Sample records for change impact analysis

  1. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2011 - part 2)

    EPA Pesticide Factsheets

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - estimating impacts and valuing damages on a sectoral basis.

  2. Development Context Driven Change Awareness and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Sarma, Anita; Branchaud, Josh; Dwyer, Matthew B.; Person, Suzette; Rungta, Neha

    2014-01-01

    Recent work on workspace monitoring allows conflict prediction early in the development process, however, these approaches mostly use syntactic differencing techniques to compare different program versions. In contrast, traditional change-impact analysis techniques analyze related versions of the program only after the code has been checked into the master repository. We propose a novel approach, De- CAF (Development Context Analysis Framework), that leverages the development context to scope a change impact analysis technique. The goal is to characterize the impact of each developer on other developers in the team. There are various client applications such as task prioritization, early conflict detection, and providing advice on testing that can benefit from such a characterization. The DeCAF framework leverages information from the development context to bound the iDiSE change impact analysis technique to analyze only the parts of the code base that are of interest. Bounding the analysis can enable DeCAF to efficiently compute the impact of changes using a combination of program dependence and symbolic execution based approaches.

  3. Development Context Driven Change Awareness and Analysis Framework

    NASA Technical Reports Server (NTRS)

    Sarma, Anita; Branchaud, Josh; Dwyer, Matthew B.; Person, Suzette; Rungta, Neha; Wang, Yurong; Elbaum, Sebastian

    2014-01-01

    Recent work on workspace monitoring allows conflict prediction early in the development process, however, these approaches mostly use syntactic differencing techniques to compare different program versions. In contrast, traditional change-impact analysis techniques analyze related versions of the program only after the code has been checked into the master repository. We propose a novel approach, DeCAF (Development Context Analysis Framework), that leverages the development context to scope a change impact analysis technique. The goal is to characterize the impact of each developer on other developers in the team. There are various client applications such as task prioritization, early conflict detection, and providing advice on testing that can benefit from such a characterization. The DeCAF framework leverages information from the development context to bound the iDiSE change impact analysis technique to analyze only the parts of the code base that are of interest. Bounding the analysis can enable DeCAF to efficiently compute the impact of changes using a combination of program dependence and symbolic execution based approaches.

  4. Workshop: Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis: Modeling Climate Change Impacts and Associated Economic Damages (2010 - part 1)

    EPA Pesticide Factsheets

    The purpose of this workshop Improving the Assessment and Valuation of Climate Change Impacts for Policy and Regulatory Analysis. focused on conceptual and methodological issues - integrated assessment modeling and valuation.

  5. WATERSHED BOUNDARY CONDITIONS FOR GLOBAL CHANGE IMPACT ANALYSIS

    EPA Science Inventory

    The US Global Change Research Program (USGCRP) studies (among other issues) the impact of global change on water quality. This field study evaluates the impact of global changes (land-use change and climate change) on source water quality. Changes in source water quality change...

  6. The impacts of final demand changes on total output of Indonesian ICT sectors: An analysis using input-output approach

    NASA Astrophysics Data System (ADS)

    Zuhdi, Ubaidillah

    2014-06-01

    The purpose of this study is to analyze the impacts of final demand changes on total output of Indonesian Information and Communication Technology (ICT) sectors. This study employs Input-Output (IO) analysis as a tool of analysis. More specifically, demand-pull IO quantity model is applied in order to achieve the objective. "Whole sector change" and "pure change" conditions are considered in this study. The results of calculation show that, in both conditions, the biggest positive impact to the total output of the sectors is given by the change of households consumption while the change of import has a negative impact. One of the recommendations suggested from this study is to construct import restriction policy for ICT products.

  7. Chapter 14: The impacts of climate change on forestry

    Treesearch

    Linda A. Joyce

    2007-01-01

    The quantitative analysis of the impact of future climate change on forests and forestry began in the 1980s, motivated by research in the atmospheric sciences and concerns about the potential impacts of climate change on forest ecosystems. These analyses suggested that forest ecosystems would be seriously impacted by climate change, with consequent impacts on the...

  8. Analyzing the impacts of final demand changes on total output using input-output approach: The case of Japanese ICT sectors

    NASA Astrophysics Data System (ADS)

    Zuhdi, Ubaidillah

    2014-03-01

    The purpose of this study is to analyze the impacts of final demand changes on total output of Japanese Information and Communication Technologies (ICT) sectors in future time. This study employs one of analysis tool in Input-Output (IO) analysis, demand-pull IO quantity model, in achieving the purpose. There are three final demand changes used in this study, namely (1) export, (2) import, and (3) outside households consumption changes. This study focuses on "pure change" condition, the condition that final demand changes only appear in analyzed sectors. The results show that export and outside households consumption modifications give positive impact while opposite impact could be seen in import change.

  9. Quantifying long-term human impact in contrasting environments: Statistical analysis of modern and fossil pollen records

    NASA Astrophysics Data System (ADS)

    Broothaerts, Nils; López-Sáez, José Antonio; Verstraeten, Gert

    2017-04-01

    Reconstructing and quantifying human impact is an important step to understand human-environment interactions in the past. Quantitative measures of human impact on the landscape are needed to fully understand long-term influence of anthropogenic land cover changes on the global climate, ecosystems and geomorphic processes. Nevertheless, quantifying past human impact is not straightforward. Recently, multivariate statistical analysis of fossil pollen records have been proposed to characterize vegetation changes and to get insights in past human impact. Although statistical analysis of fossil pollen data can provide useful insights in anthropogenic driven vegetation changes, still it cannot be used as an absolute quantification of past human impact. To overcome this shortcoming, in this study fossil pollen records were included in a multivariate statistical analysis (cluster analysis and non-metric multidimensional scaling (NMDS)) together with modern pollen data and modern vegetation data. The information on the modern pollen and vegetation dataset can be used to get a better interpretation of the representativeness of the fossil pollen records, and can result in a full quantification of human impact in the past. This methodology was applied in two contrasting environments: SW Turkey and Central Spain. For each region, fossil pollen data from different study sites were integrated, together with modern pollen data and information on modern vegetation. In this way, arboreal cover, grazing pressure and agricultural activities in the past were reconstructed and quantified. The data from SW Turkey provides new integrated information on changing human impact through time in the Sagalassos territory, and shows that human impact was most intense during the Hellenistic and Roman Period (ca. 2200-1750 cal a BP) and decreased and changed in nature afterwards. The data from central Spain shows for several sites that arboreal cover decreases bellow 5% from the Feudal period onwards (ca. 850 cal a BP) related to increasing human impact in the landscape. At other study sites arboreal cover remained above 25% beside significant human impact. Overall, the presented examples from two contrasting environments shows how cluster analysis and NMDS of modern and fossil pollen data can help to provide quantitative insights in anthropogenic land cover changes. Our study extensively discuss and illustrate the possibilities and limitations of statistical analysis of pollen data to quantify human induced land use changes.

  10. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    PubMed

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.

  11. Climate Change Through a Poverty Lens

    NASA Astrophysics Data System (ADS)

    Rozenberg, J.; Hallegatte, S.

    2017-12-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  12. Climate change through a poverty lens

    NASA Astrophysics Data System (ADS)

    Hallegatte, Stephane; Rozenberg, Julie

    2017-04-01

    Analysis of the economic impact of climate change typically considers regional or national economies and assesses its impact on macroeconomic aggregates such as gross domestic product. These studies therefore do not investigate the distributional impacts of climate change within countries or the impacts on poverty. This Perspective aims to close this gap and provide an assessment of climate change impacts at the household level to investigate the consequences of climate change for poverty and for poor people. It does so by combining assessments of the physical impacts of climate change in various sectors with household surveys. In particular, it highlights how rapid and inclusive development can reduce the future impact of climate change on poverty.

  13. Analysis of the Climate Change Technology Initiative

    EIA Publications

    1999-01-01

    Analysis of the impact of specific policies on the reduction of carbon emissions and their impact on U.S. energy use and prices in the 2008-2012 time frame. Also, analyzes the impact of the President's Climate Change Technology Initiative, as defined for the 2000 budget, on reducing carbon emissions from the levels forecast in the Annual Energy Outlook 1999 reference case.

  14. A Change Impact Analysis to Characterize Evolving Program Behaviors

    NASA Technical Reports Server (NTRS)

    Rungta, Neha Shyam; Person, Suzette; Branchaud, Joshua

    2012-01-01

    Change impact analysis techniques estimate the potential effects of changes made to software. Directed Incremental Symbolic Execution (DiSE) is an intraprocedural technique for characterizing the impact of software changes on program behaviors. DiSE first estimates the impact of the changes on the source code using program slicing techniques, and then uses the impact sets to guide symbolic execution to generate path conditions that characterize impacted program behaviors. DiSE, however, cannot reason about the flow of impact between methods and will fail to generate path conditions for certain impacted program behaviors. In this work, we present iDiSE, an extension to DiSE that performs an interprocedural analysis. iDiSE combines static and dynamic calling context information to efficiently generate impacted program behaviors across calling contexts. Information about impacted program behaviors is useful for testing, verification, and debugging of evolving programs. We present a case-study of our implementation of the iDiSE algorithm to demonstrate its efficiency at computing impacted program behaviors. Traditional notions of coverage are insufficient for characterizing the testing efforts used to validate evolving program behaviors because they do not take into account the impact of changes to the code. In this work we present novel definitions of impacted coverage metrics that are useful for evaluating the testing effort required to test evolving programs. We then describe how the notions of impacted coverage can be used to configure techniques such as DiSE and iDiSE in order to support regression testing related tasks. We also discuss how DiSE and iDiSE can be configured for debugging finding the root cause of errors introduced by changes made to the code. In our empirical evaluation we demonstrate that the configurations of DiSE and iDiSE can be used to support various software maintenance tasks

  15. Assessment of Projected Temperature Impacts from Climate Change on the U.S. Electric Power Sector Using the Integrated Planning Model

    EPA Science Inventory

    The energy sector is considered to be one of the most vulnerable to climate change. This study is a first-order analysis of the potential climate change impacts on the U.S. electric power sector, measuring the energy, environmental, and economic impacts of power system changes du...

  16. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    EPA Science Inventory

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the impacts, economic damages, and risks from climate change in the United States. The primary goal of this framework to estimate how climate change impac...

  17. Global climate change impacts on forests and markets

    Treesearch

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  18. Transportation impact analysis gets a failing grade when it comes to climate change and smart growth

    DOT National Transportation Integrated Search

    2008-12-01

    Transportation impact analysis performed to comply with environmental impact laws (i.e., the : California Environmental Quality Act or the National Environmental Policy Act) often focuses : on only one perspective about potential impacts. That perspe...

  19. Analysis of Alaska transportation sectors to assess energy use and impacts of price shocks and climate change legislation.

    DOT National Transportation Integrated Search

    2013-04-01

    We analyzed the use of energy by Alaskas transportation sectors to assess the impact of sudden fuel prices changes. : We conducted three types of analysis: 1) Development of broad energy use statistics for each transportation sector, : including t...

  20. Using Impact-Relevant Sensitivities to Efficiently Evaluate and Select Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Vano, J. A.; Kim, J. B.; Rupp, D. E.; Mote, P.

    2014-12-01

    We outline an efficient approach to help researchers and natural resource managers more effectively use global climate model information in their long-term planning. The approach provides an estimate of the magnitude of change of a particular impact (e.g., summertime streamflow) from a large ensemble of climate change projections prior to detailed analysis. These estimates provide both qualitative information as an end unto itself (e.g., the distribution of future changes between emissions scenarios for the specific impact) and a judicious, defensible evaluation structure that can be used to qualitatively select a sub-set of climate models for further analysis. More specifically, the evaluation identifies global climate model scenarios that both (1) span the range of possible futures for the variable/s most important to the impact under investigation, and (2) come from global climate models that adequately simulate historical climate, providing plausible results for the future climate in the region of interest. To identify how an ecosystem process responds to projected future changes, we methodically sample, using a simple sensitivity analysis, how an impact variable (e.g., streamflow magnitude, vegetation carbon) responds locally to projected regional temperature and precipitation changes. We demonstrate our technique over the Pacific Northwest, focusing on two types of impacts each in three distinct geographic settings: (a) changes in streamflow magnitudes in critical seasons for water management in the Willamette, Yakima, and Upper Columbia River basins; and (b) changes in annual vegetation carbon in the Oregon and Washington Coast Ranges, Western Cascades, and Columbia Basin ecoregions.

  1. Impact of Spatial Scales on the Intercomparison of Climate Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Wei; Steptoe, Michael; Chang, Zheng

    2017-01-01

    Scenario analysis has been widely applied in climate science to understand the impact of climate change on the future human environment, but intercomparison and similarity analysis of different climate scenarios based on multiple simulation runs remain challenging. Although spatial heterogeneity plays a key role in modeling climate and human systems, little research has been performed to understand the impact of spatial variations and scales on similarity analysis of climate scenarios. To address this issue, the authors developed a geovisual analytics framework that lets users perform similarity analysis of climate scenarios from the Global Change Assessment Model (GCAM) using a hierarchicalmore » clustering approach.« less

  2. LAND USE AS A MITIGATON STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. Changing land use types was used as a nitigation strategy to reduce the adverse impacts of global climate change on water resources. The climate scenarios wer...

  3. Global Climate Change and NEPA: The Difficulty with Cumulative Impacts Analysis

    DTIC Science & Technology

    2008-05-18

    This paper will provide a survey of the current requirements under the law for addressing global climate change in NEPA documents, along with various...methodologies for quantifying the potential global climate change impacts of federal actions subject to NEPA.

  4. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1990-12-01

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributesmore » including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)« less

  5. Long-Term Impact of the Farm Financial Analysis Training Curriculum on FSA Borrowers in Pennsylvania

    ERIC Educational Resources Information Center

    Balliet, Kenneth L.; Douglass, Mark B.; Hanson, Gregory

    2010-01-01

    The Farm Financial Analysis Training (FFAT) course covers fundamental skills and concepts in liquidity, profitability, solvency, and efficiency. The research reported here identifies and measures the impacts of FFAT on participants including: 1) perceived gains in knowledge, 2) changes in management behavior, 3) changes in specific farm assets and…

  6. Bio-physical vs. Economic Uncertainty in the Analysis of Climate Change Impacts on World Agriculture

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Lobell, D. B.

    2010-12-01

    Accumulating evidence suggests that agricultural production could be greatly affected by climate change, but there remains little quantitative understanding of how these agricultural impacts would affect economic livelihoods in poor countries. The recent paper by Hertel, Burke and Lobell (GEC, 2010) considers three scenarios of agricultural impacts of climate change, corresponding to the fifth, fiftieth, and ninety fifth percentiles of projected yield distributions for the world’s crops in 2030. They evaluate the resulting changes in global commodity prices, national economic welfare, and the incidence of poverty in a set of 15 developing countries. Although the small price changes under the medium scenario are consistent with previous findings, their low productivity scenario reveals the potential for much larger food price changes than reported in recent studies which have hitherto focused on the most likely outcomes. The poverty impacts of price changes under the extremely adverse scenario are quite heterogeneous and very significant in some population strata. They conclude that it is critical to look beyond central case climate shocks and beyond a simple focus on yields and highly aggregated poverty impacts. In this paper, we conduct a more formal, systematic sensitivity analysis (SSA) with respect to uncertainty in the biophysical impacts of climate change on agriculture, by explicitly specifying joint distributions for global yield changes - this time focusing on 2050. This permits us to place confidence intervals on the resulting price impacts and poverty results which reflect the uncertainty inherited from the biophysical side of the analysis. We contrast this with the economic uncertainty inherited from the global general equilibrium model (GTAP), by undertaking SSA with respect to the behavioral parameters in that model. This permits us to assess which type of uncertainty is more important for regional price and poverty outcomes. Finally, we undertake a combined SSA, wherein climate change-induced productivity shocks are permitted to interact with the uncertain economic parameters. This permits us to examine potential interactions between the two sources of uncertainty.

  7. Uncertainty in simulating wheat yields under climate change

    USDA-ARS?s Scientific Manuscript database

    Anticipating the impacts of climate change on crop yields is critical for assessing future food security. Process-based crop simulation models are the most commonly used tools in such assessments. Analysis of uncertainties in future greenhouse gas emissions and their impacts on future climate change...

  8. Climate change impacts on extreme events in the United States: an uncertainty analysis

    EPA Science Inventory

    Extreme weather and climate events, such as heat waves, droughts and severe precipitation events, have substantial impacts on ecosystems and the economy. However, future climate simulations display large uncertainty in mean changes. As a result, the uncertainty in future changes ...

  9. The impact of climate change and aquatic salinization on mangrove species in the Bangladesh Sundarbans.

    PubMed

    Dasgupta, Susmita; Sobhan, Istiak; Wheeler, David

    2017-10-01

    This paper investigates the possible impacts of climate change on aquatic salinity and mangrove species in the Bangladesh Sundarbans. The impact analysis combines the salinity tolerance ranges of predominant mangrove species with aquatic salinity measures in 27 scenarios of climate change by 2050. The estimates indicate significant overall losses for Heritiera fomes; substantial gains for Excoecaria agallocha; modest changes for Avicennia alba, A. marina, A. officinalis, Ceriops decandra, and Sonneratia apetala; and mixed results for species combinations. Changes in mangrove stocks are likely to change the prospects for forest-based livelihoods. The implications for neighboring communities are assessed by computing changes in high-value mangrove species for the five sub-districts in the Sundarbans. The results of the impact analysis indicate highly varied patterns of gain and loss across the five sub-districts. Overall, however, the results suggest that salinity-induced mangrove migration will have a strongly regressive impact on the value of timber stocks because of the loss of highest value timber species, Heritiera fomes. In addition, the augmented potential for honey production will likely increase conflicts between humans and wildlife in the region.

  10. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types were used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The Thorn...

  11. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climat...

  12. Evidence of climate change impact on stream low flow from the tropical mountain rainforest watershed in Hainan Island, China

    Treesearch

    Z. Zhou; Y. Ouyang; Z. Qiu; G. Zhou; M. Lin; Y. Li

    2017-01-01

    Stream low flow estimates are central to assessing climate change impact, water resource management, and ecosystem restoration. This study investigated the impacts of climate change upon stream low flows from a rainforest watershed in Jianfengling (JFL) Mountain, Hainan Island, China, using the low flow selection method as well as the frequency and probability analysis...

  13. Current and Emerging Forces Impacting Special Education.

    ERIC Educational Resources Information Center

    Yates, James R.

    Using the methodology of force field analysis, the paper develops possible futures for special education based on current trends. Demographic forces impacting special education include age changes, ethnicity changes, the needs of emerging language minorities, specific change in the youth population, environmental factors and the incidence of…

  14. Ensembles-based predictions of climate change impacts on bioclimatic zones in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Jeon, S. W.; Lim, C. H.; Ryu, J.

    2017-12-01

    Biodiversity is rapidly declining globally and efforts are needed to mitigate this continually increasing loss of species. Clustering of areas with similar habitats can be used to prioritize protected areas and distribute resources for the conservation of species, selection of representative sample areas for research, and evaluation of impacts due to environmental changes. In this study, Northeast Asia (NEA) was classified into 14 bioclimatic zones using statistical techniques, which are correlation analysis and principal component analysis (PCA), and the iterative self-organizing data analysis technique algorithm (ISODATA). Based on these bioclimatic classification, we predicted shift of bioclimatic zones due to climate change. The input variables include the current climatic data (1960-1990) and the future climatic data of the HadGEM2-AO model (RCP 4.5(2050, 2070) and 8.5(2050, 2070)) provided by WorldClim. Using these data, multi-modeling methods including maximum likelihood classification, random forest, and species distribution modelling have been used to project the impact of climate change on the spatial distribution of bioclimatic zones within NEA. The results of various models were compared and analyzed by overlapping each result. As the result, significant changes in bioclimatic conditions can be expected throughout the NEA by 2050s and 2070s. The overall zones moved upward and some zones were predicted to disappear. This analysis provides the basis for understanding potential impacts of climate change on biodiversity and ecosystem. Also, this could be used more effectively to support decision making on climate change adaptation.

  15. Identification of potential impacts of climate change and anthropogenic activities on streamflow alterations in the Tarim River Basin, China.

    PubMed

    Xue, Lianqing; Yang, Fan; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Chi, Yixia; Yang, Guang

    2017-08-15

    Understanding contributions of climate change and human activities to changes in streamflow is important for sustainable management of water resources in an arid area. This study presents quantitative analysis of climatic and anthropogenic factors to streamflow alteration in the Tarim River Basin (TRB) using the double mass curve method (DMC) and the Budyko methods. The time series (1960~2015) are divided into three periods: the prior impacted period (1960~1972) and the two post impacted periods, 1973~1986 and 1987~2015 with trend analysis. Our results suggest that human activities played a dominant role in deduction in the streamflow in TRB with contribution of 144.6% to 120.68% during the post impacted period I and 228.68% to 140.38% during the post impacted period II. Climatic variables accounted for 20.68%~44.6% of the decrease during the post impacted period I and 40.38% ~128.68% during the post impacted period II. Sensitivity analysis indicates that the streamflow alteration was most sensitive to changes in landscape parameters. The aridity index and all the elasticities showed an obvious increasing trend from the upstream to the downstream in the TRB. Our study suggests that it is important to take effective measures for sustainable development of eco-hydrological and socio-economic systems in the TRB.

  16. A Comparative Analysis Of Congressional Budget Adjustments For U.S. Special Operations Command

    DTIC Science & Technology

    2011-12-01

    Impact from 2008-2010.........................20 a. Unfunded Requirements .........................................................21 b. Earmarks...recommendations: • How have USSOCOM appropriations changed since September 11, 2001? • What impact have manpower increases had on USSOCOM...Spending for Procurement (FY 2000 to 2010) 4. Analysis of Congressional Impact from 2008-2010 In order to analyze the congressional impact on

  17. A Comparative Analysis of Congressional Budget Adjustments for U.S. Special Operations Command

    DTIC Science & Technology

    2011-12-01

    Impact from 2008-2010.........................20 a. Unfunded Requirements .........................................................21 b. Earmarks...recommendations: • How have USSOCOM appropriations changed since September 11, 2001? • What impact have manpower increases had on USSOCOM...Spending for Procurement (FY 2000 to 2010) 4. Analysis of Congressional Impact from 2008-2010 In order to analyze the congressional impact on

  18. Bi-temporal analysis of landscape changes in the easternmost mediterranean deltas using binary and classified change information.

    PubMed

    Alphan, Hakan

    2013-03-01

    The aim of this study is (1) to quantify landscape changes in the easternmost Mediterranean deltas using bi-temporal binary change detection approach and (2) to analyze relationships between conservation/management designations and various categories of change that indicate type, degree and severity of human impact. For this purpose, image differencing and ratioing were applied to Landsat TM images of 1984 and 2006. A total of 136 candidate change images including normalized difference vegetation index (NDVI) and principal component analysis (PCA) difference images were tested to understand performance of bi-temporal pre-classification analysis procedures in the Mediterranean delta ecosystems. Results showed that visible image algebra provided high accuracies than did NDVI and PCA differencing. On the other hand, Band 5 differencing had one of the lowest change detection performances. Seven superclasses of change were identified using from/to change categories between the earlier and later dates. These classes were used to understand spatial character of anthropogenic impacts in the study area and derive qualitative and quantitative change information within and outside of the conservation/management areas. Change analysis indicated that natural site and wildlife reserve designations fell short of protecting sand dunes from agricultural expansion in the west. East of the study area, however, was exposed to least human impact owing to the fact that nature conservation status kept human interference at a minimum. Implications of these changes were discussed and solutions were proposed to deal with management problems leading to environmental change.

  19. Trajectory analysis of land use and land cover maps to improve spatial-temporal patterns, and impact assessment on groundwater recharge

    NASA Astrophysics Data System (ADS)

    Zomlot, Z.; Verbeiren, B.; Huysmans, M.; Batelaan, O.

    2017-11-01

    Land use/land cover (LULC) change is a consequence of human-induced global environmental change. It is also considered one of the major factors affecting groundwater recharge. Uncertainties and inconsistencies in LULC maps are one of the difficulties that LULC timeseries analysis face and which have a significant effect on hydrological impact analysis. Therefore, an accuracy assessment approach of LULC timeseries is needed for a more reliable hydrological analysis and prediction. The objective of this paper is to assess the impact of land use uncertainty and to improve the accuracy of a timeseries of CORINE (coordination of information on the environment) land cover maps by using a new approach of identifying spatial-temporal LULC change trajectories as a pre-processing tool. This ensures consistency of model input when dealing with land-use dynamics and as such improves the accuracy of land use maps and consequently groundwater recharge estimation. As a case study the impact of consistent land use changes from 1990 until 2013 on groundwater recharge for the Flanders-Brussels region is assessed. The change trajectory analysis successfully assigned a rational trajectory to 99% of all pixels. The methodology is shown to be powerful in correcting interpretation inconsistencies and overestimation errors in CORINE land cover maps. The overall kappa (cell-by-cell map comparison) improved from 0.6 to 0.8 and from 0.2 to 0.7 for forest and pasture land use classes respectively. The study shows that the inconsistencies in the land use maps introduce uncertainty in groundwater recharge estimation in a range of 10-30%. The analysis showed that during the period of 1990-2013 the LULC changes were mainly driven by urban expansion. The results show that the resolution at which the spatial analysis is performed is important; the recharge differences using original and corrected CORINE land cover maps increase considerably with increasing spatial resolution. This study indicates that improving consistency of land use map timeseries is of critical importance for assessing land use change and its environmental impact.

  20. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.

  1. Changing Hot Pursuit Policy: An Empirical Assessment of the Impact on Pursuit Behavior.

    ERIC Educational Resources Information Center

    Crew, Robert E., Jr.; And Others

    1994-01-01

    Using a two-year time series, the impact on law enforcement pursuit behavior of two changes in pursuit policy in a police department was studied using the ARIMA computer program and Tobit analysis. Each policy change produced significant reductions in pursuits engaged in by police officers. (SLD)

  2. Informing the NCA: EPA's Climate Change Impact and Risk Analysis Framework

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Kolian, M.; Crimmins, A. R.

    2017-12-01

    The Climate Change Impact and Risk Analysis (CIRA) framework is designed to quantify the physical impacts and economic damages in the United States under future climate change scenarios. To date, the framework has been applied to 25 sectors, using scenarios and projections developed for the Fourth National Climate Assessment. The strength of this framework has been in the use of consistent climatic, socioeconomic, and technological assumptions and inputs across the impact sectors to maximize the ease of cross-sector comparison. The results of the underlying CIRA sectoral analyses are informing the sustained assessment process by helping to address key gaps related to economic valuation and risk. Advancing capacity and scientific literature in this area has created opportunity to consider future applications and strengthening of the framework. This presentation will describe the CIRA framework, present results for various sectors such as heat mortality, air & water quality, winter recreation, and sea level rise, and introduce potential enhancements that can improve the utility of the framework for decision analysis.

  3. On The Impact of Climate Change to Agricultural Productivity in East Java

    NASA Astrophysics Data System (ADS)

    Kuswanto, Heri; Salamah, Mutiah; Mumpuni Retnaningsih, Sri; Dwi Prastyo, Dedy

    2018-03-01

    Many researches showed that climate change has significant impact on agricultural sector, which threats the food security especially in developing countries. It has been observed also that the climate change increases the intensity of extreme events. This research investigated the impact climate to the agricultural productivity in East Java, as one of the main rice producers in Indonesia. Standard regression as well as panel regression models have been performed in order to find the best model which is able to describe the climate change impact. The analysis found that the fixed effect model of panel regression outperforms the others showing that climate change had negatively impacted the rice productivity in East Java. The effect in Malang and Pasuruan were almost the same, while the impact in Sumenep was the least one compared to other districts.

  4. Analysis of the Impacts of an Early Start for Compliance with the Kyoto Protocol

    EIA Publications

    1999-01-01

    This report describes the Energy Information Administration's analysis of the impacts of an early start, using the same methodology as in Impacts of the Kyoto Protocol on U.S. Energy Markets and Economic Activity, with only those changes in assumptions caused by the early start date.

  5. AHP-based spatial analysis of water quality impact assessment due to change in vehicular traffic caused by highway broadening in Sikkim Himalaya

    NASA Astrophysics Data System (ADS)

    Banerjee, Polash; Ghose, Mrinal Kanti; Pradhan, Ratika

    2018-05-01

    Spatial analysis of water quality impact assessment of highway projects in mountainous areas remains largely unexplored. A methodology is presented here for Spatial Water Quality Impact Assessment (SWQIA) due to highway-broadening-induced vehicular traffic change in the East district of Sikkim. Pollution load of the highway runoff was estimated using an Average Annual Daily Traffic-Based Empirical model in combination with mass balance model to predict pollution in the rivers within the study area. Spatial interpolation and overlay analysis were used for impact mapping. Analytic Hierarchy Process-Based Water Quality Status Index was used to prepare a composite impact map. Model validation criteria, cross-validation criteria, and spatial explicit sensitivity analysis show that the SWQIA model is robust. The study shows that vehicular traffic is a significant contributor to water pollution in the study area. The model is catering specifically to impact analysis of the concerned project. It can be an aid for decision support system for the project stakeholders. The applicability of SWQIA model needs to be explored and validated in the context of a larger set of water quality parameters and project scenarios at a greater spatial scale.

  6. Analysis of potential impacts of climate change on forests of the United States Pacific Northwest

    Treesearch

    Gregory Latta; Hailemariam Temesgen; Darius Adams; Tara Barrett

    2010-01-01

    As global climate changes over the next century, forest productivity is expected to change as well. Using PRISM climate and productivity data measured on a grid of 3356 plots, we developed a simultaneous autoregressive model to estimate the impacts of climate change on potential productivity of Pacific Northwest forests of the United States. The model, coupled with...

  7. Climate change impacts utilizing regional models for agriculture, hydrology and natural ecosystems

    NASA Astrophysics Data System (ADS)

    Kafatos, M.; Asrar, G. R.; El-Askary, H. M.; Hatzopoulos, N.; Kim, J.; Kim, S.; Medvigy, D.; Prasad, A. K.; Smith, E.; Stack, D. H.; Tremback, C.; Walko, R. L.

    2012-12-01

    Climate change impacts the entire Earth but with crucial and often catastrophic impacts at local and regional levels. Extreme phenomena such as fires, dust storms, droughts and other natural hazards present immediate risks and challenges. Such phenomena will become more extreme as climate change and anthropogenic activities accelerate in the future. We describe a major project funded by NIFA (Grant # 2011-67004-30224), under the joint NSF-DOE-USDA Earth System Models (EaSM) program, to investigate the impacts of climate variability and change on the agricultural and natural (i.e. rangeland) ecosystems in the Southwest USA using a combination of historical and present observations together with climate, and ecosystem models, both in hind-cast and forecast modes. The applicability of the methodology to other regions is relevant (for similar geographic regions as well as other parts of the world with different agriculture and ecosystems) and should advance the state of knowledge for regional impacts of climate change. A combination of multi-model global climate projections from the decadal predictability simulations, to downscale dynamically these projections using three regional climate models, combined with remote sensing MODIS and other data, in order to obtain high-resolution climate data that can be used with hydrological and ecosystem models for impacts analysis, is described in this presentation. Such analysis is needed to assess the future risks and potential impacts of projected changes on these natural and managed ecosystems. The results from our analysis can be used by scientists to assist extended communities to determine agricultural coping strategies, and is, therefore, of interest to wide communities of stakeholders. In future work we will be including surface hydrologic modeling and water resources, extend modeling to higher resolutions and include significantly more crops and geographical regions with different weather and climate conditions. Specifics of the importance of the scientific methodology e.g. RCM ensemble modeling (using OLAM, RAMS and WRF); combining RCM runs with agriculture modeling system (specifically APSIM); bringing different RCM setups to as close as possible common framework, etc., and important science results (e.g. the significance of Gulf of CA SST for precipitation over dry regions; the AR landfall impacts on precipitation; etc.) are described in our work. We emphasize that the methodology is significant in order to advance the state of the art climate change impacts at regional levels; and to implement our methodology for realistic impact analysis on the natural and managed (agriculture) ecosystems, beyond the SW US.

  8. Flooded bus barns and buckled rails: public transportation and climate change adaptation.

    DOT National Transportation Integrated Search

    2011-08-01

    The objective of this project is to provide transit professionals with information and analysis relevant to adapting U.S. public transportation assets and services to climate change impacts. Climate impacts such as heat waves and flooding will hinder...

  9. Integrated assessment of future potential global change scenarios and their hydrological impacts in coastal aquifers - a new tool to analyse management alternatives in the Plana Oropesa-Torreblanca aquifer

    NASA Astrophysics Data System (ADS)

    Pulido-Velazquez, David; Renau-Pruñonosa, Arianna; Llopis-Albert, Carlos; Morell, Ignacio; Collados-Lara, Antonio-Juan; Senent-Aparicio, Javier; Baena-Ruiz, Leticia

    2018-05-01

    Any change in the components of the water balance in a coastal aquifer, whether natural or anthropogenic, can alter the freshwater-salt water equilibrium. In this sense climate change (CC) and land use and land cover (LULC) change might significantly influence the availability of groundwater resources in the future. These coastal systems demand an integrated analysis of quantity and quality issues to obtain an appropriate assessment of hydrological impacts using density-dependent flow solutions. The aim of this work is to perform an integrated analysis of future potential global change (GC) scenarios and their hydrological impacts in a coastal aquifer, the Plana Oropesa-Torreblanca aquifer. It is a Mediterranean aquifer that extends over 75 km2 in which important historical LULC changes have been produced and are planned for the future. Future CC scenarios will be defined by using an equi-feasible and non-feasible ensemble of projections based on the results of a multi-criteria analysis of the series generated from several regional climatic models with different downscaling approaches. The hydrological impacts of these CC scenarios combined with future LULC scenarios will be assessed with a chain of models defined by a sequential coupling of rainfall-recharge models, crop irrigation requirements and irrigation return models (for the aquifer and its neighbours that feed it), and a density-dependent aquifer approach. This chain of models, calibrated using the available historical data, allow testing of the conceptual approximation of the aquifer behaviour. They are also fed with series representatives of potential global change scenarios in order to perform a sensitivity analysis regarding future scenarios of rainfall recharge, lateral flows coming from the hydraulically connected neighbouring aquifer, agricultural recharge (taking into account expected future LULC changes) and sea level rise (SLR). The proposed analysis is valuable for improving our knowledge about the aquifer, and so comprises a tool to design sustainable adaptation management strategies taking into account the uncertainty in future GC conditions and their impacts. The results show that GC scenarios produce significant increases in the variability of flow budget components and in the salinity.

  10. The Impact of Planned Organizational Change on an Academic Library: An MRAP Case Study.

    ERIC Educational Resources Information Center

    Kuo, Ming-ming Shen

    This paper examines the impact of organizational change on a university library. The change process started in 1980 at Ball State University Libraries, Muncie, Indiana, with the initiation of a self-study, the Management Review and Analysis Program (MRAP). With certain key recommendations implemented, the University Libraries has been transformed…

  11. Model-based scenario planning to develop climate change adaptation strategies for rare plant populations in grassland reserves

    Treesearch

    Laura Phillips-Mao; Susan M. Galatowitsch; Stephanie A. Snyder; Robert G. Haight

    2016-01-01

    Incorporating climate change into conservation decision-making at site and population scales is challenging due to uncertainties associated with localized climate change impacts and population responses to multiple interacting impacts and adaptation strategies. We explore the use of spatially explicit population models to facilitate scenario analysis, a conservation...

  12. Impact of Parkinson's disease and levodopa on resting state functional connectivity related to speech prosody control.

    PubMed

    Elfmarková, Nela; Gajdoš, Martin; Mračková, Martina; Mekyska, Jiří; Mikl, Michal; Rektorová, Irena

    2016-01-01

    Impaired speech prosody is common in Parkinson's disease (PD). We assessed the impact of PD and levodopa on MRI resting-state functional connectivity (rs-FC) underlying speech prosody control. We studied 19 PD patients in the OFF and ON dopaminergic conditions and 15 age-matched healthy controls using functional MRI and seed partial least squares correlation (PLSC) analysis. In the PD group, we also correlated levodopa-induced rs-FC changes with the results of acoustic analysis. The PLCS analysis revealed a significant impact of PD but not of medication on the rs-FC strength of spatial correlation maps seeded by the anterior cingulate (p = 0.006), the right orofacial primary sensorimotor cortex (OF_SM1; p = 0.025) and the right caudate head (CN; p = 0.047). In the PD group, levodopa-induced changes in the CN and OF_SM1 connectivity strengths were related to changes in speech prosody. We demonstrated an impact of PD but not of levodopa on rs-FC within the brain networks related to speech prosody control. When only the PD patients were taken into account, the association between treatment-induced changes in speech prosody and changes in rs-FC within the associative striato-prefrontal and motor speech networks was found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Meta-analysis of climate impacts and uncertainty on crop yields in Europe

    NASA Astrophysics Data System (ADS)

    Knox, Jerry; Daccache, Andre; Hess, Tim; Haro, David

    2016-11-01

    Future changes in temperature, rainfall and soil moisture could threaten agricultural land use and crop productivity in Europe, with major consequences for food security. We assessed the projected impacts of climate change on the yield of seven major crop types (viz wheat, barley, maize, potato, sugar beet, rice and rye) grown in Europe using a systematic review (SR) and meta-analysis of data reported in 41 original publications from an initial screening of 1748 studies. Our approach adopted an established SR procedure developed by the Centre for Evidence Based Conservation constrained by inclusion criteria and defined methods for literature searches, data extraction, meta-analysis and synthesis. Whilst similar studies exist to assess climate impacts on crop yield in Africa and South Asia, surprisingly, no comparable synthesis has been undertaken for Europe. Based on the reported results (n = 729) we show that the projected change in average yield in Europe for the seven crops by the 2050s is +8%. For wheat and sugar beet, average yield changes of +14% and +15% are projected, respectively. There were strong regional differences with crop impacts in northern Europe being higher (+14%) and more variable compared to central (+6%) and southern (+5) Europe. Maize is projected to suffer the largest negative mean change in southern Europe (-11%). Evidence of climate impacts on yield was extensive for wheat, maize, sugar beet and potato, but very limited for barley, rice and rye. The implications for supporting climate adaptation policy and informing climate impacts crop science research in Europe are discussed.

  14. GLOBAL CLIMATE CHANGE AND ITS IMPACT ON DISEASE IMBEDDED IN ECOLOGICAL COMMUNITIES

    EPA Science Inventory

    We present the techniques of qualitative analysis of complex communities and discuss the impact of climate change as a press perturbation. In particular, we focus on the difficult problem of disease and parasites embedded in animal communities, notably zoonotic diseases. Climate ...

  15. Expanding research capabilities with sea ice climate records for analysis of long-term climate change and short-term variability

    NASA Astrophysics Data System (ADS)

    Scott, D. J.; Meier, W. N.

    2008-12-01

    Recent sea ice analysis is leading to predictions of a sea ice-free summertime in the Arctic within 20 years, or even sooner. Sea ice topics, such as concentration, extent, motion, and age, are predominately studied using satellite data. At the National Snow and Ice Data Center (NSIDC), passive microwave sea ice data sets provide timely assessments of seasonal-scale variability as well as consistent long-term climate data records. Such data sets are crucial to understanding changes and assessing their impacts. Noticeable impacts of changing sea ice conditions on native cultures and wildlife in the Arctic region are now being documented. With continued deterioration in Arctic sea ice, global economic impacts will be seen as new shipping routes open. NSIDC is at the forefront of making climate data records available to address the changes in sea ice and its global impacts. By focusing on integrated data sets, NSIDC leads the way by broadening the studies of sea ice beyond the traditional cryospheric community.

  16. Managing changes in the enterprise architecture modelling context

    NASA Astrophysics Data System (ADS)

    Khanh Dam, Hoa; Lê, Lam-Son; Ghose, Aditya

    2016-07-01

    Enterprise architecture (EA) models the whole enterprise in various aspects regarding both business processes and information technology resources. As the organisation grows, the architecture of its systems and processes must also evolve to meet the demands of the business environment. Evolving an EA model may involve making changes to various components across different levels of the EA. As a result, an important issue before making a change to an EA model is assessing the ripple effect of the change, i.e. change impact analysis. Another critical issue is change propagation: given a set of primary changes that have been made to the EA model, what additional secondary changes are needed to maintain consistency across multiple levels of the EA. There has been however limited work on supporting the maintenance and evolution of EA models. This article proposes an EA description language, namely ChangeAwareHierarchicalEA, integrated with an evolution framework to support both change impact analysis and change propagation within an EA model. The core part of our framework is a technique for computing the impact of a change and a new method for generating interactive repair plans from Alloy consistency rules that constrain the EA model.

  17. Meta-studies in land use science: Current coverage and prospects.

    PubMed

    van Vliet, Jasper; Magliocca, Nicholas R; Büchner, Bianka; Cook, Elizabeth; Rey Benayas, José M; Ellis, Erle C; Heinimann, Andreas; Keys, Eric; Lee, Tien Ming; Liu, Jianguo; Mertz, Ole; Meyfroidt, Patrick; Moritz, Mark; Poeplau, Christopher; Robinson, Brian E; Seppelt, Ralf; Seto, Karen C; Verburg, Peter H

    2016-02-01

    Land use science has traditionally used case-study approaches for in-depth investigation of land use change processes and impacts. Meta-studies synthesize findings across case-study evidence to identify general patterns. In this paper, we provide a review of meta-studies in land use science. Various meta-studies have been conducted, which synthesize deforestation and agricultural land use change processes, while other important changes, such as urbanization, wetland conversion, and grassland dynamics have hardly been addressed. Meta-studies of land use change impacts focus mostly on biodiversity and biogeochemical cycles, while meta-studies of socioeconomic consequences are rare. Land use change processes and land use change impacts are generally addressed in isolation, while only few studies considered trajectories of drivers through changes to their impacts and their potential feedbacks. We provide a conceptual framework for linking meta-studies of land use change processes and impacts for the analysis of coupled human-environmental systems. Moreover, we provide suggestions for combining meta-studies of different land use change processes to develop a more integrated theory of land use change, and for combining meta-studies of land use change impacts to identify tradeoffs between different impacts. Land use science can benefit from an improved conceptualization of land use change processes and their impacts, and from new methods that combine meta-study findings to advance our understanding of human-environmental systems.

  18. Alternative future analysis for assessing the potential impact of climate change on urban landscape dynamics.

    PubMed

    He, Chunyang; Zhao, Yuanyuan; Huang, Qingxu; Zhang, Qiaofeng; Zhang, Da

    2015-11-01

    Assessing the impact of climate change on urban landscape dynamics (ULD) is the foundation for adapting to climate change and maintaining urban landscape sustainability. This paper demonstrates an alternative future analysis by coupling a system dynamics (SD) and a cellular automata (CA) model. The potential impact of different climate change scenarios on ULD from 2009 to 2030 was simulated and evaluated in the Beijing-Tianjin-Tangshan megalopolis cluster area (BTT-MCA). The results suggested that the integrated model, which combines the advantages of the SD and CA model, has the strengths of spatial quantification and flexibility. Meanwhile, the results showed that the influence of climate change would become more severe over time. In 2030, the potential urban area affected by climate change will be 343.60-1260.66 km(2) (5.55 -20.37 % of the total urban area, projected by the no-climate-change-effect scenario). Therefore, the effects of climate change should not be neglected when designing and managing urban landscape. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Coal Transportation Rate Sensitivity Analysis

    EIA Publications

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  20. Cost analysis of impacts of climate change on regional air quality.

