992, the large-scale spatial distribution of nitrate concentration did not show significant change in the shape of spatial surfaces; while the magnitude of nitrate concentration in the basin, or height of the computed surfaces showed significant fluctuations. The change in magnitude of nitrate concentration is closely related to climatic variations, especially in precipitation. The lack of change in the shape of spatial surfaces means that either the influence of land use/nitrogen management was overshadowed by climatic influence, or the changes in land use/management occurred in a random fashion.

  5. Silver hake tracks changes in Northwest Atlantic circulation.

    PubMed

    Nye, Janet A; Joyce, Terrence M; Kwon, Young-Oh; Link, Jason S

    2011-08-02

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic processes governing the spatial distribution of adult silver hake, Merluccius bilinearis, a commercially important fish in the Northeast US shelf region. Changes in spatial distribution of silver hake over the last 40 years are highly correlated with the position of the Gulf Stream. These changes in distribution are in direct response to local changes in bottom temperature on the continental shelf that are responding to the same large scale circulation change affecting the Gulf Stream path, namely changes in the Atlantic meridional overturning circulation (AMOC). If the AMOC weakens, as is suggested by global climate models, silver hake distribution will remain in a poleward position, the extent to which could be forecast at both decadal and multidecadal scales.

  6. Forest defoliators and climatic change: potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera Lymantriidae)

    Treesearch

    David W. ​Williams; Andrew M. Liebhold

    1995-01-01

    Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania,...

  7. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem.

    PubMed

    Walsh, Harvey J; Richardson, David E; Marancik, Katrin E; Hare, Jonathan A

    2015-01-01

    Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services.

  8. Long-Term Changes in the Distributions of Larval and Adult Fish in the Northeast U.S. Shelf Ecosystem

    PubMed Central

    2015-01-01

    Many studies have documented long-term changes in adult marine fish distributions and linked these changes to climate change and multi-decadal climate variability. Most marine fish, however, have complex life histories with morphologically distinct stages, which use different habitats. Shifts in distribution of one stage may affect the connectivity between life stages and thereby impact population processes including spawning and recruitment. Specifically, many marine fish species have a planktonic larval stage, which lasts from weeks to months. We compared the spatial distribution and seasonal occurrence of larval fish in the Northeast U.S. Shelf Ecosystem to test whether spatial and temporal distributions changed between two decades. Two large-scale ichthyoplankton programs sampled using similar methods and spatial domain each decade. Adult distributions from a long-term bottom trawl survey over the same time period and spatial area were also analyzed using the same analytical framework to compare changes in larval and adult distributions between the two decades. Changes in spatial distribution of larvae occurred for 43% of taxa, with shifts predominately northward (i.e., along-shelf). Timing of larval occurrence shifted for 49% of the larval taxa, with shifts evenly split between occurring earlier and later in the season. Where both larvae and adults of the same species were analyzed, 48% exhibited different shifts between larval and adult stages. Overall, these results demonstrate that larval fish distributions are changing in the ecosystem. The spatial changes are largely consistent with expectations from a changing climate. The temporal changes are more complex, indicating we need a better understanding of reproductive timing of fishes in the ecosystem. These changes may impact population productivity through changes in life history connectivity and recruitment, and add to the accumulating evidence for changes in the Northeast U.S. Shelf Ecosystem with potential to impact fisheries and other ecosystem services. PMID:26398900

  9. Dengue Vectors and their Spatial Distribution

    PubMed Central

    Higa, Yukiko

    2011-01-01

    The distribution of dengue vectors, Ae. aegypti and Ae. albopictus, is affected by climatic factors. In addition, since their life cycles are well adapted to the human environment, environmental changes resulting from human activity such as urbanization exert a great impact on vector distribution. The different responses of Ae. aegypti and Ae albopictus to various environments result in a difference in spatial distribution along north-south and urban-rural gradients, and between the indoors and outdoors. In the north-south gradient, climate associated with survival is an important factor in spatial distribution. In the urban-rural gradient, different distribution reflects a difference in adult niches and is modified by geographic and human factors. The direct response of the two species to the environment around houses is related to different spatial distribution indoors and outdoors. Dengue viruses circulate mainly between human and vector mosquitoes, and the vector presence is a limiting factor of transmission. Therefore, spatial distribution of dengue vectors is a significant concern in the epidemiology of the disease. Current technologies such as GIS, satellite imagery and statistical models allow researchers to predict the spatial distribution of vectors in the changing environment. Although it is difficult to confirm the actual effect of environmental and climate changes on vector abundance and vector-borne diseases, environmental changes caused by humans and human behavioral changes due to climate change can be expected to exert an impact on dengue vectors. Longitudinal monitoring of dengue vectors and viruses is therefore necessary. PMID:22500133

  10. Changes in the Spatial Distribution of Elementary Schools and Their Impact on Rural Communities in Czechia in the Second Half of the 20th Century

    ERIC Educational Resources Information Center

    Kucerova, Silvie; Kucera, Zdenek

    2012-01-01

    This article addresses the changes in the spatial distribution of elementary schools in Czechia in the second half of the 20th century and the consequences of these changes on the functioning of rural communities. The spatial distribution of elementary schools, the shape of their catchment areas, and the regional and local communities connected…

  11. Modelling both dominance and species distribution provides a more complete picture of changes to mangrove ecosystems under climate change.

    PubMed

    Crase, Beth; Vesk, Peter A; Liedloff, Adam; Wintle, Brendan A

    2015-08-01

    Dominant species influence the composition and abundance of other species present in ecosystems. However, forecasts of distributional change under future climates have predominantly focused on changes in species distribution and ignored possible changes in spatial and temporal patterns of dominance. We develop forecasts of spatial changes for the distribution of species dominance, defined in terms of basal area, and for species occurrence, in response to sea level rise for three tree taxa within an extensive mangrove ecosystem in northern Australia. Three new metrics are provided, indicating the area expected to be suitable under future conditions (Eoccupied ), the instability of suitable area (Einstability ) and the overlap between the current and future spatial distribution (Eoverlap ). The current dominance and occurrence were modelled in relation to a set of environmental variables using boosted regression tree (BRT) models, under two scenarios of seedling establishment: unrestricted and highly restricted. While forecasts of spatial change were qualitatively similar for species occurrence and dominance, the models of species dominance exhibited higher metrics of model fit and predictive performance, and the spatial pattern of future dominance was less similar to the current pattern than was the case for the distributions of species occurrence. This highlights the possibility of greater changes in the spatial patterning of mangrove tree species dominance under future sea level rise. Under the restricted seedling establishment scenario, the area occupied by or dominated by a species declined between 42.1% and 93.8%, while for unrestricted seedling establishment, the area suitable for dominance or occurrence of each species varied from a decline of 68.4% to an expansion of 99.5%. As changes in the spatial patterning of dominance are likely to cause a cascade of effects throughout the ecosystem, forecasting spatial changes in dominance provides new and complementary information in addition to that provided by forecasts of species occurrence. © 2015 John Wiley & Sons Ltd.

  12. Inner membrane fusion mediates spatial distribution of axonal mitochondria

    PubMed Central

    Yu, Yiyi; Lee, Hao-Chih; Chen, Kuan-Chieh; Suhan, Joseph; Qiu, Minhua; Ba, Qinle; Yang, Ge

    2016-01-01

    In eukaryotic cells, mitochondria form a dynamic interconnected network to respond to changing needs at different subcellular locations. A fundamental yet unanswered question regarding this network is whether, and if so how, local fusion and fission of individual mitochondria affect their global distribution. To address this question, we developed high-resolution computational image analysis techniques to examine the relations between mitochondrial fusion/fission and spatial distribution within the axon of Drosophila larval neurons. We found that stationary and moving mitochondria underwent fusion and fission regularly but followed different spatial distribution patterns and exhibited different morphology. Disruption of inner membrane fusion by knockdown of dOpa1, Drosophila Optic Atrophy 1, not only increased the spatial density of stationary and moving mitochondria but also changed their spatial distributions and morphology differentially. Knockdown of dOpa1 also impaired axonal transport of mitochondria. But the changed spatial distributions of mitochondria resulted primarily from disruption of inner membrane fusion because knockdown of Milton, a mitochondrial kinesin-1 adapter, caused similar transport velocity impairment but different spatial distributions. Together, our data reveals that stationary mitochondria within the axon interconnect with moving mitochondria through fusion and fission and that local inner membrane fusion between individual mitochondria mediates their global distribution. PMID:26742817

  13. Nonlinear optical coupler using a doped optical waveguide

    DOEpatents

    Pantell, Richard H.; Sadowski, Robert W.; Digonnet, Michel J. F.; Shaw, Herbert J.

    1994-01-01

    An optical mode coupling apparatus includes an Erbium-doped optical waveguide in which an optical signal at a signal wavelength propagates in a first spatial propagation mode and a second spatial propagation mode of the waveguide. The optical signal propagating in the waveguide has a beat length. The coupling apparatus includes a pump source of perturbational light signal at a perturbational wavelength that propagates in the waveguide in the first spatial propagation mode. The perturbational signal has a sufficient intensity distribution in the waveguide that it causes a perturbation of the effective refractive index of the first spatial propagation mode of the waveguide in accordance with the optical Kerr effect. The perturbation of the effective refractive index of the first spatial propagation mode of the optical waveguide causes a change in the differential phase delay in the optical signal propagating in the first and second spatial propagation modes. The change in the differential phase delay is detected as a change in the intensity distribution between two lobes of the optical intensity distribution pattern of an output signal. The perturbational light signal can be selectively enabled and disabled to selectively change the intensity distribution in the two lobes of the optical intensity distribution pattern.

  14. The Potential for Spatial Distribution Indices to Signal Thresholds in Marine Fish Biomass

    PubMed Central

    Reuchlin-Hugenholtz, Emilie

    2015-01-01

    The frequently observed positive relationship between fish population abundance and spatial distribution suggests that changes in distribution can be indicative of trends in abundance. If contractions in spatial distribution precede declines in spawning stock biomass (SSB), spatial distribution reference points could complement the SSB reference points that are commonly used in marine conservation biology and fisheries management. When relevant spatial distribution information is integrated into fisheries management and recovery plans, risks and uncertainties associated with a plan based solely on the SSB criterion would be reduced. To assess the added value of spatial distribution data, we examine the relationship between SSB and four metrics of spatial distribution intended to reflect changes in population range, concentration, and density for 10 demersal populations (9 species) inhabiting the Scotian Shelf, Northwest Atlantic. Our primary purpose is to assess their potential to serve as indices of SSB, using fisheries independent survey data. We find that metrics of density offer the best correlate of spawner biomass. A decline in the frequency of encountering high density areas is associated with, and in a few cases preceded by, rapid declines in SSB in 6 of 10 populations. Density-based indices have considerable potential to serve both as an indicator of SSB and as spatially based reference points in fisheries management. PMID:25789624

  15. Long-term changes in the planktonic cnidarian community in a mesoscale area of the NW Mediterranean

    PubMed Central

    Gili, Josep-Maria; Grinyó, Jordi; Raya, Vanesa; Sabatés, Ana

    2018-01-01

    In the present work, possible long-term changes in the planktonic cnidarian community were investigated by analyzing (1) species and community spatial distribution patterns, (2) variations in abundance and (3) changes in species richness during three mesoscale surveys representative of the climatic and anthropogenic changes that have occurred during the last three decades (years: 1983, 2004 and 2011) in the NW Mediterranean. These surveys were conducted during the summer (June) along the Catalan coast. All surveys covered the same area, used the same sampling methodology, and taxonomic identification was conducted by the same team of experts. An increase in the abundance of total cnidaria was found from 1983 to 2011. The siphonophore Muggiaea atlantica and the hydromedusa Aglaura hemistoma were the most abundant species, while Muggiaea kochii presented the largest abundance increment over time. Temperature was the main environmental parameter driving significant differences in the cnidarian community composition, abundance and spatial distribution patterns among the surveys. Our results suggest that in the current climate change scenario, warm-water species abundances will be positively favored, and the community will suffer changes in their latitudinal distribution patterns. We consider it extremely important to study and monitor gelatinous zooplankton in mesoscale spatial areas to understand not only long-term changes in abundances but also changes in their spatial distributions since spatial changes are sensitive indicators of climate change. PMID:29715282

  16. Climate change, fisheries management and fishing aptitude affecting spatial and temporal distributions of the Barents Sea cod fishery.

    PubMed

    Eide, Arne

    2017-12-01

    Climate change is expected to influence spatial and temporal distributions of fish stocks. The aim of this paper is to compare climate change impact on a fishery with other factors impacting the performance of fishing fleets. The fishery in question is the Northeast Arctic cod fishery, a well-documented fishery where data on spatial and temporal distributions are available. A cellular automata model is developed for the purpose of mimicking possible distributional patterns and different management alternatives are studied under varying assumptions on the fleets' fishing aptitude. Fisheries management and fishing aptitude, also including technological development and local knowledge, turn out to have the greatest impact on the spatial distribution of the fishing effort, when comparing the IPCC's SRES A1B scenario with repeated sequences of the current environmental situation over a period of 45 years. In both cases, the highest profits in the simulation period of 45 years are obtained at low exploitation levels and moderate fishing aptitude.

  17. Spatial pattern of reference evapotranspiration change and its temporal evolution over Southwest China

    NASA Astrophysics Data System (ADS)

    Sun, Shanlei; Wang, Guojie; Huang, Jin; Mu, Mengyuan; Yan, Guixia; Liu, Chunwei; Gao, Chujie; Li, Xing; Yin, Yixing; Zhang, Fangmin; Zhu, Siguang; Hua, Wenjian

    2017-11-01

    Due to the close relationship of climate change with reference evapotranspiration (ETo), detecting changes in ETo spatial distribution and its temporal evolution at local and regional levels is favorable to comprehensively understand climate change-induced impacts on hydrology and agriculture. In this study, the objective is to identify whether climate change has caused variation of ETo spatial distribution in different analysis periods [i.e., long- (20-year), medium- (10-year), and short-term (5-year)] and to investigate its temporal evolution (namely, when these changes happened) at annual and monthly scales in Southwest China (SWC). First, we estimated ETo values using the United Nations Food and Agriculture Organization (FAO) Penman-Monteith equation, based on historical climate data measured at 269 weather sites during 1973-2012. The analysis of variance (ANOVA) results indicated that the spatial pattern of annual ETo had significantly changed during the past 40 years, particularly in west SWC for the long-term analysis period, and west and southeast SWC in both medium- and short-term periods, which corresponded to the percent area of significant differences which were 21.9, 58.0, and 48.2 %, respectively. For investigating temporal evolution of spatial patterns of annual ETo, Duncan's multiple range test was used, and we found that the most significant changes appeared during 1988-2002 with the significant area of higher than 25.0 %. In addition, for long-, medium-, and short-term analysis periods, the spatial distribution has significantly changed during March, September, November, and December, especially in the corresponding periods of 1988-1997, 1983-1992, 1973-1977, and 1988-2002. All in all, climate change has resulted in significant ETo changes in SWC since the 1970s. Knowledge of climate change-induced spatial distribution of ETo and its temporal evolution would aid in formulating strategies for water resources and agricultural managements.

  18. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  19. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  20. Changes in the non-Federal land base involving forestry in western Oregon, 1961-94.

    Treesearch

    Daolan Zheng; Ralph J. Alig

    1999-01-01

    Temporal and spatial analyses of land use changes on non-Federal lands in western Oregon between 1961 and 1994 were conducted. Two distinct changes in the region were a loss of forest lands and an increase in urban areas. Neither the rates of change over time nor the spatial distribution of land converted to urban use was evenly distributed in the region. The influence...

  1. Ecological and management implications of climate-driven changes in spatial and temporal distributions of marine species

    NASA Astrophysics Data System (ADS)

    Mills, K.; Pershing, A. J.; Nye, J. A.; Henderson, M. E.; Thomas, A. C.; Hernandez, C.; Alexander, M. A.; Schuetz, J.; Allyn, A.

    2016-02-01

    Ocean temperatures in the Gulf of Maine have warmed rapidly over the past decade, and the seasonal cycle of temperatures has shifted towards earlier warming in the spring and later cooling in the fall. Warming temperatures have been associated with northward shifts in spatial distributions of many marine fish and invertebrate species in the region. In addition, changing phenology—particularly of migratory species—is also being observed. The rates at which species distributions change in space and time vary by species, and these differential rates have important implications for trophic interactions and fisheries. In this presentation, we will identify groups of species on the Northeast Shelf based on whether their distribution responses to warming temperatures lead, lag, or track temperature signals. Life history and population characteristics provide a basis for understanding how species cluster in these groups. Differential rates of changes in spatial and temporal distributions affect trophic interactions. American lobster provides one example of a prey species that may be affected by changes in the spatial distribution and migration phenology of its predators. Changes in natural mortality on important commercial species may affect fisheries by altering stock dynamics and allowable catch levels, but fisheries will also be affected by the need to change their fishing locations, times, or target species. Some of these fishery responses are already being observed in the Northeast, but many are constrained by the management system. Our presentation will conclude by identifying some ways in which fisheries management adjustments might help address issues of stock sustainability and fishery access for species that are experiencing climate-related distribution shifts.

  2. Spatial distribution of filament elasticity determines the migratory behaviors of a cell

    PubMed Central

    Harn, Hans I-Chen; Hsu, Chao-Kai; Wang, Yang-Kao; Huang, Yi-Wei; Chiu, Wen-Tai; Lin, Hsi-Hui; Cheng, Chao-Min; Tang, Ming-Jer

    2016-01-01

    ABSTRACT Any cellular response leading to morphological changes is highly tuned to balance the force generated from structural reorganization, provided by actin cytoskeleton. Actin filaments serve as the backbone of intracellular force, and transduce external mechanical signal via focal adhesion complex into the cell. During migration, cells not only undergo molecular changes but also rapid mechanical modulation. Here we focus on determining, the role of spatial distribution of mechanical changes of actin filaments in epithelial, mesenchymal, fibrotic and cancer cells with non-migration, directional migration, and non-directional migration behaviors using the atomic force microscopy. We found 1) non-migratory cells only generated one type of filament elasticity, 2) cells generating spatially distributed two types of filament elasticity showed directional migration, and 3) pathologic cells that autonomously generated two types of filament elasticity without spatial distribution were actively migrating non-directionally. The demonstration of spatial regulation of filament elasticity of different cell types at the nano-scale highlights the coupling of cytoskeletal function with physical characters at the sub-cellular level, and provides new research directions for migration related disease. PMID:26919488

  3. Remote-sensing based approach to forecast habitat quality under climate change scenarios.

    PubMed

    Requena-Mullor, Juan M; López, Enrique; Castro, Antonio J; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071-2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios.

  4. Remote-sensing based approach to forecast habitat quality under climate change scenarios

    PubMed Central

    Requena-Mullor, Juan M.; López, Enrique; Castro, Antonio J.; Alcaraz-Segura, Domingo; Castro, Hermelindo; Reyes, Andrés; Cabello, Javier

    2017-01-01

    As climate change is expected to have a significant impact on species distributions, there is an urgent challenge to provide reliable information to guide conservation biodiversity policies. In addressing this challenge, we propose a remote sensing-based approach to forecast the future habitat quality for European badger, a species not abundant and at risk of local extinction in the arid environments of southeastern Spain, by incorporating environmental variables related with the ecosystem functioning and correlated with climate and land use. Using ensemble prediction methods, we designed global spatial distribution models for the distribution range of badger using presence-only data and climate variables. Then, we constructed regional models for an arid region in the southeast Spain using EVI (Enhanced Vegetation Index) derived variables and weighting the pseudo-absences with the global model projections applied to this region. Finally, we forecast the badger potential spatial distribution in the time period 2071–2099 based on IPCC scenarios incorporating the uncertainty derived from the predicted values of EVI-derived variables. By including remotely sensed descriptors of the temporal dynamics and spatial patterns of ecosystem functioning into spatial distribution models, results suggest that future forecast is less favorable for European badgers than not including them. In addition, change in spatial pattern of habitat suitability may become higher than when forecasts are based just on climate variables. Since the validity of future forecast only based on climate variables is currently questioned, conservation policies supported by such information could have a biased vision and overestimate or underestimate the potential changes in species distribution derived from climate change. The incorporation of ecosystem functional attributes derived from remote sensing in the modeling of future forecast may contribute to the improvement of the detection of ecological responses under climate change scenarios. PMID:28257501

  5. A simple model for factory distribution: Historical effect in an industry city

    NASA Astrophysics Data System (ADS)

    Uehara, Takashi; Sato, Kazunori; Morita, Satoru; Maeda, Yasunobu; Yoshimura, Jin; Tainaka, Kei-ichi

    2016-02-01

    The construction and discontinuance processes of factories are complicated problems in sociology. We focus on the spatial and temporal changes of factories at Hamamatsu city in Japan. Real data indicate that the clumping degree of factories decreases as the density of factory increases. To represent the spatial and temporal changes of factories, we apply "contact process" which is one of cellular automata. This model roughly explains the dynamics of factory distribution. We also find "historical effect" in spatial distribution. Namely, the recent factories have been dispersed due to the past distribution during the period of economic bubble. This effect may be related to heavy shock in Japanese stock market.

  6. Predicting the genetic consequences of future climate change: The power of coupling spatial demography, the coalescent, and historical landscape changes.

    PubMed

    Brown, Jason L; Weber, Jennifer J; Alvarado-Serrano, Diego F; Hickerson, Michael J; Franks, Steven J; Carnaval, Ana C

    2016-01-01

    Climate change is a widely accepted threat to biodiversity. Species distribution models (SDMs) are used to forecast whether and how species distributions may track these changes. Yet, SDMs generally fail to account for genetic and demographic processes, limiting population-level inferences. We still do not understand how predicted environmental shifts will impact the spatial distribution of genetic diversity within taxa. We propose a novel method that predicts spatially explicit genetic and demographic landscapes of populations under future climatic conditions. We use carefully parameterized SDMs as estimates of the spatial distribution of suitable habitats and landscape dispersal permeability under present-day, past, and future conditions. We use empirical genetic data and approximate Bayesian computation to estimate unknown demographic parameters. Finally, we employ these parameters to simulate realistic and complex models of responses to future environmental shifts. We contrast parameterized models under current and future landscapes to quantify the expected magnitude of change. We implement this framework on neutral genetic data available from Penstemon deustus. Our results predict that future climate change will result in geographically widespread declines in genetic diversity in this species. The extent of reduction will heavily depend on the continuity of population networks and deme sizes. To our knowledge, this is the first study to provide spatially explicit predictions of within-species genetic diversity using climatic, demographic, and genetic data. Our approach accounts for climatic, geographic, and biological complexity. This framework is promising for understanding evolutionary consequences of climate change, and guiding conservation planning. © 2016 Botanical Society of America.

  7. The change in spatial distribution of upper trapezius muscle activity is correlated to contraction duration.

    PubMed

    Farina, Dario; Leclerc, Frédéric; Arendt-Nielsen, Lars; Buttelli, Olivier; Madeleine, Pascal

    2008-02-01

    The aim of the study was to confirm the hypothesis that the longer a contraction is sustained, the larger are the changes in the spatial distribution of muscle activity. For this purpose, surface electromyographic (EMG) signals were recorded with a 13 x 5 grid of electrodes from the upper trapezius muscle of 11 healthy male subjects during static contractions with shoulders 90 degrees abducted until endurance. The entropy (degree of uniformity) and center of gravity of the EMG root mean square map were computed to assess spatial inhomogeneity in muscle activation and changes over time in EMG amplitude spatial distribution. At the endurance time, entropy decreased (mean+/-SD, percent change 2.0+/-1.6%; P<0.0001) and the center of gravity moved in the cranial direction (shift 11.2+/-6.1mm; P<0.0001) with respect to the beginning of the contraction. The shift in the center of gravity was positively correlated with endurance time (R(2)=0.46, P<0.05), thus subjects with larger shift in the activity map showed longer endurance time. The percent variation in average (over the grid) root mean square was positively correlated with the shift in the center of gravity (R(2)=0.51, P<0.05). Moreover, the shift in the center of gravity was negatively correlated to both initial and final (at the endurance) entropy (R(2)=0.54 and R(2)=0.56, respectively; P<0.01 in both cases), indicating that subjects with less uniform root mean square maps had larger shift of the center of gravity over time. The spatial changes in root mean square EMG were likely due to spatially-dependent changes in motor unit activation during the sustained contraction. It was concluded that the changes in spatial muscle activity distribution play a role in the ability to maintain a static contraction.

  8. Adaptation to stimulus statistics in the perception and neural representation of auditory space.

    PubMed

    Dahmen, Johannes C; Keating, Peter; Nodal, Fernando R; Schulz, Andreas L; King, Andrew J

    2010-06-24

    Sensory systems are known to adapt their coding strategies to the statistics of their environment, but little is still known about the perceptual implications of such adjustments. We investigated how auditory spatial processing adapts to stimulus statistics by presenting human listeners and anesthetized ferrets with noise sequences in which interaural level differences (ILD) rapidly fluctuated according to a Gaussian distribution. The mean of the distribution biased the perceived laterality of a subsequent stimulus, whereas the distribution's variance changed the listeners' spatial sensitivity. The responses of neurons in the inferior colliculus changed in line with these perceptual phenomena. Their ILD preference adjusted to match the stimulus distribution mean, resulting in large shifts in rate-ILD functions, while their gain adapted to the stimulus variance, producing pronounced changes in neural sensitivity. Our findings suggest that processing of auditory space is geared toward emphasizing relative spatial differences rather than the accurate representation of absolute position.

  9. Testing hypotheses on distribution shifts and changes in phenology of imperfectly detectable species

    USGS Publications Warehouse

    Chambert, Thierry A.; Kendall, William L.; Hines, James E.; Nichols, James D.; Pedrini, Paolo; Waddle, J. Hardin; Tavecchia, Giacomo; Walls, Susan C.; Tenan, Simone

    2015-01-01

    With ongoing climate change, many species are expected to shift their spatial and temporal distributions. To document changes in species distribution and phenology, detection/non-detection data have proven very useful. Occupancy models provide a robust way to analyse such data, but inference is usually focused on species spatial distribution, not phenology.We present a multi-season extension of the staggered-entry occupancy model of Kendall et al. (2013, Ecology, 94, 610), which permits inference about the within-season patterns of species arrival and departure at sampling sites. The new model presented here allows investigation of species phenology and spatial distribution across years, as well as site extinction/colonization dynamics.We illustrate the model with two data sets on European migratory passerines and one data set on North American treefrogs. We show how to derive several additional phenological parameters, such as annual mean arrival and departure dates, from estimated arrival and departure probabilities.Given the extent of detection/non-detection data that are available, we believe that this modelling approach will prove very useful to further understand and predict species responses to climate change.

  10. Cometary atmospheres: Modeling the spatial distribution of observed neutral radicals

    NASA Technical Reports Server (NTRS)

    Combi, M. R.

    1985-01-01

    Progress on modeling the spatial distributions of cometary radicals is described. The Monte Carlo particle-trajectory model was generalized to include the full time dependencies of initial comet expansion velocities, nucleus vaporization rates, photochemical lifetimes and photon emission rates which enter the problem through the comet's changing heliocentric distance and velocity. The effect of multiple collisions in the transition zone from collisional coupling to true free flow were also included. Currently available observations of the spatial distributions of the neutral radicals, as well as the latest available photochemical data were re-evaluated. Preliminary exploratory model results testing the effects of various processes on observable spatial distributions are also discussed.

  11. Silver Hake Tracks Changes in Northwest Atlantic Circulation

    EPA Science Inventory

    Recent studies documenting shifts in spatial distribution of many organisms in response to a warming climate highlight the need to understand the mechanisms underlying species distribution at large spatial scales. Here we present one noteworthy example of remote oceanographic pro...

  12. Spatial and temporal variation in distribution of mangroves in Moreton Bay, subtropical Australia: a comparison of pattern metrics and change detection analyses based on aerial photographs

    NASA Astrophysics Data System (ADS)

    Manson, F. J.; Loneragan, N. R.; Phinn, S. R.

    2003-07-01

    An assessment of the changes in the distribution and extent of mangroves within Moreton Bay, southeast Queensland, Australia, was carried out. Two assessment methods were evaluated: spatial and temporal pattern metrics analysis, and change detection analysis. Currently, about 15,000 ha of mangroves are present in Moreton Bay. These mangroves are important ecosystems, but are subject to disturbance from a number of sources. Over the past 25 years, there has been a loss of more than 3800 ha, as a result of natural losses and mangrove clearing (e.g. for urban and industrial development, agriculture and aquaculture). However, areas of new mangroves have become established over the same time period, offsetting these losses to create a net loss of about 200 ha. These new mangroves have mainly appeared in the southern bay region and the bay islands, particularly on the landward edge of existing mangroves. In addition, spatial patterns and species composition of mangrove patches have changed. The pattern metrics analysis provided an overview of mangrove distribution and change in the form of single metric values, while the change detection analysis gave a more detailed and spatially explicit description of change. An analysis of the effects of spatial scales on the pattern metrics indicated that they were relatively insensitive to scale at spatial resolutions less than 50 m, but that most metrics became sensitive at coarser resolutions, a finding which has implications for mapping of mangroves based on remotely sensed data.

  13. Changing Patterns of Human Anthrax in Azerbaijan during the Post-Soviet and Preemptive Livestock Vaccination Eras

    PubMed Central

    Kracalik, Ian; Abdullayev, Rakif; Asadov, Kliment; Ismayilova, Rita; Baghirova, Mehriban; Ustun, Narmin; Shikhiyev, Mazahir; Talibzade, Aydin; Blackburn, Jason K.

    2014-01-01

    We assessed spatial and temporal changes in the occurrence of human anthrax in Azerbaijan during 1984 through 2010. Data on livestock outbreaks, vaccination efforts, and human anthrax incidence during Soviet governance, post-Soviet governance, preemptive livestock vaccination were analyzed. To evaluate changes in the spatio-temporal distribution of anthrax, we used a combination of spatial analysis, cluster detection, and weighted least squares segmented regression. Results indicated an annual percent change in incidence of +11.95% from 1984 to 1995 followed by declining rate of −35.24% after the initiation of livestock vaccination in 1996. Our findings also revealed geographic variation in the spatial distribution of reporting; cases were primarily concentrated in the west early in the study period and shifted eastward as time progressed. Over twenty years after the dissolution of the Soviet Union, the distribution of human anthrax in Azerbaijan has undergone marked changes. Despite decreases in the incidence of human anthrax, continued control measures in livestock are needed to mitigate its occurrence. The shifting patterns of human anthrax highlight the need for an integrated “One Health” approach that takes into account the changing geographic distribution of the disease. PMID:25032701

  14. Mapping the Drivers of Climate Change Vulnerability for Australia’s Threatened Species

    PubMed Central

    Lee, Jasmine R.; Maggini, Ramona; Taylor, Martin F. J.; Fuller, Richard A.

    2015-01-01

    Effective conservation management for climate adaptation rests on understanding the factors driving species’ vulnerability in a spatially explicit manner so as to direct on-ground action. However, there have been only few attempts to map the spatial distribution of the factors driving vulnerability to climate change. Here we conduct a species-level assessment of climate change vulnerability for a sample of Australia’s threatened species and map the distribution of species affected by each factor driving climate change vulnerability across the continent. Almost half of the threatened species assessed were considered vulnerable to the impacts of climate change: amphibians being the most vulnerable group, followed by plants, reptiles, mammals and birds. Species with more restricted distributions were more likely to show high climate change vulnerability than widespread species. The main factors driving climate change vulnerability were low genetic variation, dependence on a particular disturbance regime and reliance on a particular moisture regime or habitat. The geographic distribution of the species impacted by each driver varies markedly across the continent, for example species impacted by low genetic variation are prevalent across the human-dominated south-east of the country, while reliance on particular moisture regimes is prevalent across northern Australia. Our results show that actions to address climate adaptation will need to be spatially appropriate, and that in some regions a complex suite of factors driving climate change vulnerability will need to be addressed. Taxonomic and geographic variation in the factors driving climate change vulnerability highlights an urgent need for a spatial prioritisation of climate adaptation actions for threatened species. PMID:26017785

  15. Influence of the Redundant Verification and the Non-Redundant Verification on the Hydraulic Tomography

    NASA Astrophysics Data System (ADS)

    Wei, T. B.; Chen, Y. L.; Lin, H. R.; Huang, S. Y.; Yeh, T. C. J.; Wen, J. C.

    2016-12-01

    In the groundwater study, it estimated the heterogeneous spatial distribution of hydraulic Properties, there were many scholars use to hydraulic tomography (HT) from field site pumping tests to estimate inverse of heterogeneous spatial distribution of hydraulic Properties, to prove the most of most field site aquifer was heterogeneous hydrogeological parameters spatial distribution field. Many scholars had proposed a method of hydraulic tomography to estimate heterogeneous spatial distribution of hydraulic Properties of aquifer, the Huang et al. [2011] was used the non-redundant verification analysis of pumping wells changed, observation wells fixed on the inverse and the forward, to reflect the feasibility of the heterogeneous spatial distribution of hydraulic Properties of field site aquifer of the non-redundant verification analysis on steady-state model.From post literature, finding only in steady state, non-redundant verification analysis of pumping well changed location and observation wells fixed location for inverse and forward. But the studies had not yet pumping wells fixed or changed location, and observation wells fixed location for redundant verification or observation wells change location for non-redundant verification of the various combinations may to explore of influences of hydraulic tomography method. In this study, it carried out redundant verification method and non-redundant verification method for forward to influences of hydraulic tomography method in transient. And it discuss above mentioned in NYUST campus sites the actual case, to prove the effectiveness of hydraulic tomography methods, and confirmed the feasibility on inverse and forward analysis from analysis results.Keywords: Hydraulic Tomography, Redundant Verification, Heterogeneous, Inverse, Forward

  16. Long-term spatial and temporal microbial community dynamics in a large-scale drinking water distribution system with multiple disinfectant regimes.

    PubMed

    Potgieter, Sarah; Pinto, Ameet; Sigudu, Makhosazana; du Preez, Hein; Ncube, Esper; Venter, Stephanus

    2018-08-01

    Long-term spatial-temporal investigations of microbial dynamics in full-scale drinking water distribution systems are scarce. These investigations can reveal the process, infrastructure, and environmental factors that influence the microbial community, offering opportunities to re-think microbial management in drinking water systems. Often, these insights are missed or are unreliable in short-term studies, which are impacted by stochastic variabilities inherent to large full-scale systems. In this two-year study, we investigated the spatial and temporal dynamics of the microbial community in a large, full scale South African drinking water distribution system that uses three successive disinfection strategies (i.e. chlorination, chloramination and hypochlorination). Monthly bulk water samples were collected from the outlet of the treatment plant and from 17 points in the distribution system spanning nearly 150 km and the bacterial community composition was characterised by Illumina MiSeq sequencing of the V4 hypervariable region of the 16S rRNA gene. Like previous studies, Alpha- and Betaproteobacteria dominated the drinking water bacterial communities, with an increase in Betaproteobacteria post-chloramination. In contrast with previous reports, the observed richness, diversity, and evenness of the bacterial communities were higher in the winter months as opposed to the summer months in this study. In addition to temperature effects, the seasonal variations were also likely to be influenced by changes in average water age in the distribution system and corresponding changes in disinfectant residual concentrations. Spatial dynamics of the bacterial communities indicated distance decay, with bacterial communities becoming increasingly dissimilar with increasing distance between sampling locations. These spatial effects dampened the temporal changes in the bulk water community and were the dominant factor when considering the entire distribution system. However, temporal variations were consistently stronger as compared to spatial changes at individual sampling locations and demonstrated seasonality. This study emphasises the need for long-term studies to comprehensively understand the temporal patterns that would otherwise be missed in short-term investigations. Furthermore, systematic long-term investigations are particularly critical towards determining the impact of changes in source water quality, environmental conditions, and process operations on the changes in microbial community composition in the drinking water distribution system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks.

    PubMed

    Adams, Charles F; Alade, Larry A; Legault, Christopher M; O'Brien, Loretta; Palmer, Michael C; Sosebee, Katherine A; Traver, Michele L

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963-2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts.

  18. Relative importance of population size, fishing pressure and temperature on the spatial distribution of nine Northwest Atlantic groundfish stocks

    PubMed Central

    Alade, Larry A.; Legault, Christopher M.; O’Brien, Loretta; Palmer, Michael C.; Sosebee, Katherine A.; Traver, Michele L.

    2018-01-01

    The spatial distribution of nine Northwest Atlantic groundfish stocks was documented using spatial indicators based on Northeast Fisheries Science Center spring and fall bottom trawl survey data, 1963–2016. We then evaluated the relative importance of population size, fishing pressure and bottom temperature on spatial distribution with an information theoretic approach. Northward movement in the spring was generally consistent with prior analyses, whereas changes in depth distribution and area occupancy were not. Only two stocks exhibited the same changes in spatiotemporal distribution in the fall as compared with the spring. Fishing pressure was the most important predictor of the center of gravity (i.e., bivariate mean location of the population) for the majority of stocks in the spring, whereas in the fall this was restricted to the east-west component. Fishing pressure was also the most important predictor of the dispersion around the center of gravity in both spring and fall. In contrast, biomass was the most important predictor of area occupancy for the majority of stocks in both seasons. The relative importance of bottom temperature was ranked highest in the fewest number of cases. This study shows that fishing pressure, in addition to the previously established role of climate, influences the spatial distribution of groundfish in the Northwest Atlantic. More broadly, this study is one of a small but growing body of literature to demonstrate that fishing pressure has an effect on the spatial distribution of marine resources. Future work must consider both fishing pressure and climate when examining mechanisms underlying fish distribution shifts. PMID:29698454

  19. Estimating the spatial distribution of wintering little brown bat populations in the eastern United States

    USGS Publications Warehouse

    Russell, Robin E.; Tinsley, Karl; Erickson, Richard A.; Thogmartin, Wayne E.; Jennifer A. Szymanski,

    2014-01-01

    Depicting the spatial distribution of wildlife species is an important first step in developing management and conservation programs for particular species. Accurate representation of a species distribution is important for predicting the effects of climate change, land-use change, management activities, disease, and other landscape-level processes on wildlife populations. We developed models to estimate the spatial distribution of little brown bat (Myotis lucifugus) wintering populations in the United States east of the 100th meridian, based on known hibernacula locations. From this data, we developed several scenarios of wintering population counts per county that incorporated uncertainty in the spatial distribution of the hibernacula as well as uncertainty in the size of the current little brown bat population. We assessed the variability in our results resulting from effects of uncertainty. Despite considerable uncertainty in the known locations of overwintering little brown bats in the eastern United States, we believe that models accurately depicting the effects of the uncertainty are useful for making management decisions as these models are a coherent organization of the best available information.

  20. Ownership reform and the changing manufacturing landscape in Chinese cities: The case of Wuxi.

    PubMed

    Zhou, Lei; Yang, Shan; Wang, Shuguang; Xiong, Liyang

    2017-01-01

    Since the economic transition, manufacturing in China has undergone profound changes not only in number of enterprises, but also in ownership structure and intra-urban spatial distribution. Investigating the changing manufacturing landscape from the perspective of ownership structure is critical to a deep understanding of the changing role of market and government in re-shaping manufacturing location behavior. Through a case study of Wuxi, a city experiencing comprehensive ownership reform, this paper presents a detailed analysis of the intra-urban spatial shift of manufacturing, identifies the location discrepancies, and examines the underlying forces responsible for the geographical differentiations. Through zone- and district-based analysis, a distinctive trend of decentralization and suburbanization, as well as an uneven distribution of manufacturing, is unveiled. The results of Location Quotient analysis show that the distribution of manufacturing by ownership exhibits distinctive spatial patterns, which is characterized by a historically-based, market-led, and institutionally-created spatial variation. By employing Hot Spot analysis, the role of development zones in attracting manufacturing enterprises of different ownerships is established. Overall, the location behavior of the diversified manufacturing has been increasingly based on the forces of market since the land marketization began. A proactive role played by local governments has also guided the enterprise location decision through spatial planning and regulatory policies.

  1. Ownership reform and the changing manufacturing landscape in Chinese cities: The case of Wuxi

    PubMed Central

    Zhou, Lei; Yang, Shan; Wang, Shuguang

    2017-01-01

    Since the economic transition, manufacturing in China has undergone profound changes not only in number of enterprises, but also in ownership structure and intra-urban spatial distribution. Investigating the changing manufacturing landscape from the perspective of ownership structure is critical to a deep understanding of the changing role of market and government in re-shaping manufacturing location behavior. Through a case study of Wuxi, a city experiencing comprehensive ownership reform, this paper presents a detailed analysis of the intra-urban spatial shift of manufacturing, identifies the location discrepancies, and examines the underlying forces responsible for the geographical differentiations. Through zone- and district-based analysis, a distinctive trend of decentralization and suburbanization, as well as an uneven distribution of manufacturing, is unveiled. The results of Location Quotient analysis show that the distribution of manufacturing by ownership exhibits distinctive spatial patterns, which is characterized by a historically-based, market-led, and institutionally-created spatial variation. By employing Hot Spot analysis, the role of development zones in attracting manufacturing enterprises of different ownerships is established. Overall, the location behavior of the diversified manufacturing has been increasingly based on the forces of market since the land marketization began. A proactive role played by local governments has also guided the enterprise location decision through spatial planning and regulatory policies. PMID:28278284

  2. Spatial distribution of malaria in Peninsular Malaysia from 2000 to 2009.

    PubMed

    Alias, Haridah; Surin, Johari; Mahmud, Rohela; Shafie, Aziz; Mohd Zin, Junaidden; Mohamad Nor, Mahadzir; Ibrahim, Ahmad Shah; Rundi, Christina

    2014-04-15

    Malaria is still an endemic disease of public health importance in Malaysia. Populations at risk of contracting malaria includes indigenous people, traditional villagers, mobile ethnic groups and land scheme settlers, immigrants from malaria endemic countries as well as jungle workers and loggers. The predominant species are Plasmodium falciparum and P. vivax. An increasing number of P. knowlesi infections have also been encountered. The principal vectors in Peninsular Malaysia are Anopheles maculatus and An. cracens. This study aims to determine the changes in spatial distribution of malaria in Peninsular Malaysia from year 2000-2009. Data for the study was collected from Ministry of Health, Malaysia and was analysed using Geographic Information System (GIS). Changes for a period of 10 years of malaria spatial distribution in 12 states of Peninsular Malaysia were documented and discussed. This is illustrated by digital mapping according to five variables; incidence rate (IR), fatality rate (FR), annual blood examination rate (ABER), annual parasite index (API) and slide positivity rate (SPR). There is a profound change in the spatial distribution of malaria within a 10-year period. This is evident from the digital mapping of the infection in Peninsular Malaysia.

  3. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Treesearch

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  4. Twenty years of changes in spatial association and community structure among desert perennials.

    PubMed

    Miriti, Maria N

    2007-05-01

    I present results from analyses of 20 years of spatiotemporal dynamics in a desert perennial community. Plants were identified and mapped in a 1-ha permanent plot in Joshua Tree National Park (California, USA) in 1984. Plant size, mortality, and new seedlings were censused every five years through 2004. Two species, Ambrosia dumosa and Tetracoccus hallii, were dominant based on their relative abundance and ubiquitous distributions. Spatial analysis for distance indices (SADIE) identified regions of significantly high (patches) or low (gaps) densities. I used SADIE to test for (1) transience in the distribution of patches and gaps within species over time and (2) changes in juvenile-adult associations with conspecific adults and adults of the two dominant species over time. Plant performance was quantified in patches and gaps to determine plant responsiveness to local spatial associations. Species identity was found to influence associations between juveniles and adults. Juveniles of all species showed significant positive spatial associations with the dominant A. dumosa but not with T. hallii. The broad distribution of A. dumosa may increase the spatial extent of non-dominant species that are facilitated by this dominant. The spatial location of patches and gaps was generally consistent over time for adults but not juveniles. Observed variability in the locations of juvenile patches and gaps suggested that suitable locations for establishment were broad relative to occupied regions of the habitat, and that conditions for seed germination were independent of conditions for seedling survival. A dramatic change in spatial distributions and associations within and between species occurred after a major drought that influenced data from the final census. Positive associations between juveniles and adults of all species were found independent of previous associations and most species distributions contracted to areas that were previously characterized by low density. By linking performance to spatial distribution, results from this study offer a spatial context for plant-plant interactions within and among species. Community composition could be influenced both by individual species tolerances of abiotic conditions and by the competitive or facilitative interactions individuals exert over neighbors.

  5. Impacts of Spatial Distribution of Impervious Areas on Runoff Response of Hillslope Catchments: Simulation Study

    EPA Science Inventory

    This study analyzes variations in the model-projected changes in catchment runoff response after urbanization that stem from variations in the spatial distribution of impervious areas, interevent differences in temporal rainfall structure, and antecedent soil moisture (ASM). In t...

  6. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts.

    PubMed

    Crase, Beth; Liedloff, Adam; Vesk, Peter A; Fukuda, Yusuke; Wintle, Brendan A

    2014-08-01

    Species distribution models (SDMs) are widely used to forecast changes in the spatial distributions of species and communities in response to climate change. However, spatial autocorrelation (SA) is rarely accounted for in these models, despite its ubiquity in broad-scale ecological data. While spatial autocorrelation in model residuals is known to result in biased parameter estimates and the inflation of type I errors, the influence of unmodeled SA on species' range forecasts is poorly understood. Here we quantify how accounting for SA in SDMs influences the magnitude of range shift forecasts produced by SDMs for multiple climate change scenarios. SDMs were fitted to simulated data with a known autocorrelation structure, and to field observations of three mangrove communities from northern Australia displaying strong spatial autocorrelation. Three modeling approaches were implemented: environment-only models (most frequently applied in species' range forecasts), and two approaches that incorporate SA; autologistic models and residuals autocovariate (RAC) models. Differences in forecasts among modeling approaches and climate scenarios were quantified. While all model predictions at the current time closely matched that of the actual current distribution of the mangrove communities, under the climate change scenarios environment-only models forecast substantially greater range shifts than models incorporating SA. Furthermore, the magnitude of these differences intensified with increasing increments of climate change across the scenarios. When models do not account for SA, forecasts of species' range shifts indicate more extreme impacts of climate change, compared to models that explicitly account for SA. Therefore, where biological or population processes induce substantial autocorrelation in the distribution of organisms, and this is not modeled, model predictions will be inaccurate. These results have global importance for conservation efforts as inaccurate forecasts lead to ineffective prioritization of conservation activities and potentially to avoidable species extinctions. © 2014 John Wiley & Sons Ltd.

  7. Research on reconstructing spatial distribution of historical cropland over 300 years in traditional cultivated regions of China

    NASA Astrophysics Data System (ADS)

    Yang, Xuhong; Jin, Xiaobin; Guo, Beibei; Long, Ying; Zhou, Yinkang

    2015-05-01

    Constructing a spatially explicit time series of historical cultivated land is of upmost importance for climatic and ecological studies that make use of Land Use and Cover Change (LUCC) data. Some scholars have made efforts to simulate and reconstruct the quantitative information on historical land use at the global or regional level based on "top-down" decision-making behaviors to match overall cropland area to land parcels using land arability and universal parameters. Considering the concentrated distribution of cultivated land and various factors influencing cropland distribution, including environmental and human factors, this study developed a "bottom-up" model of historical cropland based on constrained Cellular Automaton (CA). Our model takes a historical cropland area as an external variable and the cropland distribution in 1980 as the maximum potential scope of historical cropland. We selected elevation, slope, water availability, average annual precipitation, and distance to the nearest rural settlement as the main influencing factors of land use suitability. Then, an available labor force index is used as a proxy for the amount of cropland to inspect and calibrate these spatial patterns. This paper applies the model to a traditional cultivated region in China and reconstructs its spatial distribution of cropland during 6 periods. The results are shown as follows: (1) a constrained CA is well suited for simulating and reconstructing the spatial distribution of cropland in China's traditional cultivated region. (2) Taking the different factors affecting spatial pattern of cropland into consideration, the partitioning of the research area effectively reflected the spatial differences in cropland evolution rules and rates. (3) Compared with "HYDE datasets", this research has formed higher-resolution Boolean spatial distribution datasets of historical cropland with a more definitive concept of spatial pattern in terms of fractional format. We conclude that our reconstruction is closer to the actual change pattern of the traditional cultivated region in China.

  8. Spatial distribution characteristics of magnetization in exchange-coupled bilayers with mutually orthogonal anisotropies

    NASA Astrophysics Data System (ADS)

    Xiang, Y.; Chen, C. W.

    2017-05-01

    The magnetization distribution of a bilayer exchange spring system with mutually orthogonal anisotropies was investigated by micromagnetic simulation. Results showed that the spatial change rate of the magnetization direction could be engineered by varying the material parameters, layer thicknesses, and magnetic field. When no magnetic field is applied, this angular change rate is determined by three parameter ratios: a ratio of the exchange energy and anisotropy constants of both layers and two thickness ratios of both layers. If these three ratios are kept invariant, the ratio of the angular change of the soft layer over the hard layer will remain the same. When a magnetic field is applied, two more ratios concerning the magnetic field should be added to determine the spatial angular change of the magnetization direction.

  9. Large Scale Relationship between Aquatic Insect Traits and Climate.

    PubMed

    Bhowmik, Avit Kumar; Schäfer, Ralf B

    2015-01-01

    Climate is the predominant environmental driver of freshwater assemblage pattern on large spatial scales, and traits of freshwater organisms have shown considerable potential to identify impacts of climate change. Although several studies suggest traits that may indicate vulnerability to climate change, the empirical relationship between freshwater assemblage trait composition and climate has been rarely examined on large scales. We compared the responses of the assumed climate-associated traits from six grouping features to 35 bioclimatic indices (~18 km resolution) for five insect orders (Diptera, Ephemeroptera, Odonata, Plecoptera and Trichoptera), evaluated their potential for changing distribution pattern under future climate change and identified the most influential bioclimatic indices. The data comprised 782 species and 395 genera sampled in 4,752 stream sites during 2006 and 2007 in Germany (~357,000 km² spatial extent). We quantified the variability and spatial autocorrelation in the traits and orders that are associated with the combined and individual bioclimatic indices. Traits of temperature preference grouping feature that are the products of several other underlying climate-associated traits, and the insect order Ephemeroptera exhibited the strongest response to the bioclimatic indices as well as the highest potential for changing distribution pattern. Regarding individual traits, insects in general and ephemeropterans preferring very cold temperature showed the highest response, and the insects preferring cold and trichopterans preferring moderate temperature showed the highest potential for changing distribution. We showed that the seasonal radiation and moisture are the most influential bioclimatic aspects, and thus changes in these aspects may affect the most responsive traits and orders and drive a change in their spatial distribution pattern. Our findings support the development of trait-based metrics to predict and detect climate-related changes of freshwater assemblages.

  10. A significant upward shift in plant species optimum elevation during the 20th century.

    PubMed

    Lenoir, J; Gégout, J C; Marquet, P A; de Ruffray, P; Brisse, H

    2008-06-27

    Spatial fingerprints of climate change on biotic communities are usually associated with changes in the distribution of species at their latitudinal or altitudinal extremes. By comparing the altitudinal distribution of 171 forest plant species between 1905 and 1985 and 1986 and 2005 along the entire elevation range (0 to 2600 meters above sea level) in west Europe, we show that climate warming has resulted in a significant upward shift in species optimum elevation averaging 29 meters per decade. The shift is larger for species restricted to mountain habitats and for grassy species, which are characterized by faster population turnover. Our study shows that climate change affects the spatial core of the distributional range of plant species, in addition to their distributional margins, as previously reported.

  11. Modeling evolution of spatially distributed bacterial communities: a simulation with the haploid evolutionary constructor

    PubMed Central

    2015-01-01

    Background Multiscale approaches for integrating submodels of various levels of biological organization into a single model became the major tool of systems biology. In this paper, we have constructed and simulated a set of multiscale models of spatially distributed microbial communities and study an influence of unevenly distributed environmental factors on the genetic diversity and evolution of the community members. Results Haploid Evolutionary Constructor software http://evol-constructor.bionet.nsc.ru/ was expanded by adding the tool for the spatial modeling of a microbial community (1D, 2D and 3D versions). A set of the models of spatially distributed communities was built to demonstrate that the spatial distribution of cells affects both intensity of selection and evolution rate. Conclusion In spatially heterogeneous communities, the change in the direction of the environmental flow might be reflected in local irregular population dynamics, while the genetic structure of populations (frequencies of the alleles) remains stable. Furthermore, in spatially heterogeneous communities, the chemotaxis might dramatically affect the evolution of community members. PMID:25708911

  12. Does scale matter? A systematic review of incorporating biological realism when predicting changes in species distributions.

    PubMed

    Record, Sydne; Strecker, Angela; Tuanmu, Mao-Ning; Beaudrot, Lydia; Zarnetske, Phoebe; Belmaker, Jonathan; Gerstner, Beth

    2018-01-01

    There is ample evidence that biotic factors, such as biotic interactions and dispersal capacity, can affect species distributions and influence species' responses to climate change. However, little is known about how these factors affect predictions from species distribution models (SDMs) with respect to spatial grain and extent of the models. Understanding how spatial scale influences the effects of biological processes in SDMs is important because SDMs are one of the primary tools used by conservation biologists to assess biodiversity impacts of climate change. We systematically reviewed SDM studies published from 2003-2015 using ISI Web of Science searches to: (1) determine the current state and key knowledge gaps of SDMs that incorporate biotic interactions and dispersal; and (2) understand how choice of spatial scale may alter the influence of biological processes on SDM predictions. We used linear mixed effects models to examine how predictions from SDMs changed in response to the effects of spatial scale, dispersal, and biotic interactions. There were important biases in studies including an emphasis on terrestrial ecosystems in northern latitudes and little representation of aquatic ecosystems. Our results suggest that neither spatial extent nor grain influence projected climate-induced changes in species ranges when SDMs include dispersal or biotic interactions. We identified several knowledge gaps and suggest that SDM studies forecasting the effects of climate change should: 1) address broader ranges of taxa and locations; and 1) report the grain size, extent, and results with and without biological complexity. The spatial scale of analysis in SDMs did not affect estimates of projected range shifts with dispersal and biotic interactions. However, the lack of reporting on results with and without biological complexity precluded many studies from our analysis.

  13. Monitoring and identification of spatiotemporal landscape changes in multiple remote sensing images by using a stratified conditional Latin hypercube sampling approach and geostatistical simulation.

    PubMed

    Lin, Yu-Pin; Chu, Hone-Jay; Huang, Yu-Long; Tang, Chia-Hsi; Rouhani, Shahrokh

    2011-06-01

    This study develops a stratified conditional Latin hypercube sampling (scLHS) approach for multiple, remotely sensed, normalized difference vegetation index (NDVI) images. The objective is to sample, monitor, and delineate spatiotemporal landscape changes, including spatial heterogeneity and variability, in a given area. The scLHS approach, which is based on the variance quadtree technique (VQT) and the conditional Latin hypercube sampling (cLHS) method, selects samples in order to delineate landscape changes from multiple NDVI images. The images are then mapped for calibration and validation by using sequential Gaussian simulation (SGS) with the scLHS selected samples. Spatial statistical results indicate that in terms of their statistical distribution, spatial distribution, and spatial variation, the statistics and variograms of the scLHS samples resemble those of multiple NDVI images more closely than those of cLHS and VQT samples. Moreover, the accuracy of simulated NDVI images based on SGS with scLHS samples is significantly better than that of simulated NDVI images based on SGS with cLHS samples and VQT samples, respectively. However, the proposed approach efficiently monitors the spatial characteristics of landscape changes, including the statistics, spatial variability, and heterogeneity of NDVI images. In addition, SGS with the scLHS samples effectively reproduces spatial patterns and landscape changes in multiple NDVI images.

  14. Spatial heterogeneity in species composition constrains plant community responses to herbivory and fertilization

    USDA-ARS?s Scientific Manuscript database

    Changing environmental conditions result in substantial shifts in the composition of communities. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, most studies on environmental change quantify the biotic responses at single spat...

  15. Detection of smoothly distributed spatial outliers, with applications to identifying the distribution of parenchymal hyperinflation following an airway challenge in asthmatics.

    PubMed

    Thurman, Andrew L; Choi, Jiwoong; Choi, Sanghun; Lin, Ching-Long; Hoffman, Eric A; Lee, Chang Hyun; Chan, Kung-Sik

    2017-05-10

    Methacholine challenge tests are used to measure changes in pulmonary function that indicate symptoms of asthma. In addition to pulmonary function tests, which measure global changes in pulmonary function, computed tomography images taken at full inspiration before and after administration of methacholine provide local air volume changes (hyper-inflation post methacholine) at individual acinar units, indicating local airway hyperresponsiveness. Some of the acini may have extreme air volume changes relative to the global average, indicating hyperresponsiveness, and those extreme values may occur in clusters. We propose a Gaussian mixture model with a spatial smoothness penalty to improve prediction of hyperresponsive locations that occur in spatial clusters. A simulation study provides evidence that the spatial smoothness penalty improves prediction under different data-generating mechanisms. We apply this method to computed tomography data from Seoul National University Hospital on five healthy and ten asthmatic subjects. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  16. Spatial distribution of calcium-gated chloride channels in olfactory cilia.

    PubMed

    French, Donald A; Badamdorj, Dorjsuren; Kleene, Steven J

    2010-12-30

    In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.

  17. Methodology to study the three-dimensional spatial distribution of prostate cancer and their dependence on clinical parameters

    PubMed Central

    Rojas, Kristians Diaz; Montero, Maria L.; Yao, Jorge; Messing, Edward; Fazili, Anees; Joseph, Jean; Ou, Yangming; Rubens, Deborah J.; Parker, Kevin J.; Davatzikos, Christos; Castaneda, Benjamin

    2015-01-01

    Abstract. A methodology to study the relationship between clinical variables [e.g., prostate specific antigen (PSA) or Gleason score] and cancer spatial distribution is described. Three-dimensional (3-D) models of 216 glands are reconstructed from digital images of whole mount histopathological slices. The models are deformed into one prostate model selected as an atlas using a combination of rigid, affine, and B-spline deformable registration techniques. Spatial cancer distribution is assessed by counting the number of tumor occurrences among all glands in a given position of the 3-D registered atlas. Finally, a difference between proportions is used to compare different spatial distributions. As a proof of concept, we compare spatial distributions from patients with PSA greater and less than 5  ng/ml and from patients older and younger than 60 years. Results suggest that prostate cancer has a significant difference in the right zone of the prostate between populations with PSA greater and less than 5  ng/ml. Age does not have any impact in the spatial distribution of the disease. The proposed methodology can help to comprehend prostate cancer by understanding its spatial distribution and how it changes according to clinical parameters. Finally, this methodology can be easily adapted to other organs and pathologies. PMID:26236756

  18. Spatially distributed potential evapotranspiration modeling and climate projections.

    PubMed

    Gharbia, Salem S; Smullen, Trevor; Gill, Laurence; Johnston, Paul; Pilla, Francesco

    2018-08-15

    Evapotranspiration integrates energy and mass transfer between the Earth's surface and atmosphere and is the most active mechanism linking the atmosphere, hydrosphsophere, lithosphere and biosphere. This study focuses on the fine resolution modeling and projection of spatially distributed potential evapotranspiration on the large catchment scale as response to climate change. Six potential evapotranspiration designed algorithms, systematically selected based on a structured criteria and data availability, have been applied and then validated to long-term mean monthly data for the Shannon River catchment with a 50m 2 cell size. The best validated algorithm was therefore applied to evaluate the possible effect of future climate change on potential evapotranspiration rates. Spatially distributed potential evapotranspiration projections have been modeled based on climate change projections from multi-GCM ensembles for three future time intervals (2020, 2050 and 2080) using a range of different Representative Concentration Pathways producing four scenarios for each time interval. Finally, seasonal results have been compared to baseline results to evaluate the impact of climate change on the potential evapotranspiration and therefor on the catchment dynamical water balance. The results present evidence that the modeled climate change scenarios would have a significant impact on the future potential evapotranspiration rates. All the simulated scenarios predicted an increase in potential evapotranspiration for each modeled future time interval, which would significantly affect the dynamical catchment water balance. This study addresses the gap in the literature of using GIS-based algorithms to model fine-scale spatially distributed potential evapotranspiration on the large catchment systems based on climatological observations and simulations in different climatological zones. Providing fine-scale potential evapotranspiration data is very crucial to assess the dynamical catchment water balance to setup management scenarios for the water abstractions. This study illustrates a transferable systematic method to design GIS-based algorithms to simulate spatially distributed potential evapotranspiration on the large catchment systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Modeling and Spatially Distributing Forest Net Primary Production at the Regional Scale

    Treesearch

    R.A. Mickler; T.S. Earnhardt; J.A. Moore

    2002-01-01

    Abstract - Forest, agricultural, rangeland, wetland, and urban landscapes have different rates of carbon sequestration and total carbon sequestration potential under alternative management options. Changes in the proportion and spatial distribution of land use could enhance or degrade that area’s ability to sequester carbon in terrestrial ecosystems...

  20. Seasonal change of topology and resilience of ecological networks in wetlandscapes

    NASA Astrophysics Data System (ADS)

    Bin, Kim; Park, Jeryang

    2017-04-01

    Wetlands distributed in a landscape provide various ecosystem services including habitat for flora and fauna, hydrologic controls, and biogeochemical processes. Hydrologic regime of each wetland at a given landscape varies by hydro-climatic and geological conditions as well as the bathymetry, forming a certain pattern in the wetland area distribution and spatial organization. However, its large-scale pattern also changes over time as this wetland complex is subject to stochastic hydro-climatic forcing in various temporal scales. Consequently, temporal variation in the spatial structure of wetlands inevitably affects the dispersal ability of species depending on those wetlands as habitat. Here, we numerically show (1) the spatiotemporal variation of wetlandscapes by forcing seasonally changing stochastic rainfall and (2) the corresponding ecological networks which either deterministically or stochastically forming the dispersal ranges. We selected four vernal pool regions with distinct climate conditions in California. The results indicate that the spatial structure of wetlands in a landscape by measuring the wetland area frequency distribution changes by seasonal hydro-climatic condition but eventually recovers to the initial state. However, the corresponding ecological networks, which the structure and function change by the change of distances between wetlands, and measured by degree distribution and network efficiency, may not recover to the initial state especially in the regions with high seasonal dryness index. Moreover, we observed that the changes in both the spatial structure of wetlands in a landscape and the corresponding ecological networks exhibit hysteresis over seasons. Our analysis indicates that the hydrologic and ecological resilience of a wetlandcape may be low in a dry region with seasonal hydro-climatic forcing. Implications of these results for modelling ecological networks depending on hydrologic systems especially for conservation purposes are discussed.

  1. Predicted altitudinal shifts and reduced spatial distribution of Leishmania infantum vector species under climate change scenarios in Colombia.

    PubMed

    González, Camila; Paz, Andrea; Ferro, Cristina

    2014-01-01

    Visceral leishmaniasis (VL) is caused by the trypanosomatid parasite Leishmania infantum (=Leishmania chagasi), and is epidemiologically relevant due to its wide geographic distribution, the number of annual cases reported and the increase in its co-infection with HIV. Two vector species have been incriminated in the Americas: Lutzomyia longipalpis and Lutzomyia evansi. In Colombia, L. longipalpis is distributed along the Magdalena River Valley while L. evansi is only found in the northern part of the Country. Regarding the epidemiology of the disease, in Colombia the incidence of VL has decreased over the last few years without any intervention being implemented. Additionally, changes in transmission cycles have been reported with urban transmission occurring in the Caribbean Coast. In Europe and North America climate change seems to be driving a latitudinal shift of leishmaniasis transmission. Here, we explored the spatial distribution of the two known vector species of L. infantum in Colombia and projected its future distribution into climate change scenarios to establish the expansion potential of the disease. An updated database including L. longipalpis and L. evansi collection records from Colombia was compiled. Ecological niche models were performed for each species using the Maxent software and 13 Worldclim bioclimatic coverages. Projections were made for the pessimistic CSIRO A2 scenario, which predicts the higher increase in temperature due to non-emission reduction, and the optimistic Hadley B2 Scenario predicting the minimum increase in temperature. The database contained 23 records for L. evansi and 39 records for L. longipalpis, distributed along the Magdalena River Valley and the Caribbean Coast, where the potential distribution areas of both species were also predicted by Maxent. Climate change projections showed a general overall reduction in the spatial distribution of the two vector species, promoting a shift in altitudinal distribution for L. longipalpis and confining L. evansi to certain regions in the Caribbean Coast. Altitudinal shifts have been reported for cutaneous leishmaniasis vectors in Colombia and Peru. Here, we predict the same outcome for VL vectors in Colombia. Changes in spatial distribution patterns could be affecting local abundances due to climatic pressures on vector populations thus reducing the incidence of human cases. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Wave actions and topography determine the small-scale spatial distribution of newly settled Asari clams Ruditapes philippinarum on a tidal flat

    NASA Astrophysics Data System (ADS)

    Nambu, Ryogen; Saito, Hajime; Tanaka, Yoshio; Higano, Junya; Kuwahara, Hisami

    2012-03-01

    There are many studies on spatial distributions of Asari clam Ruditapes philippinarum adults on tidal flats but few have dealt with spatial distributions of newly settled Asari clam (<0.3 mm shell length, indicative of settlement patterns) in relation to physical/topographical conditions on tidal flats. We examined small-scale spatial distributions of newly settled individuals on the Matsunase tidal flat, central Japan, during the low spring tides on two days 29th-30th June 2007, together with the shear stress from waves and currents on the flat. The characteristics of spatial distribution of newly settled Asari clam markedly varied depending on both of hydrodynamic and topographical conditions on the tidal flat. Using generalized linear models (GLMs), factors responsible for affecting newly settled Asari clam density and its spatial distribution were distinguished between sampling days, with "crest" sites always having a negative influence each on the density and the distribution on both sampling days. The continuously recorded data for the wave-current flows at the "crest" site on the tidal flat showed that newly settled Asari clam, as well as bottom sediment particles, at the "crest" site to be easily displaced. Small-scale spatial distributions of newly settled Asari clam changed with more advanced benthic stages in relation to the wave shear stress.

  3. Modeling elephant-mediated cascading effects of water point closure.

    PubMed

    Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F

    2015-03-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically informed decisions in wildlife management. The results from this modeling exercise imply that long-term effects of this intervention strategy should always be investigated at an ecosystem scale.

  4. How does spatial variability of climate affect catchment streamflow predictions?

    EPA Science Inventory

    Spatial variability of climate can negatively affect catchment streamflow predictions if it is not explicitly accounted for in hydrologic models. In this paper, we examine the changes in streamflow predictability when a hydrologic model is run with spatially variable (distribute...

  5. The integration of climate change, spatial dynamics, and habitat fragmentation: A conceptual overview.

    PubMed

    Holyoak, Marcel; Heath, Sacha K

    2016-01-01

    A growing number of studies have looked at how climate change alters the effects of habitat fragmentation and degradation on both single and multiple species; some raise concern that biodiversity loss and its effects will be exacerbated. The published literature on spatial dynamics (such as dispersal and metapopulation dynamics), habitat fragmentation and climate change requires synthesis and a conceptual framework to simplify thinking. We propose a framework that integrates how climate change affects spatial population dynamics and the effects of habitat fragmentation in terms of: (i) habitat quality, quantity and distribution; (ii) habitat connectivity; and (iii) the dynamics of habitat itself. We use the framework to categorize existing autecological studies and investigate how each is affected by anthropogenic climate change. It is clear that a changing climate produces changes in the geographic distribution of climatic conditions, and the amount and quality of habitat. The most thorough published studies show how such changes impact metapopulation persistence, source-sink dynamics, changes in species' geographic range and community composition. Climate-related changes in movement behavior and quantity, quality and distribution of habitat have also produced empirical changes in habitat connectivity for some species. An underexplored area is how habitat dynamics that are driven by climatic processes will affect species that live in dynamic habitats. We end our discussion by suggesting ways to improve current attempts to integrate climate change, spatial population dynamics and habitat fragmentation effects, and suggest distinct areas of study that might provide opportunities for more fully integrative work. © 2015 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.

  6. MONITORING CHANGES IN STRESSED ECOSYSTEMS USING SPATIAL PATTERNS OF ANT COMMUNITIES

    EPA Science Inventory

    We examined the feasibility of using changes in spatial patterns of ants-distribution on experimental plots as an indicator of response to environmental stress. We produced contour maps based on relative abundances of the three most common genera of ants based on pit-fall trap ca...

  7. Remote-sensing supported monitoring of global biodiversity change

    NASA Astrophysics Data System (ADS)

    Jetz, W.; Tuanmu, M. N.; W, A.; Melton, F. S.; Parmentier, B.; Amatulli, G.; Guzman, A.

    2016-12-01

    Remote sensing combined with biodiversity observation offers an unrivalled tool for understanding and predicting species distributions and their changes at the planetary scale. I will illustrate recently developed high-resolution remote-sensing based layers targeted for spatiotemporal biodiversity modeling, addressing climate, environment, topography, and habitat heterogeneity. In particular, I will illustrate the development and use of global MODIS-derived environmental layers for biodiversity assessment and change monitoring. Remote-sensing based capture of these putative predictors of biodiversity dynamics provides more a reliable signal than spatially interpolated layers and avoids inflated spatial autocorrelation. The layers result in more accurate models of species occurrence and are more readily able to address the scale of processes underpinning species distributions, e.g. when combined with emerging hierarchical, cross-scale models. I illustrate the multiple ways in which this type of information, based on continuously collected data, supports the prediction of not just spatial but also temporal variation in biodiversity. Using implementations in the Map of Life infrastructure I will showcase new indicators of species distribution and change that demonstrate these new opportunities.

  8. Quantitative characterization of the spatial distribution of particles in materials: Application to materials processing

    NASA Technical Reports Server (NTRS)

    Parse, Joseph B.; Wert, J. A.