    PubMed

    Liao, Kuo-Jen; Tagaris, Efthimios; Russell, Armistead G; Amar, Praveen; He, Shan; Manomaiphiboon, Kasemsan; Woo, Jung-Hun

    2010-02-01

    Climate change has been predicted to adversely impact regional air quality with resulting health effects. Here a regional air quality model and a technology analysis tool are used to assess the additional emission reductions required and associated costs to offset impacts of climate change on air quality. Analysis is done for six regions and five major cities in the continental United States. Future climate is taken from a global climate model simulation for 2049-2051 using the Intergovernmental Panel on Climate Change (IPCC) A1B emission scenario, and emission inventories are the same as current ones to assess impacts of climate change alone on air quality and control expenses. On the basis of the IPCC A1B emission scenario and current control technologies, least-cost sets of emission reductions for simultaneously offsetting impacts of climate change on regionally averaged 4th highest daily maximum 8-hr average ozone and yearly averaged PM2.5 (particulate matter [PM] with an aerodynamic diameter less than 2.5 microm) for the six regions examined are predicted to range from $36 million (1999$) yr(-1) in the Southeast to $5.5 billion yr(-1) in the Northeast. However, control costs to offset climate-related pollutant increases in urban areas can be greater than the regional costs because of the locally exacerbated ozone levels. An annual cost of $4.1 billion is required for offsetting climate-induced air quality impairment in 2049-2051 in the five cities alone. Overall, an annual cost of $9.3 billion is estimated for offsetting climate change impacts on air quality for the six regions and five cities examined. Much of the additional expense is to reduce increased levels of ozone. Additional control costs for offsetting the impacts everywhere in the United States could be larger than the estimates in this study. This study shows that additional emission controls and associated costs for offsetting climate impacts could significantly increase currently estimated control requirements and should be considered in developing control strategies for achieving air quality targets in the future.

  1. Integrated analysis considered mitigation cost, damage cost and adaptation cost in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Lee, D. K.; Kim, H. G.; Sung, S.; Jung, T. Y.

    2015-12-01

    Various studies show that raising the temperature as well as storms, cold snap, raining and drought caused by climate change. And variety disasters have had a damage to mankind. The world risk report(2012, The Nature Conservancy) and UNU-EHS (the United Nations University Institute for Environment and Human Security) reported that more and more people are exposed to abnormal weather such as floods, drought, earthquakes, typhoons and hurricanes over the world. In particular, the case of Korea, we influenced by various pollutants which are occurred in Northeast Asian countries, China and Japan, due to geographical meteorological characteristics. These contaminants have had a significant impact on air quality with the pollutants generated in Korea. Recently, around the world continued their effort to reduce greenhouse gas and to improve air quality in conjunction with the national or regional development goals priority. China is also working on various efforts in accordance with the international flows to cope with climate change and air pollution. In the future, effect of climate change and air quality in Korea and Northeast Asia will be change greatly according to China's growth and mitigation policies. The purpose of this study is to minimize the damage caused by climate change on the Korean peninsula through an integrated approach taking into account the mitigation and adaptation plan. This study will suggest a climate change strategy at the national level by means of a comprehensive economic analysis of the impacts and mitigation of climate change. In order to quantify the impact and damage cost caused by climate change scenarios in a regional scale, it should be priority variables selected in accordance with impact assessment of climate change. The sectoral impact assessment was carried out on the basis of selected variables and through this, to derive the methodology how to estimate damage cost and adaptation cost. And then, the methodology was applied in Korea. Finally, we build an integrated analysis considered mitigation cost, damage cost, and adaptation cost by climate change

  2. Supervised analysis of drug prescription sequences.

    PubMed

    Ficheur, Grégoire; Chazard, Emmanuel; Merlin, Béatrice; Ferret, Laurie; Luyckx, Michel; Beuscart, Régis

    2013-01-01

    Hospitals have at their disposal large databases that may be considered for reuse. The objective of this work is to evaluate the impact of a drug on a specific laboratory result by analyzing these data. This analysis first involves building a record of temporal patterns, including medical context, of drug prescriptions. Changes in outcome due to these patterns of drug prescription are assessed using short phases of the inpatient stay compared to monotonous changes in the laboratory result. To illustrate this technique, we investigated potassium chloride supplementation and its impact on kalemia. This method enables us to assess the impact of a drug (in its frequent context of prescription) on a laboratory result. This kind of analysis could play a role in post-marketing studies.

  3. Climate Change Impacts on Crop Production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2011-12-01

    The agricultural sector in Nigeria is particularly important for the country's food security, natural resources, and growth agenda. The cultivable areas comprise more than 70% of the total area; however, the cultivated area is about the 35% of the total area. The most important components in the food basket of the nation are cereals and tubers, which include rice, maize, corn, millet, sorghum, yam, and cassava. These crops represent about 80% of the total agricultural product in Nigeria (from NPAFS). The major crops grown in the country can be divided into food crops (produced for consumption) and export products. Despite the importance of the export crops, the primary policy of agriculture is to make Nigeria self-sufficient in its food and fiber requirements. The projected impacts of future climate change on agriculture and water resources are expected to be adverse and extensive in these area. This implies the need for actions and measures to adapt to climate change impacts, and especially as they affect agriculture, the primary sector for Nigerian economy. In the framework of the Project Climate Risk Analysis in Nigeria (founded by World Bank Contract n.7157826), a study was made to assess the potential impact of climate change on the main crops that characterize Nigerian agriculture. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT are tools that simulate physiological processes of crop growth, development and production by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were calibrated to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output was "perturbed" with 10 Global Climate Models to have a wide variety of possible climate projections for the impact analysis. Multiple combinations of soil and climate conditions and crop management and varieties were considered for each Agro-Ecological Zone (AEZ) of Nigeria. A sensitivity analysis was made to evaluate the model response to changes in precipitation and temperature. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future climate conditions. The results were analyzed at state, AEZ and country levels. The analysis shows a general reduction in crop yields in particular in the dryer regions of northern Nigeria.

  4. Climate, Water and Renewable Energy in the Nordic Countries

    NASA Astrophysics Data System (ADS)

    Snorrason, A.; Jonsdottir, J. F.

    2004-05-01

    Climate and Energy (CE) is a new Nordic research project with funding from Nordic Energy Research (NEFP) and the Nordic energy sector. The project has the objective of a comprehensive assessment of the impact of climate variability and change on Nordic renewable energy resources including hydropower, wind power, bio-fuels and solar energy. This will include assessment of the power production of the hydropower dominated Nordic energy system and its sensitivity and vulnerability to climate change on both temporal and spatial scales; assessment of the impacts of extremes including floods, droughts, storms, seasonal patterns and variability. Within the CE project several thematic groups work on specific issues of climatic change and their impacts on renewable energy. A primary aim of the CE climate group is to supply a standard set of common scenarios of climate change in northern Europe and Greenland, based on recent global and regional climate change experiments. The snow and ice group has chosen glaciers from Greenland, Iceland, Norway and Sweden for an analysis of the response of glaciers to climate changes. Mass balance and dynamical changes, corresponding to the common scenario for climate changes, will be modelled and effects on glacier hydrology will be estimated. Preliminary work with dynamic modelling and climate scenarios shows a dramatic response of glacial runoff to increased temperature and precipitation. The statistical analysis group has reported on the status of time series analysis in the Nordic countries. The group has selected and quality controlled time series of stream flow to be included in the Nordic component of the database FRIEND. Also the group will collect information on time series for other variables and these series will be systematically analysed with respect to trend and other long-term changes. Preliminary work using multivariate analysis on stream flow and climate variables shows strong linkages with the long term atmospheric circulation in the North Atlantic. The hydrological modelling group has already reported on "Climate change impacts on water resources in the Nordic countries - State of the art and discussion of principles". The group will compare different approaches of transferring the climate change signal into hydrological models and discuss uncertainties in models and climate scenarios. Furthermore, comprehensive assessment and mapping of impact of climate change will be produced for the whole Nordic region based on the scenarios from the CE-climate group.

  5. An Integrated Hydro-Economic Model for Economy-Wide Climate Change Impact Assessment for Zambia

    NASA Astrophysics Data System (ADS)

    Zhu, T.; Thurlow, J.; Diao, X.

    2008-12-01

    Zambia is a landlocked country in Southern Africa, with a total population of about 11 million and a total area of about 752 thousand square kilometers. Agriculture in the country depends heavily on rainfall as the majority of cultivated land is rain-fed. Significant rainfall variability has been a huge challenge for the country to keep a sustainable agricultural growth, which is an important condition for the country to meet the United Nations Millennium Development Goals. The situation is expected to become even more complex as climate change would impose additional impacts on rainwater availability and crop water requirements, among other changes. To understand the impacts of climate variability and change on agricultural production and national economy, a soil hydrology model and a crop water production model are developed to simulate actual crop water uses and yield losses under water stress which provide annual shocks for a recursive dynamic computational general equilibrium (CGE) model developed for Zambia. Observed meteorological data of the past three decades are used in the integrated hydro-economic model for climate variability impact analysis, and as baseline climatology for climate change impact assessment together with several GCM-based climate change scenarios that cover a broad range of climate projections. We found that climate variability can explain a significant portion of the annual variations of agricultural production and GDP of Zambia in the past. Hidden beneath climate variability, climate change is found to have modest impacts on agriculture and national economy of Zambia around 2025 but the impacts would be pronounced in the far future if appropriate adaptations are not implemented. Policy recommendations are provided based on scenario analysis.

  6. Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks.

    PubMed

    Takemoto, Kazuhiro; Kajihara, Kosuke

    2016-01-01

    Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.

  7. Tailored scenarios for streamflow climate change impacts based on the perturbation of precipitation and evapotranspiration

    NASA Astrophysics Data System (ADS)

    Ntegeka, Victor; Willems, Patrick; Baguis, Pierre; Roulin, Emmanuel

    2015-04-01

    It is advisable to account for a wide range of uncertainty by including the maximum possible number of climate models and scenarios for future impacts. As this is not always feasible, impact assessments are inevitably performed with a limited set of scenarios. The development of tailored scenarios is a challenge that needs more attention as the number of available climate change simulations grows. Whether these scenarios are representative enough for climate change impacts is a question that needs addressing. This study presents a methodology of constructing tailored scenarios for assessing runoff flows including extreme conditions (peak flows) from an ensemble of future climate change signals of precipitation and potential evapotranspiration (ETo) derived from the climate model simulations. The aim of the tailoring process is to formulate scenarios that can optimally represent the uncertainty spectrum of climate scenarios. These tailored scenarios have the advantage of being few in number as well as having a clear description of the seasonal variation of the climate signals, hence allowing easy interpretation of the implications of future changes. The tailoring process requires an analysis of the hydrological impacts from the likely future change signals from all available climate model simulations in a simplified (computationally less expensive) impact model. Historical precipitation and ETo time series are perturbed with the climate change signals based on a quantile perturbation technique that accounts for the changes in extremes. For precipitation, the change in wetday frequency is taken into account using a markov-chain approach. Resulting hydrological impacts from the perturbed time series are then subdivided into high, mean and low hydrological impacts using a quantile change analysis. From this classification, the corresponding precipitation and ETo change factors are back-tracked on a seasonal basis to determine precipitation-ETo covariation. The established precipitation-ETo covariations are used to inform the scenario construction process. Additionally, the back-tracking of extreme flows from driving scenarios allows for a diagnosis of the physical responses to climate change scenarios. The method is demonstrated through the application of scenarios from 10 Regional Climate Models,21 Global Climate Models and selected catchments in central Belgium. Reference Ntegeka, V., Baguis, P., Roulin, E., & Willems, P. (2014). Developing tailored climate change scenarios for hydrological impact assessments. Journal of Hydrology, 508, 307-321.

  8. Uncertainty in simulating wheat yields under climate change

    NASA Astrophysics Data System (ADS)

    Asseng, S.; Ewert, F.; Rosenzweig, C.; Jones, J. W.; Hatfield, J. L.; Ruane, A. C.; Boote, K. J.; Thorburn, P. J.; Rötter, R. P.; Cammarano, D.; Brisson, N.; Basso, B.; Martre, P.; Aggarwal, P. K.; Angulo, C.; Bertuzzi, P.; Biernath, C.; Challinor, A. J.; Doltra, J.; Gayler, S.; Goldberg, R.; Grant, R.; Heng, L.; Hooker, J.; Hunt, L. A.; Ingwersen, J.; Izaurralde, R. C.; Kersebaum, K. C.; Müller, C.; Naresh Kumar, S.; Nendel, C.; O'Leary, G.; Olesen, J. E.; Osborne, T. M.; Palosuo, T.; Priesack, E.; Ripoche, D.; Semenov, M. A.; Shcherbak, I.; Steduto, P.; Stöckle, C.; Stratonovitch, P.; Streck, T.; Supit, I.; Tao, F.; Travasso, M.; Waha, K.; Wallach, D.; White, J. W.; Williams, J. R.; Wolf, J.

    2013-09-01

    Projections of climate change impacts on crop yields are inherently uncertain. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models are difficult. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development andpolicymaking.

  9. Climate change impacts on rainfall extremes and urban drainage: state-of-the-art review

    NASA Astrophysics Data System (ADS)

    Willems, Patrick; Olsson, Jonas; Arnbjerg-Nielsen, Karsten; Beecham, Simon; Pathirana, Assela; Bülow Gregersen, Ida; Madsen, Henrik; Nguyen, Van-Thanh-Van

    2013-04-01

    Under the umbrella of the IWA/IAHR Joint Committee on Urban Drainage, the International Working Group on Urban Rainfall (IGUR) has reviewed existing methodologies for the analysis of long-term historical and future trends in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic climate change. Current practises have several limitations and pitfalls, which are important to be considered by trend or climate change impact modellers and users of trend/impact results. The review considers the following aspects: Analysis of long-term historical trends due to anthropogenic climate change: influence of data limitation, instrumental or environmental changes, interannual variations and longer term climate oscillations on trend testing results. Analysis of long-term future trends due to anthropogenic climate change: by complementing empirical historical data with the results from physically-based climate models, dynamic downscaling to the urban scale by means of Limited Area Models (LAMs) including explicitly small-scale cloud processes; validation of RCM/GCM results for local conditions accounting for natural variability, limited length of the available time series, difference in spatial scales, and influence of climate oscillations; statistical downscaling methods combined with bias correction; uncertainties associated with the climate forcing scenarios, the climate models, the initial states and the statistical downscaling step; uncertainties in the impact models (e.g. runoff peak flows, flood or surcharge frequencies, and CSO frequencies and volumes), including the impacts of more extreme conditions than considered during impact model calibration and validation. Implications for urban drainage infrastructure design and management: upgrading of the urban drainage system as part of a program of routine and scheduled replacement and renewal of aging infrastructure; how to account for the uncertainties; flexible and sustainable solutions; adaptive approach that provides inherent flexibility and reversibility and avoids closing off options; importance of active learning. References: Willems, P., Olsson, J., Arnbjerg-Nielsen, K., Beecham, S., Pathirana, A., Bülow Gregersen, I., Madsen, H., Nguyen, V-T-V. (2012). Impacts of climate change on rainfall extremes and urban drainage. IWA Publishing, 252 p., Paperback Print ISBN 9781780401256; Ebook ISBN 9781780401263 Willems, P., Arnbjerg-Nielsen, K., Olsson, J., Nguyen, V.T.V. (2012), 'Climate change impact assessment on urban rainfall extremes and urban drainage: methods and shortcomings', Atmospheric Research, 103, 106-118

  10. Climate Change: Modeling the Human Response

    NASA Astrophysics Data System (ADS)

    Oppenheimer, M.; Hsiang, S. M.; Kopp, R. E.

    2012-12-01

    Integrated assessment models have historically relied on forward modeling including, where possible, process-based representations to project climate change impacts. Some recent impact studies incorporate the effects of human responses to initial physical impacts, such as adaptation in agricultural systems, migration in response to drought, and climate-related changes in worker productivity. Sometimes the human response ameliorates the initial physical impacts, sometimes it aggravates it, and sometimes it displaces it onto others. In these arenas, understanding of underlying socioeconomic mechanisms is extremely limited. Consequently, for some sectors where sufficient data has accumulated, empirically based statistical models of human responses to past climate variability and change have been used to infer response sensitivities which may apply under certain conditions to future impacts, allowing a broad extension of integrated assessment into the realm of human adaptation. We discuss the insights gained from and limitations of such modeling for benefit-cost analysis of climate change.

  11. Accounting for health in climate change policies: a case study of Fiji.

    PubMed

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes.

  12. Assessment of environmental impacts following alternative agricultural policy scenarios.

    PubMed

    Bárlund, I; Lehtonen, H; Tattari, S

    2005-01-01

    Abstract Finnish agriculture is likely to undergo major changes in the near and intermediate future. The ifuture policy context can be examined at a general level by strategic scenario building. Computer-based modelling in combination with agricultural policy scenarios can in turn create a basis for the assessments of changes in environmental quality following possible changes in Finnish agriculture. The analysis of economic consequences is based on the DREMFIA model, which is applied to study effects of various agricultural policies on land use, animal production, and farmers' income. The model is suitable for an impact analysis covering an extended time span--here up to the year 2015. The changes in land use, obtained with the DREMFIA model assuming rational economic behaviour, form the basis when evaluating environmental impacts of different agricultural policies. The environmental impact assessment is performed using the field scale nutrient transport model ICECREAM. The modelled variables are nitrogen and phosphorus losses in surface runoff and percolation. In this paper the modelling strategy will be presented and highlighted using two case study catchments with varying environmental conditions and land use as an example. In addition, the paper identifies issues arising when connecting policy scenarios with impact modelling.

  13. Sensitivity of lod scores to changes in diagnostic status.

    PubMed Central

    Hodge, S E; Greenberg, D A

    1992-01-01

    This paper investigates effects on lod scores when one individual in a data set changes diagnostic or recombinant status. First we examine the situation in which a single offspring in a nuclear family changes status. The nuclear-family situation, in addition to being of interest in its own right, also has general theoretical importance, since nuclear families are "transparent"; that is, one can track genetic events more precisely in nuclear families than in complex pedigrees. We demonstrate that in nuclear families log10 [(1-theta)/theta] gives an upper limit on the impact that a single offspring's change in status can have on the lod score at that recombination fraction (theta). These limits hold for a fully penetrant dominant condition and fully informative marker, in either phase-known or phase-unknown matings. Moreover, log10 [(1-theta)/theta] (where theta denotes the value of theta at which Zmax occurs) gives an upper limit on the impact of a single offspring's status change on the maximum lod score (Zmax). In extended pedigrees, in contrast to nuclear families, no comparable limit can be set on the impact of a single individual on the lod score. Complex pedigrees are subject to both stabilizing and destabilizing influences, and these are described. Finally, we describe a "sensitivity analysis," in which, after all linkage analysis is completed, every informative individual in the data set is changed, one at a time, to see the effect which each separate change has on the lod scores. The procedure includes identifying "critical individuals," i.e., those who would have the greatest impact on the lod scores, should their diagnostic status in fact change. To illustrate use of the sensitivity analysis, we apply it to the large bipolar pedigree reported by Egeland et al. and Kelsoe et al. We show that the changes in lod scores observed there, on the order of 1.1-1.2 per person, are not unusual. We recommend that investigators include a sensitivity analysis as a standard part of reporting the results of a linkage analysis. PMID:1570835

  14. Sensitivity of lod scores to changes in diagnostic status.

    PubMed

    Hodge, S E; Greenberg, D A

    1992-05-01

    This paper investigates effects on lod scores when one individual in a data set changes diagnostic or recombinant status. First we examine the situation in which a single offspring in a nuclear family changes status. The nuclear-family situation, in addition to being of interest in its own right, also has general theoretical importance, since nuclear families are "transparent"; that is, one can track genetic events more precisely in nuclear families than in complex pedigrees. We demonstrate that in nuclear families log10 [(1-theta)/theta] gives an upper limit on the impact that a single offspring's change in status can have on the lod score at that recombination fraction (theta). These limits hold for a fully penetrant dominant condition and fully informative marker, in either phase-known or phase-unknown matings. Moreover, log10 [(1-theta)/theta] (where theta denotes the value of theta at which Zmax occurs) gives an upper limit on the impact of a single offspring's status change on the maximum lod score (Zmax). In extended pedigrees, in contrast to nuclear families, no comparable limit can be set on the impact of a single individual on the lod score. Complex pedigrees are subject to both stabilizing and destabilizing influences, and these are described. Finally, we describe a "sensitivity analysis," in which, after all linkage analysis is completed, every informative individual in the data set is changed, one at a time, to see the effect which each separate change has on the lod scores. The procedure includes identifying "critical individuals," i.e., those who would have the greatest impact on the lod scores, should their diagnostic status in fact change. To illustrate use of the sensitivity analysis, we apply it to the large bipolar pedigree reported by Egeland et al. and Kelsoe et al. We show that the changes in lod scores observed there, on the order of 1.1-1.2 per person, are not unusual. We recommend that investigators include a sensitivity analysis as a standard part of reporting the results of a linkage analysis.

  15. Impact of an Adlerian Based Pretrial Diversion Program: Self Concept and Dissociation

    ERIC Educational Resources Information Center

    Norvell, Jeanell J.

    2010-01-01

    Clients' self concepts and dissociative experiences were examined to determine the impact of an Adlerian based pretrial diversion program. Clients completing the program displayed a significant change in self concepts and dissociative experiences. A repeated measures multivariate analysis of variance indicated a 35% change, made up of the…

  16. Impact of Definitions of FIA Variables and Compilation Procedures on Inventory Compilation Results in Georgia

    Treesearch

    Brock Stewart; Chris J. Cieszewski; Michal Zasada

    2005-01-01

    This paper presents a sensitivity analysis of the impact of various definitions and inclusions of different variables in the Forest Inventory and Analysis (FIA) inventory on data compilation results. FIA manuals have been changing recently to make the inventory consistent between all the States. Our analysis demonstrates the importance (or insignificance) of different...

  17. Garlic

    MedlinePlus

    ... impact of dietary changes and dietary supplements on lipid profile. Canadian Journal of Cardiology. 2011;27(4): ... CM, et al. The impact of garlic on lipid parameters: a systematic review and meta-analysis . Nutrition ...

  18. Projecting Future Land Use Changes in West Africa Driven by Climate and Socioeconomic Factors: Uncertainties and Implications for Adaptation

    NASA Astrophysics Data System (ADS)

    Wang, G.; Ahmed, K. F.; You, L.

    2015-12-01

    Land use changes constitute an important regional climate change forcing in West Africa, a region of strong land-atmosphere coupling. At the same time, climate change can be an important driver for land use, although its importance relative to the impact of socio-economic factors may vary significant from region to region. This study compares the contributions of climate change and socioeconomic development to potential future changes of agricultural land use in West Africa and examines various sources of uncertainty using a land use projection model (LandPro) that accounts for the impact of socioeconomic drivers on the demand side and the impact of climate-induced crop yield changes on the supply side. Future crop yield changes were simulated by a process-based crop model driven with future climate projections from a regional climate model, and future changes of food demand is projected using a model for policy analysis of agricultural commodities and trade. The impact of human decision-making on land use was explicitly considered through multiple "what-if" scenarios to examine the range of uncertainties in projecting future land use. Without agricultural intensification, the climate-induced decrease of crop yield together with increase of food demand are found to cause a significant increase in agricultural land use at the expense of forest and grassland by the mid-century, and the resulting land use land cover changes are found to feed back to the regional climate in a way that exacerbates the negative impact of climate on crop yield. Analysis of results from multiple decision-making scenarios suggests that human adaptation characterized by science-informed decision making to minimize land use could be very effective in many parts of the region.

  19. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    NASA Astrophysics Data System (ADS)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-05-01

    There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment in Odense, Denmark, and find that the uncertainty on the climate change impact appears to have the least influence on the net present value of the studied adaptation measures-. This does not imply that the climate change impact is not important, but that the uncertainties are not dominating when deciding on action or in-action. We then consider the uncertainty related to choosing between adaptation options given that a decision of action has been taken. In this case the major part of the uncertainty on the estimated net present values is identical for all adaptation options and will therefore not affect a comparison between adaptation measures. This makes the chose among the options easier. Furthermore, the explicit attribution of uncertainty also enables a reduction of the overall uncertainty by identifying the processes which contributes the most. This knowledge can then be used to further reduce the uncertainty related to decision making, as a substantial part of the remaining uncertainty is epistemic.

  20. Assessing the combined effects of urbanisation and climate change on the river water quality in an integrated urban wastewater system in the UK.

    PubMed

    Astaraie-Imani, Maryam; Kapelan, Zoran; Fu, Guangtao; Butler, David

    2012-12-15

    Climate change and urbanisation are key factors affecting the future of water quality and quantity in urbanised catchments and are associated with significant uncertainty. The work reported in this paper is an evaluation of the combined and relative impacts of climate change and urbanisation on the receiving water quality in the context of an Integrated Urban Wastewater System (IUWS) in the UK. The impacts of intervening system operational control parameters are also investigated. Impact is determined by a detailed modelling study using both local and global sensitivity analysis methods together with correlation analysis. The results obtained from the case-study analysed clearly demonstrate that climate change combined with increasing urbanisation is likely to lead to worsening river water quality in terms of both frequency and magnitude of breaching threshold dissolved oxygen and ammonium concentrations. The results obtained also reveal the key climate change and urbanisation parameters that have the largest negative impact as well as the most responsive IUWS operational control parameters including major dependencies between all these parameters. This information can be further utilised to adapt future IUWS operation and/or design which, in turn, should make these systems more resilient to future climate and urbanisation changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Before-after, control-impact analysis of evidence for the impacts of water level on Walleye, Northern Pike and Yellow Perch in lakes of the Rainy-Namakan complex (MN, USA and ON, CA).

    PubMed

    Larson, James H; Maki, Ryan P; Vondra, Benjamin A; Peterson, Kevin E

    2018-01-01

    Water level (WL) fluctuations in lakes influence many aspects of ecosystem processes. Concern about the potential impact of WL fluctuations on fisheries was one of the factors that motivated the decision in 2000 to alter the management of WL in the Rainy-Namakan reservoir complex (on the border between the U.S. state of Minnesota and the Canadian province of Ontario). We used a Before-After, Control-Impact (BACI) framework to identify potential impacts of the change in WL management to Walleye, Northern Pike and Yellow Perch catch per unit effort (CPUE). The CPUE of these species from 1990-1999 and from 2005-2014 were compared in four impact lakes (Lake Kabetogama, Namakan Lake, Rainy Lake and Sand Point Lake) and two control lakes (Lake of the Woods and Lake Vermilion) using a simple Bayesian model. Changes in fish CPUE in the impact lakes were often similar to changes that occurred in at least one control lake. The only change that was not similar to changes in control lakes was an increase of Yellow Perch in Lake Kabetogama. The two control lakes often differed substantially from each other, such that if only one had been available our conclusions about the role of WL management on fisheries would be very different. In general, identifying cause-and-effect relationships in observational field data is very difficult, and the BACI analysis used here does not specify a causative mechanism, so co-occurring environmental and management changes may obscure the effect of WL management.

  2. Estimating the limits of adaptation from historical behaviour: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Jina, A.; Hsiang, S. M.; Kopp, R. E., III; Rasmussen, D.; Rising, J.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in a number of economic sectors [1]. The main analysis presents projections of climate impacts with an assumption of "no adaptation". Yet, historically, when the climate imposed an economic cost upon society, adaptive responses were taken to minimise these costs. These adaptive behaviours, both autonomous and planned, can be expected to occur as climate impacts increase in the future. To understand the extent to which adaptation might decrease some of the worst impacts of climate change, we empirically estimate adaptive responses. We do this in three sectors considered in the analysis - crop yield, crime, and mortality - and estimate adaptive capacity in two steps. First, looking at changes in climate impacts through time, we identify a historical rate of adaptation. Second, spatial differences in climate impacts are then used to stratify regions into more adapted or less adapted based on climate averages. As these averages change across counties in the US, we allow each to become more adapted at the rate identified in step one. We are then able to estimate the residual damages, assuming that only the historical adaptive behaviours have taken place (fig 1). Importantly, we are unable to estimate any costs associated with these adaptations, nor are we able to estimate more novel (for example, new technological discoveries) or more disruptive (for example, migration) adaptive behaviours. However, an important insight is that historical adaptive behaviours may not be capable of reducing the worst impacts of climate change. The persistence of impacts in even the most exposed areas indicates that there are non-trivial costs associated with adaptation that will need to be met from other sources or through novel behavioural changes. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  3. Latest research related to climate change analysis with applications in impact studies over the territory of Serbia

    NASA Astrophysics Data System (ADS)

    Vukovic, Ana; Vujadinovic, Mirjam; Djurdjevic, Vladimir; Cvetkovic, Bojan; Djordjevic, Marija; Ruml, Mirjana; Rankovic-Vasic, Zorica; Przic, Zoran; Stojicic, Djurdja; Krzic, Aleksandra; Rajkovic, Borivoj

    2015-04-01

    Serbia is a country with relatively small scale terrain features with economy mostly based on local landowners' agricultural production. Climate change analysis must be downscaled accordingly, to recognize climatological features of the farmlands. Climate model simulations and impact studies significantly contribute to the future strategic planning in economic development and therefore impact analysis must be approached with high level of confidence. This paper includes research related to climate change and impacts in Serbia resulted from cooperative work of the modeling and user community. Dynamical downscaling of climate projections for the 21st century with multi-model approach and statistical bias correction are done in order to prepare model results for impact studies. Presented results are from simulations performed using regional EBU-POM model, which is forced with A1B and A2 SRES/IPCC (2007) with comparative analysis with other regional models and from the latest high resolution NMMB simulations forced with RCP8.5 IPCC scenario (2012). Application of bias correction of the model results is necessary when calculated indices are not linearly dependent on the model results and delta approach in presenting results with respect to present climate simulations is insufficient. This is most important during the summer over the north part of the country where model bias produce much higher temperatures and less precipitation, which is known as "summer drying problem" and is common in regional models' simulations over the Pannonian valley. Some of the results, which are already observed in present climate, like higher temperatures and disturbance in the precipitation pattern, lead to present and future advancement of the start of the vegetation period toward earlier dates, associated with an increased risk of the late spring frost, extended vegetation period, disturbed preparation for the rest period, increased duration and frequency of the draught periods, etc. Based on the projected climate changes an application is proposed of the ensemble seasonal forecasts for early preparation in case of upcoming unfavorable weather conditions. This paper was realized as a part of the projects "Studying climate change and its influence on the environment: impacts, adaptation and mitigation" (43007) and "Assessment of climate change impacts on water resources in Serbia" (37005) financed by the Ministry of Education and Science of the Republic of Serbia within the framework of integrated and interdisciplinary research for the period 2011-2015.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Braeton J.; Shaneyfelt, Calvin R.

    A NISAC study on the economic effects of a hypothetical H1N1 pandemic was done in order to assess the differential impacts at the state and industry levels given changes in absenteeism, mortality, and consumer spending rates. Part of the analysis was to determine if there were any direct relationships between pandemic impacts and gross domestic product (GDP) losses. Multiple regression analysis was used because it shows very clearly which predictors are significant in their impact on GDP. GDP impact data taken from the REMI PI+ (Regional Economic Models, Inc., Policy Insight +) model was used to serve as the responsemore » variable. NISAC economists selected the average absenteeism rate, mortality rate, and consumer spending categories as the predictor variables. Two outliers were found in the data: Nevada and Washington, DC. The analysis was done twice, with the outliers removed for the second analysis. The second set of regressions yielded a cleaner model, but for the purposes of this study, the analysts deemed it not as useful because particular interest was placed on determining the differential impacts to states. Hospitals and accommodation were found to be the most important predictors of percentage change in GDP among the consumer spending variables.« less

  5. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less

  6. Development of the virtual research environment for analysis, evaluation and prediction of global climate change impacts on the regional environment

    NASA Astrophysics Data System (ADS)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander; Fazliev, Alexander

    2017-04-01

    Description and the first results of the Russian Science Foundation project "Virtual computational information environment for analysis, evaluation and prediction of the impacts of global climate change on the environment and climate of a selected region" is presented. The project is aimed at development of an Internet-accessible computation and information environment providing unskilled in numerical modelling and software design specialists, decision-makers and stakeholders with reliable and easy-used tools for in-depth statistical analysis of climatic characteristics, and instruments for detailed analysis, assessment and prediction of impacts of global climate change on the environment and climate of the targeted region. In the framework of the project, approaches of "cloud" processing and analysis of large geospatial datasets will be developed on the technical platform of the Russian leading institution involved in research of climate change and its consequences. Anticipated results will create a pathway for development and deployment of thematic international virtual research laboratory focused on interdisciplinary environmental studies. VRE under development will comprise best features and functionality of earlier developed information and computing system CLIMATE (http://climate.scert.ru/), which is widely used in Northern Eurasia environment studies. The Project includes several major directions of research listed below. 1. Preparation of geo-referenced data sets, describing the dynamics of the current and possible future climate and environmental changes in detail. 2. Improvement of methods of analysis of climate change. 3. Enhancing the functionality of the VRE prototype in order to create a convenient and reliable tool for the study of regional social, economic and political consequences of climate change. 4. Using the output of the first three tasks, compilation of the VRE prototype, its validation, preparation of applicable detailed description of climate change in Western Siberia, and dissemination of the Project results. Results of the first stage of the Project implementation are presented. This work is supported by the Russian Science Foundation grant No16-19-10257.

  7. Analysis of the impacts of well yield and groundwater depth on irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Foster, T.; Brozović, N.; Butler, A. P.

    2015-04-01

    Previous research has found that irrigation water demand is relatively insensitive to water price, suggesting that increased pumping costs due to declining groundwater levels will have limited effects on agricultural water management practices. However, non-linear changes in well yields as aquifer saturated thickness is reduced may have large impacts on irrigated production that are currently neglected in projections of the long-term sustainability of groundwater-fed irrigation. We conduct empirical analysis of observation data and numerical simulations for case studies in Nebraska, USA, to compare the impacts of changes in well yield and groundwater depth on agricultural production. Our findings suggest that declining well pumping capacities reduce irrigated production areas and profits significantly, whereas increased pumping costs reduce profits but have minimal impacts on the intensity of groundwater-fed irrigation. We suggest, therefore, that management of the dynamic relationship between well yield and saturated thickness should be a core component of policies designed to enhance long-term food security and support adaptation to climate change.

  8. The Future is Now: Reducing Psychological Distance to Increase Public Engagement with Climate Change.

    PubMed

    Jones, Charlotte; Hine, Donald W; Marks, Anthony D G

    2017-02-01

    Many people perceive climate change as psychologically distant-a set of uncertain events that might occur far in the future, impacting distant places and affecting people dissimilar to themselves. In this study, we employed construal level theory to investigate whether a climate change communication intervention could increase public engagement by reducing the psychological distance of climate change. Australian residents (N = 333) were randomly assigned to one of two treatment conditions: one framed to increase psychological distance to climate change (distal frame), and the other framed to reduce psychological distance (proximal frame). Participants then completed measures of psychological distance of climate change impacts, climate change concern, and intentions to engage in mitigation behavior. Principal components analysis indicated that psychological distance to climate change was best conceptualized as a multidimensional construct consisting of four components: geographic, temporal, social, and uncertainty. Path analysis revealed the effect of the treatment frame on climate change concern and intentions was fully mediated by psychological distance dimensions related to uncertainty and social distance. Our results suggest that climate communications framed to reduce psychological distance represent a promising strategy for increasing public engagement with climate change. © 2016 Society for Risk Analysis.

  9. Yinong Sun | NREL

    Science.gov Websites

    integration Impacts of climate change on energy system evolution Energy policy analysis Education M.E.M. in . Electric Sector Climate Impacts. International Energy Workshop, Maryland. View all NREL publications for

  10. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. © The Author(s) 2015.

  11. Uncertainty in Simulating Wheat Yields Under Climate Change

    NASA Technical Reports Server (NTRS)

    Asseng, S.; Ewert, F.; Rosenzweig, Cynthia; Jones, J. W.; Hatfield, J. W.; Ruane, A. C.; Boote, K. J.; Thornburn, P. J.; Rotter, R. P.; Cammarano, D.; hide

    2013-01-01

    Projections of climate change impacts on crop yields are inherently uncertain1. Uncertainty is often quantified when projecting future greenhouse gas emissions and their influence on climate2. However, multi-model uncertainty analysis of crop responses to climate change is rare because systematic and objective comparisons among process-based crop simulation models1,3 are difficult4. Here we present the largest standardized model intercomparison for climate change impacts so far. We found that individual crop models are able to simulate measured wheat grain yields accurately under a range of environments, particularly if the input information is sufficient. However, simulated climate change impacts vary across models owing to differences in model structures and parameter values. A greater proportion of the uncertainty in climate change impact projections was due to variations among crop models than to variations among downscaled general circulation models. Uncertainties in simulated impacts increased with CO2 concentrations and associated warming. These impact uncertainties can be reduced by improving temperature and CO2 relationships in models and better quantified through use of multi-model ensembles. Less uncertainty in describing how climate change may affect agricultural productivity will aid adaptation strategy development and policymaking.

  12. The Employment Impact of Technological Change. Technology and the American Economy, Appendix Volume II.

    ERIC Educational Resources Information Center

    National Commission on Technology, Automation and Economic Progress, Washington, DC.

    Eleven descriptive studies prepared by independent experts and dealing with the employment impact of technological change are presented. Part I contains (1) an analysis, at the establishment level, of employment-increasing growth of output and employment-decreasing growth of output per man-hour, (2) case studies of the elapsed time involved in the…

  13. Trend and uncertainty analysis of simulated climate change impacts with multiple GCMs and emission scenarios

    USDA-ARS?s Scientific Manuscript database

    Impacts of climate change on hydrology, soil erosion, and wheat production during 2010-2039 at El Reno in central Oklahoma, USA, were simulated using the Water Erosion Prediction Project (WEPP) model. Projections from four GCMs (CCSR/NIES, CGCM2, CSIRO-Mk2, and HadCM3) under three emissions scenari...

  14. A Quantitative Analysis of the Impact of Public School Principals' Perceptions and Attitudes as They Relate to Job Satisfaction

    ERIC Educational Resources Information Center

    Ryans, Edward O'Neal

    2009-01-01

    The principalship has experienced many changes over the years influenced by reform efforts, economic changes, and social challenges (Goodwin et al., 2005). As a result, challenges experienced by public school principals have impacted recruitment and retention efforts of qualified candidates. The Interstate School Leaders Licensure Consortium…

  15. Temporal dynamics of bird community composition: an analysis of baseline conditions from long-term data.

    PubMed

    Kampichler, Christian; Angeler, David G; Holmes, Richard T; Leito, Aivar; Svensson, Sören; van der Jeugd, Henk P; Wesołowski, Tomasz

    2014-08-01

    Numerous anthropogenic activities threaten the biodiversity found on earth. Because all ecological communities constantly experience temporal turnover due to natural processes, it is important to distinguish between change due to anthropogenic impact and the underlying natural rate of change. In this study, we used data sets on breeding bird communities that covered at least 20 consecutive years, from a variety of terrestrial ecosystems, to address two main questions. (1) How fast does the composition of bird communities change over time, and can we identify a baseline of natural change that distinguishes primeval systems from systems experiencing varying degrees of human impact? (2) How do patterns of temporal variation in composition vary among bird communities in ecosystems with different anthropogenic impacts? Time lag analysis (TLA) showed a pattern of increasing rate of temporal compositional change from large-scale primeval systems to disturbed and protected systems to distinctly successional systems. TLA slopes of <0.04 were typical for breeding bird communities with natural turnover, while communities subjected to anthropogenic impact were characterised by TLA slopes of >0.04. Most of the temporal variability of breeding bird communities was explained by slow changes occurring over decades, regardless of the intensity of human impact. In most of the time series, medium- and short-wave periodicity was not detected, with the exception of breeding bird communities subjected to periodic pulses (e.g. caterpillar outbreaks causing food resource peaks).

  16. Impacts of global change on the concentrations and dilution of combined sewer overflows in a drinking water source.

    PubMed

    Jalliffier-Verne, Isabelle; Leconte, Robert; Huaringa-Alvarez, Uriel; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2015-03-01

    This study presents an analysis of climate change impacts on a large river located in Québec (Canada) used as a drinking water source. Combined sewer overflow (CSO) effluents are the primary source of fecal contamination of the river. An analysis of river flowrates was conducted using historical data and predicted flows from a future climate scenario. A spatio-temporal analysis of water quality trends with regard to fecal contamination was performed and the effects of changing flowrates on the dilution of fecal contaminants were analyzed. Along the river, there was a significant spatial trend for increasing fecal pollution downstream of CSO outfalls. Escherichia coli concentrations (upper 95th percentile) increased linearly from 2002 to 2012 at one drinking water treatment plant intake. Two critical periods in the current climate were identified for the drinking water intakes considering both potential contaminant loads and flowrates: local spring snowmelt that precedes river peak flow and extra-tropical storm events that occur during low flows. Regionally, climate change is expected to increase the intensity of the impacts of hydrological conditions on water quality in the studied basin. Based on climate projections, it is expected that spring snowmelt will occur earlier and extreme spring flowrates will increase and low flows will generally decrease. High and low flows are major factors related to the potential degradation of water quality of the river. However, the observed degradation of water quality over the past 10 years suggests that urban development and population growth may have played a greater role than climate. However, climate change impacts will likely be observed over a longer period. Source water protection plans should consider climate change impacts on the dilution of contaminants in addition to local land uses changes in order to maintain or improve water quality. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Study Pollution Impacts on Upper-Tropospheric Clouds with Aura, CloudSat, and CALIPSO Data

    NASA Technical Reports Server (NTRS)

    Wu, Dong

    2007-01-01

    This viewgraph presentation reviews the impact of pollution on clouds in the Upper Troposphere. Using the data from the Aura Microwave Limb Sounder (MLS), CloudSat, CALIPSO the presentation shows signatures of pollution impacts on clouds in the upper troposphere. The presentation demonstrates the complementary sensitivities of MLS , CloudSat and CALIPSO to upper tropospheric clouds. It also calls for careful analysis required to sort out microphysical changes from dynamical changes.

  18. Does the Weather Really Matter?

    NASA Astrophysics Data System (ADS)

    Burroughs, William James

    1997-09-01

    We talk about it endlessly, write about it copiously, and predict it badly. It influences what we do, what we wear, and how we live. Weather--how does it really impact our lives? In this compelling look at weather, author Burroughs combines historical perspective and economic and political analysis to give the impact of weather and climate change relevance and weight. He examines whether the frequency of extreme events is changing and the consequences of these changes. He looks at the chaotic nature of the climate and how this unpredictability can impose serious limits on how we plan for the future. Finally, he poses the important question: what types of serious, even less predictable changes are around the corner? In balanced and accessible prose, Burroughs works these issues into lucid analysis. This refreshing and insightful look at the impact of weather will appeal to anyone who has ever worried about forgetting an umbrella. William James Burroughs is the author of Watching the World's Weather (CUP, 1991) and Weather Cycles: Real or Imaginary? (CUP, 1994).

  19. Data Sparsity Considerations in Climate Impact Analysis for the Water Sector (Invited)

    NASA Astrophysics Data System (ADS)

    Asante, K. O.; Khimsara, P.; Chan, A.

    2013-12-01

    Scientists and planners are helping governments and communities around the world to prepare for climate change by performing local impact studies and developing adaptation plans. Most studies begin by analyzing global climate models outputs to estimate the magnitude of projected change, assessing vulnerabilities and proposing adaptation measures. In these studies, climate projections from the Intergovernmental Panel on Climate Change (IPCC) Data Distribution Centre (DDC) are either used directly or downscaled using regional models. Since climate projections cover the entire global, climate change analysis can be performed for any location. However, selection of climate projections for use in historically data sparse regions presents special challenges. Key questions arise about the impact of historical data sparsity on quality of climate projections, spatial consistency of results and suitability for applications such as water resource planning. In this paper, a water-sector climate study conducted in a data-rich setting in California is compared to a similar study conducted a data-sparse setting in Mozambique. The challenges of selecting projections, performing analysis and interpreting the results for climate adaption planning are compared to illustrate the decision process and challenges encountered in these two very different settings.

  20. The Economic Impacts of Climate Change on Agriculture: New Damage Functions from a Meta-Analsis and the GGCMI

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Baldos, U. L. C.; Hertel, T. W.; Diaz, D.