    1991-01-01

    Inhomogeneities in the spatial distribution of second phase particles in engineering materials are known to affect certain mechanical properties. Progress in this area has been hampered by the lack of a convenient method for quantitative description of the spatial distribution of the second phase. This study intends to develop a broadly applicable method for the quantitative analysis and description of the spatial distribution of second phase particles. The method was designed to operate on a desktop computer. The Dirichlet tessellation technique (geometrical method for dividing an area containing an array of points into a set of polygons uniquely associated with the individual particles) was selected as the basis of an analysis technique implemented on a PC. This technique is being applied to the production of Al sheet by PM processing methods; vacuum hot pressing, forging, and rolling. The effect of varying hot working parameters on the spatial distribution of aluminum oxide particles in consolidated sheet is being studied. Changes in distributions of properties such as through-thickness near-neighbor distance correlate with hot-working reduction.

  9. Climate change and fishing: a century of shifting distribution in North Sea cod.

    PubMed

    Engelhard, Georg H; Righton, David A; Pinnegar, John K

    2014-08-01

    Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913-2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod - mostly in the deeper, northern- and north-easternmost parts of the North Sea - is almost opposite to that during most of the Twentieth Century - mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3 1/2 decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. © 2013 Crown copyright. Global Change Biology published by John Wiley & Sons Ltd. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  10. Climate change and fishing: a century of shifting distribution in North Sea cod

    PubMed Central

    Engelhard, Georg H; Righton, David A; Pinnegar, John K

    2014-01-01

    Globally, spatial distributions of fish stocks are shifting but although the role of climate change in range shifts is increasingly appreciated, little remains known of the likely additional impact that high levels of fishing pressure might have on distribution. For North Sea cod, we show for the first time and in great spatial detail how the stock has shifted its distribution over the past 100 years. We digitized extensive historical fisheries data from paper charts in UK government archives and combined these with contemporary data to a time-series spanning 1913–2012 (excluding both World Wars). New analysis of old data revealed that the current distribution pattern of cod – mostly in the deeper, northern- and north-easternmost parts of the North Sea – is almost opposite to that during most of the Twentieth Century – mainly concentrated in the west, off England and Scotland. Statistical analysis revealed that the deepening, northward shift is likely attributable to warming; however, the eastward shift is best explained by fishing pressure, suggestive of significant depletion of the stock from its previous stronghold, off the coasts of England and Scotland. These spatial patterns were confirmed for the most recent 3½ decades by data from fisheries-independent surveys, which go back to the 1970s. Our results demonstrate the fundamental importance of both climate change and fishing pressure for our understanding of changing distributions of commercially exploited fish. PMID:24375860

  11. Temporal and spatial distributions of nutrients under the influence of human activities in Sishili Bay, northern Yellow Sea of China.

    PubMed

    Wang, Yujue; Liu, Dongyan; Dong, Zhijun; Di, Baoping; Shen, Xuhong

    2012-12-01

    The temporal and spatial distributions of dissolved inorganic nitrogen (DIN), dissolved organic nitrogen (DON), soluble reactive phosphorus (SRP) and dissolved reactive silica (DRSi) together with chlorophyll-a, temperature and salinity were analyzed monthly from December 2008 to March 2010 at four zones in Sishili Bay located in the northern Yellow Sea. The nutrient distribution was impacted by seasonal factors (biotic factors, temperature and wet deposition), physical factors (water exchange) and anthropogenic loadings. The seasonal variations of nutrients were mainly determined by the seasonal factors and the spatial distribution of nutrients was mainly related to water exchange. Anthropogenic loadings for DIN, SRP and DRSi were mainly from point sources, but for DON, non-point sources were also important. Nutrient limitation has changed from DIN in 1997 to SRP and DRSi in 2010, and this has resulted in changes in the dominant red tide species from diatom to dinoflagellates. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. EFFECTS OF LASER RADIATION ON MATTER: Melting and thermocapillary convection under the action of pulsed laser radiation with an inhomogeneous spatial distribution

    NASA Astrophysics Data System (ADS)

    Uglov, A. A.; Smurov, I. Yu; Gus'kov, A. G.; Aksenov, L. V.

    1990-08-01

    A theoretical study is reported of melting and thermocapillary convection under the action of laser radiation with a nonmonotonic spatial distribution of the power density. An analysis is made of changes in the geometry of the molten bath with time. The transition from a nonmonotonic boundary of a melt, corresponding to the spatial distribution of the radiation, to a monotonic one occurs in a time of the order of 1 ms when the power density of laser radiation is 105 W/cm2. The vortex structure of the flow in the molten bath is governed by the spatial distribution of the laser radiation in such a way that each local power density maximum corresponds to two vortices with oppositely directed velocity components.

  13. Competitive exclusion over broad spatial extents is a slow process: Evidence and implications for species distribution modeling

    USGS Publications Warehouse

    Yackulic, Charles B.

    2016-01-01

    There is considerable debate about the role of competition in shaping species distributions over broad spatial extents. This debate has practical implications because predicting changes in species' geographic ranges in response to ongoing environmental change would be simpler if competition could be ignored. While this debate has been the subject of many reviews, recent literature has not addressed the rates of relevant processes. This omission is surprising in that ecologists hypothesized decades ago that regional competitive exclusion is a slow process. The goal of this review is to reassess the debate under the hypothesis that competitive exclusion over broad spatial extents is a slow process.Available evidence, including simulations presented for the first time here, suggests that competitive exclusion over broad spatial extents occurs slowly over temporal extents of many decades to millennia. Ecologists arguing against an important role for competition frequently study modern patterns and/or range dynamics over periods of decades, while much of the evidence for competition shaping geographic ranges at broad spatial extents comes from paleoecological studies over time scales of centuries or longer. If competition is slow, as evidence suggests, the geographic distributions of some, perhaps many species, would continue to change over time scales of decades to millennia, even if environmental conditions did not continue to change. If the distributions of competing species are at equilibrium it is possible to predict species distributions based on observed species–environment relationships. However, disequilibrium is widespread as a result of competition and many other processes. Studies whose goal is accurate predictions over intermediate time scales (decades to centuries) should focus on factors associated with range expansion (colonization) and loss (local extinction), as opposed to current patterns. In general, understanding of modern range dynamics would be enhanced by considering the rates of relevant processes.

  14. Seasonal changes in spatial patterns of two annual plants in the Chihuahuan Desert, USA

    USGS Publications Warehouse

    Yin, Z.-Y.; Guo, Q.; Ren, H.; Peng, S.-L.

    2005-01-01

    Spatial pattern of a biotic population may change over time as its component individuals grow or die out, but whether this is the case for desert annual plants is largely unknown. Here we examined seasonal changes in spatial patterns of two annuals, Eriogonum abertianum and Haplopappus gracilis, in initial (winter) and final (summer) densities. The density was measured as the number of individuals from 384 permanent quadrats (each 0.5 m × 0.5 m) in the Chihuahuan Desert near Portal, Arizona, USA. We used three probability distributions (binomial, Poisson, and negative binomial or NB) that represent three basic spatial patterns (regular, random, and clumped) to fit the observed frequency distributions of densities of the two annuals. Both species showed clear clumped patterns as characterized by the NB and had similar inverse J-shaped frequency distribution curves in two density categories. Also, both species displayed a reduced degree of aggregation from winter to summer after the spring drought (massive die-off), as indicated by the increased k-parameter of the NB and decreased values of another NB parameter p, variance/mean ratio, Lloyd’s Index of Patchiness, and David and Moore’s Index of Clumping. Further, we hypothesized that while the NB (i.e., Poisson-logarithmic) well fits the distribution of individuals per quadrat, its components, the Poisson and logarithmic, may describe the distributions of clumps per quadrat and of individuals per clump, respectively. We thus obtained the means and variances for (1) individuals per quadrat, (2) clumps per quadrat, and (3) individuals per clump. The results showed that the decrease of the density from winter to summer for each plant resulted from the decrease of individuals per clump, rather than from the decrease of clumps per quadrat. The great similarities between the two annuals indicate that our observed temporal changes in spatial patterns may be common among desert annual plants.

  15. Thematic and spatial resolutions affect model-based predictions of tree species distribution.

    PubMed

    Liang, Yu; He, Hong S; Fraser, Jacob S; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution.

  16. Thematic and Spatial Resolutions Affect Model-Based Predictions of Tree Species Distribution

    PubMed Central

    Liang, Yu; He, Hong S.; Fraser, Jacob S.; Wu, ZhiWei

    2013-01-01

    Subjective decisions of thematic and spatial resolutions in characterizing environmental heterogeneity may affect the characterizations of spatial pattern and the simulation of occurrence and rate of ecological processes, and in turn, model-based tree species distribution. Thus, this study quantified the importance of thematic and spatial resolutions, and their interaction in predictions of tree species distribution (quantified by species abundance). We investigated how model-predicted species abundances changed and whether tree species with different ecological traits (e.g., seed dispersal distance, competitive capacity) had different responses to varying thematic and spatial resolutions. We used the LANDIS forest landscape model to predict tree species distribution at the landscape scale and designed a series of scenarios with different thematic (different numbers of land types) and spatial resolutions combinations, and then statistically examined the differences of species abundance among these scenarios. Results showed that both thematic and spatial resolutions affected model-based predictions of species distribution, but thematic resolution had a greater effect. Species ecological traits affected the predictions. For species with moderate dispersal distance and relatively abundant seed sources, predicted abundance increased as thematic resolution increased. However, for species with long seeding distance or high shade tolerance, thematic resolution had an inverse effect on predicted abundance. When seed sources and dispersal distance were not limiting, the predicted species abundance increased with spatial resolution and vice versa. Results from this study may provide insights into the choice of thematic and spatial resolutions for model-based predictions of tree species distribution. PMID:23861828

  17. Fine-scale spatial distribution of the common lugworm Arenicola marina, and effects of intertidal clam fishing

    NASA Astrophysics Data System (ADS)

    Boldina, Inna; Beninger, Peter G.

    2014-04-01

    Despite its ubiquity and its role as an ecosystem engineer on temperate intertidal mudflats, little is known of the spatial ecology of the lugworm Arenicola marina. We estimated lugworm densities and analyzed the spatial distribution of A. marina on a French Atlantic mudflat subjected to long-term clam digging activities, and compared these to a nearby pristine reference mudflat, using a combination of geostatistical techniques: point-pattern analysis, autocorrelation, and wavelet analysis. Lugworm densities were an order of magnitude greater at the reference site. Although A. marina showed an aggregative spatial distribution at both sites, the characteristics and intensity of aggregation differed markedly between sites. The reference site showed an inhibition process (regular distribution) at distances <7.5 cm, whereas the impacted site showed a random distribution at this scale. At distances from 15 cm to several tens of meters, the spatial distribution of A. marina was clearly aggregated at both sites; however, the autocorrelation strength was much weaker at the impacted site. In addition, the non-impacted site presented multi-scale spatial distribution, which was not evident at the impacted site. The differences observed between the spatial distributions of the fishing-impacted vs. the non-impacted site reflect similar findings for other components of these two mudflat ecosystems, suggesting common community-level responses to prolonged mechanical perturbation: a decrease in naturally-occurring aggregation. This change may have consequences for basic biological characteristics such as reproduction, recruitment, growth, and feeding.

  18. Spatially distributed characterization of hyporheic solute transport during baseflow recession in a headwater mountain stream using electrical geophysical imaging

    Treesearch

    Adam S. Ward; Michael N. Gooseff; Michael Fitzgerald; Thomas J. Voltz; Kamini Singha

    2014-01-01

    The transport of solutes along hyporheic flowpaths is recognized as central to numerous biogeochemical cycles, yet our understanding of how this transport changes with baseflow recession, particularly in a spatially distributed manner, is limited. We conducted four steady-state solute tracer injections and collected electrical resistivity data to characterize hyporheic...

  19. [Spatial structure analysis and distribution simulation of Therioaphis trifolii population based on geostatistics and GIS].

    PubMed

    Zhang, Rong; Leng, Yun-fa; Zhu, Meng-meng; Wang, Fang

    2007-11-01

    Based on geographic information system and geostatistics, the spatial structure of Therioaphis trifolii population of different periods in Yuanzhou district of Guyuan City, the southern Ningxia Province, was analyzed. The spatial distribution of Therioaphis trifolii population was also simulated by ordinary Kriging interpretation. The results showed that Therioaphis trifolii population of different periods was correlated spatially in the study area. The semivariograms of Therioaphis trifolii could be described by exponential model, indicating an aggregated spatial arrangement. The spatial variance varied from 34.13%-48.77%, and the range varied from 8.751-12.049 km. The degree and direction of aggregation showed that the trend was increased gradually from southwest to northeast. The dynamic change of Therioaphis trifolii population in different periods could be analyzed intuitively on the simulated maps of the spatial distribution from the two aspects of time and space, The occurrence position and degree of Therioaphis trifolii to a state of certain time could be determined easily.

  20. Characterization of spatial distribution of Tetranychus urticae in peppermint in California and implication for improving sampling plan.

    PubMed

    Rijal, Jhalendra P; Wilson, Rob; Godfrey, Larry D

    2016-02-01

    Twospotted spider mite, Tetranychus urticae Koch, is an important pest of peppermint in California, USA. Spider mite feeding on peppermint leaves causes physiological changes in the plant, which coupling with the favorable environmental condition can lead to increased mite infestations. Significant yield loss can occur in absence of pest monitoring and timely management. Understating the within-field spatial distribution of T. urticae is critical for the development of reliable sampling plan. The study reported here aims to characterize the spatial distribution of mite infestation in four commercial peppermint fields in northern California using spatial techniques, variogram and Spatial Analysis by Distance IndicEs (SADIE). Variogram analysis revealed that there was a strong evidence for spatially dependent (aggregated) mite population in 13 of 17 sampling dates and the physical distance of the aggregation reached maximum to 7 m in peppermint fields. Using SADIE, 11 of 17 sampling dates showed aggregated distribution pattern of mite infestation. Combining results from variogram and SADIE analysis, the spatial aggregation of T. urticae was evident in all four fields for all 17 sampling dates evaluated. Comparing spatial association using SADIE, ca. 62% of the total sampling pairs showed a positive association of mite spatial distribution patterns between two consecutive sampling dates, which indicates a strong spatial and temporal stability of mite infestation in peppermint fields. These results are discussed in relation to behavior of spider mite distribution within field, and its implications for improving sampling guidelines that are essential for effective pest monitoring and management.

  1. Uncertainty of future projections of species distributions in mountainous regions.

    PubMed

    Tang, Ying; Winkler, Julie A; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution.

  2. Uncertainty of future projections of species distributions in mountainous regions

    PubMed Central

    Tang, Ying; Viña, Andrés; Liu, Jianguo; Zhang, Yuanbin; Zhang, Xiaofeng; Li, Xiaohong; Wang, Fang; Zhang, Jindong; Zhao, Zhiqiang

    2018-01-01

    Multiple factors introduce uncertainty into projections of species distributions under climate change. The uncertainty introduced by the choice of baseline climate information used to calibrate a species distribution model and to downscale global climate model (GCM) simulations to a finer spatial resolution is a particular concern for mountainous regions, as the spatial resolution of climate observing networks is often insufficient to detect the steep climatic gradients in these areas. Using the maximum entropy (MaxEnt) modeling framework together with occurrence data on 21 understory bamboo species distributed across the mountainous geographic range of the Giant Panda, we examined the differences in projected species distributions obtained from two contrasting sources of baseline climate information, one derived from spatial interpolation of coarse-scale station observations and the other derived from fine-spatial resolution satellite measurements. For each bamboo species, the MaxEnt model was calibrated separately for the two datasets and applied to 17 GCM simulations downscaled using the delta method. Greater differences in the projected spatial distributions of the bamboo species were observed for the models calibrated using the different baseline datasets than between the different downscaled GCM simulations for the same calibration. In terms of the projected future climatically-suitable area by species, quantification using a multi-factor analysis of variance suggested that the sum of the variance explained by the baseline climate dataset used for model calibration and the interaction between the baseline climate data and the GCM simulation via downscaling accounted for, on average, 40% of the total variation among the future projections. Our analyses illustrate that the combined use of gridded datasets developed from station observations and satellite measurements can help estimate the uncertainty introduced by the choice of baseline climate information to the projected changes in species distribution. PMID:29320501

  3. Temporal and Spatial Analysis of Monogenetic Volcanic Fields

    NASA Astrophysics Data System (ADS)

    Kiyosugi, Koji

    Achieving an understanding of the nature of monogenetic volcanic fields depends on identification of the spatial and temporal patterns of volcanism in these fields, and their relationships to structures mapped in the shallow crust and inferred in the deep crust and mantle through interpretation of geochemical, radiometric and geophysical data. We investigate the spatial and temporal distributions of volcanism in the Abu Monogenetic Volcano Group, Southwest Japan. E-W elongated volcano distribution, which is identified by a nonparametric kernel method, is found to be consistent with the spatial extent of P-wave velocity anomalies in the lower crust and upper mantle, supporting the idea that the spatial density map of volcanic vents reflects the geometry of a mantle diapir. Estimated basalt supply to the lower crust is constant. This observation and the spatial distribution of volcanic vents suggest stability of magma productivity and essentially constant two-dimensional size of the source mantle diapir. We mapped conduits, dike segments, and sills in the San Rafael sub-volcanic field, Utah, where the shallowest part of a Pliocene magmatic system is exceptionally well exposed. The distribution of conduits matches the major features of dike distribution, including development of clusters and distribution of outliers. The comparison of San Rafael conduit distribution and the distributions of volcanoes in several recently active volcanic fields supports the use of statistical models, such as nonparametric kernel methods, in probabilistic hazard assessment for distributed volcanism. We developed a new recurrence rate calculation method that uses a Monte Carlo procedure to better reflect and understand the impact of uncertainties of radiometric age determinations on uncertainty of recurrence rate estimates for volcanic activity in the Abu, Yucca Mountain Region, and Izu-Tobu volcanic fields. Results suggest that the recurrence rates of volcanic fields can change by more than one order of magnitude on time scales of several hundred thousand to several million years. This suggests that magma generation rate beneath volcanic fields may change over these time scales. Also, recurrence rate varies more than one order of magnitude between these volcanic fields, consistent with the idea that distributed volcanism may be influenced by both the rate of magma generation and the potential for dike interaction during ascent.

  4. [Ecological risk assessment of land use based on exploratory spatial data analysis (ESDA): a case study of Haitan Island, Fujian Province].

    PubMed

    Wu, Jian; Chen, Peng; Wen, Chao-Xiang; Fu, Shi-Feng; Chen, Qing-Hui

    2014-07-01

    As a novel environment management tool, ecological risk assessment has provided a new perspective for the quantitative evaluation of ecological effects of land-use change. In this study, Haitan Island in Fujian Province was taken as a case. Based on the Landsat TM obtained in 1990, SPOT5 RS images obtained in 2010, general layout planning map of Pingtan Comprehensive Experimental Zone in 2030, as well as the field investigation data, we established an ecological risk index to measure ecological endpoints. By using spatial autocorrelation and semivariance analysis of Exploratory Spatial Data Analysis (ESDA), the ecological risk of Haitan Island under different land-use situations was assessed, including the past (1990), present (2010) and future (2030), and the potential risk and its changing trend were analyzed. The results revealed that the ecological risk index showed obvious scale effect, with strong positive correlation within 3000 meters. High-high (HH) and low-low (LL) aggregations were predominant types in spatial distribution of ecological risk index. The ecological risk index showed significant isotropic characteristics, and its spatial distribution was consistent with Anselin Local Moran I (LISA) distribution during the same period. Dramatic spatial distribution change of each ecological risk area was found among 1990, 2010 and 2030, and the fluctuation trend and amplitude of different ecological risk areas were diverse. The low ecological risk area showed a rise-to-fall trend while the medium and high ecological risk areas showed a fall-to-rise trend. In the planning period, due to intensive anthropogenic disturbance, the high ecological risk area spread throughout the whole region. To reduce the ecological risk in land-use and maintain the regional ecological security, the following ecological risk control strategies could be adopted, i.e., optimizing the spatial pattern of land resources, protecting the key ecoregions and controlling the scale of construction land use.

  5. Distribution and stability of eelgrass beds at Izembek Lagoon, Alaska

    USGS Publications Warehouse

    Ward, David H.; Markon, Carl J.; Douglas, David C.

    1997-01-01

    Spatial change in eelgrass meadows, Zostera marina L., was assessed between 1978 and 1987 and between 1987 and 1995 at Izembek Lagoon, Alaska. Change in total extent was evaluated through a map to map comparison of data interpreted from a 1978 Landsat multi-spectral scanner image and 1987 black and white aerial photographs. A ground survey in 1995 was used to assess spatial change from 1987. Eelgrass beds were the predominant vegetation type in the lagoon, comprising 44-47% (15000-16000 ha) of the total area in 1978 and 1987. Izembek Lagoon contains the largest bed of seagrass along the Pacific Coast of North America and largest known single stand of eelgrass in the world. There was a high degree of overlap in the spatial distribution of eelgrass among years of change detection. The overall net change was a 6% gain between, 1978 and 1987 and a <1% gain between 1987 and 1995. The lack of significant change in eelgrass cover suggests that eelgrass meadows in Izembek Lagoon have been stable during the 17-year period of our study.

  6. Submillimeter-scale heterogeneity of labile phosphorus in sediments characterized by diffusive gradients in thin films and spatial analysis.

    PubMed

    Meng, Yuting; Ding, Shiming; Gong, Mengdan; Chen, Musong; Wang, Yan; Fan, Xianfang; Shi, Lei; Zhang, Chaosheng

    2018-03-01

    Sediments have a heterogeneous distribution of labile redox-sensitive elements due to a drastic downward transition from oxic to anoxic condition as a result of organic matter degradation. Characterization of the heterogeneous nature of sediments is vital for understanding of small-scale biogeochemical processes. However, there are limited reports on the related specialized methodology. In this study, the monthly distributions of labile phosphorus (P), a redox-sensitive limiting nutrient, were measured in the eutrophic Lake Taihu by Zr-oxide diffusive gradients in thin films (Zr-oxide DGT) on a two-dimensional (2D) submillimeter level. Geographical information system (GIS) techniques were used to visualize the labile P distribution at such a micro-scale, showing that the DGT-labile P was low in winter and high in summer. Spatial analysis methods, including semivariogram and Moran's I, were used to quantify the spatial variation of DGT-labile P. The distribution of DGT-labile P had clear submillimeter-scale spatial patterns with significant spatial autocorrelation during the whole year and displayed seasonal changes. High values of labile P with strong spatial variation were observed in summer, while low values of labile P with relatively uniform spatial patterns were detected in winter, demonstrating the strong influences of temperature on the mobility and spatial distribution of P in sediment profiles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Space evolution model and empirical analysis of an urban public transport network

    NASA Astrophysics Data System (ADS)

    Sui, Yi; Shao, Feng-jing; Sun, Ren-cheng; Li, Shu-jing

    2012-07-01

    This study explores the space evolution of an urban public transport network, using empirical evidence and a simulation model validated on that data. Public transport patterns primarily depend on traffic spatial-distribution, demands of passengers and expected utility of investors. Evolution is an iterative process of satisfying the needs of passengers and investors based on a given traffic spatial-distribution. The temporal change of urban public transport network is evaluated both using topological measures and spatial ones. The simulation model is validated using empirical data from nine big cities in China. Statistical analyses on topological and spatial attributes suggest that an evolution network with traffic demands characterized by power-law numerical values which distribute in a mode of concentric circles tallies well with these nine cities.

  8. A spatially distributed model for assessment of the effects of changing land use and climate on urban stream quality: Development of a Spatially Distributed Urban Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ning; Yearsley, John; Baptiste, Marisa

    While the effects of land use change in urban areas have been widely examined, the combined effects of climate and land use change on the quality of urban and urbanizing streams have received much less attention. We describe a modeling framework that is applicable to the evaluation of potential changes in urban water quality and associated hydrologic changes in response to ongoing climate and landscape alteration. The grid-based spatially distributed model, DHSVM-WQ, is an outgrowth of the Distributed Hydrology-Soil-Vegetation Model (DHSVM) that incorporates modules for assessing hydrology and water quality in urbanized watersheds at a high spatial and temporal resolution.more » DHSVM-WQ simulates surface runoff quality and in-stream processes that control the transport of nonpoint-source (NPS) pollutants into urban streams. We configure DHSVM-WQ for three partially urbanized catchments in the Puget Sound region to evaluate the water quality responses to current conditions and projected changes in climate and/or land use over the next century. Here we focus on total suspended solids (TSS) and total phosphorus (TP) from nonpoint sources (runoff), as well as stream temperature. The projection of future land use is characterized by a combination of densification in existing urban or partially urban areas, and expansion of the urban footprint. The climate change scenarios consist of individual and concurrent changes in temperature and precipitation. Future precipitation is projected to increase in winter and decrease in summer, while future temperature is projected to increase throughout the year. Our results show that urbanization has a much greater effect than climate change on both the magnitude and seasonal variability of streamflow, TSS and TP loads largely due to substantially increased streamflow, and particularly winter flow peaks. Water temperature is more sensitive to climate warming scenarios than to urbanization and precipitation changes. Future urbanization and climate change together are predicted to significantly increase annual mean streamflow (up to 55%), water temperature (up to 1.9 ºC), TSS load (up to 182%), and TP load (up to 74%).« less

  9. Temporal and spatial PM10 concentration distribution using an inverse distance weighted method in Klang Valley, Malaysia

    NASA Astrophysics Data System (ADS)

    Tarmizi, S. N. M.; Asmat, A.; Sumari, S. M.

    2014-02-01

    PM10 is one of the air contaminants that can be harmful to human health. Meteorological factors and changes of monsoon season may affect the distribution of these particles. The objective of this study is to determine the temporal and spatial particulate matter (PM10) concentration distribution in Klang Valley, Malaysia by using the Inverse Distance Weighted (IDW) method at different monsoon season and meteorological conditions. PM10 and meteorological data were obtained from the Malaysian Department of Environment (DOE). Particles distribution data were added to the geographic database on a seasonal basis. Temporal and spatial patterns of PM10 concentration distribution were determined by using ArcGIS 9.3. The higher PM10 concentrations are observed during Southwest monsoon season. The values are lower during the Northeast monsoon season. Different monsoon seasons show different meteorological conditions that effect PM10 distribution.

  10. Tropospheric Ozone Change from 1980 to 2010 Dominated by Equatorward Redistribution of Emissions

    NASA Technical Reports Server (NTRS)

    Zhang, Yuqiang; Cooper, Owen R.; Gaudel, Audrey; Thompson, Anne M.; Nedelec, Philippe; Ogino, Shin-Ya; West, J. Jason

    2016-01-01

    Ozone is an important air pollutant at the surface, and the third most important anthropogenic greenhouse gas in the troposphere. Since 1980, anthropogenic emissions of ozone precursors methane, non-methane volatile organic compounds, carbon monoxide and nitrogen oxides (NOx) have shifted from developed to developing regions. Emissions have thereby been redistributed equatorwards, where they are expected to have a stronger effect on the tropospheric ozone burden due to greater convection, reaction rates and NOx sensitivity. Here we use a global chemical transport model to simulate changes in tropospheric ozone concentrations from 1980 to 2010, and to separate the influences of changes in the spatial distribution of global anthropogenic emissions of short-lived pollutants, the magnitude of these emissions, and the global atmospheric methane concentration. We estimate that the increase in ozone burden due to the spatial distribution change slightly exceeds the combined influences of the increased emission magnitude and global methane. Emission increases in Southeast, East and South Asia may be most important for the ozone change, supported by an analysis of statistically significant increases in observed ozone above these regions. The spatial distribution of emissions dominates global tropospheric ozone, suggesting that the future ozone burden will be determined mainly by emissions from low latitudes.

  11. Active source monitoring at the Wenchuan fault zone: coseismic velocity change associated with aftershock event and its implication

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Ge, Hongkui; Wang, Baoshan; Hu, Jiupeng; Yuan, Songyong; Qiao, Sen

    2014-12-01

    With the improvement of seismic observation system, more and more observations indicate that earthquakes may cause seismic velocity change. However, the amplitude and spatial distribution of the velocity variation remains a controversial issue. Recent active source monitoring carried out adjacent to Wenchuan Fault Scientific Drilling (WFSD) revealed unambiguous coseismic velocity change associated with a local M s5.5 earthquake. Here, we carry out forward modeling using two-dimensional spectral element method to further investigate the amplitude and spatial distribution of observed velocity change. The model is well constrained by results from seismic reflection and WFSD coring. Our model strongly suggests that the observed coseismic velocity change is localized within the fault zone with width of ~120 m rather than dynamic strong ground shaking. And a velocity decrease of ~2.0 % within the fault zone is required to fit the observed travel time delay distribution, which coincides with rock mechanical experiment and theoretical modeling.

  12. Avian abundance thresholds, human-altered landscapes, and the challenge of assemblage-level conservation

    Treesearch

    Kevin J. Gutzwiller; Samuel K. Riffell; Curtis H. Flather

    2015-01-01

    Context: Land-use change is a global phenomenon with potential to generate abrupt spatial changes in species’ distributions. Objectives: We assessed whether theory about the internal structure of bird species’ geographic ranges can be refined to reflect abrupt changes in distribution and abundance associated with human influences on landscapes, and whether the...

  13. A spatially distributed model for the assessment of land use impacts on stream temperature in small urban watersheds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Ning; Yearsley, John; Voisin, Nathalie

    2015-05-15

    Stream temperatures in urban watersheds are influenced to a high degree by anthropogenic impacts related to changes in landscape, stream channel morphology, and climate. These impacts can occur at small time and length scales, hence require analytical tools that consider the influence of the hydrologic regime, energy fluxes, topography, channel morphology, and near-stream vegetation distribution. Here we describe a modeling system that integrates the Distributed Hydrologic Soil Vegetation Model, DHSVM, with the semi-Lagrangian stream temperature model RBM, which has the capability to simulate the hydrology and water temperature of urban streams at high time and space resolutions, as well asmore » a representation of the effects of riparian shading on stream energetics. We demonstrate the modeling system through application to the Mercer Creek watershed, a small urban catchment near Bellevue, Washington. The results suggest that the model is able both to produce realistic streamflow predictions at fine temporal and spatial scales, and to provide spatially distributed water temperature predictions that are consistent with observations throughout a complex stream network. We use the modeling construct to characterize impacts of land use change and near-stream vegetation change on stream temperature throughout the Mercer Creek system. We then explore the sensitivity of stream temperature to land use changes and modifications in vegetation along the riparian corridor.« less

  14. [Geostatistics analyzing to cause of formation of circle distribution of plant communities in Horqin Sandy Land].

    PubMed

    He, Xingdong; Gao, Yubao; Zhao, Wenzhi; Cong, Zili

    2004-09-01

    Investigation results in the present study showed that plant communities took typical concentric circles distribution patterns along habitat gradient from top, slope to interdune on a few large fixed dunes in middle part of Korqin Sandy Land. In order to explain this phenomenon, analysis of water content and its spatial heterogeneity in sand layers on different locations of dunes was conducted. In these dunes, water contents in sand layers of the tops were lower than those of the slopes; both of them were lower than those of the interdunes. According to the results of geostatistics analysis, whether shifting dune or fixed dune, spatial heterogeneity of water contents in sand layers took on regular changes, such as ratios between nugget and sill and ranges reduced gradually, fractal dimension increased gradually, the regular changes of these parameters indicated that random spatial heterogeneity reduced gradually, and autocorrelation spatial heterogeneity increased gradually from the top, the slope to the interdune. The regular changes of water contents in sand layers and their spatial heterogeneity of different locations of the dunes, thus, might be an important cause resulted in the formation of the concentric circles patterns of the plant communities on these fixed dunes.

  15. Ladar imaging detection of salient map based on PWVD and Rényi entropy

    NASA Astrophysics Data System (ADS)

    Xu, Yuannan; Zhao, Yuan; Deng, Rong; Dong, Yanbing

    2013-10-01

    Spatial-frequency information of a given image can be extracted by associating the grey-level spatial data with one of the well-known spatial/spatial-frequency distributions. The Wigner-Ville distribution (WVD) has a good characteristic that the images can be represented in spatial/spatial-frequency domains. For intensity and range images of ladar, through the pseudo Wigner-Ville distribution (PWVD) using one or two dimension window, the statistical property of Rényi entropy is studied. We also analyzed the change of Rényi entropy's statistical property in the ladar intensity and range images when the man-made objects appear. From this foundation, a novel method for generating saliency map based on PWVD and Rényi entropy is proposed. After that, target detection is completed when the saliency map is segmented using a simple and convenient threshold method. For the ladar intensity and range images, experimental results show the proposed method can effectively detect the military vehicles from complex earth background with low false alarm.

  16. Capturing spatial heterogeneity of soil organic carbon under changing climate

    NASA Astrophysics Data System (ADS)

    Mishra, U.; Fan, Z.; Jastrow, J. D.; Matamala, R.; Vitharana, U.

    2015-12-01

    The spatial heterogeneity of the land surface affects water, energy, and greenhouse gas exchanges with the atmosphere. Designing observation networks that capture land surface spatial heterogeneity is a critical scientific challenge. Here, we present a geospatial approach to capture the existing spatial heterogeneity of soil organic carbon (SOC) stocks across Alaska, USA. We used the standard deviation of 556 georeferenced SOC profiles previously compiled in Mishra and Riley (2015, Biogeosciences, 12:3993-4004) to calculate the number of observations that would be needed to reliably estimate Alaskan SOC stocks. This analysis indicated that 906 randomly distributed observation sites would be needed to quantify the mean value of SOC stocks across Alaska at a confidence interval of ± 5 kg m-2. We then used soil-forming factors (climate, topography, land cover types, surficial geology) to identify the locations of appropriately distributed observation sites by using the conditioned Latin hypercube sampling approach. Spatial correlation and variogram analyses demonstrated that the spatial structures of soil-forming factors were adequately represented by these 906 sites. Using the spatial correlation length of existing SOC observations, we identified 484 new observation sites would be needed to provide the best estimate of the present status of SOC stocks in Alaska. We then used average decadal projections (2020-2099) of precipitation, temperature, and length of growing season for three representative concentration pathway (RCP 4.5, 6.0, and 8.5) scenarios of the Intergovernmental Panel on Climate Change to investigate whether the location of identified observation sites will shift/change under future climate. Our results showed 12-41 additional observation sites (depending on emission scenarios) will be required to capture the impact of projected climatic conditions by 2100 on the spatial heterogeneity of Alaskan SOC stocks. Our results represent an ideal distribution of observation sites across Alaska that captures the land surface spatial heterogeneity and can be used in efforts to quantify SOC stocks, monitor greenhouse gas emissions, and benchmark Earth System Model results.

  17. Temporal and micro-spatial heterogeneity in the distribution of Anopheles vectors of malaria along the Kenyan coast

    PubMed Central

    2013-01-01

    Background The distribution of anopheline mosquitoes is determined by temporally dynamic environmental and human-associated variables, operating over a range of spatial scales. Macro-spatial short-term trends are driven predominantly by prior (lagged) seasonal changes in climate, which regulate the abundance of suitable aquatic larval habitats. Micro-spatial distribution is determined by the location of these habitats, proximity and abundance of available human bloodmeals and prevailing micro-climatic conditions. The challenge of analysing—in a single coherent statistical framework—the lagged and distributed effect of seasonal climate changes simultaneously with the effects of an underlying hierarchy of spatial factors has hitherto not been addressed. Methods Data on Anopheles gambiae sensu stricto and A. funestus collected from households in Kilifi district, Kenya, were analysed using polynomial distributed lag generalized linear mixed models (PDL GLMMs). Results Anopheline density was positively and significantly associated with amount of rainfall between 4 to 47 days, negatively and significantly associated with maximum daily temperature between 5 and 35 days, and positively and significantly associated with maximum daily temperature between 29 and 48 days in the past (depending on Anopheles species). Multiple-occupancy households harboured greater mosquito numbers than single-occupancy households. A significant degree of mosquito clustering within households was identified. Conclusions The PDL GLMMs developed here represent a generalizable framework for analysing hierarchically-structured data in combination with explanatory variables which elicit lagged effects. The framework is a valuable tool for facilitating detailed understanding of determinants of the spatio-temporal distribution of Anopheles. Such understanding facilitates delivery of targeted, cost-effective and, in certain circumstances, preventative antivectorial interventions against malaria. PMID:24330615

  18. A comparison of MIKE SHE and DRAINMOD for modeling forested wetland hydrology in coastal South Carolina, USA

    Treesearch

    Zhaohua Dai; Devendra M. Amatya; Ge Sun; Carl C. Trettin; Changsheng Li; Harbin Li

    2010-01-01

    Models are widely used to assess hydrologic impacts of land-management, land-use change and climate change. Two hydrologic models with different spatial scales, MIKE SHE (spatially distributed, watershed-scale) and DRAINMOD (lumped, fieldscale), were compared in terms of their performance in predicting stream flow and water table depth in a first-order forested...

  19. Anticipatory control of xenon in a pressurized water reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Impink, A.J. Jr.

    1987-02-10

    A method is described for automatically dampening xenon-135 spatial transients in the core of a pressurized water reactor having control rods which regulate reactor power level, comprising the steps of: measuring the neutron flu in the reactor core at a plurality of axially spaced locations on a real-time, on-line basis; repetitively generating from the neutron flux measurements, on a point-by-point basis, signals representative of the current axial distribution of xenon-135, and signals representative of the current rate of change of the axial distribution of xenon-135; generating from the xenon-135 distribution signals and the rate of change of xenon distribution signals,more » control signals for reducing the xenon transients; and positioning the control rods as a function of the control signals to dampen the xenon-135 spatial transients.« less

  20. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707

  1. Population responses to environmental change in a tropical ant: the interaction of spatial and temporal dynamics.

    PubMed

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants' dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution - a signal of spatial self organization - but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations.

  2. Population Responses to Environmental Change in a Tropical Ant: The Interaction of Spatial and Temporal Dynamics

    PubMed Central

    Jackson, Doug; Vandermeer, John; Perfecto, Ivette; Philpott, Stacy M.

    2014-01-01

    Spatial structure can have a profound, but often underappreciated, effect on the temporal dynamics of ecosystems. Here we report on a counterintuitive increase in the population of a tree-nesting ant, Azteca sericeasur, in response to a drastic reduction in the number of potential nesting sites. This surprising result is comprehensible when viewed in the context of the self-organized spatial dynamics of the ants and their effect on the ants’ dispersal-limited natural enemies. Approximately 30% of the trees in the study site, a coffee agroecosystem in southern Mexico, were pruned or felled over a two-year period, and yet the abundance of the ant nests more than doubled over the seven-year study. Throughout the transition, the spatial distribution of the ants maintained a power-law distribution – a signal of spatial self organization – but the local clustering of the nests was reduced post-pruning. A cellular automata model incorporating the changed spatial structure of the ants and the resulting partial escape from antagonists reproduced the observed increase in abundance, highlighting how self-organized spatial dynamics can profoundly influence the responses of ecosystems to perturbations. PMID:24842117

  3. High-mass-resolution MALDI mass spectrometry imaging reveals detailed spatial distribution of metabolites and lipids in roots of barley seedlings in response to salinity stress.

    PubMed

    Sarabia, Lenin D; Boughton, Berin A; Rupasinghe, Thusitha; van de Meene, Allison M L; Callahan, Damien L; Hill, Camilla B; Roessner, Ute

    2018-01-01

    Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na + and decreases of K + content. Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.

  4. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2015-06-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  5. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2016-01-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  6. Walrus distributional and foraging response to changing ice and benthic conditions in the Chukchi Sea

    USGS Publications Warehouse

    Jay, Chadwick V.; Grebmeier, Jacqueline M.; Fischbach, Anthony S.

    2012-01-01

    Arctic species such as the Pacific walrus (Odobenus rosmarus divergens) are facing a rapidly changing environment. Walruses are benthic foragers and may shift their spatial patterns of foraging in response to changes in prey distribution. We used data from satellite radio-tags attached to walruses in 2009-2010 to map walrus foraging locations with concurrent sampling of benthic infauna to examine relationships between distributions of dominant walrus prey and spatial patterns of walrus foraging. Walrus foraging was concentrated offshore in the NE Chukchi Sea, and coastal areas of northwestern Alaska when sea ice was sparse. Walrus foraging areas in August-September were coincident with the biomass of two dominant bivalve taxa (Tellinidae and Nuculidae) and sipunculid worms. Walrusforaging costs associated with increased travel time to higher biomass food patches from land may be significantly higher than the costs from sea ice haul-outs and result in reduced energy storesin walruses. Identifying what resources are selected by walruses and how those resources are distributed in space and time will improve our ability to forecast how walruses might respond to a changing climate.

  7. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China

    PubMed Central

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming’an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands. PMID:26295954

  8. Primary Productivity and Precipitation-Use Efficiency in Temperate Grassland in the Loess Plateau of China.

    PubMed

    Jia, Xiaoxu; Xie, Baoni; Shao, Ming'an; Zhao, Chunlei

    2015-01-01

    Clarifying spatial variations in aboveground net primary productivity (ANPP) and precipitation-use efficiency (PUE) of grasslands is critical for effective prediction of the response of terrestrial ecosystem carbon and water cycle to future climate change. Though the combination use of remote sensing products and in situ ANPP measurements, we quantified the effects of climatic [mean annual precipitation (MAP) and precipitation seasonal distribution (PSD)], biotic [leaf area index (LAI)] and abiotic [slope gradient, aspect, soil water storage (SWS) and other soil physical properties] factors on the spatial variations in ANPP and PUE across different grassland types (i.e., meadow steppe, typical steppe and desert steppe) in the Loess Plateau. Based on the study, ANPP increased exponentially with MAP for the entire temperate grassland; suggesting that PUE increased with increasing MAP. Also PSD had a significant effect on ANPP and PUE; where more even PSD favored higher ANPP and PUE. Then MAP, more than PSD, explained spatial variations in typical steppe and desert steppe. However, PSD was the dominant driving factor of spatial variations in ANPP of meadow steppe. This suggested that in terms of spatial variations in ANPP of meadow steppe, change in PSD due to climate change was more important than that in total annual precipitation. LAI explained 78% of spatial PUE in the entire Loess Plateau temperate grassland. As such, LAI was the primary driving factor of spatial variations in PUE. Although the effect of SWS on ANPP and PUE was significant, it was nonetheless less than that of precipitation and vegetation. We therefore concluded that changes in vegetation structure and consequently in LAI and/or altered pattern of seasonal distribution of rainfall due to global climate change could significantly influence ecosystem carbon and water cycle in temperate grasslands.

  9. Probability and the changing shape of response distributions for orientation.

    PubMed

    Anderson, Britt

    2014-11-18

    Spatial attention and feature-based attention are regarded as two independent mechanisms for biasing the processing of sensory stimuli. Feature attention is held to be a spatially invariant mechanism that advantages a single feature per sensory dimension. In contrast to the prediction of location independence, I found that participants were able to report the orientation of a briefly presented visual grating better for targets defined by high probability conjunctions of features and locations even when orientations and locations were individually uniform. The advantage for high-probability conjunctions was accompanied by changes in the shape of the response distributions. High-probability conjunctions had error distributions that were not normally distributed but demonstrated increased kurtosis. The increase in kurtosis could be explained as a change in the variances of the component tuning functions that comprise a population mixture. By changing the mixture distribution of orientation-tuned neurons, it is possible to change the shape of the discrimination function. This prompts the suggestion that attention may not "increase" the quality of perceptual processing in an absolute sense but rather prioritizes some stimuli over others. This results in an increased number of highly accurate responses to probable targets and, simultaneously, an increase in the number of very inaccurate responses. © 2014 ARVO.

  10. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOEpatents

    Maris, Humphrey J.

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  11. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOEpatents

    Maris, Humphrey J.

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  12. Forecasting the impact of transport improvements on commuting and residential choice

    NASA Astrophysics Data System (ADS)

    Elhorst, J. Paul; Oosterhaven, Jan

    2006-03-01

    This paper develops a probabilistic, competing-destinations, assignment model that predicts changes in the spatial pattern of the working population as a result of transport improvements. The choice of residence is explained by a new non-parametric model, which represents an alternative to the popular multinominal logit model. Travel times between zones are approximated by a normal distribution function with different mean and variance for each pair of zones, whereas previous models only use average travel times. The model’s forecast error of the spatial distribution of the Dutch working population is 7% when tested on 1998 base-year data. To incorporate endogenous changes in its causal variables, an almost ideal demand system is estimated to explain the choice of transport mode, and a new economic geography inter-industry model (RAEM) is estimated to explain the spatial distribution of employment. In the application, the model is used to forecast the impact of six mutually exclusive Dutch core-periphery railway proposals in the projection year 2020.

  13. Spatial and temporal statistical analysis of bycatch data: Patterns of sea turtle bycatch in the North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Morreale, S.J.; Epperly, S.P.

    2008-01-01

    Loggerhead (Caretta caretta) and leatherback (Dermochelys coriacea) sea turtle distributions and movements in offshore waters of the western North Atlantic are not well understood despite continued efforts to monitor, survey, and observe them. Loggerhead and leatherback sea turtles are listed as endangered by the World Conservation Union, and thus anthropogenic mortality of these species, including fishing, is of elevated interest. This study quantifies spatial and temporal patterns of sea turtle bycatch distributions to identify potential processes influencing their locations. A Ripley's K function analysis was employed on the NOAA Fisheries Atlantic Pelagic Longline Observer Program data to determine spatial, temporal, and spatio-temporal patterns of sea turtle bycatch distributions within the pattern of the pelagic fishery distribution. Results indicate that loggerhead and leatherback sea turtle catch distributions change seasonally, with patterns of spatial clustering appearing from July through October. The results from the space-time analysis indicate that sea turtle catch distributions are related on a relatively fine scale (30-200 km and 1-5 days). The use of spatial and temporal point pattern analysis, particularly K function analysis, is a novel way to examine bycatch data and can be used to inform fishing practices such that fishing could still occur while minimizing sea turtle bycatch. ?? 2008 NRC.

  14. Projected Irrigation Requirement Under Climate Change in Korean Peninsula by Apply Global Hydrologic Model to Local Scale.

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lee, D. K.

    2016-12-01

    Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.

  15. Microsite and elevation zone effects on seed pilferage, germination, and seedling survival during early whitebark pine recruitment.

    PubMed

    Pansing, Elizabeth R; Tomback, Diana F; Wunder, Michael B; French, Joshua P; Wagner, Aaron C

    2017-11-01

    Tree recruitment is a spatially structured process that may undergo change over time because of variation in postdispersal processes. We examined seed pilferage, seed germination, and seedling survival in whitebark pine to determine whether 1) microsite type alters the initial spatial pattern of seed caches, 2) higher abiotic stress (i.e. higher elevations) exacerbates spatial distribution changes, and 3) these postdispersal processes are spatially clustered. At two study areas, we created a seed distribution pattern by burying seed caches in microsite types frequently used by whitebark pine's avian seed disperser (Clark's nutcracker) in upper subalpine forest and at treeline, the latter characterized by high abiotic environmental stress. We monitored caches for two years for pilferage, germination, and seedling survival. Odds of pilferage (both study areas), germination (northern study area), and survival (southern study area) were higher at treeline relative to subalpine forest. At the southern study area, we found higher odds of 1) pilferage near rocks and trees relative to no object in subalpine forest, 2) germination near rocks relative to trees within both elevation zones, and 3) seedling survival near rocks and trees relative to no object at treeline. No microsite effects were detected at the northern study area. Findings indicated that the microsite distribution of seed caches changes with seed/seedling stage. Higher odds of seedling survival near rocks and trees were observed at treeline, suggesting abiotic stress may limit safe site availability, thereby shifting the spatial distribution toward protective microsites. Higher odds of pilferage at treeline, however, suggest rodents may limit treeline recruitment. Further, odds of pilferage were higher near rocks and trees relative to no object in subalpine forest but did not differ among microsites at treeline, suggesting pilferage can modulate the spatial structure of regeneration, a finding supported by limited clustering of postdispersal processes.

  16. Modeling erosion and accretion along the Illinois Lake Michigan shore using integrated airborne, waterborne and ground-based method

    NASA Astrophysics Data System (ADS)

    Mwakanyamale, K. E.; Brown, S.; Larson, T. H.; Theuerkauf, E.; Ntarlagiannis, D.; Phillips, A.; Anderson, A.

    2017-12-01

    Sediment distribution at the Illinois Lake Michigan shoreline is constantly changing in response to increased human activities and complex natural coastal processes associated with wave action, short and long term fluctuations in lake level, and the influence of coastal ice. Understanding changes to volume, distribution and thickness of sand along the shore through time, is essential for modeling shoreline changes and predicting changes due to extreme weather events and lake-level fluctuation. The use of helicopter transient electromagnetic (HTEM) method and integration with ground-based and waterborne geophysical and geologic methods provides high resolution spatial rich data required for modeling the extent of erosion and accretion at this dynamic coastal system. Analysis and interpretation of HTEM, ground and waterborne geophysical and geological data identify spatial distribution and thickness of beach and lake-bottom sand. The results provide information on existence of littoral sand deposits and identify coastal hazards such as lakebed down-cutting that occurs in sand-starved areas.

  17. Pulling apart: new perspectives on the spatial dimensions of neighbourhood income disparities in Canadian cities

    NASA Astrophysics Data System (ADS)

    Breau, Sébastien; Shin, Michael; Burkhart, Nick

    2018-01-01

    The spatial configurations of changes in the distribution of incomes within Canada's eight largest metropolitan areas are examined using a new approach based on dynamic local indicators of spatial association. These changes are characterized by increasing spatial polarization (or divergence) between higher- and lower-income neighbourhoods in Montreal, Toronto, Ottawa-Gatineau, Calgary and Vancouver. Though patterns of spatial polarization are less pronounced in Edmonton, Winnipeg and Quebec City, several lower-income neighbourhoods in these cities nevertheless appear to be losing ground relative to other neighbourhoods. These neighbourhoods are typically characterized by higher levels of precarious employment and higher shares of visible minority and recent immigrant populations.

  18. Fluorine-Containing novel spatial and contact repellents

    USDA-ARS?s Scientific Manuscript database

    Mosquito-transmitted diseases such as malaria, dengue, and yellow fever, result in thousands of human deaths yearly. Climate change and global warming can enhance the vectorial capacity, and the temporal and spatial distribution of mosquito populations. To find more effective tools for mosquito and ...

  19. Synergistic and antagonistic interactions of future land use and climate change on river fish assemblages.

    PubMed

    Radinger, Johannes; Hölker, Franz; Horký, Pavel; Slavík, Ondřej; Dendoncker, Nicolas; Wolter, Christian

    2016-04-01

    River ecosystems are threatened by future changes in land use and climatic conditions. However, little is known of the influence of interactions of these two dominant global drivers of change on ecosystems. Does the interaction amplify (synergistic interaction) or buffer (antagonistic interaction) the impacts and does their interaction effect differ in magnitude, direction and spatial extent compared to single independent pressures. In this study, we model the impact of single and interacting effects of land use and climate change on the spatial distribution of 33 fish species in the Elbe River. The varying effects were modeled using step-wise boosted regression trees based on 250 m raster grid cells. Species-specific models were built for both 'moderate' and 'extreme' future land use and climate change scenarios to assess synergistic, additive and antagonistic interaction effects on species losses, species gains and diversity indices and to quantify their spatial distribution within the Elbe River network. Our results revealed species richness is predicted to increase by 0.7-2.9 species by 2050 across the entire river network. Changes in species richness are likely to be spatially variable with significant changes predicted for 56-85% of the river network. Antagonistic interactions would dominate species losses and gains in up to 75% of the river network. In contrast, synergistic and additive effects would occur in only 20% and 16% of the river network, respectively. The magnitude of the interaction was negatively correlated with the magnitudes of the single independent effects of land use and climate change. Evidence is provided to show that future land use and climate change effects are highly interactive resulting in species range shifts that would be spatially variable in size and characteristic. These findings emphasize the importance of adaptive river management and the design of spatially connected conservation areas to compensate for these high species turnovers and range shifts. © 2015 John Wiley & Sons Ltd.

  20. Spatiotemporal responses of dengue fever transmission to the road network in an urban area.

    PubMed

    Li, Qiaoxuan; Cao, Wei; Ren, Hongyan; Ji, Zhonglin; Jiang, Huixian

    2018-07-01

    Urbanization is one of the important factors leading to the spread of dengue fever. Recently, some studies found that the road network as an urbanization factor affects the distribution and spread of dengue epidemic, but the study of relationship between the distribution of dengue epidemic and road network is limited, especially in highly urbanized areas. This study explores the temporal and spatial spread characteristics of dengue fever in the distribution of road network by observing a dengue epidemic in the southern Chinese cities. Geographic information technology is used to extract the spatial location of cases and explore the temporal and spatial changes of dengue epidemic and its spatial relationship with road network. The results showed that there was a significant "severe" period in the temporal change of dengue epidemic situation, and the cases were mainly concentrated in the vicinity of narrow roads, the spread of the epidemic mainly along the high-density road network area. These results show that high-density road network is an important factor to the direction and scale of dengue epidemic. This information may be helpful to the development of related epidemic prevention and control strategies. Copyright © 2018. Published by Elsevier B.V.

  1. Spatial and Temporal Changes of Aerosol Optical Depth and its Driving Factors Based on Modis in Jiangsu Province

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Xu, Q.; Gu, Y. K.; Qian, X. Y.; He, J. N.

    2018-04-01

    Aerosol Optical Depth (AOD) is of great value for studying air mass and its changes. In this paper, we studied the spatial-temporal changes of AOD and its driving factors based on spatial autocorrelation model, gravity model and multiple regression analysis in Jiangsu Province from 2007 to 2016. The results showed that in terms of spatial distribution, the southern AOD value is higher, and the high-value aggregation areas are significant, while the northern AOD value is lower, but the low-value aggregation areas constantly change. The AOD gravity centers showed a clear point-like aggregation. In terms of temporal changes, the overall AOD in Jiangsu Province increased year by year in fluctuation. In terms of driving factors, the total amount of vehicles, precipitation and temperature are important factors for the growth of AOD.

  2. Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China.

    PubMed

    Wang, Rong; Cao, Hongying; Li, Wei; Wang, Wei; Wang, Wentao; Zhang, Liwen; Liu, Jiumeng; Ouyang, Huiling; Tao, Shu

    2011-05-01

    A dynamic fugacity model was developed to simulate the spatial and seasonal variations of PAHs in Haihe Plain, China. The calculated and measured concentrations exhibited good consistency in magnitude with deviations within a factor of 4 in air and 2 in soil. The spatial distributions of PAHs in air were mainly controlled by emission while the seasonal variations were dominated by emission and gas-particle partition. In soil, the spatial distributions of PAHs were controlled by the soil organic carbon content while the seasonal variations were insignificant. The severest soil contamination was observed in Shanxi and followed by the southwest of Hebei province. Transfer fluxes of total PAHs between air and soil were calculated. The spatial distribution of air-to-soil flux was closely related to the landcover while the soil-to-air flux changed with soil organic matter content. Monte Carlo simulation was done to evaluate the uncertainty of the estimated results in air. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. A new spatial snow distribution in hydrological models parameterized from observed spatial variability of precipitation.

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn

    2016-04-01

    The traditional catchment hydrological model with its many free calibration parameters is not a well suited tool for prediction under conditions for which is has not been calibrated. Important tasks for hydrological modelling such as prediction in ungauged basins and assessing hydrological effects of climate change are hence not solved satisfactory. In order to reduce the number of calibration parameters in hydrological models we have introduced a new model which uses a dynamic gamma distribution as the spatial frequency distribution of snow water equivalent (SWE). The parameters are estimated from observed spatial variability of precipitation and the magnitude of accumulation and melting events and are hence not subject to calibration. The relationship between spatial mean and variance of precipitation is found to follow a pattern where decreasing temporal correlation with increasing accumulation or duration of the event leads to a levelling off or even a decrease of the spatial variance. The new model for snow distribution is implemented in the, already parameter parsimonious, DDD (Distance Distribution Dynamics) hydrological model and was tested for 71 Norwegian catchments. We compared the new snow distribution model with the current operational snow distribution model where a fixed, calibrated coefficient of variation parameterizes a log-normal model for snow distribution. Results show that the precision of runoff simulations is equal, but that the new snow distribution model better simulates snow covered area (SCA) when compared with MODIS satellite derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" is prevented and hence spurious trends in SWE.

  4. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change

    PubMed Central

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-01-01

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change. PMID:27621443

  5. Pollen dispersal slows geographical range shift and accelerates ecological niche shift under climate change.

    PubMed

    Aguilée, Robin; Raoul, Gaël; Rousset, François; Ronce, Ophélie

    2016-09-27

    Species may survive climate change by migrating to track favorable climates and/or adapting to different climates. Several quantitative genetics models predict that species escaping extinction will change their geographical distribution while keeping the same ecological niche. We introduce pollen dispersal in these models, which affects gene flow but not directly colonization. We show that plant populations may escape extinction because of both spatial range and ecological niche shifts. Exact analytical formulas predict that increasing pollen dispersal distance slows the expected spatial range shift and accelerates the ecological niche shift. There is an optimal distance of pollen dispersal, which maximizes the sustainable rate of climate change. These conclusions hold in simulations relaxing several strong assumptions of our analytical model. Our results imply that, for plants with long distance of pollen dispersal, models assuming niche conservatism may not accurately predict their future distribution under climate change.

  6. Cross-scale assessment of potential habitat shifts in a rapidly changing climate

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Holcombe, Tracy R.; Bella, Elizabeth S.; Carlson, Matthew L.; Graziano, Gino; Lamb, Melinda; Seefeldt, Steven S.; Morisette, Jeffrey T.

    2014-01-01

    We assessed the ability of climatic, environmental, and anthropogenic variables to predict areas of high-risk for plant invasion and consider the relative importance and contribution of these predictor variables by considering two spatial scales in a region of rapidly changing climate. We created predictive distribution models, using Maxent, for three highly invasive plant species (Canada thistle, white sweetclover, and reed canarygrass) in Alaska at both a regional scale and a local scale. Regional scale models encompassed southern coastal Alaska and were developed from topographic and climatic data at a 2 km (1.2 mi) spatial resolution. Models were applied to future climate (2030). Local scale models were spatially nested within the regional area; these models incorporated physiographic and anthropogenic variables at a 30 m (98.4 ft) resolution. Regional and local models performed well (AUC values > 0.7), with the exception of one species at each spatial scale. Regional models predict an increase in area of suitable habitat for all species by 2030 with a general shift to higher elevation areas; however, the distribution of each species was driven by different climate and topographical variables. In contrast local models indicate that distance to right-of-ways and elevation are associated with habitat suitability for all three species at this spatial level. Combining results from regional models, capturing long-term distribution, and local models, capturing near-term establishment and distribution, offers a new and effective tool for highlighting at-risk areas and provides insight on how variables acting at different scales contribute to suitability predictions. The combinations also provides easy comparison, highlighting agreement between the two scales, where long-term distribution factors predict suitability while near-term do not and vice versa.

  7. Implications of recurrent disturbance for genetic diversity.

    PubMed

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes.

  8. Using semi-variogram analysis for providing spatially distributed information on soil surface condition for land surface modeling

    NASA Astrophysics Data System (ADS)

    Croft, Holly; Anderson, Karen; Kuhn, Nikolaus J.

    2010-05-01

    The ability to quantitatively and spatially assess soil surface roughness is important in geomorphology and land degradation studies. Soils can experience rapid structural degradation in response to land cover changes, resulting in increased susceptibility to erosion and a loss of Soil Organic Matter (SOM). Changes in soil surface condition can also alter sediment detachment, transport and deposition processes, infiltration rates and surface runoff characteristics. Deriving spatially distributed quantitative information on soil surface condition for inclusion in hydrological and soil erosion models is therefore paramount. However, due to the time and resources involved in using traditional field sampling techniques, there is a lack of spatially distributed information on soil surface condition. Laser techniques can provide data for a rapid three dimensional representation of the soil surface at a fine spatial resolution. This provides the ability to capture changes at the soil surface associated with aggregate breakdown, flow routing, erosion and sediment re-distribution. Semi-variogram analysis of the laser data can be used to represent spatial dependence within the dataset; providing information about the spatial character of soil surface structure. This experiment details the ability of semi-variogram analysis to spatially describe changes in soil surface condition. Soil for three soil types (silt, silt loam and silty clay) was sieved to produce aggregates between 1 mm and 16 mm in size and placed evenly in sample trays (25 x 20 x 2 cm). Soil samples for each soil type were exposed to five different durations of artificial rainfall, to produce progressively structurally degraded soil states. A calibrated laser profiling instrument was used to measure surface roughness over a central 10 x 10 cm plot of each soil state, at 2 mm sample spacing. The laser data were analysed within a geostatistical framework, where semi-variogram analysis quantitatively represented the change in soil surface structure during crusting. The laser data were also used to create digital surface models (DSM) of the soil states for visual comparison. This research has shown that aggregate breakdown and soil crusting can be shown quantitatively by a decrease in sill variance (silt soil: 11.67 (control) to 1.08 (after 90 mins rainfall)). Features present within semi-variograms were spatially linked to features at the soil surface, such as soil cracks, tillage lines and areas of deposition. Directional semi-variograms were used to provide a spatially orientated component, where the directional sill variance associated with a soil crack was shown to increase from 7.95 to 19.33. Periodicity within semi-variogram was also shown to quantify the spatial scale of soil cracking networks and potentially surface flowpaths; an average distance between soil cracks of 37 mm closely corresponded to the distance of 38 mm shown in the semi-variogram. The results provide a strong basis for the future retrieval of spatio-temporal variations in soil surface condition. Furthermore, the presence of process-based information on hydrological pathways within semi-variograms may work towards an inclusion of geostatisically-derived information in land surface models and the understanding of complex surface processes at different spatial scales.

  9. LAND-COVER CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDVI DATA

    EPA Science Inventory

    Monitoring the locations and spatial distributions of land-cover changes and patterns is important for establishing links between policy decisions, regulatory actions and resulting landuse activities. The monitoring of change patterns across the landscape can also supply valuable...

  10. Dynamics of ecosystem service values in response to landscape pattern changes from 1995 to 2005 in Guangzhou, Southern China

    Treesearch

    Yanqiong Ye; Jia' en Zhang; Lili Chen; Ying Ouyang; Prem Parajuli

    2015-01-01

    This study analyzed the landscape pattern changes, the dynamics of the ecosystem service values (ESVs) and the spatial distribution of ESVs from 1995 to 2005 in Guangzhou, which is the capital of Guangdong Province and a regional central city in South China. Remote sensing data and geographic information system techniques, in conjunction with spatial metrics, were used...

  11. Concise biomarker for spatial-temporal change in three-dimensional ultrasound measurement of carotid vessel wall and plaque thickness based on a graph-based random walk framework: Towards sensitive evaluation of response to therapy.

    PubMed

    Chiu, Bernard; Chen, Weifu; Cheng, Jieyu

    2016-12-01

    Rapid progression in total plaque area and volume measured from ultrasound images has been shown to be associated with an elevated risk of cardiovascular events. Since atherosclerosis is focal and predominantly occurring at the bifurcation, biomarkers that are able to quantify the spatial distribution of vessel-wall-plus-plaque thickness (VWT) change may allow for more sensitive detection of treatment effect. The goal of this paper is to develop simple and sensitive biomarkers to quantify the responsiveness to therapies based on the spatial distribution of VWT-Change on the entire 2D carotid standardized map previously described. Point-wise VWT-Changes computed for each patient were reordered lexicographically to a high-dimensional data node in a graph. A graph-based random walk framework was applied with the novel Weighted Cosine (WCos) similarity function introduced, which was tailored for quantification of responsiveness to therapy. The converging probability of each data node to the VWT regression template in the random walk process served as a scalar descriptor for VWT responsiveness to treatment. The WCos-based biomarker was 14 times more sensitive than the mean VWT-Change in discriminating responsive and unresponsive subjects based on the p-values obtained in T-tests. The proposed framework was extended to quantify where VWT-Change occurred by including multiple VWT-Change distribution templates representing focal changes at different regions. Experimental results show that the framework was effective in classifying carotid arteries with focal VWT-Change at different locations and may facilitate future investigations to correlate risk of cardiovascular events with the location where focal VWT-Change occurs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Evaluating efficiency-equality tradeoffs for mobile source control strategies in an urban area

    PubMed Central

    Levy, Jonathan I.; Greco, Susan L.; Melly, Steven J.; Mukhi, Neha

    2013-01-01

    In environmental risk management, there are often interests in maximizing public health benefits (efficiency) and addressing inequality in the distribution of health outcomes. However, both dimensions are not generally considered within a single analytical framework. In this study, we estimate both total population health benefits and changes in quantitative indicators of health inequality for a number of alternative spatial distributions of diesel particulate filter retrofits across half of an urban bus fleet in Boston, Massachusetts. We focus on the impact of emissions controls on primary fine particulate matter (PM2.5) emissions, modeling the effect on PM2.5 concentrations and premature mortality. Given spatial heterogeneity in baseline mortality rates, we apply the Atkinson index and other inequality indicators to quantify changes in the distribution of mortality risk. Across the different spatial distributions of control strategies, the public health benefits varied by more than a factor of two, related to factors such as mileage driven per day, population density near roadways, and baseline mortality rates in exposed populations. Changes in health inequality indicators varied across control strategies, with the subset of optimal strategies considering both efficiency and equality generally robust across different parametric assumptions and inequality indicators. Our analysis demonstrates the viability of formal analytical approaches to jointly address both efficiency and equality in risk assessment, providing a tool for decision-makers who wish to consider both issues. PMID:18793281

  13. Spatial and Temporal Distribution of Multiple Cropping Indices in the North China Plain Using a Long Remote Sensing Data Time Series.

    PubMed

    Zhao, Yan; Bai, Linyan; Feng, Jianzhong; Lin, Xiaosong; Wang, Li; Xu, Lijun; Ran, Qiyun; Wang, Kui

    2016-04-19

    Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province.

  14. Spatial and Temporal Distribution of Multiple Cropping Indices in the North China Plain Using a Long Remote Sensing Data Time Series

    PubMed Central

    Zhao, Yan; Bai, Linyan; Feng, Jianzhong; Lin, Xiaosong; Wang, Li; Xu, Lijun; Ran, Qiyun; Wang, Kui

    2016-01-01

    Multiple cropping provides China with a very important system of intensive cultivation, and can effectively enhance the efficiency of farmland use while improving regional food production and security. A multiple cropping index (MCI), which represents the intensity of multiple cropping and reflects the effects of climate change on agricultural production and cropping systems, often serves as a useful parameter. Therefore, monitoring the dynamic changes in the MCI of farmland over a large area using remote sensing data is essential. For this purpose, nearly 30 years of MCIs related to dry land in the North China Plain (NCP) were efficiently extracted from remotely sensed leaf area index (LAI) data from the Global LAnd Surface Satellite (GLASS). Next, the characteristics of the spatial-temporal change in MCI were analyzed. First, 2162 typical arable sample sites were selected based on a gridded spatial sampling strategy, and then the LAI information was extracted from the samples. Second, the Savizky-Golay filter was used to smooth the LAI time-series data of the samples, and then the MCIs of the samples were obtained using a second-order difference algorithm. Finally, the geo-statistical Kriging method was employed to map the spatial distribution of the MCIs and to obtain a time-series dataset of the MCIs of dry land over the NCP. The results showed that all of the MCIs in the NCP showed an increasing trend over the entire study period and increased most rapidly from 1982 to 2002. Spatially, MCIs decreased from south to north; also, high MCIs were mainly concentrated in the relatively flat areas. In addition, the partial spatial changes of MCIs had clear geographical characteristics, with the largest change in Henan Province. PMID:27104536

  15. Population exposure to heat-related extremes: Demographic change vs climate change

    NASA Astrophysics Data System (ADS)

    Jones, B.; O'Neill, B. C.; Tebaldi, C.; Oleson, K. W.

    2014-12-01

    Extreme heat events are projected to increase in frequency and intensity in the coming decades [1]. The physical effects of extreme heat on human populations are well-documented, and anticipating changes in future exposure to extreme heat is a key component of adequate planning/mitigation [2, 3]. Exposure to extreme heat depends not only on changing climate, but also on changes in the size and spatial distribution of the human population. Here we focus on systematically quantifying exposure to extreme heat as a function of both climate and population change. We compare exposure outcomes across multiple global climate and spatial population scenarios, and characterize the relative contributions of each to population exposure to extreme heat. We consider a 2 x 2 matrix of climate and population output, using projections of heat extremes corresponding to RCP 4.5 and RCP 8.5 from the NCAR community land model, and spatial population projections for SSP 3 and SSP 5 from the NCAR spatial population downscaling model. Our primary comparison is across RCPs - exposure outcomes from RCP 4.5 versus RCP 8.5 - paying particular attention to how variation depends on the choice of SSP in terms of aggregate global and regional exposure, as well as the spatial distribution of exposure. We assess how aggregate exposure changes based on the choice of SSP, and which driver is more important, population or climate change (i.e. does that outcome vary more as a result of RCP or SSP). We further decompose the population component to analyze the contributions of total population change, migration, and changes in local spatial structure. Preliminary results from a similar study of the US suggests a four-to-six fold increase in total exposure by the latter half of the 21st century. Changes in population are as important as changes in climate in driving this outcome, and there is regional variation in the relative importance of each. Aggregate population growth, as well as redistribution of the population across larger US regions, strongly affects outcomes while smaller-scale spatial patterns of population change have smaller effects. [1] Collins, M. et al. (2013) Contribution of WG I to the 5th AR of the IPCC[2] Romero-Lankao, P. et al (2014) Contribution of WG II to the 5th AR of the IPCC[3] Walsh, J. et al. (2014) The 3rd National Climate Assessment

  16. Development of a local size hierarchy causes regular spacing of trees in an even-aged Abies forest: analyses using spatial autocorrelation and the mark correlation function.