    2016-12-01

    Substantial advances have been made in recent years in understanding the effects of climate change on agriculture, but this is not currently represented in economic models used to quantify the benefits of reducing greenhouse gas emissions. In fact, the science regarding climate change impacts on agriculture in these models dates to the early 1990s or before. In this paper we derive new economic damage functions for the agricultural sector based on two methods for aggregating current scientific understanding of the impacts of warming on yields. We first present a new meta-analysis based on a review of the agronomic literature performed for the IPCC 5th Assessment Report and compare results from this approach with findings from the AgMIP Global Gridded Crop Model Intercomparison (GGCMI). We find yield impacts implied by the meta-analysis are generally more negative than those from the GGCMI, particularly at higher latitudes, but show substantial agreement in many areas. We then use both yield products as input to the Global Trade Analysis Project (GTAP) computable general equilibrium (CGE) model in order to estimate the welfare consequences of these yield shocks and to produce two new economic damage functions. These damage functions are consistently more negative than the current representation of agricultural damages in Integrated Asessment Models (IAMs), in some cases substantially so. Replacing the existing damage functions with those based on more recent science increases the social cost of carbon (SCC) by between 43% (GGCMI) and 143% (Meta-Analysis). In addition to presenting a new mutli-crop, multi-model gridded yield impact prouct that complements the GGCMI, this is also the first end-to-end study that directly links the biophysical impacts of climate change to the SCC, something we believe essential to improving the integrity of IAMs going forward.

  1. Accounting for health in climate change policies: a case study of Fiji

    PubMed Central

    Morrow, Georgina; Bowen, Kathryn

    2014-01-01

    Background Climate change is expected to affect the health of most populations in the coming decades, having the greatest impact on the poorest and most disadvantaged people in the world. The Pacific islands, including Fiji, are particularly vulnerable to the effects of climate change. Objective The three major health impacts of climate change in Fiji explored in this study were dengue fever, diarrhoeal disease, and malnutrition, as they each pose a significant threat to human health. The aim of this study was to investigate to what extent the Fiji National Climate Change Policy, and a selection of relevant sectoral policies, account for these human health effects of climate change. Design The study employed a three-pronged policy analysis to evaluate: 1) the content of the Fijian National Climate Change Policy and to what extent health was incorporated within this; 2) the context within which the policy was developed; 3) the relevant processes; and 4) the actors involved. A selection of relevant sectoral policies were also analysed to assess the extent to which these included climate change and health considerations. Results The policy analysis showed that these three health impacts of climate change were only considered to a minor extent, and often indirectly, in both the Fiji National Climate Change Policy and the corresponding National Climate Change Adaptation Strategy, as well as the Public Health Act. Furthermore, supporting documents in relevant sectors including water and agriculture made no mention of climate change and health impacts. Conclusions The projected health impacts of climate change should be considered as part of reviewing the Fiji National Climate Change Policy and National Climate Change Adaptation Strategy, and the Public Health Act. In the interest of public health, this should include strategies for combating dengue fever, malnutrition, and water-borne disease. Related sectoral policies in water and agriculture should also be revised to consider climate change and its impact on human health. Approaches to include health aspects of climate change within sectoral and climate change specific policies should be encouraged, via a number of mechanisms, such as the Health in All Policies approach. Future research could support the Fiji health sector in developing climate change and health programmes. PMID:24836442

  2. Climate Change Impacts on Agriculture and Food Security in 2050 under a Range of Plausible Socioeconomic and Emissions Scenarios

    NASA Astrophysics Data System (ADS)

    Wiebe, K.; Lotze-Campen, H.; Bodirsky, B.; Kavallari, A.; Mason-d'Croz, D.; van der Mensbrugghe, D.; Robinson, S.; Sands, R.; Tabeau, A.; Willenbockel, D.; Islam, S.; van Meijl, H.; Mueller, C.; Robertson, R.

    2014-12-01

    Previous studies have combined climate, crop and economic models to examine the impact of climate change on agricultural production and food security, but results have varied widely due to differences in models, scenarios and data. Recent work has examined (and narrowed) these differences through systematic model intercomparison using a high-emissions pathway to highlight the differences. New work extends that analysis to cover a range of plausible socioeconomic scenarios and emission pathways. Results from three general circulation models are combined with one crop model and five global economic models to examine the global and regional impacts of climate change on yields, area, production, prices and trade for coarse grains, rice, wheat, oilseeds and sugar to 2050. Results show that yield impacts vary with changes in population, income and technology as well as emissions, but are reduced in all cases by endogenous changes in prices and other variables.

  3. Selection of climate change scenario data for impact modelling.

    PubMed

    Sloth Madsen, M; Maule, C Fox; MacKellar, N; Olesen, J E; Christensen, J Hesselbjerg

    2012-01-01

    Impact models investigating climate change effects on food safety often need detailed climate data. The aim of this study was to select climate change projection data for selected crop phenology and mycotoxin impact models. Using the ENSEMBLES database of climate model output, this study illustrates how the projected climate change signal of important variables as temperature, precipitation and relative humidity depends on the choice of the climate model. Using climate change projections from at least two different climate models is recommended to account for model uncertainty. To make the climate projections suitable for impact analysis at the local scale a weather generator approach was adopted. As the weather generator did not treat all the necessary variables, an ad-hoc statistical method was developed to synthesise realistic values of missing variables. The method is presented in this paper, applied to relative humidity, but it could be adopted to other variables if needed.

  4. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  5. Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.

    2017-12-01

    In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to support impact assessment in low warming scenarios.

  6. Understanding the New Job-Analysis Technology.

    ERIC Educational Resources Information Center

    Aho, Kaye L.

    1989-01-01

    The author examines such trends as rapid job change, organizational decentralization, the need for increased productivity, legal challenges, and changing work force needs; the evolving job-analysis technology; and the potential impact of this technology on human resources professionals. She also summarizes the key features to look for in a…

  7. SEADS 3.0 Sectoral Energy/Employment Analysis and Data System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roop, Joseph M.; Anderson, David A.; Schultz, Robert W.

    2007-12-17

    SEADS 3.0, the Sectoral Energy/Employment Analysis and Data System, is a revision and upgrading of SEADS--PC, a software package designed for the analysis of policy that could be described by modifying final demands of consumer, businesses, or governments (Roop, et al., 1995). If a question can be formulated so that implications can be translated into changes in final demands for goods and services, then SEADS 3.0 provides a quick and easy tool to assess preliminary impacts. And SEADS 3.0 should be considered just that: a quick and easy way to get preliminary results. Often a thorough answer, even to suchmore » a simple question as, “What would be the effect on U. S. energy use and employment if the Federal Government doubled R&D expenditures?” requires a more sophisticated analytical framework than the input-output structure embedded in SEADS 3.0. This tool uses a static, input-output model to assess the impacts of changes in final demands on first industry output, then employment and energy use. The employment and energy impacts are derived by multiplying the industry outputs (derived from the changed final demands) by industry-specific energy and employment coefficients. The tool also allows for the specification of regional or state employment impacts, though this option is not available for energy impacts.« less

  8. Impacts of future changes in weather condition on U.S. transportation

    NASA Astrophysics Data System (ADS)

    Ashfaq, M.; Pagan, B. R.; Bonds, B. W.; Rastogi, D.

    2016-12-01

    High-resolution near-term climate projections suggest an intensification of the regional hydrological cycle over the U.S., leading to stronger and more frequent precipitation events. Increase in precipitation extremes is driven by both warm season convection driven rainstorms and frontal based cold season snowstorms. Results also indicate that future warming is driven more by hot extremes, as decrease in cold extremes is three times less than increase in hot extremes. While projected changes may likely impact the transportation system across the U.S., accurate estimation of such impacts requires knowledge of changes in precipitation types (rain, snow, ice, freezing rain). Here we apply four commonly used precipitation typing algorithms to determine different types of precipitation in an 11-memebr high-resolution (18 km) climate projections dataset that covers 40 years (1966-2005) in the baseline and 40 years (2011-2050) in the future period under Representative Concentration Pathway 8.5. The results are compared with the NARR-based precipitation classification in the historical period at the county level. Documented weather related county level fatal crash data for the CONUS and non-fatal crash data for selected states in the eastern half of the U.S. is compiled to develop the historical baseline for the impact of weather conditions on transportation. Further analysis is carried out to understand the ability of an ensemble of high-resolution simulations to produce different precipitation types in the baseline period, potential changes in the occurrence of each type of weather condition in the future period and that how such changes may impact road conditions, vehicle crashes and human fatalities. Additional analysis will also be explored to understand the impact of changes in winter weather conditions on the cost associated with road maintenance.

  9. Biomedical journal title changes: reasons, trends, and impact.

    PubMed Central

    Afes, V B; Wrynn, P E

    1993-01-01

    A study was conducted to document the impact of biomedical journal title changes on medical libraries and to increase awareness of the reasons titles are changed. The study consisted of two parts: a survey of academic health sciences libraries in the United States and Canada and an analysis of title changes from two different years. The survey response rate was 83%. The majority of respondents commented on difficulties in identifying and processing title changes, often resulting in the delay or loss of information. The analysis revealed that a third of title changes were not justified by the journal. The study results substantiate the need to standardize title change reporting by publishers. A standard developed by the National Information Standards Organization requires publishers to conform to standardized practices for notification. This standard precisely reflects the concerns reflected in both the survey and the study of title changes, and librarians are urged to ensure that the standard is implemented by publishers. PMID:8428189

  10. Cost Analysis for Dual Source Weapon Procurement

    DTIC Science & Technology

    1983-10-01

    no change in the unit production cost of weapon systems. The theoretical foundation of a production rate impact on cost is closely related to - he...Yet the impact on procure- aent costs of these rate changes is not generally under- stood. Empirical studies in recent years have documented cases where...slbpe of th:. rate/cost curve.- Using this equation, Kratz, et al., reported the pric- reac- tions attributable to a change in production rate. Of th? 11

  11. The Persistence of Structural Inequality?: A Network Analysis of International Trade, 1965-2000

    ERIC Educational Resources Information Center

    Mahutga, Matthew C.

    2006-01-01

    This article reports results from a network analysis of international trade from 1965 through 2000. It addresses the impact of changes associated with globalization and the "new international division of labor" (NIDL) on structural inequality in the world economy. To assess this impact, I ask three specific questions. (1) Do patterns of…

  12. Comparison of fish and macroinvertebrates as bioindicators of Neotropical streams.

    PubMed

    Ruaro, Renata; Gubiani, Éder André; Cunico, Almir Manoel; Moretto, Yara; Piana, Pitágoras Augusto

    2016-01-01

    The biomonitoring of aquatic ecosystems in developing countries faces several limitations, especially related to gathering resources. The present study aimed at comparing the responses of fish and benthic macroinvertebrates to environmental change, to identify which group best indicates the differences between reference and impacted streams in southern Brazil. We determined reference and impacted sites based on physical and chemical variables of the water. For the analysis and comparison of biological responses, we calculated 22 metrics and submitted them to a discriminant analysis. We selected from this analysis only six metrics, which showed that the two studied assemblages respond differently to environmental change. A larger number of metrics were selected for macroinvertebrates than for fish in the separate analysis. The metrics selected for macroinvertebrates in the pooled analysis (i.e., fish and macroinvertebrates together) were different from those selected in the separate analysis for macroinvertebrates alone. However, the metrics selected for fish in the pooled analysis were the same selected in the separate analysis for fish alone. The macroinvertebrate assemblage was more effective for distinguishing reference from impacted sites. We suggest the use of macroinvertebrates as bioindicators of Neotropical streams, especially in situations in which time and money are short.

  13. Reasons for Journal Impact Factor Changes: Influence of Changing Source Items.

    PubMed

    Kiesslich, Tobias; Weineck, Silke B; Koelblinger, Dorothea

    2016-01-01

    Both the concept and the application of the impact factor (IF) have been subject to widespread critique, including concerns over its potential manipulation. This study provides a systematic analysis of significant journal Impact Factor changes, based on the relative contribution of either one or both variables of the IF equation (i.e. citations / articles as the numerator / denominator of the quotient). A cohort of JCR-listed journals which faced the most dramatic absolute IF changes between 2013 and 2014 (ΔIF ≥ 3.0, n = 49) was analyzed for the causes resulting in IF changes that theses journals have experienced in the last five years. Along with the variation by number of articles and citations, this analysis includes the relative change of both variables compared to each other and offers a classification of `valid`and `invalid`scenarios of IF variation in terms of the intended goal of the IF to measure journal quality. The sample cohort features a considerable incidence of IF increases (18%) which are qualified as `invalid`according to this classification because the IF increase is merely based on a favorably changing number of articles (denominator). The results of this analysis point out the potentially delusive effect of IF increases gained through effective shrinkage of publication output. Therefore, careful consideration of the details of the IF equation and possible implementation of control mechanisms versus the volatile factor of number of articles may help to improve the expressiveness of this metric.

  14. Impacts of climate change and variability on European agriculture: results of inventory analysis in COST 734 countries.

    PubMed

    Orlandini, Simone; Nejedlik, Pavol; Eitzinger, Josef; Alexandrov, Vesselin; Toulios, Leonidas; Calanca, Pierluigi; Trnka, Miroslav; Olesen, Jørgen E

    2008-12-01

    Climate plays a fundamental role in agriculture because of to its influence on production. All processes are regulated by specific climatic requirements. Furthermore, European agriculture, based on highly developed farming techniques, is mainly oriented to high quality food production that is more susceptible to meteorological hazards. These hazards can modify environment-genotype interactions, which can affect the quality of production. The COST 734 Action (Impacts of Climate Change and Variability on European Agriculture), launched in 2006, is composed of 28 signature countries and is funded by the European Commission. The main objective of the Action is the evaluation of possible impacts arising from climate change and variability on agriculture and the assessment of critical thresholds for various European areas. The Action will concentrate on four different tasks: agroclimatic indices and simulation models, including review and assessment of tools used to relate climate and agricultural processes; evaluation of the current trends of agroclimatic indices and model outputs, including remote sensing; developing and assessing future regional and local scenarios of agroclimatic conditions; and risk assessment and foreseen impacts on agriculture. The work will be carried out by respective Working Groups. This paper presents the results of the analysis of the first phase of inventory activity. Specific questionnaires were disseminated among COST 734 countries to collect information on climate change analysis, studies, and impact at the European level. The results were discussed with respect to their spatial distribution in Europe and to identify possible common long- and short-term strategies for adaptation.

  15. Variation in Estimated Ozone-Related Health Impacts of Climate Change due to Modeling Choices and Assumptions

    PubMed Central

    Post, Ellen S.; Grambsch, Anne; Weaver, Chris; Morefield, Philip; Leung, Lai-Yung; Nolte, Christopher G.; Adams, Peter; Liang, Xin-Zhong; Zhu, Jin-Hong; Mahoney, Hardee

    2012-01-01

    Background: Future climate change may cause air quality degradation via climate-induced changes in meteorology, atmospheric chemistry, and emissions into the air. Few studies have explicitly modeled the potential relationships between climate change, air quality, and human health, and fewer still have investigated the sensitivity of estimates to the underlying modeling choices. Objectives: Our goal was to assess the sensitivity of estimated ozone-related human health impacts of climate change to key modeling choices. Methods: Our analysis included seven modeling systems in which a climate change model is linked to an air quality model, five population projections, and multiple concentration–response functions. Using the U.S. Environmental Protection Agency’s (EPA’s) Environmental Benefits Mapping and Analysis Program (BenMAP), we estimated future ozone (O3)-related health effects in the United States attributable to simulated climate change between the years 2000 and approximately 2050, given each combination of modeling choices. Health effects and concentration–response functions were chosen to match those used in the U.S. EPA’s 2008 Regulatory Impact Analysis of the National Ambient Air Quality Standards for O3. Results: Different combinations of methodological choices produced a range of estimates of national O3-related mortality from roughly 600 deaths avoided as a result of climate change to 2,500 deaths attributable to climate change (although the large majority produced increases in mortality). The choice of the climate change and the air quality model reflected the greatest source of uncertainty, with the other modeling choices having lesser but still substantial effects. Conclusions: Our results highlight the need to use an ensemble approach, instead of relying on any one set of modeling choices, to assess the potential risks associated with O3-related human health effects resulting from climate change. PMID:22796531

  16. Different Models Used to Interpret Chemical Changes: Analysis of a Curriculum and Its Impact on French Students' Reasoning

    ERIC Educational Resources Information Center

    Kermen, Isabelle; Meheut, Martine

    2009-01-01

    We present an analysis of the new French curriculum on chemical changes describing the underlying models and highlighting their relations to the empirical level. The authors of the curriculum introduced a distinction between the chemical change of a chemical system and the chemical reactions that account for it. We specify the different roles of…

  17. Systematic review and meta-analysis of interventions targeting sleep and their impact on child body mass index, diet, and physical activity.

    PubMed

    Yoong, Sze Lin; Chai, Li Kheng; Williams, Christopher M; Wiggers, John; Finch, Meghan; Wolfenden, Luke

    2016-05-01

    This review aimed to examine the impact of interventions involving an explicit sleep component on child body mass index (BMI), diet, and physical activity. A systematic search was undertaken in six databases to identify randomized controlled trials examining the impact of interventions with a sleep component on child BMI, dietary intake, and/or physical activity. A random effects meta-analysis was conducted assessing the impact of included interventions on child BMI. Of the eight included trials, three enforced a sleep protocol and five targeted sleep as part of multicomponent behavioral interventions either exclusively or together with nutrition and physical activity. Meta-analysis of three studies found that multicomponent behavioral interventions involving a sleep component were not significantly effective in changing child BMI (n = 360,-0.04 kg/m(2) [-0.18, 0.11], I(2)  = 0%); however, only one study included in the meta-analysis successfully changed sleep duration in children. There were some reported improvements to adolescent diet, and only one trial examined the impact on child physical activity, where a significant effect was observed. Findings from the included studies suggest that where improvements in child sleep duration were achieved, a positive impact on child BMI, nutrition, and physical activity was also observed. © 2016 The Obesity Society.

  18. The effects of increased stream temperatures on juvenile steelhead growth in the Yakima River Basin based on projected climate change scenarios

    USGS Publications Warehouse

    Hardiman, Jill M.; Mesa, Matthew G.

    2013-01-01

    Stakeholders within the Yakima River Basin expressed concern over impacts of climate change on mid-Columbia River steelhead (Oncorhynchus mykiss), listed under the Endangered Species Act. We used a bioenergetics model to assess the impacts of changing stream temperatures—resulting from different climate change scenarios—on growth of juvenile steelhead in the Yakima River Basin. We used diet and fish size data from fieldwork in a bioenergetics model and integrated baseline and projected stream temperatures from down-scaled air temperature climate modeling into our analysis. The stream temperature models predicted that daily mean temperatures of salmonid-rearing streams in the basin could increase by 1–2°C and our bioenergetics simulations indicated that such increases could enhance the growth of steelhead in the spring, but reduce it during the summer. However, differences in growth rates of fish living under different climate change scenarios were minor, ranging from about 1–5%. Because our analysis focused mostly on the growth responses of steelhead to changes in stream temperatures, further work is needed to fully understand the potential impacts of climate change. Studies should include evaluating changing stream flows on fish activity and energy budgets, responses of aquatic insects to climate change, and integration of bioenergetics, population dynamics, and habitat responses to climate change.

  19. Sustainability analysis of bioenergy based land use change under climate change and variability

    NASA Astrophysics Data System (ADS)

    Raj, C.; Chaubey, I.; Brouder, S. M.; Bowling, L. C.; Cherkauer, K. A.; Frankenberger, J.; Goforth, R. R.; Gramig, B. M.; Volenec, J. J.

    2014-12-01

    Sustainability analyses of futuristic plausible land use and climate change scenarios are critical in making watershed-scale decisions for simultaneous improvement of food, energy and water management. Bioenergy production targets for the US are anticipated to impact farming practices through the introduction of fast growing and high yielding perennial grasses/trees, and use of crop residues as bioenergy feedstocks. These land use/land management changes raise concern over potential environmental impacts of bioenergy crop production scenarios, both in terms of water availability and water quality; impacts that may be exacerbated by climate variability and change. The objective of the study was to assess environmental, economic and biodiversity sustainability of plausible bioenergy scenarios for two watersheds in Midwest US under changing climate scenarios. The study considers fourteen sustainability indicators under nine climate change scenarios from World Climate Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3). The distributed hydrological model SWAT (Soil and Water Assessment Tool) was used to simulate perennial bioenergy crops such as Miscanthus and switchgrass, and corn stover removal at various removal rates and their impacts on hydrology and water quality. Species Distribution Models (SDMs) developed to evaluate stream fish response to hydrology and water quality changes associated with land use change were used to quantify biodiversity sustainability of various bioenergy scenarios. The watershed-scale sustainability analysis was done in the St. Joseph River watershed located in Indiana, Michigan, and Ohio; and the Wildcat Creek watershed, located in Indiana. The results indicate streamflow reduction at watershed outlet with increased evapotranspiration demands for high-yielding perennial grasses. Bioenergy crops in general improved in-stream water quality compared to conventional cropping systems (maize-soybean). Water quality benefits due to land use change were generally greater than the effects of climate change variability.

  20. Simulating The Change In Agricultural Fruit Patterns In The Context of River Basin Modelling

    NASA Astrophysics Data System (ADS)

    Kloecking, B.; Laue, K.; Stroebl, B.

    A new concept has been developed for the integrated analysis of impacts of Global Change and direct human activities on the environment and the society in mesoscale river basins. The main steps of this approach are: (1) Developing a set of regional scenarios of change considering expected changes in climate, economic, demographic and social development, (2) Identification of indicators of sustainability for the impact assessment, (3) Impact analysis of the defined scenarios of development, (4) Evalu- ation of the different scenarios on the basis of the impact analysis to elaborate new stategies in regional development. All steps include consultations with actors and stakeholders. The concept is applied in the western part of Thuringia (7.500 km2), covering the basin of the Unstrut river. This part of the German Elbe river basin is highly suited for food production under the present conditions. Therefore it is a good site for vulnerability studies focused on agriculture. The development of agricultural land-use scenarios for the Unstrut region will be done in form of a bottom-up approach based on adaptation reactions of example farms within the expected boundary condi- tions such as the global food markets and other global economic trends as well as in- ternational agreements. Representing the present conditions in Thuringia, a referential land-use scenario was developed, assuming a complete realisation of the AGENDA 2000 resolutions. Impacts of changed land use in combination with climate change scenarios on plant production and on availability and quality of water are been inves- tigated with the help of a spatial distributed river basin model. A GIS-based approach was developed to locate the spatially not explicit land use scenarios. This approach allows to reproduce the agricultural fruit patterns of a region in a river basin model without taking into account the real field boundaries. First simulation results for the referential climate and land-use scenario for the Unstrut region will be presented.

  1. The impact of industrial oil development on a protected area landscape: A case study on human population growth and landscape level change in Murchison Falls Conservation Area, Uganda.

    NASA Astrophysics Data System (ADS)

    Dowhaniuk, Nicholas; Hartter, Joel; Congalton, Russell G.; Palace, Michael W.; Ryan, Sadie J.

    2016-04-01

    Protected areas in Sub-Saharan Africa are sanctuaries for rich biodiversity and are important economic engines for African nations, but they are becoming increasingly threatened by discoveries of mineral deposits within and nearby their boundaries. In 2006, viable oil reserves were discovered in Murchison Falls Conservation Area (MFCA) in northern Uganda. Exploratory and appraisal activities concluded in 2014, and production is expected to begin in 2016. The oil development is associated with a substantial increase in human population outside MFCA, with people seeking jobs, land, and economic opportunity. Concomitant with this change is increased truck traffic, a sprawling and denser road network, and infrastructure within the park, which could have large impacts on both the flora and fauna. We examined the broader protected area landscape and the potential feedbacks from resource development on the ecosystem and local livelihoods. Our analysis combines a land cover analysis using Object Based Image Analysis of Landsat data (2002 and 2014), migration patterns and population change (1959-2014), and qualitative interview data. Our results suggest that most of the larger-scale impacts on the landscape and people are occurring in the western and northern sections, both inside and outside of the park. Additionally, oil development is not the only factor in the region influencing population growth and landscape change. Post conflict regrowth in the north, sugarcane production in the south, and migration to this region from conflict-ridden neighboring countries are also playing a vital role in human migration shaping the MFCA Landscape. Understanding the social and environmental changes and impacts in the MFCA and its surrounding areas will add to limited literature on the impacts of resource extraction on local, subsistence communities and landscape level change, which will be important as access and pressure for oil and minerals within protected areas continues to rise.

  2. Diarrheal Diseases and Climate Change in Cambodia.

    PubMed

    McIver, Lachlan J; Imai, Chisato; Buettner, Petra G; Gager, Paul; Chan, Vibol S; Hashizume, Masahiro; Iddings, Steven N; Kol, Hero; Raingsey, Piseth P; Lyne, K

    2016-10-01

    The DRIP-SWICCH (Developing Research and Innovative Policies Specific to the Water-related Impacts of Climate Change on Health) project aimed to increase the resilience of Cambodian communities to the health risks posed by climate change-related impacts on water. This article follows a review of climate change and water-related diseases in Cambodia and presents the results of a time series analysis of monthly weather and diarrheal disease data for 11 provinces. In addition, correlations of diarrheal disease incidence with selected demographic, socioeconomic, and water and sanitation indicators are described, with results suggesting education and literacy may be most protective against disease. The potential impact of climate change on the burden of diarrheal disease in Cambodia is considered, along with the implications of these findings for health systems adaptation.

  3. Can the combined use of an ensemble based modelling approach and the analysis of measured meteorological trends lead to increased confidence in climate change impact assessments?

    NASA Astrophysics Data System (ADS)

    Gädeke, Anne; Koch, Hagen; Pohle, Ina; Grünewald, Uwe

    2014-05-01

    In anthropogenically heavily impacted river catchments, such as the Lusatian river catchments of Spree and Schwarze Elster (Germany), the robust assessment of possible impacts of climate change on the regional water resources is of high relevance for the development and implementation of suitable climate change adaptation strategies. Large uncertainties inherent in future climate projections may, however, reduce the willingness of regional stakeholder to develop and implement suitable adaptation strategies to climate change. This study provides an overview of different possibilities to consider uncertainties in climate change impact assessments by means of (1) an ensemble based modelling approach and (2) the incorporation of measured and simulated meteorological trends. The ensemble based modelling approach consists of the meteorological output of four climate downscaling approaches (DAs) (two dynamical and two statistical DAs (113 realisations in total)), which drive different model configurations of two conceptually different hydrological models (HBV-light and WaSiM-ETH). As study area serve three near natural subcatchments of the Spree and Schwarze Elster river catchments. The objective of incorporating measured meteorological trends into the analysis was twofold: measured trends can (i) serve as a mean to validate the results of the DAs and (ii) be regarded as harbinger for the future direction of change. Moreover, regional stakeholders seem to have more trust in measurements than in modelling results. In order to evaluate the nature of the trends, both gradual (Mann-Kendall test) and step changes (Pettitt test) are considered as well as both temporal and spatial correlations in the data. The results of the ensemble based modelling chain show that depending on the type (dynamical or statistical) of DA used, opposing trends in precipitation, actual evapotranspiration and discharge are simulated in the scenario period (2031-2060). While the statistical DAs simulate a strong decrease in future long term annual precipitation, the dynamical DAs simulate a tendency towards increasing precipitation. The trend analysis suggests that precipitation has not changed significantly during the period 1961-2006. Therefore, the decrease simulated by the statistical DAs should be interpreted as a rather dry future projection. Concerning air temperature, measured and simulated trends agree on a positive trend. Also the uncertainty related to the hydrological model within the climate change modelling chain is comparably low when long-term averages are considered but increases significantly during extreme events. This proposed framework of combining an ensemble based modelling approach with measured trend analysis is a promising approach for regional stakeholders to gain more confidence into the final results of climate change impact assessments. However, climate change impact assessments will remain highly uncertain. Thus, flexible adaptation strategies need to be developed which should not only consider climate but also other aspects of global change.

  4. Changing Perspectives and Opportunities and Their Impact on Careers and Aspirations: The Case of Women Lawyers.

    ERIC Educational Resources Information Center

    Epstein, Cynthia Fuchs

    Change in the roles of women in American society during the past 15 years provides an opportunity to evaluate basic theories dealing with life course, the impact of early socialization, and trait analysis. The case of women in the legal profession is of particular value in exploring these issues since law, an exclusively male domain for more than…

  5. Impact of Climate Change and Human Intervention on River Flow Regimes

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Mittal, Neha; Mishra, Ashok

    2017-04-01

    Climate change and human interventions like dam construction bring freshwater ecosystem under stress by changing flow regime. It is important to analyse their impact at a regional scale along with changes in the extremes of temperature and precipitation which further modify the flow regime components such as magnitude, timing, frequency, duration, and rate of change of flow. In this study, the Kangsabati river is chosen to analyse the hydrological alterations in its flow regime caused by dam, climate change and their combined impact using Soil and Water Assessment Tool (SWAT) and the Indicators of Hydrologic Alteration (IHA) program based on the Range of Variability Approach (RVA). Results show that flow variability is significantly reduced due to dam construction with high flows getting absorbed and pre-monsoon low flows being augmented by the reservoir. Climate change alone reduces the high peaks whereas a combination of dam and climate change significantly reduces variability by affecting both high and low flows, thereby further disrupting the functioning of riverine ecosystems. Analysis shows that in the Kangsabati basin, influence of dam is greater than that of the climate change, thereby emphasising the significance of direct human intervention. Keywords: Climate change, human impact, flow regime, Kangsabati river, SWAT, IHA, RVA.

  6. Science priorities for the human dimensions of global change

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The topics covered include the following: defining research needs; understanding land use change; improving policy analysis -- research on the decision-making process; designing policy instruments and institutions to address energy-related environmental problems; assessing impacts, vulnerability, and adaptation to global changes; and understanding population dynamics and global change.

  7. Climate change, wellbeing and resilience in the Weenusk First Nation at Peawanuck: the Moccasin Telegraph goes global.

    PubMed

    Lemelin, Harvey; Matthews, Drew; Mattina, Charlie; McIntyre, Norman; Johnston, Margaret; Koster, Rhonda; Weenusk First Nation At Peawanuck

    2010-01-01

    The Cree of Northern Ontario, Canada, have proved resilient and adaptable to social and environmental changes. However, the rapidity of climate change impacts in the Hudson Bay Lowlands of the Canadian sub-Arctic is challenging this resiliency. A collaborative project conducted with the Weenusk First Nation at Peawanuck and researchers at Lakehead University used the concept of wellbeing to explore the impact of climate change on current subsistence activities, resource management, and conservation strategies, while considering the implications of globalization on climate change awareness. This article describes the analysis of 22 interviews conducted with members of the Weenusk First Nation at Peawanuck. Findings indicate that residents are concerned with a variety of changes in the environment and their ability to use the land. For example, they noted changes in travel routes on water and land, often attributing these to geomorphic changes in the coastal landscapes along Hudson Bay. They also noted the disappearance of particular insects and bird species, and variations in the distribution of particular fauna and flora. Possible impacts of these changes on the community's wellbeing and resiliency are examined. Another major theme that arose from the analysis was the impact of traditional modes of communication (eg traditional knowledge, radio, newspaper) and newer forms (eg satellite television and the internet) on Indigenous people's understanding of climate change. Given that few researchers have acknowledged or recognized the globalization of the moccasin telegraph (ie the traditional mode of communication between First Nations), a discussion of this phenomenon and its significance for understanding emerging knowledge systems in small, remote First Nation communities is central to this article.

  8. Selecting climate simulations for impact studies based on multivariate patterns of climate change.

    PubMed

    Mendlik, Thomas; Gobiet, Andreas

    In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.

  9. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less

  10. Impact of imaging guidelines on X-ray use among American provider network chiropractors: interrupted time series analysis.

    PubMed

    Bussières, André E; Sales, Anne E; Ramsay, Timothy; Hilles, Steven M; Grimshaw, Jeremy M

    2014-08-01

    Overuse and misuse of spine X-ray imaging for nonspecific back and neck pain persists among chiropractors. Distribution of educational materials among physicians results in small-to-modest improvements in appropriate care, such as ordering spine X-ray studies, but little is known about its impact among North American chiropractors. To evaluate the impact of web-based dissemination of a diagnostic imaging guideline on the use of spine X-ray images among chiropractors. Quasi-experimental design that used interrupted time series to evaluate the effect of guidelines dissemination on spine X-ray imaging claims by chiropractors enlisted in managed care network in the United States. Consecutive adult patients consulting for complaints of spine disorders. A change in level (the mean number of spine X-ray imaging claims per month immediately after the introduction of the guidelines), change in trend (any differences between preintervention and postintervention slopes), estimation of monthly average intervention effect after the intervention. The imaging guideline was disseminated online in April 2008. Administrative claims data were extracted between January 2006 and December 2010. Segmented regression analysis with autoregressive error was used to estimate the impact of guideline recommendations on the rate of spine X-ray studies. Sensitivity analysis considered the effect of two additional quality improvement strategies, a policy change and an education intervention. Time series analysis revealed a significant change in the level of spine X-ray study ordering weeks after introduction of the guidelines (-0.01; 95% confidence interval=-0.01, -0.002; p=.01), but no change in trend of the regression lines. The monthly mean rate of spine X-ray studies within 5 days of initial visit per new patient exams decreased by 10 per 1000, a 5.26% relative decrease after guideline dissemination. Controlling for two quality improvement strategies did not change the results. Web-based guideline dissemination was associated with an immediate reduction in spine X-ray imaging claims. Sensitivity analysis suggests our results are robust. This passive strategy is likely cost-effective in a chiropractic network setting. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Multi-criteria evaluation of CMIP5 GCMs for climate change impact analysis

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, Ali; Rana, Arun; Moradkhani, Hamid; Sharma, Ashish

    2017-04-01

    Climate change is expected to have severe impacts on global hydrological cycle along with food-water-energy nexus. Currently, there are many climate models used in predicting important climatic variables. Though there have been advances in the field, there are still many problems to be resolved related to reliability, uncertainty, and computing needs, among many others. In the present work, we have analyzed performance of 20 different global climate models (GCMs) from Climate Model Intercomparison Project Phase 5 (CMIP5) dataset over the Columbia River Basin (CRB) in the Pacific Northwest USA. We demonstrate a statistical multicriteria approach, using univariate and multivariate techniques, for selecting suitable GCMs to be used for climate change impact analysis in the region. Univariate methods includes mean, standard deviation, coefficient of variation, relative change (variability), Mann-Kendall test, and Kolmogorov-Smirnov test (KS-test); whereas multivariate methods used were principal component analysis (PCA), singular value decomposition (SVD), canonical correlation analysis (CCA), and cluster analysis. The analysis is performed on raw GCM data, i.e., before bias correction, for precipitation and temperature climatic variables for all the 20 models to capture the reliability and nature of the particular model at regional scale. The analysis is based on spatially averaged datasets of GCMs and observation for the period of 1970 to 2000. Ranking is provided to each of the GCMs based on the performance evaluated against gridded observational data on various temporal scales (daily, monthly, and seasonal). Results have provided insight into each of the methods and various statistical properties addressed by them employed in ranking GCMs. Further; evaluation was also performed for raw GCM simulations against different sets of gridded observational dataset in the area.

  12. Regional analysis of drought and heat impacts on forests: current and future science directions.

    PubMed

    Law, Beverly E

    2014-12-01

    Accurate assessments of forest response to current and future climate and human actions are needed at regional scales. Predicting future impacts on forests will require improved analysis of species-level adaptation, resilience, and vulnerability to mortality. Land system models can be enhanced by creating trait-based groupings of species that better represent climate sensitivity, such as risk of hydraulic failure from drought. This emphasizes the need for more coordinated in situ and remote sensing observations to track changes in ecosystem function, and to improve model inputs, spatio-temporal diagnosis, and predictions of future conditions, including implications of actions to mitigate climate change. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. A Sustainable Early Warning System for Climate Change Impacts on Water Quality Management

    NASA Astrophysics Data System (ADS)

    Lee, T.; Tung, C.; Chung, N.

    2007-12-01

    In this era of rapid social and technological change leading to interesting life complexity and environmental displacement, both positive and negative effects among ecosystems call for a balance in which there are impacts by climate changes. Early warning systems for climate change impacts are necessary in order to allow society as a whole to properly and usefully assimilate the masses of new information and knowledge. Therefore, our research addresses to build up a sustainable early warning mechanism. The main goal is to mitigate the cumulative impacts on the environment of climate change and enhance adaptive capacities. An effective early warning system has been proven for protection. However, there is a problem that estimate future climate changes would be faced with high uncertainty. In general, take estimations for climate change impacts would use the data from General Circulation Models and take the analysis as the Intergovernmental Panel on Climate Change declared. We follow the course of the method for analyzing climate change impacts and attempt to accomplish the sustainable early warning system for water quality management. Climate changes impact not only on individual situation but on short-term variation and long-term gradually changes. This kind characteristic should adopt the suitable warning system for long-term formulation and short- term operation. To continue the on-going research of the long-term early warning system for climate change impacts on water quality management, the short-term early warning system is established by using local observation data for reappraising the warning issue. The combination of long-term and short-term system can provide more circumstantial details. In Taiwan, a number of studies have revealed that climate change impacts on water quality, especially in arid period, the concentration of biological oxygen demand may turn into worse. Rapid population growth would also inflict injury on its assimilative capacity to degenerate. To concern about those items, the sustainable early warning system is established and the initiative fall into the following categories: considering the implications for policies, applying adaptive strategies and informing the new climate changes. By setting up the framework of early warning system expectantly can defend stream area from impacts damaging and in sure the sustainable development.

  14. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  15. Relevance of Regional Hydro-Climatic Projection Data for Hydrodynamics and Water Quality Modelling of the Baltic Sea

    NASA Astrophysics Data System (ADS)

    Goldenberg, R.; Vigouroux, G.; Chen, Y.; Bring, A.; Kalantari, Z.; Prieto, C.; Destouni, G.

    2017-12-01

    The Baltic Sea, located in Northern Europe, is one of the world's largest body of brackish water, enclosed and surrounded by nine different countries. The magnitude of climate change may be particularly large in northern regions, and identifying its impacts on vulnerable inland waters and their runoff and nutrient loading to the Baltic Sea is an important and complex task. Exploration of such hydro-climatic impacts is needed to understand potential future changes in physical, ecological and water quality conditions in the regional coastal and marine waters. In this study, we investigate hydro-climatic changes and impacts on the Baltic Sea by synthesizing multi-model climate projection data from the CORDEX regional downscaling initiative (EURO- and Arctic- CORDEX domains, http://www.cordex.org/). We identify key hydro-climatic variable outputs of these models and assess model performance with regard to their projected temporal and spatial change behavior and impacts on different scales and coastal-marine parts, up to the whole Baltic Sea. Model spreading, robustness and impact implications for the Baltic Sea system are investigated for and through further use in simulations of coastal-marine hydrodynamics and water quality based on these key output variables and their change projections. Climate model robustness in this context is assessed by inter-model spreading analysis and observation data comparisons, while projected change implications are assessed by forcing of linked hydrodynamic and water quality modeling of the Baltic Sea based on relevant hydro-climatic outputs for inland water runoff and waterborne nutrient loading to the Baltic sea, as well as for conditions in the sea itself. This focused synthesis and analysis of hydro-climatically relevant output data of regional climate models facilitates assessment of reliability and uncertainty in projections of driver-impact changes of key importance for Baltic Sea physical, water quality and ecological conditions and their future evolution.

  16. Impact of Technological and Structural Change on Employment: Prospective Analysis 2020. Background Report.

    ERIC Educational Resources Information Center

    Christidis, Panayotis, Ed.; Hernandez, Hector, Ed.; Lievonen, Jorma, Ed.

    A study examined the role of technology in the European Union's (EU's) economy and its impacts on employment. Starting point was Technology and Employment Maps of the FUTURES project that identified main emerging technological developments (TDs) and their implications for employment. Technologies' potential impact on productivity growth and…

  17. Toward a Methodology for Conducting Social Impact Assessments Using Quality of Social Life Indicators.

    ERIC Educational Resources Information Center

    Olsen, Marvin E.; Merwin, Donna J.

    Broadly conceived, social impacts refer to all changes in the structure and functioning of patterned social ordering that occur in conjunction with an environmental, technological, or social innovation or alteration. Departing from the usual cost-benefit analysis approach, a new methodology proposes conducting social impact assessment grounded in…

  18. Impact of ontology evolution on functional analyses.

    PubMed

    Groß, Anika; Hartung, Michael; Prüfer, Kay; Kelso, Janet; Rahm, Erhard

    2012-10-15

    Ontologies are used in the annotation and analysis of biological data. As knowledge accumulates, ontologies and annotation undergo constant modifications to reflect this new knowledge. These modifications may influence the results of statistical applications such as functional enrichment analyses that describe experimental data in terms of ontological groupings. Here, we investigate to what degree modifications of the Gene Ontology (GO) impact these statistical analyses for both experimental and simulated data. The analysis is based on new measures for the stability of result sets and considers different ontology and annotation changes. Our results show that past changes in the GO are non-uniformly distributed over different branches of the ontology. Considering the semantic relatedness of significant categories in analysis results allows a more realistic stability assessment for functional enrichment studies. We observe that the results of term-enrichment analyses tend to be surprisingly stable despite changes in ontology and annotation.

  19. Impacts of tropical deforestation. Part I: Process analysis of local climatic change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Henderson-Sellers, A.; McGuffie, K.

    1996-07-01

    The potential impacts of deforestation in the humid Tropics are examined using a version of the National Center for Atmospheric Research`s CCM1 coupled with the Biosphere-Atmosphere Transfer Scheme package. Tropical deforestation in South America, Africa, and Southeast Asia is studied using the results from an 11-yr deforestation experiment and a 25-yr control integration. It is found that the local-scale impact (here defined as within the area deforested) varies greatly between the three deforested regions due to the differing controls on the local atmospheric circulation: the Southeast Asian monsoon is much less sensitive to deforestation than the low-level flow over Southmore » America. The analysis of the changes in cloud radiative forcing suggests that reduction in cloud amount can significantly mitigate the imposed increases in surface albedo. The importance of water recycling by the forest canopy is stressed in the simulation of local precipitation changes. Correlation analysis of the changes resulting from the deforestation has been used to determine the nature of the processes that follow from the removal of the forest canopy and to suggest the important processes. The role of large-scale dynamics is explored in a companion paper. 44 refs., 9 figs., 5 tabs.« less

  20. Measuring the economic impact of climate change on major South African field crops: a Ricardian approach

    NASA Astrophysics Data System (ADS)

    Gbetibouo, G. A.; Hassan, R. M.

    2005-07-01

    This study employed a Ricardian model to measure the impact of climate change on South Africa's field crops and analysed potential future impacts of further changes in the climate. A regression of farm net revenue on climate, soil and other socio-economic variables was conducted to capture farmer-adapted responses to climate variations. The analysis was based on agricultural data for seven field crops (maize, wheat, sorghum, sugarcane, groundnut, sunflower and soybean), climate and edaphic data across 300 districts in South Africa. Results indicate that production of field crops was sensitive to marginal changes in temperature as compared to changes in precipitation. Temperature rise positively affects net revenue whereas the effect of reduction in rainfall is negative. The study also highlights the importance of season and location in dealing with climate change showing that the spatial distribution of climate change impact and consequently needed adaptations will not be uniform across the different agro-ecological regions of South Africa. Results of simulations of climate change scenarios indicate many impacts that would induce (or require) very distinct shifts in farming practices and patterns in different regions. Those include major shifts in crop calendars and growing seasons, switching between crops to the possibility of complete disappearance of some field crops from some region.

  1. Projected climate change impacts and short term predictions on staple crops in Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Spano, D.; Gallo, A.; Carboni, G.