    PubMed

    Suzuki, Satoshi N; Kachi, Naoki; Suzuki, Jun-Ichirou

    2008-09-01

    During the development of an even-aged plant population, the spatial distribution of individuals often changes from a clumped pattern to a random or regular one. The development of local size hierarchies in an Abies forest was analysed for a period of 47 years following a large disturbance in 1959. In 1980 all trees in an 8 x 8 m plot were mapped and their height growth after the disturbance was estimated. Their mortality and growth were then recorded at 1- to 4-year intervals between 1980 and 2006. Spatial distribution patterns of trees were analysed by the pair correlation function. Spatial correlations between tree heights were analysed with a spatial autocorrelation function and the mark correlation function. The mark correlation function was able to detect a local size hierarchy that could not be detected by the spatial autocorrelation function alone. The small-scale spatial distribution pattern of trees changed from clumped to slightly regular during the 47 years. Mortality occurred in a density-dependent manner, which resulted in regular spacing between trees after 1980. The spatial autocorrelation and mark correlation functions revealed the existence of tree patches consisting of large trees at the initial stage. Development of a local size hierarchy was detected within the first decade after the disturbance, although the spatial autocorrelation was not negative. Local size hierarchies that developed persisted until 2006, and the spatial autocorrelation became negative at later stages (after about 40 years). This is the first study to detect local size hierarchies as a prelude to regular spacing using the mark correlation function. The results confirm that use of the mark correlation function together with the spatial autocorrelation function is an effective tool to analyse the development of a local size hierarchy of trees in a forest.

  17. Description of Changes in Climatic Indices in USA over 25 Years (1989 – 2013)

    EPA Science Inventory

    The spatial distribution of long-term changes in climatic factors and its relation with vegetation cover, human health, hydrology and many other ecosystem processes help to identify the consequences of climatic factors changes. In recent studies, the significant changes of select...

  18. SIMPPLLE, version 2.5 user's guide

    Treesearch

    Jimmie D. Chew; Kirk Moeller; Christine Stalling

    2012-01-01

    SIMPPLLE is a spatially-interactive, dynamic landscape modeling system for projecting temporal changes in the spatial distribution of vegetation in response to insects, disease, wildland fire, and other natural and management-caused disturbances. SIMPPLLE is designed to provide a balance between incorporating enough complexity and interactions in modeling ecosystem...

  19. Uncoupling the complexity of forest soil variation: influence of terrain attributes, spectral indices, and spatial variability

    EPA Science Inventory

    Growing concern over climate and management induced changes to soil nutrient status has prompted interest in understanding the spatial distribution of forest soil properties. Recent advancements in remotely sensed geospatial technologies are providing an increasing array of data...

  20. Inhomogeneity Based Characterization of Distribution Patterns on the Plasma Membrane

    PubMed Central

    Paparelli, Laura; Corthout, Nikky; Wakefield, Devin L.; Sannerud, Ragna; Jovanovic-Talisman, Tijana; Annaert, Wim; Munck, Sebastian

    2016-01-01

    Cell surface protein and lipid molecules are organized in various patterns: randomly, along gradients, or clustered when segregated into discrete micro- and nano-domains. Their distribution is tightly coupled to events such as polarization, endocytosis, and intracellular signaling, but challenging to quantify using traditional techniques. Here we present a novel approach to quantify the distribution of plasma membrane proteins and lipids. This approach describes spatial patterns in degrees of inhomogeneity and incorporates an intensity-based correction to analyze images with a wide range of resolutions; we have termed it Quantitative Analysis of the Spatial distributions in Images using Mosaic segmentation and Dual parameter Optimization in Histograms (QuASIMoDOH). We tested its applicability using simulated microscopy images and images acquired by widefield microscopy, total internal reflection microscopy, structured illumination microscopy, and photoactivated localization microscopy. We validated QuASIMoDOH, successfully quantifying the distribution of protein and lipid molecules detected with several labeling techniques, in different cell model systems. We also used this method to characterize the reorganization of cell surface lipids in response to disrupted endosomal trafficking and to detect dynamic changes in the global and local organization of epidermal growth factor receptors across the cell surface. Our findings demonstrate that QuASIMoDOH can be used to assess protein and lipid patterns, quantifying distribution changes and spatial reorganization at the cell surface. An ImageJ/Fiji plugin of this analysis tool is provided. PMID:27603951

  1. Modelling climate change effects on benthos: Distributional shifts in the North Sea from 2001 to 2099

    NASA Astrophysics Data System (ADS)

    Weinert, Michael; Mathis, Moritz; Kröncke, Ingrid; Neumann, Hermann; Pohlmann, Thomas; Reiss, Henning

    2016-06-01

    In the marine realm, climate change can affect a variety of physico-chemical properties with wide-ranging biological effects, but the knowledge of how climate change affects benthic distributions is limited and mainly restricted to coastal environments. To project the response of benthic species of a shelf sea (North Sea) to the expected climate change, the distributions of 75 marine benthic species were modelled and the spatial changes in distribution were projected for 2099 based on modelled bottom temperature and salinity changes using the IPCC scenario A1B. Mean bottom temperature was projected to increase between 0.15 and 5.4 °C, while mean bottom salinity was projected to moderately increase by 1.7. The spatial changes in species distribution were modelled with Maxent and the direction and extent of these changes were assessed. The results showed a latitudinal northward shift for 64% of the species (maximum 109 km; brittle star Ophiothrix fragilis) and a southward shift for 36% (maximum 101 km; hermit crab Pagurus prideaux and the associated cloak anemone Adamsia carciniopados; 105 km). The relatively low rates of distributional shifts compared to fish or plankton species were probably influenced by the regional topography. The environmental gradients in the central North Sea along the 50 m depth contour might act as a 'barrier', possibly resulting in a compression of distribution range and hampering further shifts to the north. For 49 species this resulted in a habitat loss up to 100%, while only 11 species could benefit from the warming in terms of habitat gain. Particularly the benthic communities of the southern North Sea, where the strongest temperature increase was projected, would be strongly affected by the distributional changes, since key species showed northward shifts and high rates of habitat loss, with potential ramifications for the functioning of the ecosystem.

  2. Temporal and spatial distribution characteristics in the natural plague foci of Chinese Mongolian gerbils based on spatial autocorrelation.

    PubMed

    Du, Hai-Wen; Wang, Yong; Zhuang, Da-Fang; Jiang, Xiao-San

    2017-08-07

    The nest flea index of Meriones unguiculatus is a critical indicator for the prevention and control of plague, which can be used not only to detect the spatial and temporal distributions of Meriones unguiculatus, but also to reveal its cluster rule. This research detected the temporal and spatial distribution characteristics of the plague natural foci of Mongolian gerbils by body flea index from 2005 to 2014, in order to predict plague outbreaks. Global spatial autocorrelation was used to describe the entire spatial distribution pattern of the body flea index in the natural plague foci of typical Chinese Mongolian gerbils. Cluster and outlier analysis and hot spot analysis were also used to detect the intensity of clusters based on geographic information system methods. The quantity of M. unguiculatus nest fleas in the sentinel surveillance sites from 2005 to 2014 and host density data of the study area from 2005 to 2010 used in this study were provided by Chinese Center for Disease Control and Prevention. The epidemic focus regions of the Mongolian gerbils remain the same as the hot spot regions relating to the body flea index. High clustering areas possess a similar pattern as the distribution pattern of the body flea index indicating that the transmission risk of plague is relatively high. In terms of time series, the area of the epidemic focus gradually increased from 2005 to 2007, declined rapidly in 2008 and 2009, and then decreased slowly and began trending towards stability from 2009 to 2014. For the spatial change, the epidemic focus regions began moving northward from the southwest epidemic focus of the Mongolian gerbils from 2005 to 2007, and then moved from north to south in 2007 and 2008. The body flea index of Chinese gerbil foci reveals significant spatial and temporal aggregation characteristics through the employing of spatial autocorrelation. The diversity of temporary and spatial distribution is mainly affected by seasonal variation, the human activity and natural factors.

  3. Soil carbon distribution in Alaska in relation to soil-forming factors

    Treesearch

    Kristofer D. Johnson; Jennifer Harden; A. David McGuire; Norman B. Bliss; James G. Bockheim; Mark Clark; Teresa Nettleton-Hollingsworth; M. Torre Jorgenson; Evan S. Kane; Michelle Mack; Johathan ODonnell; Chien-Lu Ping; Edward A.G. Schuur; Merritt R. Turetsky; David W. Valentine

    2011-01-01

    The direction and magnitude of soil organic carbon (SOC) changes in response to climate change remain unclear and depend on the spatial distribution of SOC across landscapes. Uncertainties regarding the fate of SOC are greater in high-latitude systems where data are sparse and the soils are affected by sub-zero temperatures. To address these issues in Alaska, a first-...

  4. Reconfiguration of acute care hospitals in post-socialist Serbia: spatial distribution of hospital beds.

    PubMed

    Matejic, Marko

    2017-04-01

    In the context of healthcare reforms in post-socialist Serbia, this research analyses the reconfiguration of acute care hospitals from the aspect of the spatial distribution of hospital beds among and within state-owned hospitals. The research builds a relationship between the macro or national level and the micro or hospital level of the spatial distribution of hospital beds. The aim of the study is to point out that a high level of efficiency in hospital functionality is difficult to achieve within the current hospital network and architectural-urban patterns of hospitals, and to draw attention to the necessity of a strategically planned hospital spatial reconfiguration, conducted simultaneously with other segments of the healthcare system reform. The research analyses published and unpublished data presented in tables and diagrams. The theoretical platform of the research covers earlier discussions of the Yugoslav healthcare system, its post-socialist reforms and the experiences of developed countries. The results show that the hospital bed distribution has not undergone significant changes, while the hospital spatial reconfiguration has either not been carried out at all or, if it has, only on a small scale. All this has contributed to overall inadequate, inflexible, inefficient, defragmented and unequal bed distribution. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  5. A mapping and monitoring assessment of the Philippines' mangrove forests from 1990 to 2010

    USGS Publications Warehouse

    Long, Jordan; Napton, Darrell; Giri, Chandra; Graesser, Jordan

    2014-01-01

    Information on the present condition and spatiotemporal dynamics of mangrove forests is needed for land-change studies and integrated natural resources planning and management. Although several national mangrove estimates for the Philippines exist, information is unavailable at sufficient spatial and thematic detail for change analysis. Historical and contemporary mangrove distribution maps of the Philippines for 1990 and 2010 were prepared at nominal 30-m spatial resolution using Landsat satellite data. Image classification was performed using a supervised decision tree classification approach. Additionally, decadal land-cover change maps from 1990 to 2010 were prepared to depict changes in mangrove area. Total mangrove area decreased 10.5% from 1990 to 2010. Comparison of estimates produced from this study with selected historical mangrove area estimates revealed that total mangrove area decreased by approximately half (51.8%) from 1918 to 2010. This study provides the most current and reliable data regarding the Philippines mangrove area and spatial distribution and delineates where and when mangrove change has occurred in recent decades. The results from this study are useful for developing conservation strategies, biodiversity loss mitigation efforts, and future monitoring and analysis.

  6. Projecting changes in the distribution and productivity of living marine resources: A critical review of the suite of modelling approaches used in the large European project VECTORS

    NASA Astrophysics Data System (ADS)

    Peck, Myron A.; Arvanitidis, Christos; Butenschön, Momme; Canu, Donata Melaku; Chatzinikolaou, Eva; Cucco, Andrea; Domenici, Paolo; Fernandes, Jose A.; Gasche, Loic; Huebert, Klaus B.; Hufnagl, Marc; Jones, Miranda C.; Kempf, Alexander; Keyl, Friedemann; Maar, Marie; Mahévas, Stéphanie; Marchal, Paul; Nicolas, Delphine; Pinnegar, John K.; Rivot, Etienne; Rochette, Sébastien; Sell, Anne F.; Sinerchia, Matteo; Solidoro, Cosimo; Somerfield, Paul J.; Teal, Lorna R.; Travers-Trolet, Morgan; van de Wolfshaar, Karen E.

    2018-02-01

    We review and compare four broad categories of spatially-explicit modelling approaches currently used to understand and project changes in the distribution and productivity of living marine resources including: 1) statistical species distribution models, 2) physiology-based, biophysical models of single life stages or the whole life cycle of species, 3) food web models, and 4) end-to-end models. Single pressures are rare and, in the future, models must be able to examine multiple factors affecting living marine resources such as interactions between: i) climate-driven changes in temperature regimes and acidification, ii) reductions in water quality due to eutrophication, iii) the introduction of alien invasive species, and/or iv) (over-)exploitation by fisheries. Statistical (correlative) approaches can be used to detect historical patterns which may not be relevant in the future. Advancing predictive capacity of changes in distribution and productivity of living marine resources requires explicit modelling of biological and physical mechanisms. New formulations are needed which (depending on the question) will need to strive for more realism in ecophysiology and behaviour of individuals, life history strategies of species, as well as trophodynamic interactions occurring at different spatial scales. Coupling existing models (e.g. physical, biological, economic) is one avenue that has proven successful. However, fundamental advancements are needed to address key issues such as the adaptive capacity of species/groups and ecosystems. The continued development of end-to-end models (e.g., physics to fish to human sectors) will be critical if we hope to assess how multiple pressures may interact to cause changes in living marine resources including the ecological and economic costs and trade-offs of different spatial management strategies. Given the strengths and weaknesses of the various types of models reviewed here, confidence in projections of changes in the distribution and productivity of living marine resources will be increased by assessing model structural uncertainty through biological ensemble modelling.

  7. Spatial and temporal relationships between the invasive snail Bithynia tentaculata and submersed aquatic vegetation in Pool 8 of the Upper Mississippi River

    USGS Publications Warehouse

    Weeks, Alicia M.; DeJager, Nathan R.; Haro, Roger J.; Sandland, Greg J.

    2017-01-01

    Bithynia tentaculata is an invasive snail that was first reported in Lake Michigan in 1871 and has since spread throughout a number of freshwater systems of the USA. This invasion has been extremely problematic in the Upper Mississippi River as the snails serve as intermediate hosts for several trematode parasites that have been associated with waterfowl mortality in the region. This study was designed to assess the abundance and distribution of B. tentaculata relative to submersed aquatic vegetation as macrophytes provide important nesting and food resources for migrating waterfowl. Temporal changes in both vegetation and snail densities were compared between 2007 and 2015. Between these years, B. tentaculata densities have nearly quadrupled despite minor changes in vegetation abundance, distribution and composition. Understanding the spatial distribution of B. tentaculata in relation to other habitat features, including submersed vegetation, and quantifying any further changes in the abundance and distribution of B. tentaculata over time will be important for better identifying areas of risk for disease transmission to waterfowl.

  8. On the role of grain boundary character distribution in grain growth of Al-Mg alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsumoto, K.; Shibayanagi, T.; Umakoshi, Y.

    1997-02-01

    Grain growth behavior of recrystallized Al-Mg alloys containing 0.3 and 2.7 mass% Mg was investigated, focusing on the interconnection between development of the texture and grain boundary character distribution. An Al-0.3 mass% Mg alloy showed two stages in the change of microstructure during grain growth: the frequency of cube oriented grains and the {Sigma}1 boundary significantly increased at an early stage and then decreased. In the second stage a small amount of isolated large grains with the non-cube component grew and consumed the surrounding cube grains. In contrast, the frequency of cube oriented grains and the grain boundary character distributionmore » showed no significant change during grain growth of Al-2.7 mass% Mg. Small clusters composed of several cube grains containing {Sigma}1 boundaries were formed and their spatial distribution played an important role in the change of microstructure during grain growth. The effect of the spatial distribution on the grain growth behavior was discussed considering the energy balance at triple junctions of grain boundaries.« less

  9. Neighborhood Sociodemographics and Change in Built Infrastructure.

    PubMed

    Hirsch, Jana A; Green, Geoffrey F; Peterson, Marc; Rodriguez, Daniel A; Gordon-Larsen, Penny

    2017-01-01

    While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985-2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods.

  10. Neighborhood Sociodemographics and Change in Built Infrastructure

    PubMed Central

    Hirsch, Jana A.; Green, Geoffrey F.; Peterson, Marc; Rodriguez, Daniel A.; Gordon-Larsen, Penny

    2016-01-01

    While increasing evidence suggests an association between physical infrastructure in neighbourhoods and health outcomes, relatively little research examines how neighbourhoods change physically over time and how these physical improvements are spatially distributed across populations. This paper describes the change over 25 years (1985–2010) in bicycle lanes, off-road trails, bus transit service, and parks, and spatial clusters of changes in these domains relative to neighbourhood sociodemographics in four U.S. cities that are diverse in terms of geography, size and population. Across all four cities, we identified increases in bicycle lanes, off-road trails, and bus transit service, with spatial clustering in these changes that related to neighbourhood sociodemographics. Overall, we found evidence of positive changes in physical infrastructure commonly identified as supportive of physical activity. However, the patterning of infrastructure change by sociodemographic change encourages attention to the equity in infrastructure improvements across neighbourhoods. PMID:28316645

  11. Spatiotemporal Stability of Cu-ATSM and FLT Positron Emission Tomography Distributions During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, Tyler J.; Yip, Stephen; Jallow, Ngoneh

    2014-06-01

    Purpose: In dose painting, in which functional imaging is used to define biological targets for radiation therapy dose escalation, changes in spatial distributions of biological properties during treatment can compromise the quality of therapy. The goal of this study was to assess the spatiotemporal stability of 2 potential dose painting targets—hypoxia and proliferation—in canine tumors during radiation therapy. Methods and Materials: Twenty-two canine patients with sinonasal tumors (14 carcinoma and 8 sarcoma) were imaged before hypofractionated radiation therapy with copper(II)-diacetyl-bis(N4-methylthiosemicarbazone) (Cu-ATSM) positron emission tomography/computed tomography (PET/CT) for hypoxia and 3′-deoxy-3′-{sup 18}F-fluorothymidine (FLT) PET/CT for proliferation. The FLT scans were repeatedmore » after 2 fractions and the Cu-ATSM scans after 3 fractions. Midtreatment PET/CT images were deformably registered to pretreatment PET/CT images. Voxel-based Spearman correlation coefficients quantified the spatial stability of Cu-ATSM and FLT uptake distributions between pretreatment and midtreatment scans. Paired t tests determined significant differences between the patients' respective Cu-ATSM and FLT correlations coefficients. Standardized uptake value measures were also compared between pretreatment and midtreatment scans by use of paired t tests. Results: Spatial distributions of Cu-ATSM and FLT uptake were stable through midtreatment for both sarcomas and carcinomas: the population mean ± standard deviation in Spearman correlation coefficient was 0.88 ± 0.07 for Cu-ATSM and 0.79 ± 0.13 for FLT. The patients' Cu-ATSM correlation coefficients were significantly higher than their respective FLT correlation coefficients (P=.001). Changes in Cu-ATSM SUV measures from pretreatment to midtreatment were histology dependent: carcinomas experienced significant decreases in Cu-ATSM uptake (P<.05), whereas sarcomas did not (P>.20). Both histologies experienced significant decreases in FLT uptake (P<.05). Conclusions: Spatial distributions of Cu-ATSM were very stable after a few fractions of radiation therapy. FLT spatial distributions were generally stable early in therapy, although they were significantly less stable than Cu-ATSM distributions. Canine tumors had significantly lower proliferative activity at midtreatment than at pretreatment, and they experienced histology-dependent changes in Cu-ATSM uptake.« less

  12. Distribution of Boreal Toad Populations in Relation to Estimated UV-B Dose in Glacier National Park, Montana, USA

    EPA Science Inventory

    This work provides information on amphibian distributions as well as the range of UV-B exposure in mountain habitats, and will be of use to scientists interested in tracking changes in amphibian distributions and abundance, and spatial and temporal patterns of UV-B exposure

  13. Probabilistic and spatially variable niches inferred from demography

    Treesearch

    Jeffrey M. Diez; Itamar Giladi; Robert Warren; H. Ronald Pulliam

    2014-01-01

    Summary 1. Mismatches between species distributions and habitat suitability are predicted by niche theory and have important implications for forecasting how species may respond to environmental changes. Quantifying these mismatches is challenging, however, due to the high dimensionality of species niches and the large spatial and temporal variability in population...

  14. Measuring changes in chemistry, composition, and molecular structure within hair fibers by infrared and Raman spectroscopic imaging.

    PubMed

    Zhang, Guojin; Senak, Laurence; Moore, David J

    2011-05-01

    Spatially resolved infrared (IR) and Raman images are acquired from human hair cross sections or intact hair fibers. The full informational content of these spectra are spatially correlated to hair chemistry, anatomy, and structural organization through univariate and multivariate data analysis. Specific IR and Raman images from untreated human hair describing the spatial dependence of lipid and protein distribution, protein secondary structure, lipid chain conformational order, and distribution of disulfide cross-links in hair protein are presented in this study. Factor analysis of the image plane acquired with IR microscopy in hair sections, permits delineation of specific micro-regions within the hair. These data indicate that both IR and Raman imaging of molecular structural changes in a specific region of hair will prove to be valuable tools in the understanding of hair structure, physiology, and the effect of various stresses upon its integrity.

  15. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    PubMed Central

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-01-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats. PMID:27966673

  16. Spatial distribution of planktonic bacterial and archaeal communities in the upper section of the tidal reach in Yangtze River

    NASA Astrophysics Data System (ADS)

    Fan, Limin; Song, Chao; Meng, Shunlong; Qiu, Liping; Zheng, Yao; Wu, Wei; Qu, Jianhong; Li, Dandan; Zhang, Cong; Hu, Gengdong; Chen, Jiazhang

    2016-12-01

    Bacterioplankton and archaeaplankton communities play key roles in the biogeochemical processes of water, and they may be affected by many factors. In this study, we used high-throughput 16S rRNA gene sequencing to profile planktonic bacterial and archaeal community compositions in the upper section of the tidal reach in Yangtze River. We found that the predominant bacterial phyla in this river section were Proteobacteria, Firmicutes, and Actinobacteria, whereas the predominant archaeal classes were Halobacteria, Methanomicrobia, and unclassified Euryarchaeota. Additionally, the bacterial and archaeal community compositions, richnesses, functional profiles, and ordinations were affected by the spatial heterogeneity related to the concentration changes of sulphate or nitrate. Notably, the bacterial community was more sensitive than the archaeal community to changes in the spatial characteristics of this river section. These findings provide important insights into the distributions of bacterial and archaeal communities in natural water habitats.

  17. Changing Urbania: Estimating Changes in Urban Land and Urban Population Using Refined Areal Interpolation Techniques

    NASA Astrophysics Data System (ADS)

    Zoraghein, H.; Leyk, S.; Balk, D.

    2017-12-01

    The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. The U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.

  18. Soil water content evaluation considering time-invariant spatial pattern and space-variant temporal change

    NASA Astrophysics Data System (ADS)

    Hu, W.; Si, B. C.

    2013-10-01

    Soil water content (SWC) varies in space and time. The objective of this study was to evaluate soil water content distribution using a statistical model. The model divides spatial SWC series into time-invariant spatial patterns, space-invariant temporal changes, and space- and time-dependent redistribution terms. The redistribution term is responsible for the temporal changes in spatial patterns of SWC. An empirical orthogonal function was used to separate the total variations of redistribution terms into the sum of the product of spatial structures (EOFs) and temporally-varying coefficients (ECs). Model performance was evaluated using SWC data of near-surface (0-0.2 m) and root-zone (0-1.0 m) from a Canadian Prairie landscape. Three significant EOFs were identified for redistribution term for both soil layers. EOF1 dominated the variations of redistribution terms and it resulted in more changes (recharge or discharge) in SWC at wetter locations. Depth to CaCO3 layer and organic carbon were the two most important controlling factors of EOF1, and together, they explained over 80% of the variations in EOF1. Weak correlation existed between either EOF2 or EOF3 and the observed factors. A reasonable prediction of SWC distribution was obtained with this model using cross validation. The model performed better in the root zone than in the near surface, and it outperformed conventional EOF method in case soil moisture deviated from the average conditions.

  19. Quantifying spatial and temporal trends in beach-dune volumetric changes using spatial statistics

    NASA Astrophysics Data System (ADS)

    Eamer, Jordan B. R.; Walker, Ian J.

    2013-06-01

    Spatial statistics are generally underutilized in coastal geomorphology, despite offering great potential for identifying and quantifying spatial-temporal trends in landscape morphodynamics. In particular, local Moran's Ii provides a statistical framework for detecting clusters of significant change in an attribute (e.g., surface erosion or deposition) and quantifying how this changes over space and time. This study analyzes and interprets spatial-temporal patterns in sediment volume changes in a beach-foredune-transgressive dune complex following removal of invasive marram grass (Ammophila spp.). Results are derived by detecting significant changes in post-removal repeat DEMs derived from topographic surveys and airborne LiDAR. The study site was separated into discrete, linked geomorphic units (beach, foredune, transgressive dune complex) to facilitate sub-landscape scale analysis of volumetric change and sediment budget responses. Difference surfaces derived from a pixel-subtraction algorithm between interval DEMs and the LiDAR baseline DEM were filtered using the local Moran's Ii method and two different spatial weights (1.5 and 5 m) to detect statistically significant change. Moran's Ii results were compared with those derived from a more spatially uniform statistical method that uses a simpler student's t distribution threshold for change detection. Morphodynamic patterns and volumetric estimates were similar between the uniform geostatistical method and Moran's Ii at a spatial weight of 5 m while the smaller spatial weight (1.5 m) consistently indicated volumetric changes of less magnitude. The larger 5 m spatial weight was most representative of broader site morphodynamics and spatial patterns while the smaller spatial weight provided volumetric changes consistent with field observations. All methods showed foredune deflation immediately following removal with increased sediment volumes into the spring via deposition at the crest and on lobes in the lee, despite erosion on the stoss slope and dune toe. Generally, the foredune became wider by landward extension and the seaward slope recovered from erosion to a similar height and form to that of pre-restoration despite remaining essentially free of vegetation.

  20. Modeling of light distribution in the brain for topographical imaging

    NASA Astrophysics Data System (ADS)

    Okada, Eiji; Hayashi, Toshiyuki; Kawaguchi, Hiroshi

    2004-07-01

    Multi-channel optical imaging system can obtain a topographical distribution of the activated region in the brain cortex by a simple mapping algorithm. Near-infrared light is strongly scattered in the head and the volume of tissue that contributes to the change in the optical signal detected with source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. We report theoretical investigations on the spatial resolution of the topographic imaging of the brain activity. The head model for the theoretical study consists of five layers that imitate the scalp, skull, subarachnoid space, gray matter and white matter. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The source-detector pairs are one dimensionally arranged on the surface of the model and the distance between the adjoining source-detector pairs are varied from 4 mm to 32 mm. The change in detected intensity caused by the absorption change is obtained by Monte Carlo simulation. The position of absorption change is reconstructed by the conventional mapping algorithm and the reconstruction algorithm using the spatial sensitivity profiles. We discuss the effective interval between the source-detector pairs and the choice of reconstruction algorithms to improve the topographic images of brain activity.

  1. Evidence of territoriality and species interactions from spatial point-pattern analyses of subarctic-nesting geese

    USGS Publications Warehouse

    Reiter, Matthew E.; Andersen, David E.

    2013-01-01

    Quantifying spatial patterns of bird nests and nest fate provides insights into processes influencing a species’ distribution. At Cape Churchill, Manitoba, Canada, recent declines in breeding Eastern Prairie Population Canada geese (Branta canadensis interior) has coincided with increasing populations of nesting lesser snow geese (Chen caerulescens caerulescens) and Ross’s geese (Chen rossii). We conducted a spatial analysis of point patterns using Canada goose nest locations and nest fate, and lesser snow goose nest locations at two study areas in northern Manitoba with different densities and temporal durations of sympatric nesting Canada and lesser snow geese. Specifically, we assessed (1) whether Canada geese exhibited territoriality and at what scale and nest density; and (2) whether spatial patterns of Canada goose nest fate were associated with the density of nesting lesser snow geese as predicted by the protective-association hypothesis. Between 2001 and 2007, our data suggest that Canada geese were territorial at the scale of nearest neighbors, but were aggregated when considering overall density of conspecifics at slightly broader spatial scales. The spatial distribution of nest fates indicated that lesser snow goose nest proximity and density likely influence Canada goose nest fate. Our analyses of spatial point patterns suggested that continued changes in the distribution and abundance of breeding lesser snow geese on the Hudson Bay Lowlands may have impacts on the reproductive performance of Canada geese, and subsequently the spatial distribution of Canada goose nests.

  2. Spatial and Temporal Variation of Japanese encephalitis Disease and Detection of Disease Hotspots: a Case Study of Gorakhpur District, Uttar Pradesh, India

    NASA Astrophysics Data System (ADS)

    Verma, S.; Gupta, R. D.

    2014-11-01

    In recent times, Japanese Encephalitis (JE) has emerged as a serious public health problem. In India, JE outbreaks were recently reported in Uttar Pradesh, Gorakhpur. The present study presents an approach to use GIS for analyzing the reported cases of JE in the Gorakhpur district based on spatial analysis to bring out the spatial and temporal dynamics of the JE epidemic. The study investigates spatiotemporal pattern of the occurrence of disease and detection of the JE hotspot. Spatial patterns of the JE disease can provide an understanding of geographical changes. Geospatial distribution of the JE disease outbreak is being investigated since 2005 in this study. The JE incidence data for the years 2005 to 2010 is used. The data is then geo-coded at block level. Spatial analysis is used to evaluate autocorrelation in JE distribution and to test the cases that are clustered or dispersed in space. The Inverse Distance Weighting interpolation technique is used to predict the pattern of JE incidence distribution prevalent across the study area. Moran's I Index (Moran's I) statistics is used to evaluate autocorrelation in spatial distribution. The Getis-Ord Gi*(d) is used to identify the disease areas. The results represent spatial disease patterns from 2005 to 2010, depicting spatially clustered patterns with significant differences between the blocks. It is observed that the blocks on the built up areas reported higher incidences.

  3. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-06-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.

  5. Simulation of space-based (GRACE) gravity variations caused by storage changes in large confined and unconfined aquifers

    NASA Astrophysics Data System (ADS)

    Pool, D. R.; Scanlon, B. R.

    2017-12-01

    There is uncertainty of how storage change in confined and unconfined aquifers would register from space-based platforms, such as the GRACE (Gravity Recovery and Climate Experiment) satellites. To address this concern, superposition groundwater models (MODFLOW) of equivalent storage change in simplified confined and unconfined aquifers of extent, 500 km2 or approximately 5X5 degrees at mid-latitudes, and uniform transmissivity were constructed. Gravity change resulting from the spatial distribution of aquifer storage change for each aquifer type was calculated at the initial GRACE satellite altitude ( 500 km). To approximate real-world conditions, the confined aquifer includes a small region of unconfined conditions at one margin. A uniform storage coefficient (specific yield) was distributed across the unconfined aquifer. For both cases, storage change was produced by 1 year of groundwater withdrawal from identical aquifer-centered well distributions followed by decades of no withdrawal and redistribution of the initial storage loss toward a new steady-state condition. The transient simulated storage loss includes equivalent volumes for both conceptualizations, but spatial distributions differ because of the contrasting aquifer diffusivity (Transmissivity/Storativity). Much higher diffusivity in the confined aquifer results in more rapid storage redistribution across a much larger area than for the unconfined aquifer. After the 1 year of withdrawals, the two simulated storage loss distributions are primarily limited to small regions within the model extent. Gravity change after 1 year observed at the satellite altitude is similar for both aquifers including maximum gravity reductions that are coincident with the aquifer center. With time, the maximum gravity reduction for the confined aquifer case shifts toward the aquifer margin as much as 200 km because of increased storage loss in the unconfined region. Results of the exercise indicate that GRACE observations are largely insensitive to confined or unconfined conditions for most aquifers. Lateral shifts in storage change with time in confined aquifers could be resolved by space-based gravity missions with durations of decades and improved spatial resolution, 1 degree or less ( 100 km), over the GRACE resolution of 3 degrees ( 300 km).

  6. Advancing research on animal-transported subsidies by integrating animal movement and ecosystem modelling.

    PubMed

    Earl, Julia E; Zollner, Patrick A

    2017-09-01

    Connections between ecosystems via animals (active subsidies) support ecosystem services and contribute to numerous ecological effects. Thus, the ability to predict the spatial distribution of active subsidies would be useful for ecology and conservation. Previous work modelling active subsidies focused on implicit space or static distributions, which treat passive and active subsidies similarly. Active subsidies are fundamentally different from passive subsidies, because animals can respond to the process of subsidy deposition and ecosystem changes caused by subsidy deposition. We propose addressing this disparity by integrating animal movement and ecosystem ecology to advance active subsidy investigations, make more accurate predictions of subsidy spatial distributions, and enable a mechanistic understanding of subsidy spatial distributions. We review selected quantitative techniques that could be used to accomplish integration and lead to novel insights. The ultimate objective for these types of studies is predictions of subsidy spatial distributions from characteristics of the subsidy and the movement strategy employed by animals that transport subsidies. These advances will be critical in informing the management of ecosystem services, species conservation and ecosystem degradation related to active subsidies. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  7. Organismal and spatial partitioning of energy and macronutrient transformations within a hypersaline mat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mobberley, Jennifer M.; Lindemann, Stephen R.; Bernstein, Hans C.

    2017-03-21

    Phototrophic mat communities are model ecosystems for studying energy cycling and elemental transformations because complete biogeochemical cycles occur over millimeter-to-centimeter scales. Characterization of energy and nutrient capture within hypersaline phototrophic mats has focused on specific processes and organisms, however little is known about community-wide distribution of and linkages between these processes. To investigate energy and macronutrient capture and flow through a structured community, the spatial and organismal distribution of metabolic functions within a compact hypersaline mat community from Hot Lake have been broadly elucidated through species-resolved metagenomics and geochemical, microbial diversity, and metabolic gradient measurements. Draft reconstructed genomes of abundantmore » organisms revealed three dominant cyanobacterial populations differentially distributed across the top layers of the mat suggesting niche separation along light and oxygen gradients. Many organisms contained diverse functional profiles, allowing for metabolic response to changing conditions within the mat. Organisms with partial nitrogen and sulfur metabolisms were widespread indicating dependence upon metabolite exchange. In addition, changes in community spatial structure were observed over the diel. These results indicate that organisms within the mat community have adapted to the temporally dynamic environmental gradients in this hypersaline mat through metabolic flexibility and fluid syntrophic interactions, including shifts in spatial arrangements.« less

  8. Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.

    PubMed

    Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng

    2013-01-01

    Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.

  9. Past and future effects of climate change on spatially heterogeneous vegetation activity in China

    NASA Astrophysics Data System (ADS)

    Gao, Jiangbo; Jiao, Kewei; Wu, Shaohong; Ma, Danyang; Zhao, Dongsheng; Yin, Yunhe; Dai, Erfu

    2017-07-01

    Climate change is a major driver of vegetation activity but its complex ecological relationships impede research efforts. In this study, the spatial distribution and dynamic characteristics of climate change effects on vegetation activity in China from the 1980s to the 2010s and from 2021 to 2050 were investigated using a geographically weighted regression (GWR) model. The GWR model was based on combined datasets of satellite vegetation index, climate observation and projection, and future vegetation productivity simulation. Our results revealed that the significantly positive precipitation-vegetation relationship was and will be mostly distributed in North China. However, the regions with temperature-dominated distribution of vegetation activity were and will be mainly located in South China. Due to the varying climate features and vegetation cover, the spatial correlation between vegetation activity and climate change may be altered. There will be different dominant climatic factors for vegetation activity distribution in some regions such as Northwest China, and even opposite correlations in Northeast China. Additionally, the response of vegetation activity to precipitation will move southward in the next three decades. In contrast, although the high warming rate will restrain the vegetation activity, precipitation variability could modify hydrothermal conditions for vegetation activity. This observation is exemplified in the projected future enhancement of vegetation activity in the Tibetan Plateau and weakened vegetation activity in East and Middle China. Furthermore, the vegetation in most parts of North China may adapt to an arid environment, whereas in many southern areas, vegetation will be repressed by water shortage in the future.

  10. Long-term Evaluation of Landuse Changes On Landscape Water Balance - A Case Study From North-east Germany

    NASA Astrophysics Data System (ADS)

    Wegehenkel, M.

    In this paper, long-term effects of different afforestation scenarios on landscape wa- ter balance will be analyzed taking into account the results of a regional case study. This analysis is based on using a GIS-coupled simulation model for the the spatially distributed calculation of water balance.For this purpose, the modelling system THE- SEUS with a simple GIS-interface will be used. To take into account the special case of change in forest cover proportion, THESEUS was enhanced with a simple for- est growth model. In the regional case study, model runs will be performed using a detailed spatial data set from North-East Germany. This data set covers a mesoscale catchment located at the moraine landscape of North-East Germany. Based on this data set, the influence of the actual landuse and of different landuse change scenarios on water balance dynamics will be investigated taking into account the spatial distributed modelling results from THESEUS. The model was tested using different experimen- tal data sets from field plots as well as obsverded catchment discharge. Additionally to such convential validation techniques, remote sensing data were used to check the simulated regional distribution of water balance components like evapotranspiration in the catchment.

  11. Evolution of Spatial pH Distribution in Aqueous Solution induced by Atmospheric Pressure Plasma

    NASA Astrophysics Data System (ADS)

    Takahashi, Shigenori; Mano, Kakeru; Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu

    2016-09-01

    Discharge plasma at gas-liquid interface produces some active species, and then they affect chemical reactions in aqueous solution, where pH of aqueous solution is changed due to redox species. The pH change of aqueous solution is an important factor for chemical reactions. However, spatial pH distribution in a reactor during the discharge has not been clarified yet. Thus, this work focused on spatial pH distribution of aqueous solution when pulsed discharge plasma was generated from a copper electrode in gas phase to aqueous solution in a reactor. Experiments were conducted using positive unipolar pulsed power. The unipolar pulsed voltage at +8.0 kV was applied to the copper electrode and the bottom of the reactor was grounded. The size of the reactor was 80 mm wide, 10 mm deep, and 40 mm high. The electrode was set at distance of 2 mm from the solution surface. Anthocyanins were contained in the aqueous solution as a pH indicator. The change pH solution spread horizontally, and low pH region of 10 mm in depth was formed. After discharge for 10 minutes, the low pH region was diffused toward the bottom of the reactor. After discharge for 60 minutes, the pH of the whole solution decreased.

  12. Analysis of the spatial distribution of prostate cancer obtained from histopathological images

    NASA Astrophysics Data System (ADS)

    Diaz, Kristians; Castaneda, Benjamin; Montero, Maria Luisa; Yao, Jorge; Joseph, Jean; Rubens, Deborah; Parker, Kevin J.

    2013-03-01

    Understanding the spatial distribution of prostate cancer and how it changes according to prostate specific antigen (PSA) values, Gleason score, and other clinical parameters may help comprehend the disease and increase the overall success rate of biopsies. This work aims to build 3D spatial distributions of prostate cancer and examine the extent and location of cancer as a function of independent clinical parameters. The border of the gland and cancerous regions from wholemount histopathological images are used to reconstruct 3D models showing the localization of tumor. This process utilizes color segmentation and interpolation based on mathematical morphological distance. 58 glands are deformed into one prostate atlas using a combination of rigid, affine, and b-spline deformable registration techniques. Spatial distribution is developed by counting the number of occurrences in a given position in 3D space from each registered prostate cancer. Finally a difference between proportions is used to compare different spatial distributions. Results show that prostate cancer has a significant difference (SD) in the right zone of the prostate between populations with PSA greater and less than 5ng/ml. Age does not have any impact in the spatial distribution of the disease. Positive and negative capsule-penetrated cases show a SD in the right posterior zone. There is SD in almost all the glands between cases with tumors larger and smaller than 10% of the whole prostate. A larger database is needed to improve the statistical validity of the test. Finally, information from whole-mount histopathological images may provide better insight into prostate cancer.

  13. Analysis of the spatio-temporal distribution of Eurygaster integriceps (Hemiptera: Scutelleridae) by using spatial analysis by distance indices and geostatistics.

    PubMed

    Karimzadeh, R; Hejazi, M J; Helali, H; Iranipour, S; Mohammadi, S A

    2011-10-01

    Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is the most serious insect pest of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in Iran. In this study, spatio-temporal distribution of this pest was determined in wheat by using spatial analysis by distance indices (SADIE) and geostatistics. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution of this insect. The study was conducted for three growing seasons in Gharamalek, an agricultural region to the west of Tabriz, Iran. Weekly sampling began when E. integriceps adults migrated to wheat fields from overwintering sites and ended when the new generation adults appeared at the end of season. The adults were sampled using 1- by 1-m quadrat and distance-walk methods. A sweep net was used for sampling the nymphs, and five 180° sweeps were considered as the sampling unit. The results of spatial analyses by using geostatistics and SADIE indicated that E. integriceps adults were clumped after migration to fields and had significant spatial dependency. The second- and third-instar nymphs showed aggregated spatial structure in the middle of growing season. At the end of the season, population distribution changed toward random or regular patterns; and fourth and fifth instars had weaker spatial structure compared with younger nymphs. In Iran, management measures for E. integriceps in wheat fields are mainly applied against overwintering adults, as well as second and third instars. Because of the aggregated distribution of these life stages, site-specific spraying of chemicals is feasible in managing E. integriceps.

  14. Disease Spread and Its Effect on Population Dynamics in Heterogeneous Environment

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Roy, Parimita

    In this paper, an eco-epidemiological model in which both species diffuse along a spatial gradient has been shown to exhibit temporal chaos at a fixed point in space. The proposed model is a modification of the model recently presented by Upadhyay and Roy [2014]. The spatial interactions among the species have been represented in the form of reaction-diffusion equations. The model incorporates the intrinsic growth rate of fish population which varies linearly with the depth of water. Numerical results show that diffusion can drive otherwise stable system into aperiodic behavior with sensitivity to initial conditions. We show that spatially induced chaos plays an important role in spatial pattern formation in heterogeneous environment. Spatiotemporal distributions of species have been simulated using the diffusivity assumptions realistic for natural eco-epidemic systems. We found that in heterogeneous environment, the temporal dynamics of both the species are drastically different and show chaotic behavior. It was also found that the instability observed in the model is due to spatial heterogeneity and diffusion-driven. Cumulative death rate of predator has an appreciable effect on model dynamics as the spatial distribution of all constituent populations exhibit significant changes when this model parameter is changed and it acts as a regularizing factor.

  15. Seed-deposition and recruitment patterns of Clusia species in a disturbed tropical montane forest in Bolivia

    NASA Astrophysics Data System (ADS)

    Saavedra, Francisco; Hensen, Isabell; Apaza Quevedo, Amira; Neuschulz, Eike Lena; Schleuning, Matthias

    2017-11-01

    Spatial patterns of seed dispersal and recruitment of fleshy-fruited plants in tropical forests are supposed to be driven by the activity of animal seed dispersers, but the spatial patterns of seed dispersal, seedlings and saplings have rarely been analyzed simultaneously. We studied seed deposition and recruitment patterns of three Clusia species in a tropical montane forest of the Bolivian Andes and tested whether these patterns changed between habitat types (forest edge vs. forest interior), distance to the fruiting tree and consecutive recruitment stages of the seedlings. We recorded the number of seeds deposited in seed traps to assess the local seed-deposition pattern and the abundance and distribution of seedlings and saplings to evaluate the spatial pattern of recruitment. More seeds were removed and deposited at the forest edge than in the interior. The number of deposited seeds decreased with distance from the fruiting tree and was spatially clustered in both habitat types. The density of 1-yr-old seedlings and saplings was higher at forest edges, whereas the density of 2-yr-old seedlings was similar in both habitat types. While seedlings were almost randomly distributed, seeds and saplings were spatially clustered in both habitat types. Our findings demonstrate systematic changes in spatial patterns of recruits across the plant regeneration cycle and suggest that the differential effects of biotic and abiotic factors determine plant recruitment at the edges and in the interior of tropical montane forests. These differences in the spatial distribution of individuals across recruitment stages may have strong effects on plant community dynamics and influence plant species coexistence in disturbed tropical forests.

  16. Human-experienced temperature changes exceed global average climate changes for all income groups

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The distribution of temperature changes experienced by the world population between 2011-2030 and 2080-2099. Lower 3 panels: Temperatures experienced 2011-2030 (dashed, circle = mean) and 2080-2099 (solid, cross = mean) by income tercile. The poor do not experience larger changes than the wealthy. However, the poor begin the 21st century at higher temperatures.

  17. Configuration of the thermal landscape determines thermoregulatory performance of ectotherms

    PubMed Central

    Sears, Michael W.; Angilletta, Michael J.; Schuler, Matthew S.; Borchert, Jason; Dilliplane, Katherine F.; Stegman, Monica; Rusch, Travis W.; Mitchell, William A.

    2016-01-01

    Although most organisms thermoregulate behaviorally, biologists still cannot easily predict whether mobile animals will thermoregulate in natural environments. Current models fail because they ignore how the spatial distribution of thermal resources constrains thermoregulatory performance over space and time. To overcome this limitation, we modeled the spatially explicit movements of animals constrained by access to thermal resources. Our models predict that ectotherms thermoregulate more accurately when thermal resources are dispersed throughout space than when these resources are clumped. This prediction was supported by thermoregulatory behaviors of lizards in outdoor arenas with known distributions of environmental temperatures. Further, simulations showed how the spatial structure of the landscape qualitatively affects responses of animals to climate. Biologists will need spatially explicit models to predict impacts of climate change on local scales. PMID:27601639

  18. Change detection analysis of multi-temporal imagery to assess environmental development on AL Sammalyah Island, Abu-Dhabi

    NASA Astrophysics Data System (ADS)

    Essa, Salem M.; Loughland, R.; Khogali, Mohamed E.

    2005-10-01

    AL Sammalyah Island is considered an important protected area in Abu Dhabi Emirate. The island has witnessed high rates of change in land use in the past few years starting from the early 1990s. Change detection analysis is conducted to monitor rate and spatial distribution of change occurring on the island. A three-phase research project has been implemented, an integrated Geographic Information System (GIS) database for the Island is the focus; the current phase main objective was to assess rate and spatial distribution of the change on the island using multi-date large scale aerial photos. Results of the current study demonstrated that total vegetation cover extent has increased from 3.742 km2 in 1994 to 5.101 km2 in 2005, an increase of 36.3% between 1994 and 2005. The study also showed that this increase in vegetation extent is mostly attributed to the increase in mangrove planted areas with an increase from 2.256 km2 in 1994 to 3.568 km2 in 2005, an increase of 58.2% in ten years. Remote sensing and GIS have been successfully used to quantify change extent, distribution and trajectories of change. The next step will be to complete the GIS database for AL Sammalyah Island.

  19. Population trends and distribution of Common Murre Uria aalge colonies in Washington, 1996-2015

    USGS Publications Warehouse

    Thomas, Susan M; Lyons, James E.

    2017-01-01

    Periodic assessments of population trends and changes in spatial distribution are valuable for managing marine birds and their breeding habitats, particularly when evaluating long-term response to threats such as oil spills, predation pressure, and changing ocean conditions. We evaluated recent trends in abundance and distribution of the Common Murre Uria aalge within Copalis, Quillayute Needles, and Flattery Rocks National Wildlife Refuges, which include all murre colonies in Washington except one, off-refuge, on Tatoosh Island. In 1996-2001 and 2010-2015, aerial photographic surveys were conducted during the incubation phase (mid-June through mid-July) each year. Using images from film (1996-2001) and digital (2010-2015) cameras that included all parts of each colony, we manually counted murres. We estimated population trend as annual percent change in whole-colony counts using an overdispersed Poisson regression model. Overall, numbers of murres counted at breeding colonies in Washington increased by 8.8% per year (95% CI 3.0%-14.9%) during 1996–2015. The overall statewide increase was driven by an increase at colonies in northern Washington of approximately 11% per year (95% CI 4.5%-17.8%). Despite an increasing trend, abundance remains lower than levels in the late 1970s, and the spatial distribution has changed. Colonies in southern Washington - where murres were historically the most abundant - are no longer active, or only minimally so, whereas colonies in the north - which were rarely active in the early 1970s - are now the largest. There was high variability in spatial distribution among years, a pattern that indicates a need for coordinated monitoring and movement studies throughout the California Current System to understand dispersal and colonization. Our results indicate that future management of refuge islands could protect both current and historic colony locations, given the patterns of colony dynamics and the uncertainty about long-term effects of a changing ocean ecosystem and predation pressure on the status of murres.

  20. Interventions for enhancing the distribution of dental professionals: a concise systematic review.

    PubMed

    Jäger, Ralf; van den Berg, Neeltje; Schwendicke, Falk

    2017-10-01

    A spatially unequal distribution of dentists or dental care professionals (D/DCPs), such as therapists or hygienists, could reduce the quality of health services and increase health inequities. This review describes the interventions available to enhance this spatial distribution and systematically assesses their effectiveness. Electronic databases (Cochrane CENTRAL, Medline, Embase, CINAHL) were searched and cross-referencing was performed using a standardised searching algorithm. Randomised and non-randomised controlled trials, controlled before-and-after studies and interrupted time series were included. Studies investigating a minimum of one of four interventions (educational, financial, regulatory and supportive) were included. The primary outcome was the spatial distribution of D/DCPs. Secondary outcomes were access, quality of services and equity or adverse effects. This review was registered (CRD42015026265). Of 4,885 articles identified, the full text of 201 was assessed and three (all investigating national policy interventions originally not aiming to change the distribution of D/DCPs) were included. In one Japanese study spanning 1980 to 2000, the unequal spatial distribution of dentists decreased alongside a general increase in the number of dentists. It remained unclear if these findings were associated. In a second Japanese study, an increase in the number of dentists was found in combination with a postgraduate training programme implemented in 2006, and this occurred alongside an increasingly unequal distribution of dentists, again without proof of cause and consequence. A third study from Taiwan found the introduction of a national universal-coverage health insurance to equalise the distribution of dentists, with statistical association between this equalisation and the introduction of the insurance. The effectiveness of interventions to enhance the spatial distribution of D/DCPs remains unclear. © 2017 FDI World Dental Federation.

  1. Enforcement authority and vegetation change at Kumbhalgarh wildlife sanctuary, Rajasthan, India.

    PubMed

    Robbins, Paul F; Chhangani, Anil K; Rice, Jennifer; Trigosa, Erika; Mohnot, S M

    2007-09-01

    Land cover change in protected areas is often associated with human use, especially illicit extraction, but the direction and spatial distribution of such effects and their drivers are poorly understood. We analyze and explain the spatial distribution of vegetation change at the Kumbhalgarh Wildlife Sanctuary in the Aravalli range of Rajasthan, India using remotely sensed data and observation of conservation institutions. Two satellite images are examined in time series over the 13 years following the founding of the sanctuary through a cross-tabulation technique of dominant classes of vegetation density. The resulting change trajectories are compared for their relative distance to high-traffic forest entrance points for local users. The results show 28% of the study area undergoing change, though in multiple trajectories, with both increasing and decreasing density of vegetation in discrete patches. Areas of change are shown to be closer to entrance points than areas experiencing no change. The patchiness of change results from complex issues in local enforcement authority for middle and lower-level officials in Forest Department bureaucracy, leading to further questions about the efficacy and impact of use restrictions in Protected Areas.

  2. Zeroth-order phase-contrast technique.

    PubMed

    Pizolato, José Carlos; Cirino, Giuseppe Antonio; Gonçalves, Cristhiane; Neto, Luiz Gonçalves

    2007-11-01

    What we believe to be a new phase-contrast technique is proposed to recover intensity distributions from phase distributions modulated by spatial light modulators (SLMs) and binary diffractive optical elements (DOEs). The phase distribution is directly transformed into intensity distributions using a 4f optical correlator and an iris centered in the frequency plane as a spatial filter. No phase-changing plates or phase dielectric dots are used as a filter. This method allows the use of twisted nematic liquid-crystal televisions (LCTVs) operating in the real-time phase-mostly regime mode between 0 and p to generate high-intensity multiple beams for optical trap applications. It is also possible to use these LCTVs as input SLMs for optical correlators to obtain high-intensity Fourier transform distributions of input amplitude objects.

  3. The Impact of Spatial and Temporal Resolutions in Tropical Summer Rainfall Distribution: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Chiu, L. S.; Hao, X.

    2017-10-01

    The abundance or lack of rainfall affects peoples' life and activities. As a major component of the global hydrological cycle (Chokngamwong & Chiu, 2007), accurate representations at various spatial and temporal scales are crucial for a lot of decision making processes. Climate models show a warmer and wetter climate due to increases of Greenhouse Gases (GHG). However, the models' resolutions are often too coarse to be directly applicable to local scales that are useful for mitigation purposes. Hence disaggregation (downscaling) procedures are needed to transfer the coarse scale products to higher spatial and temporal resolutions. The aim of this paper is to examine the changes in the statistical parameters of rainfall at various spatial and temporal resolutions. The TRMM Multi-satellite Precipitation Analysis (TMPA) at 0.25 degree, 3 hourly grid rainfall data for a summer is aggregated to 0.5,1.0, 2.0 and 2.5 degree and at 6, 12, 24 hourly, pentad (five days) and monthly resolutions. The probability distributions (PDF) and cumulative distribution functions(CDF) of rain amount at these resolutions are computed and modeled as a mixed distribution. Parameters of the PDFs are compared using the Kolmogrov-Smironov (KS) test, both for the mixed and the marginal distribution. These distributions are shown to be distinct. The marginal distributions are fitted with Lognormal and Gamma distributions and it is found that the Gamma distributions fit much better than the Lognormal.

  4. The design and research of poverty alleviation monitoring and evaluation system: a case study in the Jiangxi province

    NASA Astrophysics Data System (ADS)

    Mo, Hong-yuan; Wang, Ying-jie; Yu, Zhuo-yuan

    2009-07-01

    The Poverty Alleviation Monitoring and Evaluation System (PAMES) is introduced in this paper. The authors present environment platform selection, and details of system design and realization. Different with traditional research of poverty alleviation, this paper develops a new analytical geo-visualization approach to study the distribution and causes of poverty phenomena within Geographic Information System (GIS). Based on the most detailed poverty population data, the spatial location and population statistical indicators of poverty village in Jiangxi province, the distribution characteristics of poverty population are detailed. The research results can provide much poverty alleviation decision support from a spatial-temporal view. It should be better if the administrative unit of poverty-stricken area to be changed from county to village according to spatial distribution pattern of poverty.

  5. Integrated landscape/hydrologic modeling tool for semiarid watersheds

    Treesearch

    Mariano Hernandez; Scott N. Miller

    2000-01-01

    An integrated hydrologic modeling/watershed assessment tool is being developed to aid in determining the susceptibility of semiarid landscapes to natural and human-induced changes across a range of scales. Watershed processes are by definition spatially distributed and are highly variable through time, and this approach is designed to account for their spatial and...

  6. Modifying Student Behavior in an Open Classroom through Changes in the Physical Design

    ERIC Educational Resources Information Center

    Weinstein, Carol S.

    1977-01-01

    Spatial distribution of activity in a second-third grade open classroom was observed before and after a change in the physical design, to test the hypothesis that minor changes in the physical setting would produce predictable, desirable changes in student behavior. In most cases the desired behavior changes were produced. (Author/MV)

  7. A comparison of regional flood frequency analysis approaches in a simulation framework

    NASA Astrophysics Data System (ADS)

    Ganora, D.; Laio, F.

    2016-07-01

    Regional frequency analysis (RFA) is a well-established methodology to provide an estimate of the flood frequency curve at ungauged (or scarcely gauged) sites. Different RFA approaches exist, depending on the way the information is transferred to the site of interest, but it is not clear in the literature if a specific method systematically outperforms the others. The aim of this study is to provide a framework wherein carrying out the intercomparison by building up a virtual environment based on synthetically generated data. The considered regional approaches include: (i) a unique regional curve for the whole region; (ii) a multiple-region model where homogeneous subregions are determined through cluster analysis; (iii) a Region-of-Influence model which defines a homogeneous subregion for each site; (iv) a spatially smooth estimation procedure where the parameters of the regional model vary continuously along the space. Virtual environments are generated considering different patterns of heterogeneity, including step change and smooth variations. If the region is heterogeneous, with the parent distribution changing continuously within the region, the spatially smooth regional approach outperforms the others, with overall errors 10-50% lower than the other methods. In the case of a step-change, the spatially smooth and clustering procedures perform similarly if the heterogeneity is moderate, while clustering procedures work better when the step-change is severe. To extend our findings, an extensive sensitivity analysis has been performed to investigate the effect of sample length, number of virtual stations, return period of the predicted quantile, variability of the scale parameter of the parent distribution, number of predictor variables and different parent distribution. Overall, the spatially smooth approach appears as the most robust approach as its performances are more stable across different patterns of heterogeneity, especially when short records are considered.

  8. Spatially distributed evapotranspiration and recharge estimation for sand regions of Hungary in the context of climate change

    NASA Astrophysics Data System (ADS)

    Csáki, Péter; Kalicz, Péter; Gribovszki, Zoltán

    2016-04-01

    Water balance of sand regions of Hungary was analysed using remote-sensing based evapotranspiration (ET) maps (1*1 km spatial resolution) by CREMAP model over the 2000-2008 period. The mean annual (2000-2008) net groundwater recharge (R) estimated as the difference in mean annual precipitation (P) and ET, taking advantage that for sand regions the surface runoff is commonly negligible. For the examined nine-year period (2000-2008) the ET and R were about 90 percent and 10 percent of the P. The mean annual ET and R were analysed in the context of land cover types. A Budyko-model was used in spatially-distributed mode for the climate change impact analysis. The parameters of the Budyko-model (α) was calculated for pixels without surplus water. For the extra-water affected pixels a linear model with β-parameters (actual evapotranspiration / pan-evapotranspiration) was used. These parameter maps can be used for evaluating future ET and R in spatially-distributed mode (1*1 km resolution). By using the two parameter maps (α and β) and data of regional climate models (mean annual temperature and precipitation) evapotranspiration and net groundwater recharge projections have been done for three future periods (2011-2040, 2041-2070, 2071-2100). The expected ET and R changes have been determined relative to a reference period (1981-2010). According to the projections, by the end of the 21th century, ET may increase while in case of R a heavy decrease can be detected for the sand regions of Hungary. This research has been supported by Agroclimate.2 VKSZ_12-1-2013-0034 project. Keywords: evapotranspiration, net groundwater recharge, climate change, Budyko-model

  9. High spatial resolution distributed fiber system for multi-parameter sensing based on modulated pulses.

    PubMed

    Zhang, Jingdong; Zhu, Tao; Zhou, Huan; Huang, Shihong; Liu, Min; Huang, Wei

    2016-11-28

    We demonstrate a cost-effective distributed fiber sensing system for the multi-parameter detection of the vibration, the temperature, and the strain by integrating phase-sensitive optical time domain reflectometry (φ-OTDR) and Brillouin optical time domain reflectometry (B-OTDR). Taking advantage of the fast changing property of the vibration and the static properties of the temperature and the strain, both the width and intensity of the laser pulses are modulated and injected into the single-mode sensing fiber proportionally, so that three concerned parameters can be extracted simultaneously by only one photo-detector and one data acquisition channel. A data processing method based on Gaussian window short time Fourier transform (G-STFT) is capable of achieving high spatial resolution in B-OTDR. The experimental results show that up to 4.8kHz vibration sensing with 3m spatial resolution at 10km standard single-mode fiber can be realized, as well as the distributed temperature and stress profiles along the same fiber with 80cm spatial resolution.

  10. Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa

    PubMed Central

    Slater, Hannah; Michael, Edwin

    2013-01-01

    There is increasing interest to control or eradicate the major neglected tropical diseases. Accurate modelling of the geographic distributions of parasitic infections will be crucial to this endeavour. We used 664 community level infection prevalence data collated from the published literature in conjunction with eight environmental variables, altitude and population density, and a multivariate Bayesian generalized linear spatial model that allows explicit accounting for spatial autocorrelation and incorporation of uncertainty in input data and model parameters, to construct the first spatially-explicit map describing LF prevalence distribution in Africa. We also ran the best-fit model against predictions made by the HADCM3 and CCCMA climate models for 2050 to predict the likely distributions of LF under future climate and population changes. We show that LF prevalence is strongly influenced by spatial autocorrelation between locations but is only weakly associated with environmental covariates. Infection prevalence, however, is found to be related to variations in population density. All associations with key environmental/demographic variables appear to be complex and non-linear. LF prevalence is predicted to be highly heterogenous across Africa, with high prevalences (>20%) estimated to occur primarily along coastal West and East Africa, and lowest prevalences predicted for the central part of the continent. Error maps, however, indicate a need for further surveys to overcome problems with data scarcity in the latter and other regions. Analysis of future changes in prevalence indicates that population growth rather than climate change per se will represent the dominant factor in the predicted increase/decrease and spread of LF on the continent. We indicate that these results could play an important role in aiding the development of strategies that are best able to achieve the goals of parasite elimination locally and globally in a manner that may also account for the effects of future climate change on parasitic infection. PMID:23951194

  11. Vasomotor tone does not affect perfusion heterogeneity and gas exchange in normal primate lungs during normoxia

    NASA Technical Reports Server (NTRS)

    Glenny, R. W.; Robertson, H. T.; Hlastala, M. P.

    2000-01-01

    To determine whether vasoregulation is an important cause of pulmonary perfusion heterogeneity, we measured regional blood flow and gas exchange before and after giving prostacyclin (PGI(2)) to baboons. Four animals were anesthetized with ketamine and mechanically ventilated. Fluorescent microspheres were used to mark regional perfusion before and after PGI(2) infusion. The lungs were subsequently excised, dried inflated, and diced into approximately 2-cm(3) pieces (n = 1,208-1,629 per animal) with the spatial coordinates recorded for each piece. Blood flow to each piece was determined for each condition from the fluorescent signals. Blood flow heterogeneity did not change with PGI(2) infusion. Two other measures of spatial blood flow distribution, the fractal dimension and the spatial correlation, did not change with PGI(2) infusion. Alveolar-arterial O(2) differences did not change with PGI(2) infusion. We conclude that, in normal primate lungs during normoxia, vasomotor tone is not a significant cause of perfusion heterogeneity. Despite the heterogeneous distribution of blood flow, active regulation of regional perfusion is not required for efficient gas exchange.

  12. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages.

    PubMed

    Kleisner, Kristin M; Fogarty, Michael J; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A; Lucey, Sean M; McGuire, Christopher; Odell, Jay; Saba, Vincent S; Smith, Laurel; Weaver, Katherine J; Pinsky, Malin L

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf.

  13. The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages

    PubMed Central

    Kleisner, Kristin M.; Fogarty, Michael J.; McGee, Sally; Barnett, Analie; Fratantoni, Paula; Greene, Jennifer; Hare, Jonathan A.; Lucey, Sean M.; McGuire, Christopher; Odell, Jay; Saba, Vincent S.; Smith, Laurel; Weaver, Katherine J.; Pinsky, Malin L.

    2016-01-01

    Many studies illustrate variable patterns in individual species distribution shifts in response to changing temperature. However, an assemblage, a group of species that shares a common environmental niche, will likely exhibit similar responses to climate changes, and these community-level responses may have significant implications for ecosystem function. Therefore, we examine the relationship between observed shifts of species in assemblages and regional climate velocity (i.e., the rate and direction of change of temperature isotherms). The assemblages are defined in two sub-regions of the U.S. Northeast Shelf that have heterogeneous oceanography and bathymetry using four decades of bottom trawl survey data and we explore temporal changes in distribution, spatial range extent, thermal habitat area, and biomass, within assemblages. These sub-regional analyses allow the dissection of the relative roles of regional climate velocity and local physiography in shaping observed distribution shifts. We find that assemblages of species associated with shallower, warmer waters tend to shift west-southwest and to shallower waters over time, possibly towards cooler temperatures in the semi-enclosed Gulf of Maine, while species assemblages associated with relatively cooler and deeper waters shift deeper, but with little latitudinal change. Conversely, species assemblages associated with warmer and shallower water on the broad, shallow continental shelf from the Mid-Atlantic Bight to Georges Bank shift strongly northeast along latitudinal gradients with little change in depth. Shifts in depth among the southern species associated with deeper and cooler waters are more variable, although predominantly shifts are toward deeper waters. In addition, spatial expansion and contraction of species assemblages in each region corresponds to the area of suitable thermal habitat, but is inversely related to assemblage biomass. This suggests that assemblage distribution shifts in conjunction with expansion or contraction of thermal habitat acts to compress or stretch marine species assemblages, which may respectively amplify or dilute species interactions to an extent that is rarely considered. Overall, regional differences in climate change effects on the movement and extent of species assemblages hold important implications for management, mitigation, and adaptation on the U.S. Northeast Shelf. PMID:26901435

  14. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability.

  15. Spatio-Temporal Variability of the North Sea Cod Recruitment in Relation to Temperature and Zooplankton

    PubMed Central

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  16. Spatial Exposure Analysis for Threatened and Endangered Species from Changing Pesticide Use Pattern in Southern Georgia

    EPA Science Inventory

    In recent decades, pesticide use patterns and crop distributions have changed; however, because there has not been a significant increase in usage disclosures, it is difficult to estimate the changes in potential exposure zones, this analysis focuses on the intersection of agricu...

  17. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE PAGES

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.; ...

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  18. Locally-Adaptive, Spatially-Explicit Projection of U.S. Population for 2030 and 2050

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKee, Jacob J.; Rose, Amy N.; Bright, Eddie A.

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Moreover, knowing the spatial distribution of future population allows for increased preparation in the event of an emergency. Building on the spatial interpolation technique previously developed for high resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically-informed spatial distribution of the projected population of the contiguous U.S. for 2030 and 2050. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection modelmore » departs from these by accounting for multiple components that affect population distribution. Modelled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the U.S. Census s projection methodology with the U.S. Census s official projection as the benchmark. Applications of our model include, but are not limited to, suitability modelling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.« less

  19. Flexible hydrological modeling - Disaggregation from lumped catchment scale to higher spatial resolutions

    NASA Astrophysics Data System (ADS)

    Tran, Quoc Quan; Willems, Patrick; Pannemans, Bart; Blanckaert, Joris; Pereira, Fernando; Nossent, Jiri; Cauwenberghs, Kris; Vansteenkiste, Thomas

    2015-04-01

    Based on an international literature review on model structures of existing rainfall-runoff and hydrological models, a generalized model structure is proposed. It consists of different types of meteorological components, storage components, splitting components and routing components. They can be spatially organized in a lumped way, or on a grid, spatially interlinked by source-to-sink or grid-to-grid (cell-to-cell) routing. The grid size of the model can be chosen depending on the application. The user can select/change the spatial resolution depending on the needs and/or the evaluation of the accuracy of the model results, or use different spatial resolutions in parallel for different applications. Major research questions addressed during the study are: How can we assure consistent results of the model at any spatial detail? How can we avoid strong or sudden changes in model parameters and corresponding simulation results, when one moves from one level of spatial detail to another? How can we limit the problem of overparameterization/equifinality when we move from the lumped model to the spatially distributed model? The proposed approach is a step-wise one, where first the lumped conceptual model is calibrated using a systematic, data-based approach, followed by a disaggregation step where the lumped parameters are disaggregated based on spatial catchment characteristics (topography, land use, soil characteristics). In this way, disaggregation can be done down to any spatial scale, and consistently among scales. Only few additional calibration parameters are introduced to scale the absolute spatial differences in model parameters, but keeping the relative differences as obtained from the spatial catchment characteristics. After calibration of the spatial model, the accuracies of the lumped and spatial models were compared for peak, low and cumulative runoff total and sub-flows (at downstream and internal gauging stations). For the distributed models, additional validation on spatial results was done for the groundwater head values at observation wells. To ensure that the lumped model can produce results as accurate as the spatially distributed models or close regardless to the number of parameters and implemented physical processes, it was checked whether the structure of the lumped models had to be adjusted. The concept has been implemented in a PCRaster - Python platform and tested for two Belgian case studies (catchments of the rivers Dijle and Grote Nete). So far, use is made of existing model structures (NAM, PDM, VHM and HBV). Acknowledgement: These results were obtained within the scope of research activities for the Flemish Environment Agency (VMM) - division Operational Water Management on "Next Generation hydrological modeling", in cooperation with IMDC consultants, and for Flanders Hydraulics Research (Waterbouwkundig Laboratorium) on "Effect of climate change on the hydrological regime of navigable watercourses in Belgium".

  20. Changes in the extreme wave heights over the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Kudryavtseva, Nadia; Soomere, Tarmo

    2017-04-01

    Storms over the Baltic Sea and northwestern Europe have a large impact on the population, offshore industry, and shipping. The understanding of extreme events in sea wave heights and their change due to the climate change and variability is critical for assessment of flooding risks and coastal protection. The BACCII Assessment of Climate Change for the Baltic Sea Basin showed that the extreme events analysis of wind waves is currently not very well addressed, as well as satellite observations of the wave heights. Here we discuss the analysis of all existing satellite altimetry data over the Baltic Sea Basin regarding extremes in the wave heights. In this talk for the first time, we present an analysis of 100-yr return periods, fitted generalized Pareto and Weibull distributions, number, and frequency of extreme events in wave heights in the Baltic Sea measured by the multi-mission satellite altimetry. The data span more than 23 years and provide an excellent spatial coverage over the Baltic Sea, allowing to study in details spatial variations and changes in extreme wave heights. The analysis is based on an application of the Initial Distribution Method, Annual Maxima method and Peak-Over-Threshold approach to satellite altimetry data, all validated in comparison with in-situ wave height measurements. Here we show that the 100-yr return periods of wave heights show significant spatial changes over the Baltic Sea indicating a decrease in the southern part of the Baltic Sea and an increase in adjacent areas, which can significantly affect coast vulnerability. Here we compare the observed shift with storm track database data and discuss a spatial correlation and possible connection between the changes in the storm tracks over the Baltic Sea and the change in the extreme wave heights.