    2013-12-01

    Agriculture in Sub-Saharan Africa (SSA) drives the economy of many African countries and it is mainly rain-fed agriculture used for subsistence. Increasing temperatures, changed precipitation patterns and more frequent droughts may lead to a substantial decrease of crop yields. The projected impacts of future climate change on agriculture are expected to be significant and extensive in the SSA due to the shortening of the growing seasons and the increasing of water-stress risk. Differences in Agro-Ecological Zones and geographical characteristics of SSA influence the diverse impacts of climate change, which can greatly differ across the continent and within countries. The vulnerability of African Countries to climate change is aggravated by the low adaptive capacity of the continent, due to the increasing of its population, the widespread poverty, and other social factors. In this contest, the assessment of climate change impact on agricultural sector has a particular interest to stakeholder and policy makers, in order to identify specific agricultural sectors and Agro-Ecological Zones that could be more vulnerable to changes in climatic conditions and to develop the most appropriate policies to cope with these threats. For these reasons, the evaluation of climate change impacts for key crops in SSA was made exploring climate uncertainty and focusing on short period monitoring, which is particularly useful for food security and risk management analysis. The DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5 was used for the analysis. Crop simulation models included in DSSAT-CSM are tools that allow to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. For each selected crop, the models were used, after a parameterization phase, to evaluate climate change impacts on crop phenology and production. Multiple combinations of soils and climate conditions, crop management and varieties were considered for the different Agro-Ecological Zones. The climate impact was assessed using future climate prediction, statistically and/or dynamically downscaled, for specific areas. Direct and indirect effects of different CO2 concentrations projected for the future periods were separately explored to estimate their effects on crops. Several adaptation strategies (e.g., introduction of full irrigation, shift of the ordinary sowing/planting date, changes in the ordinary fertilization management) were also evaluated with the aim to reduce the negative impact of climate change on crop production. The results of the study, analyzed at local, AEZ and country level, will be discussed.

  2. Climate Change Anticipation on Supporting Capacity of Fishing Environment in the Coastal Area of Tanjungmas Semarang City

    NASA Astrophysics Data System (ADS)

    Sari, Indah Kurniasih Wahyu; Hadi, Sudharto P.

    2018-02-01

    Climate change is no longer a debate about its existence but already a problem shared between communities, between agencies, between countries even global for handling serious because so many aspects of life and the environment is affected, especially for communities in coastal environments This climate change is a threat to the Earth, because it can affect all aspects of life and will damage the balance of life of Earth Climate change happens slowly in a fairly long period of time and it is a change that is hard to avoid. These Phenomena will give effect to the various facets of life. Semarang as areas located to Java and bordering the Java Sea are at high risk exposed to the impacts of climate change Also not a few residents of the city of Semarang who settled in the northern part of the city of Semarang and also have a livelihood as farmers/peasants and fishermen Many industrial centers or attractions that are prone to impacted by climate change. Thus, the anticipation of climate change on resources support neighborhood of fishermen in the coastal area of Tanjungmas Semarang interesting for further review. This study aims to find out more the influence of climate change on the environment of fishing identify potential danger due to the impacts of climate change on coastal areas of Tanjungmas Semarang The research was conducted through surveys, interviews and field observation without a list of questions to obtain primary and secondary data As for the analysis undertaken, namely the analysis of climate change on the coastal environment, the analysis of productivity of fishermen as well as the analysis of the likelihood of disaster risk at the coast due to climate change. From the results of the study the occurrence of sea rise as one of the indicators of climate change in the coastal City of Semarang to reach 0.8 mm/year and average soil degradation that ranged between 5 - 12 cm/year cause most coastal communities as well as the social life of the agricultural areas of its economy relies on the resources becoming increasingly erratic.

  3. Using global sensitivity analysis of demographic models for ecological impact assessment.

    PubMed

    Aiello-Lammens, Matthew E; Akçakaya, H Resit

    2017-02-01

    Population viability analysis (PVA) is widely used to assess population-level impacts of environmental changes on species. When combined with sensitivity analysis, PVA yields insights into the effects of parameter and model structure uncertainty. This helps researchers prioritize efforts for further data collection so that model improvements are efficient and helps managers prioritize conservation and management actions. Usually, sensitivity is analyzed by varying one input parameter at a time and observing the influence that variation has over model outcomes. This approach does not account for interactions among parameters. Global sensitivity analysis (GSA) overcomes this limitation by varying several model inputs simultaneously. Then, regression techniques allow measuring the importance of input-parameter uncertainties. In many conservation applications, the goal of demographic modeling is to assess how different scenarios of impact or management cause changes in a population. This is challenging because the uncertainty of input-parameter values can be confounded with the effect of impacts and management actions. We developed a GSA method that separates model outcome uncertainty resulting from parameter uncertainty from that resulting from projected ecological impacts or simulated management actions, effectively separating the 2 main questions that sensitivity analysis asks. We applied this method to assess the effects of predicted sea-level rise on Snowy Plover (Charadrius nivosus). A relatively small number of replicate models (approximately 100) resulted in consistent measures of variable importance when not trying to separate the effects of ecological impacts from parameter uncertainty. However, many more replicate models (approximately 500) were required to separate these effects. These differences are important to consider when using demographic models to estimate ecological impacts of management actions. © 2016 Society for Conservation Biology.

  4. Analysis of uses and competitions of water resources or an original dissemination strategy of hydrological modelling results of an EU project ?

    NASA Astrophysics Data System (ADS)

    La Jeunesse, Isabelle; Fustec, Klervi; Larrue, Corinne; Trottier, Julie

    2010-05-01

    We propose to address the question of security threats through an analysis of water uses and competitions in the current situation, on one hand, and in conditions of climate change, on the other hand, in order to have an operational dissemination of hydrological modelling results. This will be carried out for each case study of the EU project CLIMB (7th EU FP). In this particular case, climate change impacts are to be considered in relation with water uses and rivalries. Taking them into account while involving stakeholders should allow us to have a deep impact on water uses regulation under conditions of climate change. The originality of this methodology, the first objective of which within the project is to disseminate project results and interact with stakeholders, is to use the dissemination phase as a means of involving stakeholder knowledge concerning water uses and competitions. The idea is to let the stakeholders identify themselves, in each case study, by means of interactive methods, the impact of the change of hydrological regime on their own water uses and competitions. We propose to use a real "bottom-up" strategy to assess the potential water uses and rivalries in the context of water scarcity (or flood) due to climate change. Such an approach will allow us to evaluate the risk of an increase in water rivalries and threats to security following climate change impacts scenarios at the river basin scale.

  5. Impacts of land cover changes on climate trends in Jiangxi province China.

    PubMed

    Wang, Qi; Riemann, Dirk; Vogt, Steffen; Glaser, Rüdiger

    2014-07-01

    Land-use/land-cover (LULC) change is an important climatic force, and is also affected by climate change. In the present study, we aimed to assess the regional scale impact of LULC on climate change using Jiangxi Province, China, as a case study. To obtain reliable climate trends, we applied the standard normal homogeneity test (SNHT) to surface air temperature and precipitation data for the period 1951-1999. We also compared the temperature trends computed from Global Historical Climatology Network (GHCN) datasets and from our analysis. To examine the regional impacts of land surface types on surface air temperature and precipitation change integrating regional topography, we used the observation minus reanalysis (OMR) method. Precipitation series were found to be homogeneous. Comparison of GHCN and our analysis on adjusted temperatures indicated that the resulting climate trends varied slightly from dataset to dataset. OMR trends associated with surface vegetation types revealed a strong surface warming response to land barrenness and weak warming response to land greenness. A total of 81.1% of the surface warming over vegetation index areas (0-0.2) was attributed to surface vegetation type change and regional topography. The contribution of surface vegetation type change decreases as land cover greenness increases. The OMR precipitation trend has a weak dependence on surface vegetation type change. We suggest that LULC integrating regional topography should be considered as a force in regional climate modeling.

  6. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.

    PubMed

    Tonini, Davide; Hamelin, Lorie; Wenzel, Henrik; Astrup, Thomas

    2012-12-18

    In the endeavor of optimizing the sustainability of bioenergy production in Denmark, this consequential life cycle assessment (LCA) evaluated the environmental impacts associated with the production of heat and electricity from one hectare of Danish arable land cultivated with three perennial crops: ryegrass (Lolium perenne), willow (Salix viminalis) and Miscanthus giganteus. For each, four conversion pathways were assessed against a fossil fuel reference: (I) anaerobic co-digestion with manure, (II) gasification, (III) combustion in small-to-medium scale biomass combined heat and power (CHP) plants and IV) co-firing in large scale coal-fired CHP plants. Soil carbon changes, direct and indirect land use changes as well as uncertainty analysis (sensitivity, MonteCarlo) were included in the LCA. Results showed that global warming was the bottleneck impact, where only two scenarios, namely willow and Miscanthus co-firing, allowed for an improvement as compared with the reference (-82 and -45 t CO₂-eq. ha⁻¹, respectively). The indirect land use changes impact was quantified as 310 ± 170 t CO₂-eq. ha⁻¹, representing a paramount average of 41% of the induced greenhouse gas emissions. The uncertainty analysis confirmed the results robustness and highlighted the indirect land use changes uncertainty as the only uncertainty that can significantly change the outcome of the LCA results.

  7. Choosing a University: A Conjoint Analysis of the Impact of Higher Fees on Students Applying for University in 2012

    ERIC Educational Resources Information Center

    Dunnett, Andrew; Moorhouse, Jan; Walsh, Caroline; Barry, Cornelius

    2012-01-01

    In the light of the forthcoming policy shift to full-cost fees for English undergraduates, this study examines the impact of fee changes on how students weigh up their university choices. Conjoint analysis is used to examine the importance that students attach to various attributes of a university. It also explores differences across subsections…

  8. Research in nonlinear structural and solid mechanics

    NASA Technical Reports Server (NTRS)

    Mccomb, H. G., Jr. (Compiler); Noor, A. K. (Compiler)

    1981-01-01

    Recent and projected advances in applied mechanics, numerical analysis, computer hardware and engineering software, and their impact on modeling and solution techniques in nonlinear structural and solid mechanics are discussed. The fields covered are rapidly changing and are strongly impacted by current and projected advances in computer hardware. To foster effective development of the technology perceptions on computing systems and nonlinear analysis software systems are presented.

  9. Changing cluster composition in cluster randomised controlled trials: design and analysis considerations

    PubMed Central

    2014-01-01

    Background There are many methodological challenges in the conduct and analysis of cluster randomised controlled trials, but one that has received little attention is that of post-randomisation changes to cluster composition. To illustrate this, we focus on the issue of cluster merging, considering the impact on the design, analysis and interpretation of trial outcomes. Methods We explored the effects of merging clusters on study power using standard methods of power calculation. We assessed the potential impacts on study findings of both homogeneous cluster merges (involving clusters randomised to the same arm of a trial) and heterogeneous merges (involving clusters randomised to different arms of a trial) by simulation. To determine the impact on bias and precision of treatment effect estimates, we applied standard methods of analysis to different populations under analysis. Results Cluster merging produced a systematic reduction in study power. This effect depended on the number of merges and was most pronounced when variability in cluster size was at its greatest. Simulations demonstrate that the impact on analysis was minimal when cluster merges were homogeneous, with impact on study power being balanced by a change in observed intracluster correlation coefficient (ICC). We found a decrease in study power when cluster merges were heterogeneous, and the estimate of treatment effect was attenuated. Conclusions Examples of cluster merges found in previously published reports of cluster randomised trials were typically homogeneous rather than heterogeneous. Simulations demonstrated that trial findings in such cases would be unbiased. However, simulations also showed that any heterogeneous cluster merges would introduce bias that would be hard to quantify, as well as having negative impacts on the precision of estimates obtained. Further methodological development is warranted to better determine how to analyse such trials appropriately. Interim recommendations include avoidance of cluster merges where possible, discontinuation of clusters following heterogeneous merges, allowance for potential loss of clusters and additional variability in cluster size in the original sample size calculation, and use of appropriate ICC estimates that reflect cluster size. PMID:24884591

  10. Impacts of projected mid-century temperatures on thermal regimes for select specialty and fieldcrops common to the southwestern U.S.

    NASA Astrophysics Data System (ADS)

    Elias, E.; Lopez-Brody, N.; Dialesandro, J.; Steele, C. M.; Rango, A.

    2015-12-01

    The impacts of projected temperature increases in agricultural ecosystems are complex, varyingby region, cropping system, crop growth stage and humidity. We analyze the impacts of mid-century temperature increases on crops grown in five southwestern states: Arizona, California,New Mexico, Nevada and Utah. Here we present a spatial impact assessment of commonsouthwestern specialty (grapes, almonds and tomatoes) and field (alfalfa, cotton and corn)crops. This analysis includes three main components: development of empirical temperaturethresholds for each crop, classification of predicted future climate conditions according to thesethresholds, and mapping the probable impacts of these climatic changes on each crop. We use30m spatial resolution 2012 crop distribution and seasonal minimum and maximumtemperature normals (1970 to 2000) to define the current thermal envelopes for each crop.These represent the temperature range for each season where 95% of each crop is presentlygrown. Seasonal period change analysis of mid-century temperatures changes downscaled from20 CMIP5 models (RCP8.5) estimate future temperatures. Change detection maps representareas predicted to become more or less suitable, or remain unchanged. Based upon mid-centurytemperature changes, total regional suitable area declined for all crops except cotton, whichincreased by 20%. For each crop there are locations which change to and from optimal thermalenvelope conditions. More than 80% of the acres currently growing tomatoes and almonds willshift outside the present 95% thermal range. Fewer acres currently growing alfalfa (14%) andcotton (20%) will shift outside the present 95% thermal range by midcentury. Crops outsidepresent thermal envelopes by midcentury may adapt, possibly aided by adaptation technologiessuch as misters or shade structures, to the new temperature regime or growers may elect togrow alternate crops better suited to future thermal envelopes.

  11. DNA from lake sediments reveals long-term ecosystem changes after a biological invasion.

    PubMed

    Ficetola, Gentile Francesco; Poulenard, Jérôme; Sabatier, Pierre; Messager, Erwan; Gielly, Ludovic; Leloup, Anouk; Etienne, David; Bakke, Jostein; Malet, Emmanuel; Fanget, Bernard; Støren, Eivind; Reyss, Jean-Louis; Taberlet, Pierre; Arnaud, Fabien

    2018-05-01

    What are the long-term consequences of invasive species? After invasion, how long do ecosystems require to reach a new equilibrium? Answering these questions requires long-term, high-resolution data that are vanishingly rare. We combined the analysis of environmental DNA extracted from a lake sediment core, coprophilous fungi, and sedimentological analyses to reconstruct 600 years of ecosystem dynamics on a sub-Antarctic island and to identify the impact of invasive rabbits. Plant communities remained stable from AD 1400 until the 1940s, when the DNA of invasive rabbits was detected in sediments. Rabbit detection corresponded to abrupt changes of plant communities, with a continuous decline of a dominant plant species. Furthermore, erosion rate abruptly increased with rabbit abundance. Rabbit impacts were very fast and were stronger than the effects of climate change during the 20th century. Lake sediments can allow an integrated temporal analysis of ecosystems, revealing the impact of invasive species over time and improving our understanding of underlying mechanisms.

  12. Hurricane impact and recovery shoreline change analysis of the Chandeleur Islands, Louisiana, USA: 1855 to 2005

    USGS Publications Warehouse

    Fearnley, Sarah M.; Miner, Michael; Brock, John C.

    2011-01-01

    Results from historical (1855-2005) shoreline change analysis of the Chandeleur Islands, Louisiana, demonstrate that tropical cyclone frequency dominates the long-term evolution of this barrier-island arc. The detailed results of this study were published in December 2009 as part of a special issue of Geo-Marine Letters that documents early results from the Northern Gulf of Mexico (NGOM) Ecosystem Change and Hazard Susceptibility Project.

  13. Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries

    NASA Astrophysics Data System (ADS)

    Iwasaki, Yuma; Kusne, A. Gilad; Takeuchi, Ichiro

    2017-12-01

    Machine learning techniques have proven invaluable to manage the ever growing volume of materials research data produced as developments continue in high-throughput materials simulation, fabrication, and characterization. In particular, machine learning techniques have been demonstrated for their utility in rapidly and automatically identifying potential composition-phase maps from structural data characterization of composition spread libraries, enabling rapid materials fabrication-structure-property analysis and functional materials discovery. A key issue in development of an automated phase-diagram determination method is the choice of dissimilarity measure, or kernel function. The desired measure reduces the impact of confounding structural data issues on analysis performance. The issues include peak height changes and peak shifting due to lattice constant change as a function of composition. In this work, we investigate the choice of dissimilarity measure in X-ray diffraction-based structure analysis and the choice of measure's performance impact on automatic composition-phase map determination. Nine dissimilarity measures are investigated for their impact in analyzing X-ray diffraction patterns for a Fe-Co-Ni ternary alloy composition spread. The cosine, Pearson correlation coefficient, and Jensen-Shannon divergence measures are shown to provide the best performance in the presence of peak height change and peak shifting (due to lattice constant change) when the magnitude of peak shifting is unknown. With prior knowledge of the maximum peak shifting, dynamic time warping in a normalized constrained mode provides the best performance. This work also serves to demonstrate a strategy for rapid analysis of a large number of X-ray diffraction patterns in general beyond data from combinatorial libraries.

  14. Impact of Climate Change on Lake Erie Drinking Water Quality—An Initial Assessment with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Liou, L.

    2012-12-01

    A changing climate in the Lake Erie region appears to be having direct impacts on the quality of Lake Erie's drinking water. A dramatic increase in the size and duration of harmful algal blooms (HABs), changes in chlorophyll (Chl) levels and related primary production (PP), prominent sediment plumes, and nearshore production of submerged aquatic vegetation (SAV) are likely being impacted by warmer winters, more intense storms, and reduced ice extent, amongst other meteorological factors. Hypoxia, another major drinking water issue in the lake, is exacerbated by HABs and nearshore SAV. A Michigan Tech research team (Shuchman, Sayers, Brooks) has recently been developing algorithms to derive HAB extents, Chl levels, PP, sediment plume extents, and nearshore SAV maps for the Great Lakes. Inputs have primarily been derived from MODIS Aqua imagery from the NASA Oceancolor website; investigations in the capability of VIIRS imagery to provide the same critical data are being pursued. Remote sensing-derived ice extent and thickness spatial data are also being analyzed. Working with Liou and Lekki of the NASA Glenn Research Center, the study team is deriving algorithms specifically for Lake Erie and integrating them into an analysis of the lake's changing trends over the last 10 years (2002-2012) to improve understanding of how they are impacting the area's water quality, especially for customers dependent on Lake Erie drinking water. This analysis is tying these remote sensing-derived products to climate-driven meteorological factors to enable an initial assessment of how future changes could continue to impact the region's drinking water quality.

  15. Multi-Temporal Multi-Sensor Analysis of Urbanization and Environmental/Climate Impact in China for Sustainable Urban Development

    NASA Astrophysics Data System (ADS)

    Ban, Yifang; Gong, Peng; Gamba, Paolo; Taubenbock, Hannes; Du, Peijun

    2016-08-01

    The overall objective of this research is to investigate multi-temporal, multi-scale, multi-sensor satellite data for analysis of urbanization and environmental/climate impact in China to support sustainable planning. Multi- temporal multi-scale SAR and optical data have been evaluated for urban information extraction using innovative methods and algorithms, including KTH- Pavia Urban Extractor, Pavia UEXT, and an "exclusion- inclusion" framework for urban extent extraction, and KTH-SEG, a novel object-based classification method for detailed urban land cover mapping. Various pixel- based and object-based change detection algorithms were also developed to extract urban changes. Several Chinese cities including Beijing, Shanghai and Guangzhou are selected as study areas. Spatio-temporal urbanization patterns and environmental impact at regional, metropolitan and city core were evaluated through ecosystem service, landscape metrics, spatial indices, and/or their combinations. The relationship between land surface temperature and land-cover classes was also analyzed.The urban extraction results showed that urban areas and small towns could be well extracted using multitemporal SAR data with the KTH-Pavia Urban Extractor and UEXT. The fusion of SAR data at multiple scales from multiple sensors was proven to improve urban extraction. For urban land cover mapping, the results show that the fusion of multitemporal SAR and optical data could produce detailed land cover maps with improved accuracy than that of SAR or optical data alone. Pixel-based and object-based change detection algorithms developed with the project were effective to extract urban changes. Comparing the urban land cover results from mulitemporal multisensor data, the environmental impact analysis indicates major losses for food supply, noise reduction, runoff mitigation, waste treatment and global climate regulation services through landscape structural changes in terms of decreases in service area, edge contamination and fragmentation. In terms ofclimate impact, the results indicate that land surface temperature can be related to land use/land cover classes.

  16. Utilization of Historical Maps in the Land Use Change Impact Studies: A Case Study from Myjava River Basin

    NASA Astrophysics Data System (ADS)

    Valent, P.; Rončák, P.; Maliariková, M.; Behan, Š.

    2016-12-01

    The way land is used has a significant impact on many hydrological processes that determine the generation of flood runoff or soil erosion. Advancements in remote sensing which took place in the second half of the 20th century have led to the rise of a new research area focused on analyses of land use changes and their impact on hydrological processes. This study deals with an analysis of the changes in land use over a period of almost three centuries in the Myjava River catchment, which has an outlet at Šaštín-Stráže. In order to obtain information about the way the land was used in the past, three historical mappings representing various periods were used: the first (1st) military mapping (1764-1787), second (2nd) military mapping (1807-1869), and a military topographic mapping (1953-1957). The historical mappings have been manually vectorised in an ArcGIS environment to identify various land use categories. The historical evolution of land use was further compared with a concurrent land use mapping, which was undertaken in 2010 and exploited remote sensing techniques. The study also quantifies the impact of these changes on the long-term catchment runoff as well as their impact on flows induced by extreme precipitation events. This analysis was performed using the WetSpa distributed hydrological model, which enables the simulation of catchment runoff in a daily time step. The analysis showed that the selected catchment has undergone significant changes in land use, mainly characterized by massive deforestation at the end of the 18th century and land consolidation in the middle of the 20th century induced by communist collectivisation. The hydrological simulations demonstrated that the highest and lowest mean annual runoffs were simulated in the first (1st military mapping) and the last (concurrent land use monitoring) time intervals respectively with the smallest and largest percentages of forested areas.

  17. The Impact of Information and Communication Technology (ICT) on the Management Practices of Malaysian Smart Schools

    ERIC Educational Resources Information Center

    Zain, Muhammad Z. M.; Atan, Hanafi; Idrus, Rozhan M.

    2004-01-01

    The impact of Information and Communication Technology (ICT) on the management practices in the Malaysian Smart Schools was investigated. The analysis revealed that the impact has resulted in changes that include the enrichment of the ICT culture among students and teachers, more efficient student and teacher administration, better accessibility…

  18. Understanding the emission impacts of high-occupancy vehicle (HOV) to high-occupancy toll (HOT) lane conversions: Experience from Atlanta, Georgia.

    PubMed

    Xu, Yanzhi Ann; Liu, Haobing; Rodgers, Michael O; Guin, Angshuman; Hunter, Michael; Sheikh, Adnan; Guensler, Randall

    2017-08-01

    Converting a congested high-occupancy vehicle (HOV) lane into a high-occupancy toll (HOT) lane is a viable option for improving travel time reliability for carpools and buses that use the managed lane. However, the emission impacts of HOV-to-HOT conversions are not well understood. The lack of emission impact quantification for HOT conversions creates a policy challenge for agencies making transportation funding choices. The goal of this paper is to evaluate the case study of before-and-after changes in vehicle emissions for the Atlanta, Georgia, I-85 HOV/HOT lane conversion project, implemented in October 2011. The analyses employed the Motor Vehicle Emission Simulator (MOVES) for project-level analysis with monitored changes in vehicle activity data collected by Georgia Tech researchers for the Georgia Department of Transportation (GDOT). During the quarterly field data collection from 2010 to 2012, more than 1.5 million license plates were observed and matched to vehicle class and age information using the vehicle registration database. The study also utilized the 20-sec, lane-specific traffic operations data from the Georgia NaviGAtor intelligent transportation system, as well as a direct feed of HOT lane usage data from the State Road and Tollway Authority (SRTA) managed lane system. As such, the analyses in this paper simultaneously assessed the impacts associated with changes in traffic volumes, on-road operating conditions, and fleet composition before and after the conversion. Both greenhouse gases and criteria pollutants were examined. A straight before-after analysis showed about 5% decrease in air pollutants and carbon dioxide (CO 2 ). However, when the before-after calendar year of analysis was held constant (to account for the effect of 1 yr of fleet turnover), mass emissions at the analysis site during peak hours increased by as much as 17%, with little change in CO 2 . Further investigation revealed that a large percentage decrease in criteria pollutants in the straight before-after analysis was associated with a single calendar year change in MOVES. Hence, the Atlanta, Georgia, results suggest that an HOV-to-HOT conversion project may have increased mass emissions on the corridor. The results also showcase the importance of obtaining on-road data for emission impact assessment of HOV-to-HOT conversion projects.

  19. Agricultural growth, the status of women, and fertility.

    PubMed

    Whittington, L A; Stapleton, D C

    1995-08-01

    This study tests the hypothesis that fertility is affected differently by economic growth depending upon the specific sector (agriculture, manufacturing, heavy industry, and services) where growth occurred. The hypothesis is that fertility responses are not identical across sectors. The sample includes 51 World Bank member countries in varying stages of development. The econometric model pertains to 1965-88 and the percentage change in the total fertility rate (TFR). During the study period the average TFR declined by over 22%, but the extent of change varied by country and included, for instance, countries such as Ethiopia that experienced fertility increases from 5.8 to 6.5. Hong Kong's TFR declined by 66% from 4.7 to 1.6. Analysis included measures of changes in gross domestic product (GDP) for each of the four sectors and change in real per capita exports in agricultural commodities, resources, and manufactured products. Changes in educational status and changes in infant mortality were also included in some models. There were mixed results for the impact of total GDP. Sectoral analysis shows a positive, small significant impact on TFR from changes in the GDP per capita in agriculture (domestic and export products), and a negative, small significant impact from manufacturing growth. Heavy industry and services produced insignificant impact. In the model with only domestic consumption, results show a stronger coefficient and continued significance for agricultural productivity, agricultural exports, and manufacturing changes per capita. Manufacturing exports produced a negative, insignificant impact. The null hypothesis is rejected only in models comparing aggregate GDP in agriculture and manufacturing industries plus control variables (excluding heavy industry and services). Only secondary education was a negative, significant determinant of fertility. Infant mortality was insignificant when sectoral growth and education were included in the model. The evidence supports the thesis that growth depending on the sector leads to fertility decline, and economic growth has a negative effect on fertility if employment opportunities for women are improved.

  20. Environmental impacts of high penetration renewable energy scenarios for Europe

    NASA Astrophysics Data System (ADS)

    Berrill, Peter; Arvesen, Anders; Scholz, Yvonne; Gils, Hans Christian; Hertwich, Edgar G.

    2016-01-01

    The prospect of irreversible environmental alterations and an increasingly volatile climate pressurises societies to reduce greenhouse gas emissions, thereby mitigating climate change impacts. As global electricity demand continues to grow, particularly if considering a future with increased electrification of heat and transport sectors, the imperative to decarbonise our electricity supply becomes more urgent. This letter implements outputs of a detailed power system optimisation model into a prospective life cycle analysis framework in order to present a life cycle analysis of 44 electricity scenarios for Europe in 2050, including analyses of systems based largely on low-carbon fossil energy options (natural gas, and coal with carbon capture and storage (CCS)) as well as systems with high shares of variable renewable energy (VRE) (wind and solar). VRE curtailments and impacts caused by extra energy storage and transmission capabilities necessary in systems based on VRE are taken into account. The results show that systems based largely on VRE perform much better regarding climate change and other impact categories than the investigated systems based on fossil fuels. The climate change impacts from Europe for the year 2050 in a scenario using primarily natural gas are 1400 Tg CO2-eq while in a scenario using mostly coal with CCS the impacts are 480 Tg CO2-eq. Systems based on renewables with an even mix of wind and solar capacity generate impacts of 120-140 Tg CO2-eq. Impacts arising as a result of wind and solar variability do not significantly compromise the climate benefits of utilising these energy resources. VRE systems require more infrastructure leading to much larger mineral resource depletion impacts than fossil fuel systems, and greater land occupation impacts than systems based on natural gas. Emissions and resource requirements from wind power are smaller than from solar power.

  1. Land-Use and Climate : first results from the LUCID experiments ; implications for experimental design in IPCC-AR5

    NASA Astrophysics Data System (ADS)

    de Noblet, N.; Pitman, A.; Participants, Lucid

    2009-04-01

    The project "Land-Use and Climate, IDentification of robust impacts" (LUCID) was conceived under the auspices of IGBP-iLEAPS and GEWEX-GLASS, to address the robustness of 'local' and possible remote impacts of land-use induced land-cover changes (LCC). LUCID explores, using methodologies that major climate modelling groups recognise, those impacts of LCC that are robust - that is, above the noise generated by model variability and consistent across a suite of climate models. To start with, seven climate models were run, in ensemble mode (5 realisations per 31-years long experiment), with prescribed observed sea-surface temperatures (SSTs) and sea ice extent (SIc). Pre-industrial and present-day simulations were used to explore the impacts of biogeophysical impacts of human-induced land cover change. The imposed LCC perturbation led to statistically significant changes in latent heat flux and near-surface temperature over the regions of land cover change, but few significant changes in precipitation. Our results show no common remote impacts of land cover change. They also highlight a dilemma for both historical hind-casts and future projections; land cover change is regionally important, but it is not feasible within the time frame of the next IPCC (AR5) assessment to implement this change commonly across multiple models. Further analysis are in progress and will be presented to identify the continental regions where changes in LCC may have been more important than the combined changes in SSTs, SIc and CO2 between the pre-industrial times and nowadays.

  2. Multi-decadal shoreline changes on Takú Atoll, Papua New Guinea: Observational evidence of early reef island recovery after the impact of storm waves

    NASA Astrophysics Data System (ADS)

    Mann, Thomas; Westphal, Hildegard

    2016-03-01

    Hurricanes, tropical cyclones and other high-magnitude events are important steering mechanisms in the geomorphic development of coral reef islands. Sandy reef islands located outside the storm belts are strongly sensitive to the impact of occasional high-magnitude events and show abrupt, commonly erosive geomorphic change in response to such events. Based on the interpretation of remote sensing data, it is well known that the process of landform recovery might take several decades or even longer. However, despite the increasing amount of scientific attention towards short- and long-term island dynamics, the lack of data and models often prevent a robust analysis of the timing and nature of recovery initiation. Here we show how natural island recovery starts immediately after the impact of a high-magnitude event. We analyze multi-temporal shoreline changes on Takú Atoll, Papua New Guinea and combine our findings with a unique set of published field observations (Smithers and Hoeke, 2014). Trends of shoreline change since 1943 and changes in planform island area indicate a long-term accretionary mode for most islands. Apparent shoreline instability is detected for the last decade of analysis, however this can be explained by the impact of storm waves in December 2008 that (temporarily?) masked the long-term trend. The transition from negative to positive rates of change in the aftermath of this storm event is indicative of inherent negative feedback processes that counteract short-term changes in energy input and represent the initiation of island recovery. Collectively, our results support the concept of dynamic rather than static reef islands and clearly demonstrate how short-term processes can influence interpretations of medium-term change.

  3. Assessment of environmental impacts part one. Intervention analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hipel, Keith William; Lettenmaier, Dennis P.; McLeod, A. Ian

    The use of intervention analysis as a statistical method of gauging the effects of environmental changes is discussed. The Box-Jenkins model, serves as the basis for the intervention analysis methodology. Environmental studies of the Aswan Dam, the South Saskatchewan River, and a forest fire near the Pipers Hole River, Canada, are included as case studies in which intervention analysis was employed. Methods of data collection for intervention analysis are found to have a significant impact on model reliability; effective data collection processes for the Box-Jenkins model are provided. (15 graphs, 27 references, 2 tables)

  4. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on river ecosystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Status and Impacts of State MTBE Bans

    EIA Publications

    2003-01-01

    This paper describes legislation passed in 16 states banning or restricting the use of methyl tertiary butyl ether (MTBE) in gasoline. Analysis of the status and impact of these state MTBE bans is provided concerning the supply and potential price changes of gasoline.

  6. "From this place and of this place:" climate change, sense of place, and health in Nunatsiavut, Canada.

    PubMed

    Cunsolo Willox, Ashlee; Harper, Sherilee L; Ford, James D; Landman, Karen; Houle, Karen; Edge, Victoria L

    2012-08-01

    As climate change impacts are felt around the globe, people are increasingly exposed to changes in weather patterns, wildlife and vegetation, and water and food quality, access and availability in their local regions. These changes can impact human health and well-being in a variety of ways: increased risk of foodborne and waterborne diseases; increased frequency and distribution of vector-borne disease; increased mortality and injury due to extreme weather events and heat waves; increased respiratory and cardiovascular disease due to changes in air quality and increased allergens in the air; and increased susceptibility to mental and emotional health challenges. While climate change is a global phenomenon, the impacts are experienced most acutely in place; as such, a sense of place, place-attachment, and place-based identities are important indicators for climate-related health and adaptation. Representing one of the first qualitative case studies to examine the connections among climate change, a changing sense of place, and health in an Inuit context, this research draws data from a multi-year community-driven case study situated in the Inuit community of Rigolet, Nunatsiavut, Canada. Data informing this paper were drawn from the narrative analysis of 72 in-depth interviews conducted from November 2009 to October 2010, as well as from the descriptive analysis of 112 questionnaires from a survey in October 2010 (95% response rate). The findings illustrated that climate change is negatively affecting feelings of place attachment by disrupting hunting, fishing, foraging, trapping, and traveling, and changing local landscapes-changes which subsequently impact physical, mental, and emotional health and well-being. These results also highlight the need to develop context-specific climate-health planning and adaptation programs, and call for an understanding of place-attachment as a vital indicator of health and well-being and for climate change to be framed as an important determinant of health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Local indicators of climate change: The potential contribution of local knowledge to climate research

    PubMed Central

    Reyes-García, Victoria; Fernández-Llamazares, Álvaro; Guèze, Maximilien; Garcés, Ariadna; Mallo, Miguel; Vila-Gómez, Margarita; Vilaseca, Marina

    2016-01-01

    Local knowledge has been proposed as a place-based tool to ground-truth climate models and to narrow their geographic sensitivity. To assess the potential role of local knowledge in our quest to understand better climate change and its impacts, we first need to critically review the strengths and weaknesses of local knowledge of climate change and the potential complementarity with scientific knowledge. With this aim, we conducted a systematic, quantitative meta-analysis of published peer-reviewed documents reporting local indicators of climate change (including both local observations of climate change and observed impacts on the biophysical and the social systems). Overall, primary data on the topic are not abundant, the methodological development is incipient, and the geographical extent is unbalanced. On the 98 case studies documented, we recorded the mention of 746 local indicators of climate change, mostly corresponding to local observations of climate change (40%), but also to observed impacts on the physical (23%), the biological (19%), and the socioeconomic (18%) systems. Our results suggest that, even if local observations of climate change are the most frequently reported type of change, the rich and fine-grained knowledge in relation to impacts on biophysical systems could provide more original contributions to our understanding of climate change at local scale. PMID:27642368

  8. Economic analysis of the potential impact of climate change on recreational trout fishing in the Southern Appalachian Mountains: An appication of a nested multinomial logti model

    Treesearch

    Soeun Ahn; Joseph E. de Steiguer; Raymond B. Palmquist; Thomas P. Holmes

    2000-01-01

    Global warming due to the enhanced greenhouse effect through human activities has become a major public policy issue in recent years. The present study focuses on the potential economic impact of climate change on recreational trout fishing in the Southern Appalachian Mountains of North Carolina. Significant reductions in trout habitat and/or populations are...

  9. Impact of Technological and Structural Change on Employment. Prospective Analysis 2020. Synthesis Report. Report to the Committee on Employment and Social Affairs of the European Parliament. Technical Report Series.

    ERIC Educational Resources Information Center

    2001

    The possible impact of technological and structural change on employment in the European Union (EU) over the next 20 years was examined through an exploration of the following alternative policy-driven scenarios: (1) business as usual; (2) concentrated technology policy (increases in innovation and research and development [R&D] efforts are…

  10. Spatially explicit integrated modeling and economic valuation of climate driven land use change and its indirect effects.

    PubMed

    Bateman, Ian; Agarwala, Matthew; Binner, Amy; Coombes, Emma; Day, Brett; Ferrini, Silvia; Fezzi, Carlo; Hutchins, Michael; Lovett, Andrew; Posen, Paulette

    2016-10-01

    We present an integrated model of the direct consequences of climate change on land use, and the indirect effects of induced land use change upon the natural environment. The model predicts climate-driven shifts in the profitability of alternative uses of agricultural land. Both the direct impact of climate change and the induced shift in land use patterns will cause secondary effects on the water environment, for which agriculture is the major source of diffuse pollution. We model the impact of changes in such pollution on riverine ecosystems showing that these will be spatially heterogeneous. Moreover, we consider further knock-on effects upon the recreational benefits derived from water environments, which we assess using revealed preference methods. This analysis permits a multi-layered examination of the economic consequences of climate change, assessing the sequence of impacts from climate change through farm gross margins, land use, water quality and recreation, both at the individual and catchment scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Impacts of the Venezuelan Crude Oil Production Loss

    EIA Publications

    2003-01-01

    This assessment of the Venezuelan petroleum loss examines two areas. The first part of the analysis focuses on the impact of the loss of Venezuelan crude production on crude oil supply for U.S. refiners who normally run a significant fraction of Venezuelan crude oil. The second part of the analysis looks at the impact of the Venezuelan production loss on crude markets in general, with particular emphasis on crude oil imports, refinery crude oil throughput levels, stock levels, and the changes in price differences between light and heavy crude oils.

  12. Assessing the influence of Environmental Impact Assessments on science and policy: an analysis of the Three Gorges Project.

    PubMed

    Tullos, Desiree

    2009-07-01

    The need to understand and minimize negative environmental outcomes associated with large dams has both contributed to and benefited from the introduction and subsequent improvements in the Environmental Impact Assessment (EIA) process. However, several limitations in the EIA process remain, including those associated with the uncertainty and significance of impact projections. These limitations are directly related to the feedback between science and policy, with information gaps in scientific understanding discovered through the EIA process contributing valuable recommendations on critical focus areas for prioritizing and funding research within the fields of ecological conservation and river engineering. This paper presents an analysis of the EIA process for the Three Gorges Project (TGP) in China as a case study for evaluating this feedback between the EIA and science and policy. For one of the best-studied public development projects in the world, this paper presents an investigation into whether patterns exist between the scientific interest (via number of publications) in environmental impacts and (a) the identification of impacts as uncertain or priority by the EIA, (b) decisions or political events associated with the dam, and (c) impact type. This analysis includes the compilation of literature on TGP, characterization of ecosystem interactions and responses to TGP through a hierarchy of impacts, coding of EIA impacts as "uncertain" impacts that require additional study and "priority" impacts that have particularly high significance, mapping of an event chronology to relate policies, institutional changes, and decisions about TGP as "events" that could influence the focus and intensity of scientific investigation, and analysis of the number of publications by impact type and order within the impact hierarchy. From these analyses, it appears that the availability and consistency of scientific information limit the accuracy of environmental impact projections. These analyses also suggest a lack of direct feedback between the EIA process and emerging science, as indicated by the failure of literature to focus on issues related to the design and management of TGP, ultimately challenging the environmental sustainability of the project. While the EIA process has enormous potential for improving both the basic sciences and the planning and sustainability of hydrodevelopment, important institutional changes need to occur for this potential to be realized. This paper concludes with recommendations about those institutional changes needed to improve the feedback between the science and policy, and ultimately the environmental sustainability, of large dams.

  13. Photo point monitoring handbook—Part A: Field procedures; Part B: Concepts and analysis.

    Treesearch

    Frederick C. Hall

    2002-01-01

    This handbook describes quick, effective methods for documenting change in vegetation and soil through repeat photography. It is published in two parts: field procedures in part A and concepts and office analysis in part B. Topics may be effects of logging, change in wildlife habitat, livestock grazing impacts, or stream channel reaction to land management. Land...

  14. Where Are the Global Rankings Leading Us? An Analysis of Recent Methodological Changes and New Developments

    ERIC Educational Resources Information Center

    Rauhvargers, Andrejs

    2014-01-01

    This article is based on the analysis of the changes in global university rankings and the new "products" based on rankings data in the period since mid-2011. It is a summary and continuation of the European University Association (EUA)-commissioned report "Global University Rankings Their Impact, Report II" which was launched…

  15. Watershed Analysis for Runoff and Erosion Potential on Santa Cruz Watershed: Impact of Climate and Land Cover Changes

    EPA Science Inventory

    Many empirical studies have established the significant relationship between climate and runoff: climate change may potentially increase or decrease the surface runoff. Increased surface runoff can also increase the risk of soil erosion. Land cover change can alter rainfall-runof...

  16. Hydrologic Futures: Using Scenario Analysis to Evaluate Impacts of Forecasted Land Use Change on Hydrologic Services

    EPA Science Inventory

    Land cover and land use changes can substantially alter hydrologic ecosystem services. Water availability and quality can change with modifications to the type or amount of surface vegetation, the permeability of soil and other surfaces, and the introduction of contaminants throu...

  17. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.

    PubMed

    Radchuk, Viktoriia; Turlure, Camille; Schtickzelle, Nicolas

    2013-01-01

    As ectothermic organisms, butterflies have widely been used as models to explore the predicted impacts of climate change. However, most studies explore only one life stage; to our best knowledge, none have integrated the impact of temperature on the vital rates of all life stages for a species of conservation concern. Besides, most population viability analysis models for butterflies are based on yearly population growth rate, precluding the implementation and assessment of important climate change scenarios, where climate change occurs mainly, or differently, during some seasons. Here, we used a combination of laboratory and field experiments to quantify the impact of temperature on all life stages of a vulnerable glacial relict butterfly. Next, we integrated these impacts into an overall population response using a deterministic periodic matrix model and explored the impact of several climate change scenarios. Temperature positively affected egg, pre-diapause larva and pupal survival, and the number of eggs laid by a female; only the survival of overwintering larva was negatively affected by an increase in temperature. Despite the positive impact of warming on many life stages, population viability was reduced under all scenarios, with predictions of much shorter times to extinction than under the baseline (current temperature situation) scenario. Indeed, model predictions were the most sensitive to changes in survival of overwintering larva, the only stage negatively affected by warming. A proper consideration of every stage of the life cycle is important when designing conservation guidelines in the light of climate change. This is in line with the resource-based habitat view, which explicitly refers to the habitat as a collection of resources needed for all life stages of the species. We, therefore, encourage adopting a resource-based habitat view for population viability analysis and development of conservation guidelines for butterflies, and more generally, other organisms. Life stages that are cryptic or difficult to study should not be forsaken as they may be key determinants in the overall response to climate change, as we found with overwintering Boloria eunomia larvae. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  18. Climate change and the effects of dengue upon Australia: An analysis of health impacts and costs

    NASA Astrophysics Data System (ADS)

    Newth, D.; Gunasekera, D.

    2010-08-01

    Projected regional warming and climate change analysis and health impact studies suggest that Australia is potentially vulnerable to increased occurrence of vector borne diseases such as dengue fever. Expansion of the dengue fever host, Aedes aegypti could potentially pose a significant public health risk. To manage such health risks, there is a growing need to focus on adaptive risk management strategies. In this paper, we combine analyses from climate, biophysical and economic models with a high resolution population model for disease spread, the EpiCast model to analyse the health impacts and costs of spread of dengue fever. We demonstrate the applicability of EpiCast as a decision support tool to evaluate mitigation strategies to manage the public health risks associated with shifts in the distribution of dengue fever in Australia.

  19. The CICT Earth Science Systems Analysis Model

    NASA Technical Reports Server (NTRS)

    Pell, Barney; Coughlan, Joe; Biegel, Bryan; Stevens, Ken; Hansson, Othar; Hayes, Jordan

    2004-01-01

    Contents include the following: Computing Information and Communications Technology (CICT) Systems Analysis. Our modeling approach: a 3-part schematic investment model of technology change, impact assessment and prioritization. A whirlwind tour of our model. Lessons learned.

  20. "Who Do You Think You Are?": A Multidimensional Analysis of the Impact of Disparities in Higher Educational Attainment within Families of First-Generation College Graduates

    ERIC Educational Resources Information Center

    Burns, April

    2013-01-01

    This project explores the impact of disparate educational attainment between first-generation college graduates and their family members. This is a conscious shifting of the unit of analysis, from the changing social position and power of an individual student/graduate, to the relational capacity, tensions, and strategies of the family unit that…

  1. Impact of socio-demographic factors on the mitigating actions for climate change: a path analysis with mediating effects of attitudinal variables.

    PubMed

    Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed

    2017-12-01

    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.

  2. Do dam constructions in a Vietnamese river basin result in change points in hydrologic regime and how reliable are different methods?

    NASA Astrophysics Data System (ADS)

    Vu, Tinh Thi; Kiesel, Jens; Guse, Bjoern; Fohrer, Nicola

    2017-04-01

    The damming of rivers causes one of the most considerable impacts of our society on the riverine environment. More than 50% of the world's streams and rivers are currently impounded by dams before reaching the oceans. The construction of dams is of high importance in developing and emerging countries, i.e. for power generation and water storage. In the Vietnamese Vu Gia - Thu Bon Catchment (10,350 km2), about 23 dams were built during the last decades and store approximately 2,156 billion m3 of water. The water impoundment in 10 dams in upstream regions amounts to 17 % of the annual discharge volume. It is expected that impacts from these dams have altered the natural flow regime. However, up to now it is unclear how the flow regime was altered. For this, it needs to be investigated at what point in time these changes became significant and detectable. Many approaches exist to detect changes in stationary or consistency of hydrological records using statistical analysis of time series for the pre- and post-dam period. The objective of this study is to reliably detect and assess hydrologic shifts occurring in the discharge regime of an anthropogenically influenced river basin, mainly affected by the construction of dams. To achieve this, we applied nine available change-point tests to detect change in mean, variance and median on the daily and annual discharge records at two main gauges of the basin. The tests yield conflicting results: The majority of tests found abrupt changes that coincide with the damming-period, while others did not. To interpret how significant the changes in discharge regime are, and to which different properties of the time series each test responded, we calculated Indicators of Hydrologic Alteration (IHAs) for the time period before and after the detected change points. From the results, we can deduce, that the change point tests are influenced in different levels by different indicator groups (magnitude, duration, frequency, etc) and that within the indicator groups, some indicators are more sensitive than others. For instance, extreme low-flow, especially 7- and, 30-day minima and mean minimum low flow, as well as the variability of monthly flow are highly-sensitive to most detected change points. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts.

  3. A Bayesian model for quantifying the change in mortality associated with future ozone exposures under climate change.

    PubMed

    Alexeeff, Stacey E; Pfister, Gabriele G; Nychka, Doug

    2016-03-01

    Climate change is expected to have many impacts on the environment, including changes in ozone concentrations at the surface level. A key public health concern is the potential increase in ozone-related summertime mortality if surface ozone concentrations rise in response to climate change. Although ozone formation depends partly on summertime weather, which exhibits considerable inter-annual variability, previous health impact studies have not incorporated the variability of ozone into their prediction models. A major source of uncertainty in the health impacts is the variability of the modeled ozone concentrations. We propose a Bayesian model and Monte Carlo estimation method for quantifying health effects of future ozone. An advantage of this approach is that we include the uncertainty in both the health effect association and the modeled ozone concentrations. Using our proposed approach, we quantify the expected change in ozone-related summertime mortality in the contiguous United States between 2000 and 2050 under a changing climate. The mortality estimates show regional patterns in the expected degree of impact. We also illustrate the results when using a common technique in previous work that averages ozone to reduce the size of the data, and contrast these findings with our own. Our analysis yields more realistic inferences, providing clearer interpretation for decision making regarding the impacts of climate change. © 2015, The International Biometric Society.

  4. Learning from the Women's Movement about Educational Change

    ERIC Educational Resources Information Center

    Gaskell, Jane

    2008-01-01

    The women's movement in the 1970s and 1980s was a global phenomenon that achieved significant educational change. More analysis of how it developed and had an impact on education can inform our understanding of the possibilities for change today. This paper explores how the women's movement changed schooling in Vancouver in the 1970s, using a…

  5. Precipitation and temperature regime over Cyprus as a result of global climate change

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, C.; Hadjinicolaou, P.; Kostopoulou, E.; Varotsos, K. V.; Zerefos, C.

    2010-02-01

    In this study, the impact of global climate change on the temperature and precipitation regime over the island of Cyprus has been investigated. The analysis is based on daily output from a regional climate model (RCM) at a high horizontal resolution (25 km) produced within the framework of the EU-funded ENSEMBLES project. The control run represents the base period 1961-1990 and is used here as reference for comparison with future predictions. Two future periods are studied, 2021-2050 and 2071-2100. For the study area and over the study period, an analysis of the changes associated with the temperature regime and the hydrological cycle, such as mean precipitation and drought duration, is presented. Variations in the mean annual and seasonal rainfall are presented. Changes in the number of hot days/warm nights as well as drought duration are also discussed. These changes should be very important to assess future possible water shortages over the island and to provide a basis for associated impacts on the agricultural sector.

  6. The Functional Impact of Alternative Splicing in Cancer.

    PubMed

    Climente-González, Héctor; Porta-Pardo, Eduard; Godzik, Adam; Eyras, Eduardo

    2017-08-29

    Alternative splicing changes are frequently observed in cancer and are starting to be recognized as important signatures for tumor progression and therapy. However, their functional impact and relevance to tumorigenesis remain mostly unknown. We carried out a systematic analysis to characterize the potential functional consequences of alternative splicing changes in thousands of tumor samples. This analysis revealed that a subset of alternative splicing changes affect protein domain families that are frequently mutated in tumors and potentially disrupt protein-protein interactions in cancer-related pathways. Moreover, there was a negative correlation between the number of these alternative splicing changes in a sample and the number of somatic mutations in drivers. We propose that a subset of the alternative splicing changes observed in tumors may represent independent oncogenic processes that could be relevant to explain the functional transformations in cancer, and some of them could potentially be considered alternative splicing drivers (AS drivers). Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  7. The role of organizational structure in readiness for change: A conceptual integration.

    PubMed

    Benzer, Justin K; Charns, Martin P; Hamdan, Sami; Afable, Melissa

    2017-02-01

    The purpose of this review is to extend extant conceptualizations of readiness for change as an individual-level phenomenon. This review-of-reviews focuses on existing conceptual frameworks from the dissemination, implementation, quality improvement, and organizational transformation literatures in order to integrate theoretical rationales for how organization structure, a key dimension of the organizational context, may impact readiness for change. We propose that the organization structure dimensions of differentiation and integration impact readiness for change at the individual level of analysis by influencing four key concepts of relevance, legitimacy, perceived need for change, and resource allocation. We identify future research directions that focus on these four key concepts.

  8. ANALYSIS OF AQUATIC MICROBIAL COMMUNITIES IMPACTED BY LARGE POULTRY FORMS

    EPA Science Inventory

    Microbial communities often respond more rapidly and extensively to environmental change than communities of higher organisms. Thus, characterizing shifts in the structure of native bacterial communities as a response to changes in nutrients, antimicrobials, and invading pathogen...

  9. Socio-cultural impacts of contemporary tourism.

    PubMed

    Jovicić, Dobrica

    2011-06-01

    The topic of the paper is devoted to analysis of socio-cultural impacts of tourism, as effects on the people of host communities resulting from their direct and indirect associations with tourists. The social and cultural impacts of tourism are the ways in which tourism is contributing to changes in value systems, individual behavior, family structure and relationships, collective lifestyles, safety levels, moral conduct, traditional ceremonies and community organizations. Special attention is devoted to considering complexity of tourists/host interrelationships and discussing the techniques for appraisal of quality and quantity of socio-cultural changes which tourism provokes in local communities.

  10. Economic impacts of climate change on agriculture: the AgMIP approach

    NASA Astrophysics Data System (ADS)

    Delincé, Jacques; Ciaian, Pavel; Witzke, Heinz-Peter

    2015-01-01

    The current paper investigates the long-term global impacts on crop productivity under different climate scenarios using the AgMIP approach (Agricultural Model Intercomparison and Improvement Project). The paper provides horizontal model intercomparison from 11 economic models as well as a more detailed analysis of the simulated effects from the Common Agricultural Policy Regionalized Impact (CAPRI) model to systematically compare its performance with other AgMIP models and specifically for the Chinese agriculture. CAPRI is a comparative static partial equilibrium model extensively used for medium and long-term economic and environmental policy impact applications. The results indicate that, at the global level, the climate change will cause an agricultural productivity decrease (between -2% and -15% by 2050), a food price increase (between 1.3% and 56%) and an expansion of cultivated area (between 1% and 4%) by 2050. The results for China indicate that the climate change effects tend to be smaller than the global impacts. The CAPRI-simulated effects are, in general, close to the median across all AgMIP models. Model intercomparison analyses reveal consistency in terms of direction of change to climate change but relatively strong heterogeneity in the magnitude of the effects between models.

  11. LONG TERM HYDROLOGICAL IMPACT ASSESSMENT (LTHIA)

    EPA Science Inventory

    LTHIA is a universal Urban Sprawl analysis tool that is available to all at no charge through the Internet. It estimates impacts on runoff, recharge and nonpoint source pollution resulting from past or proposed land use changes. It gives long-term average annual runoff for a lan...

  12. ENVIRONMENTAL IMPACTS OF HYDROCARBON EMISSIONS IN LIFE CYCLE ANALYSIS OF GASOLINE BLENDING OPTIONS

    EPA Science Inventory

    Changes in gasoline specifications worldwide affect demand for all major gasoline-blending components. The purpose of this study is to compare different gasoline formulations based on the accounting of the environmental impacts due to hydrocarbon emissions during the gasoline pro...

  13. Evaluate the use of tanning agent in leather industry using material flow analysis, life cycle assessment and fuzzy multi-attribute decision making (FMADM)

    NASA Astrophysics Data System (ADS)

    Alfarisi, Salman; Sutono, Sugoro Bhakti; Sutopo, Wahyudi

    2017-11-01

    Tanning industry is one of the companies that produce many pollutants and cause the negative impact on the environment. In the production process of tanning leather, the use of input material need to be evaluated. The problem of waste, not only have a negative impact on the environment, but also human health. In this study, the impact of mimosa as vegetable tanning agent evaluated. This study will provide alternative solutions for improvements to the use of vegetable tanning agent. The alternative solution is change mimosa with indusol, gambier, and dulcotan. This study evaluate the vegetable tanning of some aspects using material flow analysis and life cycle assessment approach. Life cycle assessment (LCA) is used to evaluate the environmental impact of vegetable tanning agent. Alternative solution selection using fuzzy multi-attribute decision making (FMADM) approach. Results obtained by considering the environment, human toxicity, climate change, and marine aquatic ecotoxicity, is to use dulcotan.

  14. Comparison of Australian and US Cost-Benefit Approaches to MEPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McMahon, James E.

    2004-03-12

    The Australian Greenhouse Office contracted with the Collaborative Labeling and Appliance Standards Program (CLASP) for LBNL to compare US and Australian approaches to analyzing costs and benefits of minimum energy performance standards (MEPS). This report compares the approaches for three types of products: household refrigerators and freezers, small electric storage water heaters, and commercial/industrial air conditioners. This report presents the findings of similarities and differences between the approaches of the two countries and suggests changes to consider in the approach taken in Australia. The purpose of the Australian program is to reduce greenhouse gas emissions, while the US program ismore » intended to increase energy efficiency; each program is thus subject to specific constraints. The market and policy contexts are different, with the USA producing most of its own products and conducting pioneering engineering-economic studies to identify maximum energy efficiency levels that are technologically feasible and economically justified. In contrast, Australia imports a large share of its products and adopts MEPS already in place elsewhere. With these differences in circumstances, Australia's analysis approach could be expected to have less analytical detail and still result in MEPS levels that are appropriate for their policy and market context. In practice, the analysis required to meet these different objectives is quite similar. To date, Australia's cost-benefit analysis has served the goals and philosophies of the program well and been highly effective in successfully identifying MEPS that are significantly reducing greenhouse gas emissions while providing economic benefits to consumers. In some cases, however, the experience of the USA--using more extensive data sets and more detailed analysis--suggests possible improvements to Australia's cost-benefit analysis. The principal findings of the comparison are: (1) The Technology and Market Assessments are similar; no changes are recommended. (2) The Australian approach to determining the relationship of price to energy efficiency is based on current market, while the US approach uses prospective estimates. Both approaches may benefit from increased retrospective analysis of impacts of MEPS on appliance and equipment prices. Under some circumstances, Australia may wish to consider analyzing two separate components leading to price impacts: (a) changes in manufacturing costs and (b) markups used to convert from manufacturing costs to consumer price. (3) The Life-Cycle Cost methods are similar, but the USA has statistical surveys that permit a more detailed analysis. Australia uses average values, while the US uses full distributions. If data and resources permit, Australia may benefit from greater depth here as well. If implemented, the changes will provide more information about the benefits and costs of the program, in particular identifying who benefits and who bears net costs so that programs can be designed to offset unintended negative consequences, and may assist the government in convincing affected parties of the justification for some MEPS. However, without a detailed and statistically representative national survey, such an approach may not be practical for Australia at this time. (4) The National Benefits and Costs methods are similar prospective estimates of shipments, costs and energy savings, as well as greenhouse gas emissions. Additional sensitivity studies could further illustrate the ranges in these estimates. Consideration of lower discount rates could lead to more stringent MEPS in some cases. (5) Both the Australian and US analyses of impacts on industry, competition, and trade ultimately depend upon sufficient consultation with industry experts. While the Australian analysis of financial impacts on manufacturers is less detailed than that of the US, the Australian treatment of impacts on market shares imported from different regions of the world is more detailed. No change is recommended. Implementing these changes would increase the depth of analysis, require additional data collection and analysis, and incur associated costs and time. The recommended changes are likely to have incremental rather than dramatic impacts on the substance and implications of the analysis as currently conducted.« less

  15. Choosing and using climate change scenarios for ecological-impact assessments and conservation decisions

    USGS Publications Warehouse

    Amy K. Snover,; Nathan J. Mantua,; Littell, Jeremy; Michael A. Alexander,; Michelle M. McClure,; Janet Nye,

    2013-01-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment.

  16. Analysing policy interventions to prohibit over-the-counter antibiotic sales in four Latin American countries.

    PubMed

    Wirtz, V J; Herrera-Patino, J J; Santa-Ana-Tellez, Y; Dreser, A; Elseviers, M; Vander Stichele, R H

    2013-06-01

    To describe and evaluate policies implemented in Chile, Colombia, Venezuela and Mexico (1995-2009) to prohibit antibiotic OTC sales and explore limitations in available data. We searched and analysed legislation, grey literature and peer-reviewed publications on regulatory interventions and implementation strategies to enforce prohibition of OTC antibiotic sales. We also assessed the impact using private sector retail sales data of antibiotics studying changes in level and consumption trends before and after the policy change using segmented time series analysis. Finally, we assessed the completeness and data quality through an established checklist to test the suitability of the data for analysis of the interventions. Whereas Chile implemented a comprehensive package of interventions to accompany regulation changes, Colombia's reform was limited to the capital district and Venezuela's limited to only some antibiotics and without awareness campaigns. In Mexico, no enforcement was enacted. The data showed a differential effect of the intervention among the countries studied with a significant change in level of consumption in Chile (-5.56 DID) and in Colombia (-1.00DID). In Venezuela and Mexico, no significant change in level and slope was found. Changes in population coverage were identified as principal limitations of using sales data for evaluating the reform impact. Retail sales data can be useful when assessing policy impact but should be supplemented by other data sources such as public sector sales and prescription data. Implementing regulatory enforcement has shown some impact, but a sustainable, concerted approach will be needed to address OTC sales in the future. © 2013 John Wiley & Sons Ltd.

  17. Mission safety evaluation report for STS-35: Postflight edition

    NASA Technical Reports Server (NTRS)

    Hill, William C.; Finkel, Seymour I.

    1991-01-01

    Space Transportation System 35 (STS-35) safety risk factors that represent a change from previous flights that had an impact on this flight, and factors that were unique to this flight are discussed. While some changes to the safety risk baseline since the previous flight are included to highlight their significance in risk level change, the primary purpose is to insure that changes which were too late too include in formal changes through the Failure Modes and Effects Analysis/Critical Items List (FMEA/CIL) and Hazard Analysis process are documented along with the safety position, which includes the acceptance rationale.

  18. The dual threat of urbanisation and climate change in urbanising catchments - integrated science to meet future challenges - a case study of the Thames catchment, United Kingdom.

    NASA Astrophysics Data System (ADS)

    Miller, J.; Hutchins, M.; McGrane, S. J.; Kjeldsen, T. R.; Rowland, C.; Hagen-Zanker, A.; Rickards, N. J.; Fidal, J.; Vesuviano, G.; Hitt, O.

    2016-12-01

    Rapid urbanisation coupled with climate change poses a significant threat of increased flooding in urban locations around the world. In the UK there is a lack of joined up science and monitoring data to support model development and management decisions required for a rapidly growing population. Here, we present the findings from a multi-disciplinary research project entitled POLLCURB involving a combination of both monitoring and modelling approaches, including participatory citizen science, to evaluate impacts of urbanisation and climate change on flooding and water quality in the Thames basin, United Kingdom. Empirical analysis of five years of monitoring data in intensely monitored sub-catchments reveals the degree to which urban land-use impacts upon hydrological and water quality response. Analysis reveals hydrological impacts do not always follow the expected urban gradient due to intra-catchment differences in hydraulic functions. Statistical detection and attribution techniques are used to assess long-term river data, highlighting strong signals of urban growth after climate variability is accounted for. Historical land-use change mapping of the Thames basin using remote sensing shows growth in urban coverage from around 13% (1980's) to 15% (2015) and was used to develop and train a cellular automata model. Projections of a business-as-usual scenario indicates future growth of 12% by 2035. Future potential changes to flooding and water quality are assessed under urbanisation and climate scenarios for the Thames region to provide comparative and cumulative analysis of how these drivers will affect existing and new urban areas within the Thames basin. Results show the relative and cumulative impacts that both urbanisation and climate change have on basin hydrology and water quality, and highlight the improvements in modelling accuracy when utilising high-resolution data. Discussion is made of results in relation to modelling, policy, mitigation options, and implications for further scientific research.

  19. System robustness analysis for drought risk management in South Florida

    NASA Astrophysics Data System (ADS)

    Eilander, D.; Bouwer, L.; Barnes, J.; Mens, M.; Obeysekera, J.

    2015-12-01

    Drought is a frequently returning natural hazard in Florida, with at least one severe drought to be expected every decade. These droughts have had many impacts such as loss of agricultural products, inadequate public water supply and salt water intrusion into freshwater aquifers. Furthermore, climate change projections for South Florida suggest that dry spells are likely to be more frequent and prolonged, with negative impacts on water supply management for all users. In this study a System Robustness Analysis was conducted in order to analyse the effectiveness of strategies to limit the socio-economic impact of droughts under climate change. System Robustness Analysis (SRA) aims to support decision making by quantifying how well a system, with and without additional measures, can remain functioning under a range of external disturbances. Two system characteristics add up to system robustness: Resistance is the ability to withstand disturbances without responding (zero impact), and resilience is the ability to recover from the response to a disturbance. SRA can help to provide insight into the sensitivity of a system to changing magnitudes of extreme weather events. A regional-scale hydrologic and water management model is used to simulate the effect of changing precipitation and evaporation forcing on agricultural and urban water supply and demand in South Florida. The complex water management operational rules including water use restrictions are simulated in the model. Based on model runs with a various climate scenarios, drought events with a wide range of severity are identified and for each event the socio-economic impacts are determined. Here, a drought is defined as a reduced streamflow in the upstream Kissimmee basin, which contributes most to Lake Okeechobee, the major surface water storage in the system. The drought severity is characterized by the maximum drought deficit volume. Drought impacts are analyzed for several users in Miami Dade County. From the relation between drought severity and drought impact the resistance and resilience of the system for hydrological droughts are found. This relation is investigated for an array of adaptation measures and strategies in order to find strategies that will effectively increase the system's ability to deal with future drought events.

  20. The impact of high-end climate change on agricultural welfare

    PubMed Central

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-01-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered. PMID:27574700

  1. The impact of high-end climate change on agricultural welfare.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Müller, Christoph; Bonsch, Markus; Schmitz, Christoph; Bodirsky, Benjamin Leon; Humpenöder, Florian; Weindl, Isabelle

    2016-08-01

    Climate change threatens agricultural productivity worldwide, resulting in higher food prices. Associated economic gains and losses differ not only by region but also between producers and consumers and are affected by market dynamics. On the basis of an impact modeling chain, starting with 19 different climate projections that drive plant biophysical process simulations and ending with agro-economic decisions, this analysis focuses on distributional effects of high-end climate change impacts across geographic regions and across economic agents. By estimating the changes in surpluses of consumers and producers, we find that climate change can have detrimental impacts on global agricultural welfare, especially after 2050, because losses in consumer surplus generally outweigh gains in producer surplus. Damage in agriculture may reach the annual loss of 0.3% of future total gross domestic product at the end of the century globally, assuming further opening of trade in agricultural products, which typically leads to interregional production shifts to higher latitudes. Those estimated global losses could increase substantially if international trade is more restricted. If beneficial effects of atmospheric carbon dioxide fertilization can be realized in agricultural production, much of the damage could be avoided. Although trade policy reforms toward further liberalization help alleviate climate change impacts, additional compensation mechanisms for associated environmental and development concerns have to be considered.

  2. Spatial patterns of hydro-social metrics in the Northeastern United States from the Colonial Era through the Industrial Revolution (1600-1920)

    NASA Astrophysics Data System (ADS)

    Witherell, B. B.; Bain, D. J.; Salant, N.; Aloysius, N. R.

    2009-12-01

    Humans impact the hydrologic cycle at local, regional and global scales. Understanding how spatial patterns of human water use and hydrologic impact have changed over time is important to future water management in an era of increasing water constraints and globalization of high water-use resources. This study investigates spatial dependence and spatial patterns of hydro-social metrics for the Northeastern United States from 1600 to 1920 through the use of spatial statistical techniques. Several relevant hydro-social metrics, including water residence time, surface water storage (natural and human engineered) and per capita water availability, are analyzed. This study covers a region and period of time that saw significant population growth, landscape change, and industrial growth. These changes had important impacts on water availability. Although some changes such as the elimination of beavers, and the resulting loss of beaver ponds on low-order streams, are felt at a regional scale, preliminary analysis indicates that humans responded to water constraints by acting locally (e.g., mill ponds for water power and water supply reservoirs for public health). This 320-year historical analysis of spatial patterns of hydro-social metrics provides unique insight into long-term changes in coupled human-water systems.

  3. Visual Analysis of Air Traffic Data

    NASA Technical Reports Server (NTRS)

    Albrecht, George Hans; Pang, Alex

    2012-01-01

    In this paper, we present visual analysis tools to help study the impact of policy changes on air traffic congestion. The tools support visualization of time-varying air traffic density over an area of interest using different time granularity. We use this visual analysis platform to investigate how changing the aircraft separation volume can reduce congestion while maintaining key safety requirements. The same platform can also be used as a decision aid for processing requests for unmanned aerial vehicle operations.

  4. Automotive manufacturing assessment system. Volume IV: engine manufacturing analysis. Final report Jun 77-Aug 78

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, T. Jr

    Volume IV represents the results of one of four major study areas under the Automotive Manufacturing Assessment System (AMAS) sponsored by the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. An analysis of automotive engine manufacturing was conducted in order to determine the impact of regulatory changes on tooling costs and the production process. The 351W CID V-8 engine at Ford's Windsor No. 1 Plant was the subject of the analysis. A review of plant history and its product is presented along with an analysis of manufacturing operations, includingmore » material and production flow, plant layout, machining and assembly processes, tooling, supporting facilities, inspection, service and repair. Four levels of product change intensity showing the impact on manufacturing methods and cost is also presented.« less

  5. Changing stream temperatures in a changing world: evaluating spatio-temporal patterns and trends across the eastern US

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Archfield, S. A.

    2016-12-01

    Stream temperatures drive biogeochemical processes and influence ecosystem health and extent, with patterns of stream temperature arising from complex interactions between climate, land cover, and in-stream diversions and dams. While each of these individual drivers may have well-understood implications for changing stream temperatures, considering the concomitant impacts of these drivers along the stream network is much more difficult. This is true especially for the eastern United States, where downstream temperature integrates many different upstream impacts. To begin to decipher the influence of these different drivers on changing stream temperatures and how these impacts may manifest through time, we examined trends for 66 sites with continuous stream temperature measurements across the eastern United States. Stream temperature records were summarized as daily mean, maximum, and mimimum values, and sites consisting of 15 or more years of data were selected for analysis. While annual stream temperatures at 53 locations were warming, a few sites on larger rivers (n = 13) have been cooling. To explore the timing of these changes as well as their implications for aquatic species, we calculated trends for seasonal extremes (average of the five warmest and coolest daily stream temperatures) during spring, summer, and fall. Interestingly, while some streams displayed strong warming trends in peak summer temperatures (n = 43), many streams also displayed cooling trends (n = 23). We also found that peak stream temperatures were warming faster in fall than in summer for many locations (n = 36). Results of this analysis show that warming (and cooling) happens at different times in different places, as a function of climate and anthropogenic impacts. Finally, we explore potential drivers of these different patterns, to determine the relative impacts of climate, land cover, and in-stream water diversions on stream temperature change. Given that the number of regulated stream miles is only increasing, improving our understanding of linkages between landscape drivers and stream temperature variation may have important outcomes for river management in a changing world.

  6. Biophysical and Economic Uncertainty in the Analysis of Poverty Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Lobell, D. B.; Verma, M.

    2011-12-01

    This paper seeks to understand the main sources of uncertainty in assessing the impacts of climate change on agricultural output, international trade, and poverty. We incorporate biophysical uncertainty by sampling from a distribution of global climate model predictions for temperature and precipitation for 2050. The implications of these realizations for crop yields around the globe are estimated using the recently published statistical crop yield functions provided by Lobell, Schlenker and Costa-Roberts (2011). By comparing these yields to those predicted under current climate, we obtain the likely change in crop yields owing to climate change. The economic uncertainty in our analysis relates to the response of the global economic system to these biophysical shocks. We use a modified version of the GTAP model to elicit the impact of the biophysical shocks on global patterns of production, consumption, trade and poverty. Uncertainty in these responses is reflected in the econometrically estimated parameters governing the responsiveness of international trade, consumption, production (and hence the intensive margin of supply response), and factor supplies (which govern the extensive margin of supply response). We sample from the distributions of these parameters as specified by Hertel et al. (2007) and Keeney and Hertel (2009). We find that, even though it is difficult to predict where in the world agricultural crops will be favorably affected by climate change, the responses of economic variables, including output and exports can be far more robust (Table 1). This is due to the fact that supply and demand decisions depend on relative prices, and relative prices depend on productivity changes relative to other crops in a given region, or relative to similar crops in other parts of the world. We also find that uncertainty in poverty impacts of climate change appears to be almost entirely driven by biophysical uncertainty.

  7. Impacts of snow on soil temperature observed across the circumpolar north

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Sherstiukov, Artem B.; Qian, Budong; Kokelj, Steven V.; Lantz, Trevor C.

    2018-04-01

    Climate warming has significant impacts on permafrost, infrastructure and soil organic carbon at the northern high latitudes. These impacts are mainly driven by changes in soil temperature (TS). Snow insulation can cause significant differences between TS and air temperature (TA), and our understanding about this effect through space and time is currently limited. In this study, we compiled soil and air temperature observations (measured at about 0.2 m depth and 2 m height, respectively) at 588 sites from climate stations and boreholes across the northern high latitudes. Analysis of this circumpolar dataset demonstrates the large offset between mean TS and TA in the low arctic and northern boreal regions. The offset decreases both northward and southward due to changes in snow conditions. Correlation analysis shows that the coupling between annual TS and TA is weaker, and the response of annual TS to changes in TA is smaller in boreal regions than in the arctic and the northern temperate regions. Consequently, the inter-annual variation and the increasing trends of annual TS are smaller than that of TA in boreal regions. The systematic and significant differences in the relationship between TS and TA across the circumpolar north is important for understanding and assessing the impacts of climate change and for reconstruction of historical climate based on ground temperature profiles for the northern high latitudes.

  8. The Proposed Change Strategy to Embed Energy Stewardship into the Army’s Culture

    DTIC Science & Technology

    2012-06-02

    36 APPENDIX A: BURKE- LITWIN ORGANIZATION PERFORMANCE AND CHANGE MODEL...analysis, senior leaders take a systemic approach and use a model (e.g., Burke- Litwin Organization Performance and Change Model) as a guide to...identify what needs to change in the organization and how the change is likely to impact the institution’s systems (see Appendix A: Burke- Litwin Model

  9. Dynamic models of farmers adaptation to climate change (case of rice farmers in Cemoro Watershed, Central Java, Indonesia)

    NASA Astrophysics Data System (ADS)

    Sugihardjo; Sutrisno, J.; Setyono, P.; Suntoro

    2018-03-01

    Farming activities are generally very sensitive to climate change variations. Global climate change will result in changes of patterns and distribution of rainfall. The impact of changing patterns and distribution of rainfall is the occurrence of early season shifts and periods of planting. Therefore, farmers need to adapt to the occurrence of climate change to avoid the decrease productivity on the farm land. This study aims to examine the impacts of climate change adaptation that farmers practiced on the farming productivity. The analysis is conducted dynamically using the Powersim 2.5. The result of analysis shows that the use of Planting Calendar and Integrated Crops Management technology can increase the rice productivity of certain area unity. Both technologies are the alternatives for farmers to adapt to climate change. Both farmers who adapt to climate change and do not adapt to climate change, experience an increase in rice production, time after time. However, farmers who adapt to climate change, increase their production faster than farmers who do not adapt to climate change. The use of the Planting Calendar and Integrated Crops Management strategy together as a farmers’ adaptation strategy is able to increase production compared to non-adaptive farmers.

  10. Techniques for automatic large scale change analysis of temporal multispectral imagery

    NASA Astrophysics Data System (ADS)

    Mercovich, Ryan A.

    Change detection in remotely sensed imagery is a multi-faceted problem with a wide variety of desired solutions. Automatic change detection and analysis to assist in the coverage of large areas at high resolution is a popular area of research in the remote sensing community. Beyond basic change detection, the analysis of change is essential to provide results that positively impact an image analyst's job when examining potentially changed areas. Present change detection algorithms are geared toward low resolution imagery, and require analyst input to provide anything more than a simple pixel level map of the magnitude of change that has occurred. One major problem with this approach is that change occurs in such large volume at small spatial scales that a simple change map is no longer useful. This research strives to create an algorithm based on a set of metrics that performs a large area search for change in high resolution multispectral image sequences and utilizes a variety of methods to identify different types of change. Rather than simply mapping the magnitude of any change in the scene, the goal of this research is to create a useful display of the different types of change in the image. The techniques presented in this dissertation are used to interpret large area images and provide useful information to an analyst about small regions that have undergone specific types of change while retaining image context to make further manual interpretation easier. This analyst cueing to reduce information overload in a large area search environment will have an impact in the areas of disaster recovery, search and rescue situations, and land use surveys among others. By utilizing a feature based approach founded on applying existing statistical methods and new and existing topological methods to high resolution temporal multispectral imagery, a novel change detection methodology is produced that can automatically provide useful information about the change occurring in large area and high resolution image sequences. The change detection and analysis algorithm developed could be adapted to many potential image change scenarios to perform automatic large scale analysis of change.

  11. Changes in Motor Vehicle Buyer Attitudes and Market Behavior

    DOT National Transportation Integrated Search

    1980-12-01

    An analysis is made of the impact of fuel-efficient motor vehicle design changes on the attitudes and market behavior of buyers of new motor vehicles. Car buyer profiles for selected makes of automobiles describe demographic characteristics, owner sa...

  12. The impact of climate change on natural risks in the context of sustainable development: the case of Catalonia

    NASA Astrophysics Data System (ADS)

    Llasat, Maria-Carmen; Queralt, Arnau

    2013-04-01

    The evidence of the impact of the anthropogenic activity over the climate change, as well as the consequent impacts in temperature, snow cover and sea level has been widely demonstrated (IPCC, 2007). However, the impact of climate change on natural risks is still not clear, and the degree of uncertainty is high. The main problem lays in the complexity of the factors involved in the production of natural disasters, mainly those related with the vulnerability (in the more holistic sense of the expression), that is continuously being modified. In terms of the impact of climate change on hazards, the analysis is still complicated, and this difficulty increases when meteorological hazards that combine meteorological factors with other ones (human and/or natural) are considered (i.e. floods, wet landslides, forest fires, etc.). The Advisory Council for the Sustainable Development of Catalonia (CADS) is an advisory body which gives strategic advice to the Catalan Government in the field of sustainable development. This contribution shows the main results of a recent report elaborated by the CADS that analyses the present and potential evolution of natural risks in Catalonia (NE of Iberian Peninsula) and the influence of climate change in it. The analysis is made from the point of view of sustainable development, having in mind the international approach (IPCC, 2007, 2011; UNISDR, 2009; Molin, 2009; Brauch, 2010) and with special incidence in potential problems related with security and civil protection. Conclusions identify as main problems those that will affect health (as a consequence of the increase of heat waves and temperature extremes) and water scarcity.

  13. Strategies for Evaluating Complex Environmental Education Programs

    NASA Astrophysics Data System (ADS)

    Williams, V.

    2011-12-01

    Evidence for the effectiveness of environmental education programs has been difficult to establish for many reasons. Chief among them are the lack of clear program objectives and an inability to conceptualize how environmental education programs work. Both can lead to evaluations that make claims that are difficult to substantiate, such as significant changes in student achievement levels or behavioral changes based on acquisition of knowledge. Many of these challenges can be addressed by establishing the program theory and developing a logic model. However, claims of impact on larger societal outcomes are difficult to attribute solely to program activities. Contribution analysis may offer a promising method for addressing this challenge. Rather than attempt to definitively and causally link a program's activities to desired results, contribution analysis seeks to provide plausible evidence that can reduce uncertainty regarding the 'difference' a program is making to observed outcomes. It sets out to verify the theory of change behind a program and, at the same time, takes into consideration other influencing factors. Contribution analysis is useful in situations where the program is not experimental-there is little or no scope for varying how the program is implemented-and the program has been funded on the basis of a theory of change. In this paper, the author reviews the feasibility of using contribution analysis as a way of evaluating the impact of the GLOBE program, an environmental science and education program. Initially conceptualized by Al Gore in 1995, the program's implementation model is based on worldwide environmental monitoring by students and scientists around the globe. This paper will make a significant and timely contribution to the field of evaluation, and specifically environmental education evaluation by examining the usefulness of this analysis for developing evidence to assess the impact of environmental education programs.

  14. The impact of climate change on the BRICS economies: The case of insurance demand.

    NASA Astrophysics Data System (ADS)

    Ranger, N.; Surminski, S.

    2012-04-01

    Session ERE5.1 Climate change impact on economical and industrial activities The impact of climate change on the BRICS economies: The case of insurance demand. Over the past decade, growth in the BRICS (Brazil, Russia, India, China and South Africa) economies has been a key driver of global economic growth. Current forecasts suggest that these markets will continue to be areas of significant growth for a large number of industries. We consider how climate change may influence these trends in the period to 2030, a time horizon that is long in terms of strategic planning in industry, but relatively short for climate change analysis, where the impacts are predicted to be most significant beyond around 2050. Based on current evidence, we expect climate change to affect the BRICS economies in four main ways: 1. The impact of physical climatic changes on the productivity of climate-sensitive economic activity, the local environment, human health and wellbeing, and damages from extreme weather. 2. Changing patterns of investment in climate risk management and adaptation 3. Changing patterns of investments in areas affected by greenhouse gas (GHG) mitigation policy, 4. The impacts of the above globally, including on international trade, growth, investment, policy, migration and commodity prices, and their impacts on the BRICS. We review the evidence on the impacts of climate change in the BRICS and then apply this to one particular industry sector: non-life insurance. We propose five potential pathways through which climate change could influence insurance demand: economic growth; willingness to pay for insurance; public policy and regulation; the insurability of natural catastrophe risks; and new opportunities associated with adaptation and greenhouse gas mitigation. We conclude that, with the exception of public policy and regulation, the influence of climate change on insurance demand to 2030 is likely to be small when compared with the expected growth due to rising incomes. The scale of the impacts and their direction depend to some extent on (re)insurer responses to the challenges of climate change. We outline five actions that could pave the way for future opportunities in the industry. Authors of the paper: Ranger, Nicola (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK) and Surminski, Swenja (Centre for Climate Change Economics and Policy/ Grantham Research Institute, London School of Economics, London, UK)

  15. The Impact of National Agenda on a Local Education Authority's Website: A Visual Semiotic Analysis

    ERIC Educational Resources Information Center

    Garrick, Barbara Gail; Pendergast, Donna

    2014-01-01

    This paper reports an analysis of the website of an education authority in the state of Queensland, Australia during the changeover from a state-based curriculum to a national curriculum. The paper's value lies in the capture of an exact moment of change. Kress and van Leeuwen's grammar of visual design is employed to analyse the changes to the…

  16. Epidemics in Ming and Qing China: Impacts of changes of climate and economic well-being.

    PubMed

    Pei, Qing; Zhang, David D; Li, Guodong; Winterhalder, Bruce; Lee, Harry F

    2015-07-01

    We investigated the mechanism of epidemics with the impacts of climate change and socio-economic fluctuations in the Ming and Qing Dynasties in China (AD 1368-1901). Using long-term and high-quality datasets, this study is the first quantitative research that verifies the 'climate change → economy → epidemics' mechanism in historical China by statistical methods that include correlation analysis, Granger causality analysis, ARX, and Poisson-ARX modeling. The analysis provides the evidences that climate change could only fundamentally lead to the epidemics spread and occurrence, but the depressed economic well-being is the direct trigger of epidemics spread and occurrence at the national and long term scale in historical China. Moreover, statistical modeling shows that economic well-being is more important than population pressure in the mechanism of epidemics. However, population pressure remains a key element in determining the social vulnerability of the epidemics occurrence under climate change. Notably, the findings not only support adaptation theories but also enhance our confidence to address climatic shocks if economic buffering capacity can be promoted steadily. The findings can be a basis for scientists and policymakers in addressing global and regional environmental changes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Data Call Response for NEPA Supplement Analysis of CMRR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Steven Richard

    The Department of Energy/National Nuclear Security Administration (DOE/NNSA) is proposing to provide analytical chemistry (AC) and materials characterization (MC) capabilities at the Los Alamos National Laboratory (LANL) by using a combination of existing space in two existing buildings: the Radiological Laboratory/Utility/Office Building (RLUOB) and the Plutonium Facility, Building 4 (PF-4) in TA-55. This represents a change from decisions made by DOE as informed by previous National Environmental Policy Act (NEPA) analyses. In accordance with Council on Environmental Quality (CEQ) and DOE requirements, NNSA is preparing a Supplement Analysis (SA) to evaluate the potential environmental impacts of the proposed action. Themore » focus of this analysis is on determining whether the proposal to provide AC and MC laboratory capabilities in existing space in RLUOB and PF-4 rather than building a new nuclear facility (NF) is a substantial change that is relevant to environmental concerns or whether new circumstance or information relevant to environmental concerns and bearing on the proposed action or its impacts are significant. The end result of the analysis is a determination whether the existing Chemistry and Metallurgy Research Building Replacement Environmental Impact Statement (CMRR EIS) should be supplemented, a new EIS should be prepared, or no further NEPA analysis is necessary. This report provides data for incorporation into the Supplement Analysis being written by Leidos, Inc. under contract to NNSA. Responding to the data call requires several areas of expertise. Los Alamos subject matter experts estimate equipments lists, facility modifications, waste quantities, labor needs and radiological doses. Los Alamos NEPA experts assist Leidos in compiling existing data from the LANL Site-Wide Environmental Impact Statement (SWEIS) and CMRR EIS for public and other impacts. Bounding conditions are used to determine NEPA estimates.« less

  18. Climate change, water, and agriculture: a study of two contrasting regions

    NASA Astrophysics Data System (ADS)

    Kirilenko, A.; Dronin, N.; Zhang, X.

    2009-12-01

    We present a study of potential impacts of climate change on water resources and agriculture in two contrasting regions, the Aral Sea basin in Central Asia and the Northern Great Plains in the United States. The Aral Sea basin is one of the most anthropogenically modified areas of the world; it is also a zone of a water-related ecological crisis. We concentrate on studying water security of five countries in the region, which inherit their water regulation from the planned economy of USSR. Water management was targeted at maximizing agricultural output through diverting the river flow into an extensive and largely ineffective network of irrigation canals. The current water crisis is largely due to human activity; however the region is also strongly impacted by the climate. Climate change will contribute to water problems, escalating irrigation demand during the drought period, and increasing water loss with evaporation. The future of the countries of the Aral Sea basin then depends on both the regional scenario of water management policy and a global scenario of climate change, and is integrated with global socioeconomic scenarios. We formulate a set of regional policy scenarios (“Business as Usual”, “Falling Behind” and “Closing the Gap”) and demonstrate how each of them corresponds to IPCC SRES scenarios, the latter used as an input to the General Circulation Models (GCMs). Then we discuss the relative effectiveness of the introduced scenarios for mitigating water problems in the region, taking into account the adaptation through changing water demand for agriculture. Finally, we introduce the results of multimodel analysis of GCM climate projections, especially in relation to the change in precipitation and frequency of droughts, and discuss the impact of climate change on future development of the region. In the same way as the Aral Sea basin, the Northern Great Plains is expected to be a region heavily impacted by climate change. We concentrate on studying climate change impact on water resources of the region, and on the impacts of these changes on agriculture. The additional focus of our interest is Devils Lake watershed in North Dakota. Similar to Aral Sea, Devils Lake is an endorheic lake, which is heavily impacted by both the changes in climate and land conversion to agriculture. However, contrasting the dynamics of the Aral Sea, Devils Lake area has been increased dramatically in the past 70 years. We present regional projections of climate change, based on an analysis of a multimodel ensemble of GCM results, and the projections of consequent changes in performance of agriculture. We also discuss the differences in how the scenarios of socio-economic development affect the results of our modeling.

  19. Analysis of the impact of spatial resolution on land/water classifications using high-resolution aerial imagery

    USGS Publications Warehouse

    Enwright, Nicholas M.; Jones, William R.; Garber, Adrienne L.; Keller, Matthew J.

    2014-01-01

    Long-term monitoring efforts often use remote sensing to track trends in habitat or landscape conditions over time. To most appropriately compare observations over time, long-term monitoring efforts strive for consistency in methods. Thus, advances and changes in technology over time can present a challenge. For instance, modern camera technology has led to an increasing availability of very high-resolution imagery (i.e. submetre and metre) and a shift from analogue to digital photography. While numerous studies have shown that image resolution can impact the accuracy of classifications, most of these studies have focused on the impacts of comparing spatial resolution changes greater than 2 m. Thus, a knowledge gap exists on the impacts of minor changes in spatial resolution (i.e. submetre to about 1.5 m) in very high-resolution aerial imagery (i.e. 2 m resolution or less). This study compared the impact of spatial resolution on land/water classifications of an area dominated by coastal marsh vegetation in Louisiana, USA, using 1:12,000 scale colour-infrared analogue aerial photography (AAP) scanned at four different dot-per-inch resolutions simulating ground sample distances (GSDs) of 0.33, 0.54, 1, and 2 m. Analysis of the impact of spatial resolution on land/water classifications was conducted by exploring various spatial aspects of the classifications including density of waterbodies and frequency distributions in waterbody sizes. This study found that a small-magnitude change (1–1.5 m) in spatial resolution had little to no impact on the amount of water classified (i.e. percentage mapped was less than 1.5%), but had a significant impact on the mapping of very small waterbodies (i.e. waterbodies ≤ 250 m2). These findings should interest those using temporal image classifications derived from very high-resolution aerial photography as a component of long-term monitoring programs.

  20. REPORT TO STATES, REGIONS, AND PROGRAM OFFICES DEMONSTRATING THE USE OF TIME SERIES ANALYSIS TO IDENTIFY NON-POINT SOURCE IMPACTS.

    EPA Science Inventory

    Land use change, and the implementation of best management practices to remedy the adverse effects of land use change, alter hydrologic patterns, contaminant loading and water quality in freshwater ecosystems. These changes are not constant over time, but vary in response to di...

  1. Changes in the weed species composition of the southern US: 1995 to 2009

    USDA-ARS?s Scientific Manuscript database

    Changes in the weed flora of crops reflect not only the influx and losses to the soil seedbank, but also the management impacts. This analysis documents the changes in the weed flora of the 14 contiguous states comprising the Southern Weed Science Society since the advent of transgenic, herbicide re...