  1. Temporal and spatial variability in thalweg profiles of a gravel-bed river

    USGS Publications Warehouse

    Madej, Mary Ann

    1999-01-01

    This study used successive longitudinal thalweg profiles in gravel-bed rivers to monitor changes in bed topography following floods and associated large sediment inputs. Variations in channel bed elevations, distributions of residual water depths, percentage of channel length occupied by riffles, and a spatial autocorrelation coefficient (Moran's I) were used to quantify changes in morphological diversity and spatial structure in Redwood Creek basin, northwestern California. Bed topography in Redwood Creek and its major tributaries consists primarily of a series of pools and riffles. The size, frequency and spatial distribution of the pools and riffles have changed significantly during the past 20 years. Following large floods and high sediment input in Redwood Creek and its tributaries in 1975, variation in channel bed elevations was low and the percentage of the channel length occupied by riffles was high. Over the next 20 years, variation in bed elevations increased while the length of channel occupied by riffles decreased. An index [(standard deviation of residual water depth/bankfull depth) × 100] was developed to compare variations in bed elevation over a range of stream sizes, with a higher index being indicative of greater morphological diversity. Spatial autocorrelation in the bed elevation data was apparent at both fine and coarse scales in many of the thalweg profiles and the observed spatial pattern of bed elevations was found to be related to the dominant channel material and the time since disturbance. River reaches in which forced pools dominated, and in which large woody debris and bed particles could not be easily mobilized, exhibited a random distribution of bed elevations. In contrast, in reaches where alternate bars dominated, and both wood and gravel were readily transported, regularly spaced bed topography developed at a spacing that increased with time since disturbance. This pattern of regularly spaced bed features was reversed following a 12-year flood when bed elevations became more randomly arranged.

  2. Population substructure and space use of Foxe Basin polar bears.

    PubMed

    Sahanatien, Vicki; Peacock, Elizabeth; Derocher, Andrew E

    2015-07-01

    Climate change has been identified as a major driver of habitat change, particularly for sea ice-dependent species such as the polar bear (Ursus maritimus). Population structure and space use of polar bears have been challenging to quantify because of their circumpolar distribution and tendency to range over large areas. Knowledge of movement patterns, home range, and habitat is needed for conservation and management. This is the first study to examine the spatial ecology of polar bears in the Foxe Basin management unit of Nunavut, Canada. Foxe Basin is in the mid-Arctic, part of the seasonal sea ice ecoregion and it is being negatively affected by climate change. Our objectives were to examine intrapopulation spatial structure, to determine movement patterns, and to consider how polar bear movements may respond to changing sea ice habitat conditions. Hierarchical and fuzzy cluster analyses were used to assess intrapopulation spatial structure of geographic position system satellite-collared female polar bears. Seasonal and annual movement metrics (home range, movement rates, time on ice) and home-range fidelity (static and dynamic overlap) were compared to examine the influence of regional sea ice on movements. The polar bears were distributed in three spatial clusters, and there were differences in the movement metrics between clusters that may reflect sea ice habitat conditions. Within the clusters, bears moved independently of each other. Annual and seasonal home-range fidelity was observed, and the bears used two movement patterns: on-ice range residency and annual migration. We predict that home-range fidelity may decline as the spatial and temporal predictability of sea ice changes. These new findings also provide baseline information for managing and monitoring this polar bear population.

  3. Changing the Spatial Scope of Attention Alters Patterns of Neural Gain in Human Cortex

    PubMed Central

    Garcia, Javier O.; Rungratsameetaweemana, Nuttida; Sprague, Thomas C.

    2014-01-01

    Over the last several decades, spatial attention has been shown to influence the activity of neurons in visual cortex in various ways. These conflicting observations have inspired competing models to account for the influence of attention on perception and behavior. Here, we used electroencephalography (EEG) to assess steady-state visual evoked potentials (SSVEP) in human subjects and showed that highly focused spatial attention primarily enhanced neural responses to high-contrast stimuli (response gain), whereas distributed attention primarily enhanced responses to medium-contrast stimuli (contrast gain). Together, these data suggest that different patterns of neural modulation do not reflect fundamentally different neural mechanisms, but instead reflect changes in the spatial extent of attention. PMID:24381272

  4. The Spatiotemporal pattern and driving forces of the paddy in the Northeastern China

    NASA Astrophysics Data System (ADS)

    Du, G.; Li, Q.; Chun, X.

    2017-12-01

    The cropland is the production place that protects the regional food security, and the paddy is the main part of the cropland. Since the 21st century, the China's socio-economy has been grown, the structure of the cropland has significantly changed. The Northeast region has gradually become one of the major commodity grain production bases. Meanwhile, the paddy also has gradually increased year by year. Therefore, it is necessary that analyze the tempo-spatial characteristics and the influencing factors of the northeast in China, and the results provide the basis that reveals the change of cropland structure and its causes.In this study, we use the spatial models of GIS and mathematical statistics methods to analyze the tempo-spatial characteristics and the influencing facts of the paddy in the Northeastern China with the spatial data from 2000 to 2015. In order to fully characterize the spatiotemporal characteristics of the paddy, we choose single land use type dynamic degree and land use extension index to quantitatively describe the change degree and the speed of the regional paddy, and the characteristics are visualized with "3S" means. Meanwhile, the relative change rate and the center of gravity model are chosen to explore the region differences and the distribution of the distribution center of paddy field change in Northeast China. In addition, in order to further reveal the cause of the paddy change, we use the OLS, SAM or SEM models to analyze the main influencing factors of spatiotemporal variation of the paddy field.

  5. The role of environmental variables in structuring landscape-scale species distributions in seafloor habitats.

    PubMed

    Kraan, Casper; Aarts, Geert; Van der Meer, Jaap; Piersma, Theunis

    2010-06-01

    Ongoing statistical sophistication allows a shift from describing species' spatial distributions toward statistically disentangling the possible roles of environmental variables in shaping species distributions. Based on a landscape-scale benthic survey in the Dutch Wadden Sea, we show the merits of spatially explicit generalized estimating equations (GEE). The intertidal macrozoobenthic species, Macoma balthica, Cerastoderma edule, Marenzelleria viridis, Scoloplos armiger, Corophium volutator, and Urothoe poseidonis served as test cases, with median grain-size and inundation time as typical environmental explanatory variables. GEEs outperformed spatially naive generalized linear models (GLMs), and removed much residual spatial structure, indicating the importance of median grain-size and inundation time in shaping landscape-scale species distributions in the intertidal. GEE regression coefficients were smaller than those attained with GLM, and GEE standard errors were larger. The best fitting GEE for each species was used to predict species' density in relation to median grain-size and inundation time. Although no drastic changes were noted compared to previous work that described habitat suitability for benthic fauna in the Wadden Sea, our predictions provided more detailed and unbiased estimates of the determinants of species-environment relationships. We conclude that spatial GEEs offer the necessary methodological advances to further steps toward linking pattern to process.

  6. An fMRI study of sex differences in regional activation to a verbal and a spatial task.

    PubMed

    Gur, R C; Alsop, D; Glahn, D; Petty, R; Swanson, C L; Maldjian, J A; Turetsky, B I; Detre, J A; Gee, J; Gur, R E

    2000-09-01

    Sex differences in cognitive performance have been documented, women performing better on some phonological tasks and men on spatial tasks. An earlier fMRI study suggested sex differences in distributed brain activation during phonological processing, with bilateral activation seen in women while men showed primarily left-lateralized activation. This blood oxygen level-dependent fMRI study examined sex differences (14 men, 13 women) in activation for a spatial task (judgment of line orientation) compared to a verbal-reasoning task (analogies) that does not typically show sex differences. Task difficulty was manipulated. Hypothesized ROI-based analysis documented the expected left-lateralized changes for the verbal task in the inferior parietal and planum temporal regions in both men and women, but only men showed right-lateralized increase for the spatial task in these regions. Image-based analysis revealed a distributed network of cortical regions activated by the tasks, which consisted of the lateral frontal, medial frontal, mid-temporal, occipitoparietal, and occipital regions. The activation was more left lateralized for the verbal and more right for the spatial tasks, but men also showed some left activation for the spatial task, which was not seen in women. Increased task difficulty produced more distributed activation for the verbal and more circumscribed activation for the spatial task. The results suggest that failure to activate the appropriate hemisphere in regions directly involved in task performance may explain certain sex differences in performance. They also extend, for a spatial task, the principle that bilateral activation in a distributed cognitive system underlies sex differences in performance. Copyright 2000 Academic Press.

  7. Potential distribution dataset of honeybees in Indian Ocean Islands: Case study of Zanzibar Island.

    PubMed

    Mwalusepo, Sizah; Muli, Eliud; Nkoba, Kiatoko; Nguku, Everlyn; Kilonzo, Joseph; Abdel-Rahman, Elfatih M; Landmann, Tobias; Fakih, Asha; Raina, Suresh

    2017-10-01

    Honeybees ( Apis mellifera ) are principal insect pollinators, whose worldwide distribution and abundance is known to largely depend on climatic conditions. However, the presence records dataset on potential distribution of honeybees in Indian Ocean Islands remain less documented. Presence records in shape format and probability of occurrence of honeybees with different temperature change scenarios is provided in this article across Zanzibar Island. Maximum entropy (Maxent) package was used to analyse the potential distribution of honeybees. The dataset provides information on the current and future distribution of the honey bees in Zanzibar Island. The dataset is of great importance for improving stakeholders understanding of the role of temperature change on the spatial distribution of honeybees.

  8. Recent warming leads to a rapid borealization of fish communities in the Arctic

    NASA Astrophysics Data System (ADS)

    Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.

    2015-07-01

    Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.

  9. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-01

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230fs, which is caused by the spatial--temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged.

  10. Male group size, female distribution and changes in sexual segregation by Roosevelt elk

    PubMed Central

    Peterson, Leah M.

    2017-01-01

    Sexual segregation, or the differential use of space by males and females, is hypothesized to be a function of body size dimorphism. Sexual segregation can also manifest at small (social segregation) and large (habitat segregation) spatial scales for a variety of reasons. Furthermore, the connection between small- and large-scale sexual segregation has rarely been addressed. We studied a population of Roosevelt elk (Cervus elaphus roosevelti) across 21 years in north coastal California, USA, to assess small- and large-scale sexual segregation in winter. We hypothesized that male group size would associate with small-scale segregation and that a change in female distribution would associate with large-scale segregation. Variation in forage biomass might also be coupled to small and large-scale sexual segregation. Our findings were consistent with male group size associating with small-scale segregation and a change in female distribution associating with large-scale segregation. Females appeared to avoid large groups comprised of socially dominant males. Males appeared to occupy a habitat vacated by females because of a wider forage niche, greater tolerance to lethal risks, and, perhaps, to reduce encounters with other elk. Sexual segregation at both spatial scales was a poor predictor of forage biomass. Size dimorphism was coupled to change in sexual segregation at small and large spatial scales. Small scale segregation can seemingly manifest when all forage habitat is occupied by females and large scale segregation might happen when some forage habitat is not occupied by females. PMID:29121076

  11. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  12. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.

    PubMed

    Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik

    2017-10-01

    Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  13. Body size distributions signal a regime shift in a lake ...

    EPA Pesticide Factsheets

    Communities of organisms, from mammals to microorganisms, have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at multiple spatial and temporal scales. In this study, we assessed whether body size patterns serve as an indicator of a threshold between alternative regimes. Over the past 7000 years, the biological communities of Foy Lake (Montana,USA) have undergone a major regime shift owing to climate change. We used a palaeoecological record of diatom communities to estimate diatom sizes, and then analysed the discontinuous distribution of organism sizes over time. We used Bayesian classification and regression tree models to determine that all time intervals exhibited aggregations of sizes separated by gaps in the distribution and found a significant change in diatom body size distributions approximately 150 years before the identified ecosystem regime shift. We suggest that discontinuity analysis is a useful addition to the suite of tools for the detection of early warning signals of regime shifts. Communities of organisms from mammals to microorganisms have discontinuous distributions of body size. This pattern of size structuring is a conservative trait of community organization and is a product of processes that occur at discrete spatial and temporal scales within ecosystems. Here, a paleoecological record of diatom community change is use

  14. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.

    PubMed

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.

  15. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791

  16. The spatial scaling of species interaction networks.

    PubMed

    Galiana, Nuria; Lurgi, Miguel; Claramunt-López, Bernat; Fortin, Marie-Josée; Leroux, Shawn; Cazelles, Kevin; Gravel, Dominique; Montoya, José M

    2018-05-01

    Species-area relationships (SARs) are pivotal to understand the distribution of biodiversity across spatial scales. We know little, however, about how the network of biotic interactions in which biodiversity is embedded changes with spatial extent. Here we develop a new theoretical framework that enables us to explore how different assembly mechanisms and theoretical models affect multiple properties of ecological networks across space. We present a number of testable predictions on network-area relationships (NARs) for multi-trophic communities. Network structure changes as area increases because of the existence of different SARs across trophic levels, the preferential selection of generalist species at small spatial extents and the effect of dispersal limitation promoting beta-diversity. Developing an understanding of NARs will complement the growing body of knowledge on SARs with potential applications in conservation ecology. Specifically, combined with further empirical evidence, NARs can generate predictions of potential effects on ecological communities of habitat loss and fragmentation in a changing world.

  17. Distribution of vascular plants and macroalgae along salinity and elevation gradients in Oregon tidal marshes

    EPA Science Inventory

    Sea level rise due to global climate change may affect the spatial distribution of plants and macroalgae within tidal estuaries. We present preliminary results from on-going research in Oregon to determine how these potential abiotic drives correlate with the presence or absence...

  18. Convergent surface water distributions in U.S. cities

    Treesearch

    M.K. Steele; J.B. Heffernan; N. Bettez; J. Cavender-Bares; P.M. Groffman; J.M. Grove; S. Hall; S.E. Hobbie; K. Larson; J.L. Morse; C. Neill; K.C. Nelson; J. O' Neil-Dunne; L. Ogden; D.E. Pataki; C. Polsky; R. Roy Chowdhury

    2014-01-01

    Earth's surface is rapidly urbanizing, resulting in dramatic changes in the abundance, distribution and character of surface water features in urban landscapes. However, the scope and consequences of surface water redistribution at broad spatial scales are not well understood. We hypothesized that urbanization would lead to convergent surface water abundance and...

  19. Near term climate projections for invasive species distributions

    USGS Publications Warehouse

    Jarnevich, C.S.; Stohlgren, T.J.

    2009-01-01

    Climate change and invasive species pose important conservation issues separately, and should be examined together. We used existing long term climate datasets for the US to project potential climate change into the future at a finer spatial and temporal resolution than the climate change scenarios generally available. These fine scale projections, along with new species distribution modeling techniques to forecast the potential extent of invasive species, can provide useful information to aide conservation and invasive species management efforts. We created habitat suitability maps for Pueraria montana (kudzu) under current climatic conditions and potential average conditions up to 30 years in the future. We examined how the potential distribution of this species will be affected by changing climate, and the management implications associated with these changes. Our models indicated that P. montana may increase its distribution particularly in the Northeast with climate change and may decrease in other areas. ?? 2008 Springer Science+Business Media B.V.

  20. Spatial distribrrtion of soil carbon in southern New England hardwood forest landscapes

    Treesearch

    Aletta A. Davis; Mark H. Stolt; Jana E. Compton

    2004-01-01

    Understanding soil organic C (SOC) spatial variability is critical when developing C budgets, explaining the cause and effects of climate change, and for basic ecosystem characterization. We investigated delineations of four soil series to elucidate teh factors that affect the size, distribution, and varibility of SOC pools from horizon to landscape scales. These soils...

  1. Microclimate predicts within-season distribution dynamics of montane forest birds

    Treesearch

    Sarah J.K. Frey; Adam S. Hadley; Matthew G. Betts; Mark Robertson

    2016-01-01

    Aim: Climate changes are anticipated to have pervasive negative effects on biodiversity and are expected to necessitate widespread range shifts or contractions. Such projections are based upon the assumptions that (1) species respond primarily to broad-scale climatic regimes, or (2) that variation in climate at fine spatial scales is less relevant at coarse spatial...

  2. Estimating the spatial distribution of artificial groundwater recharge using multiple tracers.

    PubMed

    Moeck, Christian; Radny, Dirk; Auckenthaler, Adrian; Berg, Michael; Hollender, Juliane; Schirmer, Mario

    2017-10-01

    Stable isotopes of water, organic micropollutants and hydrochemistry data are powerful tools for identifying different water types in areas where knowledge of the spatial distribution of different groundwater is critical for water resource management. An important question is how the assessments change if only one or a subset of these tracers is used. In this study, we estimate spatial artificial infiltration along an infiltration system with stage-discharge relationships and classify different water types based on the mentioned hydrochemistry data for a drinking water production area in Switzerland. Managed aquifer recharge via surface water that feeds into the aquifer creates a hydraulic barrier between contaminated groundwater and drinking water wells. We systematically compare the information from the aforementioned tracers and illustrate differences in distribution and mixing ratios. Despite uncertainties in the mixing ratios, we found that the overall spatial distribution of artificial infiltration is very similar for all the tracers. The highest infiltration occurred in the eastern part of the infiltration system, whereas infiltration in the western part was the lowest. More balanced infiltration within the infiltration system could cause the elevated groundwater mound to be distributed more evenly, preventing the natural inflow of contaminated groundwater. Dedicated to Professor Peter Fritz on the occasion of his 80th birthday.

  3. Effects of habitat fragmentation on passerine birds breeding in Intermountain shrubsteppe

    USGS Publications Warehouse

    Knick, S.T.; Rotenberry, J.T.

    2002-01-01

    Habitat fragmentation and loss strongly influence the distribution and abundance of passerine birds breeding in Intermountain shrubsteppe. Wildfires, human activities, and change in vegetation communities often are synergistic in these systems and can result in radical conversion from shrubland to grasslands dominated by exotic annuals at large temporal and spatial scales from which recovery to native conditions is unlikely. As a result, populations of 5 of the 12 species in our review of Intermountain shrubsteppe birds are undergoing significant declines; 5 species are listed as at-risk or as candidates for protection in at least one state. The process by which fragmentation affects bird distributions in these habitats remains unknown because most research has emphasized the detection of population trends and patterns of habitat associations at relatively large spatial scales. Our research indicates that the distribution of shrubland-obligate species, such as Brewer's Sparrows (Spizella breweri), Sage Sparrows (Amphispiza belli), and Sage Thrashers (Oreoscoptes montanus), was highly sensitive to fragmentation of shrublands at spatial scales larger than individual home ranges. In contrast, the underlying mechanisms for both habitat change and bird population dynamics may operate independently of habitat boundaries. We propose alternative, but not necessarily exclusive, mechanisms to explain the relationship between habitat fragmentation and bird distribution and abundance. Fragmentation might influence productivity through differences in breeding density, nesting success, or predation. However, local and landscape variables were not significant determinants either of success, number fledged, or probability of predation or parasitism (although our tests had relatively low statistical power). Alternatively, relative absence of natal philopatry and redistribution by individuals among habitats following fledging or post-migration could account for the pattern of distribution and abundance. Thus, boundary dynamics may be important in determining the distribution of shrubland-obligate species but insignificant relative to the mechanisms causing the pattern of habitat and bird distribution. Because of the dichotomy in responses, Intermountain shrubsteppe systems present a unique challenge in understanding how landscape composition, configuration, and change influence bird population dynamics.

  4. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE PAGES

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-05

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  5. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughoutmore » this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4–190 %, with an average of 120 % (2 σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.« less

  6. Gridded uncertainty in fossil fuel carbon dioxide emission maps, a CDIAC example

    NASA Astrophysics Data System (ADS)

    Andres, Robert J.; Boden, Thomas A.; Higdon, David M.

    2016-12-01

    Due to a current lack of physical measurements at appropriate spatial and temporal scales, all current global maps and distributions of fossil fuel carbon dioxide (FFCO2) emissions use one or more proxies to distribute those emissions. These proxies and distribution schemes introduce additional uncertainty into these maps. This paper examines the uncertainty associated with the magnitude of gridded FFCO2 emissions. This uncertainty is gridded at the same spatial and temporal scales as the mass magnitude maps. This gridded uncertainty includes uncertainty contributions from the spatial, temporal, proxy, and magnitude components used to create the magnitude map of FFCO2 emissions. Throughout this process, when assumptions had to be made or expert judgment employed, the general tendency in most cases was toward overestimating or increasing the magnitude of uncertainty. The results of the uncertainty analysis reveal a range of 4-190 %, with an average of 120 % (2σ) for populated and FFCO2-emitting grid spaces over annual timescales. This paper also describes a methodological change specific to the creation of the Carbon Dioxide Information Analysis Center (CDIAC) FFCO2 emission maps: the change from a temporally fixed population proxy to a temporally varying population proxy.

  7. Dynamics of Learning in Cultured Neuronal Networks with Antagonists of Glutamate Receptors

    PubMed Central

    Li, Yanling; Zhou, Wei; Li, Xiangning; Zeng, Shaoqun; Luo, Qingming

    2007-01-01

    Cognitive dysfunction may result from abnormality of ionotropic glutamate receptors. Although various forms of synaptic plasticity in learning that rely on altering of glutamate receptors have been considered, the evidence is insufficient from an informatics view. Dynamics could reflect neuroinformatics encoding, including temporal pattern encoding, spatial pattern encoding, and energy distribution. Discovering informatics encoding is fundamental and crucial to understanding the working principle of the neural system. In this article, we analyzed the dynamic characteristics of response activities during learning training in cultured hippocampal networks under normal and abnormal conditions of ionotropic glutamate receptors, respectively. The rate, which is one of the temporal configurations, was decreased markedly by inhibition of α-amino-3-hydroxy-5-methylisoxazole-4-proprionic acid (AMPA) receptors. Moreover, the energy distribution in different characteristic frequencies was changed markedly by inhibition of AMPA receptors. Spatial configurations, including regularization, correlation, and synchrony, were changed significantly by inhibition of N-methyl-d-aspartate receptors. These results suggest that temporal pattern encoding and energy distribution of response activities in cultured hippocampal neuronal networks during learning training are modulated by AMPA receptors, whereas spatial pattern encoding of response activities is modulated by N-methyl-d-aspartate receptors. PMID:17766359

  8. The Shifting Climate Portfolio of the Greater Yellowstone Area

    PubMed Central

    Sepulveda, Adam J.; Tercek, Michael T.; Al-Chokhachy, Robert; Ray, Andrew M.; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann W.; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change. PMID:26674185

  9. The shifting climate portfolio of the Greater Yellowstone Area

    USGS Publications Warehouse

    Sepulveda, Adam; Tercek, Mike T; Al-Chokhachy, Robert K.; Ray, Andrew; Thoma, David P.; Hossack, Blake R.; Pederson, Gregory T.; Rodman, Ann; Olliff, Tom

    2015-01-01

    Knowledge of climatic variability at small spatial extents (< 50 km) is needed to assess vulnerabilities of biological reserves to climate change. We used empirical and modeled weather station data to test if climate change has increased the synchrony of surface air temperatures among 50 sites within the Greater Yellowstone Area (GYA) of the interior western United States. This important biological reserve is the largest protected area in the Lower 48 states and provides critical habitat for some of the world’s most iconic wildlife. We focused our analyses on temporal shifts and shape changes in the annual distributions of seasonal minimum and maximum air temperatures among valley-bottom and higher elevation sites from 1948–2012. We documented consistent patterns of warming since 1948 at all 50 sites, with the most pronounced changes occurring during the Winter and Summer when minimum and maximum temperature distributions increased. These shifts indicate more hot temperatures and less cold temperatures would be expected across the GYA. Though the shifting statistical distributions indicate warming, little change in the shape of the temperature distributions across sites since 1948 suggest the GYA has maintained a diverse portfolio of temperatures within a year. Spatial heterogeneity in temperatures is likely maintained by the GYA’s physiographic complexity and its large size, which encompasses multiple climate zones that respond differently to synoptic drivers. Having a diverse portfolio of temperatures may help biological reserves spread the extinction risk posed by climate change.

  10. Fractional Fourier transform of Lorentz-Gauss vortex beams

    NASA Astrophysics Data System (ADS)

    Zhou, GuoQuan; Wang, XiaoGang; Chu, XiuXiang

    2013-08-01

    An analytical expression for a Lorentz-Gauss vortex beam passing through a fractional Fourier transform (FRFT) system is derived. The influences of the order of the FRFT and the topological charge on the normalized intensity distribution, the phase distribution, and the orbital angular momentum density of a Lorentz-Gauss vortex beam in the FRFT plane are examined. The order of the FRFT controls the beam spot size, the orientation of the beam spot, the spiral direction of the phase distribution, the spatial orientation of the two peaks in the orbital angular momentum density distribution, and the magnitude of the orbital angular momentum density. The increase of the topological charge not only results in the dark-hollow region becoming large, but also brings about detail changes in the beam profile. The spatial orientation of the two peaks in the orbital angular momentum density distribution and the phase distribution also depend on the topological charge.

  11. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  12. Distribution of two species of sea snakes, Aipysurus laevis and Emydocephalus annulatus, in the southern Great Barrier Reef: metapopulation dynamics, marine protected areas and conservation

    NASA Astrophysics Data System (ADS)

    Lukoschek, V.; Heatwole, H.; Grech, A.; Burns, G.; Marsh, H.

    2007-06-01

    Aipysurus laevis and Emydocephalus annulatus typically occur in spatially discrete populations, characteristic of metapopulations; however, little is known about the factors influencing the spatial and temporal stability of populations or whether specific conservation strategies, such as networks of marine protected areas, will ensure the persistence of species. Classification tree analyses of 35 years of distribution data (90 reefs, surveyed 1-11 times) in the southern Great Barrier Reef (GBR) revealed that longitude was a major factor determining the status of A. laevis on reefs (present = 38, absent = 38 and changed = 14). Reef exposure and reef area were also important; however, these factors did not specifically account for the population fluctuations and the recent local extinctions of A. laevis in this region. There were no relationships between the status of E. annulatus (present = 16, absent = 68 and changed = 6) and spatial or physical variables. Moreover, prior protection status of reefs did not account for the distribution of either species. Biotic factors, such as habitat and prey availability and the distribution of predators, which may account for the observed patterns of distribution, are discussed. The potential for inter-population exchange among sea snake populations is poorly understood, as is the degree of protection that will be afforded to sea snakes by the recently implemented network of No-take areas in the GBR. Data from this study provide a baseline for evaluating the responses of A. laevis and E. annulatus populations to changes in biotic factors and the degree of protection afforded on reefs within an ecosystem network of No-take marine protected areas in the southern GBR.

  13. Spatial Metrics of Tumour Vascular Organisation Predict Radiation Efficacy in a Computational Model

    PubMed Central

    Scott, Jacob G.

    2016-01-01

    Intratumoural heterogeneity is known to contribute to poor therapeutic response. Variations in oxygen tension in particular have been correlated with changes in radiation response in vitro and at the clinical scale with overall survival. Heterogeneity at the microscopic scale in tumour blood vessel architecture has been described, and is one source of the underlying variations in oxygen tension. We seek to determine whether histologic scale measures of the erratic distribution of blood vessels within a tumour can be used to predict differing radiation response. Using a two-dimensional hybrid cellular automaton model of tumour growth, we evaluate the effect of vessel distribution on cell survival outcomes of simulated radiation therapy. Using the standard equations for the oxygen enhancement ratio for cell survival probability under differing oxygen tensions, we calculate average radiation effect over a range of different vessel densities and organisations. We go on to quantify the vessel distribution heterogeneity and measure spatial organization using Ripley’s L function, a measure designed to detect deviations from complete spatial randomness. We find that under differing regimes of vessel density the correlation coefficient between the measure of spatial organization and radiation effect changes sign. This provides not only a useful way to understand the differences seen in radiation effect for tissues based on vessel architecture, but also an alternate explanation for the vessel normalization hypothesis. PMID:26800503

  14. Geographical Analysis of the Distribution and Spread of Human Rabies in China from 2005 to 2011

    PubMed Central

    Yin, Wenwu; Yu, Hongjie; Si, Yali; Li, Jianhui; Zhou, Yuanchun; Zhou, Xiaoyan; Magalhães, Ricardo J. Soares.

    2013-01-01

    Background Rabies is a significant public health problem in China in that it records the second highest case incidence globally. Surveillance data on canine rabies in China is lacking and human rabies notifications can be a useful indicator of areas where animal and human rabies control could be integrated. Previous spatial epidemiological studies lacked adequate spatial resolution to inform targeted rabies control decisions. We aimed to describe the spatiotemporal distribution of human rabies and model its geographical spread to provide an evidence base to inform future integrated rabies control strategies in China. Methods We geo-referenced a total of 17,760 human rabies cases of China from 2005 to 2011. In our spatial analyses we used Gaussian kernel density analysis, average nearest neighbor distance, Spatial Temporal Density-Based Spatial Clustering of Applications with Noise and developed a model of rabies spatiotemporal spread. Findings Human rabies cases increased from 2005 to 2007 and decreased during 2008 to 2011 companying change of the spatial distribution. The ANN distance among human rabies cases increased between 2005 and 2011, and the degree of clustering of human rabies cases decreased during that period. A total 480 clusters were detected by ST-DBSCAN, 89.4% clusters initiated before 2007. Most of clusters were mainly found in South of China. The number and duration of cluster decreased significantly after 2008. Areas with the highest density of human rabies cases varied spatially each year and in some areas remained with high outbreak density for several years. Though few places have recovered from human rabies, most of affected places are still suffering from the disease. Conclusion Human rabies in mainland China is geographically clustered and its spatial extent changed during 2005 to 2011. The results provide a scientific basis for public health authorities in China to improve human rabies control and prevention program. PMID:23991098

  15. Predicting the Effect of Changing Precipitation Extremes and Land Cover Change on Urban Water Quality

    NASA Astrophysics Data System (ADS)

    SUN, N.; Yearsley, J. R.; Lettenmaier, D. P.

    2013-12-01

    Recent research shows that precipitation extremes in many of the largest U.S. urban areas have increased over the last 60 years. These changes have important implications for stormwater runoff and water quality, which in urban areas are dominated by the most extreme precipitation events. We assess the potential implications of changes in extreme precipitation and changing land cover in urban and urbanizing watersheds at the regional scale using a combination of hydrology and water quality models. Specifically, we describe the integration of a spatially distributed hydrological model - the Distributed Hydrology Soil Vegetation Model (DHSVM), the urban water quality model in EPA's Storm Water Management Model (SWMM), the semi-Lagrangian stream temperature model RBM10, and dynamical and statistical downscaling methods applied to global climate predictions. Key output water quality parameters include total suspended solids (TSS), toal nitrogen, total phosphorous, fecal coliform bacteria and stream temperature. We have evaluated the performance of the modeling system in the highly urbanized Mercer Creek watershed in the rapidly growing Bellevue urban area in WA, USA. The results suggest that the model is able to (1) produce reasonable streamflow predictions at fine temporal and spatial scales; (2) provide spatially distributed water temperature predictions that mostly agree with observations throughout a complex stream network, and characterize impacts of climate, landscape, near-stream vegetation change on stream temperature at local and regional scales; and (3) capture plausibly the response of water quality constituents to varying magnitude of precipitation events in urban environments. Next we will extend the scope of the study from the Mercer Creek watershed to include the entire Puget Sound Basin, WA, USA.

  16. Initial results of the spatial distribution of rubber trees in Peninsular Malaysia using remotely sensed data for biomass estimate

    NASA Astrophysics Data System (ADS)

    Shidiq, I. P. A.; Ismail, M. H.; Kamarudin, N.

    2014-02-01

    The preservation and sustainable management of forest and other land cover ecosystems such as rubber trees will help addressing two major recent issues: climate change and bio-resource energy. The rubber trees are dominantly distributed in the Negeri Sembilan and Kedah on the west coast side of Peninsular Malaysia. This study is aimed to analyse the spatial distribution and biomass of rubber trees in Peninsular Malaysia with special emphasis in Negeri Sembilan State. Geospatial data from remote sensors are used to tackle the time and labour consuming problem due to the large spatial coverage and the need of continuous temporal data. Remote sensing imagery used in this study is a Landsat 5 TM. The image from optical sensor was used to sense the rubber trees and further classified rubber tree by different age.

  17. Climate induced changes in biome distribution, NPP and hydrology for potential vegetation of the Upper Midwest U.S

    NASA Astrophysics Data System (ADS)

    Motew, M.; Kucharik, C. J.

    2011-12-01

    While much attention is focused on future impacts of climate change on ecosystems, much can be learned about the previous interactions of ecosystems with recent climate change. In this study, we investigated the impacts of climate change on potential vegetation distributions (i.e. grasses, trees, and shrubs) and carbon and water cycling across the Upper Midwest USA from 1948-2007 using the Agro-IBIS dynamic vegetation model. We drove the model using a historical, gridded daily climate data set (temperature, precipitation, humidity, solar radiation, and wind speed) at a spatial resolution of 5 min x 5 min. While trends in climate variables exhibited heterogeneous spatial patterns over the study period, the overall impact of climate change on vegetation productivity was positive. We observed total increases in net primary productivity (NPP) ranging from 20-150 g C m-2, based on linear regression analysis. We determined that increased summer relative humidity, increased annual precipitation and decreased mean maximum summer temperatures were key variables contributing to these positive trends, likely through a reduction in soil moisture stress (e.g., increased available water) and heat stress. Model simulations also illustrated an increase in annual drainage throughout the region of 20-140 mm yr-1, driven by substantial increases in annual precipitation. Evapotranspiration had a highly variable spatial trend over the 60-year period, with total change over the study period ranging between -100 and +100 mm yr-1. We also analyzed potential changes in plant functional type (PFT) distributions at the biome level, but hypothesize that the model may be unable to adequately capture competitive interactions among PFTs as well as the dynamics between upper and lower canopies consisting of trees, grasses and shrubs. An analysis of the bioclimatic envelopes for PFTs common to the region revealed no significant change to the boreal conifer tree climatic domain over the study period, yet did reveal a slightly expanded domain for temperate deciduous broadleaf trees. The location of the Tension Zone, a broad ecotone dividing mixed forests in the north and southern hardwood forests and prairies in the south, was not observed to shift using analyses of both meteorological variables and through the results of simulated vegetation distributions. In general, our results supported the idea that climate change is spatially variable in nature, having significant effects on ecosystem structure and function. Our analysis also revealed interesting relationships among the key climatic quantities driving plant productivity and hydrology in the region. Most notably, while the model suggested that potential biome and PFT distributions have not likely shifted significantly in the past 60 years, climate change has contributed to substantial changes in coupled carbon, water, and energy exchange in natural ecosystems of the Upper Midwest US. We conclude that incorporating recent, high-resolution climate records into ecological studies offers valuable insight into the heterogeneous nature of climate change and its impacts on ecosystems at the local level.

  18. Effects of polymers on the spatial structure of turbulent flows

    NASA Astrophysics Data System (ADS)

    Sinhuber, Michael; Ballouz, Joseph G.; Ouellette, Nicholas T.

    2017-11-01

    It is well known that the addition of minor amounts of polymers to a turbulent water flow can significantly change its properties. One of the most prominent effects is the observed drastic reduction of drag in wall-bounded flows that is utilized in many engineering applications. Much of the research on polymers in turbulence has focused on their influence on the turbulent energy cascade and their interaction with the energy transfer processes. Much less investigated are their effects on the spatial structure of turbulent flows. In a classical von-Kárman swirling flow setup, we used Lagrangian particle tracking to obtain three-dimensional particle trajectories, velocities, and accelerations and find that polymers have a significant effect on Lagrangian measures of the turbulence structure such as radial distribution functions and the curvature of particle trajectories. We find that not only do the statistical distributions change, but also that polymers appear to affect the spatial statistics well beyond the size of the polymers themselves.

  19. Integrating Agent Models of Subsistence Farming With Dynamic Models of Water Distribution

    NASA Astrophysics Data System (ADS)

    Bithell, M.; Brasington, J.

    2004-12-01

    Subsistence farming communities are dependent on the landscape to provide the resource base upon which their societies can be built. A key component of this is the role of climate, and the feedback between rainfall, crop growth and land clearance, and their coupling to the hydrological cycle. Temporal fluctuations in rainfall on timescales from annual through to decadal and longer, and the associated changes in in the spatial distribution of water availability mediated by the soil-type, slope and landcover determine the locations within the landscape that can support agriculture, and control sustainability of farming practices. We seek to make an integrated modelling system to represent land use change by coupling an agent based model of subsistence farming, and the associated exploitation of natural resources, to a realistic representation of the hydrology at the catchment scale, using TOPMODEL to map the spatial distribution of crop water stress for given time-series of rainfall. In this way we can, for example, investigate how demographic changes and associated removal of forest cover influence the possibilities for field locations within the catchment, through changes in ground water availability. The framework for this modelling exercise will be presented and preliminary results from this system will be discussed.

  20. Using biogeographic distributions and natural history to predict marine/estuarine species at risk to climate change

    EPA Science Inventory

    Effects of climate change on marine and estuarine species will vary with attributes of the species and the spatial patterns of environmental change at the habitat and global scales. To better predict which species are at greatest risk, we are developing a knowledge base of specie...

  1. Estimating changes in urban land and urban population using refined areal interpolation techniques

    NASA Astrophysics Data System (ADS)

    Zoraghein, Hamidreza; Leyk, Stefan

    2018-05-01

    The analysis of changes in urban land and population is important because the majority of future population growth will take place in urban areas. U.S. Census historically classifies urban land using population density and various land-use criteria. This study analyzes the reliability of census-defined urban lands for delineating the spatial distribution of urban population and estimating its changes over time. To overcome the problem of incompatible enumeration units between censuses, regular areal interpolation methods including Areal Weighting (AW) and Target Density Weighting (TDW), with and without spatial refinement, are implemented. The goal in this study is to estimate urban population in Massachusetts in 1990 and 2000 (source zones), within tract boundaries of the 2010 census (target zones), respectively, to create a consistent time series of comparable urban population estimates from 1990 to 2010. Spatial refinement is done using ancillary variables such as census-defined urban areas, the National Land Cover Database (NLCD) and the Global Human Settlement Layer (GHSL) as well as different combinations of them. The study results suggest that census-defined urban areas alone are not necessarily the most meaningful delineation of urban land. Instead, it appears that alternative combinations of the above-mentioned ancillary variables can better depict the spatial distribution of urban land, and thus make it possible to reduce the estimation error in transferring the urban population from source zones to target zones when running spatially-refined temporal areal interpolation.

  2. Four millennia of woodland structure and dynamics at the Arctic treeline of eastern Canada.

    PubMed

    Auger, Sarah; Payette, Serge

    2010-05-01

    Paleoecological analysis using complementary indicators of vegetation and soil can provide spatially explicit information on ecological processes influencing trajectories of long-term ecosystem change. Here we document the structure and dynamics of an old-growth woodland before and after its inception 1000 years ago. We infer vegetation and soil characteristics from size and age distributions of black spruce (Picea mariana (Mill.) B.S.P.), soil properties, plant fossils, and paleosols. Radiocarbon ages of charcoal on the ground and in the soil indicate that the fire return interval was approximately 300 years between 2750 and 1000 cal. yr BP. No fire evidence was found before and after this period despite the presence of spruce since 4200 cal. yr BP. The size structures of living and dead spruce suggest that the woodland is in equilibrium with present climate in absence of fire. Tree establishment and mortality occurred regularly since the last fire event around 950 cal. yr BP. Both layering and occasional seeding have contributed to stabilize the spatial distribution of spruce over the past 1000 years. Since initial afforestation, soil development has been homogenized by the changing spatial distribution of spruce following each fire. We conclude that the history of the woodland is characterized by vegetation shifts associated with fire and soil disturbances and by millennial-scale maintenance of the woodland's structure despite changing climatic conditions.

  3. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model

    NASA Astrophysics Data System (ADS)

    Alatorre, L. C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J. M.

    2012-05-01

    Soil erosion and sediment yield are strongly affected by land use/land cover (LULC). Spatially distributed erosion models are of great interest to assess the expected effect of LULC changes on soil erosion and sediment yield. However, they can only be applied if spatially distributed data is available for their calibration. In this study the soil erosion and sediment delivery model WATEM/SEDEM was applied to a small (2.84 km2) experimental catchment in the Central Spanish Pyrenees. Model calibration was performed based on a dataset of soil redistribution rates derived from point 137Cs inventories, allowing capture differences per land use in the main model parameters. Model calibration showed a good convergence to a global optimum in the parameter space, which was not possible to attain if only external (not spatially distributed) sediment yield data were available. Validation of the model results against seven years of recorded sediment yield at the catchment outlet was satisfactory. Two LULC scenarios were then modeled to reproduce land use at the beginning of the twentieth century and a hypothetic future scenario, and to compare the simulation results to the current LULC situation. The results show a reduction of about one order of magnitude in gross erosion (3180 to 350 Mg yr-1) and sediment delivery (11.2 to 1.2 Mg yr-1 ha-1) during the last decades as a result of the abandonment of traditional land uses (mostly agriculture) and subsequent vegetation recolonization. The simulation also allowed assessing differences in the sediment sources and sinks within the catchment.

  4. The combined effects of exogenous and endogenous variability on the spatial distribution of ant communities in a forested ecosystem (Hymenoptera: Formicidae).

    PubMed

    Yitbarek, Senay; Vandermeer, John H; Allen, David

    2011-10-01

    Spatial patterns observed in ecosystems have traditionally been attributed to exogenous processes. Recently, ecologists have found that endogenous processes also have the potential to create spatial patterns. Yet, relatively few studies have attempted to examine the combined effects of exogenous and endogenous processes on the distribution of organisms across spatial and temporal scales. Here we aim to do this, by investigating whether spatial patterns of under-story tree species at a large spatial scale (18 ha) influences the spatial patterns of ground foraging ant species at a much smaller spatial scale (20 m by 20 m). At the regional scale, exogenous processes (under-story tree community) had a strong effect on the spatial patterns in the ground-foraging ant community. We found significantly more Camponotus noveboracensis, Formica subsericae, and Lasius alienus species in black cherry (Prunis serotine Ehrh.) habitats. In witch-hazel (Hamamelis virginiana L.) habitats, we similarly found significantly more Myrmica americana, Formica fusca, and Formica subsericae. At smaller spatial scales, we observed the emergence of mosaic ant patches changing rapidly in space and time. Our study reveals that spatial patterns are the result of both exogenous and endogenous forces, operating at distinct scales.

  5. Combined point and distributed techniques for multidimensional estimation of spatial groundwater-stream water exchange in a heterogeneous sand bed-stream.

    NASA Astrophysics Data System (ADS)

    Gaona Garcia, J.; Lewandowski, J.; Bellin, A.

    2017-12-01

    Groundwater-stream water interactions in rivers determine water balances, but also chemical and biological processes in the streambed at different spatial and temporal scales. Due to the difficult identification and quantification of gaining, neutral and losing conditions, it is necessary to combine techniques with complementary capabilities and scale ranges. We applied this concept to a study site at the River Schlaube, East Brandenburg-Germany, a sand bed stream with intense sediment heterogeneity and complex environmental conditions. In our approach, point techniques such as temperature profiles of the streambed together with vertical hydraulic gradients provide data for the estimation of fluxes between groundwater and surface water with the numerical model 1DTempPro. On behalf of distributed techniques, fiber optic distributed temperature sensing identifies the spatial patterns of neutral, down- and up-welling areas by analysis of the changes in the thermal patterns at the streambed interface under certain flow. The study finally links point and surface temperatures to provide a method for upscaling of fluxes. Point techniques provide point flux estimates with essential depth detail to infer streambed structures while the results hardly represent the spatial distribution of fluxes caused by the heterogeneity of streambed properties. Fiber optics proved capable of providing spatial thermal patterns with enough resolution to observe distinct hyporheic thermal footprints at multiple scales. The relation of thermal footprint patterns and temporal behavior with flux results from point techniques enabled the use of methods for spatial flux estimates. The lack of detailed information of the physical driver's spatial distribution restricts the spatial flux estimation to the application of the T-proxy method, whose highly uncertain results mainly provide coarse spatial flux estimates. The study concludes that the upscaling of groundwater-stream water interactions using thermal measurements with combined point and distributed techniques requires the integration of physical drivers because of the heterogeneity of the flux patterns. Combined experimental and modeling approaches may help to obtain more reliable understanding of groundwater-surface water interactions at multiple scales.

  6. [Spatial point pattern analysis of main trees and flowering Fargesia qinlingensis in Abies fargesii forests in Mt Taibai of the Qinling Mountains, China].

    PubMed

    Li, Guo Chun; Song, Hua Dong; Li, Qi; Bu, Shu Hai

    2017-11-01

    In Abies fargesii forests of the giant panda's habitats in Mt. Taibai, the spatial distribution patterns and interspecific associations of main tree species and their spatial associations with the understory flowering Fargesia qinlingensis were analyzed at multiple scales by univariate and bivaria-te O-ring function in point pattern analysis. The results showed that in the A. fargesii forest, the number of A. fargesii was largest but its population structure was in decline. The population of Betula platyphylla was relatively young, with a stable population structure, while the population of B. albo-sinensis declined. The three populations showed aggregated distributions at small scales and gradually showed random distributions with increasing spatial scales. Spatial associations among tree species were mainly showed at small scales and gradually became not spatially associated with increasing scale. A. fargesii and B. platyphylla were positively associated with flowering F. qinlingensis at large and medium scales, whereas B. albo-sinensis showed negatively associated with flowering F. qinlingensis at large and medium scales. The interaction between trees and F. qinlingensis in the habitats of giant panda promoted the dynamic succession and development of forests, which changed the environment of giant panda's habitats in Qinling.

  7. Locally adaptive, spatially explicit projection of US population for 2030 and 2050.

    PubMed

    McKee, Jacob J; Rose, Amy N; Bright, Edward A; Huynh, Timmy; Bhaduri, Budhendra L

    2015-02-03

    Localized adverse events, including natural hazards, epidemiological events, and human conflict, underscore the criticality of quantifying and mapping current population. Building on the spatial interpolation technique previously developed for high-resolution population distribution data (LandScan Global and LandScan USA), we have constructed an empirically informed spatial distribution of projected population of the contiguous United States for 2030 and 2050, depicting one of many possible population futures. Whereas most current large-scale, spatially explicit population projections typically rely on a population gravity model to determine areas of future growth, our projection model departs from these by accounting for multiple components that affect population distribution. Modeled variables, which included land cover, slope, distances to larger cities, and a moving average of current population, were locally adaptive and geographically varying. The resulting weighted surface was used to determine which areas had the greatest likelihood for future population change. Population projections of county level numbers were developed using a modified version of the US Census's projection methodology, with the US Census's official projection as the benchmark. Applications of our model include incorporating multiple various scenario-driven events to produce a range of spatially explicit population futures for suitability modeling, service area planning for governmental agencies, consequence assessment, mitigation planning and implementation, and assessment of spatially vulnerable populations.

  8. Origin of Pareto-like spatial distributions in ecosystems.

    PubMed

    Manor, Alon; Shnerb, Nadav M

    2008-12-31

    Recent studies of cluster distribution in various ecosystems revealed Pareto statistics for the size of spatial colonies. These results were supported by cellular automata simulations that yield robust criticality for endogenous pattern formation based on positive feedback. We show that this patch statistics is a manifestation of the law of proportionate effect. Mapping the stochastic model to a Markov birth-death process, the transition rates are shown to scale linearly with cluster size. This mapping provides a connection between patch statistics and the dynamics of the ecosystem; the "first passage time" for different colonies emerges as a powerful tool that discriminates between endogenous and exogenous clustering mechanisms. Imminent catastrophic shifts (such as desertification) manifest themselves in a drastic change of the stability properties of spatial colonies.

  9. Adaptive web sampling.

    PubMed

    Thompson, Steven K

    2006-12-01

    A flexible class of adaptive sampling designs is introduced for sampling in network and spatial settings. In the designs, selections are made sequentially with a mixture distribution based on an active set that changes as the sampling progresses, using network or spatial relationships as well as sample values. The new designs have certain advantages compared with previously existing adaptive and link-tracing designs, including control over sample sizes and of the proportion of effort allocated to adaptive selections. Efficient inference involves averaging over sample paths consistent with the minimal sufficient statistic. A Markov chain resampling method makes the inference computationally feasible. The designs are evaluated in network and spatial settings using two empirical populations: a hidden human population at high risk for HIV/AIDS and an unevenly distributed bird population.

  10. Seasonal Differences in Spatial Scales of Chlorophyll-A Concentration in Lake TAIHU,CHINA

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Tian, Q.; Sun, S.; Wei, H.; Tian, J.

    2012-08-01

    Spatial distribution of chlorophyll-a (chla) concentration in Lake Taihu is non-uniform and seasonal variability. Chla concentration retrieval algorithms were separately established using measured data and remote sensing images (HJ-1 CCD and MODIS data) in October 2010, March 2011, and September 2011. Then parameters of semi- variance were calculated on the scale of 30m, 250m and 500m for analyzing spatial heterogeneity in different seasons. Finally, based on the definitions of Lumped chla (chlaL) and Distributed chla (chlaD), seasonal model of chla concentration scale error was built. The results indicated that: spatial distribution of chla concentration in spring was more uniform. In summer and autumn, chla concentration in the north of the lake such as Meiliang Bay and Zhushan Bay was higher than that in the south of Lake Taihu. Chla concentration on different scales showed the similar structure in the same season, while it had different structure in different seasons. And inversion chla concentration from MODIS 500m had a greater scale error. The spatial scale error changed with seasons. It was higher in summer and autumn than that in spring. The maximum relative error can achieve 23%.

  11. Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios

    NASA Astrophysics Data System (ADS)

    Singer, Anja; Millat, Gerald; Staneva, Joanna; Kröncke, Ingrid

    2017-03-01

    Small-scale spatial distribution patterns of seven macrofauna species, seagrass beds and mixed mussel/oyster reefs were modelled for the Jade Bay (North Sea, Germany) in response to climatic and environmental scenarios (representing 2050). For the species distribution models four presence-absence modelling methods were merged within the ensemble forecasting platform 'biomod2'. The present spatial distribution (representing 2009) was modelled by statistically related species presences, true species absences and six high-resolution environmental grids. The future spatial distribution was then predicted in response to expected climate change-induced ongoing (1) sea-level rise and (2) water temperature increase. Between 2009 and 2050, the present and future prediction maps revealed a significant range gain for two macrofauna species (Macoma balthica, Tubificoides benedii), whereas the species' range sizes of five macrofauna species remained relatively stable across space and time. The predicted probability of occurrence (PO) of two macrofauna species (Cerastoderma edule, Scoloplos armiger) decreased significantly under the potential future habitat conditions. In addition, a clear seagrass bed extension (Zostera noltii) on the lower intertidal flats (mixed sediments) and a decrease in the PO of mixed Mytilus edulis/Crassostrea gigas reefs was predicted for 2050. Until the mid-21st century, our future climatic and environmental scenario revealed significant changes in the range sizes (gains-losses) and/or the PO (increases-decreases) for seven of the 10 modelled species at the study site.

  12. Snow Cover Distribution and Variation using MODIS in the Himalayas of India

    NASA Astrophysics Data System (ADS)

    Mondal, A.; Lakshmi, V.; Jain, S. K.; Kansara, P. H.

    2017-12-01

    Snow cover variation plays a big role in river discharge, permafrost distribution and mass balance of glaciers in mountainous watersheds. Spatial distribution and temporal variation of snow cover varies with elevation and climate. We study the spatial distribution and temporal change of snow cover that has been observed using Terra Moderate Resolution Imaging Spectrometer (MODIS) product (MOD10A2 version 5) from 2001 to 2016. This MODIS product is based on normalized-difference snow index (NDSI) using band 4 (0.545-0.565 μm) and band 6 (1.628-1.652 μm). The spatial resolution of MOD10A2 is 500 m and composited over 8 days. The study area is the Indian Himalayas, major snow covered part of which is located in the states of Jammu and Kashmir, Himachal Pradesh, Uttarakhand, West Bengal, Sikkim, Assam and Arunachal Pradesh. Distribution and variation in snow cover is examined on monthly and annual time scales in this study. The temporal changes in snow cover has been compared with terrain attributes (elevation, slope and aspect). The snow cover depletion and accumulation have been observed during April-August and September-March. The snow cover is highest in the March and lowest in the August in the Himachal region. This study will be helpful to identify the amount of water stored in the glaciers of the Indian Himalaya and also important for water resources management of river basins, which are located in this area. Key words: Snow cover, MODIS, NDSI, terrain attribute

  13. Sandy beaches: state of the art of nematode ecology.

    PubMed

    Maria, Tatiana F; Vanaverbeke, Jan; Vanreusel, Ann; Esteves, André M

    2016-01-01

    In this review, we summarize existing knowledge of the ecology of sandy-beach nematodes, in relation to spatial distribution, food webs, pollution and climate change. We attempt to discuss spatial scale patterns (macro-, meso- and microscale) according to their degree of importance in structuring sandy-beach nematode assemblages. This review will provide a substantial background on current knowledge of sandy-beach nematodes, and can be used as a starting point to delineate further investigations in this field. Over decades, sandy beaches have been the scene of studies focusing on community and population ecology, both related to morphodynamic models. The combination of physical factors (e.g. grain size, tidal exposure) and biological interactions (e.g. trophic relationships) is responsible for the spatial distribution of nematodes. In other words, the physical factors are more important in structuring nematodes communities over large scale of distribution while biological interactions are largely important in finer-scale distributions. It has been accepted that biological interactions are assumed to be of minor importance because physical factors overshadow the biological interactions in sandy beach sediments; however, the most recent results from in-situ and ex-situ experimental investigations on behavior and biological factors on a microscale have shown promise for understanding the mechanisms underlying larger-scale patterns and processes. Besides nematodes are very promising organisms used to understand the effects of pollution and climate changes although these subjects are less studied in sandy beaches than distribution patterns.

  14. Forecasting Impacts of Climate Change on Indicators of British Columbia's Biodiversity

    NASA Astrophysics Data System (ADS)

    Holmes, Keith Richard

    Understanding the relationships between biodiversity and climate is essential for predicting the impact of climate change on broad-scale landscape processes. Utilizing indirect indicators of biodiversity derived from remotely sensed imagery, we present an approach to forecast shifts in the spatial distribution of biodiversity. Indirect indicators, such as remotely sensed plant productivity metrics, representing landscape seasonality, minimum growth, and total greenness have been linked to species richness over broad spatial scales, providing unique capacity for biodiversity modeling. Our goal is to map future spatial distributions of plant productivity metrics based on expected climate change and to quantify anticipated change to park habitat in British Columbia. Using an archival dataset sourced from the Advanced Very High Resolution Radiometer (AVHRR) satellite from the years 1987 to 2007 at 1km spatial resolution, corresponding historical climate data, and regression tree modeling, we developed regional models of the relationships between climate and annual productivity growth. Historical interconnections between climate and annual productivity were coupled with three climate change scenarios modeled by the Canadian Centre for Climate Modeling and Analysis (CCCma) to predict and map productivity components to the year 2065. Results indicate we can expect a warmer and wetter environment, which may lead to increased productivity in the north and higher elevations. Overall, seasonality is expected to decrease and greenness productivity metrics are expected to increase. The Coastal Mountains and high elevation edge habitats across British Columbia are forecasted to experience the greatest amount of change. In the future, protected areas may have potential higher greenness and lower seasonality as represented by indirect biodiversity indicators. The predictive model highlights potential gaps in protection along the central interior and Rocky Mountains. Protected areas are expected to experience the greatest change with indirect indicators located along mountainous elevations of British Columbia. Our indirect indicator approach to predict change in biodiversity provides resource managers with information to mitigate and adapt to future habitat dynamics. Spatially specific recommendations from our dataset provide information necessary for management. For instance, knowing there is a projected depletion of habitat representation in the East Rocky Mountains, sensitive species in the threatened Mountain Hemlock ecozone, or preservation of rare habitats in the decreasing greenness of the southern interior region is essential information for managers tasked with long term biodiversity conservation. Forecasting productivity levels, linked to the distribution of species richness, presents a novel approach for understanding the future implications of climate change on broad scale biodiversity.

  15. Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

    PubMed Central

    Bartolino, Valerio; Tian, Huidong; Bergström, Ulf; Jounela, Pekka; Aro, Eero; Dieterich, Christian; Meier, H. E. Markus; Cardinale, Massimiliano; Bland, Barbara

    2017-01-01

    Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes. PMID:28207804

  16. Analyzing Land Use Changes in the Metropolitan Jilin City of Northeastern China Using Remote Sensing and GIS.

    PubMed

    Hu, Dan; Yang, Guodong; Wu, Qiong; Li, Hongqing; Liu, Xusheng; Niu, Xuefeng; Wang, Zhiheng; Wang, Qiong

    2008-09-03

    Remote sensing and GIS have been widely employed to study temporal and spatial urban land use changes in southern and southeastern China. However, few studies have been conducted in northeastern regions. This study analyzed land use change and spatial patterns of urban expansion in the metropolitan area of Jilin City, located on the extension of Changbai Mountain, based on aerial photos from 1989 and 2005 Spot images. The results indicated that urban land and transportation land increased dramatically (by 94.04% and 211.20%, respectively); isolated industrial and mining land decreased moderately (by 29.54%); rural residential land increased moderately (by 26.48%); dry land and paddy fields increased slightly (by 15.68% and 11.78%, respectively); forest and orchards decreased slightly (by 5.27% and 4.61%, respectively); grasslands and unused land decreased dramatically (by 99.12% and 86.04%, respectively). Sloped dry land (more than 4 degrees) was mainly distributed on the land below 10 degrees with an east, southeastern and south sunny direction aspect, and most sloped dry land transformed to forest was located on an east aspect lower than 12 degrees, while forest changed to dry land were mainly distributed on east and south aspects lower than 10 degrees. A spatial dependency analysis of land use change showed that the increased urban land was a logarithmic function of distance to the Songhua River. This study also provided some data with spatial details about the uneven land development in the upstream areas of Songhua River basin.

  17. Climate change and the ash dieback crisis

    PubMed Central

    Goberville, Eric; Hautekèete, Nina-Coralie; Kirby, Richard R.; Piquot, Yves; Luczak, Christophe; Beaugrand, Grégory

    2016-01-01

    Beyond the direct influence of climate change on species distribution and phenology, indirect effects may also arise from perturbations in species interactions. Infectious diseases are strong biotic forces that can precipitate population declines and lead to biodiversity loss. It has been shown in forest ecosystems worldwide that at least 10% of trees are vulnerable to extinction and pathogens are increasingly implicated. In Europe, the emerging ash dieback disease caused by the fungus Hymenoscyphus fraxineus, commonly called Chalara fraxinea, is causing a severe mortality of common ash trees (Fraxinus excelsior); this is raising concerns for the persistence of this widespread tree, which is both a key component of forest ecosystems and economically important for timber production. Here, we show how the pathogen and climate change may interact to affect the future spatial distribution of the common ash. Using two presence-only models, seven General Circulation Models and four emission scenarios, we show that climate change, by affecting the host and the pathogen separately, may uncouple their spatial distribution to create a mismatch in species interaction and so a lowering of disease transmission. Consequently, as climate change expands the ranges of both species polewards it may alleviate the ash dieback crisis in southern and occidental regions at the same time. PMID:27739483

  18. The interaction between the spatial distribution of resource patches and population density: consequences for intraspecific growth and morphology.

    PubMed

    Jacobson, Bailey; Grant, James W A; Peres-Neto, Pedro R

    2015-07-01

    How individuals within a population distribute themselves across resource patches of varying quality has been an important focus of ecological theory. The ideal free distribution predicts equal fitness amongst individuals in a 1 : 1 ratio with resources, whereas resource defence theory predicts different degrees of monopolization (fitness variance) as a function of temporal and spatial resource clumping and population density. One overlooked landscape characteristic is the spatial distribution of resource patches, altering the equitability of resource accessibility and thereby the effective number of competitors. While much work has investigated the influence of morphology on competitive ability for different resource types, less is known regarding the phenotypic characteristics conferring relative ability for a single resource type, particularly when exploitative competition predominates. Here we used young-of-the-year rainbow trout (Oncorhynchus mykiss) to test whether and how the spatial distribution of resource patches and population density interact to influence the level and variance of individual growth, as well as if functional morphology relates to competitive ability. Feeding trials were conducted within stream channels under three spatial distributions of nine resource patches (distributed, semi-clumped and clumped) at two density levels (9 and 27 individuals). Average trial growth was greater in high-density treatments with no effect of resource distribution. Within-trial growth variance had opposite patterns across resource distributions. Here, variance decreased at low-population, but increased at high-population densities as patches became increasingly clumped as the result of changes in the levels of interference vs. exploitative competition. Within-trial growth was related to both pre- and post-trial morphology where competitive individuals were those with traits associated with swimming capacity and efficiency: larger heads/bodies/caudal fins and less angled pectoral fins. The different degrees of within-population growth variance at the same density level found here, as a function of spatial resource distribution, provide an explanation for the inconsistencies in within-site growth variance and population regulation often noted with regard to density dependence in natural landscapes. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  19. Spatial distribution estimation of malaria in northern China and its scenarios in 2020, 2030, 2040 and 2050.

    PubMed

    Song, Yongze; Ge, Yong; Wang, Jinfeng; Ren, Zhoupeng; Liao, Yilan; Peng, Junhuan

    2016-07-07

    Malaria is one of the most severe parasitic diseases in the world. Spatial distribution estimation of malaria and its future scenarios are important issues for malaria control and elimination. Furthermore, sophisticated nonlinear relationships for prediction between malaria incidence and potential variables have not been well constructed in previous research. This study aims to estimate these nonlinear relationships and predict future malaria scenarios in northern China. Nonlinear relationships between malaria incidence and predictor variables were constructed using a genetic programming (GP) method, to predict the spatial distributions of malaria under climate change scenarios. For this, the examples of monthly average malaria incidence were used in each county of northern China from 2004 to 2010. Among the five variables at county level, precipitation rate and temperature are used for projections, while elevation, water density index, and gross domestic product are held at their present-day values. Average malaria incidence was 0.107 ‰ per annum in northern China, with incidence characteristics in significant spatial clustering. A GP-based model fit the relationships with average relative error (ARE) = 8.127 % for training data (R(2) = 0.825) and 17.102 % for test data (R(2) = 0.532). The fitness of GP results are significantly improved compared with those by generalized additive models (GAM) and linear regressions. With the future precipitation rate and temperature conditions in Special Report on Emission Scenarios (SRES) family B1, A1B and A2 scenarios, spatial distributions and changes in malaria incidences in 2020, 2030, 2040 and 2050 were predicted and mapped. The GP method increases the precision of predicting the spatial distribution of malaria incidence. With the assumption of varied precipitation rate and temperature, and other variables controlled, the relationships between incidence and the varied variables appear sophisticated nonlinearity and spatially differentiation. Using the future fluctuated precipitation and the increased temperature, median malaria incidence in 2020, 2030, 2040 and 2050 would significantly increase that it might increase 19 to 29 % in 2020, but currently China is in the malaria elimination phase, indicating that the effective strategies and actions had been taken. While the mean incidences will not increase even reduce due to the incidence reduction in high-risk regions but the simultaneous expansion of the high-risk areas.

  20. Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes

    PubMed Central

    Pittman, Simon J.; Brown, Kerry A.

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management. PMID:21637787

  1. Multi-scale approach for predicting fish species distributions across coral reef seascapes.

    PubMed

    Pittman, Simon J; Brown, Kerry A

    2011-01-01

    Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape topography was quantified from high resolution bathymetry at five spatial scales (5-300 m radii) surrounding fish survey sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution differed among species, yet rarely changed across spatial scales. BRT provided 'outstanding' model predictions (AUC = >0.9) for three of five fish species. MaxEnt provided 'outstanding' model predictions for two of five species, with the remaining three models considered 'excellent' (AUC = 0.8-0.9). In contrast, MaxEnt spatial predictions were markedly more accurate (92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish species can be achieved by modelling the interaction between the geographical location across the shelf and the topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning in marine spatial planning, and ecosystem-based fisheries management.

  2. [Stochastic characteristics of daily precipitation and its spatiotemporal difference over China based on information entropy].

    PubMed

    Li, Xin Xin; Sang, Yan Fang; Xie, Ping; Liu, Chang Ming

    2018-04-01

    Daily precipitation process in China showed obvious randomness and spatiotemporal variation. It is important to accurately understand the influence of precipitation changes on control of flood and waterlogging disaster. Using the daily precipitation data measured at 520 stations in China during 1961-2013, we quantified the stochastic characteristics of daily precipitation over China based on the index of information entropy. Results showed that the randomness of daily precipitation in the southeast region were larger than that in the northwest region. Moreover, the spatial distribution of stochastic characteristics of precipitation was different at various grades. Stochastic characteri-stics of P 0 (precipitation at 0.1-10 mm) was large, but the spatial variation was not obvious. The stochastic characteristics of P 10 (precipitation at 10-25 mm) and P 25 (precipitation at 25-50 mm) were the largest and their spatial difference was obvious. P 50 (precipitation ≥50 mm) had the smallest stochastic characteristics and the most obviously spatial difference. Generally, the entropy values of precipitation obviously increased over the last five decades, indicating more significantly stochastic characteristics of precipitation (especially the obvious increase of heavy precipitation events) in most region over China under the scenarios of global climate change. Given that the spatial distribution and long-term trend of entropy values of daily precipitation could reflect thespatial distribution of stochastic characteristics of precipitation, our results could provide scientific basis for the control of flood and waterlogging disaster, the layout of agricultural planning, and the planning of ecological environment.

  3. Spatial and space-time distribution of Plasmodium vivax and Plasmodium falciparum malaria in China, 2005-2014.

    PubMed

    Hundessa, Samuel H; Williams, Gail; Li, Shanshan; Guo, Jinpeng; Chen, Linping; Zhang, Wenyi; Guo, Yuming

    2016-12-19

    Despite the declining burden of malaria in China, the disease remains a significant public health problem with periodic outbreaks and spatial variation across the country. A better understanding of the spatial and temporal characteristics of malaria is essential for consolidating the disease control and elimination programme. This study aims to understand the spatial and spatiotemporal distribution of Plasmodium vivax and Plasmodium falciparum malaria in China during 2005-2009. Global Moran's I statistics was used to detect a spatial distribution of local P. falciparum and P. vivax malaria at the county level. Spatial and space-time scan statistics were applied to detect spatial and spatiotemporal clusters, respectively. Both P. vivax and P. falciparum malaria showed spatial autocorrelation. The most likely spatial cluster of P. vivax was detected in northern Anhui province between 2005 and 2009, and western Yunnan province between 2010 and 2014. For P. falciparum, the clusters included several counties of western Yunnan province from 2005 to 2011, Guangxi from 2012 to 2013, and Anhui in 2014. The most likely space-time clusters of P. vivax malaria and P. falciparum malaria were detected in northern Anhui province and western Yunnan province, respectively, during 2005-2009. The spatial and space-time cluster analysis identified high-risk areas and periods for both P. vivax and P. falciparum malaria. Both malaria types showed significant spatial and spatiotemporal variations. Contrary to P. vivax, the high-risk areas for P. falciparum malaria shifted from the west to the east of China. Further studies are required to examine the spatial changes in risk of malaria transmission and identify the underlying causes of elevated risk in the high-risk areas.

  4. Effect of Variable Spatial Scales on USLE-GIS Computations

    NASA Astrophysics Data System (ADS)

    Patil, R. J.; Sharma, S. K.

    2017-12-01

    Use of appropriate spatial scale is very important in Universal Soil Loss Equation (USLE) based spatially distributed soil erosion modelling. This study aimed at assessment of annual rates of soil erosion at different spatial scales/grid sizes and analysing how changes in spatial scales affect USLE-GIS computations using simulation and statistical variabilities. Efforts have been made in this study to recommend an optimum spatial scale for further USLE-GIS computations for management and planning in the study area. The present research study was conducted in Shakkar River watershed, situated in Narsinghpur and Chhindwara districts of Madhya Pradesh, India. Remote Sensing and GIS techniques were integrated with Universal Soil Loss Equation (USLE) to predict spatial distribution of soil erosion in the study area at four different spatial scales viz; 30 m, 50 m, 100 m, and 200 m. Rainfall data, soil map, digital elevation model (DEM) and an executable C++ program, and satellite image of the area were used for preparation of the thematic maps for various USLE factors. Annual rates of soil erosion were estimated for 15 years (1992 to 2006) at four different grid sizes. The statistical analysis of four estimated datasets showed that sediment loss dataset at 30 m spatial scale has a minimum standard deviation (2.16), variance (4.68), percent deviation from observed values (2.68 - 18.91 %), and highest coefficient of determination (R2 = 0.874) among all the four datasets. Thus, it is recommended to adopt this spatial scale for USLE-GIS computations in the study area due to its minimum statistical variability and better agreement with the observed sediment loss data. This study also indicates large scope for use of finer spatial scales in spatially distributed soil erosion modelling.