  2. Modeling the impacts of green infrastructure land use changes on air quality and meteorology case study and sensitivity analysis in Kansas City

    EPA Science Inventory

    Changes in vegetation cover associated with urban planning efforts may affect regional meteorology and air quality. Here we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes from green infrastructure impleme...

  3. Parameters sensitivity on mooring loads of ship-shaped FPSOs

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Saidee

    2017-12-01

    The work in this paper is focused on special assessment and evaluation of mooring system of ship-shaped FPSO unit. In particular, the purpose of the study is to find the impact on mooring loads for the variation in different parameters using MIMOSA software. First, a selected base case was designed for an intact mooring system in a typical ultimate limit state (ULS) condition, and then the sensitivity to mooring loads on parameters e.g. location of the turret, analysis method (quasi-static vs. dynamic analysis), low-frequency damping level in the surge, pretension and drag coefficients on chain and steel wire has been performed. It is found that mooring loads change due to the change of these parameters. Especially, pretension has a large impact on the maximum tension of mooring lines and low-frequency damping can change surge offset significantly.

  4. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis.

    PubMed

    Kapelko, Magdalena; Oude Lansink, Alfons; Stefanou, Spiro E

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change.

  5. Effect of Food Regulation on the Spanish Food Processing Industry: A Dynamic Productivity Analysis

    PubMed Central

    Kapelko, Magdalena; Lansink, Alfons Oude; Stefanou, Spiro E.

    2015-01-01

    This article develops the decomposition of the dynamic Luenberger productivity growth indicator into dynamic technical change, dynamic technical inefficiency change and dynamic scale inefficiency change in the dynamic directional distance function context using Data Envelopment Analysis. These results are used to investigate for the Spanish food processing industry the extent to which dynamic productivity growth and its components are affected by the introduction of the General Food Law in 2002 (Regulation (EC) No 178/2002). The empirical application uses panel data of Spanish meat, dairy, and oils and fats industries over the period 1996-2011. The results suggest that in the oils and fats industry the impact of food regulation on dynamic productivity growth is negative initially and then positive over the long run. In contrast, the opposite pattern is observed for the meat and dairy processing industries. The results further imply that firms in the meat processing and oils and fats industries face similar impacts of food safety regulation on dynamic technical change, dynamic inefficiency change and dynamic scale inefficiency change. PMID:26057878

  6. Colorado River basin sensitivity to disturbance impacts

    NASA Astrophysics Data System (ADS)

    Bennett, K. E.; Urrego-Blanco, J. R.; Jonko, A. K.; Vano, J. A.; Newman, A. J.; Bohn, T. J.; Middleton, R. S.

    2017-12-01

    The Colorado River basin is an important river for the food-energy-water nexus in the United States and is projected to change under future scenarios of increased CO2emissions and warming. Streamflow estimates to consider climate impacts occurring as a result of this warming are often provided using modeling tools which rely on uncertain inputs—to fully understand impacts on streamflow sensitivity analysis can help determine how models respond under changing disturbances such as climate and vegetation. In this study, we conduct a global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the Variable Infiltration Capacity (VIC) hydrologic model to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in VIC. Additionally, we examine sensitivities of basin-wide model simulations using an approach that incorporates changes in temperature, precipitation and vegetation to consider impact responses for snow-dominated headwater catchments, low elevation arid basins, and for the upper and lower river basins. We find that for the Colorado River basin, snow-dominated regions are more sensitive to uncertainties. New parameter sensitivities identified include runoff/evapotranspiration sensitivity to albedo, while changes in snow water equivalent are sensitive to canopy fraction and Leaf Area Index (LAI). Basin-wide streamflow sensitivities to precipitation, temperature and vegetation are variable seasonally and also between sub-basins; with the largest sensitivities for smaller, snow-driven headwater systems where forests are dense. For a major headwater basin, a 1ºC of warming equaled a 30% loss of forest cover, while a 10% precipitation loss equaled a 90% forest cover decline. Scenarios utilizing multiple disturbances led to unexpected results where changes could either magnify or diminish extremes, such as low and peak flows and streamflow timing, dependent on the strength and direction of the forcing. These results indicate the importance of understanding model sensitivities under disturbance impacts to manage these shifts; plan for future water resource changes and determine how the impacts will affect the sustainability and adaptability of food-energy-water systems.

  7. Atmospheric sensitivity to land surface changes: comparing the impact of albedo, roughness, and evaporative resistance on near-surface air temperature using an idealized land model.

    NASA Astrophysics Data System (ADS)

    Lague, M. M.; Swann, A. L. S.; Bonan, G. B.

    2017-12-01

    Past studies have demonstrated how changes in vegetation can impact the atmosphere; however, it is often difficult to identify the exact physical pathway through which vegetation changes drive an atmospheric response. Surface properties (such as vegetation color, or height) control surface energy fluxes, which feed back on the atmosphere on both local and global scales by modifying temperatures, cloud cover, and energy gradients. Understanding how land surface properties influence energy fluxes is crucial for improving our understanding of how vegetation change - past, present, and future - impacts the atmosphere, global climate, and people. We explore the sensitivity of the atmosphere to perturbations of three land surface properties - albedo, roughness, and evaporative resistance - using an idealized land model coupled to an Earth System Model. We derive a relationship telling us how large a change in each surface property is required to drive a local 0.1 K change in 2m air temperature. Using this idealized framework, we are able to separate the influence on the atmosphere of each individual surface property. We demonstrate that the impact of each surface property on the atmosphere is spatially variable - that is, a similar change in vegetation can have different climate impacts if made in different locations. This analysis not only improves our understanding of how the land system can influence climate, but also provides us with a set of theoretical limits on the potential climate impact of arbitrary vegetation change (natural or anthropogenic).

  8. The Impact of Memory Change on Daily Life in Normal Aging and Mild Cognitive Impairment.

    PubMed

    Parikh, Preeyam K; Troyer, Angela K; Maione, Andrea M; Murphy, Kelly J

    2016-10-01

    Older adults with age-normal memory changes and those with amnestic mild cognitive impairment (aMCI) report mild memory difficulties with everyday problems such as learning new names or remembering past events. Although the type and extent of memory changes in these populations have been well documented, little is known about how memory changes impact their everyday lives. Using a qualitative research design, data were collected from three focus groups of older adults with normal memory changes (n = 23) and two focus groups of older adults with aMCI (n = 14). A thematic analysis using the constant comparative method was used to identify the impacts of memory change on key life domains. Four major themes emerged from the two groups, including changes in feelings and views of the self, changes in relationships and social interactions, changes in work and leisure activities, and deliberate increases in compensatory behaviors. Participants described both positive and negative consequences of memory change, and these were more substantial and generally more adverse for individuals with aMCI than for those with age-normal memory changes. There are similarities and important differences in the impact of mild memory change on the everyday lives of older adults with age-normal memory changes and those with aMCI. Findings underscore the need for clinical interventions that aim to minimize the emotional impact of memory changes and that increase leisure and social activity in individuals with aMCI. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Combined impacts of global changes on biodiversity across the USA

    PubMed Central

    Bellard, C.; Leclerc, C.; Courchamp, F.

    2015-01-01

    Most studies of the effects of global changes on biodiversity focus on a single threat, but multiple threats lead to species extinction. We lack spatially explicit assessments of the intensity of multiple threats and their impacts on biodiversity. Here, we used a novel metric of cumulative threats and impacts to assess the consequences of multiple threats on 196 endemic species across the USA. We predict that large areas with high cumulative impact scores for amphibians, birds, mammals, and reptiles will be concentrated in the eastern part of the USA by the 2050 s and 2080 s. These high cumulative impact values are due mainly to the presence of invasive species, climate change, cropland and pasture areas; additionally, a significant proportion of endemic species are vulnerable to some of these threats where they occur. This analysis provides a useful means of identifying where conservation measures and monitoring programs that should consider multiple threats should be implemented in the future. PMID:26149694

  10. IMPACT2C: Quantifying projected impacts under 2°C warming

    NASA Astrophysics Data System (ADS)

    Jacob, D.; Kotova, L.; Impact2C Team

    2012-04-01

    Political discussions on the European goal to limit global warming to 2°C demand, that information is provided to society by the best available science on projected impacts and possible benefits. The new project IMPACT2C is supported by the European Commission's 7th Framework Programme as a 4 year large-scale integrating project. IMPACT2C is coordinated by the Climate Service Center, Helmholtz-Zentrum Geesthacht. IMPACT2C enhances knowledge, quantifies climate change impacts, and adopts a clear and logical structure, with climate and impacts modelling, vulnerabilities, risks and economic costs, as well as potential responses, within a pan-European sector based analysis. The project utilises a range of models within a multi-disciplinary international expert team and assesses effects on water, energy, infrastructure, coasts, tourism, forestry, agriculture, ecosystems services, and health and air quality-climate interactions. IMPACT2C introduces key innovations. First, harmonised socio-economic assumptions/scenarios will be used, to ensure that both individual and cross-sector assessments are aligned to the 2°C (1.5°C) scenario for both impacts and adaptation, e.g. in relation to land-use pressures between agriculture and forestry. Second, it has a core theme of uncertainty, and will develop a methodological framework integrating the uncertainties within and across the different sectors, in a consistent way. In so doing, analysis of adaptation responses under uncertainty will be enhanced. Finally, a cross-sectoral perspective is adopted to complement the sector analysis. A number of case studies will be developed for particularly vulnerable areas, subject to multiple impacts (e.g. the Mediterranean), with the focus being on cross-sectoral interactions (e.g. land use competition) and cross-cutting themes (e.g. cities). The project also assesses climate change impacts in some of the world's most vulnerable regions: Bangladesh, Africa (Nile and Niger basins), and the Maldives. An overview about the scientific goals and the structure of IMPACT2C will be presented.

  11. Climate Change and its Impacts on Tourism and Livelihood in Manaslu Conservation Area, Nepal

    NASA Astrophysics Data System (ADS)

    K C, A.

    2016-12-01

    The Hindukush Himalayan region including Nepal, a country reliant on tourism, is particularly sensitive to climate change. However, there are considerable gaps in research regarding tourism, livelihood and climate change in Nepal. The present research assesses the impact of climate change on tourism and livelihood in the Manaslu Conservation Area (MCA) of Nepal. Seventy-six households were interviewed followed by three focus group discussions and five key informant interviews. The empirical data collected at the site are complemented by secondary scientific data on climate and tourism. Correlation, regression, descriptive and graphical analysis was carried out for the presentation and analysis of data. Local people perceived that temperature and rainfall have been increasing in the study site as a result of climate change. It was also verified by the observed scientific data of temperature and precipitation. Socioeconomic variables such as marital status, size of household, education and landholding status had positive effect on tourism participation while livestock-holding status and occupation of the household had negative effect on tourism participation. Number of visitors is increasing in MCA in recent years, and tourism participation is helping local people to earn more money and improve their living standard. Till the date, there is positive impact of climate change on tourism sector in the study area. But, unfavorable weather change phenomena, intense rainfall and snowfall, melting of snow, occurrence of hydrological and climatic hazards and increase in temperature may have adverse impact on the tourism and livelihood in the mountainous area. Such type of adverse impact of climate change and tourism is already experienced in the case of Annapurna region and Mt. Everest region as tourist were trapped and affected by unfavorable weather change phenomena. In response to gradually warming temperature and decreasing snowfall, there seems an urgent need for tourism promotional activities in the study area. Also awareness and education related to tourism, gender empowerment of women, advertisement and publicity on tourism promotion, adequate subsidy and training on ecotourism and skill development training on handicraft are recommended.

  12. Solar Heating And Cooling Of Buildings (SHACOB): Requirements definition and impact analysis-2. Volume 1: Energy-conserving design for residential structures

    NASA Astrophysics Data System (ADS)

    Cretcher, C. K.

    1980-11-01

    The impact of stringent energy conserving building standards on electric utility service areas and their customers was analyzed. The demands on the seven broadly representative electric utilities were aggregated to represent the total new construction electric heating demands in the years 1990 and 2000 to be compared to the aggregate obtained similarly for a nominal, less stringent standard, viz., ASHRAE 90-75. Results presented include the percentage of energy savings achieved in both heating and cooling seasons and typical demand profile changes. A utility economic impact analysis was performed for the cases investigated to determine changes in operating costs and potential capacity sales. A third cost component considered is the incremental cost of superinsulation (over ASHRAE 90-75) to the customer. The aggregate net cost to the utility/customer entity is utilized as a measure of overall economic benefit.

  13. Development of climate risk services under climate change scenarios in the North Adriatic coast (Italy).

    NASA Astrophysics Data System (ADS)

    Valentina, Gallina; Silvia, Torresan; Anna, Sperotto; Elisa, Furlan; Andrea, Critto; Antonio, Marcomini

    2014-05-01

    Nowadays, the challenge for coastal stakeholders and decision makers is to incorporate climate change in land and policy planning in order to ensure a sustainable integrated coastal zone management aimed at preserve coastal environments and socio-economic activities. Consequently, an increasing amount of information on climate variability and its impact on human and natural ecosystem is requested. Climate risk services allows to bridge the gap between climate experts and decision makers communicating timely science-based information about impacts and risks related to climate change that could be incorporated into land planning, policy and practice. Within the CLIM-RUN project (FP7), a participatory Regional Risk Assessment (RRA) methodology was applied for the evaluation of water-related hazards in coastal areas (i.e. pluvial flood and sea-level rise inundation risks) taking into consideration future climate change scenarios in the case study of the North Adriatic Sea for the period 2040-2050. Specifically, through the analysis of hazard, exposure, vulnerability and risk and the application of Multi-Criteria Decision Analysis (MCDA), the RRA methodology allowed to identify and prioritize targets (i.e. residential and commercial-industrial areas, beaches, infrastructures, wetlands, agricultural typology) and sub-areas that are more likely to be affected by pluvial flood and sea-level rise impacts in the same region. From the early stages of the climate risk services development and application, the RRA followed a bottom-up approach taking into account the needs, knowledge and perspectives of local stakeholders dealing with the Integrated Coastal Zone Management (ICZM), by means of questionnaires, workshops and focus groups organized within the project. Specifically, stakeholders were asked to provide their needs in terms of time scenarios, geographical scale and resolution, choice of receptors, vulnerability factors and thresholds that were considered in the implementation of the RRA methodology. The main output of the analysis are climate risk products produced with the DEcision support SYstem for COastal climate change impact assessment (DESYCO) and represented by GIS-based maps and statistics of hazard, exposure, physical and environmental vulnerability, risk and damage. These maps are useful to transfer information about climate change impacts to stakeholders and decision makers, to allow the classification and prioritization of areas that are likely to be affected by climate change impacts more severely than others in the same region, and therefore to support the identification of suitable areas for infrastructure, economic activities and human settlements toward the development of regional adaptation plans. The climate risk products and the results of North Adriatic case study will be here presented and discussed.

  14. A case study by life cycle assessment

    NASA Astrophysics Data System (ADS)

    Li, Shuyun

    2017-05-01

    This article aims to assess the potential environmental impact of an electrical grinder during its life cycle. The Life Cycle Inventory Analysis was conducted based on the Simplified Life Cycle Assessment (SLCA) Drivers that calculated from the Valuation of Social Cost and Simplified Life Cycle Assessment Model (VSSM). The detailed results for LCI can be found under Appendix II. The Life Cycle Impact Assessment was performed based on Eco-indicator 99 method. The analysis results indicated that the major contributor to the environmental impact as it accounts for over 60% overall SLCA output. In which, 60% of the emission resulted from the logistic required for the maintenance activities. This was measured by conducting the hotspot analysis. After performing sensitivity analysis, it is evidenced that changing fuel type results in significant decrease environmental footprint. The environmental benefit can also be seen from the negative output values of the recycling activities. By conducting Life Cycle Assessment analysis, the potential environmental impact of the electrical grinder was investigated.

  15. Stream channel degradation and aggradation : analysis of impacts to highway crossings.

    DOT National Transportation Integrated Search

    1981-03-01

    "Aggradation and degradation are long-term changes in stream channel elevation. The effects of gradation changes are not the same as local scour or erosion because they extend greater distances along the stream-bed. Degradation is a more common probl...

  16. Changing Patient Needs and Their Impact on Clinical Education.

    ERIC Educational Resources Information Center

    Colman, Harvey L.; And Others

    1985-01-01

    Results of an analysis of changes in dental clinic patient needs and characteristics in the period of 1978-82 are presented, and their implications for the availability of experiences for the clinical training of dental students in specific areas are discussed. (MSE)

  17. A RETROSPECTIVE ANALYSIS OF MODEL UNCERTAINTY FOR FORECASTING HYDROLOGIC CHANGE

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  18. Maintaining the Health of Software Monitors

    NASA Technical Reports Server (NTRS)

    Person, Suzette; Rungta, Neha

    2013-01-01

    Software health management (SWHM) techniques complement the rigorous verification and validation processes that are applied to safety-critical systems prior to their deployment. These techniques are used to monitor deployed software in its execution environment, serving as the last line of defense against the effects of a critical fault. SWHM monitors use information from the specification and implementation of the monitored software to detect violations, predict possible failures, and help the system recover from faults. Changes to the monitored software, such as adding new functionality or fixing defects, therefore, have the potential to impact the correctness of both the monitored software and the SWHM monitor. In this work, we describe how the results of a software change impact analysis technique, Directed Incremental Symbolic Execution (DiSE), can be applied to monitored software to identify the potential impact of the changes on the SWHM monitor software. The results of DiSE can then be used by other analysis techniques, e.g., testing, debugging, to help preserve and improve the integrity of the SWHM monitor as the monitored software evolves.

  19. Process and impact evaluation of a community gender equality intervention with young men in Rajasthan, India.

    PubMed

    Freudberg, Halima; Contractor, Sana; Das, Abhijit; Kemp, Christopher G; Nevin, Paul E; Phadiyal, Ashima; Lal, Jagdish; Rao, Deepa

    2018-02-01

    This paper reports on the results of a process and impact evaluation to assess the effects of a project aiming to engage men in changing gender stereotypes and improving health outcomes for women in villages in Rajasthan, India. We conducted seven focus group discussions with participants in the programme and six in-depth interviews with intervention group leaders. We also conducted 137 pre- and 70 post-intervention surveys to assess participant and community knowledge, attitudes and behaviours surrounding gender, violence and sexuality. We used thematic analysis to identify process and impact themes, and hierarchical mixed linear regression for the primary outcome analysis of survey responses. Post-intervention, significant changes in knowledge and attitudes regarding gender, sexuality and violence were made on the individual level by participants, as well as in the community. Moderate behavioural changes were seen in individuals and in the community. Study findings offer a strong model for prevention programmes working with young men to create a community effect in encouraging gender equality in social norms.

  20. Techniques for Efficient Detection of Rapid Weather Change and Analysis of their Impacts on a Highway Network

    DOT National Transportation Integrated Search

    2017-10-06

    Adverse weather conditions have a significant impact on the safety, mobility, and efficiency of highway networks. Annually, 24 percent of all crashes, more than 7,400 roadway fatalities, and over 673,000 crash related injuries were caused by adverse ...

  1. Vulnerability of field crops to midcentury temperature changes and yield effects in the Southwestern USA

    USDA-ARS?s Scientific Manuscript database

    Increased temperatures in the Southwestern United States will impact future crop production via multiple pathways. We used four methods to provide an illustrative analysis of midcentury temperature impacts to eight field crops. By midcentury, cropland area thermally suitable for maize cultivation is...

  2. 75 FR 51423 - Energy Conservation Program for Consumer Products and Certain Commercial and Industrial Equipment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-20

    ... of energy consumption for assessment of national and environmental impact, especially levels of..., fuel oil, coal, biomass, and nuclear energy used for electricity generation. The conversion factors... to change during a 25-year span covered by an environmental impact analysis completed in 2010. Table...

  3. Analysis of the Revision Process by American Journal of Roentgenology Reviewers and Section Editors: Metrics of Rejected Manuscripts and Their Final Disposition.

    PubMed

    Cejas, Claudia

    2017-06-01

    The objective of this study was to evaluate metrics related to manuscripts rejected by AJR with and without review during 2014 and to determine their final disposition: no record of eventual publication, eventually published, published with modified authors and title, published with the same title but modified authors, and published with modified title but the same authors. A total of 1245 unsolicited manuscripts submitted from January to December 2014 were included in this retrospective analysis. Data were extracted from the AJR's manuscript submission system. Standard statistical analysis was used to assess the fate of a sample of 200 rejected manuscripts. Of the 200 manuscripts studied, 117 (59%) were published in other scientific journals (61 with revision, 56 without revision; Χ 2 = 0.329, p = 0.566). Thirty-two of the 61 manuscripts (52%) rejected after peer review were later published in other journals without changes in their titles or authors, 16 (26%) with changes only in authors, 10 (16%) with changes only in their titles, and three (5%) with changes in authors and titles. Twenty-six of the 56 manuscripts (46%) rejected without peer review were published without changes in their titles or authors, 17 (30%) with changes in authors, 11 (20%) with changes only in their titles, and two (4%) with changes in both authors and titles (p = 0.686). Ten articles were published in open access journals. Of the remaining articles, those that had been reviewed were published in journals with a mean impact factor ± SD of 2.37 ± 1.30, and those that had not been reviewed were published in journals with a mean impact factor of 2.04 ± 1.06. Analysis of the 25th and 75th percentiles revealed that values were also higher for the group rejected with review (Wilcoxon rank sum test: W = 1679, p = 0.1127). Out of 61 articles rejected for publication with review, 52.5% were published with changes to their abstracts, whereas the remaining 47.5% were unchanged. This analysis found that manuscripts submitted to AJR that were rejected after review were published in journals with higher impact factors than those rejected without review. The commentaries provided by AJR reviewers and section editors appear to improve the quality of rejected manuscripts and thus contribute to the scientific community.

  4. Impact of a rural solar electrification project on the level and structure of women’s empowerment

    NASA Astrophysics Data System (ADS)

    Burney, Jennifer; Alaofè, Halimatou; Naylor, Rosamond; Taren, Douglas

    2017-09-01

    Although development organizations agree that reliable access to energy and energy services—one of the 17 Sustainable Development Goals—is likely to have profound and perhaps disproportionate impacts on women, few studies have directly empirically estimated the impact of energy access on women’s empowerment. This is a result of both a relative dearth of energy access evaluations in general and a lack of clarity on how to quantify gender impacts of development projects. Here we present an evaluation of the impacts of the Solar Market Garden—a distributed photovoltaic irrigation project—on the level and structure of women’s empowerment in Benin, West Africa. We use a quasi-experimental design (matched-pair villages) to estimate changes in empowerment for project beneficiaries after one year of Solar Market Garden production relative to non-beneficiaries in both treatment and comparison villages (n = 771). To create an empowerment metric, we constructed a set of general questions based on existing theories of empowerment, and then used latent variable analysis to understand the underlying structure of empowerment locally. We repeated this analysis at follow-up to understand whether the structure of empowerment had changed over time, and then measured changes in both the levels and likelihood of empowerment over time. We show that the Solar Market Garden significantly positively impacted women’s empowerment, particularly through the domain of economic independence. In addition to providing rigorous evidence for the impact of a rural renewable energy project on women’s empowerment, our work lays out a methodology that can be used in the future to benchmark the gender impacts of energy projects.

  5. Multi-Factor Impact Analysis of Agricultural Production in Bangladesh with Climate Change

    NASA Technical Reports Server (NTRS)

    Ruane, Alex C.; Major, David C.; Yu, Winston H.; Alam, Mozaharul; Hussain, Sk. Ghulam; Khan, Abu Saleh; Hassan, Ahmadul; Al Hossain, Bhuiya Md. Tamim; Goldberg, Richard; Horton, Radley M.; hide

    2012-01-01

    Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.

  6. Effect of crumb cellular structure characterized by image analysis on cake softness.

    PubMed

    Dewaest, Marine; Villemejane, Cindy; Berland, Sophie; Neron, Stéphane; Clement, Jérôme; Verel, Aliette; Michon, Camille

    2018-06-01

    Sponge cake is a cereal product characterized by an aerated crumb and appreciated for its softness. When formulating such product, it is interesting to be able to characterize the crumb structure using image analysis and to bring knowledge about the effects of the crumb cellular structure on its mechanical properties which contribute to softness. An image analysis method based on mathematical morphology was adapted from the one developed for bread crumb. In order to evaluate its ability to discriminate cellular structures, series of cakes were prepared using two rather similar emulsifiers but also using flours with different aging times before use. The mechanical properties of the crumbs of these different cakes were also characterized. It allowed a cell structure classification taking into account cell size and homogeneity, but also cell wall thickness and the number of holes in the walls. Interestingly, the cellular structure differences had a larger impact on the aerated crumb Young modulus than the wall firmness. Increasing the aging time of flour before use leads to the production of firmer crumbs due to coarser and inhomogeneous cellular structures. Changing the composition of the emulsifier may change the cellular structure and, depending on the type of the structural changes, have an impact on the firmness of the crumb. Cellular structure rather than cell wall firmness was found to impact cake crumb firmness. The new fast and automated tool for cake crumb structure analysis allows detecting quickly any change in cell size or homogeneity but also cell wall thickness and number of holes in the walls (openness degree). To obtain a softer crumb, it seems that options are to decrease the cell size and the cell wall thickness and/or to increase the openness degree. It is then possible to easily evaluate the effects of ingredients (flour composition, emulsifier …) or change in the process on the crumb structure and thus its softness. Moreover, this image analysis is a very efficient tool for quality control. © 2017 Wiley Periodicals, Inc.

  7. Global Change adaptation in water resources management: the Water Change project.

    PubMed

    Pouget, Laurent; Escaler, Isabel; Guiu, Roger; Mc Ennis, Suzy; Versini, Pierre-Antoine

    2012-12-01

    In recent years, water resources management has been facing new challenges due to increasing changes and their associated uncertainties, such as changes in climate, water demand or land use, which can be grouped under the term Global Change. The Water Change project (LIFE+ funding) developed a methodology and a tool to assess the Global Change impacts on water resources, thus helping river basin agencies and water companies in their long term planning and in the definition of adaptation measures. The main result of the project was the creation of a step by step methodology to assess Global Change impacts and define strategies of adaptation. This methodology was tested in the Llobregat river basin (Spain) with the objective of being applicable to any water system. It includes several steps such as setting-up the problem with a DPSIR framework, developing Global Change scenarios, running river basin models and performing a cost-benefit analysis to define optimal strategies of adaptation. This methodology was supported by the creation of a flexible modelling system, which can link a wide range of models, such as hydrological, water quality, and water management models. The tool allows users to integrate their own models to the system, which can then exchange information among them automatically. This enables to simulate the interactions among multiple components of the water cycle, and run quickly a large number of Global Change scenarios. The outcomes of this project make possible to define and test different sets of adaptation measures for the basin that can be further evaluated through cost-benefit analysis. The integration of the results contributes to an efficient decision-making on how to adapt to Global Change impacts. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Stakeholders' participatory diagnosis of climate change impacts on subsistence agriculture in Sikkim, India, for identifying adaptation strategies

    NASA Astrophysics Data System (ADS)

    Azhoni, A.; Goyal, M. K.

    2017-12-01

    Narrowing the gap between research, policy making and implementing adaptation remains a challenge in many parts of the world where climate change is likely to severely impact subsistence agriculture. This research aims to narrow this gap by matching the adaptation strategies being framed by policy makers and perspectives of consultants and researchers which are expected to be implemented by development agencies farmers in the state of Sikkim in India. Our case study examined the framing and implementation of State Action Plan on Climate Change through semi-structured interviews carried out with decision makers in the State Government, Scientific Organisations, consultants, local academia, implementing and development agencies, and farmers for whom the adaptation strategies are targeted. Using Social Network and Stakeholder Analysis approach, this research unravels the complexities of perceiving climate change impacts, identifying adaptation strategies, and implementing climate change adaptation strategies. While farmers are less aware about the global phenomenon of climate change impacts for their subsistence livelihood, their knowledge of the local conditions and their close interaction with the State Government Agriculture Department provides them an access to new and high value crops. Although important steps are initiated through the Sikkim State Action Plan on Climate Change it is yet to deliver effective means of adaptation implementation and identifying the networks of close coordination between the various implementing agencies will likely to pay rich dividends. While Sikkim being a small and hilly state with specific contextual challenges of climate change impacts, the results from this study highlights how the internal and external networks between various types of stakeholders informs decision makers in identifying local impacts of climate change and plan adaptation strategies.

  9. Analysis of land use and climate change impacts by comparing river flow records for headwaters and lowland reaches

    NASA Astrophysics Data System (ADS)

    Fazel, Nasim; Torabi Haghighi, Ali; Kløve, Bjørn

    2017-11-01

    The natural flow regime of rivers has been strongly altered world-wide, resulting in ecosystem degradation and lakes drying up, especially in arid and semi-arid regions. Determining whether this is due mainly to climate change or to water withdrawal for direct human use (e.g. irrigation) is difficult, particularly for saline lake basins where hydrology data are scarce. In this study, we developed an approach for assessing climate and land use change impacts based on river flow records for headwater and lowland reaches of rivers, using the case of Lake Urmia basin, in north-westen Iran. Flow regimes at upstream and downstream stations were studied before and after major dam construction and irrigation projects. Data from 57 stations were used to establish five different time intervals representing 10 different land use development periods (scenarios) for upstream (not impacted) and downstream (impacted) systems. An existing river impact (RI) index was used to assess changes in three main characteristics of flow (magnitude, timing and, intra-annual variability). The results showed that irrigation was by far the main driving force for river flow regime changes in the lake basin. All stations close to the lake and on adjacent plains showed significantly higher impacts of land use change than headwaters. As headwaters are relatively unaffected by agriculture, the non-significant changes observed in headwater flow regimes indicate a minor effect of climate change on river flows in the region. The benefit of the method developed is clear interpretation of results based on river flow records, which is useful in communicating land use and climate change information to decision makers and lake restoration planners.

  10. Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabio; Malina, Robert; Staples, Mark D.; Wolfe, Philip J.; Yim, Steve H. L.; Barrett, Steven R. H.

    2014-01-01

    Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to - 161 gCO2e/MJ, or - 28% and - 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.

  11. Climate variability and vulnerability to climate change: a review

    PubMed Central

    Thornton, Philip K; Ericksen, Polly J; Herrero, Mario; Challinor, Andrew J

    2014-01-01

    The focus of the great majority of climate change impact studies is on changes in mean climate. In terms of climate model output, these changes are more robust than changes in climate variability. By concentrating on changes in climate means, the full impacts of climate change on biological and human systems are probably being seriously underestimated. Here, we briefly review the possible impacts of changes in climate variability and the frequency of extreme events on biological and food systems, with a focus on the developing world. We present new analysis that tentatively links increases in climate variability with increasing food insecurity in the future. We consider the ways in which people deal with climate variability and extremes and how they may adapt in the future. Key knowledge and data gaps are highlighted. These include the timing and interactions of different climatic stresses on plant growth and development, particularly at higher temperatures, and the impacts on crops, livestock and farming systems of changes in climate variability and extreme events on pest-weed-disease complexes. We highlight the need to reframe research questions in such a way that they can provide decision makers throughout the food system with actionable answers, and the need for investment in climate and environmental monitoring. Improved understanding of the full range of impacts of climate change on biological and food systems is a critical step in being able to address effectively the effects of climate variability and extreme events on human vulnerability and food security, particularly in agriculturally based developing countries facing the challenge of having to feed rapidly growing populations in the coming decades. PMID:24668802

  12. Changes in the Medicare home health care market: the impact of reimbursement policy.

    PubMed

    Choi, Sunha; Davitt, Joan K

    2009-03-01

    The Balanced Budget Act of 1997 introduced 2 new reimbursement structures, the Interim Payment System (IPS, 1997-2000) and the Prospective Payment System (PPS, begun October 2000) for Medicare home health agencies (HHAs) under the fee-for-service program. This article describes and compares the impact of these changes on the Medicare home health market from a period before the BBA through the IPS and PPS in relation to agency characteristics. A secondary analysis of 1996, 1999, and 2002 Provider of Services data was conducted on all Medicare-certified HHAs. Frequencies and rates of change were calculated by agency characteristics to describe changes in the number of active agencies through those years. Logistic regression models were used to compare factors associated with market exits under different payment systems. The results indicate dramatic but disproportional changes in response to the IPS and the PPS among Medicare home health care agencies. Agency closures were greater and market entries fewer during the IPS, but more branch offices/subunits were closed during the PPS. Proprietary and freestanding agencies experienced greater volatility throughout, with the greatest number of closures seen in Region VI (Dallas). These results demonstrate the direct impact of policy changes on the home health care market and highlight the need to evaluate policy changes to understand both intended and unintended impacts on health markets. Future research should analyze the effect of these policy changes on other healthcare providers and systems and their impact on health outcomes for Medicare beneficiaries.

  13. Identifying stakeholder-relevant climate change impacts: a case study in the Yakima River Basin, Washington, USA

    USGS Publications Warehouse

    Jenni, K.; Graves, D.; Hardiman, Jill M.; Hatten, James R.; Mastin, Mark C.; Mesa, Matthew G.; Montag, J.; Nieman, Timothy; Voss, Frank D.; Maule, Alec G.

    2014-01-01

    Designing climate-related research so that study results will be useful to natural resource managers is a unique challenge. While decision makers increasingly recognize the need to consider climate change in their resource management plans, and climate scientists recognize the importance of providing locally-relevant climate data and projections, there often remains a gap between management needs and the information that is available or is being collected. We used decision analysis concepts to bring decision-maker and stakeholder perspectives into the applied research planning process. In 2009 we initiated a series of studies on the impacts of climate change in the Yakima River Basin (YRB) with a four-day stakeholder workshop, bringing together managers, stakeholders, and scientists to develop an integrated conceptual model of climate change and climate change impacts in the YRB. The conceptual model development highlighted areas of uncertainty that limit the understanding of the potential impacts of climate change and decision alternatives by those who will be most directly affected by those changes, and pointed to areas where additional study and engagement of stakeholders would be beneficial. The workshop and resulting conceptual model highlighted the importance of numerous different outcomes to stakeholders in the basin, including social and economic outcomes that go beyond the physical and biological outcomes typically reported in climate impacts studies. Subsequent studies addressed several of those areas of uncertainty, including changes in water temperatures, habitat quality, and bioenergetics of salmonid populations.

  14. The Impacts of Changes to Nevada’s Net Metering Policy on the Financial Performance and Adoption of Distributed Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Sigrin, Ben; Gleason, Mike

    Net energy metering (NEM) is a billing mechanism that has historically compensated owners of distributed generation systems at retail rates for any electricity that they export back to the grid rather than consume on-site. NEM can significantly enhance the financial performance of distributed generation systems from the owner’s perspective. The following analysis was designed to illustrate the potential impact of NEM policy and tariff changes implemented in early 2016 in Nevada.

  15. Confluence of climate change policies and international trade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vickery, R.E. Jr.

    1997-12-31

    The paper summarizes market information on energy conservation and renewable energy industries in the U.S., and highlights activities of the International Trade Administration. International treaties agreements on environmental issues are examined with respect to their influence on U.S. trade promotion and job creation. A sectoral analysis of the economic impact of greenhouse gas emissions reductions on industries is very briefly summarized. Finally, the need for a climate change treaty in spite of possible adverse impacts is discussed. 1 tab.

  16. Scenarios for coastal vulnerability assessment

    USGS Publications Warehouse

    Nicholls, Robert J.; Woodroffe, Colin D.; Burkett, Virginia; Hay, John; Wong, Poh Poh; Nurse, Leonard; Wolanski, Eric; McLusky, Donald S.

    2011-01-01

    Coastal vulnerability assessments tend to focus mainly on climate change and especially on sea-level rise. Assessment of the influence of nonclimatic environmental change or socioeconomic change is less well developed and these drivers are often completely ignored. Given that the most profound coastal changes of the twentieth century due to nonclimate drivers are likely to continue through the twenty-first century, this is a major omission. It may result in not only overstating the importance of climate change but also overlooking significant interactions of climate change and other drivers. To support the development of policies relating to climate change and coastal management, integrated assessments of climatic change in coastal areas are required, including the effects of all the relevant drivers. This chapter explores the development of scenarios (or "plausible futures") of relevant climate and nonclimate drivers that can be used for coastal analysis, with an emphasis on the nonclimate drivers. It shows the importance of analyzing the impacts of climate change and sea-level rise in a broader context of coastal change and all its drivers. This will improve the analysis of impacts, key vulnerabilities, and adaptation needs and, hence, inform climate and coastal policy. Stakeholder engagement is important in the development of scenarios, and the underlying assumptions need to be explicit, transparent, and open to scientific debate concerning their uncertainties/realism and likelihood.

  17. [Road traffic injuries among youth: measuring the impact of an educational intervention].

    PubMed

    Hidalgo-Solórzano, Elisa; Híjar, Martha; Mora-Flores, Gerardo; Treviño-Siller, Sandra; Inclán-Valadez, Cristina

    2008-01-01

    To analyze the impact of an educative intervention intended to increase the knowledge of causes and risk factors associated with road traffic iinjries in the city of Cuernavaca. A quasi-experimental study design was administered to students from 16 to 19 years old in colleges and universities in the city of Cuernavaca. The educative intervention included radio spots, banners, pamphlets, posters and cards. The measure of impact was established as changes in knowledge about speed, alcohol and the use of seat belts, using factor analysis methodologies. A significant change in the level of knowledge (p= 0.000) was observed in 700 students from 16 institutions. Educative interventions represent an initial strategy for changes in knowledge and population behaviours. The present study offers an appropriate methodology to measure short-term changes in knowledge about risk factors associated with a significant problem affecting Mexican youth.

  18. Man and the Last Great Wilderness: Human Impact on the Deep Sea

    PubMed Central

    Ramirez-Llodra, Eva; Tyler, Paul A.; Baker, Maria C.; Bergstad, Odd Aksel; Clark, Malcolm R.; Escobar, Elva; Levin, Lisa A.; Menot, Lenaick; Rowden, Ashley A.; Smith, Craig R.; Van Dover, Cindy L.

    2011-01-01

    The deep sea, the largest ecosystem on Earth and one of the least studied, harbours high biodiversity and provides a wealth of resources. Although humans have used the oceans for millennia, technological developments now allow exploitation of fisheries resources, hydrocarbons and minerals below 2000 m depth. The remoteness of the deep seafloor has promoted the disposal of residues and litter. Ocean acidification and climate change now bring a new dimension of global effects. Thus the challenges facing the deep sea are large and accelerating, providing a new imperative for the science community, industry and national and international organizations to work together to develop successful exploitation management and conservation of the deep-sea ecosystem. This paper provides scientific expert judgement and a semi-quantitative analysis of past, present and future impacts of human-related activities on global deep-sea habitats within three categories: disposal, exploitation and climate change. The analysis is the result of a Census of Marine Life – SYNDEEP workshop (September 2008). A detailed review of known impacts and their effects is provided. The analysis shows how, in recent decades, the most significant anthropogenic activities that affect the deep sea have evolved from mainly disposal (past) to exploitation (present). We predict that from now and into the future, increases in atmospheric CO2 and facets and consequences of climate change will have the most impact on deep-sea habitats and their fauna. Synergies between different anthropogenic pressures and associated effects are discussed, indicating that most synergies are related to increased atmospheric CO2 and climate change effects. We identify deep-sea ecosystems we believe are at higher risk from human impacts in the near future: benthic communities on sedimentary upper slopes, cold-water corals, canyon benthic communities and seamount pelagic and benthic communities. We finalise this review with a short discussion on protection and management methods. PMID:21829635

  19. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  20. Assessing the environmental impacts of aircraft noise and emissions

    NASA Astrophysics Data System (ADS)

    Mahashabde, Anuja; Wolfe, Philip; Ashok, Akshay; Dorbian, Christopher; He, Qinxian; Fan, Alice; Lukachko, Stephen; Mozdzanowska, Aleksandra; Wollersheim, Christoph; Barrett, Steven R. H.; Locke, Maryalice; Waitz, Ian A.

    2011-01-01

    With the projected growth in demand for commercial aviation, many anticipate increased environmental impacts associated with noise, air quality, and climate change. Therefore, decision-makers and stakeholders are seeking policies, technologies, and operational procedures that balance environmental and economic interests. The main objective of this paper is to address shortcomings in current decision-making practices for aviation environmental policies. We review knowledge of the noise, air quality, and climate impacts of aviation, and demonstrate how including environmental impact assessment and quantifying uncertainties can enable a more comprehensive evaluation of aviation environmental policies. A comparison is presented between the cost-effectiveness analysis currently used for aviation environmental policy decision-making and an illustrative cost-benefit analysis. We focus on assessing a subset of the engine NO X emissions certification stringency options considered at the eighth meeting of the International Civil Aviation Organization’s Committee on Aviation Environmental Protection. The FAA Aviation environmental Portfolio Management Tool (APMT) is employed to conduct the policy assessments. We show that different conclusions may be drawn about the same policy options depending on whether benefits and interdependencies are estimated in terms of health and welfare impacts versus changes in NO X emissions inventories as is the typical practice. We also show that these conclusions are sensitive to a variety of modeling uncertainties. While our more comprehensive analysis makes the best policy option less clear, it represents a more accurate characterization of the scientific and economic uncertainties underlying impacts and the policy choices.

  1. Assessment of impacts of climate change on gender in the context of Nepal

    NASA Astrophysics Data System (ADS)

    Paudel, R.; Acharya, A.

    2016-12-01

    Climate change and its impact on gender in the context of Nepal has not been clearly understood due to lack of proper scientific research in terms of gender and climate change. Climate induced disasters such as droughts, floods, GLOFs, and landslides affect men and women differently. This study is conducted to analyze the scenario of gender equality, and impacts of climate change on gender in Nepal. This study also identifies gender based adaptation approaches through the use of observed climate data, and projected and modeled demographic data such as Adolescent Fertility Rate, Labor Force Participation Rate, and Maternal Mortality Ratio. The major tasks of this project include the calculation of Gender Inequality Index (GII), trend analysis and correlation between GII and temperature, that helps to evaluate the women vulnerability and identify the gender based adaptation interventions in Nepal. The required data on gender and temperature are obtained from World Bank and Department of Hydrology and Meteorology, Nepal. GII is calculated for almost 26 years starting from the year 1990 by utilizing a tool "Calculating the Indices using Excel" provided through the UNDP. The Reproductive Health Index (RHI), Empowerment Index (EI), and Labor Market Index (LMI) that are required to determine GII are also calculated through the use of same tool. The trend analysis shows that GII follows a decreasing trend indicating higher gender equality. The correlation analysis shows the temperature positively correlated with RHI (r=0.64), EI Female (r=0.61), and EI Male (r=0.73). In case of LMI, temperature is positively correlated with female (r=0.14) and negatively correlated with male (r=-0.57). The analysis depicts negative correlation (r=-0.68) between climate change and GII. This research will provide some valuable insights in the research relating to gender and climate change that could help gender advocates and policymakers in developing further plans for women empowerment.

  2. Climate change and nutrition: creating a climate for nutrition security.

    PubMed

    Tirado, M C; Crahay, P; Mahy, L; Zanev, C; Neira, M; Msangi, S; Brown, R; Scaramella, C; Costa Coitinho, D; Müller, A

    2013-12-01

    Climate change further exacerbates the enormous existing burden of undernutrition. It affects food and nutrition security and undermines current efforts to reduce hunger and promote nutrition. Undernutrition in turn undermines climate resilience and the coping strategies of vulnerable populations. The objectives of this paper are to identify and undertake a cross-sectoral analysis of the impacts of climate change on nutrition security and the existing mechanisms, strategies, and policies to address them. A cross-sectoral analysis of the impacts of climate change on nutrition security and the mechanisms and policies to address them was guided by an analytical framework focused on the three 'underlying causes' of undernutrition: 1) household food access, 2) maternal and child care and feeding practices, 3) environmental health and health access. The analytical framework includes the interactions of the three underlying causes of undernutrition with climate change,vulnerability, adaptation and mitigation. Within broad efforts on climate change mitigation and adaptation and climate-resilient development, a combination of nutrition-sensitive adaptation and mitigation measures, climate-resilient and nutrition-sensitive agricultural development, social protection, improved maternal and child care and health, nutrition-sensitive risk reduction and management, community development measures, nutrition-smart investments, increased policy coherence, and institutional and cross-sectoral collaboration are proposed as a means to address the impacts of climate change to food and nutrition security. This paper proposes policy directions to address nutrition in the climate change agenda and recommendations for consideration by the UN Framework Convention on Climate Change (UNFCCC). Nutrition and health stakeholders need to be engaged in key climate change adaptation and mitigation initiatives, including science-based assessment by the Intergovernmental Panel on Climate Change (IPCC), and policies and actions formulated by the UN Framework Convention on Climate Change (UNFCCC). Improved multi-sectoral coordination and political will is required to integrate nutrition-sensitive actions into climate-resilient sustainable development efforts in the UNFCCC work and in the post 2015 development agenda. Placing human rights at the center of strategies to mitigate and adapt to the impacts of climate change and international solidarity is essential to advance sustainable development and to create a climate for nutrition security.

  3. Impacts of Climate Variability and Change on Flood Frequency Analysis for Transportation Design

    DOT National Transportation Integrated Search

    2010-09-01

    Planning for construction of roads and bridges over rivers or floodplains includes a hydrologic analysis of rainfall amount and intensity : for a defined period. Infrastructure design must be based on accurate rainfall estimates how much (intensi...

  4. Impacts of Changing Racial Composition upon Commercial Land Use Succession and Commercial Structure: A Comparative Neighborhood Analysis.

    ERIC Educational Resources Information Center

    Schmidt, Charles G.; Lee, Yuk

    1978-01-01

    Three Denver neighborhoods are used in this comparative analysis to investigate the extent to which racial composition, population, or income influence commercial land use succession patterns and total business composition. (EB)

  5. Greenhouse gas emission mitigation relevant to changes in municipal solid waste management system.

    PubMed

    Pikoń, Krzysztof; Gaska, Krzysztof

    2010-07-01

    Standard methods for assessing the environmental impact of waste management systems are needed to underpin the development and implementation of sustainable waste management practice. Life cycle assessment (LCA) is a tool for comprehensively ensuring such assessment and covers all impacts associated with waste management. LCA is often called "from cradle to grave" analysis. This paper integrates information on the greenhouse gas (GHG) implications of various management options for some of the most common materials in municipal solid waste (MSW). Different waste treatment options for MSW were studied in a system analysis. Different combinations of recycling (cardboard, plastics, glass, metals), biological treatment (composting), and incineration as well as land-filling were studied. The index of environmental burden in the global warming impact category was calculated. The calculations are based on LCA methodology. All emissions taking place in the whole life cycle system were taken into account. The analysis included "own emissions," or emissions from the system at all stages of the life cycle, and "linked emissions," or emissions from other sources linked with the system in an indirect way. Avoided emissions caused by recycling and energy recovery were included in the analysis. Displaced emissions of GHGs originate from the substitution of energy or materials derived from waste for alternative sources. The complex analysis of the environmental impact of municipal waste management systems before and after application of changes in MSW systems according to European Union regulations is presented in this paper. The evaluation is made for MSW systems in Poland.

  6. Land use allocation model considering climate change impact

    NASA Astrophysics Data System (ADS)

    Lee, D. K.; Yoon, E. J.; Song, Y. I.

    2017-12-01

    In Korea, climate change adaptation plans are being developed for each administrative district based on impact assessments constructed in various fields. This climate change impact assessments are superimposed on the actual space, which causes problems in land use allocation because the spatial distribution of individual impacts may be different each other. This implies that trade-offs between climate change impacts can occur depending on the composition of land use. Moreover, the actual space is complexly intertwined with various factors such as required area, legal regulations, and socioeconomic values, so land use allocation in consideration of climate change can be very difficult problem to solve (Liu et al. 2012; Porta et al. 2013).Optimization techniques can generate a sufficiently good alternatives for land use allocation at the strategic level if only the fitness function of relationship between impact and land use composition are derived. It has also been noted that land use optimization model is more effective than the scenario-based prediction model in achieving the objectives for problem solving (Zhang et al. 2014). Therefore in this study, we developed a quantitative tool, MOGA (Multi Objective Genetic Algorithm), which can generate a comprehensive land use allocations considering various climate change impacts, and apply it to the Gangwon-do in Korea. Genetic Algorithms (GAs) are the most popular optimization technique to address multi-objective in land use allocation. Also, it allows for immediate feedback to stake holders because it can run a number of experiments with different parameter values. And it is expected that land use decision makers and planners can formulate a detailed spatial plan or perform additional analysis based on the result of optimization model. Acknowledgments: This work was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program (Project number: 2014001310006)"

  7. Developing and applying uncertain global climate change projections for regional water management planning

    NASA Astrophysics Data System (ADS)

    Groves, David G.; Yates, David; Tebaldi, Claudia

    2008-12-01

    Climate change may impact water resources management conditions in difficult-to-predict ways. A key challenge for water managers is how to incorporate highly uncertain information about potential climate change from global models into local- and regional-scale water management models and tools to support local planning. This paper presents a new method for developing large ensembles of local daily weather that reflect a wide range of plausible future climate change scenarios while preserving many statistical properties of local historical weather patterns. This method is demonstrated by evaluating the possible impact of climate change on the Inland Empire Utilities Agency service area in southern California. The analysis shows that climate change could impact the region, increasing outdoor water demand by up to 10% by 2040, decreasing local water supply by up to 40% by 2040, and decreasing sustainable groundwater yields by up to 15% by 2040. The range of plausible climate projections suggests the need for the region to augment its long-range water management plans to reduce its vulnerability to climate change.

  8. Community Health Workers Promote Civic Engagement and Organizational Capacity to Impact Policy.

    PubMed

    Sabo, Samantha; Flores, Melissa; Wennerstrom, Ashley; Bell, Melanie L; Verdugo, Lorena; Carvajal, Scott; Ingram, Maia

    2017-12-01

    Community health workers (CHW) have historically served to link structurally vulnerable populations to broad support systems. Emerging evidence suggests that CHWs engage in various forms of advocacy to promote policy and systems change. We assessed the impact of CHW community advocacy on community change, defined as civic engagement, organizational capacity and policy and systems change. Data are drawn from the 2014 National Community Health Worker Advocacy Survey (N = 1776) aimed to identify the state of the CHW profession, and their impact on health disparities through community advocacy and policy engagement. Our primary analysis used multiple linear regression to assess the association between CHW advocacy and community change. As predicted, there was a significant, positive association between CHW advocacy and change in community conditions. Additionally, both adjusted and sensitivity models had similar standardized beta estimates for advocacy, and adjusted R 2 statistics. CHW advocacy predicts positive change in community conditions and further advances the CHW Community Advocacy Framework designed to support and monitor CHW community advocacy to reduce health disparities through advocacy and policy change.

  9. Optimizing Air Transportation Service to Metroplex Airports. Part 1; Analysis of Historical Data

    NASA Technical Reports Server (NTRS)

    Donohue, George; Hoffman, Karla; Sherry, Lance; Ferguson, John; Kara, Abdul Qadar

    2010-01-01

    The air transportation system is a significant driver of the U.S. economy, providing safe, affordable, and rapid transportation. During the past three decades airspace and airport capacity has not grown in step with demand for air transportation (+4% annual growth), resulting in unreliable service and systemic delays. Estimates of the impact of delays and unreliable air transportation service on the economy range from $32B to $41B per year. This report describes the results of an analysis of airline strategic decision-making with regards to: (1) geographic access, (2) economic access, and (3) airline finances. This analysis evaluated markets-served, scheduled flights, aircraft size, airfares, and profit from 2005-2009. During this period, airlines experienced changes in costs of operation (due to fluctuations in hedged fuel prices), changes in travel demand (due to changes in the economy), and changes in infrastructure capacity (due to the capacity limits at EWR, JFK, and LGA). This analysis captures the impact of the implementation of capacity limits at airports, as well as the effect of increased costs of operation (i.e. hedged fuel prices). The increases in costs of operation serve as a proxy for increased costs per flight that might occur if auctions or congestion pricing are imposed.

  10. Seawater intrusion risk analysis under climate change conditions for the Gaza Strip aquifer (Palestine)

    NASA Astrophysics Data System (ADS)

    Dentoni, Marta; Deidda, Roberto; Paniconi, Claudio; Marrocu, Marino; Lecca, Giuditta

    2014-05-01

    Seawater intrusion (SWI) has become a major threat to coastal freshwater resources, particularly in the Mediterranean basin, where this problem is exacerbated by the lack of appropriate groundwater resources management and with serious potential impacts from projected climate changes. A proper analysis and risk assessment that includes climate scenarios is essential for the design of water management measures to mitigate the environmental and socio-economic impacts of SWI. In this study a methodology for SWI risk analysis in coastal aquifers is developed and applied to the Gaza Strip coastal aquifer in Palestine. The method is based on the origin-pathway-target model, evaluating the final value of SWI risk by applying the overlay principle to the hazard map (representing the origin of SWI), the vulnerability map (representing the pathway of groundwater flow) and the elements map (representing the target of SWI). Results indicate the important role of groundwater simulation in SWI risk assessment and illustrate how mitigation measures can be developed according to predefined criteria to arrive at quantifiable expected benefits. Keywords: Climate change, coastal aquifer, seawater intrusion, risk analysis, simulation/optimization model. Acknowledgements. The study is partially funded by the project "Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB)", FP7-ENV-2009-1, GA 244151.

  11. Time/Frequency Analysis of Terrestrial Impack Crater Records

    NASA Astrophysics Data System (ADS)

    Chang, Heon-Young

    2006-09-01

    The terrestrial impact cratering record recently has been examined in the time domain by Chang & Moon (2005). It was found that the ˜ 26 Myr periodicity in the impact cratering rate exists over the last ˜ 250 Myrs. Such a periodicity can be found regardless of the lower limit of the diameter up to D ˜ 35 km. It immediately called pros and cons. The aim of this paper is two-fold: (1) to test if reported periodicities can be obtained with an independent method, (2) to see, as attempted earlier, if the phase is modulated. To achieve these goals we employ the time/frequency analysis and for the first time apply this method to the terrestrial impact cratering records. We have confirmed that without exceptions noticeable peaks appear around ˜ 25 Myr, corresponding to a frequency of ˜ 0.04 (Myr)^{-1}. We also find periodicities in the data base including small impact craters, which are longer. Though the time/frequency analysis allows us to observe directly phase variations, we cannot find any indications of such changes. Instead, modes display slow variations of power in time. The time/frequency analysis shows a nonstationary behavior of the modes. The power can grow from just above the noise level and then decrease back to its initial level in a time of order of 10 Myrs.

  12. Status and future transition of rapid urbanizing landscape in central Western Ghats - CA based approach

    NASA Astrophysics Data System (ADS)

    Bharath, S..; Rajan, K. S.; Ramachandra, T. V.

    2014-11-01

    The land use changes in forested landscape are highly complex and dynamic, affected by the natural, socio-economic, cultural, political and other factors. The remote sensing (RS) and geographical information system (GIS) techniques coupled with multi-criteria evaluation functions such as Markov-cellular automata (CA-Markov) model helps in analysing intensity, extent and future forecasting of human activities affecting the terrestrial biosphere. Karwar taluk of Central Western Ghats in Karnataka state, India has seen rapid transitions in its forest cover due to various anthropogenic activities, primarily driven by major industrial activities. A study based on Landsat and IRS derived data along with CA-Markov method has helped in characterizing the patterns and trends of land use changes over a period of 2004-2013, expected transitions was predicted for a set of scenarios through 2013-2022. The analysis reveals the loss of pristine forest cover from 75.51% to 67.36% (1973 to 2013) and increase in agriculture land as well as built-up area of 8.65% (2013), causing impact on local flora and fauna. The other factors driving these changes are the aggregated level of demand for land, local and regional effects of land use activities such as deforestation, improper practices in expansion of agriculture and infrastructure development, deteriorating natural resources availability. The spatio temporal models helped in visualizing on-going changes apart from prediction of likely changes. The CA-Markov based analysis provides us insights into the localized changes impacting these regions and can be useful in developing appropriate mitigation management approaches based on the modelled future impacts. This necessitates immediate measures for minimizing the future impacts.

  13. Meta-analysis of changes in temperature and precipitation in Florida in the context of food-energy-water nexus

    NASA Astrophysics Data System (ADS)

    Anandhi, A.; Sharma, A.

    2017-12-01

    Florida is a hotspot of endemism for plants, vertebrates, and insects outside of the tropics. The state has extensive coastline, with the maximum distance from the coast less than 150 km which has diverse ecosystems and landscapes, as well as habitat for many endangered species. Additionally, agriculture is one of the most important economic resources in Florida and is ranked second in the U.S. for value of vegetable production. Florida's biodiversity is threatened by stressors such as increasing urbanization and population, land-use change and socio-economic growth. Given that, climate change and variability will interact with these stresses, potentially accentuating their negative impacts, there are several studies, concerning climate change impacts on Florida's ecosystem to date. The specific objectives of this study were to demonstrate the decision support tool developed from meta-analysis. The Tool was developed using the temperature and precipitation changes in Florida identified from peer reviewed studies. These change values were then synthesized using simple statistical techniques (e.g., histogram, line plots and density plots). Our results indicate a wide variability in the temperature and precipitation changes observed in the studies for Florida. The studies showed a temperature change ranged between +5 °C and -3 °C, while the precipitation change ranged between +30% and -40% in the state. These changes have series implications on the food-water-energy nexus. Some of the potential implications of these changes in the context of the nexus are discussed using causal chains developed from meta-analysis.

  14. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  15. How Do Land-Use and Climate Change Affect Watershed Health? A Scenario-Based Analysis

    EPA Science Inventory

    With the growing emphasis on biofuel crops and potential impacts of climate variability and change, there is a need to quantify their effects on hydrological processes for developing watershed management plans. Environmental consequences are currently estimated by utilizing comp...

  16. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  17. Applying the ICF framework to study changes in quality-of-life for youth with chronic conditions

    PubMed Central

    McDougall, Janette; Wright, Virginia; Schmidt, Jonathan; Miller, Linda; Lowry, Karen

    2011-01-01

    Objective The objective of this paper is to describe how the ICF framework was applied as the foundation for a longitudinal study of changes in quality-of-life (QoL) for youth with chronic conditions. Method This article will describe the study’s aims, methods, measures and data analysis techniques. It will point out how the ICF framework was used—and expanded upon—to provide a model for studying the impact of factors on changes in QoL for youth with chronic conditions. Further, it will describe the instruments that were chosen to measure the components of the ICF framework and the data analysis techniques that will be used to examine the impact of factors on changes in youths’ QoL. Conclusions Qualitative and longitudinal designs for studying QoL based on the ICF framework can be useful for unraveling the complex ongoing inter-relationships among functioning, contextual factors and individuals’ perceptions of their QoL. PMID:21034288

  18. [Impact of the funding reform of teaching hospitals in Brazil].

    PubMed

    Lobo, M S C; Silva, A C M; Lins, M P E; Fiszman, R

    2009-06-01

    To assess the impact of funding reform on the productivity of teaching hospitals. Based on the Information System of Federal University Hospitals of Brazil, 2003 and 2006 efficiency and productivity were measured using frontier methods with a linear programming technique, data envelopment analysis, and input-oriented variable returns to scale model. The Malmquist index was calculated to detect changes during the study period: 'technical efficiency change,' or the relative variation of the efficiency of each unit; and 'technological change' after frontier shift. There was 51% mean budget increase and improvement of technical efficiency of teaching hospitals (previously 11, 17 hospitals reached the empirical efficiency frontier) but the same was not seen for the technology frontier. Data envelopment analysis set benchmark scores for each inefficient unit (before and after reform) and there was a positive correlation between technical efficiency and teaching intensity and dedication. The reform promoted management improvements but there is a need of further follow-up to assess the effectiveness of funding changes.

  19. Analysis of potential impacts of climate change on wildlife habitats in the U.S.

    Treesearch

    Linda A. Joyce; Curtis H. Flather; Marni Koopman

    2008-01-01

    Resource managers face many challenges in developing management recommendations for wildlife habitat under a changing climate. Our research results offer states a more consistent and holistic approach to analyzing potential threats of climate change to terrestrial wildlife habitat. This process integrates a review of the scientific literature, the State Wildlife Action...

  20. An Exploratory Analysis of the Longitudinal Impact of Principal Change on Elementary School Achievement

    ERIC Educational Resources Information Center

    Hochbein, Craig; Cunningham, Brittany C.

    2013-01-01

    Recent reform initiatives, such as the Title I School Improvement Grants and Race to the Top, recommended a principal change to jump-start school turnaround. Yet, few educational researchers have examined principal change as way to improve schools in a state of systematic reform; furthermore, no large-scale quantitative study has determined the…

  1. The Geographic Distribution and Economic Value of Climate Change-Related Ozone Health Impacts in the United States in 2030

    EPA Science Inventory

    In this U.S.-focused analysis we use outputs from two global climate models (GCMs) driven by different greenhouse gas forcing scenarios as inputs to regional climate and chemical transport models to investigate potential changes in near-term U.S. air quality due to climate change...

  2. The impact of climatic change on wild animals and plants: a meta-analysis

    Treesearch

    Terry L. Root; Jeff T. Price; Kimberly R. Hall; Stephen H. Schneider; Cynthia Rosenzweig; J. Alan Pounds

    2005-01-01

    Over the last 100 years, the global average temperature has increased approximately 0.6° C. Using information from the literature, we examine the extent to which animals and plants are already exhibiting a discernible change consistent with changing temperatures and predicted by our understanding of the species’ physiological constraints. The types of...

  3. Teachers Making Sense of Result-Oriented Teams: A Cognitive Anthropological Approach to Educational Change

    ERIC Educational Resources Information Center

    Wierenga, Sijko J.; Kamsteeg, Frans H.; Simons, P. Robert Jan; Veenswijk, Marcel

    2015-01-01

    Studies on educational change efforts abound but generally limit themselves to post hoc explanations of failure and success. Such explanations are rarely turned into attempts at providing models for predicting change outcomes. The present study tries to develop such a model based on the teachers' impact analysis of a management-driven…

  4. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change on public health and identify appropriate adaptation strategies. Several studies have evaluated the impact of climate change on health, which have included evaluating the current associations between the recent changes in climate, and the evidence base analysis of current, as well as projecting the future impacts of climate change on health. This study will document the use of building an integrated approach for sustainable management of climate, environmental, health surveillance and epidemiological data that will support the assessment of vulnerability, impact and adaption to climate change.

  5. Quantifying Impacts of Land-use and Land Cover Change in a Changing Climate at the Regional Scale using an Integrated Earth System Modeling Approach

    NASA Astrophysics Data System (ADS)

    Huang, M.

    2016-12-01

    Earth System models (ESMs) are effective tools for investigating the water-energy-food system interactions under climate change. In this presentation, I will introduce research efforts at the Pacific Northwest National Laboratory towards quantifying impacts of LULCC on the water-energy-food nexus in a changing climate using an integrated regional Earth system modeling framework: the Platform for Regional Integrated Modeling and Analysis (PRIMA). Two studies will be discussed to showcase the capability of PRIMA: (1) quantifying changes in terrestrial hydrology over the Conterminous US (CONUS) from 2005 to 2095 using the Community Land Model (CLM) driven by high-resolution downscaled climate and land cover products from PRIMA, which was designed for assessing the impacts of and potential responses to climate and anthropogenic changes at regional scales; (2) applying CLM over the CONUS to provide the first county-scale model validation in simulating crop yields and assessing associated impacts on the water and energy budgets using CLM. The studies demonstrate the benefits of incorporating and coupling human activities into complex ESMs, and critical needs to account for the biogeophysical and biogeochemical effects of LULCC in climate impacts studies, and in designing mitigation and adaptation strategies at a scale meaningful for decision-making. Future directions in quantifying LULCC impacts on the water-energy-food nexus under a changing climate, as well as feedbacks among climate, energy production and consumption, and natural/managed ecosystems using an Integrated Multi-scale, Multi-sector Modeling framework will also be discussed.

  6. An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios

    Treesearch

    Jennifer K. Costanza; John W. Coulston; David N. Wear

    2017-01-01

    The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and...

  7. The Impact of Legalizing and Regulating Weed: Issues with Study Design and Emerging Findings in the USA.

    PubMed

    Hunt, Priscillia E; Miles, Jeremy

    2017-01-01

    Evaluations of the impact of medical and recreational marijuana laws rely on quasi- or natural experiments in which researchers exploit changes in the law and attempt to determine the impact of these changes on outcomes. This chapter reviews three key issues of causal inference in observational studies with respect to estimating of impact of medical or recreational laws on marijuana use-intervention definition, outcome measurement, and random assignment of study participants. We show that studies tend to use the same statistical approach (differences-in-differences) and yet find differential impacts of medical marijuana laws on adult use in particular. We demonstrate that these seemingly conflicting findings may be due to different years of analysis, ages of the study sample in each year, and assignment of jurisdictions to the control group versus treatment group.

  8. The Use of Statistically Based Rolling Supply Curves for Electricity Market Analysis: A Preliminary Look

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkin, Thomas J; Larson, Andrew; Ruth, Mark F

    In light of the changing electricity resource mixes across the United States, an important question in electricity modeling is how additions and retirements of generation, including additions in variable renewable energy (VRE) generation could impact markets by changing hourly wholesale energy prices. Instead of using resource-intensive production cost models (PCMs) or building and using simple generator supply curves, this analysis uses a 'top-down' approach based on regression analysis of hourly historical energy and load data to estimate the impact of supply changes on wholesale electricity prices, provided the changes are not so substantial that they fundamentally alter the market andmore » dispatch-order driven behavior of non-retiring units. The rolling supply curve (RSC) method used in this report estimates the shape of the supply curve that fits historical hourly price and load data for given time intervals, such as two-weeks, and then repeats this on a rolling basis through the year. These supply curves can then be modified on an hourly basis to reflect the impact of generation retirements or additions, including VRE and then reapplied to the same load data to estimate the change in hourly electricity price. The choice of duration over which these RSCs are estimated has a significant impact on goodness of fit. For example, in PJM in 2015, moving from fitting one curve per year to 26 rolling two-week supply curves improves the standard error of the regression from 16 dollars/MWh to 6 dollars/MWh and the R-squared of the estimate from 0.48 to 0.76. We illustrate the potential use and value of the RSC method by estimating wholesale price effects under various generator retirement and addition scenarios, and we discuss potential limits of the technique, some of which are inherent. The ability to do this type of analysis is important to a wide range of market participants and other stakeholders, and it may have a role in complementing use of or providing calibrating insights to PCMs.« less

  9. Reviewing Bayesian Networks potentials for climate change impacts assessment and management: A multi-risk perspective.

    PubMed

    Sperotto, Anna; Molina, José-Luis; Torresan, Silvia; Critto, Andrea; Marcomini, Antonio

    2017-11-01

    The evaluation and management of climate change impacts on natural and human systems required the adoption of a multi-risk perspective in which the effect of multiple stressors, processes and interconnections are simultaneously modelled. Despite Bayesian Networks (BNs) are popular integrated modelling tools to deal with uncertain and complex domains, their application in the context of climate change still represent a limited explored field. The paper, drawing on the review of existing applications in the field of environmental management, discusses the potential and limitation of applying BNs to improve current climate change risk assessment procedures. Main potentials include the advantage to consider multiple stressors and endpoints in the same framework, their flexibility in dealing and communicate with the uncertainty of climate projections and the opportunity to perform scenario analysis. Some limitations (i.e. representation of temporal and spatial dynamics, quantitative validation), however, should be overcome to boost BNs use in climate change impacts assessment and management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Climate change, vector-borne diseases and working population.

    PubMed

    Vonesch, Nicoletta; D'Ovidio, Maria Concetta; Melis, Paola; Remoli, Maria Elena; Ciufolini, Maria Grazia; Tomao, Paola

    2016-01-01

    Risks associated with climate change are increasing worldwide and the global effects include altered weather and precipitation patterns, rising temperatures and others; human health can be affected directly and indirectly. This paper is an overview of literature regarding climate changes, their interaction with vector-borne diseases and impact on working population. Articles regarding climate changes as drivers of vector-borne diseases and evidences of occupational cases have been picked up by public databank. Technical documents were also included in the study. Evidences regarding the impact of climate changes on vector-borne diseases in Europe, provided by the analysis of the literature, are presented. Climate-sensitive vector-borne diseases are likely to be emerging due to climate modifications, with impacts on public and occupational health. However, other environmental and anthropogenic drivers such as increasing travelling and trade, deforestation and reforestation, altered land use and urbanization can influence their spread. Further studies are necessary to better understand the phenomenon and implementation of adaptation strategies to protect human health should be accelerated and strengthened.

  11. Experimental and observational studies find contrasting responses of soil nutrients to climate change.

    PubMed

    Yuan, Z Y; Jiao, F; Shi, X R; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-06-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling.

  12. Quantifying Climate Change Hydrologic Risk at NASA Ames Research Center

    NASA Astrophysics Data System (ADS)

    Mills, W. B.; Bromirski, P. D.; Coats, R. N.; Costa-Cabral, M.; Fong, J.; Loewenstein, M.; Milesi, C.; Miller, N.; Murphy, N.; Roy, S.

    2013-12-01

    In response to 2009 Executive Order 13514 mandating U.S. federal agencies to evaluate infrastructure vulnerabilities due to climate variability and change we provide an analysis of future climate flood risk at NASA Ames Research Center (Ames) along South S.F. Bay. This includes likelihood analysis of large-scale water vapor transport, statistical analysis of intense precipitation, high winds, sea level rise, storm surge, estuary dynamics, saturated overland flooding, and likely impacts to wetlands and habitat loss near Ames. We use the IPCC CMIP5 data from three Atmosphere-Ocean General Circulation Models with Radiative Concentration Pathways of 8.5 Wm-2 and 4.5 Wm-2 and provide an analysis of climate variability and change associated with flooding and impacts at Ames. Intense storms impacting Ames are due to two large-scale processes, sub-tropical atmospheric rivers (AR) and north Pacific Aleutian low-pressure (AL) storm systems, both of which are analyzed here in terms of the Integrated Water Vapor (IWV) exceeding a critical threshold within a search domain and the wind vector transporting the IWV from southerly to westerly to northwesterly for ARs and northwesterly to northerly for ALs and within the Ames impact area during 1970-1999, 2040-2069, and 2070-2099. We also include a statistical model of extreme precipitation at Ames based on large-scale climatic predictors, and characterize changes using CMIP5 projections. Requirements for levee height to protect Ames are projected to increase and continually accelerate throughout this century as sea level rises. We use empirical statistical and analytical methods to determine the likelihood, in each year from present through 2099, of water level surpassing different threshold values in SF Bay near NASA Ames. We study the sensitivity of the water level corresponding to a 1-in-10 and 1-in-100 likelihood of exceedance to changes in the statistical distribution of storm surge height and ENSO height, in addition to increasing mean sea level. We examine the implications in the face of the CMIP5 projections. Storm intensification may result in increased flooding hazards at Ames. We analyze how the changes in precipitation intensity will impact the storm drainage system at Ames through continuous stormwater modeling of runoff with the EPA model SWMM 5 and projected downscaled daily precipitation data. Although extreme events will not adversely affect wetland habitats, adaptation projects--especially levee construction and improvement--will require filling of wetlands. Federal law mandates mitigation for fill placed in wetlands. We are currently calculating the potential mitigation burden by habitat type.

  13. Structural and spectroscopic changes to natural nontronite induced by experimental impacts between 10 and 40 GPa

    NASA Astrophysics Data System (ADS)

    Friedlander, Lonia R.; Glotch, Timothy D.; Bish, David L.; Dyar, M. Darby; Sharp, Thomas G.; Sklute, Elizabeth C.; Michalski, Joseph R.

    2015-05-01

    Many phyllosilicate deposits remotely detected on Mars occur within bombarded terrains. Shock metamorphism from meteor impacts alters mineral structures, producing changed mineral spectra. Thus, impacts have likely affected the spectra of remotely sensed Martian phyllosilicates. We present spectral analysis results for a natural nontronite sample before and after laboratory-generated impacts over five peak pressures between 10 and 40 GPa. We conducted a suite of spectroscopic analyses to characterize the sample's impact-induced structural and spectral changes. Nontronite becomes increasingly disordered with increasing peak impact pressure. Every infrared spectroscopic technique used showed evidence of structural changes at shock pressures above ~25 GPa. Reflectance spectroscopy in the visible near-infrared region is primarily sensitive to the vibrations of metal-OH and interlayer H2O groups in the nontronite octahedral sheet. Midinfrared (MIR) spectroscopic techniques are sensitive to the vibrations of silicon and oxygen in the nontronite tetrahedral sheet. Because the tetrahedral and octahedral sheets of nontronite deform differently, impact-driven structural deformation may contribute to differences in phyllosilicate detection between remote sensing techniques sensitive to different parts of the nontronite structure. Observed spectroscopic changes also indicated that the sample's octahedral and tetrahedral sheets were structurally deformed but not completely dehydroxylated. This finding is an important distinction from previous studies of thermally altered phyllosilicates in which dehydroxylation follows dehydration in a stepwise progression preceding structural deformation. Impact alteration may thus complicate mineral-specific identifications based on the location of OH-group bands in remotely detected spectra. This is a key implication for Martian remote sensing arising from our results.

  14. Development of head injury assessment reference values based on NASA injury modeling.

    PubMed

    Somers, Jeffrey T; Granderson, Bradley; Melvin, John W; Tabiei, Ala; Lawrence, Charles; Feiveson, Alan; Gernhardt, Michael; Ploutz-Snyder, Robert; Patalak, John

    2011-11-01

    NASA is developing a new crewed vehicle and desires a lower risk of injury compared to automotive or commercial aviation. Through an agreement with the National Association of Stock Car Auto Racing, Inc. (NASCAR®), an analysis of NASCAR impacts was performed to develop new injury assessment reference values (IARV) that may be more relevant to NASA's context of vehicle landing operations. Head IARVs associated with race car impacts were investigated by analyzing all NASCAR recorded impact data for the 2002-2008 race seasons. From the 4015 impact files, 274 impacts were selected for numerical simulation using a custom NASCAR restraint system and Hybrid III 50th percentile male Finite Element Model (FEM) in LS-DYNA. Head injury occurred in 27 of the 274 selected impacts, and all of the head injuries were mild concussions with or without brief loss of consciousness. The 247 noninjury impacts selected were representative of the range of crash dynamics present in the total set of impacts. The probability of head injury was estimated for each metric using an ordered probit regression analysis. Four metrics had good correlation with the head injury data: head resultant acceleration, head change in velocity, HIC 15, and HIC 36. For a 5% risk of AIS≥1/AIS≥2 head injuries, the following IARVs were found: 121.3/133.2 G (head resultant acceleration), 20.3/22.0 m/s (head change in velocity), 1,156/1,347 (HIC 15), and 1,152/1,342 (HIC 36) respectively. Based on the results of this study, further analysis of additional datasets is recommended before applying these results to future NASA vehicles.

  15. From projected species distribution to food-web structure under climate change.

    PubMed

    Albouy, Camille; Velez, Laure; Coll, Marta; Colloca, Francesco; Le Loc'h, François; Mouillot, David; Gravel, Dominique

    2014-03-01

    Climate change is inducing deep modifications in species geographic ranges worldwide. However, the consequences of such changes on community structure are still poorly understood, particularly the impacts on food-web properties. Here, we propose a new framework, coupling species distribution and trophic models, to predict climate change impacts on food-web structure across the Mediterranean Sea. Sea surface temperature was used to determine the fish climate niches and their future distributions. Body size was used to infer trophic interactions between fish species. Our projections reveal that 54 fish species of 256 endemic and native species included in our analysis would disappear by 2080-2099 from the Mediterranean continental shelf. The number of feeding links between fish species would decrease on 73.4% of the continental shelf. However, the connectance of the overall fish web would increase on average, from 0.26 to 0.29, mainly due to a differential loss rate of feeding links and species richness. This result masks a systematic decrease in predator generality, estimated here as the number of prey species, from 30.0 to 25.4. Therefore, our study highlights large-scale impacts of climate change on marine food-web structure with potential deep consequences on ecosystem functioning. However, these impacts will likely be highly heterogeneous in space, challenging our current understanding of climate change impact on local marine ecosystems. © 2013 John Wiley & Sons Ltd.

  16. Understanding The Individual Impacts Of Human Interventions And Climate Change On Hydrologic Variables In India

    NASA Astrophysics Data System (ADS)

    Sharma, T.; Chhabra, S., Jr.; Karmakar, S.; Ghosh, S.

    2015-12-01

    We have quantified the historical climate change and Land Use Land Cover (LULC) change impacts on the hydrologic variables of Indian subcontinent by using Variable Infiltration Capacity (VIC) mesoscale model at 0.5° spatial resolution and daily temporal resolution. The results indicate that the climate change in India has predominating effects on the basic water balance components such as water yield, evapotranspiration and soil moisture. This analysis is with the assumption of naturalised hydrologic cycle, i.e., the impacts of human interventions like construction of controlled (primarily dams, diversions and reservoirs) and water withdrawals structures are not taken into account. The assumption is unrealistic since there are numerous anthropogenic disturbances which result in large changes on vegetation composition and distribution patterns. These activities can directly or indirectly influence the dynamics of water cycle; subsequently affecting the hydrologic processes like plant transpiration, infiltration, evaporation, runoff and sublimation. Here, we have quantified the human interventions by using the reservoir and irrigation module of VIC model which incorporates the irrigation schemes, reservoir characteristics and water withdrawals. The impact of human interventions on hydrologic variables in many grids are found more predominant than climate change and might be detrimental to water resources at regional level. This spatial pattern of impacts will facilitate water manager and planners to design and station hydrologic structures for a sustainable water resources management.

  17. How much will be economic impact of climate change on water resources? A Meta-Analytic Review of previous literature

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Iseri, Y.; Kanae, S.

    2016-12-01

    Water resources is vital in social and economic activities. Total global water use is increasing, mainly due to economic and population growth in developing countries. It has one of risk with high agreement and robust evidence that freshwater-related risks of climate change increase significantly with increasing greenhouse gas concentrations. It is difficult to compare the risk with other field risk (e.g. agriculture, forestry, sea level rise) for considering both adaptation and mitigation policy with the level of decision makers and public servants. Economic impacts of climate change on water scarcity has been estimated by economic researchers. We have no certainty at all about integration between hydrological and economical fields on global scale. In this study, we highlight key concerns about conventional estimations of economic impact on water resources through meta-analysis. The economic impact on water resource in same base year using consumer price index is shown with increase in the global mean temperature. We clarified four concerns which are involved in 1) classification of economic mechanism, 2) estimated items of economic impact, 3) difference in estimating equations, and 4) definition of parameters related with economic impact of climate change. This study would be essential to next challenge as transdisciplinary research between hydrologic and economic fields.

  18. When can ocean acidification impacts be detected from decadal alkalinity measurements?

    NASA Astrophysics Data System (ADS)

    Carter, B. R.; Frölicher, T. L.; Dunne, J. P.; Rodgers, K. B.; Slater, R. D.; Sarmiento, J. L.

    2016-04-01

    We use a large initial condition suite of simulations (30 runs) with an Earth system model to assess the detectability of biogeochemical impacts of ocean acidification (OA) on the marine alkalinity distribution from decadally repeated hydrographic measurements such as those produced by the Global Ship-Based Hydrographic Investigations Program (GO-SHIP). Detection of these impacts is complicated by alkalinity changes from variability and long-term trends in freshwater and organic matter cycling and ocean circulation. In our ensemble simulation, variability in freshwater cycling generates large changes in alkalinity that obscure the changes of interest and prevent the attribution of observed alkalinity redistribution to OA. These complications from freshwater cycling can be mostly avoided through salinity normalization of alkalinity. With the salinity-normalized alkalinity, modeled OA impacts are broadly detectable in the surface of the subtropical gyres by 2030. Discrepancies between this finding and the finding of an earlier analysis suggest that these estimates are strongly sensitive to the patterns of calcium carbonate export simulated by the model. OA impacts are detectable later in the subpolar and equatorial regions due to slower responses of alkalinity to OA in these regions and greater seasonal equatorial alkalinity variability. OA impacts are detectable later at depth despite lower variability due to smaller rates of change and consistent measurement uncertainty.

  19. Uncertain Environmental Footprint of Current and Future Battery Electric Vehicles.

    PubMed

    Cox, Brian; Mutel, Christopher L; Bauer, Christian; Mendoza Beltran, Angelica; van Vuuren, Detlef P

    2018-04-17

    The future environmental impacts of battery electric vehicles (EVs) are very important given their expected dominance in future transport systems. Previous studies have shown these impacts to be highly uncertain, though a detailed treatment of this uncertainty is still lacking. We help to fill this gap by using Monte Carlo and global sensitivity analysis to quantify parametric uncertainty and also consider two additional factors that have not yet been addressed in the field. First, we include changes to driving patterns due to the introduction of autonomous and connected vehicles. Second, we deeply integrate scenario results from the IMAGE integrated assessment model into our life cycle database to include the impacts of changes to the electricity sector on the environmental burdens of producing and recharging future EVs. Future EVs are expected to have 45-78% lower climate change impacts than current EVs. Electricity used for charging is the largest source of variability in results, though vehicle size, lifetime, driving patterns, and battery size also strongly contribute to variability. We also show that it is imperative to consider changes to the electricity sector when calculating upstream impacts of EVs, as without this, results could be overestimated by up to 75%.

  20. Impacts of smoke-free public places legislation on inequalities in youth smoking uptake: study protocol for a secondary analysis of UK survey data

    PubMed Central

    Craig, Peter; Katikireddi, Srinivasa Vittal; Green, Michael James

    2018-01-01

    Introduction Smoke-free public places legislation has been introduced in many countries to protect the public from the harmful effects of secondhand smoking. While evaluations of smoke-free policies have demonstrated major public health benefits, the impact on youth smoking and inequalities in smoking remains unclear. This project aims to evaluate how smoke-free public places legislation in the UK has impacted on inequalities in youth smoking uptake, and how much of any impact is via changes in parental smoking behaviour. Methods and analysis The study will constitute secondary analyses of UK data (from the British Household Panel Survey and the Understanding Society study). Merging these datasets gives coverage of the period from 1994 to 2016. Missing data will be handled using multiple imputation. The primary outcomes are the rates and inequalities in initiation, experimentation, escalation to daily smoking and quitting among youths aged 11–15 years. Secondary outcomes include the prevalence of smoking among parents of these youths. Discrete-time event history analysis will be conducted to examine whether changes in the probability of youth smoking transitions are associated with the implementation of the smoke-free public places legislation; and whether any observed effects differ by socioeconomic position and parental smoking. A multilevel logistic regression model will be used to investigate whether there is a step change or change in trend for the prevalence of parental smoking after the policy was implemented. The models will be adjusted for relevant factors (including cigarette taxation, the change in the legal age for purchase of cigarettes and e-cigarette prevalence) that may be associated with the implementation of the legislation. Ethics and dissemination This project will use anonymised survey data which have been collected following independent ethical review. The dissemination of the study findings will adopt multiple communication channels targeting both scientific and non-scientific audiences. PMID:29593026

  1. Modeling the Near-Term Risk of Climate Uncertainty: Interdependencies among the U.S. States

    NASA Astrophysics Data System (ADS)

    Lowry, T. S.; Backus, G.; Warren, D.

    2010-12-01

    Decisions made to address climate change must start with an understanding of the risk of an uncertain future to human systems, which in turn means understanding both the consequence as well as the probability of a climate induced impact occurring. In other words, addressing climate change is an exercise in risk-informed policy making, which implies that there is no single correct answer or even a way to be certain about a single answer; the uncertainty in future climate conditions will always be present and must be taken as a working-condition for decision making. In order to better understand the implications of uncertainty on risk and to provide a near-term rationale for policy interventions, this study estimates the impacts from responses to climate change on U.S. state- and national-level economic activity by employing a risk-assessment methodology for evaluating uncertain future climatic conditions. Using the results from the Intergovernmental Panel on Climate Change’s (IPCC) Fourth Assessment Report (AR4) as a proxy for climate uncertainty, changes in hydrology over the next 40 years were mapped and then modeled to determine the physical consequences on economic activity and to perform a detailed 70-industry analysis of the economic impacts among the interacting lower-48 states. The analysis determines industry-level effects, employment impacts at the state level, interstate population migration, consequences to personal income, and ramifications for the U.S. trade balance. The conclusions show that the average risk of damage to the U.S. economy from climate change is on the order of $1 trillion over the next 40 years, with losses in employment equivalent to nearly 7 million full-time jobs. Further analysis shows that an increase in uncertainty raises this risk. This paper will present the methodology behind the approach, a summary of the underlying models, as well as the path forward for improving the approach.

  2. Development of a new methodology for the creation of water temperature scenarios using frequency analysis tool.

    PubMed

    Val, Jonatan; Pino, María Rosa; Chinarro, David

    2018-03-15

    Thermal quality in river ecosystems is a fundamental property for the development of biological processes and many of the human activities linked to the aquatic environment. In the future, this property is going to be threatened due to global change impacts, and basin managers will need useful tools to evaluate these impacts. Currently, future projections in temperature modelling are based on the historical data for air and water temperatures, and the relationship with past temperature scenarios; however, this represents a problem when evaluating future scenarios with new thermal impacts. Here, we analysed the thermal impacts produced by several human activities, and linked them with the decoupling degree of the thermal transfer mechanism from natural systems measured with frequency analysis tools (wavelet coherence). Once this relationship has been established we develop a new methodology for simulating different thermal impacts scenarios in order to project them into future. Finally, we validate this methodology using a site that changed its thermal quality during the studied period due to human impacts. Results showed a high correlation (r 2 =0.84) between the decoupling degree of the thermal transfer mechanisms and the quantified human impacts, obtaining 3 thermal impact scenarios. Furthermore, the graphic representation of these thermal scenarios with its wavelet coherence spectrums showed the impacts of an extreme drought period and the agricultural management. The inter-conversion between the scenarios gave high morphological similarities in the obtained wavelet coherence spectrums, and the validation process clearly showed high efficiency of the developed model against old methodologies when comparing with Nash-Stucliffe criterion. Although there is need for further investigation with different climatic and anthropic management conditions, the developed frequency models could be useful in decision-making processes by managers when faced with future global change impacts. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Realities of weather extremes on daily life in urban India - How quantified impacts infer sensible adaptation options

    NASA Astrophysics Data System (ADS)

    Reckien, D.

    2012-12-01

    Emerging and developing economies are currently undergoing one of the profoundest socio-spatial transitions in their history, with strong urbanization and weather extremes bringing about changes in the economy, forms of living and living conditions, but also increasing risks and altered social divides. The impacts of heat waves and strong rain events are therefore differently perceived among urban residents. Addressing the social differences of climate change impacts1 and expanding targeted adaptation options have emerged as urgent policy priorities, particularly for developing and emerging economies2. This paper discusses the perceived impacts of weather-related extreme events on different social groups in New Delhi and Hyderabad, India. Using network statistics and scenario analysis on Fuzzy Cognitive Maps (FCMs) as part of a vulnerability analysis, the investigation provides quantitative and qualitative measures to compare impacts and adaptation strategies for different social groups. Impacts of rain events are stronger than those of heat in both cities and affect the lower income classes particularly. Interestingly, the scenario analysis (comparing altered networks in which the alteration represents a possible adaptation measure) shows that investments in the water infrastructure would be most meaningful and more effective than investments in, e.g., the traffic infrastructure, despite the stronger burden from traffic disruptions and the resulting concentration of planning and policy on traffic ease and investments. The method of Fuzzy Cognitive Mapping offers a link between perception and modeling, and the possibility to aggregate and analyze the views of a large number of stakeholders. Our research has shown that planners and politicians often know about many of the problems, but are often overwhelmed by the problems in their respective cities and look for a prioritization of adaptation options. FCM provides this need and identifies priority adaptation options when resources are scarce. 1 Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) (2007) Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge New York. 2 TERI (2007) Adaptation to Climate Change in the context of Sustainable Development. Background Paper to the conference ''Climate Change and Sustainable Development: An international workshop to strengthen research and understanding'', 7-8 April 2006, The Energy and Resources Institute, New Delhi.