  5. Current and Future Patterns of Global Marine Mammal Biodiversity

    PubMed Central

    Kaschner, Kristin; Tittensor, Derek P.; Ready, Jonathan; Gerrodette, Tim; Worm, Boris

    2011-01-01

    Quantifying the spatial distribution of taxa is an important prerequisite for the preservation of biodiversity, and can provide a baseline against which to measure the impacts of climate change. Here we analyse patterns of marine mammal species richness based on predictions of global distributional ranges for 115 species, including all extant pinnipeds and cetaceans. We used an environmental suitability model specifically designed to address the paucity of distributional data for many marine mammal species. We generated richness patterns by overlaying predicted distributions for all species; these were then validated against sightings data from dedicated long-term surveys in the Eastern Tropical Pacific, the Northeast Atlantic and the Southern Ocean. Model outputs correlated well with empirically observed patterns of biodiversity in all three survey regions. Marine mammal richness was predicted to be highest in temperate waters of both hemispheres with distinct hotspots around New Zealand, Japan, Baja California, the Galapagos Islands, the Southeast Pacific, and the Southern Ocean. We then applied our model to explore potential changes in biodiversity under future perturbations of environmental conditions. Forward projections of biodiversity using an intermediate Intergovernmental Panel for Climate Change (IPCC) temperature scenario predicted that projected ocean warming and changes in sea ice cover until 2050 may have moderate effects on the spatial patterns of marine mammal richness. Increases in cetacean richness were predicted above 40° latitude in both hemispheres, while decreases in both pinniped and cetacean richness were expected at lower latitudes. Our results show how species distribution models can be applied to explore broad patterns of marine biodiversity worldwide for taxa for which limited distributional data are available. PMID:21625431

  6. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

    DOE PAGES

    Jones, B.; O’Neill, B. C.

    2016-07-29

    Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less

  7. Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, B.; O’Neill, B. C.

    Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less

  8. The neglected nonlocal effects of deforestation

    NASA Astrophysics Data System (ADS)

    Winckler, Johannes; Reick, Christian; Pongratz, Julia

    2017-04-01

    Deforestation changes surface temperature locally via biogeophysical effects by changing the water, energy and momentum balance. Adding to these locally induced changes (local effects), deforestation at a given location can cause changes in temperature elsewhere (nonlocal effects). Most previous studies have not considered local and nonlocal effects separately, but investigated the total (local plus nonlocal) effects, for which global deforestation was found to cause a global mean cooling. Recent modeling and observational studies focused on the isolated local effects: The local effects are relevant for local living conditions, and they can be obtained from in-situ and satellite observations. Observational studies suggest that the local effects of potential deforestation cause a warming when averaged globally. This contrast between local warming and total cooling indicates that the nonlocal effects of deforestation are causing a cooling and thus counteract the local effects. It is still unclear how the nonlocal effects depend on the spatial scale of deforestation, and whether they still compensate the local warming in a more realistic spatial distribution of deforestation. To investigate this, we use a fully coupled climate model and separate local and nonlocal effects of deforestation in three steps: Starting from a forest world, we simulate deforestation in one out of four grid boxes using a regular spatial pattern and increase the number of deforestation grid boxes step-wise up to three out of four boxes in subsequent simulations. To compare these idealized spatial distributions of deforestation to a more realistic case, we separate local and nonlocal effects in a simulation where deforestation is applied in regions where it occurred historically. We find that the nonlocal effects scale nearly linearly with the number of deforested grid boxes, and the spatial distribution of the nonlocal effects is similar for the regular spatial distribution of deforestation and the more realistic pattern. Globally averaged, the deforestation-induced warming of the local effects is counteracted by the nonlocal effects, which are about three times as strong as the local effects (up to 0.1K local warming versus -0.3K nonlocal cooling). Thus, the nonlocal effects are more cooling than the local effects are warming, and this is valid not only for idealized simulations of large-scale deforestation, but also for a more realistic deforestation scenario. We conclude that the local effects of deforestation only yield an incomplete picture of the total climate effects by biogeophysical pathways. While the local effects capture the direct climatic response at the site of deforestation, the nonlocal effects have to be included if the biogeophysical effects of deforestation are considered for an implementation in climate policies.

  9. "SABER": A new software tool for radiotherapy treatment plan evaluation.

    PubMed

    Zhao, Bo; Joiner, Michael C; Orton, Colin G; Burmeister, Jay

    2010-11-01

    Both spatial and biological information are necessary in order to perform true optimization of a treatment plan and for predicting clinical outcome. The goal of this work is to develop an enhanced treatment plan evaluation tool which incorporates biological parameters and retains spatial dose information. A software system is developed which provides biological plan evaluation with a novel combination of features. It incorporates hyper-radiosensitivity using the induced-repair model and applies the new concept of dose convolution filter (DCF) to simulate dose wash-out effects due to cell migration, bystander effect, and/or tissue motion during treatment. Further, the concept of spatial DVH (sDVH) is introduced to evaluate and potentially optimize the spatial dose distribution in the target volume. Finally, generalized equivalent uniform dose is derived from both the physical dose distribution (gEUD) and the distribution of equivalent dose in 2 Gy fractions (gEUD2) and the software provides three separate models for calculation of tumor control probability (TCP), normal tissue complication probability (NTCP), and probability of uncomplicated tumor control (P+). TCP, NTCP, and P+ are provided as a function of prescribed dose and multivariable TCP, NTCP, and P+ plots are provided to illustrate the dependence on individual parameters used to calculate these quantities. Ten plans from two clinical treatment sites are selected to test the three calculation models provided by this software. By retaining both spatial and biological information about the dose distribution, the software is able to distinguish features of radiotherapy treatment plans not discernible using commercial systems. Plans that have similar DVHs may have different spatial and biological characteristics and the application of novel tools such as sDVH and DCF within the software may substantially change the apparent plan quality or predicted plan metrics such as TCP and NTCP. For the cases examined, both the calculation method and the application of DCF can change the ranking order of competing plans. The voxel-by-voxel TCP model makes it feasible to incorporate spatial variations of clonogen densities (n), radiosensitivities (SF2), and fractionation sensitivities (alpha/beta) as those data become available. The new software incorporates both spatial and biological information into the treatment planning process. The application of multiple methods for the incorporation of biological and spatial information has demonstrated that the order of application of biological models can change the order of plan ranking. Thus, the results of plan evaluation and optimization are dependent not only on the models used but also on the order in which they are applied. This software can help the planner choose more biologically optimal treatment plans and potentially predict treatment outcome more accurately.

  10. Effect of a new motorway on social-spatial patterning of road traffic accidents: A retrospective longitudinal natural experimental study

    PubMed Central

    Mitchell, Richard; Ogilvie, David

    2017-01-01

    Background The World Health Organisation reports that road traffic accidents (accidents) could become the seventh leading cause of death globally by 2030. Accidents often occur in spatial clusters and, generally, there are more accidents in less advantaged areas. Infrastructure changes, such as new roads, can affect the locations and magnitude of accident clusters but evidence of impact is lacking. A new 5-mile motorway extension was opened in 2011 in Glasgow, Scotland. Previous research found no impact on the number of accidents but did not consider their spatial location or socio-economic setting. We evaluated impacts on these, both locally and city-wide. Methods We used STATS19 data covering the period 2008 to 2014 and describing the location and details of all reported accidents involving a personal injury. Poisson-based continuous scan statistics were used to detect spatial clusters of accidents and any change in these over time. Change in the socio-economic distribution of accident cluster locations during the study period was also assessed. Results In each year accidents were strongly clustered, with statistically significant clusters more likely to occur in socio-economically deprived areas. There was no significant shift in the magnitude or location of accident clusters during motorway construction or following opening, either locally or city-wide. There was also no impact on the socio-economic patterning of accident cluster locations. Conclusions Although urban infrastructure changes occur constantly, all around the world, this is the first study to evaluate the impact of such changes on road accident clusters. Despite expectations to the contrary from both proponents and opponents of the M74 extension, we found no beneficial or adverse change in the socio-spatial distribution of accidents associated with its construction, opening or operation. Our approach and findings can help inform urban planning internationally. PMID:28880956

  11. Effect of a new motorway on social-spatial patterning of road traffic accidents: A retrospective longitudinal natural experimental study.

    PubMed

    Olsen, Jonathan R; Mitchell, Richard; Ogilvie, David

    2017-01-01

    The World Health Organisation reports that road traffic accidents (accidents) could become the seventh leading cause of death globally by 2030. Accidents often occur in spatial clusters and, generally, there are more accidents in less advantaged areas. Infrastructure changes, such as new roads, can affect the locations and magnitude of accident clusters but evidence of impact is lacking. A new 5-mile motorway extension was opened in 2011 in Glasgow, Scotland. Previous research found no impact on the number of accidents but did not consider their spatial location or socio-economic setting. We evaluated impacts on these, both locally and city-wide. We used STATS19 data covering the period 2008 to 2014 and describing the location and details of all reported accidents involving a personal injury. Poisson-based continuous scan statistics were used to detect spatial clusters of accidents and any change in these over time. Change in the socio-economic distribution of accident cluster locations during the study period was also assessed. In each year accidents were strongly clustered, with statistically significant clusters more likely to occur in socio-economically deprived areas. There was no significant shift in the magnitude or location of accident clusters during motorway construction or following opening, either locally or city-wide. There was also no impact on the socio-economic patterning of accident cluster locations. Although urban infrastructure changes occur constantly, all around the world, this is the first study to evaluate the impact of such changes on road accident clusters. Despite expectations to the contrary from both proponents and opponents of the M74 extension, we found no beneficial or adverse change in the socio-spatial distribution of accidents associated with its construction, opening or operation. Our approach and findings can help inform urban planning internationally.

  12. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    Treesearch

    R.A. Payn; M.N. Gooseff; B.L. McGlynn; K.E. Bencala; S.M. Wondzell

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores...

  13. Distribution of energetic oxygen and hydrogen in the near-Earth plasma sheet

    NASA Astrophysics Data System (ADS)

    Kronberg, E. A.; Grigorenko, E. E.; Haaland, S. E.; Daly, P. W.; Delcourt, D. C.; Luo, H.; Kistler, L. M.; Dandouras, I.

    2015-05-01

    The spatial distributions of different ion species are useful indicators for plasma sheet dynamics. In this statistical study based on 7 years of Cluster observations, we establish the spatial distributions of oxygen ions and protons at energies from 274 to 955 keV, depending on geomagnetic and solar wind (SW) conditions. Compared with protons, the distribution of energetic oxygen has stronger dawn-dusk asymmetry in response to changes in the geomagnetic activity. When the interplanetary magnetic field (IMF) is directed southward, the oxygen ions show significant acceleration in the tail plasma sheet. Changes in the SW dynamic pressure (Pdyn) affect the oxygen and proton intensities in the same way. The energetic protons show significant intensity increases at the near-Earth duskside during disturbed geomagnetic conditions, enhanced SW Pdyn, and southward IMF, implying there location of effective inductive acceleration mechanisms and a strong duskward drift due to the increase of the magnetic field gradient in the near-Earth tail. Higher losses of energetic ions are observed in the dayside plasma sheet under disturbed geomagnetic conditions and enhanced SW Pdyn. These observations are in agreement with theoretical models.

  14. PREDICTING RELATIVE RISK OF INVASION BY SALTCEDAR AND MUD SNAILS IN RIVER NETWORKS UNDER DIFFERENT SCENARIOS OF CLIMATE CHANGE AND DAM OPERATIONS IN THE WESTERN UNITED STATES

    EPA Science Inventory

    This synthetic, multi-scale approach will generate a sequence of spatially explicit maps that will provide science guidance to support strategic decision-making regarding the spatially-distributed risk of, and possible adaptation to, the spread of invasive species at local to ...

  15. Implications of black-tailed prairie dog spatial dynamics to black-footed ferrets

    USGS Publications Warehouse

    Jachowski, D.S.; Millspaugh, J.J.; Biggins, D.E.; Livieri, T.M.; Matchett, M.R.

    2008-01-01

    The spatial dynamics of black-tailed prairie dog (Cynomys ludovicianus) colonies affect the utility of these environments for other wildlife, including the endangered black-footed ferret (Mustela nigripes). We used location data of active and inactive black-tailed prairie dog burrows to investigate colony structure, spatial distribution, and patch dynamics of two colonies at ferret recovery sites. We used kernel-based utilization distributions (UDs) of active and inactive burrows from two time periods (six and 11 years apart) as the basis for our analysis. Overall, the total extent of our prairie dog colonies changed little over time. However, within colonies, areas with high densities of active and inactive prairie dog burrows formed patches and the distribution of these patches changed in size, shape, and connectivity over time. At the Conata Basin site, high-density active burrow patches increased in total area covered while decreasing in connectivity as they shifted towards the perimeter of the colony over time. At the UL Bend site, we observed a similar but less pronounced shift over a longer period of time. At both sites, while at a large scale it appeared that prairie dogs were simply shifting areas of activity towards the perimeter of colonies and abandoning the center of colonies, we observed a dynamic interaction between areas of active and inactive burrows within colonies over time. Areas that previously contained inactive burrows tended to become active, and vice versa, leading us to hypothesize that there are shifts of activity areas within colonies over time as dictated by forage availability. The spatial dynamics we observed have important implications for techniques to estimate the suitability of ferret habitat and for the management of prairie dog colonies. First, fine-scale techniques for measuring prairie dog colonies that account for their patchy spatial distribution are needed to better assess ferret habitat suitability. Second, the shift of high-density areas of active prairie dog burrows, likely associated with changes in vegetation, suggests that through the management of vegetation we might be able to indirectly improve habitat for ferrets. Finally, we found that prairie dog distributions within a colony are a naturally dynamic process and that management strategies should consider the long-term value of both active and inactive areas within colonies.

  16. Terrestrial ecosystems and their change

    Treesearch

    Anatoly Z. Shvidenko; Eric Gustafson; A. David McGuire; Vjacheslav I. Kharuk; Dmitry G. Schepaschenko; Herman H. Shugart; Nadezhda M. Tchebakova; Natalia N. Vygodskaya; Alexander A. Onuchin; Daniel J. Hayes; Ian McCallum; Shamil Maksyutov; Ludmila V. Mukhortova; Amber J. Soja; Luca Belelli-Marchesini; Julia A. Kurbatova; Alexander V. Oltchev; Elena I. Parfenova; Jacquelyn K. Shuman

    2012-01-01

    This chapter considers the current state of Siberian terrestrial ecosystems, their spatial distribution, and major biometric characteristics. Ongoing climate change and the dramatic increase of accompanying anthropogenic pressure provide different but mostly negative impacts on Siberian ecosystems. Future climates of the region may lead to substantial drying on large...

  17. SAGE II

    Atmospheric Science Data Center

    2016-02-16

    ... the spatial distributions of stratospheric aerosols, ozone, nitrogen dioxide, water vapor and cloud occurrence by mapping vertical profiles ... Clouds Clouds in a Clear Sky Clouds in the Balance Stars Clouds Crops Volcanoes and Climate Change ...

  18. Spatial pattern of risk of common raven predation on desert tortoises

    USGS Publications Warehouse

    Kristan, W. B.; Boarman, W.I.

    2003-01-01

    Common Ravens (Corvus corax) in the Mojave Desert of California, USA are subsidized by anthropogenic resources. Large numbers of nonbreeding ravens are attracted to human developments and thus are spatially restricted, whereas breeding ravens are distributed more evenly throughout the area. We investigated whether the spatial distribution of risk of predation by ravens to juveniles of the threatened desert tortoise (Gopherus agassizii) was determined by the spatial distribution of (1) nonbreeding ravens at human developments (leading to "spillover" predation) or (2) breeding individuals throughout developed and undeveloped areas (leading to " hyperpredation"). Predation risk, measured using styrofoam models of juvenile desert tortoises, was high near places attracting large numbers of nonbreeding ravens, near successful nests, and far from successful nests when large numbers of nonbreeding ravens were present. Patterns consistent with both "spillover" predation and "hyperpredation" were thus observed, attributed to the nonbreeding and breeding segments of the population, respectively. Furthermore, because locations of successful nests changed almost annually, consistent low-predation refugia for juvenile desert tortoises were nearly nonexistent. Consequently, anthropogenic resources for ravens could indirectly lead to the suppression, decline, or even extinction of desert tortoise populations.

  19. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia.

    PubMed

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-12-01

    Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3 °C, mean incidence rates during epidemics could double. In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries.

  20. Socio-economic and Climate Factors Associated with Dengue Fever Spatial Heterogeneity: A Worked Example in New Caledonia

    PubMed Central

    Teurlai, Magali; Menkès, Christophe Eugène; Cavarero, Virgil; Degallier, Nicolas; Descloux, Elodie; Grangeon, Jean-Paul; Guillaumot, Laurent; Libourel, Thérèse; Lucio, Paulo Sergio; Mathieu-Daudé, Françoise; Mangeas, Morgan

    2015-01-01

    Background/Objectives Understanding the factors underlying the spatio-temporal distribution of infectious diseases provides useful information regarding their prevention and control. Dengue fever spatio-temporal patterns result from complex interactions between the virus, the host, and the vector. These interactions can be influenced by environmental conditions. Our objectives were to analyse dengue fever spatial distribution over New Caledonia during epidemic years, to identify some of the main underlying factors, and to predict the spatial evolution of dengue fever under changing climatic conditions, at the 2100 horizon. Methods We used principal component analysis and support vector machines to analyse and model the influence of climate and socio-economic variables on the mean spatial distribution of 24,272 dengue cases reported from 1995 to 2012 in thirty-three communes of New Caledonia. We then modelled and estimated the future evolution of dengue incidence rates using a regional downscaling of future climate projections. Results The spatial distribution of dengue fever cases is highly heterogeneous. The variables most associated with this observed heterogeneity are the mean temperature, the mean number of people per premise, and the mean percentage of unemployed people, a variable highly correlated with people's way of life. Rainfall does not seem to play an important role in the spatial distribution of dengue cases during epidemics. By the end of the 21st century, if temperature increases by approximately 3°C, mean incidence rates during epidemics could double. Conclusion In New Caledonia, a subtropical insular environment, both temperature and socio-economic conditions are influencing the spatial spread of dengue fever. Extension of this study to other countries worldwide should improve the knowledge about climate influence on dengue burden and about the complex interplay between different factors. This study presents a methodology that can be used as a step by step guide to model dengue spatial heterogeneity in other countries. PMID:26624008

  1. Essays on the Impacts of Geography and Institutions on Access to Energy and Public Infrastructure Services

    NASA Astrophysics Data System (ADS)

    Archibong, Belinda

    While previous literature has emphasized the importance of energy and public infrastructure services for economic development, questions surrounding the implications of unequal spatial distribution in access to these resources remain, particularly in the developing country context. This dissertation provides evidence on the nature, origins and implications of this distribution uniting three strands of research from the development and political economy, regional science and energy economics fields. The dissertation unites three papers on the nature of spatial inequality of access to energy and infrastructure with further implications for conflict risk , the historical institutional and biogeographical determinants of current distribution of access to energy and public infrastructure services and the response of households to fuel price changes over time. Chapter 2 uses a novel survey dataset to provide evidence for spatial clustering of public infrastructure non-functionality at schools by geopolitical zone in Nigeria with further implications for armed conflict risk in the region. Chapter 3 investigates the drivers of the results in chapter 2, exploiting variation in the spatial distribution of precolonial institutions and geography in the region, to provide evidence for the long-term impacts of these factors on current heterogeneity of access to public services. Chapter 4 addresses the policy implications of energy access, providing the first multi-year evidence on firewood demand elasticities in India, using the spatial variation in prices for estimation.

  2. Spatial Distribution and Relationship of T1ρ and T2 Relaxation Times in Knee Cartilage With Osteoarthritis

    PubMed Central

    Li, Xiaojuan; Pai, Alex; Blumenkrantz, Gabrielle; Carballido-Gamio, Julio; Link, Thomas; Ma, Benjamin; Ries, Michael; Majumdar, Sharmila

    2009-01-01

    T1ρ and T2 relaxation time constants have been proposed to probe biochemical changes in osteoarthritic cartilage. This study aimed to evaluate the spatial correlation and distribution of T1ρ and T2 values in osteoarthritic cartilage. Ten patients with osteoarthritis (OA) and 10 controls were studied at 3T. The spatial correlation of T1ρ and T2 values was investigated using Z-scores. The spatial variation of T1ρ and T2 values in patellar cartilage was studied in different cartilage layers. The distribution of these relaxation time constants was measured using texture analysis parameters based on gray-level co-occurrence matrices (GLCM). The mean Z-scores for T1ρ and T2 values were significantly higher in OA patients vs. controls (P < 0.05). Regional correlation coefficients of T1ρ and T2 Z-scores showed a large range in both controls and OA patients (0.2– 0.7). OA patients had significantly greater GLCM contrast and entropy of T1ρ values than controls (P < 0.05). In summary, T1ρ and T2 values are not only increased but are also more heterogeneous in osteoarthritic cartilage. T1ρ and T2 values show different spatial distributions and may provide complementary information regarding cartilage degeneration in OA. PMID:19319904

  3. Increasing sea surface temperature and range shifts of intertidal gastropods along the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rubal, Marcos; Veiga, Puri; Cacabelos, Eva; Moreira, Juan; Sousa-Pinto, Isabel

    2013-03-01

    There are well-documented changes in abundance and geographical range of intertidal invertebrates related to climate change at north Europe. However, the effect of sea surface warming on intertidal invertebrates has been poorly studied at lower latitudes. Here we analyze potential changes in the abundance patterns and distribution range of rocky intertidal gastropods related to climate change along the Iberian Peninsula. To achieve this aim, the spatial distribution and range of sub-tropical, warm- and cold-water species of intertidal gastropods was explored by a fully hierarchical sampling design considering four different spatial scales, i.e. from region (100 s of km apart) to quadrats (ms apart). Variability on their patterns of abundance was explored by analysis of variance, changes on their distribution ranges were detected by comparing with previous records and their relationship with sea water temperature was explored by rank correlation analyses. Mean values of sea surface temperature along the Iberian coast, between 1949 and 2010, were obtained from in situ data compiled for three different grid squares: south Portugal, north Portugal, and Galicia. Lusitanian species did not show significant correlation with sea water temperature or changes on their distributional range or abundance, along the temperature gradient considered. The sub-tropical species Siphonaria pectinata has, however, increased its distribution range while boreal cold-water species showed the opposite pattern. The latter was more evident for Littorina littorea that was almost absent from the studied rocky shores of the Iberian Peninsula. Sub-tropical and boreal species showed significant but opposite correlation with sea water temperature. We hypothesized that the energetic cost of frequent exposures to sub-lethal temperatures might be responsible for these shifts. Therefore, intertidal gastropods at the Atlantic Iberian Peninsula coast are responding to the effect of global warming as it is happening at higher latitudes. However, the identity of the species showing changes in their range of distribution was different.

  4. Quantifying the efficiency and equity implications of power plant air pollution control strategies in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, J.I.; Wilson, A.M.; Zwack, L.M.

    2007-05-15

    We modeled the public health benefits and the change in the spatial inequality of health risk for a number of hypothetical control scenarios for power plants in the United States to determine optimal control strategies. We simulated various ways by which emission reductions of sulfur dioxide (SO{sub 2}), nitrogen oxides, and fine particulate matter (PM2.5) could be distributed to reach national emissions caps. We applied a source-receptor matrix to determine the PM2.5 concentration changes associated with each control scenario and estimated the mortality reductions. We estimated changes in the spatial inequality of health risk using the Atkinson index and othermore » indicators, following previously derived axioms for measuring health risk inequality. In our baseline model, benefits ranged from 17,000-21,000 fewer premature deaths per year across control scenarios. Scenarios with greater health benefits also tended to have greater reductions in the spatial inequality of health risk, as many sources with high health benefits per unit emissions of SO{sub 2} were in areas with high background PM2.5 concentrations. Sensitivity analyses indicated that conclusions were generally robust to the choice of indicator and other model specifications. Our analysis demonstrates an approach for formally quantifying both the magnitude and spatial distribution of health benefits of pollution control strategies, allowing for joint consideration of efficiency and equity.« less

  5. Utilizing the trophic interactions of nematodes as indicators of changes in soil biota associated with loss of Bouteloua eriopoda grasslands

    USDA-ARS?s Scientific Manuscript database

    A theoretical framework of desertification has been developed within the Jornada Basin LTER that involves the rate of change and magnitude of wind and water erosion affected by spatial variation in the distribution of gap size changes from high connectivity of vegetated patches in grasslands to low ...

  6. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are drivenmore » by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel; Carbon dioxide emissions; Sectoral; Spatial cluster; Emissions mitigation policy« less

  7. Calibration of a distributed hydrologic model using observed spatial patterns from MODIS data

    NASA Astrophysics Data System (ADS)

    Demirel, Mehmet C.; González, Gorka M.; Mai, Juliane; Stisen, Simon

    2016-04-01

    Distributed hydrologic models are typically calibrated against streamflow observations at the outlet of the basin. Along with these observations from gauging stations, satellite based estimates offer independent evaluation data such as remotely sensed actual evapotranspiration (aET) and land surface temperature. The primary objective of the study is to compare model calibrations against traditional downstream discharge measurements with calibrations against simulated spatial patterns and combinations of both types of observations. While the discharge based model calibration typically improves the temporal dynamics of the model, it seems to give rise to minimum improvement of the simulated spatial patterns. In contrast, objective functions specifically targeting the spatial pattern performance could potentially increase the spatial model performance. However, most modeling studies, including the model formulations and parameterization, are not designed to actually change the simulated spatial pattern during calibration. This study investigates the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale hydrologic model (mHM). This model is selected as it allows for a change in the spatial distribution of key soil parameters through the optimization of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) values directly as input. In addition the simulated aET can be estimated at a spatial resolution suitable for comparison to the spatial patterns observed with MODIS data. To increase our control on spatial calibration we introduced three additional parameters to the model. These new parameters are part of an empirical equation to the calculate crop coefficient (Kc) from daily LAI maps and used to update potential evapotranspiration (PET) as model inputs. This is done instead of correcting/updating PET with just a uniform (or aspect driven) factor used in the mHM model (version 5.3). We selected the 20 most important parameters out of 53 mHM parameters based on a comprehensive sensitivity analysis (Cuntz et al., 2015). We calibrated 1km-daily mHM for the Skjern basin in Denmark using the Shuffled Complex Evolution (SCE) algorithm and inputs at different spatial scales i.e. meteorological data at 10km and morphological data at 250 meters. We used correlation coefficients between observed monthly (summer months only) MODIS data calculated from cloud free days over the calibration period from 2001 to 2008 and simulated aET from mHM over the same period. Similarly other metrics, e.g mapcurves and fraction skill-score, are also included in our objective function to assess the co-location of the grid-cells. The preliminary results show that multi-objective calibration of mHM against observed streamflow and spatial patterns together does not significantly reduce the spatial errors in aET while it improves the streamflow simulations. This is a strong signal for further investigation of the multi parameter regionalization affecting spatial aET patterns and weighting the spatial metrics in the objective function relative to the streamflow metrics.

  8. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities.

    PubMed

    Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.

  9. Landscape patterns and soil organic carbon stocks in agricultural bocage landscapes

    NASA Astrophysics Data System (ADS)

    Viaud, Valérie; Lacoste, Marine; Michot, Didier; Walter, Christian

    2014-05-01

    Soil organic carbon (SOC) has a crucial impact on global carbon storage at world scale. SOC spatial variability is controlled by the landscape patterns resulting from the continuous interactions between the physical environment and the society. Natural and anthropogenic processes occurring and interplaying at the landscape scale, such as soil redistribution in the lateral and vertical dimensions by tillage and water erosion processes or spatial differentiation of land-use and land-management practices, strongly affect SOC dynamics. Inventories of SOC stocks, reflecting their spatial distribution, are thus key elements to develop relevant management strategies to improving carbon sequestration and mitigating climate change and soil degradation. This study aims to quantify SOC stocks and their spatial distribution in a 1,000-ha agricultural bocage landscape with dairy production as dominant farming system (Zone Atelier Armorique, LTER Europe, NW France). The site is characterized by high heterogeneity on short distance due to a high diversity of soils with varying waterlogging, soil parent material, topography, land-use and hedgerow density. SOC content and stocks were measured up to 105-cm depth in 200 sampling locations selected using conditioned Latin hypercube sampling. Additive sampling was designed to specifically explore SOC distribution near to hedges: 112 points were sampled at fixed distance on 14 transects perpendicular from hedges. We illustrate the heterogeneity of spatial and vertical distribution of SOC stocks at landscape scale, and quantify SOC stocks in the various landscape components. Using multivariate statistics, we discuss the variability and co-variability of existing spatial organization of cropping systems, environmental factors, and SOM stocks, over landscape. Ultimately, our results may contribute to improving regional or national digital soil mapping approaches, by considering the distribution of SOC stocks within each modeling unit and by accounting for the impact of sensitive ecosystems.

  10. Thermally induced optical deformation of a Nd:YVO4 active disk under the action of multi-beam spatially periodic diode pumping

    NASA Astrophysics Data System (ADS)

    Guryev, D. A.; Nikolaev, D. A.; Tsvetkov, V. B.; Shcherbakov, I. A.

    2018-05-01

    A study of how the transverse distribution of an optical path changes in a Nd:YVO4 active disk was carried out in a ten-beam spatially periodic diode pumping in the one-dimensional case. The pumping beams’ transverse dimensions were comparable with the distances between them. The investigations were carried out using laser interferometry methods. It was found that the optical thickness changing in the active disk along the line of pumping spots was well described by a Gaussian function.

  11. Characterizing and predicting species distributions across environments and scales: Argentine ant occurrences in the eye of the beholder

    USGS Publications Warehouse

    Menke, S.B.; Holway, D.A.; Fisher, R.N.; Jetz, W.

    2009-01-01

    Aim: Species distribution models (SDMs) or, more specifically, ecological niche models (ENMs) are a useful and rapidly proliferating tool in ecology and global change biology. ENMs attempt to capture associations between a species and its environment and are often used to draw biological inferences, to predict potential occurrences in unoccupied regions and to forecast future distributions under environmental change. The accuracy of ENMs, however, hinges critically on the quality of occurrence data. ENMs often use haphazardly collected data rather than data collected across the full spectrum of existing environmental conditions. Moreover, it remains unclear how processes affecting ENM predictions operate at different spatial scales. The scale (i.e. grain size) of analysis may be dictated more by the sampling regime than by biologically meaningful processes. The aim of our study is to jointly quantify how issues relating to region and scale affect ENM predictions using an economically important and ecologically damaging invasive species, the Argentine ant (Linepithema humile). Location: California, USA. Methods: We analysed the relationship between sampling sufficiency, regional differences in environmental parameter space and cell size of analysis and resampling environmental layers using two independently collected sets of presence/absence data. Differences in variable importance were determined using model averaging and logistic regression. Model accuracy was measured with area under the curve (AUC) and Cohen's kappa. Results: We first demonstrate that insufficient sampling of environmental parameter space can cause large errors in predicted distributions and biological interpretation. Models performed best when they were parametrized with data that sufficiently sampled environmental parameter space. Second, we show that altering the spatial grain of analysis changes the relative importance of different environmental variables. These changes apparently result from how environmental constraints and the sampling distributions of environmental variables change with spatial grain. Conclusions: These findings have clear relevance for biological inference. Taken together, our results illustrate potentially general limitations for ENMs, especially when such models are used to predict species occurrences in novel environments. We offer basic methodological and conceptual guidelines for appropriate sampling and scale matching. ?? 2009 The Authors Journal compilation ?? 2009 Blackwell Publishing.

  12. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change

    PubMed Central

    Telesca, Luca; Belluscio, Andrea; Criscoli, Alessandro; Ardizzone, Giandomenico; Apostolaki, Eugenia T.; Fraschetti, Simonetta; Gristina, Michele; Knittweis, Leyla; Martin, Corinne S.; Pergent, Gérard; Alagna, Adriana; Badalamenti, Fabio; Garofalo, Germana; Gerakaris, Vasilis; Louise Pace, Marie; Pergent-Martini, Christine; Salomidi, Maria

    2015-01-01

    Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented. PMID:26216526

  13. a Novel Approach to Veterinary Spatial Epidemiology: Dasymetric Refinement of the Swiss Dog Tumor Registry Data

    NASA Astrophysics Data System (ADS)

    Boo, G.; Fabrikant, S. I.; Leyk, S.

    2015-08-01

    In spatial epidemiology, disease incidence and demographic data are commonly summarized within larger regions such as administrative units because of privacy concerns. As a consequence, analyses using these aggregated data are subject to the Modifiable Areal Unit Problem (MAUP) as the geographical manifestation of ecological fallacy. In this study, we create small area disease estimates through dasymetric refinement, and investigate the effects on predictive epidemiological models. We perform a binary dasymetric refinement of municipality-aggregated dog tumor incidence counts in Switzerland for the year 2008 using residential land as a limiting ancillary variable. This refinement is expected to improve the quality of spatial data originally aggregated within arbitrary administrative units by deconstructing them into discontinuous subregions that better reflect the underlying population distribution. To shed light on effects of this refinement, we compare a predictive statistical model that uses unrefined administrative units with one that uses dasymetrically refined spatial units. Model diagnostics and spatial distributions of model residuals are assessed to evaluate the model performances in different regions. In particular, we explore changes in the spatial autocorrelation of the model residuals due to spatial refinement of the enumeration units in a selected mountainous region, where the rugged topography induces great shifts of the analytical units i.e., residential land. Such spatial data quality refinement results in a more realistic estimation of the population distribution within administrative units, and thus, in a more accurate modeling of dog tumor incidence patterns. Our results emphasize the benefits of implementing a dasymetric modeling framework in veterinary spatial epidemiology.

  14. Tidal wetland plant and algal assemblages in Oregon: spatial patterns of composition and vulnerability to climate change

    EPA Science Inventory

    Tidal wetlands support important ecosystem functions along the coast of the Pacific Northwest such as primary production and nutrient transformation. Sea-level rise (SLR) and elevated salinity due to climate change may affect the abundance, distribution, and diversity of plants a...

  15. The impact of static stress change, dynamic stress change, and the background stress on aftershock focal mechanisms

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2014-01-01

    The focal mechanisms of earthquakes in Southern California before and after four M ≥ 6.7 main shocks provide insight into how fault systems respond to stress and changes in stress. The main shock static stress changes have two observed impacts on the seismicity: changing the focal mechanisms in a given location to favor those aligned with the static stress change and changing the spatial distribution of seismicity to favor locations where the static stress change aligns with the background stress. The aftershock focal mechanisms are significantly aligned with the static stress changes for absolute stress changes of ≥ 0.02 MPa, for up to ~20 years following the main shock. The dynamic stress changes have similar, although smaller, effects on the local focal mechanisms and the spatial seismicity distribution. Dynamic stress effects are best observed at long periods (30–60 s) and for metrics based on repeated stress cycling in the same direction. This implies that dynamic triggering operates, at least in part, through cyclic shear stress loading in the direction of fault slip. The background stress also strongly controls both the preshock and aftershock mechanisms. While most aftershock mechanisms are well oriented in the background stress field, 10% of aftershocks are identified as poorly oriented outliers, which may indicate limited heterogeneity in the postmain shock stress field. The fault plane orientations of the outliers are well oriented in the background stress, while their slip directions are not, implying that the background stress restricts the distribution of available fault planes.

  16. Variability of precipitation in Poland under climate change

    NASA Astrophysics Data System (ADS)

    Szwed, Małgorzata

    2018-02-01

    The surface warming has been widespread over the entire globe. Central Europe, including Poland, is not an exception. Global temperature increases are accompanied by changes in other climatic variables. Climate change in Poland manifests itself also as change in annual sums of precipitation. They have been slightly growing but, what is more important, seasonal and monthly distributions of precipitation have been also changing. The most visible increases have been observed during colder half-year, especially in March. A decreasing contribution of summer precipitation total (June-August) to the annual total is observed. Climate projections for Poland predict further warming and continuation of already observed changes in the quantity of precipitation as well as its spatial and seasonal distribution.

  17. Characterization and predictability of basin scale SWE distributions using ASO snow depth and SWE retrievals

    NASA Astrophysics Data System (ADS)

    Bormann, K.; Hedrick, A. R.; Marks, D. G.; Painter, T. H.

    2017-12-01

    The spatial and temporal distribution of snow water resources (SWE) in the mountains has been examined extensively through the use of models, in-situ networks and remote sensing techniques. However, until the Airborne Snow Observatory (http://aso.jpl.nasa.gov), our understanding of SWE dynamics has been limited due to a lack of well-constrained spatial distributions of SWE in complex terrain, particularly at high elevations and at regional scales (100km+). ASO produces comprehensive snow depth measurements and well-constrained SWE products providing the opportunity to re-examine our current understanding of SWE distributions with a robust and rich data source. We collected spatially-distributed snow depth and SWE data from over 150 individual ASO acquisitions spanning seven basins in California during the five-year operational period of 2013 - 2017. For each of these acquisitions, we characterized the spatial distribution of snow depth and SWE and examined how these distributions changed with time during snowmelt. We compared these distribution patterns between each of the seven basins and finally, examined the predictability of the SWE distributions using statistical extrapolations through both space and time. We compare and contrast these observationally-based characteristics with those from a physically-based snow model to highlight the strengths and weaknesses of the implementation of our understanding of SWE processes in the model environment. In practice, these results may be used to support or challenge our current understanding of mountain SWE dynamics and provide techniques for enhanced evaluation of high-resolution snow models that go beyond in-situ point comparisons. In application, this work may provide guidance on the potential of ASO to guide backfilling of sparse spaceborne measurements of snow depth and snow water equivalent.

  18. Spatial distribution of pulmonary blood flow in dogs in increased force environments

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. F.; Ritman, E. L.; Chevalier, P. A.; Sass, D. J.; Wood, E. H.

    1978-01-01

    Spatial distribution of pulmonary blood flow during 2- to 3-min exposures to 6-8 Gy acceleration was studied, using radioactive microspheres in dogs, and compared to previously reported 1 Gy control distributions. Isotope distributions were measured by scintiscanning individual 1-cm-thick cross sections of excised, fixed lungs. Results indicate: (1) the fraction of cardiac output traversing left and right lungs did not change systematically with the duration and magnitude of acceleration; but (2) the fraction is strongly affected by the occurrence or absence of fast deep breaths, which cause an increase or decrease, respectively, in blood flow through the dependent lung; and (3) Gy acceleration caused a significant increase in relative pulmonary vascular resistance (PVR) in nondependent and dependent regions of the lung concurrent with a decrease in PVR in the midsagittal region of the thorax.

  19. Generation of dark hollow femtosecond pulsed beam by phase-only liquid crystal spatial light modulator.

    PubMed

    Nie, Yongming; Ma, Haotong; Li, Xiujian; Hu, Wenhua; Yang, Jiankun

    2011-07-20

    Based on the refractive laser beam shaping system, the dark hollow femtosecond pulse beam shaping technique with a phase-only liquid crystal spatial light modulator (LC-SLM) is demonstrated. The phase distribution of the LC-SLM is derived by the energy conservation and constant optical path principle. The effects of the shaping system on the temporal properties, including spectral phase distribution and bandwidth of the femtosecond pulse, are analyzed in detail. Experimental results show that the hollow intensity distribution of the output pulsed beam can be maintained much at more than 1200 mm. The spectral phase of the pulse is changed, and the pulse width is expanded from 199 to 230 fs, which is caused by the spatial-temporal coupling effect. The coupling effect mainly depends on the phase-only LC-SLM itself, not on its loaded phase distribution. The experimental results indicate that the proposed shaping setup can generate a dark hollow femtosecond pulsed beam effectively, because the temporal Gaussian waveform is unchanged. © 2011 Optical Society of America

  20. Methods and means of Fourier-Stokes polarimetry and the spatial frequency filtering of phase anisotropy manifestations

    NASA Astrophysics Data System (ADS)

    Novakovskaya, O. Yu.; Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Soltys, I. V.; Zhytaryuk, V. H.; Olar, O. V.; Sidor, M.; Gorsky, M. P.

    2016-12-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  1. Behavioral correlates of the distributed coding of spatial context.

    PubMed

    Anderson, Michael I; Killing, Sarah; Morris, Caitlin; O'Donoghue, Alan; Onyiagha, Dikennam; Stevenson, Rosemary; Verriotis, Madeleine; Jeffery, Kathryn J

    2006-01-01

    Hippocampal place cells respond heterogeneously to elemental changes of a compound spatial context, suggesting that they form a distributed code of context, whereby context information is shared across a population of neurons. The question arises as to what this distributed code might be useful for. The present study explored two possibilities: one, that it allows contexts with common elements to be disambiguated, and the other, that it allows a given context to be associated with more than one outcome. We used two naturalistic measures of context processing in rats, rearing and thigmotaxis (boundary-hugging), to explore how rats responded to contextual novelty and to relate this to the behavior of place cells. In experiment 1, rats showed dishabituation of rearing to a novel reconfiguration of familiar context elements, suggesting that they perceived the reconfiguration as novel, a behavior that parallels that of place cells in a similar situation. In experiment 2, rats were trained in a place preference task on an open-field arena. A change in the arena context triggered renewed thigmotaxis, and yet navigation continued unimpaired, indicating simultaneous representation of both the altered contextual and constant spatial cues. Place cells similarly exhibited a dual population of responses, consistent with the hypothesis that their activity underlies spatial behavior. Together, these experiments suggest that heterogeneous context encoding (or "partial remapping") by place cells may function to allow the flexible assignment of associations to contexts, a faculty that could be useful in episodic memory encoding. Copyright (c) 2006 Wiley-Liss, Inc.

  2. The spatial distribution of earthquake stress rotations following large subduction zone earthquakes

    USGS Publications Warehouse

    Hardebeck, Jeanne L.

    2017-01-01

    Rotations of the principal stress axes due to great subduction zone earthquakes have been used to infer low differential stress and near-complete stress drop. The spatial distribution of coseismic and postseismic stress rotation as a function of depth and along-strike distance is explored for three recent M ≥ 8.8 subduction megathrust earthquakes. In the down-dip direction, the largest coseismic stress rotations are found just above the Moho depth of the overriding plate. This zone has been identified as hosting large patches of large slip in great earthquakes, based on the lack of high-frequency radiated energy. The large continuous slip patches may facilitate near-complete stress drop. There is seismological evidence for high fluid pressures in the subducted slab around the Moho depth of the overriding plate, suggesting low differential stress levels in this zone due to high fluid pressure, also facilitating stress rotations. The coseismic stress rotations have similar along-strike extent as the mainshock rupture. Postseismic stress rotations tend to occur in the same locations as the coseismic stress rotations, probably due to the very low remaining differential stress following the near-complete coseismic stress drop. The spatial complexity of the observed stress changes suggests that an analytical solution for finding the differential stress from the coseismic stress rotation may be overly simplistic, and that modeling of the full spatial distribution of the mainshock static stress changes is necessary.

  3. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology.

    PubMed

    Bransky, Avishay; Korin, Natanel; Nemirovski, Yael; Dinnar, Uri

    2006-08-15

    An automated rheoscope has been developed, utilizing a microfabricated glass flow cell, high speed camera and advanced image-processing software. RBCs suspended in a high viscosity medium were filmed flowing through a microchannel. Under these conditions, RBCs exhibit different orientations and deformations according to their location in the velocity profile. The rheoscope system produces valuable data such as velocity profile of RBCs, spatial distribution within a microchannel and deformation index (DI) curves. The variation of DI across the channel height, due to change in shear stress, was measured carrying implications for diffractometry methods. These curves of DI were taken at a constant flow rate and cover most of the relevant shear stress spectrum. This is an improvement of the existing techniques for deformability measurements and may serve as a diagnostic tool for certain blood disorders. The DI curves were compared to measurements of the flowing RBCs velocity profile. In addition, we found that RBCs flowing in a microchannel are mostly gathered in the center of the flow and maintain a characteristic spatial distribution. The spatial distribution in this region changes slightly with increasing flow rate. Hence, the system described, provides means for examining the behavior of individual RBCs, and may serve as a microfabricated diagnostic device for deformability measurement.

  4. Land subsidence and recovery in the Albuquerque Basin, New Mexico, 1993–2014

    USGS Publications Warehouse

    Driscoll, Jessica M.; Brandt, Justin T.

    2017-08-14

    The Albuquerque Bernalillo County Water Utility Authority (ABCWUA) drinking water supply was almost exclusively sourced from groundwater from within the Albuquerque Basin before 2008. In 2008, the San Juan-Chama Drinking Water Project (SJCDWP) provided surface-water resources to augment the groundwater supply, allowing for a reduction in groundwater pumping in the Albuquerque Basin. In 2013, the U.S. Geological Survey, in cooperation with the ABCWUA, began a study to measure and compare aquifer-system and land-surface elevation change before and after the SJCDWP in 2008. Three methods of data collection with different temporal and spatial resolutions were used for this study: (1) aquifer-system compaction data collected continuously at a single extensometer from 1994 to 2013; (2) land-surface elevation change from Global Positioning System (GPS) surveys of a network of monuments collected in 1994–95, 2005, and 2014; and (3) spatially distributed Interferometric Synthetic Aperture Radar (InSAR) satellite data from 1993 to 2010. Collection of extensometer data allows for direct and continuous measurement of aquifer-system compaction at the extensometer location. The GPS surveys of a network of monuments allow for periodic measurements of land-surface elevation change at monument locations. Interferograms are limited in time by lifespan of the satellite, orbital pattern, and data quality but allow for measurement of gridded land-surface elevation change over the study area. Each of these methods was employed to provide a better understanding of aquifer-system compaction and land-surface elevation change for the Albuquerque Basin.Results do not show large magnitudes of subsidence in the Albuquerque Basin. High temporal-resolution but low spatial-resolution data measurements of aquifer-system compaction at the Albuquerque extensometer show elastic aquifer-system response to recovering groundwater levels. Results from the GPS survey of the network of monuments show inconsistent land-surface elevation changes over the Albuquerque Basin, likely because of the lack of significant change and the complexity of subsurface stratigraphy in addition to the spatial and temporal heterogeneity of groundwater withdrawals over the study period. Results from the InSAR analysis show areas of land-surface elevation increase after 2008, which could be attributed to elastic recovery of the aquifer system. The spatial extent to which elastic recovery of the aquifer system has resulted in recovery of land-surface elevation is limited to the in-situ measurements at the extensometer. Examination of spatially distributed InSAR data relative to limited spatial extent of the complex heterogeneity subsurface stratigraphy may explain some of the heterogeneity of land-surface elevation changes over this study period.

  5. Soil moisture optimal sampling strategy for Sentinel 1 validation super-sites in Poland

    NASA Astrophysics Data System (ADS)

    Usowicz, Boguslaw; Lukowski, Mateusz; Marczewski, Wojciech; Lipiec, Jerzy; Usowicz, Jerzy; Rojek, Edyta; Slominska, Ewa; Slominski, Jan

    2014-05-01

    Soil moisture (SM) exhibits a high temporal and spatial variability that is dependent not only on the rainfall distribution, but also on the topography of the area, physical properties of soil and vegetation characteristics. Large variability does not allow on certain estimation of SM in the surface layer based on ground point measurements, especially in large spatial scales. Remote sensing measurements allow estimating the spatial distribution of SM in the surface layer on the Earth, better than point measurements, however they require validation. This study attempts to characterize the SM distribution by determining its spatial variability in relation to the number and location of ground point measurements. The strategy takes into account the gravimetric and TDR measurements with different sampling steps, abundance and distribution of measuring points on scales of arable field, wetland and commune (areas: 0.01, 1 and 140 km2 respectively), taking into account the different status of SM. Mean values of SM were lowly sensitive on changes in the number and arrangement of sampling, however parameters describing the dispersion responded in a more significant manner. Spatial analysis showed autocorrelations of the SM, which lengths depended on the number and the distribution of points within the adopted grids. Directional analysis revealed a differentiated anisotropy of SM for different grids and numbers of measuring points. It can therefore be concluded that both the number of samples, as well as their layout on the experimental area, were reflected in the parameters characterizing the SM distribution. This suggests the need of using at least two variants of sampling, differing in the number and positioning of the measurement points, wherein the number of them must be at least 20. This is due to the value of the standard error and range of spatial variability, which show little change with the increase in the number of samples above this figure. Gravimetric method gives a more varied distribution of SM than those derived from TDR measurements. It should be noted that reducing the number of samples in the measuring grid leads to flattening the distribution of SM from both methods and increasing the estimation error at the same time. Grid of sensors for permanent measurement points should include points that have similar distributions of SM in the vicinity. Results of the analysis including number, the maximum correlation ranges and the acceptable estimation error should be taken into account when choosing of the measurement points. Adoption or possible adjustment of the distribution of the measurement points should be verified by performing additional measuring campaigns during the dry and wet periods. Presented approach seems to be appropriate for creation of regional-scale test (super) sites, to validate products of satellites equipped with SAR (Synthetic Aperture Radar), operating in C-band, with spatial resolution suited to single field scale, as for example: ERS-1, ERS-2, Radarsat and Sentinel-1, which is going to be launched in next few months. The work was partially funded by the Government of Poland through an ESA Contract under the PECS ELBARA_PD project No. 4000107897/13/NL/KML.

  6. Temporal and spatial variations of rainfall erosivity in Southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Hsi; Lin, Huan-Hsuan; Chu, Chun-Kuang

    2014-05-01

    Soil erosion models are essential in developing effective soil and water resource conservation strategies. Soil erosion is generally evaluated using the Universal Soil Loss Equation (USLE) with an appropriate regional scale description. Among factors in the USLE model, the rainfall erosivity index (R) provides one of the clearest indications of the effects of climate change. Accurate estimation of rainfall erosivity requires continuous rainfall data; however, such data rarely demonstrate good spatial and temporal coverage. The data set consisted of 9240 storm events for the period 1993 to 2011, monitored by 27 rainfall stations of the Central Weather Bureau (CWB) in southern Taiwan, was used to analyze the temporal-spatial variations of rainfall erosivity. The spatial distribution map was plotted based on rainfall erosivity by the Kriging interpolation method. Results indicated that rainfall erosivity is mainly concentrated in rainy season from June to November typically contributed 90% of the yearly R factor. The temporal variations of monthly rainfall erosivity during June to November and annual rainfall erosivity have increasing trend from 1993 to 2011. There is an increasing trend from southwest to northeast in spatial distribution of rainfall erosivity in southern Taiwan. The results further indicated that there is a higher relationship between elevation and rainfall erosivity. The method developed in this study may also be useful for sediment disasters on Climate Change.

  7. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    NASA Astrophysics Data System (ADS)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  8. Projecting future impacts of hurricanes on the carbon balance of eastern U.S. forests

    NASA Astrophysics Data System (ADS)

    Fisk, J. P.; Hurtt, G. C.; Chambers, J. Q.; Zeng, H.; Dolan, K.; Flanagan, S.; Rourke, O.; Negron Juarez, R. I.

    2011-12-01

    In U.S. Atlantic coastal areas, hurricanes are a principal agent of catastrophic wind damage, with dramatic impacts on the structure and functioning of forests. Substantial recent progress has been made to estimate the biomass loss and resulting carbon emissions caused by hurricanes impacting the U.S. Additionally, efforts to evaluate the net effects of hurricanes on the regional carbon balance have demonstrated the importance of viewing large disturbance events in the broader context of recovery from a mosaic of past events. Viewed over sufficiently long time scales and large spatial scales, regrowth from previous storms may largely offset new emissions; however, changes in number, strength or spatial distribution of extreme disturbance events will result in changes to the equilibrium state of the ecosystem and have the potential to result in a lasting carbon source or sink. Many recent studies have linked climate change to changes in the frequency and intensity of hurricanes. In this study, we use a mechanistic ecosystem model, the Ecosystem Demography (ED) model, driven by scenarios of future hurricane activity based on historic activity and future climate projections, to evaluate how changes in hurricane frequency, intensity and spatial distribution could affect regional carbon storage and flux over the coming century. We find a non-linear response where increased storm activity reduces standing biomass stocks reducing the impacts of future events. This effect is highly dependent on the spatial pattern and repeat interval of future hurricane activity. Developing this kind of predictive modeling capability that tracks disturbance events and recovery is key to our understanding and ability to predict the carbon balance of forests.

  9. Patterns of Distribution and Spatial Indicators of Ecosystem Change Based on Key Species in the Southern Benguela.

    PubMed

    Watermeyer, Katherine E; Hutchings, Laurence; Jarre, Astrid; Shannon, Lynne J

    2016-01-01

    Several commercially and ecologically important species in the southern Benguela have undergone southward and eastward shifts in their distributions over previous decades, most notably the small pelagic fish sardine Sardinops sagax and anchovy Engraulis encrasicolus. Understanding these changes and their implications is essential in implementing an ecosystem approach to fisheries in the southern Benguela and attempting to appreciate the potential impacts of future environmental change. To investigate possible impacts of these shifts at an ecosystem level, distribution maps for before (1985-1991), during (1997-2000) and after (2003-2008) the shift in small pelagic fish were constructed for 14 key species from catch and survey data, and used to calculate spatial indicators including proportion east and west of Cape Agulhas, relative overlap in biomass and area, index of diversity, connectivity. Potential interactions on the south and west coasts were also compared. For several species (redeye; chub mackerel; kingklip; chokka squid; yellowtail), previously unidentified increases in the proportion of biomass east of Cape Agulhas were shown to have occurred over the same period as that of small pelagic fish, although none to the same degree. On average, overlap with small pelagic fish increased over time and overall system connectivity was lowest in the intermediate period, possibly indicating a system under transition. Connectivity declined over time on the west coast while increasing on the east coast. Distributions of other species have changed over time, with the region east of Cape Agulhas becoming increasingly important in terms of potential trophic interaction. Variations in distribution of biomass and structural complexity affect the trophic structure and hence functioning of the system, and implications should be considered when attempting to identify the possible ecosystem impacts of current and future system-level change.

  10. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees.

    PubMed

    Artacho, Pamela; Bonomelli, Claudia

    2016-05-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha(-1)), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110-180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70-80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source-sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Changes in fine-root production, phenology and spatial distribution in response to N application in irrigated sweet cherry trees

    PubMed Central

    Artacho, Pamela; Bonomelli, Claudia

    2016-01-01

    Factors regulating fine-root growth are poorly understood, particularly in fruit tree species. In this context, the effects of N addition on the temporal and spatial distribution of fine-root growth and on the fine-root turnover were assessed in irrigated sweet cherry trees. The influence of other exogenous and endogenous factors was also examined. The rhizotron technique was used to measure the length-based fine-root growth in trees fertilized at two N rates (0 and 60 kg ha−1), and the above-ground growth, leaf net assimilation, and air and soil variables were simultaneously monitored. N fertilization exerted a basal effect throughout the season, changing the magnitude, temporal patterns and spatial distribution of fine-root production and mortality. Specifically, N addition enhanced the total fine-root production by increasing rates and extending the production period. On average, N-fertilized trees had a length-based production that was 110–180% higher than in control trees, depending on growing season. Mortality was proportional to production, but turnover rates were inconsistently affected. Root production and mortality was homogeneously distributed in the soil profile of N-fertilized trees while control trees had 70–80% of the total fine-root production and mortality concentrated below 50 cm depth. Root mortality rates were associated with soil temperature and water content. In contrast, root production rates were primarily under endogenous control, specifically through source–sink relationships, which in turn were affected by N supply through changes in leaf photosynthetic level. Therefore, exogenous and endogenous factors interacted to control the fine-root dynamics of irrigated sweet cherry trees. PMID:26888890

  12. Global direct pressures on biodiversity by large-scale metal mining: Spatial distribution and implications for conservation.

    PubMed

    Murguía, Diego I; Bringezu, Stefan; Schaldach, Rüdiger

    2016-09-15

    Biodiversity loss is widely recognized as a serious global environmental change process. While large-scale metal mining activities do not belong to the top drivers of such change, these operations exert or may intensify pressures on biodiversity by adversely changing habitats, directly and indirectly, at local and regional scales. So far, analyses of global spatial dynamics of mining and its burden on biodiversity focused on the overlap between mines and protected areas or areas of high value for conservation. However, it is less clear how operating metal mines are globally exerting pressure on zones of different biodiversity richness; a similar gap exists for unmined but known mineral deposits. By using vascular plants' diversity as a proxy to quantify overall biodiversity, this study provides a first examination of the global spatial distribution of mines and deposits for five key metals across different biodiversity zones. The results indicate that mines and deposits are not randomly distributed, but concentrated within intermediate and high diversity zones, especially bauxite and silver. In contrast, iron, gold, and copper mines and deposits are closer to a more proportional distribution while showing a high concentration in the intermediate biodiversity zone. Considering the five metals together, 63% and 61% of available mines and deposits, respectively, are located in intermediate diversity zones, comprising 52% of the global land terrestrial surface. 23% of mines and 20% of ore deposits are located in areas of high plant diversity, covering 17% of the land. 13% of mines and 19% of deposits are in areas of low plant diversity, comprising 31% of the land surface. Thus, there seems to be potential for opening new mines in areas of low biodiversity in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Analyzing the responses of species assemblages to climate change across the Great Basin, USA.

    NASA Astrophysics Data System (ADS)

    Henareh Khalyani, A.; Falkowski, M. J.; Crookston, N.; Yousef, F.

    2016-12-01

    The potential impacts of climate change on the future distribution of tree species in not well understood. Climate driven changes in tree species distribution could cause significant changes in realized species niches, potentially resulting in the loss of ecotonal species as well as the formation on novel assemblages of overlapping tree species. In an effort to gain a better understating of how the geographic distribution of tree species may respond to climate change, we model the potential future distribution of 50 different tree species across 70 million ha in the Great Basin, USA. This is achieved by leveraging a species realized niche model based on non-parametric analysis of species occurrences across climatic, topographic, and edaphic variables. Spatially explicit, high spatial resolution (30 m) climate variables (e.g., precipitation, and minimum, maximum, and mean temperature) and associated climate indices were generated on an annual basis between 1981-2010 by integrating climate station data with digital elevation data (Shuttle Radar Topographic Mission (SRTM) data) in a thin plate spline interpolation algorithm (ANUSPLIN). Bioclimate models of species niches in in the cotemporary period and three following 30 year periods were then generated by integrating the climate variables, soil data, and CMIP 5 general circulation model projections. Our results suggest that local scale contemporary variations in species realized niches across space are influenced by edaphic and topographic variables as well as climatic variables. The local variability in soil properties and topographic variability across space also affect the species responses to climate change through time and potential formation of species assemblages in future. The results presented here in will aid in the development of adaptive forest management techniques aimed at mitigating negative impacts of climate change on forest composition, structure, and function.

  14. Climate Change Expands the Spatial Extent and Duration of Preferred Thermal Habitat for Lake Superior Fishes

    PubMed Central

    Cline, Timothy J.; Bennington, Val; Kitchell, James F.

    2013-01-01

    Climate change is expected to alter species distributions and habitat suitability across the globe. Understanding these shifting distributions is critical for adaptive resource management. The role of temperature in fish habitat and energetics is well established and can be used to evaluate climate change effects on habitat distributions and food web interactions. Lake Superior water temperatures are rising rapidly in response to climate change and this is likely influencing species distributions and interactions. We use a three-dimensional hydrodynamic model that captures temperature changes in Lake Superior over the last 3 decades to investigate shifts in habitat size and duration of preferred temperatures for four different fishes. We evaluated habitat changes in two native lake trout (Salvelinus namaycush) ecotypes, siscowet and lean lake trout, Chinook salmon (Oncorhynchus tshawytscha), and walleye (Sander vitreus). Between 1979 and 2006, days with available preferred thermal habitat increased at a mean rate of 6, 7, and 5 days per decade for lean lake trout, Chinook salmon, and walleye, respectively. Siscowet lake trout lost 3 days per decade. Consequently, preferred habitat spatial extents increased at a rate of 579, 495 and 419 km2 per year for the lean lake trout, Chinook salmon, and walleye while siscowet lost 161 km2 per year during the modeled period. Habitat increases could lead to increased growth and production for three of the four fishes. Consequently, greater habitat overlap may intensify interguild competition and food web interactions. Loss of cold-water habitat for siscowet, having the coldest thermal preference, could forecast potential changes from continued warming. Additionally, continued warming may render more suitable conditions for some invasive species. PMID:23638023

  15. Spatial Variability of Soil Water and Soil Organic Carbon Contents Under Different Degradation Degrees of Alpine Meadow Soil over the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zeng, C.; Zhang, F.

    2014-12-01

    Alpine meadow is one of widespread vegetation types of the Qinghai-Tibetan Plateau. However, alpine meadow ecosystem is undergoing degradation in recent years. The degradation of alpine meadow can changes soil physical and chemical properties as well as it's spatial variability. However, little research has been done that address the spatial patterns of soil properties under different degradation degrees of alpine meadow of the Qinghai-Tibetan Plateau although these changes were important to water and heat study and modelling of land surface. 296 soil surface (0-10 cm) samples were collected using grid sampling design from three different degraded alpine meadow regions (1 km2). Then soil water content (SWC) and organic carbon content (OCC) were measured. Classical statistical and geostatistical methods were employed to study the spatial heterogeneities of SWC and OCC under different degradation degrees (Non-degraded ND, moderately degraded MD, extremely degraded ED) of alpine meadow. Results show that both SWC and OCC of alpine meadow were normally distributed with the exception of SWC under ED. On average, both SWC and OCC of alpine meadow decreased in the order that ND > MD > ED. For nugget ratios, SWC and OCC of alpine meadow showed increasing spatial dependence tendency from ND to ED. For the range of spatial variation, both SWC and OCC of alpine meadow showed increasing tendency in distance with the increasing degree of degradation. In all, the degradation of alpine meadow has significant impact on spatial heterogeneities of SWC and OCC of alpine meadow. With increasing of alpine meadow degradation, soil water condition and nutrient condition become worse, and their distributions in spatial become unevenly.

  16. Predicting global change effects on forest biomass and composition in south-central Siberia

    Treesearch

    Eric Gustafson; Anatoly D. Shvidenko; Brian R. Sturtevant; Robert M. Scheller

    2010-01-01

    Multiple global changes such as timber harvesting in areas not previously disturbed by cutting and climate change will undoubtedly affect the composition and spatial distribution of boreal forests, which will, in turn, affect the ability of these forests to retain carbon and maintain biodiversity. To predict future states of the boreal forest reliably, it is necessary...

  17. Environmental characteristics drive variation in Amazonian understorey bird assemblages

    PubMed Central

    Magnusson, William E.; Anderson, Marti J.; Schlegel, Martin; Pe’er, Guy; Henle, Klaus

    2017-01-01

    Tropical bird assemblages display patterns of high alpha and beta diversity and, as tropical birds exhibit strong habitat specificity, their spatial distributions are generally assumed to be driven primarily by environmental heterogeneity and interspecific interactions. However, spatial distributions of some Amazonian forest birds are also often restricted by large rivers and other large-scale topographic features, suggesting that dispersal limitation may also play a role in driving species’ turnover. In this study, we evaluated the effects of environmental characteristics, topographic and spatial variables on variation in local assemblage structure and diversity of birds in an old-growth forest in central Amazonia. Birds were mist-netted in 72 plots distributed systematically across a 10,000 ha reserve in each of three years. Alpha diversity remained stable through time, but species composition changed. Spatial variation in bird-assemblage structure was significantly related to environmental and topographic variables but not strongly related to spatial variables. At a broad scale, we found bird assemblages to be significantly distinct between two watersheds that are divided by a central ridgeline. We did not detect an effect of the ridgeline per se in driving these patterns, indicating that most birds are able to fly across it, and that differences in assemblage structure between watersheds may be due to unmeasured environmental variables or unique combinations of measured variables. Our study indicates that complex geography and landscape features can act together with environmental variables to drive changes in the diversity and composition of tropical bird assemblages at local scales, but highlights that we still know very little about what makes different parts of tropical forest suitable for different species. PMID:28225774

  18. Declines in moose population density at Isle Royle National Park, MI, USA and accompanied changes in landscape patterns

    USGS Publications Warehouse

    De Jager, N. R.; Pastor, J.

    2009-01-01

    Ungulate herbivores create patterns of forage availability, plant species composition, and soil fertility as they range across large landscapes and consume large quantities of plant material. Over time, herbivore populations fluctuate, producing great potential for spatio-temporal landscape dynamics. In this study, we extend the spatial and temporal extent of a long-term investigation of the relationship of landscape patterns to moose foraging behavior at Isle Royale National Park, MI. We examined how patterns of browse availability and consumption, plant basal area, and soil fertility changed during a recent decline in the moose population. We used geostatistics to examine changes in the nature of spatial patterns in two valleys over 18 years and across short-range and long-range distance scales. Landscape patterns of available and consumed browse changed from either repeated patches or randomly distributed patches in 1988-1992 to random point distributions by 2007 after a recent record high peak followed by a rapid decline in the moose population. Patterns of available and consumed browse became decoupled during the moose population low, which is in contrast to coupled patterns during the earlier high moose population. Distributions of plant basal area and soil nitrogen availability also switched from repeated patches to randomly distributed patches in one valley and to random point distributions in the other valley. Rapid declines in moose population density may release vegetation and soil fertility from browsing pressure and in turn create random landscape patterns. ?? Springer Science+Business Media B.V. 2009.

  19. Towards more accurate isoscapes encouraging results from wine, water and marijuana data/model and model/model comparisons.

    NASA Astrophysics Data System (ADS)

    West, J. B.; Ehleringer, J. R.; Cerling, T.

    2006-12-01

    Understanding how the biosphere responds to change it at the heart of biogeochemistry, ecology, and other Earth sciences. The dramatic increase in human population and technological capacity over the past 200 years or so has resulted in numerous, simultaneous changes to biosphere structure and function. This, then, has lead to increased urgency in the scientific community to try to understand how systems have already responded to these changes, and how they might do so in the future. Since all biospheric processes exhibit some patchiness or patterns over space, as well as time, we believe that understanding the dynamic interactions between natural systems and human technological manipulations can be improved if these systems are studied in an explicitly spatial context. We present here results of some of our efforts to model the spatial variation in the stable isotope ratios (δ2H and δ18O) of plants over large spatial extents, and how these spatial model predictions compare to spatially explicit data. Stable isotopes trace and record ecological processes and as such, if modeled correctly over Earth's surface allow us insights into changes in biosphere states and processes across spatial scales. The data-model comparisons show good agreement, in spite of the remaining uncertainties (e.g., plant source water isotopic composition). For example, inter-annual changes in climate are recorded in wine stable isotope ratios. Also, a much simpler model of leaf water enrichment driven with spatially continuous global rasters of precipitation and climate normals largely agrees with complex GCM modeling that includes leaf water δ18O. Our results suggest that modeling plant stable isotope ratios across large spatial extents may be done with reasonable accuracy, including over time. These spatial maps, or isoscapes, can now be utilized to help understand spatially distributed data, as well as to help guide future studies designed to understand ecological change across landscapes.

  20. A new method of detecting changes in corneal health in response to toxic insults.

    PubMed

    Khan, Mohammad Faisal Jamal; Nag, Tapas C; Igathinathane, C; Osuagwu, Uchechukwu L; Rubini, Michele

    2015-11-01

    The size and arrangement of stromal collagen fibrils (CFs) influence the optical properties of the cornea and hence its function. The spatial arrangement of the collagen is still questionable in relation to the diameter of collagen fibril. In the present study, we introduce a new parameter, edge-fibrillar distance (EFD) to measure how two collagen fibrils are spaced with respect to their closest edges and their spatial distribution through normalized standard deviation of EFD (NSDEFD) accessed through the application of two commercially available multipurpose solutions (MPS): ReNu and Hippia. The corneal buttons were soaked separately in ReNu and Hippia MPS for five hours, fixed overnight in 2.5% glutaraldehyde containing cuprolinic blue and processed for transmission electron microscopy. The electron micrographs were processed using ImageJ user-coded plugin. Statistical analysis was performed to compare the image processed equivalent diameter (ED), inter-fibrillar distance (IFD), and EFD of the CFs of treated versus normal corneas. The ReNu-soaked cornea resulted in partly degenerated epithelium with loose hemidesmosomes and Bowman's collagen. In contrast, the epithelium of the cornea soaked in Hippia was degenerated or lost but showed closely packed Bowman's collagen. Soaking the corneas in both MPS caused a statistically significant decrease in the anterior collagen fibril, ED and a significant change in IFD, and EFD than those of the untreated corneas (p<0.05, for all comparisons). The introduction of EFD measurement in the study directly provided a sense of gap between periphery of the collagen bundles, their spatial distribution; and in combination with ED, they showed how the corneal collagen bundles are spaced in relation to their diameters. The spatial distribution parameter NSDEFD indicated that ReNu treated cornea fibrils were uniformly distributed spatially, followed by normal and Hippia. The EFD measurement with relatively lower standard deviation and NSDEFD, a characteristic of uniform CFs distribution, can be an additional parameter used in evaluating collagen organization and accessing the effects of various treatments on corneal health and transparency. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Predicting the distribution of bed material accumulation using river network sediment budgets

    NASA Astrophysics Data System (ADS)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  2. [Interdependence of plankton spatial distribution and plancton biomass temporal oscillations: mathematical simulation].

    PubMed

    Medvedinskiĭ, A B; Tikhonova, I A; Li, B L; Malchow, H

    2003-01-01

    The dynamics of aquatic biological communities in a patchy environment is of great interest in respect to interrelations between phenomena at various spatial and time scales. To study the complex plankton dynamics in relation to variations of such a biologically essential parameter as the fish predation rate, we use a simple reaction-diffusion model of trophic interactions between phytoplankton, zooplankton, and fish. We suggest that plankton is distributed between two habitats one of which is fish-free due to hydrological inhomogeneity, while the other is fish-populated. We show that temporal variations in the fish predation rate do not violate the strong correspondence between the character of spatial distribution of plankton and changes of plankton biomass in time: regular temporal oscillations of plankton biomass correspond to large-scale plankton patches, while chaotic oscillations correspond to small-scale plankton patterns. As in the case of the constant fish predation rate, the chaotic plankton dynamics is characterized by coexistence of the chaotic attractor and limit cycle.

  3. Experimental evidence of the spatial coherence moiré and the filtering of classes of radiator pairs.

    PubMed

    Castaneda, Roman; Usuga-Castaneda, Mario; Herrera-Ramírez, Jorge

    2007-08-01

    Evidence of the physical existence of the spatial coherence moiré is obtained by confronting numerical results with experimental results of spatially partial interference. Although it was performed for two particular cases, the results reveal a general behavior of the optical fields in any state of spatial coherence. Moreover, the study of the spatial coherence moiré deals with a new type of filtering, named filtering of classes of radiator pairs, which allows changing the power spectrum at the observation plane by modulating the complex degree of spatial coherence, without altering the power distribution at the aperture plane or introducing conventional spatial filters. This new procedure can optimize some technological applications of actual interest, as the beam shaping for instance.

  4. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE PAGES

    Shi, Yuning; Eissenstat, David M.; He, Yuting; ...

    2018-05-12

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  5. Using a spatially-distributed hydrologic biogeochemistry model with a nitrogen transport module to study the spatial variation of carbon processes in a Critical Zone Observatory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Yuning; Eissenstat, David M.; He, Yuting

    Terrestrial carbon processes are affected by soil moisture, soil temperature, nitrogen availability and solar radiation, among other factors. Most of the current ecosystem biogeochemistry models represent one point in space, and have limited characterization of hydrologic processes. Therefore these models can neither resolve the topographically driven spatial variability of water, energy, and nutrient, nor their effects on carbon processes. A spatially-distributed land surface hydrologic biogeochemistry model, Flux-PIHM-BGC, is developed by coupling the Biome-BGC model with a physically-based land surface hydrologic model, Flux-PIHM. In the coupled system, each Flux-PIHM model grid couples a 1-D Biome-BGC model. In addition, a topographic solarmore » radiation module and an advection-driven nitrogen transport module are added to represent the impact of topography on nutrient transport and solar energy distribution. Because Flux-PIHM is able to simulate lateral groundwater flow and represent the land surface heterogeneities caused by topography, Flux-PIHM-BGC is capable of simulating the complex interaction among water, energy, nutrient, and carbon in time and space. The Flux-PIHM-BGC model is tested at the Susquehanna/Shale Hills Critical Zone Observatory. Model results show that distributions of carbon and nitrogen stocks and fluxes are strongly affected by topography and landscape position, and tree growth is nitrogen limited. The predicted aboveground and soil carbon distributions generally agree with the macro patterns observed. Although the model underestimates the spatial variation, the predicted watershed average values are close to the observations. Lastly, the coupled Flux-PIHM-BGC model provides an important tool to study spatial variations in terrestrial carbon and nitrogen processes and their interactions with environmental factors, and to predict the spatial structure of the responses of ecosystems to climate change.« less

  6. A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies.

    PubMed

    Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent

    2016-01-01

    Space-for-time substitution-that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations-is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity.

  7. A Holistic Landscape Description Reveals That Landscape Configuration Changes More over Time than Composition: Implications for Landscape Ecology Studies

    PubMed Central

    Mimet, Anne; Pellissier, Vincent; Houet, Thomas; Julliard, Romain; Simon, Laurent

    2016-01-01

    Background Space-for-time substitution—that is, the assumption that spatial variations of a system can explain and predict the effect of temporal variations—is widely used in ecology. However, it is questionable whether it can validly be used to explain changes in biodiversity over time in response to land-cover changes. Hypothesis Here, we hypothesize that different temporal vs spatial trajectories of landscape composition and configuration may limit space-for-time substitution in landscape ecology. Land-cover conversion changes not just the surface areas given over to particular types of land cover, but also affects isolation, patch size and heterogeneity. This means that a small change in land cover over time may have only minor repercussions on landscape composition but potentially major consequences for landscape configuration. Methods Using land-cover maps of the Paris region for 1982 and 2003, we made a holistic description of the landscape disentangling landscape composition from configuration. After controlling for spatial variations, we analyzed and compared the amplitudes of changes in landscape composition and configuration over time. Results For comparable spatial variations, landscape configuration varied more than twice as much as composition over time. Temporal changes in composition and configuration were not always spatially matched. Significance The fact that landscape composition and configuration do not vary equally in space and time calls into question the use of space-for-time substitution in landscape ecology studies. The instability of landscapes over time appears to be attributable to configurational changes in the main. This may go some way to explaining why the landscape variables that account for changes over time in biodiversity are not the same ones that account for the spatial distribution of biodiversity. PMID:26959363

  8. Effect of the state of internal boundaries on granite fracture nature under quasi-static compression

    NASA Astrophysics Data System (ADS)

    Damaskinskaya, E. E.; Panteleev, I. A.; Kadomtsev, A. G.; Naimark, O. B.

    2017-05-01

    Based on an analysis of the spatial distribution of hypocenters of acoustic emission signal sources and an analysis of the energy distributions of acoustic emission signals, the effect of the liquid phase and a weak electric field on the spatiotemporal nature of granite sample fracture is studied. Experiments on uniaxial compression of granite samples of natural moisture showed that the damage accumulation process is twostage: disperse accumulation of damages is followed by localized accumulation of damages in the formed macrofracture nucleus region. In energy distributions of acoustic emission signals, this transition is accompanied by a change in the distribution shape from exponential to power-law. Granite water saturation qualitatively changes the damage accumulation nature: the process is delocalized until macrofracture with the exponential energy distribution of acoustic emission signals. An exposure to a weak electric field results in a selective change in the damage accumulation nature in the sample volume.

  9. A priori discretization quality metrics for distributed hydrologic modeling applications

    NASA Astrophysics Data System (ADS)

    Liu, Hongli; Tolson, Bryan; Craig, James; Shafii, Mahyar; Basu, Nandita

    2016-04-01

    In distributed hydrologic modelling, a watershed is treated as a set of small homogeneous units that address the spatial heterogeneity of the watershed being simulated. The ability of models to reproduce observed spatial patterns firstly depends on the spatial discretization, which is the process of defining homogeneous units in the form of grid cells, subwatersheds, or hydrologic response units etc. It is common for hydrologic modelling studies to simply adopt a nominal or default discretization strategy without formally assessing alternative discretization levels. This approach lacks formal justifications and is thus problematic. More formalized discretization strategies are either a priori or a posteriori with respect to building and running a hydrologic simulation model. A posteriori approaches tend to be ad-hoc and compare model calibration and/or validation performance under various watershed discretizations. The construction and calibration of multiple versions of a distributed model can become a seriously limiting computational burden. Current a priori approaches are more formalized and compare overall heterogeneity statistics of dominant variables between candidate discretization schemes and input data or reference zones. While a priori approaches are efficient and do not require running a hydrologic model, they do not fully investigate the internal spatial pattern changes of variables of interest. Furthermore, the existing a priori approaches focus on landscape and soil data and do not assess impacts of discretization on stream channel definition even though its significance has been noted by numerous studies. The primary goals of this study are to (1) introduce new a priori discretization quality metrics considering the spatial pattern changes of model input data; (2) introduce a two-step discretization decision-making approach to compress extreme errors and meet user-specified discretization expectations through non-uniform discretization threshold modification. The metrics for the first time provides quantification of the routing relevant information loss due to discretization according to the relationship between in-channel routing length and flow velocity. Moreover, it identifies and counts the spatial pattern changes of dominant hydrological variables by overlaying candidate discretization schemes upon input data and accumulating variable changes in area-weighted way. The metrics are straightforward and applicable to any semi-distributed or fully distributed hydrological model with grid scales are greater than input data resolutions. The discretization metrics and decision-making approach are applied to the Grand River watershed located in southwestern Ontario, Canada where discretization decisions are required for a semi-distributed modelling application. Results show that discretization induced information loss monotonically increases as discretization gets rougher. With regards to routing information loss in subbasin discretization, multiple interesting points rather than just the watershed outlet should be considered. Moreover, subbasin and HRU discretization decisions should not be considered independently since subbasin input significantly influences the complexity of HRU discretization result. Finally, results show that the common and convenient approach of making uniform discretization decisions across the watershed domain performs worse compared to a metric informed non-uniform discretization approach as the later since is able to conserve more watershed heterogeneity under the same model complexity (number of computational units).

  10. A model for the spatial distribution of snow water equivalent parameterized from the spatial variability of precipitation

    NASA Astrophysics Data System (ADS)

    Skaugen, Thomas; Weltzien, Ingunn H.

    2016-09-01

    Snow is an important and complicated element in hydrological modelling. The traditional catchment hydrological model with its many free calibration parameters, also in snow sub-models, is not a well-suited tool for predicting conditions for which it has not been calibrated. Such conditions include prediction in ungauged basins and assessing hydrological effects of climate change. In this study, a new model for the spatial distribution of snow water equivalent (SWE), parameterized solely from observed spatial variability of precipitation, is compared with the current snow distribution model used in the operational flood forecasting models in Norway. The former model uses a dynamic gamma distribution and is called Snow Distribution_Gamma, (SD_G), whereas the latter model has a fixed, calibrated coefficient of variation, which parameterizes a log-normal model for snow distribution and is called Snow Distribution_Log-Normal (SD_LN). The two models are implemented in the parameter parsimonious rainfall-runoff model Distance Distribution Dynamics (DDD), and their capability for predicting runoff, SWE and snow-covered area (SCA) is tested and compared for 71 Norwegian catchments. The calibration period is 1985-2000 and validation period is 2000-2014. Results show that SDG better simulates SCA when compared with MODIS satellite-derived snow cover. In addition, SWE is simulated more realistically in that seasonal snow is melted out and the building up of "snow towers" and giving spurious positive trends in SWE, typical for SD_LN, is prevented. The precision of runoff simulations using SDG is slightly inferior, with a reduction in Nash-Sutcliffe and Kling-Gupta efficiency criterion of 0.01, but it is shown that the high precision in runoff prediction using SD_LN is accompanied with erroneous simulations of SWE.

  11. Can We "Future-Proof" Marine Conservation Planning?

    NASA Astrophysics Data System (ADS)

    Pinsky, M. L.; Rogers, L. A.

    2016-02-01

    Marine conservation and marine spatial planning strategies worldwide are designed around biogeographic patterns, often under the assumption that these patterns are relatively stable. With climate change, however, distributions are shifting rapidly as species seek more suitable conditions. Here, we use distribution projections from 2006-2100 for 360 marine species in North America to evaluate the effectiveness of the current marine protected area (MPA) network and to test climate-ready planning approaches. We consider both expected community changes and the uncertainty in those projections. We find that existing MPAs are likely to lose more species over the coming century than other locations on the continental shelf. We also find substantial shifts in the location of high- and low-value regions, which can complicate conservation planning. However, planning portfolios can be developed that perform much better in the face of changes expected over the coming century. The theory and practice of marine spatial planning and marine conservation can be substantially more responsive to our dynamic ocean.

  12. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of genetic and phenotypic cellular diversity.

    PubMed

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G; Helland, Aslaug; Rye, Inga H; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-02-13

    Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here, we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor-subtype specific, and it did not change during treatment in tumors with partial or no response. However, lower pretreatment genetic diversity was significantly associated with pathologic complete response. In contrast, phenotypic diversity was different between pre- and posttreatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Inference of tumor evolution during chemotherapy by computational modeling and in situ analysis of cellular diversity for genetic and phenotypic features

    PubMed Central

    Almendro, Vanessa; Cheng, Yu-Kang; Randles, Amanda; Itzkovitz, Shalev; Marusyk, Andriy; Ametller, Elisabet; Gonzalez-Farre, Xavier; Muñoz, Montse; Russnes, Hege G.; Helland, Åslaug; Rye, Inga H.; Borresen-Dale, Anne-Lise; Maruyama, Reo; van Oudenaarden, Alexander; Dowsett, Mitchell; Jones, Robin L.; Reis-Filho, Jorge; Gascon, Pere; Gönen, Mithat; Michor, Franziska; Polyak, Kornelia

    2014-01-01

    SUMMARY Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge of how tumors change during treatment is limited. Here we report the analysis of cellular heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor subtype-specific and it did not change during treatment in tumors with partial or no response. However, lower pre-treatment genetic diversity was significantly associated with complete pathologic response. In contrast, phenotypic diversity was different between pre- and post-treatment samples. We also observed significant changes in the spatial distribution of cells with distinct genetic and phenotypic features. We used these experimental data to develop a stochastic computational model to infer tumor growth patterns and evolutionary dynamics. Our results highlight the importance of integrated analysis of genotypes and phenotypes of single cells in intact tissues to predict tumor evolution. PMID:24462293

  14. Climate Risk and Vulnerability in the Caribbean and Gulf of Mexico Region: Interactions with Spatial Population and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Levy, M.; Baptista, S.; Adamo, S.

    2010-12-01

    Vulnerability to climate variability and change will depend on dynamic interactions between different aspects of climate, land-use change, and socioeconomic trends. Measurements and projections of these changes are difficult at the local scale but necessary for effective planning. New data sources and methods make it possible to assess land-use and socioeconomic changes that may affect future patterns of climate vulnerability. In this paper we report on new time series data sets that reveal trends in the spatial patterns of climate vulnerability in the Caribbean/Gulf of Mexico Region. Specifically, we examine spatial time series data for human population over the period 1990-2000, time series data on land use and land cover over 2000-2009, and infant mortality rates as a proxy for poverty for 2000-2008. We compare the spatial trends for these measures to the distribution of climate-related natural disaster risk hotspots (cyclones, floods, landslides, and droughts) in terms of frequency, mortality, and economic losses. We use these data to identify areas where climate vulnerability appears to be increasing and where it may be decreasing. Regions where trends and patterns are especially worrisome include coastal areas of Guatemala and Honduras.

  15. Multiscale Spatial Assessment of Determinant Factors of Land Use Change: Study at Urban Area of Yogyakarta

    NASA Astrophysics Data System (ADS)

    Susilo, Bowo

    2017-12-01

    Studies of land use change have been undertaken by different researchers using various methods. Among those methods, modelling is widely utilized. Modelling land use change required several components remarked as model variables. Those represent any conditions or factors which considered relevant or have some degree of correlation to the changes of land use. Variables which have significant correlation to land use change are referred as determinant factors or driving forces. Those factors as well as changes of land use are distributed across space and therefore referred as spatial determinant factors. The main objective of the research was to examine land use change and its determinant factors. Area and location of land use change were analysed based on three different years of land use maps, which are 1993, 2000 and 2007. Spatial and temporal analysis were performed which emphasize to the influence of scale to both of analysis’s. Urban area of Yogyakarta was selected as study area. Study area covered three different districts (kabupaten), involving 20 sub districts and totally consists of 74 villages. Result of this study shows that during 14 years periods (1993 to 2007), there were about 1,460 hectares of land use change had been taken place. Dominant type of land use change is agricultural to residential. The uses of different spatial and temporal scale in analysis were able to reveal different factors related to land use change. In general, factors influencing the quantities of land use change in the study area were population growth and the availability of land. The use of data with different spatial resolution can reveal the presence of various factors associated with the location of the change. Locations of land use change were influenced or determined by accessibility factors.

  16. Partitioning the factors of spatial variation in regeneration density of shade-tolerant tree species.

    PubMed

    Gravel, Dominique; Beaudet, Marilou; Messier, Christian

    2008-10-01

    Understanding coexistence of highly shade-tolerant tree species is a longstanding challenge for forest ecologists. A conceptual model for the coexistence of sugar maple (Acer saccharum) and American beech (Fagus grandibfolia) has been proposed, based on a low-light survival/high-light growth trade-off, which interacts with soil fertility and small-scale spatiotemporal variation in the environment. In this study, we first tested whether the spatial distribution of seedlings and saplings can be predicted by the spatiotemporal variability of light availability and soil fertility, and second, the manner in which the process of environmental filtering changes with regeneration size. We evaluate the support for this hypothesis relative to the one for a neutral model, i.e., for seed rain density predicted from the distribution of adult trees. To do so, we performed intensive sampling over 86 quadrats (5 x 5 m) in a 0.24-ha plot in a mature maple-beech community in Quebec, Canada. Maple and beech abundance, soil characteristics, light availability, and growth history (used as a proxy for spatiotemporal variation in light availability) were finely measured to model variation in sapling composition across different size classes. Results indicate that the variables selected to model species distribution do effectively change with size, but not as predicted by the conceptual model. Our results show that variability in the environment is not sufficient to differentiate these species' distributions in space. Although species differ in their spatial distribution in the small size classes, they tend to correlate at the larger size class in which recruitment occurs. Overall, the results are not supportive of a model of coexistence based on small-scale variations in the environment. We propose that, at the scale of a local stand, the lack of fit of the model could result from the high similarity of species in the range of environmental conditions encountered, and we suggest that coexistence would be stable only at larger spatial scales at which variability in the environment is greater.

  17. Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013

    NASA Astrophysics Data System (ADS)

    Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua

    2018-05-01

    In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.

  18. NEON terrestrial field observations: designing continental scale, standardized sampling

    Treesearch

    R. H. Kao; C.M. Gibson; R. E. Gallery; C. L. Meier; D. T. Barnett; K. M. Docherty; K. K. Blevins; P. D. Travers; E. Azuaje; Y. P. Springer; K. M. Thibault; V. J. McKenzie; M. Keller; L. F. Alves; E. L. S. Hinckley; J. Parnell; D. Schimel

    2012-01-01

    Rapid changes in climate and land use and the resulting shifts in species distributions and ecosystem functions have motivated the development of the National Ecological Observatory Network (NEON). Integrating across spatial scales from ground sampling to remote sensing, NEON will provide data for users to address ecological responses to changes in climate, land use,...

  19. Seasonal and elevational variation of δ18O and δ2H in the Willamette River basin

    EPA Science Inventory

    Climate change is expected to dramatically alter the timing and quantity of water within the nation’s river systems. These changes are driven by variation in the form, location and amount of precipitation that will affect the temporal and spatial distribution of river source wat...

  20. Determination of the Changes of Drought Occurrence in Turkey Using Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Sibel Saygili, Fatma; Tufan Turp, M.; Kurnaz, M. Levent

    2017-04-01

    As a consequence of the negative impacts of climate change, Turkey, being a country in the Mediterranean Basin, is under a serious risk of increased drought conditions. In this study, it is aimed to determine and compare the spatial distributions of climatological drought probabilities for Turkey. For this purpose, by making use of Regional Climate Model (RegCM4.4) of the Abdus Salam International Centre for Theoretical Physics (ICTP), the outputs of the MPI-ESM-MR global climate model of the Max Planck Institute for Meteorology are downscaled to 50km for Turkey. To make the future projection over Turkey for the period of 2071-2100 with respect to the reference period of 1986-2005, the worst case emission pathway RCP8.5 is used. The Palmer Drought Severity Index (PDSI) values are computed and classified in accordance with the seven classifications of National Oceanic and Atmospheric Administration (NOAA). Finally, the spatial distribution maps showing the changes in drought probabilities over Turkey are obtained in order to see the impact of climate change on Turkey's drought patterns.

  1. Terrestrial vegetation redistribution and carbon balance under climate change

    PubMed Central

    Lucht, Wolfgang; Schaphoff, Sibyll; Erbrecht, Tim; Heyder, Ursula; Cramer, Wolfgang

    2006-01-01

    Background Dynamic Global Vegetation Models (DGVMs) compute the terrestrial carbon balance as well as the transient spatial distribution of vegetation. We study two scenarios of moderate and strong climate change (2.9 K and 5.3 K temperature increase over present) to investigate the spatial redistribution of major vegetation types and their carbon balance in the year 2100. Results The world's land vegetation will be more deciduous than at present, and contain about 125 billion tons of additional carbon. While a recession of the boreal forest is simulated in some areas, along with a general expansion to the north, we do not observe a reported collapse of the central Amazonian rain forest. Rather, a decrease of biomass and a change of vegetation type occurs in its northeastern part. The ability of the terrestrial biosphere to sequester carbon from the atmosphere declines strongly in the second half of the 21st century. Conclusion Climate change will cause widespread shifts in the distribution of major vegetation functional types on all continents by the year 2100. PMID:16930462

  2. Disentangling endogenous versus exogenous pattern formation in spatial ecology: a case study of the ant Azteca sericeasur in southern Mexico.

    PubMed

    Li, Kevin; Vandermeer, John H; Perfecto, Ivette

    2016-05-01

    Spatial patterns in ecology can be described as reflective of environmental heterogeneity (exogenous), or emergent from dynamic relationships between interacting species (endogenous), but few empirical studies focus on the combination. The spatial distribution of the nests of Azteca sericeasur, a keystone tropical arboreal ant, is thought to form endogenous spatial patterns among the shade trees of a coffee plantation through self-regulating interactions with controlling agents (i.e. natural enemies). Using inhomogeneous point process models, we found evidence for both types of processes in the spatial distribution of A. sericeasur. Each year's nest distribution was determined mainly by a density-dependent relationship with the previous year's lagged nest density; but using a novel application of a Thomas cluster process to account for the effects of nest clustering, we found that nest distribution also correlated significantly with tree density in the later years of the study. This coincided with the initiation of agricultural intensification and tree felling on the coffee farm. The emergence of this significant exogenous effect, along with the changing character of the density-dependent effect of lagged nest density, provides clues to the mechanism behind a unique phenomenon observed in the plot, that of an increase in nest population despite resource limitation in nest sites. Our results have implications in coffee agroecological management, as this system provides important biocontrol ecosystem services. Further research is needed, however, to understand the effective scales at which these relationships occur.

  3. Visualization of Individual Images in Patterned Organic-Inorganic Multilayers Using GISAXS-CT.

    PubMed

    Ogawa, Hiroki; Nishikawa, Yukihiro; Takenaka, Mikihito; Fujiwara, Akihiko; Nakanishi, Yohei; Tsujii, Yoshinobu; Takata, Masaki; Kanaya, Toshiji

    2017-05-16

    Using grazing-incidence small-angle scattering (GISAXS) with computed tomography (CT), we have individually reconstructed the spatial distribution of a thin gold (Au) layer buried under a thin poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) layer. Owing to the difference between total reflection angles of Au and PS-b-P2VP, the scattering profiles for Au nanoparticles and self-assembled nanostructures of PS-b-P2VP could be independently obtained by changing the X-ray angle of incidence. Reconstruction of scattering profiles allows one to separately characterize spatial distributions in Au and PS-b-P2VP nanostructures.

  4. Controlling Spatial Confinement Effects in La0.3Pr0.4Ca0.3MnO3 Microbridges via Post Ar and Air Annealing

    NASA Astrophysics Data System (ADS)

    Jeon, Jaechun; Jung, Jan; Chow, Kim H.

    2017-08-01

    We report the effects of post Ar and air annealing of La0.3Pr0.4Ca0.3MnO3 microbridges which do not initially show spatial confinement effects. The removal or addition of oxygen via the post annealing changes the sizes and distribution of the metallic and insulating phase domains within these films and can create spatial confinement effects such as percolation induced resistance jumps and tunneling magnetoresistance.

  5. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya.

    PubMed

    Aryal, Achyut; Shrestha, Uttam Babu; Ji, Weihong; Ale, Som B; Shrestha, Sujata; Ingty, Tenzing; Maraseni, Tek; Cockfield, Geoff; Raubenheimer, David

    2016-06-01

    Future climate change is likely to affect distributions of species, disrupt biotic interactions, and cause spatial incongruity of predator-prey habitats. Understanding the impacts of future climate change on species distribution will help in the formulation of conservation policies to reduce the risks of future biodiversity losses. Using a species distribution modeling approach by MaxEnt, we modeled current and future distributions of snow leopard (Panthera uncia) and its common prey, blue sheep (Pseudois nayaur), and observed the changes in niche overlap in the Nepal Himalaya. Annual mean temperature is the major climatic factor responsible for the snow leopard and blue sheep distributions in the energy-deficient environments of high altitudes. Currently, about 15.32% and 15.93% area of the Nepal Himalaya are suitable for snow leopard and blue sheep habitats, respectively. The bioclimatic models show that the current suitable habitats of both snow leopard and blue sheep will be reduced under future climate change. The predicted suitable habitat of the snow leopard is decreased when blue sheep habitats is incorporated in the model. Our climate-only model shows that only 11.64% (17,190 km(2)) area of Nepal is suitable for the snow leopard under current climate and the suitable habitat reduces to 5,435 km(2) (reduced by 24.02%) after incorporating the predicted distribution of blue sheep. The predicted distribution of snow leopard reduces by 14.57% in 2030 and by 21.57% in 2050 when the predicted distribution of blue sheep is included as compared to 1.98% reduction in 2030 and 3.80% reduction in 2050 based on the climate-only model. It is predicted that future climate may alter the predator-prey spatial interaction inducing a lower degree of overlap and a higher degree of mismatch between snow leopard and blue sheep niches. This suggests increased energetic costs of finding preferred prey for snow leopards - a species already facing energetic constraints due to the limited dietary resources in its alpine habitat. Our findings provide valuable information for extension of protected areas in future.

  6. The death assemblage as a marker for habitat and an indicator of climate change: Georges Bank, surfclams and ocean quahogs

    NASA Astrophysics Data System (ADS)

    Powell, Eric N.; Kuykendall, Kelsey M.; Moreno, Paula

    2017-06-01

    A comprehensive dataset for the Georges Bank region is used to directly compare the distribution of the death assemblage and the living community at large spatial scales and to assess the application of the death assemblage in tracking changes in species' distributional pattern as a consequence of climate change. Focus is placed on the biomass-dominant clam species of the northwest Atlantic continental shelf: the surfclam Spisula solidissima and the ocean quahog Arctica islandica, for which extensive datasets exist on the distributions of the living population and the death assemblage. For both surfclams and ocean quahogs, the distribution of dead shells, in the main, tracked the distribution of live animals relatively closely. Thus, for both species, the presence of dead shells was a positive indicator of present, recent, or past occupation by live animals. Shell dispersion within habitat was greater for surfclams than for ocean quahogs either due to spatial time averaging, animals not living in all habitable areas all of the time, or parautochthonous redistribution of shell. The regional distribution of dead shell differed from the distribution of live animals, for both species, in a systematic way indicative of range shifts due to climate change. In each case the differential distribution was consistent with warming of the northwest Atlantic. Present-day overlap of live surfclams with live ocean quahogs was consistent with the expectation that the surfclam's range is shifting into deeper water in response to the recent warming trend. The presence of locations devoid of dead shells where live surfclams nevertheless were collected measures the recentness of this event. The presence of dead ocean quahog shells at shallower depths than live ocean quahogs offers good evidence that a range shift has occurred in the past, but prior to the initiation of routine surveys in 1980. Possibly, this range shift tracks initial colonization at the end of the Little Ice Age.

  7. Forecasting Distributional Responses of Limber Pine to Climate Change at Management-Relevant Scales in Rocky Mountain National Park

    PubMed Central

    Monahan, William B.; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben

    2013-01-01

    Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m2) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management. PMID:24391742

  8. Forecasting distributional responses of limber pine to climate change at management-relevant scales in Rocky Mountain National Park.

    PubMed

    Monahan, William B; Cook, Tammy; Melton, Forrest; Connor, Jeff; Bobowski, Ben

    2013-01-01

    Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species' physiological capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways (RCP 4.5 and 8.5 W/m(2)) show that the distribution of limber pine in the park is expected to move upslope in elevation, but changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of projected change are considerably more variable between the two spatial extents used in model training than they are between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined, these results illustrate the importance of accounting for unknowns in species' climatic sensitivities when forecasting distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be interpreted in the context of climate change vulnerability and used to help guide adaptive management.

  9. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900.

    PubMed

    Kjeldsen, Kristian K; Korsgaard, Niels J; Bjørk, Anders A; Khan, Shfaqat A; Box, Jason E; Funder, Svend; Larsen, Nicolaj K; Bamber, Jonathan L; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S; Willerslev, Eske; Kjær, Kurt H

    2015-12-17

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.

  10. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since AD 1900

    NASA Astrophysics Data System (ADS)

    Kjeldsen, Kristian K.; Korsgaard, Niels J.; Bjørk, Anders A.; Khan, Shfaqat A.; Box, Jason E.; Funder, Svend; Larsen, Nicolaj K.; Bamber, Jonathan L.; Colgan, William; van den Broeke, Michiel; Siggaard-Andersen, Marie-Louise; Nuth, Christopher; Schomacker, Anders; Andresen, Camilla S.; Willerslev, Eske; Kjær, Kurt H.

    2015-12-01

    The response of the Greenland Ice Sheet (GIS) to changes in temperature during the twentieth century remains contentious, largely owing to difficulties in estimating the spatial and temporal distribution of ice mass changes before 1992, when Greenland-wide observations first became available. The only previous estimates of change during the twentieth century are based on empirical modelling and energy balance modelling. Consequently, no observation-based estimates of the contribution from the GIS to the global-mean sea level budget before 1990 are included in the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Here we calculate spatial ice mass loss around the entire GIS from 1900 to the present using aerial imagery from the 1980s. This allows accurate high-resolution mapping of geomorphic features related to the maximum extent of the GIS during the Little Ice Age at the end of the nineteenth century. We estimate the total ice mass loss and its spatial distribution for three periods: 1900-1983 (75.1 ± 29.4 gigatonnes per year), 1983-2003 (73.8 ± 40.5 gigatonnes per year), and 2003-2010 (186.4 ± 18.9 gigatonnes per year). Furthermore, using two surface mass balance models we partition the mass balance into a term for surface mass balance (that is, total precipitation minus total sublimation minus runoff) and a dynamic term. We find that many areas currently undergoing change are identical to those that experienced considerable thinning throughout the twentieth century. We also reveal that the surface mass balance term shows a considerable decrease since 2003, whereas the dynamic term is constant over the past 110 years. Overall, our observation-based findings show that during the twentieth century the GIS contributed at least 25.0 ± 9.4 millimetres of global-mean sea level rise. Our result will help to close the twentieth-century sea level budget, which remains crucial for evaluating the reliability of models used to predict global sea level rise.

  11. Reducing fertilizer-nitrogen losses from rowcrop landscapes: Insights and implications from a spatially explicit watershed model

    USGS Publications Warehouse

    McLellan, Eileen; Schilling, Keith; Robertson, Dale M.

    2015-01-01

    We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.

  12. Projected climate-induced habitat loss for salmonids in the John Day River network, Oregon, U.S.A.

    USGS Publications Warehouse

    Ruesch, Aaron S.; Torgersen, Christian E.; Lawler, Joshua J.; Olden, Julian D.; Peterson, Erin E.; Volk, Carol J.; Lawrence, David J.

    2012-01-01

    Climate change will likely have profound effects on cold-water species of freshwater fishes. As temperatures rise, cold-water fish distributions may shift and contract in response. Predicting the effects of projected stream warming in stream networks is complicated by the generally poor correlation between water temperature and air temperature. Spatial dependencies in stream networks are complex because the geography of stream processes is governed by dimensions of flow direction and network structure. Therefore, forecasting climate-driven range shifts of stream biota has lagged behind similar terrestrial modeling efforts. We predicted climate-induced changes in summer thermal habitat for 3 cold-water fish species—juvenile Chinook salmon, rainbow trout, and bull trout (Oncorhynchus tshawytscha, O. mykiss, and Salvelinus confluentus, respectively)—in the John Day River basin, northwestern United States. We used a spatially explicit statistical model designed to predict water temperature in stream networks on the basis of flow and spatial connectivity. The spatial distribution of stream temperature extremes during summers from 1993 through 2009 was largely governed by solar radiation and interannual extremes of air temperature. For a moderate climate change scenario, estimated declines by 2100 in the volume of habitat for Chinook salmon, rainbow trout, and bull trout were 69–95%, 51–87%, and 86–100%, respectively. Although some restoration strategies may be able to offset these projected effects, such forecasts point to how and where restoration and management efforts might focus.

  13. Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.

    2017-12-01

    Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.

  14. Community ecology in 3D: Tensor decomposition reveals spatio-temporal dynamics of large ecological communities

    PubMed Central

    Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian

    2017-01-01

    Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658

  15. Temporal and spatial characteristics of extreme precipitation events in the Midwest of Jilin Province based on multifractal detrended fluctuation analysis method and copula functions

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu

    2017-10-01

    Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.

  16. Development of a module for Cost-Benefit analysis of risk reduction measures for natural hazards for the CHANGES-SDSS platform

    NASA Astrophysics Data System (ADS)

    Berlin, Julian; Bogaard, Thom; Van Westen, Cees; Bakker, Wim; Mostert, Eric; Dopheide, Emile

    2014-05-01

    Cost benefit analysis (CBA) is a well know method used widely for the assessment of investments either in the private and public sector. In the context of risk mitigation and the evaluation of risk reduction alternatives for natural hazards its use is very important to evaluate the effectiveness of such efforts in terms of avoided monetary losses. However the current method has some disadvantages related to the spatial distribution of the costs and benefits, the geographical distribution of the avoided damage and losses, the variation in areas that are benefited in terms of invested money and avoided monetary risk. Decision-makers are often interested in how the costs and benefits are distributed among different administrative units of a large area or region, so they will be able to compare and analyse the cost and benefits per administrative unit as a result of the implementation of the risk reduction projects. In this work we first examined the Cost benefit procedure for natural hazards, how the costs are assessed for several structural and non-structural risk reduction alternatives, we also examined the current problems of the method such as the inclusion of cultural and social considerations that are complex to monetize , the problem of discounting future values using a defined interest rate and the spatial distribution of cost and benefits. We also examined the additional benefits and the indirect costs associated with the implementation of the risk reduction alternatives such as the cost of having a ugly landscape (also called negative benefits). In the last part we examined the current tools and software used in natural hazards assessment with support to conduct CBA and we propose design considerations for the implementation of the CBA module for the CHANGES-SDSS Platform an initiative of the ongoing 7th Framework Programme "CHANGES of the European commission. Keywords: Risk management, Economics of risk mitigation, EU Flood Directive, resilience, prevention, cost benefit analysis, spatial distribution of costs and benefits

  17. Spatial distribution of larval Ixodes scapularis (Acari:Ixodidae) on Peromyscus leucopus and Microtus pennsylvanicus at two island sites

    USGS Publications Warehouse

    Markowski, D.; Hyland, K.E.; Ginsberg, H.S.

    1997-01-01

    Larval blacklegged ticks, Ixodes scapularis, were collected from white-footed mice, Peromyscus leucopus, on Prudence Island (where Microtus pennsylavanicus were not captured) and from meadow voles, M. pennsylvanicus, on Patience Island (where P. leucopus was absent) in Narragansett Bay, Rhode Island from June to October 1992. Ixodes scapularis larvae were also collected by flagging in the vicinity of host captures. On both islands, the relative density of larvae changed from July to September in samples from hosts, but not in flagging samples. Consequently, different sampling techniques can give different assessments of tick populations. Larvae were highly aggregated on both of the host species throughout the sampling period. As the mean relative density of larvae increased in the environment (based on flagging samples), larvae on the hosts became more dense and more crowded. Increased densities of larvae in the environment were not correlated with increased patchiness in the distribution of larvae among host animals on either island. Changes in the spatial distribution of larval I. scapularis on each host species had similar trends as larval densities and distributions within the environment. These results suggest that M. pennsylvanicus can serve as an alternative host for immature I. scapularis in a P. leucopus-free environment and have similar distributional characteristics.

  18. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin.

    PubMed

    Jore, Solveig; Vanwambeke, Sophie O; Viljugrein, Hildegunn; Isaksen, Ketil; Kristoffersen, Anja B; Woldehiwet, Zerai; Johansen, Bernt; Brun, Edgar; Brun-Hansen, Hege; Westermann, Sebastian; Larsen, Inger-Lise; Ytrehus, Bjørnar; Hofshagen, Merete

    2014-01-08

    Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 - 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change.

  19. Evaluation of Green Infrastructure on Peak Flow Mitigation Focusing on the Connectivity of Impervious Areas

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Hwang, J.; Kwon, Y.

    2017-12-01

    The existence of impervious areas is one of the most distinguishing characteristics of urban catchments. It decreases infiltration and increases direct runoff in urban catchments. The recent introduction of green infrastructure in urban catchments for the purpose of sustainable development contributes to the decrease of the directly connected impervious areas (DCIA) by isolating existing impervious areas and consequently, to the flood risk mitigation. This study coupled the width function-based instantaneous hydrograph (WFIUH), which is able to handle the spatial distribution of the impervious areas, with the concept of the DCIA to assess the impact of decreasing DCIA on the shape of direct runoff hydrographs. Using several scenarios for typical green infrastructure and corresponding changes of DCIA in a test catchment, this study evaluated the effect of green infrastructure on the shape of the resulting direct runoff hydrographs and peak flows. The results showed that the changes in the DCIA immediately affects the shape of the direct runoff hydrograph and decreases peak flows depending on spatial implementation scenarios. The quantitative assessment of the spatial distribution of impervious areas and also the changes to the DCIA suggests effective and well-planned green infrastructure can be introduced in urban environments for flood risk management.

  20. A scanning proton microprobe study of stinging emergences from the leaf of the common stinging nettle urtica dioica l.

    NASA Astrophysics Data System (ADS)

    Hughes, N. P.; Perry, C. C.; Williams, R. J. P.; Watt, F.; Grime, G. W.

    1988-03-01

    Proton-induced X-ray emission (PIXE) combined with the Oxford scanning proton microprobe (SPM) was used to investigate the abundance and spatial distribution of inorganic elements in mineralising stinging emergences from the leaf of the Common Stinging Nettle, Urtica dioica L. Elemental maps and point analytical data were collected for emergences at two stages of maturity. In all emergences calcium and silicon were spatially organised and present at high concentration. The inorganic elements K, P, S and Mn were also spatially organised during mineralisation, but at maturity these elements were present only at background levels and then showed no specific localisation. The observed changes in the inorganic content of the emergences are obviously related to the mineralisation processes. The possible biochemical significance of the distribution of the elements is discussed.

  1. Site-specific management of nematodes pitfalls and practicalities.

    PubMed

    Evans, Ken; Webster, Richard M; Halford, Paul D; Barker, Anthony D; Russell, Michael D

    2002-09-01

    The greatest constraint to potato production in the United Kingdom (UK) is damage by the potato cyst nematodes (PCN) Globodera pallida and G. rostochiensis. Management of PCN depends heavily on nematicides, which are costly. Of all the inputs in UK agriculture, nematicides offer the largest potential cost savings from spatially variable application, and these savings would be accompanied by environmental benefits. We mapped PCN infestations in potato fields and monitored the changes in population density and distribution that occurred when susceptible potato crops were grown. The inverse relationship between population density before planting and multiplication rate of PCN makes it difficult to devise reliable spatial nematicide application procedures, especially when the pre-planting population density is just less than the detection threshold. Also, the spatial dependence found suggests that the coarse sampling grids used commercially are likely to produce misleading distribution maps.

  2. Evaluating patterns and drivers of spatial change in the recreational guided fishing sector in Alaska

    PubMed Central

    2017-01-01

    Understanding the impacts of recreational fishing on habitats and species, as well as the social and ecological importance of place to anglers, requires information on the spatial distribution of fishing activities. This study documented long-term changes in core fishing areas of a major recreational fishery in Alaska and identified biological, regulatory, social, and economic drivers of spatial fishing patterns by charter operators. Using participatory mapping and in-person interviews, we characterized the spatial footprint of 46 charter operators in the communities of Sitka and Homer since the 1990s. The spatial footprint differed between Homer and Sitka respondents, with Homer operators consistently using larger areas for Pacific halibut than Sitka operators. Homer and Sitka showed opposite trends in core fishing location area over time, with an overall decrease in Homer and an overall increase in Sitka. For both Sitka and Homer respondents, the range of areas fished was greater for Pacific halibut than for rockfish/lingcod or Pacific salmon. Spatial patterns were qualitatively different between businesses specializing in single species trips and those that operated multispecies trips and between businesses with one vessel and those with multiple vessels. In Homer, the most frequently cited reasons for changes in the location and/or extent of fishing were changes in trip type and the price of fuel, while in Sitka, the most frequently cited reasons for spatial shifts were changes to Pacific halibut regulations and gaining experience or exploring new locations. The diversity of charter fishing strategies in Alaska may allow individual charter operators to respond differently to perturbations and thus maintain resilience of the industry as a whole to social, environmental, and regulatory change. This research also highlights the importance of understanding fishers’ diverse portfolio of activities to effective ecosystem-based management. PMID:28632745

  3. Evaluating patterns and drivers of spatial change in the recreational guided fishing sector in Alaska.

    PubMed

    Chan, Maggie N; Beaudreau, Anne H; Loring, Philip A

    2017-01-01

    Understanding the impacts of recreational fishing on habitats and species, as well as the social and ecological importance of place to anglers, requires information on the spatial distribution of fishing activities. This study documented long-term changes in core fishing areas of a major recreational fishery in Alaska and identified biological, regulatory, social, and economic drivers of spatial fishing patterns by charter operators. Using participatory mapping and in-person interviews, we characterized the spatial footprint of 46 charter operators in the communities of Sitka and Homer since the 1990s. The spatial footprint differed between Homer and Sitka respondents, with Homer operators consistently using larger areas for Pacific halibut than Sitka operators. Homer and Sitka showed opposite trends in core fishing location area over time, with an overall decrease in Homer and an overall increase in Sitka. For both Sitka and Homer respondents, the range of areas fished was greater for Pacific halibut than for rockfish/lingcod or Pacific salmon. Spatial patterns were qualitatively different between businesses specializing in single species trips and those that operated multispecies trips and between businesses with one vessel and those with multiple vessels. In Homer, the most frequently cited reasons for changes in the location and/or extent of fishing were changes in trip type and the price of fuel, while in Sitka, the most frequently cited reasons for spatial shifts were changes to Pacific halibut regulations and gaining experience or exploring new locations. The diversity of charter fishing strategies in Alaska may allow individual charter operators to respond differently to perturbations and thus maintain resilience of the industry as a whole to social, environmental, and regulatory change. This research also highlights the importance of understanding fishers' diverse portfolio of activities to effective ecosystem-based management.

  4. Remote sensing, global warming, and vector-borne disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, B.; Beck, L.; Dister, S.

    1997-12-31

    The relationship between climate change and the pattern of vector-borne disease can be viewed at a variety of spatial and temporal scales. At one extreme are changes such as global warming, which are continental in scale and occur over periods of years, decades, or longer. At the opposite extreme are changes associated with severe weather events, which can occur at local and regional scales over periods of days, weeks, or months. Key ecological factors affecting the distribution of vector-borne diseases include temperature, precipitation, and habitat availability, and their impact on vectors, pathogens, reservoirs, and hosts. Global warming can potentially altermore » these factors, thereby affecting the spatial and temporal patterns of disease.« less

  5. Eye position changes during reading fixations are spatially selective.

    PubMed

    Inhoff, Albrecht W; Solomon, Matthew S; Seymour, Bradley A; Radach, Ralph

    2008-03-01

    Intra-fixation location changes were measured when one-line sentences written in lower or aLtErNaTiNg case were read. Intra-fixation location changes were common and their size was normally distributed except for a relatively high proportion of fixations without a discernible location change. Location changes that did occur were systematically biased toward the right when alternating case was read. Irrespective of case type, changes of the right eye were biased toward the right at the onset of sentence reading, and this spatial bias decreased as sentence reading progressed from left to right. The left eye showed a relatively stable right-directed bias. These results show that processing demands can pull the two fixated eyes in the same direction and that the response to this pull can differ for the right and left eye.

  6. Land use and land cover changes and spatiotemporal dynamics of anopheline larval habitats during a four-year period in a highland community of Africa.

    PubMed

    Munga, Stephen; Yakob, Laith; Mushinzimana, Emmanuel; Zhou, Guofa; Ouna, Tom; Minakawa, Noboru; Githeko, Andrew; Yan, Guiyun

    2009-12-01

    Spatial and temporal variations in the distribution of anopheline larval habitats and land use and land cover (LULC) changes can influence malaria transmission intensity. This information is important for understanding the environmental determinants of malaria transmission heterogeneity, and it is critical to the study of the effects of environmental changes on malaria transmission. In this study, we investigated the spatial and temporal variations in the distribution of anopheline larval habitats and LULC changes in western Kenya highlands over a 4-year period. Anopheles gambiae complex larvae were mainly confined to valley bottoms during both the dry and wet seasons. Although An. gambiae larvae were located in man-made habitats where riparian forests and natural swamps had been cleared, Anopheles funestus larvae were mainly found in permanent habitats in pastures. The association between land cover type and occurrence of anopheline larvae was statistically significant. The distribution of anopheline positive habitats varied significantly between months, during the survey. In 2004, the mean density of An. gambiae was significantly higher during the month of May, whereas the density of An. funestus peaked significantly in February. Over the study period, major LULC changes occurred mostly in the valley bottoms. Overall, farmland increased by 3.9%, whereas both pastures and natural swamps decreased by 8.9% and 20.9%, respectively. The area under forest cover was decreased by 5.8%. Land-use changes in the study area are favorable to An. gambiae larval development, thereby risking a more widespread distribution of malaria vector habitats and potentially increasing malaria transmission in western Kenya highlands.

  7. Comparison of the spatial patterns of schistosomiasis in Zimbabwe at two points in time, spaced twenty-nine years apart: is climate variability of importance?

    PubMed

    Pedersen, Ulrik B; Karagiannis-Voules, Dimitrios-Alexios; Midzi, Nicholas; Mduluza, Tkafira; Mukaratirwa, Samson; Fensholt, Rasmus; Vennervald, Birgitte J; Kristensen, Thomas K; Vounatsou, Penelope; Stensgaard, Anna-Sofie

    2017-05-08

    Temperature, precipitation and humidity are known to be important factors for the development of schistosome parasites as well as their intermediate snail hosts. Climate therefore plays an important role in determining the geographical distribution of schistosomiasis and it is expected that climate change will alter distribution and transmission patterns. Reliable predictions of distribution changes and likely transmission scenarios are key to efficient schistosomiasis intervention-planning. However, it is often difficult to assess the direction and magnitude of the impact on schistosomiasis induced by climate change, as well as the temporal transferability and predictive accuracy of the models, as prevalence data is often only available from one point in time. We evaluated potential climate-induced changes on the geographical distribution of schistosomiasis in Zimbabwe using prevalence data from two points in time, 29 years apart; to our knowledge, this is the first study investigating this over such a long time period. We applied historical weather data and matched prevalence data of two schistosome species (Schistosoma haematobium and S. mansoni). For each time period studied, a Bayesian geostatistical model was fitted to a range of climatic, environmental and other potential risk factors to identify significant predictors that could help us to obtain spatially explicit schistosomiasis risk estimates for Zimbabwe. The observed general downward trend in schistosomiasis prevalence for Zimbabwe from 1981 and the period preceding a survey and control campaign in 2010 parallels a shift towards a drier and warmer climate. However, a statistically significant relationship between climate change and the change in prevalence could not be established.

  8. Rapid variation in the circumstellar 10 micron emission of Alpha Orionis

    NASA Technical Reports Server (NTRS)

    Bloemhof, E. E.; Danchi, W. C.; Townes, C. H.

    1985-01-01

    The spatial distribution of 10 micron continuum flux around the supergiant star Alpha Orionis was measured on two occasions separated by an interval of 1 yr. A significant change in the infrared radiation pattern on the subarcsecond scale was observed. This change cannot be explained plausibly by macroscopic motion but may be due to a change in the physical properties of the circumstellar dust.

  9. Water balance-based estimation of groundwater recharge in the Lake Chad Basin

    NASA Astrophysics Data System (ADS)

    Babamaaji, R. A.; Lee, J.

    2012-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought and shortage of water has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the change of land use and its characteristics must be a first step to find how such changes disturb the water cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and vertical recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires not only reliable forecasting of changes in the major climatic variables, but also accurate estimation of groundwater recharge. Spatial variations in the land use/land cover, soil texture, topographic slope, and meteorological conditions should be accounted for in the recharge estimation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal average spatial distribution of surface runoff, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB.

  10. Heterogeneous neuromuscular activation within human rectus femoris muscle during pedaling.

    PubMed

    Watanabe, Kohei; Kouzaki, Motoki; Moritani, Toshio

    2015-09-01

    We investigated the effect of workload and the use of pedal straps on the spatial distribution of neuromuscular activation within the rectus femoris (RF) muscle during pedaling movements. Eleven healthy men performed submaximal pedaling exercises on an electrically braked ergometer at different workloads and with or without pedal straps. During these tasks, surface electromyograms (SEMGs) were recorded from the RF using 36 electrode pairs, and central locus activation (CLA) was calculated along the longitudinal line of the muscle. CLA moved markedly, indicating changes in spatial distribution of SEMG within the muscle, during a crank cycle under all conditions (P < 0.05). There were significant differences in CLA among different workloads and between those with and without pedal straps (P < 0.05). These results suggest that neuromuscular activation within the RF is regulated regionally by changes in workload and the use of pedal straps during pedaling. © 2014 Wiley Periodicals, Inc.

  11. Complex polarization-phase and spatial-frequency selections of laser images of blood-plasma films in diagnostics of changes in their polycrystalline structure

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. A.; Angelskii, P. O.; Dubolazov, A. V.; Karachevtsev, A. O.; Sidor, M. I.; Mintser, O. P.; Oleinichenko, B. P.; Bizer, L. I.

    2013-10-01

    We present a theoretical formalism of correlation phase analysis of laser images of human blood plasma with spatial-frequency selection of manifestations of mechanisms of linear and circular birefringence of albumin and globulin polycrystalline networks. Comparative results of the measurement of coordinate distributions of the correlation parameter—the modulus of the degree of local correlation of amplitudes—of laser images of blood plasma taken from patients of three groups—healthy patients (donors), rheumatoid-arthritis patients, and breast-cancer patients—are presented. We investigate values and ranges of change of statistical (the first to fourth statistical moments), correlation (excess of autocorrelation functions), and fractal (slopes of approximating curves and dispersion of extrema of logarithmic dependences of power spectra) parameters of coordinate distributions of the degree of local correlation of amplitudes. Objective criteria for diagnostics of occurrence and differentiation of inflammatory and oncological states are determined.

  12. Historical and future land use effects on N2O and NO emissions using an ensemble modeling approach: Costa Rica's Caribbean lowlands as an example

    USGS Publications Warehouse

    Reiners, William A.; Liu, S.; Gerow, K.G.; Keller, M.; Schimel, D.S.

    2002-01-01

    [1] The humid tropical zone is a major source area for N2O and NO emissions to the atmosphere. Local emission rates vary widely with local conditions, particularly land use practices which swiftly change with expanding settlement and changing market conditions. The combination of wide variation in emission rates and rapidly changing land use make regional estimation and future prediction of biogenic trace gas emission particularly difficult. This study estimates contemporary, historical, and future N2O and NO emissions from 0.5 million ha of northeastern Costa Rica, a well-documented region in the wet tropics undergoing rapid agricultural development. Estimates were derived by linking spatially distributed environmental data with an ecosystem simulation model in an ensemble estimation approach that incorporates the variance and covariance of spatially distributed driving variables. Results include measures of variance for regional emissions. The formation and aging of pastures from forest provided most of the past temporal change in N2O and NO flux in this region; future changes will be controlled by the degree of nitrogen fertilizer application and extent of intensively managed croplands.

  13. Historical and future land use effects on N2O and NO emissions using an ensemble modeling approach: Costa Rica's Caribbean lowlands as an example

    NASA Astrophysics Data System (ADS)

    Reiners, W. A.; Liu, S.; Gerow, K. G.; Keller, M.; Schimel, D. S.

    2002-12-01

    The humid tropical zone is a major source area for N2O and NO emissions to the atmosphere. Local emission rates vary widely with local conditions, particularly land use practices which swiftly change with expanding settlement and changing market conditions. The combination of wide variation in emission rates and rapidly changing land use make regional estimation and future prediction of biogenic trace gas emission particularly difficult. This study estimates contemporary, historical, and future N2O and NO emissions from 0.5 million ha of northeastern Costa Rica, a well-documented region in the wet tropics undergoing rapid agricultural development. Estimates were derived by linking spatially distributed environmental data with an ecosystem simulation model in an ensemble estimation approach that incorporates the variance and covariance of spatially distributed driving variables. Results include measures of variance for regional emissions. The formation and aging of pastures from forest provided most of the past temporal change in N2O and NO flux in this region; future changes will be controlled by the degree of nitrogen fertilizer application and extent of intensively managed croplands.

  14. Estimating the spatial distribution of field-applied mushroom compost in the Brandywine-Christina River Basin using multispectral remote sensing

    NASA Astrophysics Data System (ADS)

    Moxey, Kelsey A.

    The world's greatest concentration of mushroom farms is settled within the Brandywine-Christina River Basin in Chester County in southeastern Pennsylvania. This industry produces a nutrient-rich byproduct known as spent mushroom compost, which has been traditionally applied to local farm fields as an organic fertilizer and soil amendment. While mushroom compost has beneficial properties, the possible over-application to farm fields could potentially degrade stream water quality. The goal of this study was to estimate the spatial extent and intensity of field-applied mushroom compost. We applied a remote sensing approach using Landsat multispectral imagery. We utilized the soil line technique, using the red and near-infrared bands, to estimate differences in soil wetness as a result of increased soil organic matter content from mushroom compost. We validated soil wetness estimates by examining the spectral response of references sites. We performed a second independent validation analysis using expert knowledge from agricultural extension agents. Our results showed that the soil line based wetness index worked well. The spectral validation illustrated that compost changes the spectral response of soil because of changes in wetness. The independent expert validation analysis produced a strong significant correlation between our remotely-sensed wetness estimates and the empirical ratings of compost application intensities. Overall, the methodology produced realistic spatial distributions of field-applied compost application intensities across the study area. These spatial distributions will be used for follow-up studies to assess the effect of spent mushroom compost on stream water quality.

  15. Exploring changes in the spatial distribution of stream baseflow generation during a seasonal recession

    USGS Publications Warehouse

    Payn, R.A.; Gooseff, M.N.; McGlynn, B.L.; Bencala, K.E.; Wondzell, S.M.

    2012-01-01

    Relating watershed structure to streamflow generation is a primary focus of hydrology. However, comparisons of longitudinal variability in stream discharge with adjacent valley structure have been rare, resulting in poor understanding of the distribution of the hydrologic mechanisms that cause variability in streamflow generation along valleys. This study explores detailed surveys of stream base flow across a gauged, 23 km2 mountain watershed. Research objectives were (1) to relate spatial variability in base flow to fundamental elements of watershed structure, primarily topographic contributing area, and (2) to assess temporal changes in the spatial patterns of those relationships during a seasonal base flow recession. We analyzed spatiotemporal variability in base flow using (1) summer hydrographs at the study watershed outlet and 5 subwatershed outlets and (2) longitudinal series of discharge measurements every ~100 m along the streams of the 3 largest subwatersheds (1200 to 2600 m in valley length), repeated 2 to 3 times during base flow recession. Reaches within valley segments of 300 to 1200 m in length tended to demonstrate similar streamflow generation characteristics. Locations of transitions between these segments were consistent throughout the recession, and tended to be collocated with abrupt longitudinal transitions in valley slope or hillslope-riparian characteristics. Both within and among subwatersheds, correlation between the spatial distributions of streamflow and topographic contributing area decreased during the recession, suggesting a general decrease in the influence of topography on stream base flow contributions. As topographic controls on base flow evidently decreased, multiple aspects of subsurface structure were likely to have gained influence.

  16. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds

    PubMed Central

    Vaughn, Nicholas R.; Asner, Gregory P.; Smit, Izak P. J.; Riddel, Edward S.

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50–450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques. PMID:26660502

  17. Multiple Scales of Control on the Structure and Spatial Distribution of Woody Vegetation in African Savanna Watersheds.

    PubMed

    Vaughn, Nicholas R; Asner, Gregory P; Smit, Izak P J; Riddel, Edward S

    2015-01-01

    Factors controlling savanna woody vegetation structure vary at multiple spatial and temporal scales, and as a consequence, unraveling their combined effects has proven to be a classic challenge in savanna ecology. We used airborne LiDAR (light detection and ranging) to map three-dimensional woody vegetation structure throughout four savanna watersheds, each contrasting in geologic substrate and climate, in Kruger National Park, South Africa. By comparison of the four watersheds, we found that geologic substrate had a stronger effect than climate in determining watershed-scale differences in vegetation structural properties, including cover, height and crown density. Generalized Linear Models were used to assess the spatial distribution of woody vegetation structural properties, including cover, height and crown density, in relation to mapped hydrologic, topographic and fire history traits. For each substrate and climate combination, models incorporating topography, hydrology and fire history explained up to 30% of the remaining variation in woody canopy structure, but inclusion of a spatial autocovariate term further improved model performance. Both crown density and the cover of shorter woody canopies were determined more by unknown factors likely to be changing on smaller spatial scales, such as soil texture, herbivore abundance or fire behavior, than by our mapped regional-scale changes in topography and hydrology. We also detected patterns in spatial covariance at distances up to 50-450 m, depending on watershed and structural metric. Our results suggest that large-scale environmental factors play a smaller role than is often attributed to them in determining woody vegetation structure in southern African savannas. This highlights the need for more spatially-explicit, wide-area analyses using high resolution remote sensing techniques.

  18. Projected Future Vegetation Changes for the Northwest United States and Southwest Canada at a Fine Spatial Resolution Using a Dynamic Global Vegetation Model.

    PubMed

    Shafer, Sarah L; Bartlein, Patrick J; Gray, Elizabeth M; Pelltier, Richard T

    2015-01-01

    Future climate change may significantly alter the distributions of many plant taxa. The effects of climate change may be particularly large in mountainous regions where climate can vary significantly with elevation. Understanding potential future vegetation changes in these regions requires methods that can resolve vegetation responses to climate change at fine spatial resolutions. We used LPJ, a dynamic global vegetation model, to assess potential future vegetation changes for a large topographically complex area of the northwest United States and southwest Canada (38.0-58.0°N latitude by 136.6-103.0°W longitude). LPJ is a process-based vegetation model that mechanistically simulates the effect of changing climate and atmospheric CO2 concentrations on vegetation. It was developed and has been mostly applied at spatial resolutions of 10-minutes or coarser. In this study, we used LPJ at a 30-second (~1-km) spatial resolution to simulate potential vegetation changes for 2070-2099. LPJ was run using downscaled future climate simulations from five coupled atmosphere-ocean general circulation models (CCSM3, CGCM3.1(T47), GISS-ER, MIROC3.2(medres), UKMO-HadCM3) produced using the A2 greenhouse gases emissions scenario. Under projected future climate and atmospheric CO2 concentrations, the simulated vegetation changes result in the contraction of alpine, shrub-steppe, and xeric shrub vegetation across the study area and the expansion of woodland and forest vegetation. Large areas of maritime cool forest and cold forest are simulated to persist under projected future conditions. The fine spatial-scale vegetation simulations resolve patterns of vegetation change that are not visible at coarser resolutions and these fine-scale patterns are particularly important for understanding potential future vegetation changes in topographically complex areas.

  19. Quantitative characterization of the regressive ecological succession by fractal analysis of plant spatial patterns

    USGS Publications Warehouse

    Alados, C.L.; Pueyo, Y.; Giner, M.L.; Navarro, T.; Escos, J.; Barroso, F.; Cabezudo, B.; Emlen, J.M.

    2003-01-01

    We studied the effect of grazing on the degree of regression of successional vegetation dynamic in a semi-arid Mediterranean matorral. We quantified the spatial distribution patterns of the vegetation by fractal analyses, using the fractal information dimension and spatial autocorrelation measured by detrended fluctuation analyses (DFA). It is the first time that fractal analysis of plant spatial patterns has been used to characterize the regressive ecological succession. Plant spatial patterns were compared over a long-term grazing gradient (low, medium and heavy grazing pressure) and on ungrazed sites for two different plant communities: A middle dense matorral of Chamaerops and Periploca at Sabinar-Romeral and a middle dense matorral of Chamaerops, Rhamnus and Ulex at Requena-Montano. The two communities differed also in the microclimatic characteristics (sea oriented at the Sabinar-Romeral site and inland oriented at the Requena-Montano site). The information fractal dimension increased as we moved from a middle dense matorral to discontinuous and scattered matorral and, finally to the late regressive succession, at Stipa steppe stage. At this stage a drastic change in the fractal dimension revealed a change in the vegetation structure, accurately indicating end successional vegetation stages. Long-term correlation analysis (DFA) revealed that an increase in grazing pressure leads to unpredictability (randomness) in species distributions, a reduction in diversity, and an increase in cover of the regressive successional species, e.g. Stipa tenacissima L. These comparisons provide a quantitative characterization of the successional dynamic of plant spatial patterns in response to grazing perturbation gradient. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Macrophytobenthos of the Caspian Sea: Diversity, distribution, and productivity

    NASA Astrophysics Data System (ADS)

    Stepanian, O. V.

    2016-05-01

    In the Russian sector of the northern and middle Caspian Sea, 36 species of macroalgae have been identified. The green and red algae from the mesosaprobic group are dominant. An increase in the number of green algae species is revealed. The distribution of macroalgae is inhomogeneous. It is confined to the solid substrate and epiphyton. The biomass of seaweeds reaches 1.5 kg/m2. Climate change has little influence on the appearance of new species in the northern Caspian Sea, but new invaders can appear in the Middle and Southern Caspian. The distribution of aquatic and coastal hygrophytic vegetation shows considerable spatial dynamics due to fluctuations in the level and salinity of the Caspian Sea. The biomass of aquatic vegetation varies in a wide range from 0.5 to 10.0 kg/m2. Spatially detailed mathematical models adequately reflect the changes in key species of aquatic plants in space and time. It is shown that expansion of the zone of the seagrass Zostera noltii to shallow water areas is occurring at present, as well as shrinkage of the range of the dominant littoral aquatic plant Phragmites australis.

  1. State updating of a distributed hydrological model with Ensemble Kalman Filtering: effects of updating frequency and observation network density on forecast accuracy

    NASA Astrophysics Data System (ADS)

    Rakovec, O.; Weerts, A. H.; Hazenberg, P.; Torfs, P. J. J. F.; Uijlenhoet, R.

    2012-09-01

    This paper presents a study on the optimal setup for discharge assimilation within a spatially distributed hydrological model. The Ensemble Kalman filter (EnKF) is employed to update the grid-based distributed states of such an hourly spatially distributed version of the HBV-96 model. By using a physically based model for the routing, the time delay and attenuation are modelled more realistically. The discharge and states at a given time step are assumed to be dependent on the previous time step only (Markov property). Synthetic and real world experiments are carried out for the Upper Ourthe (1600 km2), a relatively quickly responding catchment in the Belgian Ardennes. We assess the impact on the forecasted discharge of (1) various sets of the spatially distributed discharge gauges and (2) the filtering frequency. The results show that the hydrological forecast at the catchment outlet is improved by assimilating interior gauges. This augmentation of the observation vector improves the forecast more than increasing the updating frequency. In terms of the model states, the EnKF procedure is found to mainly change the pdfs of the two routing model storages, even when the uncertainty in the discharge simulations is smaller than the defined observation uncertainty.

  2. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency.

    PubMed

    Vaidya, Manushka V; Collins, Christopher M; Sodickson, Daniel K; Brown, Ryan; Wiggins, Graham C; Lattanzi, Riccardo

    2016-02-01

    In high field MRI, the spatial distribution of the radiofrequency magnetic ( B 1 ) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B 1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B 1 spatial distributions for surface coils and can provide guidance for RF engineers.

  3. Simulated response of water quality in public supply wells to land use change

    USGS Publications Warehouse

    McMahon, P.B.; Burow, K.R.; Kauffman, L.J.; Eberts, S.M.; Böhlke, J.K.; Gurdak, J.J.

    2008-01-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short‐circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.Citing Literature

  4. Simulated response of water quality in public supply wells to land use change

    NASA Astrophysics Data System (ADS)

    McMahon, P. B.; Burow, K. R.; Kauffman, L. J.; Eberts, S. M.; BöHlke, J. K.; Gurdak, J. J.

    2008-07-01

    Understanding how changes in land use affect water quality of public supply wells (PSW) is important because of the strong influence of land use on water quality, the rapid pace at which changes in land use are occurring in some parts of the world, and the large contribution of groundwater to the global water supply. In this study, groundwater flow models incorporating particle tracking and reaction were used to analyze the response of water quality in PSW to land use change in four communities: Modesto, California (Central Valley aquifer); York, Nebraska (High Plains aquifer); Woodbury, Connecticut (Glacial aquifer); and Tampa, Florida (Floridan aquifer). The water quality response to measured and hypothetical land use change was dependent on age distributions of water captured by the wells and on the temporal and spatial variability of land use in the area contributing recharge to the wells. Age distributions of water captured by the PSW spanned about 20 years at Woodbury and >1,000 years at Modesto and York, and the amount of water <50 years old captured by the PSW ranged from 30% at York to 100% at Woodbury. Short-circuit pathways in some PSW contributing areas, such as long irrigation well screens that crossed multiple geologic layers (York) and karst conduits (Tampa), affected age distributions by allowing relatively rapid movement of young water to those well screens. The spatial component of land use change was important because the complex distribution of particle travel times within the contributing areas strongly influenced contaminant arrival times and degradation reaction progress. Results from this study show that timescales for change in the quality of water from PSW could be on the order of years to centuries for land use changes that occur over days to decades, which could have implications for source water protection strategies that rely on land use change to achieve water quality objectives.

  5. Approaches to predicting potential impacts of climate change on forest disease: an example with Armillaria root disease

    Treesearch

    Ned B. Klopfenstein; Mee-Sook Kim; John W. Hanna; Bryce A. Richardson; John E. Lundquist

    2009-01-01

    Predicting climate change influences on forest diseases will foster forest management practices that minimize adverse impacts of diseases. Precise locations of accurately identified pathogens and hosts must be documented and spatially referenced to determine which climatic factors influence species distribution. With this information, bioclimatic models can predict the...

  6. Methods used to parameterize the spatially-explicit components of a state-and-transition simulation model

    USGS Publications Warehouse

    Sleeter, Rachel; Acevedo, William; Soulard, Christopher E.; Sleeter, Benjamin M.

    2015-01-01

    Spatially-explicit state-and-transition simulation models of land use and land cover (LULC) increase our ability to assess regional landscape characteristics and associated carbon dynamics across multiple scenarios. By characterizing appropriate spatial attributes such as forest age and land-use distribution, a state-and-transition model can more effectively simulate the pattern and spread of LULC changes. This manuscript describes the methods and input parameters of the Land Use and Carbon Scenario Simulator (LUCAS), a customized state-and-transition simulation model utilized to assess the relative impacts of LULC on carbon stocks for the conterminous U.S. The methods and input parameters are spatially explicit and describe initial conditions (strata, state classes and forest age), spatial multipliers, and carbon stock density. Initial conditions were derived from harmonization of multi-temporal data characterizing changes in land use as well as land cover. Harmonization combines numerous national-level datasets through a cell-based data fusion process to generate maps of primary LULC categories. Forest age was parameterized using data from the North American Carbon Program and spatially-explicit maps showing the locations of past disturbances (i.e. wildfire and harvest). Spatial multipliers were developed to spatially constrain the location of future LULC transitions. Based on distance-decay theory, maps were generated to guide the placement of changes related to forest harvest, agricultural intensification/extensification, and urbanization. We analyze the spatially-explicit input parameters with a sensitivity analysis, by showing how LUCAS responds to variations in the model input. This manuscript uses Mediterranean California as a regional subset to highlight local to regional aspects of land change, which demonstrates the utility of LUCAS at many scales and applications.

  7. Essential oil yield and composition reflect browsing damage of junipers.

    PubMed

    Markó, Gábor; Gyuricza, Veronika; Bernáth, Jeno; Altbacker, Vilmos

    2008-12-01

    The impact of browsing on vegetation depends on the relative density and species composition of browsers. Herbivore density and plant damage can be either site-specific or change seasonally and spatially. For juniper (Juniperus communis) forests of a sand dune region in Hungary, it has been assumed that plant damage investigated at different temporal and spatial scales would reflect selective herbivory. The level of juniper damage was tested for a possible correlation with the concentration of plant secondary metabolites (PSMs) in plants and seasonal changes in browsing pressure. Heavily browsed and nonbrowsed junipers were also assumed to differ in their chemical composition, and the spatial distribution of browsing damage within each forest was analyzed to reveal the main browser. Long-term differences in local browsing pressure were also expected and would be reflected in site-specific age distributions of distant juniper populations. The concentrations of PSMs (essential oils) varied significantly among junipers and seasons. Heavily browsed shrubs contained the lowest oil yield; essential oils were highest in shrubs bearing no damage, indicating that PSMs might contribute to reduce browsing in undamaged shrubs. There was a seasonal fluctuation in the yield of essential oil that was lower in the summer period than in other seasons. Gas chromatography (GC) revealed differences in some essential oil components, suggesting that certain chemicals could have contributed to reduced consumption. The consequential long-term changes were reflected in differences in age distribution between distant juniper forests. These results confirm that both the concentration of PSMs and specific compounds of the essential oil may play a role in selective browsing damage by local herbivores.

  8. Solving Large-scale Spatial Optimization Problems in Water Resources Management through Spatial Evolutionary Algorithms

    NASA Astrophysics Data System (ADS)

    Wang, J.; Cai, X.

    2007-12-01

    A water resources system can be defined as a large-scale spatial system, within which distributed ecological system interacts with the stream network and ground water system. Water resources management, the causative factors and hence the solutions to be developed have a significant spatial dimension. This motivates a modeling analysis of water resources management within a spatial analytical framework, where data is usually geo- referenced and in the form of a map. One of the important functions of Geographic information systems (GIS) is to identify spatial patterns of environmental variables. The role of spatial patterns in water resources management has been well established in the literature particularly regarding how to design better spatial patterns for satisfying the designated objectives of water resources management. Evolutionary algorithms (EA) have been demonstrated to be successful in solving complex optimization models for water resources management due to its flexibility to incorporate complex simulation models in the optimal search procedure. The idea of combining GIS and EA motivates the development and application of spatial evolutionary algorithms (SEA). SEA assimilates spatial information into EA, and even changes the representation and operators of EA. In an EA used for water resources management, the mathematical optimization model should be modified to account the spatial patterns; however, spatial patterns are usually implicit, and it is difficult to impose appropriate patterns to spatial data. Also it is difficult to express complex spatial patterns by explicit constraints included in the EA. The GIS can help identify the spatial linkages and correlations based on the spatial knowledge of the problem. These linkages are incorporated in the fitness function for the preference of the compatible vegetation distribution. Unlike a regular GA for spatial models, the SEA employs a special hierarchical hyper-population and spatial genetic operators to represent spatial variables in a more efficient way. The hyper-population consists of a set of populations, which correspond to the spatial distributions of the individual agents (organisms). Furthermore spatial crossover and mutation operators are designed in accordance with the tree representation and then applied to both organisms and populations. This study applies the SEA to a specific problem of water resources management- maximizing the riparian vegetation coverage in accordance with the distributed groundwater system in an arid region. The vegetation coverage is impacted greatly by the nonlinear feedbacks and interactions between vegetation and groundwater and the spatial variability of groundwater. The SEA is applied to search for an optimal vegetation configuration compatible to the groundwater flow. The results from this example demonstrate the effectiveness of the SEA. Extension of the algorithm for other water resources management problems is discussed.

  9. Meteorology-induced variations in the spatial behavior of summer ozone pollution in Central California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Ling; Harley, Robert A.; Brown, Nancy J.

    Cluster analysis was applied to daily 8 h ozone maxima modeled for a summer season to characterize meteorology-induced variations in the spatial distribution of ozone. Principal component analysis is employed to form a reduced dimension set to describe and interpret ozone spatial patterns. The first three principal components (PCs) capture {approx}85% of total variance, with PC1 describing a general spatial trend, and PC2 and PC3 each describing a spatial contrast. Six clusters were identified for California's San Joaquin Valley (SJV) with two low, three moderate, and one high-ozone cluster. The moderate ozone clusters are distinguished by elevated ozone levels inmore » different parts of the valley: northern, western, and eastern, respectively. The SJV ozone clusters have stronger coupling with the San Francisco Bay area (SFB) than with the Sacramento Valley (SV). Variations in ozone spatial distributions induced by anthropogenic emission changes are small relative to the overall variations in ozone amomalies observed for the whole summer. Ozone regimes identified here are mostly determined by the direct and indirect meteorological effects. Existing measurement sites are sufficiently representative to capture ozone spatial patterns in the SFB and SV, but the western side of the SJV is under-sampled.« less

  10. Extinction and spontaneous recovery of spatial behavior in pigeons.

    PubMed

    Leising, Kenneth J; Wong, Jared; Blaisdell, Aaron P

    2015-10-01

    We investigated extinction and spontaneous recovery of spatial associations using a landmark-based appetitive search task in a touchscreen preparation with pigeons. Four visual landmarks (A, B, C, and D) were separately established as signals of a hidden reinforced target among an 8 × 7 array of potential target locations. The target was located above landmarks (LM) A and C and below B and D. After conditioning, A and B were extinguished. Responding to A and C was assessed on probe tests 2 days following extinction, whereas, B and D were tested 14 days after extinction. We observed spontaneous recovery from spatial extinction following a 14-day, but not a 2-day, postextinction retention interval. Furthermore, by plotting the spatial distribution of responding across the X and Y axes during testing, we found that spontaneous recovery of responding to the target in our task was due to enhanced spatial control (i.e., a change in the overall distribution of responses) following the long delay to testing. These results add spatial extinction and spontaneous recovery to the list of findings supporting the assertion that extinction involves new learning that attenuates the originally acquired response, and that original learning of the spatial relationship between paired events survives extinction. (PsycINFO Database Record (c) 2015 APA, all rights reserved).

  11. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations

    PubMed Central

    2018-01-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution. PMID:29614776

  12. Quantifying Rock Weakening Due to Decreasing Calcite Mineral Content by Numerical Simulations.

    PubMed

    Wetzel, Maria; Kempka, Thomas; Kühn, Michael

    2018-04-01

    The quantification of changes in geomechanical properties due to chemical reactions is of paramount importance for geological subsurface utilisation, since mineral dissolution generally reduces rock stiffness. In the present study, the effective elastic moduli of two digital rock samples, the Fontainebleau and Bentheim sandstones, are numerically determined based on micro-CT images. Reduction in rock stiffness due to the dissolution of 10% calcite cement by volume out of the pore network is quantified for three synthetic spatial calcite distributions (coating, partial filling and random) using representative sub-cubes derived from the digital rock samples. Due to the reduced calcite content, bulk and shear moduli decrease by 34% and 38% in maximum, respectively. Total porosity is clearly the dominant parameter, while spatial calcite distribution has a minor impact, except for a randomly chosen cement distribution within the pore network. Moreover, applying an initial stiffness reduced by 47% for the calcite cement results only in a slightly weaker mechanical behaviour. Using the quantitative approach introduced here substantially improves the accuracy of predictions in elastic rock properties compared to general analytical methods, and further enables quantification of uncertainties related to spatial variations in porosity and mineral distribution.

  13. In situ KPFM imaging of local photovoltaic characteristics of structured organic photovoltaic devices.

    PubMed

    Watanabe, Satoshi; Fukuchi, Yasumasa; Fukasawa, Masako; Sassa, Takafumi; Kimoto, Atsushi; Tajima, Yusuke; Uchiyama, Masanobu; Yamashita, Takashi; Matsumoto, Mutsuyoshi; Aoyama, Tetsuya

    2014-02-12

    Here, we discuss the local photovoltaic characteristics of a structured bulk heterojunction, organic photovoltaic devices fabricated with a liquid carbazole, and a fullerene derivative based on analysis by scanning kelvin probe force microscopy (KPFM). Periodic photopolymerization induced by an interference pattern from two laser beams formed surface relief gratings (SRG) in the structured films. The surface potential distribution in the SRGs indicates the formation of donor and acceptor spatial distribution. Under illumination, the surface potential reversibly changed because of the generation of fullerene anions and hole transport from the films to substrates, which indicates that we successfully imaged the local photovoltaic characteristics of the structured photovoltaic devices. Using atomic force microscopy, we confirmed the formation of the SRG because of the material migration to the photopolymerized region of the films, which was induced by light exposure through photomasks. The structuring technique allows for the direct fabrication and the control of donor and acceptor spatial distribution in organic photonic and electronic devices with minimized material consumption. This in situ KPFM technique is indispensable to the fabrication of nanoscale electron donor and electron acceptor spatial distribution in the devices.

  14. The impacts of disturbance on the spatial and temporal variations of carbon balance in forest ecosystems on Hokkaido, Japan

    NASA Astrophysics Data System (ADS)

    Hirata, R.; Ito, A.; Saigusa, N.

    2013-12-01

    Carbon balance in a forest ecosystem can be quite variable if the forest ecosystem structure and function change abruptly as a result of disturbance and subsequent recovery processes. A map of forest age is useful for upscaling carbon balance from the site level to a regional scale because it provides information about when disturbance occurred and how it spread over a wide area. In this study, we used maps of forest age to help evaluate spatial and temporal variations in the carbon balance of forest ecosystems with a process-based ecosystem model. Forests less than 60 years old account for more than 70% of Japanese forests because forest stands have been quickly replaced after disturbance caused by thinning, harvesting, plantations, fires, typhoons, and insect damage. However, few studies have attempted to quantify how much disturbance affects the spatial and temporal variations of carbon balance. In this study, we focused on how disturbance and subsequent re-growth affected the spatial and temporal variations of the carbon balance of forests. We adapted the Vegetation Integrative SImulator for Trace Gases (VISIT) model in order to simulate carbon balance on Hokkaido, which is the northernmost island of Japan. The model was validated with tower flux data obtained from forests with ages between 0 and 43 years. Simulations of the carbon balance were conducted for the period 1948-2010 after a 1000-year spin-up at a spatial resolution of 1 km × 1 km. We investigated two case studies of simulated carbon balance: one that took into account the spatial distribution of forest ages derived from forest inventory data, and another that ignored the impact of disturbance (i.e., no disturbance and a homogeneous distribution of ages). We first focused on the difference from 2000-2010 in the spatial distribution of net ecosystem production (NEP) between the disturbance and non-disturbance cases. In the non-disturbance case, the temporal and spatial changes in NEP were gradual and ranged from 0 to 1 t C ha-1 y-1, depending on meteorological conditions such as temperature or solar radiation. In the disturbance case, however, large NEP changes ranging from 3 to 5 t C ha-1 y-1 were distributed in patches like hotspots, because the forests in those spots ranged in age from 20 to 100 years and were younger than the forests in the non-disturbance case. In the 1970s, wood harvesting and tree planting were conducted intensively on Hokkaido. In the disturbance case during this period, there were many hotspots where NEP was negative. We next focused on the difference between the disturbance and non-disturbance cases of temporal variations of spatially averaged NEP on Hokkaido. Until 1970, the difference between the two cases of average NEP was less than 0.01 t C ha-1 y-1. After 1970, the difference became large and reached about 0.5 t C ha-1 y-1, the implication being that the regional NEP in the disturbance case increased to as much as 2-5 times the regional NEP of the non-disturbance case. Our results show the importance of considering forest age when simulating the carbon balance of forests. Carbon balance maps that take forest age into account are useful for carbon management and prediction of ecosystem feedbacks on climate change.

  15. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing.

    PubMed

    Mo, Wenbo; Wang, Yong; Zhang, Yingxue; Zhuang, Dafang

    2017-01-01

    Road networks affect the spatial structure of urban landscapes, and with continuous expansion, it will also exert more widespread influences on the regional ecological environment. With the support of geographic information system (GIS) technology, based on the application of various spatial analysis methods, this study analyzed the spatiotemporal changes of road networks and landscape ecological risk in the research area of Beijing to explore the impacts of road network expansion on ecological risk in the urban landscape. The results showed the following: 1) In the dynamic processes of change in the overall landscape pattern, the changing differences in landscape indices of various landscape types were obvious and were primarily related to land-use type. 2) For the changes in a time series, the expansion of the road kernel area was consistent with the extension of the sub-low-risk area in the urban center, but some differences were observed during different stages of development. 3) For the spatial position, the expanding changes in the road kernel area were consistent with the grade changes of the urban central ecological risk, primarily because both had a certain spatial correlation with the expressways. 4) The influence of road network expansion on the ecological risk in the study area had obvious spatial differences, which may be closely associated with the distribution of ecosystem types. Copyright © 2016 Office national des forêts. Published by Elsevier B.V. All rights reserved.

  16. Average static stress drops for heterogeneous slip distributions: Comparison of several measures and implications for energy partition in earthquakes

    NASA Astrophysics Data System (ADS)

    Noda, H.; Lapusta, N.; Kanamori, H.

    2010-12-01

    Static stress drop is often estimated using the seismic moment and rupture area based on a model for uniform stress drop distribution; we denote this estimate by Δσ_M. Δσ_M is sometimes interpreted as the spatial average of stress change over the ruptured area, denoted here as Δσ_A, and used accordingly, for example, to discuss the relation between recurrence interval and the healing of the frictional surface in a system with one degree of freedom [e.g., Marone, 1998]. Δσ_M is also used to estimate available energy (defined as the strain energy change computed using the final stress state as the reference one) and radiation efficiency [e.g., Venkataraman and Kanamori, 2004]. In this work, we define a stress drop measure, Δσ_E, that would enter the exact computation of available energy and radiation efficiency. The three stress drop measures - Δσ_M that can be estimated from observations, Δσ_A, and Δσ_E - are equal if the static stress change is spatially uniform, and that motivates substituting Δσ_M for the other two quantities in applications. However, finite source inversions suggest that the stress change is heterogeneous in natural earthquakes [e.g., Bouchon, 1997]. Since Δσ_M is the average of stress change weighted by slip distribution due to a uniform stress drop [Madariaga, 1979], Δσ_E is the average of stress change weighted by actual slip distribution in the event (this work), and Δσ_A is the simple spatial average of stress change, the three measures should, in general, be different. Here, we investigate the effect of heterogeneity aiming to understand how to use the seismological estimates of stress drop appropriately. We create heterogeneous slip distributions for both circular and rectangular planar ruptures using the approach motivated by Liu-Zeng et al. [2005] and Lavalleé et al [2005]. We find that, indeed, the three stress drop measures differ in our scenarios. In particular, heterogeneity increases Δσ_E and thus the available energy when the seismic moment (and hence Δσ_M) is preserved. So using Δσ_M instead of Δσ_E would underestimate available energy and hence overestimate radiation efficiency. For a range of parameters, Δσ_E is well-approximated by the seismic estimate Δσ_M if the latter is computed using a modified (decreased) rupture area that excludes low-slipped regions; a qualitatively similar procedure is already being used in practice [Somerville et al, 1999].

  17. Spatial distribution of specialized cardiac care units in the state of Santa Catarina

    PubMed Central

    Cirino, Silviana; Lima, Fabiana Santos; Gonçalves, Mirian Buss

    2014-01-01

    OBJECTIVE To analyze the methodology used for assessing the spatial distribution of specialized cardiac care units. METHODS A modeling and simulation method was adopted for the practical application of cardiac care service in the state of Santa Catarina, Southern Brazil, using the p-median model. As the state is divided into 21 health care regions, a methodology which suggests an arrangement of eight intermediate cardiac care units was analyzed, comparing the results obtained using data from 1996 and 2012. RESULTS Results obtained using data from 2012 indicated significant changes in the state, particularly in relation to the increased population density in the coastal regions. The current study provided a satisfactory response, indicated by the homogeneity of the results regarding the location of the intermediate cardiac care units and their respective regional administrations, thereby decreasing the average distance traveled by users to health care units, located in higher population density areas. The validity of the model was corroborated through the analysis of the allocation of the median vertices proposed in 1996 and 2012. CONCLUSIONS The current spatial distribution of specialized cardiac care units is more homogeneous and reflects the demographic changes that have occurred in the state over the last 17 years. The comparison between the two simulations and the current configuration showed the validity of the proposed model as an aid in decision making for system expansion. PMID:26039394

  18. Seasonal changes in the spatial distribution of phytoplankton in small, temperate-zone lakes

    USGS Publications Warehouse

    Cloern, J.E.; Alpine, A.E.; Cole, B.E.; Heller, T.

    1992-01-01

    Sampling across two N Minnesota small lakes shows that phytoplankton patchiness is greatly enhanced during winter ice-cover relative to the open-water seasons of exposure to wind stress and rapid turbulent mixing. -Authors

  19. DNA analysis on fox faeces and competition induced niche shifts.

    PubMed

    Dalen, Love; Elmhagen, Bodil; Angerbjorn, Anders

    2004-08-01

    Interference competition can force inferior competitors to change their distribution patterns. It is, however, possible that the dominant competitor poses a higher threat during certain times of the year, for example during reproduction. In such cases, the inferior competitor is expected to change its distribution accordingly. We used a molecular species identification method on faeces to investigate how the spatial overlap between arctic and red foxes changes between seasons. The results show that arctic and red foxes are sympatric during winter, but allopatric in summer as arctic foxes retreat to higher altitudes further from the tree-line during the breeding season. Copyright 2004 Blackwell Publishing Ltd

  20. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate.

    PubMed

    Stige, Leif Christian; Yaragina, Natalia A; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr; Ottersen, Geir

    2017-02-07

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment-temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959-1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts.

  1. The significance of spatial variability of rainfall on streamflow: A synthetic analysis at the Upper Lee catchment, UK

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; McIntyre, Neil; Wheater, Howard

    2017-04-01

    Rainfall, one of the main inputs in hydrological modeling, is a highly heterogeneous process over a wide range of scales in space, and hence the ignorance of the spatial rainfall information could affect the simulated streamflow. Calibration of hydrological model parameters is rarely a straightforward task due to parameter equifinality and parameters' 'nature' to compensate for other uncertainties, i.e. structural and forcing input. In here, we analyse the significance of spatial variability of rainfall on streamflow as a function of catchment scale and type, and antecedent conditions using the continuous time, semi-distributed PDM hydrological model at the Upper Lee catchment, UK. The impact of catchment scale and type is assessed using 11 nested catchments ranging in scale from 25 to 1040 km2, and further assessed by artificially changing the catchment characteristics and translating these to model parameters with uncertainty using model regionalisation. Synthetic rainfall events are introduced to directly relate the change in simulated streamflow to the spatial variability of rainfall. Overall, we conclude that the antecedent catchment wetness and catchment type play an important role in controlling the significance of the spatial distribution of rainfall on streamflow. Results show a relationship between hydrograph characteristics (streamflow peak and volume) and the degree of spatial variability of rainfall for the impermeable catchments under dry antecedent conditions, although this decreases at larger scales; however this sensitivity is significantly undermined under wet antecedent conditions. Although there is indication that the impact of spatial rainfall on streamflow varies as a function of catchment scale, the variability of antecedent conditions between the synthetic catchments seems to mask this significance. Finally, hydrograph responses to different spatial patterns in rainfall depend on assumptions used for model parameter estimation and also the spatial variation in parameters indicating the need of an uncertainty framework in such investigation.

  2. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation

    NASA Astrophysics Data System (ADS)

    Mod, Heidi K.; Luoto, Miska

    2016-12-01

    Climate change has been observed to expand distributions of woody plants in many areas of arctic and alpine environments—a phenomenon called shrubification. New spatial arrangements of shrubs cause further changes in vegetation via changing dynamics of biotic interactions. However, the mediating influence of shrubification is rarely acknowledged in predictions of tundra vegetation change. Here, we examine possible warming-induced landscape-level vegetation changes in a high-latitude environment using species distribution modelling (SDM), specifically concentrating on the impacts of shrubification on ambient vegetation. First, we produced estimates of current shrub and tree cover and forecasts of their expansion under climate change scenarios to be incorporated to SDMs of 116 vascular plants. Second, the predictions of vegetation change based on the models including only abiotic predictors and the models including abiotic, shrub and tree predictors were compared in a representative test area. Based on our model predictions, abundance of woody plants will expand, thus decreasing predicted species richness, amplifying species turnover and increasing the local extinction risk for ambient vegetation. However, the spatial variation demonstrated in our predictions highlights that tundra vegetation can be expected to show a wide variety of different responses to the combined effects of warming and shrubification, depending on the original plant species pool and environmental conditions. We conclude that realistic forecasts of the future require acknowledging the role of shrubification in warming-induced tundra vegetation change.

  3. The spatial distribution of C3 and C4 grasses in North America through the next century

    NASA Astrophysics Data System (ADS)

    Cotton, J. M.; Mosier, T. M.; Cerling, T. E.; Ehleringer, J. R.; Hoppe, K. A.; Still, C. J.

    2014-12-01

    C4 grasses currently cover ~18% of the earth's surface and are economically important as food sources, but their distributions are likely to change with future climate changes. As a result of the opposing impacts of atmospheric CO2 and temperature on C3 and C4 physiology, future changes to the productivity and distributions of these grasses have remained unclear. We have used past and present tooth enamel, collagen, and bone carbon isotope ratios (δ13C) of Bison and Mammoth grazers to record the δ13C values of their diet, and the abundance of C3 and C4 vegetation in these habitats. Thus, the δ13C values of bison and mammoth tissues serve as a proxy for vegetation composition across North America through time. We combine these isotope data with ensemble CMIP5 climate model outputs, eight different climatic and fire predictor variables and advanced statistical techniques to model the spatial distribution of C3 and C4 grasses up through the year 2100 for two different emissions scenarios. Using the Random Forest algorithm, our model explains 91% of the spatial and temporal isotopic variability in bison and mammoth tissues and infers that mean summer temperature is the strongest predictor of all climate variables. For the emission scenario RCP4.5, in which atmospheric CO2 levels are predicted to rise to ~540 ppm by 2100, we find decreases in the abundance of C4 grasses of up to 30% in the south-central Great Plains and the Florida peninsula, and increases of up to 50% in the northern Great Plains. For the RCP8.5 scenario, in which atmospheric CO2 levels are expected to rise to ~930 ppm by 2100, our model predicts minor decreases in the abundance of C4 grasses in Texas and Oklahoma, but increases of 30-50% over the majority of the Great Plains. The overall effect of these changes is a homogenization of the Great Plains ecoregion in terms of grassland type distributions, and the loss of the highest abundance of C4 ecosystems of the panhandles of Texas, Oklahoma and western Kansas. These results have important implications for future changes to insect and mammalian biodiversity and trophic interactions across the Great Plains of North America.

  4. Flow regulation in the Swiss Alps: a river network modelling approach to investigate the impacts on bed load and grain size distribution

    NASA Astrophysics Data System (ADS)

    Costa, A.; Molnar, P.; Schmitt, R. J. P.

    2017-12-01

    The grain size distribution (GSD) of river bed sediment results from the long term balance between transport capacity and sediment supply. Changes in climate and human activities may alter the spatial distribution of transport capacity and sediment supply along channels and hence impact local bedload transport and GSD. The effects of changed flow are not easily inferable due the non-linear, threshold-based nature of the relation between discharge and sediment mobilization, and the network-scale control on local sediment supply. We present a network-scale model for fractional sediment transport to quantify the impact of hydropower (HP) operations on river network GSD. We represent the river network as a series of connected links for which we extract the geometric characteristics from satellite images and a digital elevation model. We assign surface roughness based on the channel bed GSD. Bed shear stress is estimated at link-scale under the assumptions of rectangular prismatic cross sections and normal flow. The mass balance between sediment supply and transport capacity, computed with the Wilcock and Crowe model, determines transport rates of multiple grain size classes and the resulting GSD. We apply the model to the upper Rhone basin, a large Alpine basin in Switzerland. Since 1960s, changed flow conditions due to HP operations and sediment storage behind dams have potentially altered the sediment transport of the basin. However, little is known on the magnitude and spatial distribution of these changes. We force the model with time series of daily discharge derived with a spatially distributed hydrological model for pre and post HP scenarios. We initialize GSD under the assumption that coarse grains (d90) are mobilized only during mean annual maximum flows, and on the basis of ratios between d90 and characteristic diameters estimated from field measurements. Results show that effects of flow regulation vary significantly in space and in time and are grain size dependent. HP operations led to an overall reduction of sediment transport at network scale, especially in summer and for coarser grains, leading to a general coarsening of the river bed sediments at the upstream reaches. The model allows investigating the impact of modified HP operations and climate change projections on sediment dynamics at the network scale.

  5. Forest defoliators and climatic change: Potential changes in spatial distribution of outbreaks of western spruce budworm (Lepidoptera: Tortricidae) and gypsy moth (Lepidoptera: Lymantriidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D.W.; Liebhold, A.M.

    1995-02-01

    Changes in geographical ranges and spatial extent of outbreaks of pest species are likely consequences of climatic change. We investigated potential changes in spatial distribution of outbreaks of western spruce budworm, Choristoneura occidentalis Freeman, and gypsy moth, Lymantria dispar (L.), in Oregon and Pennsylvania, respectively using maps of historial defoliation, climate, and forest type in a geographic information system. Maps of defoliation frequency at a resolution of 2 x 2 km were assembled from historical aerial survey data. Weather maps for mean monthly temperature maxima and minima and precipitation over 30 yr were developed by interpolation. Relationships between defoliation statusmore » and environmental variables were estimated using linear discriminant analysis. Five climatic change scenarios were investigated: an increase of 2{degrees}C, a 2{degrees}C increase with a small increase and a small decrease in precipitation, and projections of two general circulation models (GCMs) after 100 yr at doubled carbon dioxide. With an increase in temperature alone, the projected defoliated area decreased relative to ambient conditions for budworm and increased slightly for gypsy moth. With an increase in temperature and precipitation, defoliated area increased for both species. Conversely, defoliated area decreased for both when temperature increased and precipitation decreased. Results for the GCM scenarios contrasted sharply. For one GCM, defoliation by budworm was projected to cover Oregon completely, whereas no defoliation was projected by gypsy moth in Pennsylvania. For the other, defoliation disappeared completely for budworm and slightly exceeded that under ambient conditions for gypsy moth. The results are discussed in terms of current forest composition and its potential changes. 36 refs., 5 figs., 4 tabs.« less

  6. Temporal and spatial distributions of cold-water corals in the Drake Passage: insights from the last 35,000 years

    USGS Publications Warehouse

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  7. Temporal and spatial distributions of cold-water corals in the Drake Passage: Insights from the last 35,000 years

    NASA Astrophysics Data System (ADS)

    Margolin, Andrew R.; Robinson, Laura F.; Burke, Andrea; Waller, Rhian G.; Scanlon, Kathryn M.; Roberts, Mark L.; Auro, Maureen E.; van de Flierdt, Tina

    2014-01-01

    Scleractinian corals have a global distribution ranging from shallow tropical seas to the depths of the Southern Ocean. Although this distribution is indicative of the corals having a tolerance to a wide spectrum of environmental conditions, individual species seem to be restricted to a much narrower range of ecosystem variables. One way to ascertain the tolerances of corals, with particular focus on the potential impacts of changing climate, is to reconstruct their growth history across a range of environmental regimes. This study examines the spatial and temporal distribution of the solitary scleractinian corals Desmophyllum dianthus, Gardineria antarctica, Balanophyllia malouinensis, Caryophyllia spp. and Flabellum spp. from five sites in the Drake Passage which cross the major frontal zones. A rapid reconnaissance radiocarbon method was used to date more than 850 individual corals. Coupled with U-Th dating, an age range of present day back to more than 100 thousand years was established for corals in the region. Within this age range there are distinct changes in the temporal and spatial distributions of these corals, both with depth and latitude, and on millennial timescales. Two major patterns that emerge are: (1) D. dianthus populations show clear variability in their occurrence through time depending on the latitudinal position within the Drake Passage. North of the Subantarctic Front, D. dianthus first appears in the late deglaciation (~17,000 years ago) and persists to today. South of the Polar Front, in contrast, early deglacial periods, with a few modern occurrences. A seamount site between the two fronts exhibits characteristics similar to both the northern and southern sites. This shift across the frontal zones within one species cannot yet be fully explained, but it is likely to be linked to changes in surface productivity, subsurface oxygen concentrations, and carbonate saturation state. (2) at locations where multiple genera were dated, differences in age and depth distribution of the populations provide clear evidence that each genus has unique environmental requirements to sustain its population.

  8. Towards Understanding the Timing and Frequency of Rain-on-Snow (ROS) Events in Alaska

    NASA Astrophysics Data System (ADS)

    Pan, C.; Kirchner, P. B.; Kimball, J. S.; Kim, Y.; Kamp, U.

    2017-12-01

    Rain-on-snow (ROS) events affect ecosystem processes at multiple spatial and temporal scales including hydrology, carbon cycling, wildlife movement and human transportation and result in marked changes to snowpack processes including enhanced snow melt, surface albedo and energy balance. Changes in the surface structure of the snowpack are visible through optical remote sensing and changes in the relative content and distribution of water, air and ice in the snowpack are detectable using passive microwave remote sensing. This project aims to develop ROS products to elucidate changes in frequency and distribution in ROS events using satellite data products derived from both optical and passive microwave satellite records. To detect ROS events, we use downscaled brightness temperature measurements derived from vertical and horizontal polarizations at 19 and 37 GHz from the Advanced Microwave Scanning Radiometer (AMSR-E/2) passive microwave satellites. Preliminary results indicate an overall classification accuracy of 77.6% relative to in situ weather observations including surface air temperature, precipitation, and snow depth. ROS events are spatially distributed largely to elevations below 500 m and occur most frequently on northern to western aspects in addition to southeastern. Regional ROS hot spots occur in southwest Alaska characterized by warmer climates and transient snowcover. The seasonal timing of ROS events indicates increasing frequency during the fall and spring months.

  9. Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea.

    PubMed

    Saraux, Claire; Fromentin, Jean-Marc; Bigot, Jean-Louis; Bourdeix, Jean-Hervé; Morfin, Marie; Roos, David; Van Beveren, Elisabeth; Bez, Nicolas

    2014-01-01

    Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall's basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.

  10. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  11. Estimating spatially specific demand and supply of dental services: a longitudinal comparison in Northern Germany.

    PubMed

    Schwendicke, Falk; Jäger, Ralf; Hoffmann, Wolfgang; Jordan, Rainer A; van den Berg, Neeltje

    2016-09-01

    Assessing the spatial distribution of oral morbidity-related demand and the workforce-related supply is relevant for planning dental services. We aimed to establish and validate a model for estimating the spatially specific demand and supply. This model was then applied to compare demand-supply ratios in 2001 and 2011 in the federal state of Mecklenburg-Vorpommern (Northern Germany). The spatial units were zip code areas. Demand per area was estimated by linking population-specific oral morbidities to working times via insurance claim data. Estimated demand was validated against the provided demand in 2001 and 2011. Supply was calculated for both years using cohort data from the dentist register. The ratio of demand and supply was geographically mapped and its distribution between areas assessed using the Gini coefficient. Between 2001 and 2011, a significant decrease of the general population (-7.0 percent), the annual demand (-13.1 percent), and the annual supply (-12.9 percent) was recorded. The estimated demands were nearly (2001: -4 percent) and completely (2011: ±0 percent) congruent with provided demands. The average demand-supply-ratio did not change significantly between 2001 and 2011 (P > 0.05), but was increasingly unequally distributed. In both years, few areas were over-serviced, while many were under-serviced. The established model can be used to estimate spatially specific demand and supply. © 2016 American Association of Public Health Dentistry.

  12. Multiscale thermal refugia and stream habitat associations of chinook salmon in northwestern Oregon

    USGS Publications Warehouse

    Torgersen, Christian E.; Price, David M.; Li, Hiram W.; McIntosh, B.A.

    1999-01-01

    We quantified distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel-unit, reach-, and section-level spatial scales in a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. We investigated the effectiveness of thermal remote sensing for analyzing spatial patterns of stream temperature and assessed habitat selection by spring chinook salmon, evaluating whether thermal refugia might be responsible for the persistence of these stocks in rivers where water temperatures frequently exceed their upper tolerance levels (25A?C) during spawning migration. By presenting stream temperature and the ecology of chinook salmon in a historical context, we could evaluate how changes in riverine habitat and thermal spatial structure, which can be caused by land-use practices, may influence distributional patterns of chinook salmon. Thermal remote sensing provided spatially continuous maps of stream temperature for reaches used by chinook salmon in the upper subbasins of the Middle Fork and North Fork John Day River. Electivity analysis and logistic regression were used to test for associations between the longitudinal distribution of salmon and cool-water areas and stream habitat characteristics. Chinook salmon were distributed nonuniformly in reaches throughout each stream. Salmon distribution and cool water temperature patterns were most strongly related at reach-level spatial scales in the warm stream, the Middle Fork (maximum likelihood ratio: P 0.30). Pools were preferred by adult chinook salmon in both subbasins (Bonferroni confidence interval: P a?? 0.05); however, riffles were used proportionately more frequently in the North Fork than in the Middle Fork. Our observations of thermal refugia and their use by chinook salmon at multiple spatial scales reveal that, although heterogeneity in the longitudinal stream temperature profile may be viewed as an ecological warning sign, thermal patchiness in streams also should be recognized for its biological potential to provide habitat for species existing at the margin of their environmental tolerances.

  13. Multiscale connectivity and graph theory highlight critical areas for conservation under climate change.

    PubMed

    Dilt, Thomas E; Weisberg, Peter J; Leitner, Philip; Matocq, Marjorie D; Inman, Richard D; Nussear, Kenneth E; Esque, Todd C

    2016-06-01

    Conservation planning and biodiversity management require information on landscape connectivity across a range of spatial scales from individual home ranges to large regions. Reduction in landscape connectivity due changes in land use or development is expected to act synergistically with alterations to habitat mosaic configuration arising from climate change. We illustrate a multiscale connectivity framework to aid habitat conservation prioritization in the context of changing land use and climate. Our approach, which builds upon the strengths of multiple landscape connectivity methods, including graph theory, circuit theory, and least-cost path analysis, is here applied to the conservation planning requirements of the Mohave ground squirrel. The distribution of this threatened Californian species, as for numerous other desert species, overlaps with the proposed placement of several utility-scale renewable energy developments in the American southwest. Our approach uses information derived at three spatial scales to forecast potential changes in habitat connectivity under various scenarios of energy development and climate change. By disentangling the potential effects of habitat loss and fragmentation across multiple scales, we identify priority conservation areas for both core habitat and critical corridor or stepping stone habitats. This approach is a first step toward applying graph theory to analyze habitat connectivity for species with continuously distributed habitat and should be applicable across a broad range of taxa.

  14. Spatial distribution, sampling precision and survey design optimisation with non-normal variables: The case of anchovy (Engraulis encrasicolus) recruitment in Spanish Mediterranean waters

    NASA Astrophysics Data System (ADS)

    Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan

    2016-02-01

    In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.

  15. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by historic patterns of LCLU (Albania, France and India). Landsat images sensed in two time periods, up to 25 years apart, are used to extract field object classifications at each hotspot using a multispectral image segmentation approach. The field size distributions for the two periods are compared statistically and quantify examples of significant increasing field size associated primarily with agricultural technological innovation (Argentina and U.S.) and decreasing field size associated with rapid societal changes (Albania and Zimbabwe). The implications of this research, and the potential of higher spatial resolution data from planned global coverage satellites, to provide improved agricultural monitoring are discussed.

  16. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Pongetti, Thomas J.; Sander, Stanley P.; Cheung, Ross; Stutz, Jochen; Park, Chang Hyoun; Li, Qinbin

    2011-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gases and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warming Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distributions of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  17. Remote Sensing of Spatial Distributions of Greenhouse Gases in the Los Angeles Basin

    NASA Technical Reports Server (NTRS)

    Fu, Dejian; Sander, Stanley P.; Pongetti, Thomas J.; Cheung, Ross; Stutz, Jochen

    2010-01-01

    The Los Angeles air basin is a significant anthropogenic source of greenhouse gasses and pollutants including CO2, CH4, N2O, and CO, contributing significantly to regional and global climate change. Recent legislation in California, the California Global Warning Solutions Act (AB32), established a statewide cap for greenhouse gas emissions for 2020 based on 1990 emissions. Verifying the effectiveness of regional greenhouse gas emissions controls requires high-precision, regional-scale measurement methods combined with models that capture the principal anthropogenic and biogenic sources and sinks. We present a novel approach for monitoring the spatial distribution of greenhouse gases in the Los Angeles basin using high resolution remote sensing spectroscopy. We participated in the CalNex 2010 campaign to provide greenhouse gas distributions for comparison between top-down and bottom-up emission estimates.

  18. Earthquakes induced by fluid injection and explosion

    USGS Publications Warehouse

    Healy, J.H.; Hamilton, R.M.; Raleigh, C.B.

    1970-01-01

    Earthquakes generated by fluid injection near Denver, Colorado, are compared with earthquakes triggered by nuclear explosion at the Nevada Test Site. Spatial distributions of the earthquakes in both cases are compatible with the hypothesis that variation of fluid pressure in preexisting fractures controls the time distribution of the seismic events in an "aftershock" sequence. We suggest that the fluid pressure changes may also control the distribution in time and space of natural aftershock sequences and of earthquakes that have been reported near large reservoirs. ?? 1970.

  19. Detection of spatial hot spots and variation for the neon flying squid Ommastrephes bartramii resources in the northwest Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Feng, Yongjiu; Chen, Xinjun; Liu, Yan

    2017-07-01

    With the increasing effects of global climate change and fishing activities, the spatial distribution of the neon flying squid ( Ommastrephes bartramii) is changing in the traditional fishing ground of 150°-160°E and 38°-45°N in the northwest Pacific Ocean. This research aims to identify the spatial hot and cold spots (i.e. spatial clusters) of O. bartramii to reveal its spatial structure using commercial fishery data from 2007 to 2010 collected by Chinese mainland squid-jigging fleets. A relatively strongly-clustered distribution for O. bartramii was observed using an exploratory spatial data analysis (ESDA) method. The results show two hot spots and one cold spot in 2007 while only one hot and one cold spots were identified each year from 2008 to 2010. The hot and cold spots in 2007 occupied 8.2% and 5.6% of the study area, respectively; these percentages for hot and cold spot areas were 5.8% and 3.1% in 2008, 10.2% and 2.9% in 2009, and 16.4% and 11.9% in 2010, respectively. Nearly half (>45%) of the squid from 2007 to 2009 reported by Chinese fleets were caught in hot spot areas while this percentage reached its peak at 68.8% in 2010, indicating that the hot spot areas are central fishing grounds. A further change analysis shows the area centered at 156°E/43.5°N was persistent as a hot spot over the whole period from 2007 to 2010. Furthermore, the hot spots were mainly identified in areas with sea surface temperature (SST) in the range of 15-20°C around warm Kuroshio Currents as well as with the chlorophyll- a (chl- a) concentration above 0.3 mg/m3. The outcome of this research improves our understanding of spatiotemporal hotspots and its variation for O. bartramii and is useful for sustainable exploitation, assessment, and management of this squid.

  20. Correlation of spatial climate/weather maps and the advantages of using the Mahalanobis metric in predictions

    NASA Astrophysics Data System (ADS)

    Stephenson, D. B.

    1997-10-01

    The skill in predicting spatially varying weather/climate maps depends on the definition of the measure of similarity between the maps. Under the justifiable approximation that the anomaly maps are distributed multinormally, it is shown analytically that the choice of weighting metric, used in defining the anomaly correlation between spatial maps, can change the resulting probability distribution of the correlation coefficient. The estimate of the numbers of degrees of freedom based on the variance of the correlation distribution can vary from unity up to the number of grid points depending on the choice of weighting metric. The (pseudo-) inverse of the sample covariance matrix acts as a special choice for the metric in that it gives a correlation distribution which has minimal kurtosis and maximum dimension. Minimal kurtosis suggests that the average predictive skill might be improved due to the rarer occurrence of troublesome outlier patterns far from the mean state. Maximum dimension has a disadvantage for analogue prediction schemes in that it gives the minimum number of analogue states. This metric also has an advantage in that it allows one to powerfully test the null hypothesis of multinormality by examining the second and third moments of the correlation coefficient which were introduced by Mardia as invariant measures of multivariate kurtosis and skewness. For these reasons, it is suggested that this metric could be usefully employed in the prediction of weather/climate and in fingerprinting anthropogenic climate change. The ideas are illustrated using the bivariate example of the observed monthly mean sea-level pressures at Darwin and Tahitifrom 1866 1995.

  1. Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene

    NASA Astrophysics Data System (ADS)

    Speelman, Eveline N.; Sewall, Jacob O.; Noone, David; Huber, Matthew; von der Heydt, Anna; Damsté, Jaap Sinninghe; Reichart, Gert-Jan

    2010-09-01

    Proxy-based climate reconstructions suggest the existence of a strongly reduced equator-to-pole temperature gradient during the Azolla interval in the Early/Middle Eocene, compared to modern. Changes in the hydrological cycle, as a consequence of a reduced temperature gradient, are expected to be reflected in the isotopic composition of precipitation (δD, δ 18O). The interpretation of water isotopic records to quantitatively reconstruct past precipitation patterns is, however, hampered by a lack of detailed information on changes in their spatial and temporal distribution. Using the isotope-enabled version of the National Center for Atmospheric Research (NCAR) atmospheric general circulation model, Community Atmosphere Model v.3 (isoCAM3), relationships between water isotopes and past climates can be simulated. Here we examine the influence of an imposed reduced meridional sea surface temperature gradient on the spatial distribution of precipitation and its isotopic composition in an Early/Middle Eocene setting. As a result of the applied forcings, the Eocene simulation predicts the occurrence of less depleted high latitude precipitation, with δD values ranging only between 0 and -140‰ (compared to Present-day 0 to -300‰). Comparison with Early/Middle Eocene-age isotopic proxy data shows that the simulation accurately captures the main features of the spatial distribution of the isotopic composition of Early/Middle Eocene precipitation over land in conjunction with the aspects of the modeled Early/Middle Eocene climate. Hence, the included stable isotope module quantitatively supports the existence of a reduced meridional temperature gradient during this interval.

  2. Species distribution models predict temporal but not spatial variation in forest growth.

    PubMed

    van der Maaten, Ernst; Hamann, Andreas; van der Maaten-Theunissen, Marieke; Bergsma, Aldo; Hengeveld, Geerten; van Lammeren, Ron; Mohren, Frits; Nabuurs, Gert-Jan; Terhürne, Renske; Sterck, Frank

    2017-04-01

    Bioclimate envelope models have been widely used to illustrate the discrepancy between current species distributions and their potential habitat under climate change. However, the realism and correct interpretation of such projections has been the subject of considerable discussion. Here, we investigate whether climate suitability predictions correlate to tree growth, measured in permanent inventory plots and inferred from tree-ring records. We use the ensemble classifier RandomForest and species occurrence data from ~200,000 inventory plots to build species distribution models for four important European forestry species: Norway spruce, Scots pine, European beech, and pedunculate oak. We then correlate climate-based habitat suitability with volume measurements from ~50-year-old stands, available from ~11,000 inventory plots. Secondly, habitat projections based on annual historical climate are compared with ring width from ~300 tree-ring chronologies. Our working hypothesis is that habitat suitability projections from species distribution models should to some degree be associated with temporal or spatial variation in these growth records. We find that the habitat projections are uncorrelated with spatial growth records (inventory plot data), but they do predict interannual variation in tree-ring width, with an average correlation of .22. Correlation coefficients for individual chronologies range from values as high as .82 or as low as -.31. We conclude that tree responses to projected climate change are highly site-specific and that local suitability of a species for reforestation is difficult to predict. That said, projected increase or decrease in climatic suitability may be interpreted as an average expectation of increased or reduced growth over larger geographic scales.

  3. Climate suitability for European ticks: assessing species distribution models against null models and projection under AR5 climate.

    PubMed

    Williams, Hefin Wyn; Cross, Dónall Eoin; Crump, Heather Louise; Drost, Cornelis Jan; Thomas, Christopher James

    2015-08-28

    There is increasing evidence that the geographic distribution of tick species is changing. Whilst correlative Species Distribution Models (SDMs) have been used to predict areas that are potentially suitable for ticks, models have often been assessed without due consideration for spatial patterns in the data that may inflate the influence of predictor variables on species distributions. This study used null models to rigorously evaluate the role of climate and the potential for climate change to affect future climate suitability for eight European tick species, including several important disease vectors. We undertook a comparative assessment of the performance of Maxent and Mahalanobis Distance SDMs based on observed data against those of null models based on null species distributions or null climate data. This enabled the identification of species whose distributions demonstrate a significant association with climate variables. Latest generation (AR5) climate projections were subsequently used to project future climate suitability under four Representative Concentration Pathways (RCPs). Seven out of eight tick species exhibited strong climatic signals within their observed distributions. Future projections intimate varying degrees of northward shift in climate suitability for these tick species, with the greatest shifts forecasted under the most extreme RCPs. Despite the high performance measure obtained for the observed model of Hyalomma lusitanicum, it did not perform significantly better than null models; this may result from the effects of non-climatic factors on its distribution. By comparing observed SDMs with null models, our results allow confidence that we have identified climate signals in tick distributions that are not simply a consequence of spatial patterns in the data. Observed climate-driven SDMs for seven out of eight species performed significantly better than null models, demonstrating the vulnerability of these tick species to the effects of climate change in the future.

  4. A dam-reservoir module for a semi-distributed hydrological model

    NASA Astrophysics Data System (ADS)

    de Lavenne, Alban; Thirel, Guillaume; Andréassian, Vazken; Perrin, Charles; Ramos, Maria-Helena

    2017-04-01

    Developing modeling tools that help to assess the spatial distribution of water resources is a key issue to achieve better solutions for the optimal management of water availability among users in a river basin. Streamflow dynamics depends on (i) the spatial variability of rainfall, (ii) the heterogeneity of catchment behavior and response, and (iii) local human regulations (e.g., reservoirs) that store and control surface water. These aspects can be successfully handled by distributed or semi-distributed hydrological models. In this study, we develop a dam-reservoir module within a semi-distributed rainfall-runoff model (de Lavenne et al. 2016). The model runs at the daily time step, and has five parameters for each sub-catchment as well as a streamflow velocity parameter for flow routing. Its structure is based on two stores, one for runoff production and one for routing. The calibration of the model is performed from upstream to downstream sub-catchments, which efficiently uses spatially-distributed streamflow measurements. In a previous study, Payan et al. (2008) described a strategy to implement a dam module within a lumped rainfall-runoff model. Here we propose to adapt this strategy to a semi-distributed hydrological modelling framework. In this way, the specific location of existing reservoirs inside a river basin is explicitly accounted for. Our goal is to develop a tool that can provide answers to the different issues involved in spatial water management in human-influenced contexts and at large modelling scales. The approach is tested for the Seine basin in France. Results are shown for model performance with and without the dam module. Also, a comparison with the lumped GR5J model highlights the improvements obtained in model performance by considering human influences more explicitly, and by facilitating parameter identifiability. This work opens up new perspectives for streamflow naturalization analyses and scenario-based spatial assessment of water resources under global change. References de Lavenne, A.; Thirel, G.; Andréassian, V.; Perrin, C. & Ramos, M.-H. (2016), 'Spatial variability of the parameters of a semi-distributed hydrological model', PIAHS 373, 87-94. Payan, J.-L.; Perrin, C.; Andréassian, V. & Michel, C. (2008), 'How can man-made water reservoirs be accounted for in a lumped rainfall-runoff model?', Water Resour. Res. 44(3), W03420.

  5. The automated analysis of clustering behaviour of piglets from thermal images in response to immune challenge by vaccination.

    PubMed

    Cook, N J; Bench, C J; Liu, T; Chabot, B; Schaefer, A L

    2018-01-01

    An automated method of estimating the spatial distribution of piglets within a pen was used to assess huddling behaviour under normal conditions and during a febrile response to vaccination. The automated method was compared with a manual assessment of clustering activity. Huddling behaviour was partly related to environmental conditions and clock time such that more huddling occurred during the night and at lower ambient air temperatures. There were no positive relationships between maximum pig temperatures and environmental conditions, suggesting that the narrow range of air temperatures in this study was not a significant factor for pig temperature. Spatial distribution affected radiated pig temperature measurements by IR thermography. Higher temperatures were recorded in groups of animals displaying huddling behaviour. Huddling behaviour was affected by febrile responses to vaccination with increased huddling occurring 3 to 8 h post-vaccination. The automated method of assessing spatial distribution from an IR image successfully identified periods of huddling associated with a febrile response, and to changing environmental temperatures. Infrared imaging could be used to quantify temperature and behaviour from the same images.

  6. Nonlinear Reduced-Order Analysis with Time-Varying Spatial Loading Distributions

    NASA Technical Reports Server (NTRS)

    Prezekop, Adam

    2008-01-01

    Oscillating shocks acting in combination with high-intensity acoustic loadings present a challenge to the design of resilient hypersonic flight vehicle structures. This paper addresses some features of this loading condition and certain aspects of a nonlinear reduced-order analysis with emphasis on system identification leading to formation of a robust modal basis. The nonlinear dynamic response of a composite structure subject to the simultaneous action of locally strong oscillating pressure gradients and high-intensity acoustic loadings is considered. The reduced-order analysis used in this work has been previously demonstrated to be both computationally efficient and accurate for time-invariant spatial loading distributions, provided that an appropriate modal basis is used. The challenge of the present study is to identify a suitable basis for loadings with time-varying spatial distributions. Using a proper orthogonal decomposition and modal expansion, it is shown that such a basis can be developed. The basis is made more robust by incrementally expanding it to account for changes in the location, frequency and span of the oscillating pressure gradient.

  7. Impact of increasing antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Merino, Nacho; Jourdain, Nicolas C.; Le Sommer, Julien; Goosse, Hugues; Mathiot, Pierre; Durand, Gael

    2018-01-01

    The sensitivity of Antarctic sea-ice to increasing glacial freshwater release into the Southern Ocean is studied in a series of 31-year ocean/sea-ice/iceberg model simulations. Glaciological estimates of ice-shelf melting and iceberg calving are used to better constrain the spatial distribution and magnitude of freshwater forcing around Antarctica. Two scenarios of glacial freshwater forcing have been designed to account for a decadal perturbation in glacial freshwater release to the Southern Ocean. For the first time, this perturbation explicitly takes into consideration the spatial distribution of changes in the volume of Antarctic ice shelves, which is found to be a key component of changes in freshwater release. In addition, glacial freshwater-induced changes in sea ice are compared to typical changes induced by the decadal evolution of atmospheric states. Our results show that, in general, the increase in glacial freshwater release increases Antarctic sea ice extent. But the response is opposite in some regions like the coastal Amundsen Sea, implying that distinct physical mechanisms are involved in the response. We also show that changes in freshwater forcing may induce large changes in sea-ice thickness, explaining about one half of the total change due to the combination of atmospheric and freshwater changes. The regional contrasts in our results suggest a need for improving the representation of freshwater sources and their evolution in climate models.

  8. Fusion of UAV photogrammetry and digital optical granulometry for detection of structural changes in floodplains

    NASA Astrophysics Data System (ADS)

    Langhammer, Jakub; Lendzioch, Theodora; Mirijovsky, Jakub

    2016-04-01

    Granulometric analysis represents a traditional, important and for the description of sedimentary material substantial method with various applications in sedimentology, hydrology and geomorphology. However, the conventional granulometric field survey methods are time consuming, laborious, costly and are invasive to the surface being sampled, which can be limiting factor for their applicability in protected areas.. The optical granulometry has recently emerged as an image analysis technique, enabling non-invasive survey, employing semi-automated identification of clasts from calibrated digital imagery, taken on site by conventional high resolution digital camera and calibrated frame. The image processing allows detection and measurement of mixed size natural grains, their sorting and quantitative analysis using standard granulometric approaches. Despite known limitations, the technique today presents reliable tool, significantly easing and speeding the field survey in fluvial geomorphology. However, the nature of such survey has still limitations in spatial coverage of the sites and applicability in research at multitemporal scale. In our study, we are presenting novel approach, based on fusion of two image analysis techniques - optical granulometry and UAV-based photogrammetry, allowing to bridge the gap between the needs of high resolution structural information for granulometric analysis and spatially accurate and data coverage. We have developed and tested a workflow that, using UAV imaging platform enabling to deliver seamless, high resolution and spatially accurate imagery of the study site from which can be derived the granulometric properties of the sedimentary material. We have set up a workflow modeling chain, providing (i) the optimum flight parameters for UAV imagery to balance the two key divergent requirements - imagery resolution and seamless spatial coverage, (ii) the workflow for the processing of UAV acquired imagery by means of the optical granulometry and (iii) the workflow for analysis of spatial distribution and temporal changes of granulometric properties across the point bar. The proposed technique was tested on a case study of an active point bar of mid-latitude mountain stream at Sumava mountains, Czech Republic, exposed to repeated flooding. The UAV photogrammetry was used to acquire very high resolution imagery to build high-precision digital terrain models and orthoimage. The orthoimage was then analyzed using the digital optical granulometric tool BaseGrain. This approach allowed us (i) to analyze the spatial distribution of the grain size in a seamless transects over an active point bar and (ii) to assess the multitemporal changes of granulometric properties of the point bar material resulting from flooding. The tested framework prove the applicability of the proposed method for granulometric analysis with accuracy comparable with field optical granulometry. The seamless nature of the data enables to study spatial distribution of granulometric properties across the study sites as well as the analysis of multitemporal changes, resulting from repeated imaging.

  9. Exploiting spectral content for image segmentation in GPR data

    NASA Astrophysics Data System (ADS)

    Wang, Patrick K.; Morton, Kenneth D., Jr.; Collins, Leslie M.; Torrione, Peter A.

    2011-06-01

    Ground-penetrating radar (GPR) sensors provide an effective means for detecting changes in the sub-surface electrical properties of soils, such as changes indicative of landmines or other buried threats. However, most GPR-based pre-screening algorithms only localize target responses along the surface of the earth, and do not provide information regarding an object's position in depth. As a result, feature extraction algorithms are forced to process data from entire cubes of data around pre-screener alarms, which can reduce feature fidelity and hamper performance. In this work, spectral analysis is investigated as a method for locating subsurface anomalies in GPR data. In particular, a 2-D spatial/frequency decomposition is applied to pre-screener flagged GPR B-scans. Analysis of these spatial/frequency regions suggests that aspects (e.g. moments, maxima, mode) of the frequency distribution of GPR energy can be indicative of the presence of target responses. After translating a GPR image to a function of the spatial/frequency distributions at each pixel, several image segmentation approaches can be applied to perform segmentation in this new transformed feature space. To illustrate the efficacy of the approach, a performance comparison between feature processing with and without the image segmentation algorithm is provided.

  10. The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.

    1994-01-01

    In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.

  11. Effects of geometrical structure on spatial distribution of thermal energy in two-dimensional triangular lattices

    NASA Astrophysics Data System (ADS)

    Liu, Yong-Yang; Xu, Yu-Liang; Liu, Zhong-Qiang; Li, Jing; Wang, Chun-Yang; Kong, Xiang-Mu

    2018-07-01

    Employing the correlation matrix technique, the spatial distribution of thermal energy in two-dimensional triangular lattices in equilibrium, interacting with linear springs, is studied. It is found that the spatial distribution of thermal energy varies with the included angle of the springs. In addition, the average thermal energy of the longer springs is lower. Springs with different included angle and length will lead to an inhomogeneous spatial distribution of thermal energy. This suggests that the spatial distribution of thermal energy is affected by the geometrical structure of the system: the more asymmetric the geometrical structure of the system is, the more inhomogeneous is the spatial distribution of thermal energy.

  12. Contribution of human, climate and biophysical drivers to the spatial distribution of wildfires in a French Mediterranean area: where do wildfires start and spread?

    NASA Astrophysics Data System (ADS)

    Ruffault, Julien; Mouillot, Florent; Moebius, Flavia

    2013-04-01

    Understanding the contribution of biophysical and human drivers to the spatial distribution of fires at regional scale has many ecological and economical implications in a context of on-going global changes. However these fire drivers often interact in complex ways, such that disentangling and assessing the relative contribution of human vs. biophysical factors remains a major challenge. Indeed, the identification of biophysical conditions that promote fires are confused by the inherent stochasticity in fire occurrences and fire spread on the one hand and, by the influence of human factors -through both fire ignition and suppression - on the other. Moreover, different factors may drive fire ignition and fire spread, in such a way that the areas with the highest density of ignitions may not coincide with those where large fires occur. In the present study, we investigated the drivers of fires ignition and spread in a Mediterranean area of southern France. We used a 17 years fire database (the PROMETHEE database from 1989-2006) combined with a set of 8 explanatory variables describing the spatial pattern in ignitions, vegetation and fire weather. We first isolated the weather conditions affecting the fire occurrence and their spread using a statistical model of the weather/fuel water status for each fire event.. The results of these statistical models were used to map the fire weather in terms of average number of days with suitable conditions for burning. Then, we used Boosted regression trees (BRT) models to assess the relative importance of the different variables on the distribution of wildfire with different sizes and to assess the relationship between each variables and fire occurrence and spread probabilities. We found that human activities explained up to 50 % of the spatial distribution of fire ignitions (SDI). The distribution of large fire was chiefly explained by fuel characteristics (about 40%). Surprisingly, the weather indices explained only 20 % of the SDI and its contribution does no vary according to the size of considered fire events. These results suggest that changes in fuel characteristics and human settlements/ activities, rather than weather conditions are the most likely to modify the future distribution of fires in this Mediterranean area. These conclusions provide useful information on the scenarios that could arise from the interaction of changes in climate and land cover for the Mediterranean area in the near future.

  13. Enhancing Spatial Attention and Working Memory in Younger and Older Adults

    PubMed Central

    Rolle, Camarin E.; Anguera, Joaquin A.; Skinner, Sasha N.; Voytek, Bradley; Gazzaley, Adam

    2018-01-01

    Daily experiences demand both focused and broad allocation of attention for us to interact efficiently with our complex environments. Many types of attention have shown age-related decline, although there is also evidence that such deficits may be remediated with cognitive training. However, spatial attention abilities have shown inconsistent age-related differences, and the extent of potential enhancement of these abilities remains unknown. Here, we assessed spatial attention in both healthy younger and older adults and trained this ability in both age groups for 5 hr over the course of 2 weeks using a custom-made, computerized mobile training application. We compared training-related gains on a spatial attention assessment and spatial working memory task to age-matched controls who engaged in expectancy-matched, active placebo computerized training. Age-related declines in spatial attention abilities were observed regardless of task difficulty. Spatial attention training led to improved focused and distributed attention abilities as well as improved spatial working memory in both younger and older participants. No such improvements were observed in either of the age-matched control groups. Note that these findings were not a function of improvements in simple response time, as basic motoric function did not change after training. Furthermore, when using change in simple response time as a covariate, all findings remained significant. These results suggest that spatial attention training can lead to enhancements in spatial working memory regardless of age. PMID:28654361

  14. Enhancing Spatial Attention and Working Memory in Younger and Older Adults.

    PubMed

    Rolle, Camarin E; Anguera, Joaquin A; Skinner, Sasha N; Voytek, Bradley; Gazzaley, Adam

    2017-09-01

    Daily experiences demand both focused and broad allocation of attention for us to interact efficiently with our complex environments. Many types of attention have shown age-related decline, although there is also evidence that such deficits may be remediated with cognitive training. However, spatial attention abilities have shown inconsistent age-related differences, and the extent of potential enhancement of these abilities remains unknown. Here, we assessed spatial attention in both healthy younger and older adults and trained this ability in both age groups for 5 hr over the course of 2 weeks using a custom-made, computerized mobile training application. We compared training-related gains on a spatial attention assessment and spatial working memory task to age-matched controls who engaged in expectancy-matched, active placebo computerized training. Age-related declines in spatial attention abilities were observed regardless of task difficulty. Spatial attention training led to improved focused and distributed attention abilities as well as improved spatial working memory in both younger and older participants. No such improvements were observed in either of the age-matched control groups. Note that these findings were not a function of improvements in simple response time, as basic motoric function did not change after training. Furthermore, when using change in simple response time as a covariate, all findings remained significant. These results suggest that spatial attention training can lead to enhancements in spatial working memory regardless of age.

  15. A Molecular Investigation of Soil Organic Carbon Composition, Variability, and Spatial Distribution Across an Alpine Catchment

    NASA Astrophysics Data System (ADS)

    Hsu, H. T.; Lawrence, C. R.; Winnick, M.; Druhan, J. L.; Williams, K. H.; Maher, K.; Rainaldi, G. R.; McCormick, M. E.

    2016-12-01

    The cycling of carbon through soils is one of the least understood aspects of the global carbon cycle and represents a key uncertainty in the prediction of land-surface response to global warming. Thus, there is an urgent need for advanced characterization of soil organic carbon (SOC) to develop and evaluate a new generation of soil carbon models. We hypothesize that shifts in SOC composition and spatial distribution as a function of soil depth can be used to constrain rates of transformation between the litter layer and the deeper subsoil (extending to a depth of approximately 1 m). To evaluate the composition and distribution of SOC, we collected soil samples from East River, a shale-dominated watershed near Crested Butte, CO, and characterized relative changes in SOC species as a function of depth using elemental analysis (EA), Fourier transform infrared spectroscopy (FT-IR) and bulk C X-ray absorption spectroscopy (XAS). Our results show that total organic carbon (TOC) decreases with depth, and high total inorganic carbon (TIC) content was found in deeper soils (after 75 cm), a characteristic of the bedrock (shale). The distribution of aliphatic C relative to the parent material generally decreases with depth and that polysaccharide can be a substantial component of SOC at various depths. On the other hand, the relative distribution of aromatic C, traditionally viewed as recalcitrant, only makes up a very small part of SOC regardless of depth. These observations confirm that molecular structure is not the only determinant of SOC turnover rate. To study other contributors to SOC decomposition, we studied changes in the spatial correlation of SOC and minerals using X-ray fluorescence spectroscopy (XRF) and scanning transmission X-ray microscopy (STXM). We found that aromatics mostly locate on the surface of small soil aggregates (1-10 μm). Polysaccharides and proteins, both viewed as labile traditionally, are more evenly distributed over the interior of the particles, which could limit microbial access and thus decrease decomposition rate. The speciation and spatial distribution results can be compared to field-measured CO2-fluxes, soil moisture, and radiocarbon data to assess the factors that control SOC turnover rates in different environments across the catchment and enhance the development of SOC models.

  16. Monitoring the Vertical Distribution of Rainfall-Induced Strain Changes in a Landslide Measured by Distributed Fiber Optic Sensing With Rayleigh Backscattering

    NASA Astrophysics Data System (ADS)

    Kogure, Tetsuya; Okuda, Yudai

    2018-05-01

    Distributed fiber optic sensing with Rayleigh backscattering, which has been recognized as a novel technique for measuring differences in temperature or strain, was adopted in a borehole to a depth of 16 m in an actual landslide to detect a vertical profile of strain changes. Strain changes were measured every 6 hr from 19 June 2017 to 18 October 2017 with a spatial resolution of 10 cm and strain resolution of 1.87 μɛ. The measurements provided a clear-cut vertical profile of the strain changes caused by rainfalls that cannot be detected by conventional methods. The results show that there are two types of deformation in the landslide mass: (1) sliding at the boundary between tuff and mudstone and (2) creep in mudstone layers. Activation of deeper sections of the landslide by heavy rainfalls has also been detected.

  17. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin

    PubMed Central

    2014-01-01

    Background Global environmental change is causing spatial and temporal shifts in the distribution of species and the associated diseases of humans, domesticated animals and wildlife. In the on-going debate on the influence of climate change on vectors and vector-borne diseases, there is a lack of a comprehensive interdisciplinary multi-factorial approach utilizing high quality spatial and temporal data. Methods We explored biotic and abiotic factors associated with the latitudinal and altitudinal shifts in the distribution of Ixodes ricinus observed during the last three decades in Norway using antibodies against Anaplasma phagocytophilum in sheep as indicators for tick presence. Samples obtained from 2963 sheep from 90 farms in 3 ecologically different districts during 1978 – 2008 were analysed. We modelled the presence of antibodies against A. phagocytophilum to climatic-, environmental and demographic variables, and abundance of wild cervids and domestic animals, using mixed effect logistic regressions. Results Significant predictors were large diurnal fluctuations in ground surface temperature, spring precipitation, duration of snow cover, abundance of red deer and farm animals and bush encroachment/ecotones. The length of the growth season, mean temperature and the abundance of roe deer were not significant in the model. Conclusions Our results highlight the need to consider climatic variables year-round to disentangle important seasonal variation, climatic threshold changes, climate variability and to consider the broader environmental change, including abiotic and biotic factors. The results offer novel insight in how tick and tick-borne disease distribution might be modified by future climate and environmental change. PMID:24401487

  18. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  19. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA

    PubMed Central

    Jiang, Yueyang; Kim, John B.; Still, Christopher J.; Kerns, Becky K.; Kline, Jeffrey D.; Cunningham, Patrick G.

    2018-01-01

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies. PMID:29461513

  20. Inter-comparison of multiple statistically downscaled climate datasets for the Pacific Northwest, USA.

    PubMed

    Jiang, Yueyang; Kim, John B; Still, Christopher J; Kerns, Becky K; Kline, Jeffrey D; Cunningham, Patrick G

    2018-02-20

    Statistically downscaled climate data have been widely used to explore possible impacts of climate change in various fields of study. Although many studies have focused on characterizing differences in the downscaling methods, few studies have evaluated actual downscaled datasets being distributed publicly. Spatially focusing on the Pacific Northwest, we compare five statistically downscaled climate datasets distributed publicly in the US: ClimateNA, NASA NEX-DCP30, MACAv2-METDATA, MACAv2-LIVNEH and WorldClim. We compare the downscaled projections of climate change, and the associated observational data used as training data for downscaling. We map and quantify the variability among the datasets and characterize the spatio-temporal patterns of agreement and disagreement among the datasets. Pair-wise comparisons of datasets identify the coast and high-elevation areas as areas of disagreement for temperature. For precipitation, high-elevation areas, rainshadows and the dry, eastern portion of the study area have high dissimilarity among the datasets. By spatially aggregating the variability measures into watersheds, we develop guidance for selecting datasets within the Pacific Northwest climate change impact studies.

  1. Impact of spatial variation in snow water equivalent and snow ablation on spring snowcover depletion over an alpine ridge

    NASA Astrophysics Data System (ADS)

    Schirmer, Michael; Harder, Phillip; Pomeroy, John

    2016-04-01

    The spatial and temporal dynamics of mountain snowmelt are controlled by the spatial distribution of snow accumulation and redistribution and the pattern of melt energy applied to this snowcover. In order to better quantify the spatial variations of accumulation and ablation, Structure-from-Motion techniques were applied to sequential aerial photographs of an alpine ridge in the Canadian Rocky Mountains taken from an Unmanned Aerial Vehicle (UAV). Seven spatial maps of snow depth and changes to depth during late melt (May-July) were generated at very high resolutions covering an area of 800 x 600 m. The accuracy was assessed with over 100 GPS measurements and RMSE were found to be less than 10 cm. Low resolution manual measurements of density permitted calculation of snow water equivalent (SWE) and change in SWE (ablation rate). The results indicate a highly variable initial SWE distribution, which was five times more variable than the spatial variation in ablation rate. Spatial variation in ablation rate was still substantial, with a factor of two difference between north and south aspects and small scale variations due to local dust deposition. However, the impact of spatial variations in ablation rate on the snowcover depletion curve could not be discerned. The reason for this is that only a weak spatial correlation developed between SWE and ablation rate. These findings suggest that despite substantial variations in ablation rate, snowcover depletion curve calculations should emphasize the spatial variation of initial SWE rather than the variation in ablation rate. While there is scientific evidence from other field studies that support this, there are also studies that suggest that spatial variations in ablation rate can influence snowcover depletion curves in complex terrain, particularly in early melt. The development of UAV photogrammetry has provided an opportunity for further detailed measurement of ablation rates, SWE and snowcover depletion over complex terrain and UAV field studies are recommended to clarify the relative importance of SWE and melt variability on snowcover depletion in various environmental conditions.

  2. Stability and Change in Female and Male Violence across Rural and Urban Counties, 1981-2006

    ERIC Educational Resources Information Center

    Schwartz, Jennifer; Gertseva, Arina

    2010-01-01

    Two durable criminological patterns have been higher violence rates in urban compared to rural areas and by males compared to females. To derive and evaluate hypotheses related to correspondence across place and sex groups in changes in violence trends, we draw on a spatial-inequality perspective that attends to the geographic distribution of…

  3. Tree migration detection through comparisons of historic and current forest inventories

    Treesearch

    Christopher W. Woodall; Christopher M. Oswalt; James A. Westfall; Charles H. Perry; Mark N. Nelson

    2009-01-01

    Changes in tree species distributions are a potential impact of climate change on forest ecosystems. The examination of tree species shifts in forests of the eastern United States largely has been limited to modeling activities with little empirical analysis of long-term forest inventory datasets. The goal of this study was to compare historic and current spatial...

  4. An overview of mesoscales distribution of ocean color in the North Atlantic

    NASA Technical Reports Server (NTRS)

    Yentsch, C. S.

    1989-01-01

    The spatial changes in phytoplankton abundance is the result of regional differences in the amount of nutrient fluxed into the euphotic zone. The energy contributing to this flux is derived from ocean currents. A close coupling between physics and biology of the system accounts for mesoscale features associated with fluid dynamics being reflected by changes in ocean color.

  5. Revealed variations of air quality in industrial development over a remote plateau of Southwest China: an application of atmospheric visibility data

    NASA Astrophysics Data System (ADS)

    Zhao, Tianliang; Liu, Di; Zheng, Xiaobo; Yang, Lexin; Gu, Xiaoping; Hu, Jun; Shu, Zhuozhi; Chang, Jiacheng; Wu, Xiasheng

    2017-12-01

    Since the 1980s, an industrial development has bloomed in China including the Yunnan-Guizhou Plateau (YGP), a remote region in Southwest China. To analyze the regional variations in air quality over YGP during the industrial development, we adopt the equivalent visibility by excluding the influence of natural factors on the observed visibility based on the meteorological data observed at 203 sites over YGP from 1980 to 2010 in this study. The YGP air quality exhibits the tremendous spatial differences in a general distribution from western good to eastern poor air quality. A similar pattern shifts seasonally in the spatial distribution with a typical seasonality of air quality over YGP between summertime low air pollution and wintertime high air pollution. The increasing and decreasing trends in visibility are mostly concentrated, respectively, in the YGP regions with high and low visibility, displaying the phenomenon of polarization in air quality change over YGP during 1980-2010. The regional mean visibility of the YGP presents a significant declining trend with change rate of -1.5 km decade-1 for air quality deterioration. The seasonal differences in visibility between summer (33.6 km) and winter (25.2 km) became obscure with the interannual change trends of visibility with stronger declines (-2.29 km decade-1) in summer and weaker decreases (-0.89 km decade-1) in winter over 1980-2010, which lead to a indistinct seasonality of air quality change over YGP. The remote YGP had experienced more frequent haze pollution, especially in the eastern plateau over 31 years. In accompany of increasing energy consumption in the industrial development, population growth is an important factor influencing the interannual change of YGP air quality. The distinct spatial distribution in the YGP terrain exerts an impact on poor air quality in lower flatlands harbored by mountainous topography with good air quality. Declined monsoon winds could meteorologically drive the air quality change with less regional transport of air pollutant over YGP during 1980-2010. Implications of the climate change for atmospheric environment will be having potential utility for sustainable development in China.

  6. The spatial distribution of threats to plant species with extremely small populations

    NASA Astrophysics Data System (ADS)

    Wang, Chunjing; Zhang, Jing; Wan, Jizhong; Qu, Hong; Mu, Xianyun; Zhang, Zhixiang

    2017-03-01

    Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.

  7. Effects of Fiber Type and Size on the Heterogeneity of Oxygen Distribution in Exercising Skeletal Muscle

    PubMed Central

    Liu, Gang; Mac Gabhann, Feilim; Popel, Aleksander S.

    2012-01-01

    The process of oxygen delivery from capillary to muscle fiber is essential for a tissue with variable oxygen demand, such as skeletal muscle. Oxygen distribution in exercising skeletal muscle is regulated by convective oxygen transport in the blood vessels, oxygen diffusion and consumption in the tissue. Spatial heterogeneities in oxygen supply, such as microvascular architecture and hemodynamic variables, had been observed experimentally and their marked effects on oxygen exchange had been confirmed using mathematical models. In this study, we investigate the effects of heterogeneities in oxygen demand on tissue oxygenation distribution using a multiscale oxygen transport model. Muscles are composed of different ratios of the various fiber types. Each fiber type has characteristic values of several parameters, including fiber size, oxygen consumption, myoglobin concentration, and oxygen diffusivity. Using experimentally measured parameters for different fiber types and applying them to the rat extensor digitorum longus muscle, we evaluated the effects of heterogeneous fiber size and fiber type properties on the oxygen distribution profile. Our simulation results suggest a marked increase in spatial heterogeneity of oxygen due to fiber size distribution in a mixed muscle. Our simulations also suggest that the combined effects of fiber type properties, except size, do not contribute significantly to the tissue oxygen spatial heterogeneity. However, the incorporation of the difference in oxygen consumption rates of different fiber types alone causes higher oxygen heterogeneity compared to control cases with uniform fiber properties. In contrast, incorporating variation in other fiber type-specific properties, such as myoglobin concentration, causes little change in spatial tissue oxygenation profiles. PMID:23028531

  8. Spatial distribution of Eucalyptus roots in a deep sandy soil in the Congo: relationships with the ability of the stand to take up water and nutrients.

    PubMed

    Laclau, J P; Arnaud, M; Bouillet, J P; Ranger, J

    2001-02-01

    Spatial statistical analyses were performed to describe root distribution and changes in soil strength in a mature clonal plantation of Eucalyptus spp. in the Congo. The objective was to analyze spatial variability in root distribution. Relationships between root distribution, soil strength and the water and nutrient uptake by the stand were also investigated. We studied three, 2.35-m-wide, vertical soil profiles perpendicular to the planting row and at various distances from a representative tree. The soil profiles were divided into 25-cm2 grid cells and the number of roots in each of three diameter classes counted in each grid cell. Two profiles were 2-m deep and the third profile was 5-m deep. There was both vertical and horizontal anisotropy in the distribution of fine roots in the three profiles, with root density decreasing sharply with depth and increasing with distance from the stump. Roots were present in areas with high soil strength values (> 6,000 kPa). There was a close relationship between soil water content and soil strength in this sandy soil. Soil strength increased during the dry season mainly because of water uptake by fine roots. There were large areas with low root density, even in the topsoil. Below a depth of 3 m, fine roots were spatially concentrated and most of the soil volume was not explored by roots. This suggests the presence of drainage channels, resulting from the severe hydrophobicity of the upper soil.

  9. Environmental determinants of the spatial distribution of Echinococcus multilocularis in Hungary.

    PubMed

    Tolnai, Z; Széll, Z; Sréter, T

    2013-12-06

    Human alveolar echinococcosis, caused by the metacestode stage of Echinococcus multilocularis, is one of the most pathogenic zoonoses in the temperate and arctic region of the Northern Hemisphere. To investigate the spatial distribution of E. multilocularis and the factors influencing this distribution in the recently identified endemic area of Hungary, 1612 red fox (Vulpes vulpes) carcasses were randomly collected from the whole Hungarian territory from November 2008 to February 2009 and from November 2012 to February 2013. The topographic positions of foxes were recorded in geographic information system database. The digitized home ranges and the vector data were used to calculate the altitude, mean annual temperature, annual precipitation, soil water retention, soil permeability, areas of land cover types and the presence and buffer zone of permanent water bodies within the fox territories. The intestinal mucosa from all the foxes was tested by sedimentation and counting technique. Multiple regression analysis was performed with environmental parameter values and E. multilocularis counts. The spatial distribution of the parasite was clumped. Based on statistical analysis, mean annual temperature and annual precipitation were the major determinants of the spatial distribution of E. multilocularis in Hungary. It can be attributed to the sensitivity of E. multilocularis eggs to high temperatures and desiccation. Although spreading and emergence of the parasite was observed in Hungary before 2009, the prevalence and intensity of infection did not change significantly between the two collection periods. It can be explained by the considerably lower annual precipitation before the second collection period. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions.

    PubMed

    Singh, Anuradha; Mantri, Shrikant; Sharma, Monica; Chaudhury, Ashok; Tuli, Rakesh; Roy, Joy

    2014-01-16

    The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers.

  11. Genome-wide transcriptome study in wheat identified candidate genes related to processing quality, majority of them showing interaction (quality x development) and having temporal and spatial distributions

    PubMed Central

    2014-01-01

    Background The cultivated bread wheat (Triticum aestivum L.) possesses unique flour quality, which can be processed into many end-use food products such as bread, pasta, chapatti (unleavened flat bread), biscuit, etc. The present wheat varieties require improvement in processing quality to meet the increasing demand of better quality food products. However, processing quality is very complex and controlled by many genes, which have not been completely explored. To identify the candidate genes whose expressions changed due to variation in processing quality and interaction (quality x development), genome-wide transcriptome studies were performed in two sets of diverse Indian wheat varieties differing for chapatti quality. It is also important to understand the temporal and spatial distributions of their expressions for designing tissue and growth specific functional genomics experiments. Results Gene-specific two-way ANOVA analysis of expression of about 55 K transcripts in two diverse sets of Indian wheat varieties for chapatti quality at three seed developmental stages identified 236 differentially expressed probe sets (10-fold). Out of 236, 110 probe sets were identified for chapatti quality. Many processing quality related key genes such as glutenin and gliadins, puroindolines, grain softness protein, alpha and beta amylases, proteases, were identified, and many other candidate genes related to cellular and molecular functions were also identified. The ANOVA analysis revealed that the expression of 56 of 110 probe sets was involved in interaction (quality x development). Majority of the probe sets showed differential expression at early stage of seed development i.e. temporal expression. Meta-analysis revealed that the majority of the genes expressed in one or a few growth stages indicating spatial distribution of their expressions. The differential expressions of a few candidate genes such as pre-alpha/beta-gliadin and gamma gliadin were validated by RT-PCR. Therefore, this study identified several quality related key genes including many other genes, their interactions (quality x development) and temporal and spatial distributions. Conclusions The candidate genes identified for processing quality and information on temporal and spatial distributions of their expressions would be useful for designing wheat improvement programs for processing quality either by changing their expression or development of single nucleotide polymorphisms (SNPs) markers. PMID:24433256

  12. Spatial variability of the shallow groundwater level and its chemistry characteristics in the low plain around the Bohai Sea, North China.

    PubMed

    Zhou, Zaiming; Zhang, Guanghui; Yan, Mingjiang; Wang, Jinzhe

    2012-06-01

    To characterize the spatial distribution of groundwater level (GWL) and its chemistry characteristics in the low plain around the Bohai Sea, shallow groundwater depth of 130 wells were determined. Water soluble ions composition, total dissolved solid (TDS), electric conductivity (EC), total hardness (TH), total alkalinity (TA), and total salt content (TS) of 128 representative groundwater samples were also measured. Classical statistics, geostatistical method combined with GIS technique were then used to analyze the spatial variability and distribution of GWL and groundwater chemical properties. Results show that GWL, TDS, EC, TH, TA, and TS all presented a lognormal distribution and could be fitted by different semivariogram models (spherical, exponential, and Gaussian). Spatial structure of GWL, TDS, EC, TH, TA, and TS changed obviously. GWL decreased from west inland plain to the east coastal plain, however, TDS, EC, and TS increased from west to east, TH and TA were higher in the middle and coastal plain area. Groundwater chemical type in the coastal plain was SO (4) (2-) ·Cl(-)-Na(+) while chemical types in the inland plain were SO (4) (2-) ·Cl(-)-Ca(2+)·Mg(2+) and HCO (3) (-) -Ca(2+)·Mg(2+).

  13. Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM)

    PubMed Central

    Wang, Siyang; Xu, Xiaoting; Shrestha, Nawal; Zimmermann, Niklaus E.; Tang, Zhiyao; Wang, Zhiheng

    2017-01-01

    Analyzing how climate change affects vegetation distribution is one of the central issues of global change ecology as this has important implications for the carbon budget of terrestrial vegetation. Mapping vegetation distribution under historical climate scenarios is essential for understanding the response of vegetation distribution to future climatic changes. The reconstructions of palaeovegetation based on pollen data provide a useful method to understand the relationship between climate and vegetation distribution. However, this method is limited in time and space. Here, using species distribution model (SDM) approaches, we explored the climatic determinants of contemporary vegetation distribution and reconstructed the distribution of Chinese vegetation during the Last Glacial Maximum (LGM, 18,000 14C yr BP) and Middle-Holocene (MH, 6000 14C yr BP). The dynamics of vegetation distribution since the LGM reconstructed by SDMs were largely consistent with those based on pollen data, suggesting that the SDM approach is a useful tool for studying historical vegetation dynamics and its response to climate change across time and space. Comparison between the modeled contemporary potential natural vegetation distribution and the observed contemporary distribution suggests that temperate deciduous forests, subtropical evergreen broadleaf forests, temperate deciduous shrublands and temperate steppe have low range fillings and are strongly influenced by human activities. In general, the Tibetan Plateau, North and Northeast China, and the areas near the 30°N in Central and Southeast China appeared to have experienced the highest turnover in vegetation due to climate change from the LGM to the present. PMID:28426780

  14. Manipulative parasites may not alter intermediate host distribution but still enhance their transmission: field evidence for increased vulnerability to definitive hosts and non-host predator avoidance.

    PubMed

    Lagrue, C; Güvenatam, A; Bollache, L

    2013-02-01

    Behavioural alterations induced by parasites in their intermediate hosts can spatially structure host populations, possibly resulting in enhanced trophic transmission to definitive hosts. However, such alterations may also increase intermediate host vulnerability to non-host predators. Parasite-induced behavioural alterations may thus vary between parasite species and depend on each parasite definitive host species. We studied the influence of infection with 2 acanthocephalan parasites (Echinorhynchus truttae and Polymorphus minutus) on the distribution of the amphipod Gammarus pulex in the field. Predator presence or absence and predator species, whether suitable definitive host or dead-end predator, had no effect on the micro-distribution of infected or uninfected G. pulex amphipods. Although neither parasite species seem to influence intermediate host distribution, E. truttae infected G. pulex were still significantly more vulnerable to predation by fish (Cottus gobio), the parasite's definitive hosts. In contrast, G. pulex infected with P. minutus, a bird acanthocephalan, did not suffer from increased predation by C. gobio, a predator unsuitable as host for P. minutus. These results suggest that effects of behavioural changes associated with parasite infections might not be detectable until intermediate hosts actually come in contact with predators. However, parasite-induced changes in host spatial distribution may still be adaptive if they drive hosts into areas of high transmission probabilities.

  15. Insights from Modelling the Spatial Dependence Structure of Hydraulic Conductivity at the MADE Site Using Spatial Copulas

    NASA Astrophysics Data System (ADS)

    Haslauer, Claus; Bohling, Geoff

    2013-04-01

    Hydraulic conductivity (K) is a fundamental parameter that influences groundwater flow and solute transport. Measurements of K are limited and uncertain. Moreover, the spatial structure of K, which impacts the groundwater velocity field and hence directly influences the advective spreading of a solute migrating in the subsurface, is commonly described by approaches using second order moments. Spatial copulas have in the recent past been applied successfully to model the spatial dependence structure of heterogeneous subsurface datasets. At the MADE site, hydraulic conductivity (K) has been measured in exceptional detail. Two independently collected data-sets were used for this study: (1) ~2000 flowmeter based K measurements, and (2) ~20,000 direct-push based K measurements. These datasets exhibit a very heterogeneous (Var[ln(K)]>2) spatially distributed K field. A copula analysis reveals that the spatial dependence structure of the flowmeter and direct-push datasets are essentially the same. A spatial copula analysis factors out the influence of the marginal distribution of the property under investigation. This independence from the marginal distributions allows the copula analysis to reveal the underlying similarity between the spatial dependence structures of the flowmeter and direct-push datasets despite two complicating factors: 1) an overall offset between the datasets, with direct-push K values being, on average, roughly a factor of five lower than flowmeter K values, due at least in part to opposite biases between the two measurement techniques, and 2) the presence of some anomalously high K values in the direct-push dataset due to a lower limit on accurately measureable pressure responses in high-K zones. In addition, the vertical resolution of the direct-push dataset is ten times finer than that of the flowmeter dataset. Upscaling the direct-push data to compensate for this difference resulted in little change to the spatial structure. The objective of the presented work is to use multidimensional spatial copulas to describe and model the spatial dependence of the spatial structure of K at the heterogeneous MADE site, and evaluate the effects of this multidimensional description on solute transport.

  16. Historical and contemporary geographic data reveal complex spatial and temporal responses of vegetation to climate and land stewardship

    USGS Publications Warehouse

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Turner, Raymond M.

    2013-01-01

    Vegetation and land-cover changes are not always directional but follow complex trajectories over space and time, driven by changing anthropogenic and abiotic conditions. We present a multi-observational approach to land-change analysis that addresses the complex geographic and temporal variability of vegetation changes related to climate and land use. Using land-ownership data as a proxy for land-use practices, multitemporal land-cover maps, and repeat photography dating to the late 19th century, we examine changing spatial and temporal distributions of two vegetation types with high conservation value in the southwestern United States: grasslands and riparian vegetation. In contrast to many reported vegetation changes, notably shrub encroachment in desert grasslands, we found an overall increase in grassland area and decline of xeroriparian and riparian vegetation. These observed change patterns were neither temporally directional nor spatially uniform over the landscape. Historical data suggest that long-term vegetation changes coincide with broad climate fluctuations while fine-scale patterns are determined by land-management practices. In some cases, restoration and active management appear to weaken the effects of climate on vegetation; therefore, if land managers in this region act in accord with on-going directional changes, the current drought and associated ecological reorganization may provide an opportunity to achieve desired restoration endpoints.

  17. Change deafness for real spatialized environmental scenes.

    PubMed

    Gaston, Jeremy; Dickerson, Kelly; Hipp, Daniel; Gerhardstein, Peter

    2017-01-01

    The everyday auditory environment is complex and dynamic; often, multiple sounds co-occur and compete for a listener's cognitive resources. 'Change deafness', framed as the auditory analog to the well-documented phenomenon of 'change blindness', describes the finding that changes presented within complex environments are often missed. The present study examines a number of stimulus factors that may influence change deafness under real-world listening conditions. Specifically, an AX (same-different) discrimination task was used to examine the effects of both spatial separation over a loudspeaker array and the type of change (sound source additions and removals) on discrimination of changes embedded in complex backgrounds. Results using signal detection theory and accuracy analyses indicated that, under most conditions, errors were significantly reduced for spatially distributed relative to non-spatial scenes. A second goal of the present study was to evaluate a possible link between memory for scene contents and change discrimination. Memory was evaluated by presenting a cued recall test following each trial of the discrimination task. Results using signal detection theory and accuracy analyses indicated that recall ability was similar in terms of accuracy, but there were reductions in sensitivity compared to previous reports. Finally, the present study used a large and representative sample of outdoor, urban, and environmental sounds, presented in unique combinations of nearly 1000 trials per participant. This enabled the exploration of the relationship between change perception and the perceptual similarity between change targets and background scene sounds. These (post hoc) analyses suggest both a categorical and a stimulus-level relationship between scene similarity and the magnitude of change errors.

  18. Crop connectivity under climate change: future environmental and geographic risks of potato late blight in Scotland.

    PubMed

    Skelsey, Peter; Cooke, David E L; Lynott, James S; Lees, Alison K

    2016-11-01

    The impact of climate change on dispersal processes is largely ignored in risk assessments for crop diseases, as inoculum is generally assumed to be ubiquitous and nonlimiting. We suggest that consideration of the impact of climate change on the connectivity of crops for inoculum transmission may provide additional explanatory and predictive power in disease risk assessments, leading to improved recommendations for agricultural adaptation to climate change. In this study, a crop-growth model was combined with aerobiological models and a newly developed infection risk model to provide a framework for quantifying the impact of future climates on the risk of disease occurrence and spread. The integrated model uses standard meteorological variables and can be easily adapted to various crop pathosystems characterized by airborne inoculum. In a case study, the framework was used with data defining the spatial distribution of potato crops in Scotland and spatially coherent, probabilistic climate change data to project the future connectivity of crop distributions for Phytophthora infestans (causal agent of potato late blight) inoculum and the subsequent risk of infection. Projections and control recommendations are provided for multiple combinations of potato cultivar and CO 2 emissions scenario, and temporal and spatial averaging schemes. Overall, we found that relative to current climatic conditions, the risk of late blight will increase in Scotland during the first half of the potato growing season and decrease during the second half. To guide adaptation strategies, we also investigated the potential impact of climate change-driven shifts in the cropping season. Advancing the start of the potato growing season by 1 month proved to be an effective strategy from both an agronomic and late blight management perspective. © 2016 John Wiley & Sons Ltd.

  19. Investigation of Bose-Einstein Condensates in q-Deformed Potentials with First Order Perturbation Theory

    NASA Astrophysics Data System (ADS)

    Nutku, Ferhat; Aydıner, Ekrem

    2018-02-01

    The Gross-Pitaevskii equation, which is the governor equation of Bose-Einstein condensates, is solved by first order perturbation expansion under various q-deformed potentials. Stationary probability distributions reveal one and two soliton behavior depending on the type of the q-deformed potential. Additionally a spatial shift of the probability distribution is found for the dark soliton solution, when the q parameter is changed.

  20. Spatial and temporal changes in Lutzomyia longipalpis abundance, a Leishmania infantum vector in an urban area in northeastern Argentina

    PubMed Central

    Fernández, María Soledad; Santini, María Soledad; Cavia, Regino; Sandoval, Adolfo Enrique; Pérez, Adriana Alicia; Acardi, Soraya; Salomón, Oscar Daniel

    2013-01-01

    This study aimed to analyse changes in the spatial distribution of Lutzomyia longipalpis in Posadas, an urban area located in northeastern Argentina. Data were obtained during the summer of 2007 and 2009 through two entomological surveys of peridomiciles distributed around the city. The abundance distribution pattern for 2009 was computed and compared with the previous pattern obtained in 2007, when the first human visceral leishmaniasis cases were reported in the city. Vector abundance was also examined in relation to micro and macrohabitat characteristics. In 2007 and 2009, Lu. longipalpis was distributed among 41.5% and 31% of the households in the study area, respectively. In both years, the abundance rates at most of the trapping sites were below 30 Lu. longipalpis per trap per night; however, for areas exhibiting 30-60 Lu. longipalpis and more than 60 Lu. longipalpis, the areas increased in both size and number from 2007-2009. Lu. longipalpis was more abundant in areas with a higher tree and bush cover (a macrohabitat characteristic) and in peridomiciles with accumulated unused material (a microhabitat characteristic). These results will help to prioritise and focus control efforts by defining which peridomiciles display a potentially high abundance of Lu. longipalpis. PMID:24271040

  1. Comparison of alternative spatial resolutions in the application of a spatially distributed biogeochemical model over complex terrain

    USGS Publications Warehouse

    Turner, D.P.; Dodson, R.; Marks, D.

    1996-01-01

    Spatially distributed biogeochemical models may be applied over grids at a range of spatial resolutions, however, evaluation of potential errors and loss of information at relatively coarse resolutions is rare. In this study, a georeferenced database at the 1-km spatial resolution was developed to initialize and drive a process-based model (Forest-BGC) of water and carbon balance over a gridded 54976 km2 area covering two river basins in mountainous western Oregon. Corresponding data sets were also prepared at 10-km and 50-km spatial resolutions using commonly employed aggregation schemes. Estimates were made at each grid cell for climate variables including daily solar radiation, air temperature, humidity, and precipitation. The topographic structure, water holding capacity, vegetation type and leaf area index were likewise estimated for initial conditions. The daily time series for the climatic drivers was developed from interpolations of meteorological station data for the water year 1990 (1 October 1989-30 September 1990). Model outputs at the 1-km resolution showed good agreement with observed patterns in runoff and productivity. The ranges for model inputs at the 10-km and 50-km resolutions tended to contract because of the smoothed topography. Estimates for mean evapotranspiration and runoff were relatively insensitive to changing the spatial resolution of the grid whereas estimates of mean annual net primary production varied by 11%. The designation of a vegetation type and leaf area at the 50-km resolution often subsumed significant heterogeneity in vegetation, and this factor accounted for much of the difference in the mean values for the carbon flux variables. Although area wide means for model outputs were generally similar across resolutions, difference maps often revealed large areas of disagreement. Relatively high spatial resolution analyses of biogeochemical cycling are desirable from several perspectives and may be particularly important in the study of the potential impacts of climate change.

  2. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  3. Shigella from humans in Thailand during 1993 to 2006: spatial-time trends in species and serotype distribution.

    PubMed

    Bangtrakulnonth, Aroon; Vieira, Antonio R; Lo Fo Wong, Danilo M A; Pornreongwong, Srirat; Pulsrikarn, Chaiwat; Sawanpanyalert, Pathom; Hendriksen, Rene S; Aarestrup, Frank M

    2008-12-01

    In Thailand during 1993-2006, a total of 9063 Shigella isolates from different medical centers were serotyped and trends over time and spatial clustering analyzed. Of 3583 cases with age information, 1315 (37%) cases were from children between 0 and 4 years and 684 (19%) from children between 5 and 8 years. Most infections were recorded during 1993-1994 (> 1500 per year), decreasing to < 200 in 2006. The relative species distribution also changed. During 1993-1994, Shigella flexneri accounted for 2241 (65%) of 3474 isolations. This proportion decreased to 64 (36%) of 176 infections in 2006. Most infections occurred during July and August, and fewest in December. S. flexneri clustered around Bangkok, and Shigella sonnei in southern Thailand. Most S. flexneri infections were caused by serotype 2a (1590 of 4035) followed by serotype var X (1249). For both serotypes, a pronounced decrease in the number of isolates occurred over time. A much smaller decrease was observed for serotype 3a isolates. Phase I S. sonnei was initially most common, but shifted gradually over phase I, II, to only phase II. No differences in spatial distribution were found. The three most common S. flexneri serotypes all clustered in, around, and west of Bangkok. Serotypes 2a and 3a also clustered in southern Thailand, whereas var X clustered north and northeast of Bangkok. In conclusion, looking at Shigella species, Thailand changed from being a developing country to a developed country between 1995 and 1996. In addition, major shifts in the types of S. sonnei were observed as were differences in spatial clustering of S. flexneri and S. sonnei and S. flexneri serotypes.

  4. Predator-guided sampling reveals biotic structure in the bathypelagic.

    PubMed

    Benoit-Bird, Kelly J; Southall, Brandon L; Moline, Mark A

    2016-02-24

    We targeted a habitat used differentially by deep-diving, air-breathing predators to empirically sample their prey's distributions off southern California. Fine-scale measurements of the spatial variability of potential prey animals from the surface to 1,200 m were obtained using conventional fisheries echosounders aboard a surface ship and uniquely integrated into a deep-diving autonomous vehicle. Significant spatial variability in the size, composition, total biomass, and spatial organization of biota was evident over all spatial scales examined and was consistent with the general distribution patterns of foraging Cuvier's beaked whales (Ziphius cavirostris) observed in separate studies. Striking differences found in prey characteristics between regions at depth, however, did not reflect differences observed in surface layers. These differences in deep pelagic structure horizontally and relative to surface structure, absent clear physical differences, change our long-held views of this habitat as uniform. The revelation that animals deep in the water column are so spatially heterogeneous at scales from 10 m to 50 km critically affects our understanding of the processes driving predator-prey interactions, energy transfer, biogeochemical cycling, and other ecological processes in the deep sea, and the connections between the productive surface mixed layer and the deep-water column. © 2016 The Author(s).

  5. Spatial distribution of traffic in a cellular mobile data network

    NASA Astrophysics Data System (ADS)

    Linnartz, J. P. M. G.

    1987-02-01

    The use of integral transforms of the probability density function for the received power to analyze the relation between the spatial distributions of offered and throughout packet traffic in a mobile radio network with Rayleigh fading channels and ALOHA multiple access was assessed. A method to obtain the spatial distribution of throughput traffic from a prescribed spatial distribution of offered traffic is presented. Incoherent and coherent addition of interference signals is considered. The channel behavior for heavy traffic loads is studied. In both the incoherent and coherent case, the spatial distribution of offered traffic required to ensure a prescribed spatially uniform throughput is synthesized numerically.

  6. [Three-dimension temporal and spatial dynamics of soil water for the artificial vegetation in the center of Taklimakan desert under saline water drip-irrigation].

    PubMed

    Ding, Xin-yuan; Zhou, Zhi-bin; Xu, Xin-wen; Lei, Jia-qiang; Lu, Jing-jing; Ma, Xue-xi; Feng, Xiao

    2015-09-01

    Three-dimension temporal and spatial dynamics of the soil water characteristics during four irrigating cycles of months from April to July for the artificial vegetation in the center of Taklimakan Desert under saline water drip-irrigation had been analyzed by timely measuring the soil water content in horizontal and vertical distances 60 cm and 120 cm away from the irrigating drips, respectively. Periodic spatial and temporal variations of soil water content were observed. When the precipitation effect was not considered, there were no significant differences in the characteristics of soil water among the irrigation intervals in different months, while discrepancies were obvious in the temporal and spatial changes of soil moisture content under the conditions of rainfall and non-rainfall. When it referred to the temporal changes of soil water, it was a little higher in April but a bit lower in July, and the soil water content in June was the highest among four months because some remarkable events of precipitation happened in this month. However, as a whole, the content of soil moisture was reduced as months (from April to July) went on and it took a decreasing tendency along with days (1-15 d) following a power function. Meanwhile, the characteristics of soil water content displayed three changeable stages in an irrigation interval. When it referred to the spatial distributions of soil water, the average content of soil moisture was reduced along with the horizontal distance following a linear regression function, and varied with double peaks along with the vertical distance. In addition, the spatial distribution characteristics of the soil water were not influenced by the factors of precipitation and irrigating time but the physical properties of soil.

  7. EVALUATING LANDSCAPE CHANGE AND HYDROLOGICAL CONSEQUENCES IN A SEMI-ARID ENVIRONMENT

    EPA Science Inventory

    During the past two decades, important advances in the integration of remote imagery, computer processing, and spatial analysis technologies have been used to better understand the distribution of natural communities and ecosystems, and the ecological processes that affect these ...

  8. The Compositional Evolution of C/2012 S1 (ISON) from Ground-Based High-Resolution Infrared Spectroscopy as Part of a Worldwide Observing Campaign

    NASA Technical Reports Server (NTRS)

    Russo, N. Dello; Vervack, R. J., Jr.; Kawakita, H.; Cochran, A.; McKay, A. J.; Harris, W. M.; Weaver, H.A.; Lisse, C. M.; DiSanti, M. A.; Kobayashi, H.

    2015-01-01

    Volatile production rates, relative abundances, rotational temperatures, and spatial distributions in the coma were measured in C/2012 S1 (ISON) using long-slit high-dispersion (lambda/delta lambda approximately 2.5 times 10 (sup 4)) infrared spectroscopy as part of a worldwide observing campaign. Spectra were obtained on Universal Time 2013 October 26 and 28 with NIRSPEC (Near Infrared Spectrometer) at the W.M. Keck Observatory, and Universal Time 2013 November 19 and 20 with CSHELL (Cryogenic Echelle Spectrograph) at the NASA IRTF (Infrared Telescope Facility). H2O was detected on all dates, with production rates increasing markedly from (8.7 plus or minus 1.5) times 10 (sup 27) molecules per second on October 26 (Heliocentric Distance = 1.12 Astronomical Units) to (3.7 plus or minus 0.4) times 10 (sup 29) molecules per second on November 20 (Heliocentric Distance = 0.43 Astronomical Units). Short-term variability of H2O production is also seen as observations on November 19 show an increase in H2O production rate of nearly a factor of two over a period of about 6 hours. C2H6, CH3OH and CH4 abundances in ISON (International Scientific Optical Network) are slightly depleted relative to H2O when compared to mean values for comets measured at infrared wavelengths. On the November dates, C2H2, HCN and OCS abundances relative to H2O appear to be within the range of mean values, whereas H2CO and NH3 were significantly enhanced. There is evidence that the abundances with respect to H2O increased for some species but not others between October 28 (Heliocentric Distance = 1.07 Astronomical Units) and November 19 (Heliocentric Distance = 0.46 Astronomical Units). The high mixing ratios of H2CO to CH3OH and C2H2 to C2H6 on November 19, and changes in the mixing ratios of some species with respect to H2O between October 28 to November 19, indicates compositional changes that may be the result of a transition from sampling radiation-processed outer layers in this dynamically new comet to sampling more pristine natal material as the outer processed layer was increasingly eroded and the thermal wave propagated into the nucleus as the comet approached perihelion for the first time. On November 19 and 20, the spatial distribution for dust appears asymmetric and enhanced in the antisolar direction, whereas spatial distributions for volatiles (excepting CN) appear symmetric with their peaks slightly offset in the sunward direction compared to the dust. Spatial distributions for H2O, HCN, C2H6, C2H2, and H2CO on November 19 show no definitive evidence for significant contributions from extended sources; however, broader spatial distributions for NH3 and OCS may be consistent with extended sources for these species. Abundances of HCN and C2H2 on November 19 and 20 are insufficient to account for reported abundances of CN and C2 in ISON near this time. Differences in HCN and CN spatial distributions are also consistent with HCN as only a minor source of CN in ISON on November 19 as the spatial distribution of CN in the coma suggests a dominant distributed source that is correlated with dust and not volatile release. The spatial distributions for NH3 and NH2 are similar, suggesting that NH3 is the primary source of NH2 with no evidence of a significant dust source of NH2; however, the higher production rates derived for NH3 compared to NH2 on November 19 and 20 remain unexplained. This suggests a more complete analysis that treats NH2 as a distributed source and accounts for its emission mechanism is needed for future work.

  9. Simulation of net infiltration and potential recharge using a distributed-parameter watershed model of the Death Valley region, Nevada and California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Flint, Alan L.; Flint, Lorraine E.

    2003-01-01

    This report presents the development and application of the distributed-parameter watershed model, INFILv3, for estimating the temporal and spatial distribution of net infiltration and potential recharge in the Death Valley region, Nevada and California. The estimates of net infiltration quantify the downward drainage of water across the lower boundary of the root zone and are used to indicate potential recharge under variable climate conditions and drainage basin characteristics. Spatial variability in recharge in the Death Valley region likely is high owing to large differences in precipitation, potential evapotranspiration, bedrock permeability, soil thickness, vegetation characteristics, and contributions to recharge along active stream channels. The quantity and spatial distribution of recharge representing the effects of variable climatic conditions and drainage basin characteristics on recharge are needed to reduce uncertainty in modeling ground-water flow. The U.S. Geological Survey, in cooperation with the Department of Energy, developed a regional saturated-zone ground-water flow model of the Death Valley regional ground-water flow system to help evaluate the current hydrogeologic system and the potential effects of natural or human-induced changes. Although previous estimates of recharge have been made for most areas of the Death Valley region, including the area defined by the boundary of the Death Valley regional ground-water flow system, the uncertainty of these estimates is high, and the spatial and temporal variability of the recharge in these basins has not been quantified. To estimate the magnitude and distribution of potential recharge in response to variable climate and spatially varying drainage basin characteristics, the INFILv3 model uses a daily water-balance model of the root zone with a primarily deterministic representation of the processes controlling net infiltration and potential recharge. The daily water balance includes precipitation (as either rain or snow), snow accumulation, sublimation, snowmelt, infiltration into the root zone, evapotranspiration, drainage, water content change throughout the root-zone profile (represented as a 6-layered system), runoff (defined as excess rainfall and snowmelt) and surface water run-on (defined as runoff that is routed downstream), and net infiltration (simulated as drainage from the bottom root-zone layer). Potential evapotranspiration is simulated using an hourly solar radiation model to simulate daily net radiation, and daily evapotranspiration is simulated as an empirical function of root zone water content and potential evapotranspiration. The model uses daily climate records of precipitation and air temperature from a regionally distributed network of 132 climate stations and a spatially distributed representation of drainage basin characteristics defined by topography, geology, soils, and vegetation to simulate daily net infiltration at all locations, including stream channels with intermittent streamflow in response to runoff from rain and snowmelt. The temporal distribution of daily, monthly, and annual net infiltration can be used to evaluate the potential effect of future climatic conditions on potential recharge. The INFILv3 model inputs representing drainage basin characteristics were developed using a geographic information system (GIS) to define a set of spatially distributed input parameters uniquely assigned to each grid cell of the INFILv3 model grid. The model grid, which was defined by a digital elevation model (DEM) of the Death Valley region, consists of 1,252,418 model grid cells with a uniform grid cell dimension of 278.5 meters in the north-south and east-west directions. The elevation values from the DEM were used with monthly regression models developed from the daily climate data to estimate the spatial distribution of daily precipitation and air temperature. The elevation values were also used to simulate atmosp

  10. Assessing land ownership as a driver of change in the distribution, structure, and composition of California's forests.

    NASA Astrophysics Data System (ADS)

    Easterday, K.; Kelly, M.; McIntyre, P. J.

    2015-12-01

    Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.Climate change is forecasted to have considerable influence on the distribution, structure, and function of California's forests. However, human interactions with forested landscapes (e.g. fire suppression, resource extraction and etc.) have complicated scientific understanding of the relative contributions of climate change and anthropogenic land management practices as drivers of change. Observed changes in forest structure towards smaller, denser forests across California have been attributed to both climate change (e.g. increased temperatures and declining water availability) and management practices (e.g. fire suppression and logging). Disentangling how these drivers of change act both together and apart is important to developing sustainable policy and land management practices as well as enhancing knowledge of human and natural system interactions. To that end, a comprehensive historical dataset - the Vegetation Type Mapping project (VTM) - and a modern forest inventory dataset (FIA) are used to analyze how spatial variations in vegetation composition and structure over a ~100 year period can be explained by land ownership.

  11. CNMM: a Catchment Environmental Model for Managing Water Quality and Greenhouse Gas Emissions

    NASA Astrophysics Data System (ADS)

    Li, Y.

    2015-12-01

    Mitigating agricultural diffuse pollution and greenhouse gas emissions is a complicated task due to tempo-spatial lags between the field practices and the watershed responses. Spatially-distributed modeling is essential to the implementation of cost-effective and best management practices (BMPs) to optimize land uses and nutrient applications as well as to project the impact of climate change on the watershed service functions. CNMM (the Catchment Nutrients Management Model) is a 3D spatially-distributed, grid-based and process-oriented biophysical model comprehensively developed to simulate energy balance, hydrology, plant/crop growth, biogeochemistry of life elements (e.g., C, N and P), waste treatment, waterway vegetation/purification, stream water quality and land management in agricultural watersheds as affected by land utilization strategies such as BMPs and by climate change. The CNMM is driven by a number of spatially-distributed data such as weather, topography (including DEM and shading), stream network, stream water, soil, vegetation and land management (including waste treatments), and runs at an hourly time step. It represents a catchment as a matrix of square uniformly-sized cells, where each cell is defined as a homogeneous hydrological response unit with all the hydrologically-significant parameters the same but varied at soil depths in fine intervals. Therefore, spatial variability is represented by allowing parameters to vary horizontally and vertically in space. A four-direction flux routing algorithm is applied to route water and nutrients across soils of cells governed by the gradients of either water head or elevation. A linear channel reservoir scheme is deployed to route water and nutrients in stream networks. The model is capable of computing CO2, CH4, NH3, NO, N2O and N2 emissions from soils and stream waters. The CNMM can serve as an idea modelling tool to investigate the overwhelming critical zone research at various catchment scales.

  12. Polarization-correlation optical microscopy of anisotropic biological layers

    NASA Astrophysics Data System (ADS)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Y.; Balazyuk, V. N.; Khukhlina, O.; Viligorska, K.; Bykov, A.; Doronin, A.; Meglinski, I.

    2016-09-01

    The theoretical background of azimuthally stable method of Jones-matrix mapping of histological sections of biopsy of myocardium tissue on the basis of spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of myocardium tissue histological sections are found. The comparative results of measuring the coordinate distributions of complex degree of mutual anisotropy formed by fibrillar networks of myosin fibrils of myocardium tissue of different necrotic states - dead due to coronary heart disease and acute coronary insufficiency are shown. The values and ranges of change of the statistical (moments of the 1st - 4th order) parameters of complex degree of mutual anisotropy coordinate distributions are studied. The objective criteria of differentiation of cause of death are determined.

  13. Flow of Energy through the Inner Magnetosphere during the March 17, 2015 solar storm as observed by the Van Allen Probes Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE)

    NASA Astrophysics Data System (ADS)

    Manweiler, J. W.; Madanian, H.; Gerrard, A. J.; Patterson, J. D.; Mitchell, D. G.; Lanzerotti, L. J.

    2017-12-01

    On March 17, 2015, a large solar storm impacted the Earth's magnetosphere with a maximum negative Dst of -232 nT. We report on the temporal and spatial evolution of the proton energetic particle distributions in phase space during this storm, as measured by the Radiation Belt Storm Probes Ion Composition Experiment (RBSPICE) instrument on board each of the Van Allen Probes. We characterize the distribution prior to onset of the storm to provide a definition of quiet time conditions. We then show how the distribution evolves during the storm noting key changes of the distribution as a function of L and MLT and showing how the pitch angle distributions change throughout the storm. These observations displayed a number of interesting features of the storm including high beta plasma conditions and multiple injections of protons into the inner magnetosphere. We present the radial changes of the distribution at storm onset and following the evolution of the distribution during storm recovery. We compare observations of the East/West asymmetry in the proton distribution before versus after onset using both Van Allen Probes A and B spacecraft observations. Finally, we note interesting changes in the distribution showing an anomalous dropout in mid-energies of the distribution and observe an outward radial propagation of this dropout during recovery.

  14. Evidence that implicit assumptions of ‘no evolution’ of disease vectors in changing environments can be violated on a rapid timescale

    PubMed Central

    Egizi, Andrea; Fefferman, Nina H.; Fonseca, Dina M.

    2015-01-01

    Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics. PMID:25688024

  15. Links between plant species’ spatial and temporal responses to a warming climate

    PubMed Central

    Amano, Tatsuya; Freckleton, Robert P.; Queenborough, Simon A.; Doxford, Simon W.; Smithers, Richard J.; Sparks, Tim H.; Sutherland, William J.

    2014-01-01

    To generate realistic projections of species’ responses to climate change, we need to understand the factors that limit their ability to respond. Although climatic niche conservatism, the maintenance of a species’s climatic niche over time, is a critical assumption in niche-based species distribution models, little is known about how universal it is and how it operates. In particular, few studies have tested the role of climatic niche conservatism via phenological changes in explaining the reported wide variance in the extent of range shifts among species. Using historical records of the phenology and spatial distribution of British plants under a warming climate, we revealed that: (i) perennial species, as well as those with weaker or lagged phenological responses to temperature, experienced a greater increase in temperature during flowering (i.e. failed to maintain climatic niche via phenological changes); (ii) species that failed to maintain climatic niche via phenological changes showed greater northward range shifts; and (iii) there was a complementary relationship between the levels of climatic niche conservatism via phenological changes and range shifts. These results indicate that even species with high climatic niche conservatism might not show range shifts as instead they track warming temperatures during flowering by advancing their phenology. PMID:24478304

  16. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    NASA Astrophysics Data System (ADS)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  17. Modelling climate change impact on the spatial distribution of fresh water snails hosting trematodes in Zimbabwe.

    PubMed

    Pedersen, Ulrik B; Stendel, Martin; Midzi, Nicholas; Mduluza, Takafira; Soko, White; Stensgaard, Anna-Sofie; Vennervald, Birgitte J; Mukaratirwa, Samson; Kristensen, Thomas K

    2014-12-12

    Freshwater snails are intermediate hosts for a number of trematodes of which some are of medical and veterinary importance. The trematodes rely on specific species of snails to complete their life cycle; hence the ecology of the snails is a key element in transmission of the parasites. More than 200 million people are infected with schistosomes of which 95% live in sub-Saharan Africa and many more are living in areas where transmission is on-going. Human infection with the Fasciola parasite, usually considered more of veterinary concern, has recently been recognised as a human health problem. Many countries have implemented health programmes to reduce morbidity and prevalence of schistosomiasis, and control programmes to mitigate food-borne fascioliasis. As these programmes are resource demanding, baseline information on disease prevalence and distribution becomes of great importance. Such information can be made available and put into practice through maps depicting spatial distribution of the intermediate snail hosts. A biology driven model for the freshwater snails Bulinus globosus, Biomphalaria pfeifferi and Lymnaea natalensis was used to make predictions of snail habitat suitability by including potential underlying environmental and climatic drivers. The snail observation data originated from a nationwide survey in Zimbabwe and the prediction model was parameterised with a high resolution Regional Climate Model. Georeferenced prevalence data on urinary and intestinal schistosomiasis and fascioliasis was used to calibrate the snail habitat suitability predictions to produce binary maps of snail presence and absence. Predicted snail habitat suitability across Zimbabwe, as well as the spatial distribution of snails, is reported for three time slices representative for present (1980-1999) and future climate (2046-2065 and 2080-2099). It is shown from the current study that snail habitat suitability is highly variable in Zimbabwe, with distinct high- and low- suitability areas and that temperature may be the main driving factor. It is concluded that future climate change in Zimbabwe may cause a reduced spatial distribution of suitable habitat of host snails with a probable exception of Bi. pfeifferi, the intermediate host for intestinal schistosomiasis that may increase around 2055 before declining towards 2100.

  18. Spatio-temporal Variation in Glacier Ice as Habitat for Harbor Seals in an Alaskan Tidewater Glacier Fjord

    NASA Astrophysics Data System (ADS)

    Womble, J. N.; McNabb, R. W.; Gens, R.; Prakash, A.

    2015-12-01

    Some of the largest aggregations of harbor seals (Phoca vitulina richardii) in Alaska occur in tidewater glacier fjords where seals rest upon icebergs that are calved from tidewater glaciers into the marine environment. The distribution, amount, and size of floating ice in fjords are likely important factors influencing the spatial distribution and abundance of harbor seals; however, fine-scale characteristics of ice habitat that are used by seals have not been quantified using automated methods. We quantified the seasonal changes in ice habitat for harbor seals in Johns Hopkins Inlet, a tidewater glacier fjord in Glacier Bay National Park, Alaska, using aerial photography, object-based image analysis, and spatial models. Aerial photographic surveys (n = 53) were conducted of seals and ice during the whelping (June) and molting (August) seasons from 2007-2014. Surveys were flown along a grid of 12 transects and high-resolution digital photos were taken directly under the plane using a vertically aimed camera. Seal abundance and spatial distribution was consistently higher during June (range: 1,672-4,340) than August (range: 1,075-2,582) and corresponded to the spatial distribution and amount of ice. Preliminary analyses from 2007 suggest that the average percent of icebergs (ice ≥ than 1.6m2) and brash ice (ice < 1.6m2) per scene were greater in June (icebergs: 1.8% ± 1.6%; brash ice: 43.8% ± 38.9%) than August (icebergs: 0.2% ± 0.7%; brash ice; 15.8% ± 26.4%). Iceberg angularity (an index of iceberg shape) was also greater in June (1.7 ± 0.9) than August (0.9 ± 0.9). Potential factors that may influence the spatio-temporal variation in ice habitat for harbor seals in tidewater glacier fjords include frontal ablation rates of glaciers, fjord circulation, and local winds. Harbor seals exhibit high seasonal fidelity to tidewater glacier fjords, thus understanding the relationships between glacier dynamics and harbor seal distribution will be critical for understanding how future changes in tidewater glaciers may impact harbor seals.

  19. Long-term changes and spatio-temporal variability of the growing season temperature in Europe during the last Millennium

    NASA Astrophysics Data System (ADS)

    Guiot, Joel; Corona, Christophe

    2010-05-01

    A gridded reconstruction of April to September temperature was produced for Europe based on tree-rings, documentaries, pollen and ice cores. The majority of the proxy series have an annual resolution. For a better inference of long-term climate variations, they were completed by number of low resolution data (decadal or more), mostly on pollen and ice-core data. An original spectral analogue method was devised to deal with this heterogeneous dataset, and especially to preserve the long-term variations and the variability of the temperature series. It is the condition is to make pertinent the comparison of the recent climate changes to a broader context of 1400 years. The reconstruction of the April-September temperature was validated with a Jack-knife technique, and it was also compared with other spatially gridded temperature reconstructions, literature data, and glacier advance and retreat curves. We also attempted to relate the spatial distribution of European temperature anomalies to known solar and volcanic forcings. We found that (1) our results are sound back to A.D. 750; (2) conditions during the last decade have exceeded all those known during the last millennium; (3) before the 20th century, cold periods can partly be explained by low solar activity and/or high volcanic activity and that Medieval Warm Period (MWP) is consistent with a high solar activity; (4) during the 20th century, however only anthropogenic forcing can explain the exceptionally high temperature rise; (5) based on an analysis of the distribution of extreme temperatures, the maximum event of the Medieval Period (1.1°C higher than the 1960-1990 reference period) had a return period of more than 1000 years, but this recently fell to less than 26 years; (6) all decades before AD 1350 were warm on average but relatively heterogeneous, while the last decade was homogeneously warmer. These results support the fact that we are facing an unprecedented changing climate in Europe unlike any known in the last 1000 years, as pointed out previously. The new result is that this anthropogenic change is characterised by spatial homogeneity and changes as well in average temperatures than in distribution of extreme events, while natural climate forcings induce warm periods with heterogeneous spatial patterns and less frequent extreme events. This study demonstrates that recent changes in temperature differ substantially from temperature changes reconstructed in the past and are well in excess of normal variations experienced in previous centuries and caused by natural forcings.

  20. Modeling nonbreeding distributions of shorebirds and waterfowl in response to climate change

    USGS Publications Warehouse

    Reese, Gordon; Skagen, Susan K.

    2017-01-01

    To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eBird citizen-science project to model probabilities of occurrence relative to land-use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981–2010 (hindcast) and 2041–2070 (forecast) in “model space.” Projected changes in shorebird probabilities of occurrence varied with species-specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long-distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from −0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.

  1. Jupiter's Polar Haze

    NASA Astrophysics Data System (ADS)

    Carlson, B. E.

    1997-07-01

    The nature and distribution of stratospheric aerosols in the polar regions of Jupiter are investigated using a combination of ground-based, Hubble Space Telescope (HST), and Voyager IRIS measurements. Of particular interest are the connections between the enhanced UV absorption in the polar regions and the bright polar hoods evident in methane band images and the connections between the aerosol, the infrared "hot spot", and the auroras. Spatial maps of the hydrocarbon emissions constructed from the Voyager IRIS measurements reveal enhanced acetylene emission coincident with the region of enhanced methane emission but morphologically distinct from the region of enhanced ethane emission. This finding confirms the existence of altitude- dependent hydrocarbon chemistry. Ground-based and HST data reveal the presence of longitudinal structure in the latitudinal distribution of the aerosols (i.e., break-down in zonal symmetry) apparently associated with circulation anomalies induced by the polar hot spot. In addition, the HST data reveal a change in the aerosol properties (e.g., phase function) in the vicinity of the hot spot while ruling out changes in their height and/or optical depth distribution. The HST data also reveal differential UV absorption coincident with the aurora strengthening the connection between aerosol formation/hydrocarbon chemistry and the aurora. The spectral dependence of this absorption suggests enhancements of the higher order hydrocarbons (e.g., benzene). The mismatch in spatial resolution between infrared (Voyager IRIS/ground-based IRTF) and HST measurements coupled with the change in morphology of the hot spot as revealed by the structure of the methane/acetylene emission versus that of the ethane emission suggests the existence of more complex spatial structure and additional thermal emission anomalies associated with auroral processes unresolved by current infrared measurements

  2. Evaluation of habitat suitability index models by global sensitivity and uncertainty analyses: a case study for submerged aquatic vegetation

    USGS Publications Warehouse

    Zajac, Zuzanna; Stith, Bradley M.; Bowling, Andrea C.; Langtimm, Catherine A.; Swain, Eric D.

    2015-01-01

    Habitat suitability index (HSI) models are commonly used to predict habitat quality and species distributions and are used to develop biological surveys, assess reserve and management priorities, and anticipate possible change under different management or climate change scenarios. Important management decisions may be based on model results, often without a clear understanding of the level of uncertainty associated with model outputs. We present an integrated methodology to assess the propagation of uncertainty from both inputs and structure of the HSI models on model outputs (uncertainty analysis: UA) and relative importance of uncertain model inputs and their interactions on the model output uncertainty (global sensitivity analysis: GSA). We illustrate the GSA/UA framework using simulated hydrology input data from a hydrodynamic model representing sea level changes and HSI models for two species of submerged aquatic vegetation (SAV) in southwest Everglades National Park: Vallisneria americana (tape grass) and Halodule wrightii (shoal grass). We found considerable spatial variation in uncertainty for both species, but distributions of HSI scores still allowed discrimination of sites with good versus poor conditions. Ranking of input parameter sensitivities also varied spatially for both species, with high habitat quality sites showing higher sensitivity to different parameters than low-quality sites. HSI models may be especially useful when species distribution data are unavailable, providing means of exploiting widely available environmental datasets to model past, current, and future habitat conditions. The GSA/UA approach provides a general method for better understanding HSI model dynamics, the spatial and temporal variation in uncertainties, and the parameters that contribute most to model uncertainty. Including an uncertainty and sensitivity analysis in modeling efforts as part of the decision-making framework will result in better-informed, more robust decisions.

  3. Validating modelled variable surface saturation in the riparian zone with thermal infrared images

    NASA Astrophysics Data System (ADS)

    Glaser, Barbara; Klaus, Julian; Frei, Sven; Frentress, Jay; Pfister, Laurent; Hopp, Luisa

    2015-04-01

    Variable contributing areas and hydrological connectivity have become prominent new concepts for hydrologic process understanding in recent years. The dynamic connectivity within the hillslope-riparian-stream (HRS) system is known to have a first order control on discharge generation and especially the riparian zone functions as runoff buffering or producing zone. However, despite their importance, the highly dynamic processes of contraction and extension of saturation within the riparian zone and its impact on runoff generation still remain not fully understood. In this study, we analysed the potential of a distributed, fully coupled and physically based model (HydroGeoSphere) to represent the spatial and temporal water flux dynamics of a forested headwater HRS system (6 ha) in western Luxembourg. The model was set up and parameterised under consideration of experimentally-derived knowledge of catchment structure and was run for a period of four years (October 2010 to August 2014). For model evaluation, we especially focused on the temporally varying spatial patterns of surface saturation. We used ground-based thermal infrared (TIR) imagery to map surface saturation with a high spatial and temporal resolution and collected 20 panoramic snapshots of the riparian zone (ca. 10 by 20 m) under different hydrologic conditions. These TIR panoramas were used in addition to several classical discharge and soil moisture time series for a spatially-distributed model validation. In a manual calibration process we optimised model parameters (e.g. porosity, saturated hydraulic conductivity, evaporation depth) to achieve a better agreement between observed and modelled discharges and soil moistures. The subsequent validation of surface saturation patterns by a visual comparison of processed TIR panoramas and corresponding model output panoramas revealed an overall good accordance for all but one region that was always too dry in the model. However, quantitative comparisons of modelled and observed saturated pixel percentages and of their modelled and measured relationships to concurrent discharges revealed remarkable similarities. During the calibration process we observed that surface saturation patterns were mostly affected by changing the soil properties of the topsoil in the riparian zone, but that the discharge behaviour did not change substantially at the same time. This effect of various spatial patterns occurring concomitant to a nearly unchanged integrated response demonstrates the importance of spatially distributed validation data. Our study clearly benefited from using different kinds of data - spatially integrated and distributed, temporally continuous and discrete - for the model evaluation procedure.

  4. Transit time distributions to assess present and future contamination risk of karst aquifers over Europe and the Mediterranean

    NASA Astrophysics Data System (ADS)

    Hartmann, Andreas; Gleeson, Tom; Wada, Yoshihide; Wagener, Thorsten

    2016-04-01

    Karst develops through the dissolution of carbonate rock. Karst groundwater in Europe is a major source of fresh water contributing up to half of the total drinking water supply in some countries. Climate model projections suggest that in the next 100 years, karst regions will experience a strong increase in temperature and a serious decrease of precipitation - especially in the Mediterranean region. Previous work showed that the karstic preferential recharge processes result in enhanced recharge rates and future climate sensitivity. But as there is fast water flow form the surface to the aquifer, there is also an enhanced risk of groundwater contamination. In this study we will assess the contamination risk of karst aquifers over Europe and the Mediterranean using simulated transit time distributions. Using a new type of semi-distributed model that considers the spatial heterogeneity of the karst system by distribution functions we simulated a range of spatially variable pathways of karstic groundwater recharge. The model is driven by the bias-corrected 5 GCMs of the ISI-MIP project (RCP8.5). Transit time distributions are calculated by virtual tracer experiments. These are repeated several times in the present (1991-2010) and the future (2080-2099). We can show that regions with larger fractions of preferential recharge show higher risks of contamination and that spatial patterns of contamination risk change towards the future.

  5. Spatial-temporal distribution and risk assessment of mercury in different fractions in surface sediments from the Yangtze River estuary.

    PubMed

    Wang, Qingrui; Liu, Ruimin; Men, Cong; Xu, Fei; Guo, Lijia; Shen, Zhenyao

    2017-11-15

    The temporal and spatial distributions of mercury in different fractions and its potential ecological risk were investigated in sediments from the Yangtze River estuary (YRE) by analyzing data collected from the study area. The results showed that mercury in the organic and residual fractions had dominant proportions, from 15.2% to 48.52% and from 45.96% to 81.59%, respectively. The fractions were more susceptible to seasonal changes than other fractions. Higher proportions of mercury in organic fraction were found in wet seasons; the opposite was true for mercury in residual fraction. With respect to the spatial distribution, the concentration mercury in exchangeable, carbonate and Fe-Mn oxide fractions showed a decreasing trend from the inner estuary to the outer estuary, but no obvious trends were found in the distributions of mercury in the organic and residual fractions. The risk assessment code (RAC) was used to evaluate the potential ecological risk in the study area based on the proportions of exchangeable and carbonate fractions. The average RAC values during the four periods were 6.00%, 2.20%, 2.83%, and 0.61%. Although these values show that the risk in the study area is generally low, the distribution of RAC values indicates that the inner estuary has a medium risk, with a value up to 10%. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Twentieth century turnover of Mexican endemic avifaunas: Landscape change versus climate drivers.

    PubMed

    Peterson, A Townsend; Navarro-Sigüenza, Adolfo G; Martínez-Meyer, Enrique; Cuervo-Robayo, Angela P; Berlanga, Humberto; Soberón, Jorge

    2015-05-01

    Numerous climate change effects on biodiversity have been anticipated and documented, including extinctions, range shifts, phenological shifts, and breakdown of interactions in ecological communities, yet the relative balance of different climate drivers and their relationships to other agents of global change (for example, land use and land-use change) remains relatively poorly understood. This study integrated historical and current biodiversity data on distributions of 115 Mexican endemic bird species to document areas of concentrated gains and losses of species in local communities, and then related those changes to climate and land-use drivers. Of all drivers examined, at this relatively coarse spatial resolution, only temperature change had significant impacts on avifaunal turnover; neither precipitation change nor human impact on landscapes had detectable effects. This study, conducted across species' geographic distributions, and covering all of Mexico, thanks to two large-scale biodiversity data sets, could discern relative importance of specific climatic drivers of biodiversity change.

  7. Impact of urban built environment on urban short-distance taxi travel: the case of Shanghai

    NASA Astrophysics Data System (ADS)

    Wu, Zhuoye; Zhuo, Jian

    2018-05-01

    The excessive individual motorized transport is the main cause of urban congestion and generates negative consequences on urban environmental quality, energy consumption, infrastructure supply and urban security. Bicycle can compete effectively with automobile for short-distance travels within 3km. If we take action to encourage the rider to shift from automobile to bike for the short-distance travels, it leaves us a great chance to reduce the modal share of individual motorized mode. This paper focus on the spatial impact of built environment on short-distance taxi riders’ travel behaviour. The data sources include taxi trajectory data for a week, demographic data of the Sixth National Census, POI data. In this paper, we figure out the volumes and spatial distribution of short-distance taxi travel in the central city of Shanghai. We build a multiple regression model to quantitative analyze the impact of urban built environment on urban short-distance taxi travel. The findings explain the spatial distribution short-distance taxi travel. In the conclusion, some advice are provided on how planners change the spatial settings to discourage short-distance individual motorized travel.

  8. Stress Field Variation after the 2001 Skyros Earthquake, Greece, Derived from Seismicity Rate Changes

    NASA Astrophysics Data System (ADS)

    Leptokaropoulos, K.; Papadimitriou, E.; Orlecka-Sikora, B.; Karakostas, V.

    2012-04-01

    The spatial variation of the stress field (ΔCFF) after the 2001 strong (Mw=6.4) Skyros earthquake in North Aegean Sea, Greece, is investigated in association with the changes of earthquake production rates. A detailed slip model is considered in which the causative fault is consisted of several sub-faults with different coseismic slip onto each one of them. First the spatial distribution of aftershock productivity is compared with the static stress changes due to the coseismic slip. Calculations of ΔCFF are performed at different depths inside the seismogenic layer, defined from the vertical distribution of the aftershocks. Seismicity rates of the smaller magnitude events with M≥Mc for different time increments before and after the main shock are then derived from the application of a Probability Density Function (PDF). These rates are computed by spatially smoothing the seismicity and for this purpose a normal grid of rectangular cells is superimposed onto the area and the PDF determines seismicity rate values at the center of each cell. The differences between the earthquake occurrence rates before and after the main shock are compared and used as input data in a stress inversion algorithm based upon the Rate/State dependent friction concept in order to provide an independent estimation of stress changes. This model incorporates the physical properties of the fault zones (characteristic relaxation time, fault constitutive parameters, effective friction coefficient) with a probabilistic estimation of the spatial distribution of seismicity rates, derived from the application of the PDF. The stress patterns derived from the previously mentioned approaches are compared and the quantitative correlation between the respective results is accomplished by the evaluation of Pearson linear correlation coefficient and its confidence intervals to quantify their significance. Different assumptions and combinations of the physical and statistical parameters are tested for the model performance and robustness to be evaluated. Simulations will provide a measure of how robust is the use of seismicity rate changes as a stress meter for both positive and negative stress steps. This work was partially prepared within the framework of the research projects No. N N307234937 and 3935/B/T02/2010/39 financed by the Ministry of Education and Science of Poland during the period 2009 to 2011 and 2010 to 2012, respectively.

  9. Spatial and temporal distribution of tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  10. Transition from traditional to modern forest management shaped the spatial extent of cattle pasturing in Białowieża Primeval Forest in the nineteenth and twentieth centuries.

    PubMed

    Samojlik, Tomasz; Fedotova, Anastasia; Kuijper, Dries P J

    2016-12-01

    Pasturing of livestock in forests has had profound consequences for Europe's landscapes. In Białowieża Primeval Forest (BPF), cattle pasturing was a part of traditional forest use that ceased only in the second half of the twentieth century. We collected information on the institutional changes governing forest cattle pasturing and the changes in spatial extent of cattle presence in BPF in last two centuries and information on cattle numbers and their impact on forest regeneration. The spatial extent of cattle pasturing was highly variable, with the distribution of grazing areas frequently changing. Forest near villages (constituting less than 10 % of the area) was most often used for cattle grazing during continued longer time periods. Historical data showed that cattle have had a clear impact on forest regeneration. However, the frequent changes that occurred in the extent of cattle grazing indicate that their impact occurred locally, was smaller in other less intensively used areas, and in the forest as a whole.

  11. Limited evolutionary rescue of locally adapted populations facing climate change.

    PubMed

    Schiffers, Katja; Bourne, Elizabeth C; Lavergne, Sébastien; Thuiller, Wilfried; Travis, Justin M J

    2013-01-19

    Dispersal is a key determinant of a population's evolutionary potential. It facilitates the propagation of beneficial alleles throughout the distributional range of spatially outspread populations and increases the speed of adaptation. However, when habitat is heterogeneous and individuals are locally adapted, dispersal may, at the same time, reduce fitness through increasing maladaptation. Here, we use a spatially explicit, allelic simulation model to quantify how these equivocal effects of dispersal affect a population's evolutionary response to changing climate. Individuals carry a diploid set of chromosomes, with alleles coding for adaptation to non-climatic environmental conditions and climatic conditions, respectively. Our model results demonstrate that the interplay between gene flow and habitat heterogeneity may decrease effective dispersal and population size to such an extent that substantially reduces the likelihood of evolutionary rescue. Importantly, even when evolutionary rescue saves a population from extinction, its spatial range following climate change may be strongly narrowed, that is, the rescue is only partial. These findings emphasize that neglecting the impact of non-climatic, local adaptation might lead to a considerable overestimation of a population's evolvability under rapid environmental change.

  12. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus

    Treesearch

    J. Rojas-Sandoval; E. J. Melendez-Ackerman; NO-VALUE

    2013-01-01

    Aims The spatial distribution of biotic and abiotic factors may play a dominant role in determining the distribution and abundance of plants in arid and semiarid environments. In this study, we evaluated how spatial patterns of microhabitat variables and the degree of spatial dependence of these variables influence the distribution and abundance of the endangered...

  13. A New Optical Oxygen Sensor Reveals Spatial and Temporal Variations of Dissolved Oxygen at Ecohydrological Interfaces

    NASA Astrophysics Data System (ADS)

    Brandt, T.; Schmidt, C.; Fleckenstein, J. H.; Vieweg, M.; Harjung, A.

    2015-12-01

    The spatial and temporal distribution of dissolved oxygen (DO) at highly reactive aquatic interfaces, e.g. in the hyporheic zone (HZ), is a primary indicator of redox and interlinked biogeochemical zonations. However, continuous measuring of DO over time and depths is challenging due to the dynamic and potentially heterogenic nature of the HZ. We further developed a novel technology for spatially continuous in situ vertical oxygen profiling based on optical sensing (Vieweg et al, 2013). Continuous vertical measurements to a depth of 50 cm are obtained by the motor-controlled insertion of a side-firing Polymer Optical Fiber (POF) into tubular DO probes. Our technology allows minimally invasive DO measurements without DO consumption at high spatial resolution in the mm range. The reduced size of the tubular probe (diameter 5 mm) substantially minimizes disturbance of flow conditions. We tested our technology in situ in the HZ of an intermittent stream during the drying period. Repeated DO measurements were taken over a total duration of six weeks at two locations up- and downstream of a pool-cascade sequence. We were able to precisely map the spatial DO distribution which exhibited sharp gradients and rapid temporal changes as a function of changing hydrologic conditions. Our new vertical oxygen sensing technology will help to provide new insights to the coupling of transport of DO and biogeochemical reactions at aquatic interfaces. Vieweg, M., Trauth, N., Fleckenstein, J. H., Schmidt, C. (2013): Robust Optode-Based Method for Measuring in Situ Oxygen Profiles in Gravelly Streambeds. Environmental Science & Technology. doi:10.1021/es401040w

  14. Effect of a fish stock's demographic structure on offspring survival and sensitivity to climate

    PubMed Central

    Stige, Leif Christian; Yaragina, Natalia A.; Langangen, Øystein; Bogstad, Bjarte; Stenseth, Nils Chr.; Ottersen, Geir

    2017-01-01

    Commercial fishing generally removes large and old individuals from fish stocks, reducing mean age and age diversity among spawners. It is feared that these demographic changes lead to lower and more variable recruitment to the stocks. A key proposed pathway is that juvenation and reduced size distribution causes reduced ranges in spawning period, spawning location, and egg buoyancy; this is proposed to lead to reduced spatial distribution of fish eggs and larvae, more homogeneous ambient environmental conditions within each year-class, and reduced buffering against negative environmental influences. However, few, if any, studies have confirmed a causal link from spawning stock demographic structure through egg and larval distribution to year class strength at recruitment. We here show that high mean age and size in the spawning stock of Barents Sea cod (Gadus morhua) is positively associated with high abundance and wide spatiotemporal distribution of cod eggs. We find, however, no support for the hypothesis that a wide egg distribution leads to higher recruitment or a weaker recruitment–temperature correlation. These results are based on statistical analyses of a spatially resolved data set on cod eggs covering a period (1959−1993) with large changes in biomass and demographic structure of spawners. The analyses also account for significant effects of spawning stock biomass and a liver condition index on egg abundance and distribution. Our results suggest that the buffering effect of a geographically wide distribution of eggs and larvae on fish recruitment may be insignificant compared with other impacts. PMID:28115694

  15. [Spatial distribution pattern of Chilo suppressalis analyzed by classical method and geostatistics].

    PubMed

    Yuan, Zheming; Fu, Wei; Li, Fangyi

    2004-04-01

    Two original samples of Chilo suppressalis and their grid, random and sequence samples were analyzed by classical method and geostatistics to characterize the spatial distribution pattern of C. suppressalis. The limitations of spatial distribution analysis with classical method, especially influenced by the original position of grid, were summarized rather completely. On the contrary, geostatistics characterized well the spatial distribution pattern, congregation intensity and spatial heterogeneity of C. suppressalis. According to geostatistics, the population was up to Poisson distribution in low density. As for higher density population, its distribution was up to aggregative, and the aggregation intensity and dependence range were 0.1056 and 193 cm, respectively. Spatial heterogeneity was also found in the higher density population. Its spatial correlativity in line direction was more closely than that in row direction, and the dependence ranges in line and row direction were 115 and 264 cm, respectively.

  16. Importance of spatial autocorrelation in modeling bird distributions at a continental scale

    USGS Publications Warehouse

    Bahn, V.; O'Connor, R.J.; Krohn, W.B.

    2006-01-01

    Spatial autocorrelation in species' distributions has been recognized as inflating the probability of a type I error in hypotheses tests, causing biases in variable selection, and violating the assumption of independence of error terms in models such as correlation or regression. However, it remains unclear whether these problems occur at all spatial resolutions and extents, and under which conditions spatially explicit modeling techniques are superior. Our goal was to determine whether spatial models were superior at large extents and across many different species. In addition, we investigated the importance of purely spatial effects in distribution patterns relative to the variation that could be explained through environmental conditions. We studied distribution patterns of 108 bird species in the conterminous United States using ten years of data from the Breeding Bird Survey. We compared the performance of spatially explicit regression models with non-spatial regression models using Akaike's information criterion. In addition, we partitioned the variance in species distributions into an environmental, a pure spatial and a shared component. The spatially-explicit conditional autoregressive regression models strongly outperformed the ordinary least squares regression models. In addition, partialling out the spatial component underlying the species' distributions showed that an average of 17% of the explained variation could be attributed to purely spatial effects independent of the spatial autocorrelation induced by the underlying environmental variables. We concluded that location in the range and neighborhood play an important role in the distribution of species. Spatially explicit models are expected to yield better predictions especially for mobile species such as birds, even in coarse-grained models with a large extent. ?? Ecography.

  17. Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies.

    PubMed

    Katz, Daniel S W; Ibáñez, Inés

    2016-09-01

    Plant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450-km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems. © 2016 by the Ecological Society of America.

  18. Spatial and temporal coherence in perceptual binding

    PubMed Central

    Blake, Randolph; Yang, Yuede

    1997-01-01

    Component visual features of objects are registered by distributed patterns of activity among neurons comprising multiple pathways and visual areas. How these distributed patterns of activity give rise to unified representations of objects remains unresolved, although one recent, controversial view posits temporal coherence of neural activity as a binding agent. Motivated by the possible role of temporal coherence in feature binding, we devised a novel psychophysical task that requires the detection of temporal coherence among features comprising complex visual images. Results show that human observers can more easily detect synchronized patterns of temporal contrast modulation within hybrid visual images composed of two components when those components are drawn from the same original picture. Evidently, time-varying changes within spatially coherent features produce more salient neural signals. PMID:9192701

  19. Polarization-interference mapping of biological fluids polycrystalline films in differentiation of weak changes of optical anisotropy

    NASA Astrophysics Data System (ADS)

    Ushenko, V. O.; Vanchuliak, O.; Sakhnovskiy, M. Y.; Dubolazov, O. V.; Grygoryshyn, P.; Soltys, I. V.; Olar, O. V.; Antoniv, A.

    2017-09-01

    The theoretical background of the azimuthally stable method of polarization-interference mapping of the histological sections of the biopsy of the prostate tissue on the basis of the spatial frequency selection of the mechanisms of linear and circular birefringence is presented. The diagnostic application of a new correlation parameter - complex degree of mutual anisotropy - is analytically substantiated. The method of measuring coordinate distributions of complex degree of mutual anisotropy with further spatial filtration of their high- and low-frequency components is developed. The interconnections of such distributions with parameters of linear and circular birefringence of prostate tissue histological sections are found. The objective criteria of differentiation of benign and malignant conditions of prostate tissue are determined.

  20. Time-dependent density functional theory (TD-DFT) coupled with reference interaction site model self-consistent field explicitly including spatial electron density distribution (RISM-SCF-SEDD)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp; Institute of Transformative Bio-Molecules

    2016-09-07

    Theoretical approach to design bright bio-imaging molecules is one of the most progressing ones. However, because of the system size and computational accuracy, the number of theoretical studies is limited to our knowledge. To overcome the difficulties, we developed a new method based on reference interaction site model self-consistent field explicitly including spatial electron density distribution and time-dependent density functional theory. We applied it to the calculation of indole and 5-cyanoindole at ground and excited states in gas and solution phases. The changes in the optimized geometries were clearly explained with resonance structures and the Stokes shift was correctly reproduced.

Top