  4. The possible macroeconomic impact on the UK of an influenza pandemic.

    PubMed

    Keogh-Brown, Marcus R; Wren-Lewis, Simon; Edmunds, W John; Beutels, Philippe; Smith, Richard D

    2010-11-01

    Little is known about the possible impact of an influenza pandemic on a nation's economy. We applied the UK macroeconomic model 'COMPACT' to epidemiological data on previous UK influenza pandemics, and extrapolated a sensitivity analysis to cover more extreme disease scenarios. Analysis suggests that the economic impact of a repeat of the 1957 or 1968 pandemics, allowing for school closures, would be short-lived, constituting a loss of 3.35 and 0.58% of GDP in the first pandemic quarter and year, respectively. A more severe scenario (with more than 1% of the population dying) could yield impacts of 21 and 4.5%, respectively. The economic shockwave would be gravest when absenteeism (through school closures) increases beyond a few weeks, creating policy repercussions for influenza pandemic planning as the most severe economic impact is due to policies to contain the pandemic rather than the pandemic itself.Accounting for changes in consumption patterns made in an attempt to avoid infection worsens the potential impact. Our mild disease scenario then shows first quarter/first year reductions in GDP of 9.5/2.5%, compared with our severe scenario reductions of 29.5/6%. These results clearly indicate the significance of behavioural change over disease parameters. Copyright © 2009 John Wiley & Sons, Ltd.

  5. Using enterprise architecture to analyse how organisational structure impact motivation and learning

    NASA Astrophysics Data System (ADS)

    Närman, Pia; Johnson, Pontus; Gingnell, Liv

    2016-06-01

    When technology, environment, or strategies change, organisations need to adjust their structures accordingly. These structural changes do not always enhance the organisational performance as intended partly because organisational developers do not understand the consequences of structural changes in performance. This article presents a model-based analysis framework for quantitative analysis of the effect of organisational structure on organisation performance in terms of employee motivation and learning. The model is based on Mintzberg's work on organisational structure. The quantitative analysis is formalised using the Object Constraint Language (OCL) and the Unified Modelling Language (UML) and implemented in an enterprise architecture tool.

  6. [MODIS Investigation

    NASA Technical Reports Server (NTRS)

    Abbott, Mark R.

    1996-01-01

    Our first activity is based on delivery of code to Bob Evans (University of Miami) for integration and eventual delivery to the MODIS Science Data Support Team. As we noted in our previous semi-annual report, coding required the development and analysis of an end-to-end model of fluorescence line height (FLH) errors and sensitivity. This model is described in a paper in press in Remote Sensing of the Environment. Once the code was delivered to Miami, we continue to use this error analysis to evaluate proposed changes in MODIS sensor specifications and performance. Simply evaluating such changes on a band by band basis may obscure the true impacts of changes in sensor performance that are manifested in the complete algorithm. This is especially true with FLH that is sensitive to band placement and width. The error model will be used by Howard Gordon (Miami) to evaluate the effects of absorbing aerosols on the FLH algorithm performance. Presently, FLH relies only on simple corrections for atmospheric effects (viewing geometry, Rayleigh scattering) without correcting for aerosols. Our analysis suggests that aerosols should have a small impact relative to changes in the quantum yield of fluorescence in phytoplankton. However, the effect of absorbing aerosol is a new process and will be evaluated by Gordon.

  7. Reconciling timber extraction with biodiversity conservation in tropical forests using reduced-impact logging

    PubMed Central

    Bicknell, Jake E; Struebig, Matthew J; Davies, Zoe G; Baraloto, Christopher

    2015-01-01

    Over 20% of the world's tropical forests have been selectively logged, and large expanses are allocated for future timber extraction. Reduced-impact logging (RIL) is being promoted as best practice forestry that increases sustainability and lowers CO2 emissions from logging, by reducing collateral damage associated with timber extraction. RIL is also expected to minimize the impacts of selective logging on biodiversity, although this is yet to be thoroughly tested. We undertake the most comprehensive study to date to investigate the biodiversity impacts of RIL across multiple taxonomic groups. We quantified birds, bats and large mammal assemblage structures, using a before-after control-impact (BACI) design across 20 sample sites over a 5-year period. Faunal surveys utilized point counts, mist nets and line transects and yielded >250 species. We examined assemblage responses to logging, as well as partitions of feeding guild and strata (understorey vs. canopy), and then tested for relationships with logging intensity to assess the primary determinants of community composition. Community analysis revealed little effect of RIL on overall assemblages, as structure and composition were similar before and after logging, and between logging and control sites. Variation in bird assemblages was explained by natural rates of change over time, and not logging intensity. However, when partitioned by feeding guild and strata, the frugivorous and canopy bird ensembles changed as a result of RIL, although the latter was also associated with change over time. Bats exhibited variable changes post-logging that were not related to logging, whereas large mammals showed no change at all. Indicator species analysis and correlations with logging intensities revealed that some species exhibited idiosyncratic responses to RIL, whilst abundance change of most others was associated with time. Synthesis and applications. Our study demonstrates the relatively benign effect of reduced-impact logging (RIL) on birds, bats and large mammals in a neotropical forest context, and therefore, we propose that forest managers should improve timber extraction techniques more widely. If RIL is extensively adopted, forestry concessions could represent sizeable and important additions to the global conservation estate – over 4 million km2. PMID:25954054

  8. Comparative dynamic analysis of the full Grossman model.

    PubMed

    Ried, W

    1998-08-01

    The paper applies the method of comparative dynamic analysis to the full Grossman model. For a particular class of solutions, it derives the equations implicitly defining the complete trajectories of the endogenous variables. Relying on the concept of Frisch decision functions, the impact of any parametric change on an endogenous variable can be decomposed into a direct and an indirect effect. The focus of the paper is on marginal changes in the rate of health capital depreciation. It also analyses the impact of either initial financial wealth or the initial stock of health capital. While the direction of most effects remains ambiguous in the full model, the assumption of a zero consumption benefit of health is sufficient to obtain a definite for any direct or indirect effect.

  9. Impact during equine locomotion: techniques for measurement and analysis.

    PubMed

    Burn, J F; Wilson, A; Nason, G P

    1997-05-01

    Impact is implicated in the development of several types of musculoskeletal injury in the horse. Characterisation of impact experienced during strenuous exercise is an important first step towards understanding the mechanism for injury. Measurement and analysis of large, short duration impacts is difficult. The measurement system must be able to record transient peaks and high frequencies accurately. The analysis technique must be able to characterise the impact signal in time and frequency. This paper presents a measurement system and analysis technique for the characterisation of large impacts. A piezo-electric accelerometer was securely mounted on the dorsal surface of the horses hoof. Saddle mounted charge amplifiers and a 20 m coaxial cable transferred these data to a PC based logging system. Data were down-loaded onto a UNIX workstation and analysed using a proprietary statistics package. The values of parameters calculated from the time series data were comparable to those of other authors. A wavelet decomposition showed that the frequency profile of the signal changed with time. While most spectral energy was seen at impact, a significant amount of energy was contained in the signal immediately following impact. Over 99% of this energy was contained in frequencies less than 1250 Hz. The sampling rate and the frequency response of a measurement system for recording impact should be chosen carefully to prevent loss or corruption of data. Time scale analysis using a wavelet decomposition is a powerful technique which can be used to characterise impact data. The use of contour plots provides a highly visual representation of the time and frequency localisation of power during impact.

  10. Water-Borne Diseases and Extreme Weather Events in Cambodia: Review of Impacts and Implications of Climate Change

    PubMed Central

    Davies, Grace I.; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol

    2014-01-01

    Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia. PMID:25546280

  11. Water-borne diseases and extreme weather events in Cambodia: review of impacts and implications of climate change.

    PubMed

    Davies, Grace I; McIver, Lachlan; Kim, Yoonhee; Hashizume, Masahiro; Iddings, Steven; Chan, Vibol

    2014-12-23

    Cambodia is prone to extreme weather events, especially floods, droughts and typhoons. Climate change is predicted to increase the frequency and intensity of such events. The Cambodian population is highly vulnerable to the impacts of these events due to poverty; malnutrition; agricultural dependence; settlements in flood-prone areas, and public health, governance and technological limitations. Yet little is known about the health impacts of extreme weather events in Cambodia. Given the extremely low adaptive capacity of the population, this is a crucial knowledge gap. A literature review of the health impacts of floods, droughts and typhoons in Cambodia was conducted, with regional and global information reviewed where Cambodia-specific literature was lacking. Water-borne diseases are of particular concern in Cambodia, in the face of extreme weather events and climate change, due to, inter alia, a high pre-existing burden of diseases such as diarrhoeal illness and a lack of improved sanitation infrastructure in rural areas. A time-series analysis under quasi-Poisson distribution was used to evaluate the association between floods and diarrhoeal disease incidence in Cambodian children between 2001 and 2012 in 16 Cambodian provinces. Floods were significantly associated with increased diarrhoeal disease in two provinces, while the analysis conducted suggested a possible protective effect from toilets and piped water. Addressing the specific, local pre-existing vulnerabilities is vital to promoting population health resilience and strengthening adaptive capacity to extreme weather events and climate change in Cambodia.

  12. An Analysis of the Impact of Traditional Chinese Culture on Chinese Education

    ERIC Educational Resources Information Center

    Mingyuan, Gu

    2006-01-01

    The educational tradition of China has developed from traditional Chinese culture. Without an understanding of the cultural impact on traditional education, it is impossible to comprehend the educational tradition of China and to change its traditional educational ideas. There are fine traditions and feudal remains in Chinese culture which ought…

  13. The Impact of Cooperative Learning on Critical Thinking Test Scores of Associate's Degree Graduates in Southwest Virginia

    ERIC Educational Resources Information Center

    Hodges, James Gregory

    2013-01-01

    This study examined the impact that the teaching technique known as cooperative learning had on the changes between pre- and post-test scores on all sub-categories ("induction, deduction, analysis, evaluation, inference", and "total composite") associated with the "California Critical Thinking Skills Test" (CCTST) for…

  14. Analysis of the Carnegie Classification of Community Engagement: Patterns and Impact on Institutions

    ERIC Educational Resources Information Center

    Driscoll, Amy

    2014-01-01

    This chapter describes the impact that participation in the Carnegie Classification for Community Engagement had on the institutions of higher learning that applied for the classification. This is described in terms of changes in direct community engagement, monitoring and reporting on community engagement, and levels of student and professor…

  15. Fiscal Impacts and Redistributive Effects of the New Federalism on Michigan School Districts.

    ERIC Educational Resources Information Center

    Kearney, C. Philip; Kim, Taewan

    1990-01-01

    The fiscal impacts and redistribution effects of the recently enacted (1981) federal education block grant on 525 elementary and secondary school districts in Michigan were examined using a quasi-experimental time-series design and multiple regression and analysis of covariance techniques. Implications of changes in federal policy are discussed.…

  16. An Analysis of Globalization and Higher Education in Malaysia

    ERIC Educational Resources Information Center

    Arokiasamy, Anantha Raj A.

    2011-01-01

    This study aims to examine the impact of globalization on private higher education in Malaysia. The impact of globalization and the development of knowledge-based economy have caused much dramatic change to the character and functions of higher education in Malaysia. The major trend is the reforming and restructuring of private higher education in…

  17. 75 FR 27372 - University of New Mexico; University of New Mexico AGN-201M Reactor; Environmental Assessment and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-14

    ... is housed in the Nuclear Energy Laboratory (NEL) located near the southwest corner of the University.... Therefore, license renewal should not change the environmental impact of facility operation. Data from the... analysis of human health and environmental impacts presented in this environmental assessment, the proposed...

  18. Potential Impact of Clean Air Act Regulations on Nitrogen Fate and Transport in the Neuse River Basin: a Modeling Investigation Using CMAQ and SWAT

    EPA Science Inventory

    There has been extensive analysis of Clean Air Act Amendment (CAAA) regulation impacts to changes in atmospheric nitrogen deposition; however, few studies have focused on watershed nitrogen transfer particularly regarding long-term predictions. In this study, we investigated impa...

  19. Exploitation of multi-temporal Earth Observation imagery for monitoring land cover change in mining sites

    NASA Astrophysics Data System (ADS)

    Petropoulos, G.; Partsinevelos, P.; Mitraka, Z.

    2012-04-01

    Surface mining has been shown to cause intensive environmental degradation in terms of landscape, vegetation and biological communities. Nowadays, the commercial availability of remote sensing imagery at high spatiotemporal scales, has improved dramatically our ability to monitor surface mining activity and evaluate its impact on the environment and society. In this study we investigate the potential use of Landsat TM imagery combined with diverse classification techniques, namely artificial neural networks and support vector machines for delineating mining exploration and assessing its effect on vegetation in various surface mining sites in the Greek island of Milos. Assessment of the mining impact in the study area is validated through the analysis of available QuickBird imagery acquired nearly concurrently to the TM overpasses. Results indicate the capability of the TM sensor combined with the image analysis applied herein as a potential economically viable solution to provide rapidly and at regular time intervals information on mining activity and its impact to the local environment. KEYWORDS: mining environmental impact, remote sensing, image classification, change detection, land reclamation, support vector machines, neural networks

  20. Analysis of the impact of changes to the Wright Amendment : executive summary.

    DOT National Transportation Integrated Search

    1992-07-01

    A change to the Wright Amendment will result in more service, more competition, lower : fares, and more traffic for the Dallas-Fort Worth Metroplex and the region. Travellers to : or from the Metroplex region will save an estimated $183 million per y...

  1. Locomotive cab design development. volume III: design application analysis - Interim report

    DOT National Transportation Integrated Search

    1976-10-01

    In Volume II of this service of reports on Locomotive Cab Design Development, changes were recommended in the layout and equipment content of locomotive cabs. This report studies the impact of these changes on the interface of the cab with the rest o...

  2. Global change impacts on river ecosystems: A high-resolution watershed study of Ebro river metabolism.

    PubMed

    Val, Jonatan; Chinarro, David; Pino, María Rosa; Navarro, Enrique

    2016-11-01

    Global change is transforming freshwater ecosystems, mainly through changes in basin flow dynamics. This study assessed how the combination of climate change and human management of river flow impacts metabolism of the Ebro River (the largest river basin in Spain, 86,100km(2)), assessed as gross primary production-GPP-and ecosystem respiration-ER. In order to investigate the influence of global change on freshwater ecosystems, an analysis of trends and frequencies from 25 sampling sites of the Ebro river basin was conducted. For this purpose, we examined the effect of anthropogenic flow control on river metabolism with a Granger causality study; simultaneously, took into account the effects of climate change, a period of extraordinary drought (largest in past 140years). We identified periods of sudden flow changes resulting from both human management and global climate effects. From 1998 to 2012, the Ebro River basin was trending toward a more autotrophic condition indicated by P/R ratio. Particularly, the results show that floods that occurred after long periods of low flows had a dramatic impact on the respiration (i.e., mineralization) capacity of the river. This approach allowed for a detailed characterization of the relationships between river metabolism and drought impacts at the watershed level. These findings may allow for a better understanding of the ecological impacts provoked by flow management, thus contributing to maintain the health of freshwater communities and ecosystem services that rely on their integrity. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance.

    PubMed

    Ficetola, Gentile Francesco; Maiorano, Luigi

    2016-07-01

    Climate change is determining a generalized phenological advancement, and amphibians are among the taxa showing the strongest phenological responsiveness to warming temperatures. Amphibians are strongly influenced by climate change, but we do not have a clear picture of how climate influences important parameters of amphibian populations, such as abundance, survival, breeding success and morphology. Furthermore, the relative impact of temperature and precipitation change remains underappreciated. We used Bayesian meta-analysis and meta-regression to quantify the impact of temperature and precipitation change on amphibian phenology, abundance, individual features and performance. We obtained effect sizes from studies performed in five continents. Temperature increase was the major driver of phenological advancement, while the impact of precipitation on phenology was weak. Conversely, population dynamics was mostly determined by precipitation: negative trends were associated with drying regimes. The impact of precipitation on abundance was particularly strong in tropical areas, while the importance of temperature was feeble. Both temperature and precipitation influenced parameters representing breeding performance, morphology, developmental rate and survival, but the response was highly heterogeneous among species. For instance, warming temperature increased body size in some species, and decreased size in others. Similarly, rainy periods increased survival of some species and reduced the survival of others. Our study showed contrasting impacts of temperature and precipitation changes on amphibian populations. Both climatic parameters strongly influenced amphibian performance, but temperature was the major determinant of the phenological changes, while precipitation had the major role on population dynamics, with alarming declines associated with drying trends.

  4. Precipitation Indices as a Tool for Climate-Resilient Development in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Chisolm, R. E.; McKinney, D. C.

    2016-12-01

    The local people living in the mountains of the Ancash Department in Peru have noticed changes in their water supply as climate change has altered precipitation patterns. They are seeking adaptation solutions to help guarantee the reliability of their water supply, but there has been very little analysis of historical data to evaluate and justify these adaptation solutions. In addition, Peru's Ministry of Economy and Finance now requires that climate change be part of the vulnerability assessment for all public investment project proposals, but there are currently no tools or methods of data analysis for including climate change in vulnerability assessments. Compounding the difficulties of considering climate change in the sustainability of development projects is the scarcity of climate data in the region and the difficulty of accessing existing data. To counteract this problem, the Peruvian government recommends using local people's perceptions of change as a proxy for gauged climate data. This work focuses on precipitation data analysis in the mountains of Ancash, Peru. The objectives of this analysis were to determine the accuracy of the local population's perceptions of climate change and to investigate how changes in precipitation patterns might impact public investment projects. The precipitation data analysis was compared to a local study of perceptions of change to determine whether or not these perceptions might be used in lieu of gauged climate data. It appears that people's perceptions of precipitation trends do not accurately reflect the trends observed in the gauged data. The methods of analysis were designed so that the results may be useful for public investment projects with a particular emphasis on agricultural projects. The data were analyzed for trends, seasonal patterns and variability. Dry spells were examined, and the results indicate that droughts during the rainy season have become more frequent and of longer duration. This could have significant impact on agricultural projects. It is likely that the current practice of relying exclusively on wet season rainfall to meet crop water requirements may not be sustainable in the future. Further analysis of climate data is needed to generate a regional climatic characterization that can be used for climate-resilient development projects.

  5. Retrospective analysis of associations between water quality and toxic blooms of golden alga (Prymnesium parvum) in Texas reservoirs: Implications for understanding dispersal mechanisms and impacts of climate change

    USGS Publications Warehouse

    Patino, Reynaldo; Dawson, D.; VanLandeghem, Matthew M.

    2014-01-01

    Toxic blooms of golden alga (GA, Prymnesium parvum) in Texas typically occur in winter or early spring. In North America, they were first reported in Texas in the 1980s, and a marked range expansion occurred in 2001. Although there is concern about the influence of climate change on the future distribution of GA, factors responsible for past dispersals remain uncertain. To better understand the factors that influence toxic bloom dispersal in reservoirs, this study characterized reservoir water quality associated with toxic GA blooms since 2001, and examined trends in water quality during a 20-year period bracketing the 2001 expansion. Archived data were analyzed for six impacted and six nonimpacted reservoirs from two major Texas basins: Brazos River and Colorado River. Data were simplified for analysis by pooling spatially (across sampling stations) and temporally (winter, December-February) within reservoirs and generating depth-corrected (1 m) monthly values. Classification tree analysis [period of record (POR), 2001-2010] using salinity-associated variables (specific conductance, chloride, sulfate), dissolved oxygen (DO), pH, temperature, total hardness, potassium, nitrate+nitrite, and total phosphorus indicated that salinity best predicts the toxic bloom occurrence. Minimum estimated salinities for toxic bloom formation were 0.59 and 1.02 psu in Brazos and Colorado River reservoirs, respectively. Principal component analysis (POR, 2001-2010) indicated that GA habitat is best defined by higher salinity relative to nonimpacted reservoirs, with winter DO and pH also being slightly higher and winter temperature slightly lower in impacted reservoirs. Trend analysis, however, did not reveal monotonic changes in winter water quality of GA-impacted reservoirs during the 20-year period (1991-2010) bracketing the 2001 dispersal. Therefore, whereas minimum levels of salinity are required for GA establishment and toxic blooms in Texas reservoirs, the lack of trends in water quality suggests that conditions favorable for toxic blooms pre-date the 2001 expansion. These observations are consistent with a climate change-independent scenario of past GA dispersals in Texas reservoirs driven by novel introductions into pre-existing favorable habitat. Reports of latent GA populations in certain nonimpacted reservoirs, however, provide a plausible scenario of future dispersals characterized by prolonged periods between colonization and toxic bloom development and driven by changes in water quality, natural, or anthropogenic.

  6. Research impact in the community-based health sciences: an analysis of 162 case studies from the 2014 UK Research Excellence Framework.

    PubMed

    Greenhalgh, Trisha; Fahy, Nick

    2015-09-21

    The 2014 UK Research Excellence Framework (REF2014) generated a unique database of impact case studies, each describing a body of research and impact beyond academia. We sought to explore the nature and mechanism of impact in a sample of these. The study design was manual content analysis of a large sample of impact case studies (producing mainly quantitative data), plus in-depth interpretive analysis of a smaller sub-sample (for qualitative detail), thereby generating both breadth and depth. For all 162 impact case studies submitted to sub-panel A2 in REF2014, we extracted data on study design(s), stated impacts and audiences, mechanisms of impact, and efforts to achieve impact. We analysed four case studies (selected as exemplars of the range of approaches to impact) in depth, including contacting the authors for their narratives of impact efforts. Most impact case studies described quantitative research (most commonly, trials) and depicted a direct, linear link between research and impact. Research was said to have influenced a guideline in 122 case studies, changed policy in 88, changed practice in 84, improved morbidity in 44 and reduced mortality in 25. Qualitative and participatory research designs were rare, and only one case study described a co-production model of impact. Eighty-two case studies described strong and ongoing linkages with policymakers, but only 38 described targeted knowledge translation activities. In 40 case studies, no active efforts to achieve impact were described. Models of good implementation practice were characterised by an ethical commitment by researchers, strong institutional support and a proactive, interdisciplinary approach to impact activities. REF2014 both inspired and documented significant efforts by UK researchers to achieve impact. But in contrast with the published evidence on research impact (which depicts much as occurring indirectly through non-linear mechanisms), this sub-panel seems to have captured mainly direct and relatively short-term impacts one step removed from patient outcomes. Limited impacts on morbidity and mortality, and researchers' relatively low emphasis on the processes and interactions through which indirect impacts may occur, are concerns. These findings have implications for multi-stakeholder research collaborations such as UK National Institute for Health Research Collaborations for Leadership in Applied Health Research and Care, which are built on non-linear models of impact.

  7. Measuring the impact of medicines regulatory interventions – Systematic review and methodological considerations

    PubMed Central

    Morales, Daniel R.; Pacurariu, Alexandra; Kurz, Xavier

    2017-01-01

    Aims Evaluating the public health impact of regulatory interventions is important but there is currently no common methodological approach to guide this evaluation. This systematic review provides a descriptive overview of the analytical methods for impact research. Methods We searched MEDLINE and EMBASE for articles with an empirical analysis evaluating the impact of European Union or non‐European Union regulatory actions to safeguard public health published until March 2017. References from systematic reviews and articles from other known sources were added. Regulatory interventions, data sources, outcomes of interest, methodology and key findings were extracted. Results From 1246 screened articles, 229 were eligible for full‐text review and 153 articles in English language were included in the descriptive analysis. Over a third of articles studied analgesics and antidepressants. Interventions most frequently evaluated are regulatory safety communications (28.8%), black box warnings (23.5%) and direct healthcare professional communications (10.5%); 55% of studies measured changes in drug utilization patterns, 27% evaluated health outcomes, and 18% targeted knowledge, behaviour or changes in clinical practice. Unintended consequences like switching therapies or spill‐over effects were rarely evaluated. Two‐thirds used before–after time series and 15.7% before–after cross‐sectional study designs. Various analytical approaches were applied including interrupted time series regression (31.4%), simple descriptive analysis (28.8%) and descriptive analysis with significance tests (23.5%). Conclusion Whilst impact evaluation of pharmacovigilance and product‐specific regulatory interventions is increasing, the marked heterogeneity in study conduct and reporting highlights the need for scientific guidance to ensure robust methodologies are applied and systematic dissemination of results occurs. PMID:29105853

  8. Valuing Climate Change Impacts on Human Health: Empirical Evidence from the Literature

    PubMed Central

    Markandya, Anil; Chiabai, Aline

    2009-01-01

    There is a broad consensus that climate change will increase the costs arising from diseases such as malaria and diarrhea and, furthermore, that the largest increases will be in developing countries. One of the problems is the lack of studies measuring these costs systematically and in detail. This paper critically reviews a number of studies about the costs of planned adaptation in the health context, and compares current health expenditures with MDGs which are felt to be inadequate when considering climate change impacts. The analysis serves also as a critical investigation of the methodologies used and aims at identifying research weaknesses and gaps. PMID:19440414

  9. Impacts of Changed Extratropical Storm Tracks on Arctic Sea Ice Export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, J.; Zhang, X.; Wang, Z.

    2017-12-01

    Studies have indicated a poleward shift of extratropical storm tracks and intensification of Arctic storm activities, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of dynamic effect on changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and activities on Arctic sea ice export through Fram Strait through ocean-sea ice model simulations. The model employed is the high-resolution Massachusetts Institute of Technology general circulation model (MITgcm), which was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  10. Bioethics and Climate Change: A Response to Macpherson and Valles.

    PubMed

    Resnik, David B

    2016-10-01

    Two articles published in Bioethics recently have explored the ways that bioethics can contribute to the climate change debate. Cheryl Cox Macpherson argues that bioethicists can play an important role in the climate change debate by helping the public to better understand the values at stake and the trade-offs that must be made in individual and social choices, and Sean Valles claims that bioethicists can contribute to the debate by framing the issues in terms of the public health impacts of climate change. While Macpherson and Valles make valid points concerning a potential role for bioethics in the climate change debate, it is important to recognize that much more than ethical analysis and reflection will be needed to significantly impact public attitudes and government policies. © 2016 John Wiley & Sons Ltd.

  11. Attenuating initial beliefs: increasing the acceptance of anthropogenic climate change information by reflecting on values.

    PubMed

    van Prooijen, Anne-Marie; Sparks, Paul

    2014-05-01

    Anthropogenic climate change information tends to be interpreted against the backdrop of initial environmental beliefs, which can lead to some people being resistant toward the information. In this article (N = 88), we examined whether self-affirmation via reflection on personally important values could attenuate the impact of initial beliefs on the acceptance of anthropogenic climate change evidence. Our findings showed that initial beliefs about the human impact on ecological stability influenced the acceptance of information only among nonaffirmed participants. Self-affirmed participants who were initially resistant toward the information showed stronger beliefs in the existence of climate change risks and greater acknowledgment that individual efficacy has a role to play in reducing climate change risks than did their nonaffirmed counterparts. © 2013 Society for Risk Analysis.

  12. Climate change impact on water resources - Example of an anthropized basin (Llobregat, Spain)

    NASA Astrophysics Data System (ADS)

    Versini, P.-A.; Pouget, L.; Mc Ennis, S.; Guiu Carrio, R.; Sempere-Torres, D.; Escaler, I.

    2012-04-01

    The impact of climate change is one of the central topics of study by water agencies and companies. Indeed, the forecasted increase of atmospheric temperature may change the amount, frequency and intensity of precipitation and affect the hydrological cycle: runoff, infiltration, aquifer recharge, etc… Moreover, global change combining climate change but also land use and water demand changes, may cause very important impacts on water availability and quality. Global change scenarios in Spain describe a general trend towards increased temperature and water demand, and reduced precipitation as a result of its geographical situation and socio-economic characteristics. The European project WATER CHANGE (included in the LIFE + Environment Policy and Governance program) aims to develop a modeling system to assess the Global Change impacts, and their associated uncertainties, on water availability for water supply and water use. Its objective is to help river basin agencies and water companies in their long term planning and in the definition of adaptation measures. This work presents the results obtained by applying the modelling system to the Llobregat river basin (Spain). This is an anthropized catchment of about 5000 km2, where water resources are used for different purposes, such as drinking water production, agriculture irrigation, industry and hydroelectric energy production. Based on future global change scenarios, the water resources system has been assessed in terms of water deficit and supply. A cost-benefit analysis has also been conducted in order to evaluate every realistic measure that could optimize and improve the system.

  13. Ballistics Trajectory and Impact Analysis for Insensitive Munitions and Hazard Classification Project Criteria

    NASA Astrophysics Data System (ADS)

    Baker, Ernest; van der Voort, Martijn; NATO Munitions Safety Information Analysis Centre Team

    2017-06-01

    Ballistics trajectory and impact conditions calculations were conducted in order to investigate the origin of the projection criteria for Insensitive Munitions (IM) and Hazard Classification (HC). The results show that the existing IM and HC projection criteria distance-mass relations are based on launch energy rather than impact conditions. The distance-mass relations were reproduced using TRAJCAN trajectory analysis by using launch energies of 8, 20 and 79J and calculating the maximum impact distance reached by a natural fragment (steel) launched from 1 m height. The analysis shows that at the maximum throw distances, the impact energy is generally much smaller than the launch energy. Using maximum distance projections, new distance-mass relations were developed that match the criteria based on impact energy at 15m and beyond rather than launch energy. Injury analysis was conducted using penetration injury and blunt injury models. The smallest projectile masses in the distance-mass relations are in the transition region from penetration injury to blunt injury. For this reason, blunt injury dominates the assessment of injury or lethality. State of the art blunt injury models predict only minor injury for a 20J impact. For a 79J blunt impact, major injury is likely to occur. MSIAC recommends changing the distance-mass relation that distinguishes a munitions burning response to a 20 J impact energy criterion at 15 m and updating of the UN Orange Book.

  14. Determinants of immediate price impacts at the trade level in an emerging order-driven market

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing

    2012-02-01

    Common wisdom argues that, in general, large trades cause large price changes, whereas small trades cause small price changes. However, for extremely large price changes, the trade size and news play a minor role, while liquidity (especially price gaps on the limit order book) is a more influential factor. Hence, there might be other factors influencing the immediate price impacts of trades. In this paper, through mechanical analysis of price variations before and after a trade of arbitrary size, we identify that the trade size, the bid-ask spread, the price gaps and the outstanding volumes at the bid and ask sides of the limit order book have an impact on the changes in prices. We propose two regression models to investigate the influence of these microscopic factors on the price impact of buyer-initiated partially filled trades, seller-initiated partially filled trades, buyer-initiated filled trades and seller-initiated filled trades. We find that they have quantitatively similar explanatory powers and these factors can account for up to 44% of the price impacts. Large trade sizes, wide bid-ask spreads, high liquidity at the same side and low liquidity at the opposite side will cause a large price impact. We also find that the liquidity at the opposite side has a more influential impact than the liquidity at the same side. Our results shed new light on the determinants of immediate price impacts.

  15. Climate change effects on environment (marine, atmospheric and terrestrial) and human perception in an Italian Region (Marche) and the nearby northern Adriatic Sea.

    NASA Astrophysics Data System (ADS)

    Appiotti, F.; Krzelj, M.; Marincioni, F.; Russo, A.

    2012-04-01

    An integrated analysis of recent climate change, including atmosphere, sea and land, as well as some of the impacts on society, has been conducted on the Marche Region in central Italy and the northern portion of the Adriatic Sea. The Marche Region is one of the 20 administrative divisions of Italy, located at a latitude approximately 43° North, with a total surface area of 9,366 km2 and 1,565,000 residents. The northern Adriatic Sea is the northernmost area of the Mediterranean Sea, and it has peculiar relevance for several aspects (environment, tourism, fisheries, economy). The collected environmental data included meteorological stations (daily maximum and minimum air temperature, daily precipitation), oceanographic stations (sea temperature, salinity, dissolved oxygen, nutrient salts concentration, chlorophyll) and river flows, over the last 50 years. The collected social data include 800 questionnaires and interviews carried out on selected samples of residents, decision-makers and emergency managers. These questionnaires and interviews aimed at highlighting the perception of climate change risks. The trend analysis of air temperature and precipitation data detailed an overall temperature increase in all seasons and rainfall decreases in Winter, Spring and Summer with Autumn increases, influencing river flow changes. Marine data showed a relevant warming of the water column in the period after 1990 in comparison with the previous period, particularly in the cold season. Surface salinity increased in Spring and Summer and strongly decreased in Autumn and Winter (according with the precipitation and river flow changes). These last mentioned changes, combined with anthropogenic effects, also influenced the marine ecosystems, with changes of nutrient salts, chlorophyll and dissolved oxygen. Changes in nutrient discharge from rivers influenced the average marine chlorophyll concentration reduction and the consequent average reduction of warm season hypoxic conditions. Indeed, all these changes influence several other aspects of the North Adriatic marine environment, such as coastal erosion, ecosystems, biological productivity, mucilage phenomena, harmful algal blooms, etc.. These impacts in the coastal areas are also evident inland. For example, the analysis of agro-meteorological extreme indices (aridity index, potential water deficit) suggests negative impacts in terms of soil deterioration and agricultural productivity, particularly evident in the area close to the coast. Finally, the analysis of social data revealed awareness among local residents of these impacts and associated risks connected to climate change. Yet, this awareness does not appear translated into long term adaptation plans. Apparently, the inability to define shared collective strategies is the result of a feeble sense of individual and institutional responsibility about climate matters, and ineffective information exchange among citizens, public administrators and the scientific community.

  16. Human health impacts avoided under the Paris Agreement on climate change

    NASA Astrophysics Data System (ADS)

    Mitchell, Dann

    2017-04-01

    This analyses makes use of the experiments and model data from the Half a degree Additional warming; Prognosis and Projected Impacts (HAPPI; www.happimip.org) analysis (Mitchell et al, 2016a). HAPPI is unique in that it is specifically designed to address the Paris Agreement priorities on climate impacts, by using equilibrated climates and super-ensembles, thereby enabling robust analysis of extremes. Here we first look at extreme hot and cold spells, and then make use of the most recent heat-mortality models, and heat stress metrics to look at any differences between 1.5C and 2C worlds compared to normal.

  17. Cost, volume and profitability analysis.

    PubMed

    Tarantino, David P

    2002-01-01

    If you want to increase your income by seeing more patients, it's important to figure out the financial impact such a move could have on your practice. Learn how to run a cost, volume, and profitability analysis to determine how business decisions can change your financial picture.

  18. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGES

    McFarland, James; Zhou, Yuyu; Clarke, Leon; ...

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  19. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  20. Hurricane Isaac: observations and analysis of coastal change

    USGS Publications Warehouse

    Guy, Kristy K.; Stockdon, Hilary F.; Plant, Nathaniel G.; Doran, Kara S.; Morgan, Karen L.M.

    2013-01-01

    Understanding storm-induced coastal change and forecasting these changes require knowledge of the physical processes associated with a storm and the geomorphology of the impacted coastline. The primary physical process of interest is sediment transport that is driven by waves, currents, and storm surge associated with storms. Storm surge, which is the rise in water level due to the wind, barometric pressure, and other factors, allows both waves and currents to impact parts of the coast not normally exposed to these processes. Coastal geomorphology reflects the coastal changes associated with extreme-storm processes. Relevant geomorphic variables that are observable before and after storms include sand dune elevation, beach width, shoreline position, sediment grain size, and foreshore beach slope. These variables, in addition to hydrodynamic processes, can be used to quantify coastal change and are used to predict coastal vulnerability to storms (Stockdon and others, 2007). The U.S. Geological Survey (USGS) National Assessment of Coastal Change Hazards (NACCH) project (http://coastal.er.usgs.gov/national-assessment/) provides hazard information to those concerned about the Nation’s coastlines, including residents of coastal areas, government agencies responsible for coastal management, and coastal researchers. Extreme-storm research is a component of the NACCH project (http://coastal.er.usgs.gov/hurricanes/) that includes development of predictive understanding, vulnerability assessments using models, and updated observations in response to specific storm events. In particular, observations were made to determine morphological changes associated with Hurricane Isaac, which made landfall in the United States first at Southwest Pass, at the mouth of the Mississippi River, at 0000 August 29, 2012 UTC (Coordinated Universal Time) and again, 8 hours later, west of Port Fourchon, Louisiana (Berg, 2013). Methods of observation included oblique aerial photography, airborne light detection and ranging (lidar) topographic surveys, and ground-based topographic surveys. This report documents data-collection efforts and presents qualitative and quantitative descriptions of hurricane-induced changes to the shoreline, beaches, dunes, and infrastructure in the region that was heavily impacted by Hurricane Isaac. The report is divided into the following sections: Section 1: Introduction Section 2: Storm Overview, presents a synopsis of the storm, including meteorological evolution, wind speed impact area, wind-wave generation, and storm-surge extent and magnitudes. Section 3: Coastal-Change Observations, describes data-collection missions, including acquisition of oblique aerial photography and airborne lidar topographic surveys, in response to Hurricane Isaac. Section 4: Coastal-Change Analysis, describes data-analysis methods and observations of coastal change.

  1. Simulation of Land-Cover Change in Taipei Metropolitan Area under Climate Change Impact

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Ching; Huang, Thomas C. C.

    2014-02-01

    Climate change causes environment change and shows up on land covers. Through observing the change of land use, researchers can find out the trend and potential mechanism of the land cover change. Effective adaptation policies can affect pattern of land cover change and may decrease the risks of climate change impacts. By simulating land use dynamics with scenario settings, this paper attempts to explore the relationship between climate change and land-cover change through efficient adaptation polices. It involves spatial statistical model in estimating possibility of land-cover change, cellular automata model in modeling land-cover dynamics, and scenario analysis in response to adaptation polices. The results show that, without any control, the critical eco-areas, such as estuarine areas, will be destroyed and people may move to the vulnerable and important economic development areas. In the other hand, under the limited development condition for adaptation, people migration to peri-urban and critical eco-areas may be deterred.

  2. Inferential monitoring of global change impact on biodiversity through remote sensing and species distribution modeling

    NASA Astrophysics Data System (ADS)

    Sangermano, Florencia

    2009-12-01

    The world is suffering from rapid changes in both climate and land cover which are the main factors affecting global biodiversity. These changes may affect ecosystems by altering species distributions, population sizes, and community compositions, which emphasizes the need for a rapid assessment of biodiversity status for conservation and management purposes. Current approaches on monitoring biodiversity rely mainly on long term observations of predetermined sites, which require large amounts of time, money and personnel to be executed. In order to overcome problems associated with current field monitoring methods, the main objective of this dissertation is the development of framework for inferential monitoring of the impact of global change on biodiversity based on remotely sensed data coupled with species distribution modeling techniques. Several research pieces were performed independently in order to fulfill this goal. First, species distribution modeling was used to identify the ranges of 6362 birds, mammals and amphibians in South America. Chapter 1 compares the power of different presence-only species distribution methods for modeling distributions of species with different response curves to environmental gradients and sample sizes. It was found that there is large variability in the power of the methods for modeling habitat suitability and species ranges, showing the importance of performing, when possible, a preliminary gradient analysis of the species distribution before selecting the method to be used. Chapter 2 presents a new methodology for the redefinition of species range polygons. Using a method capable of establishing the uncertainty in the definition of existing range polygons, the automated procedure identifies the relative importance of bioclimatic variables for the species, predicts their ranges and generates a quality assessment report to explore prediction errors. Analysis using independent validation data shows the power of this methodology to redefine species ranges in a more biophysically reasonable way. If a specific variable is important for a species, a change in that variable is likely to impact the species. Chapter 3 presents a methodology to identify the impact of environmental changes on 6362 species of mammals, amphibians and birds of South America, based on per-species measures of sensitivity, marginality, range restriction and trends in remotely sensed bioclimatic variables. Maps of the impact of environmental changes on vertebrates of South America were generated, with the Andes, Patagonia and the Atlantic Forest experiencing the strongest impact of environmental change in this over the past quarter century. Contributions of this dissertation include the development of new range polygons for all mammals, amphibians and birds of South America, as well as a methodology to re-draw the polygons in any other region of the world. This dataset is essential for both biodiversity analysis and conservation prioritization. Other contributions are the generation of maps of impact of global change on biodiversity, together with a framework for the development and updating of those maps. Conservation and monitoring agencies will find this research useful not only for the selection of new conservation areas but also for prioritizing areas for field monitoring.

  3. Blueprint for Change in Ohio: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  4. Blueprint for Change in Utah: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  5. Blueprint for Change in Mississippi: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  6. Blueprint for Change in Florida: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  7. Blueprint for Change in Maryland: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  8. Blueprint for Change in Louisiana: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  9. Blueprint for Change in South Dakota: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  10. Blueprint for Change in Massachusetts: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  11. Blueprint for Change in Illinois: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  12. Blueprint for Change in Nevada: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  13. Blueprint for Change in Iowa: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  14. Blueprint for Change in Washington: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  15. Blueprint for Change in Alabama: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  16. Blueprint for Change in North Dakota: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  17. Blueprint for Change in Michigan: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  18. Predicting the rate of change in timber value for forest stands infested with gypsy moth

    Treesearch

    David A. Gansner; Owen W. Herrick

    1982-01-01

    Presents a method for estimating the potential impact of gypsy moth attacks on forest-stand value. Robust regression analysis is used to develop an equation for predicting the rate of change in timber value from easy-to-measure key characteristics of stand condition.

  19. LAND USE CHANGE DUE TO URBANIZATION FOR THE NEUSE RIVER BASIN

    EPA Science Inventory

    The Urban Growth Model (UGM) was applied to analysis of land use change in the Neuse River Basin as part of a larger project for estimating the regional and broader impact of urbanization. UGM is based on cellular automation (CA) simulation techniques developed at the University...

  20. 76 FR 15888 - Special Regulations; Areas of the National Park System, Cape Cod National Seashore

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-22

    ... the public of the regulatory change. The proposed rule follows an extensive environmental analysis... rule would implement the Cape Cod National Seashore Hunting Program Environmental Impact Statement of... posted without change to http://www.regulations.gov , including any personal information provided. For...

  1. Blueprint for Change in North Carolina: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  2. Climate change and watershed mercury export: a multiple projection and model analysis

    EPA Science Inventory

    Future shifts in climatic conditions may impact watershed mercury (Hg) dynamics and transport. We apply an ensemble of watershed models to simulate and assess the responses of hydrological and total Hg (HgT) fluxes and concentrations to two climate change projections in the US Co...

  3. Blueprint for Change in Minnesota: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  4. Blueprint for Change in Pennsylvania: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  5. Blueprint for Change in Hawaii: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  6. Blueprint for Change in Texas: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  7. Blueprint for Change in Idaho: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  8. Blueprint for Change in New Hampshire: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  9. Blueprint for Change in Arizona: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  10. Blueprint for Change in New Mexico: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  11. Blueprint for Change in Wisconsin: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  12. Blueprint for Change in Montana: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  13. Blueprint for Change in Arkansas: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  14. Blueprint for Change in Kansas: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  15. Blueprint for Change in West Virginia: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  16. Blueprint for Change in Vermont: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  17. Blueprint for Change in Oregon: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  18. Blueprint for Change in South Carolina: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  19. Blueprint for Change in Alaska: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  20. Blueprint for Change in Wyoming: State Teacher Policy Yearbook, 2010

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    The 2009 "State Teacher Policy Yearbook" provided a comprehensive review of states' policies that impact the teaching profession. As a companion to last year's comprehensive state-by-state analysis, the 2010 edition provides each state with an individualized "Blueprint for Change," building off last year's "Yearbook"…

  1. Minimizing impacts of land use change on ecosystem services using multi-criteria heuristic analysis.

    PubMed

    Keller, Arturo A; Fournier, Eric; Fox, Jessica

    2015-06-01

    Development of natural landscapes to support human activities impacts the capacity of the landscape to provide ecosystem services. Typically, several ecosystem services are impacted at a single development site and various footprint scenarios are possible, thus a multi-criteria analysis is needed. Restoration potential should also be considered for the area surrounding the permanent impact site. The primary objective of this research was to develop a heuristic approach to analyze multiple criteria (e.g. impacts to various ecosystem services) in a spatial configuration with many potential development sites. The approach was to: (1) quantify the magnitude of terrestrial ecosystem service (biodiversity, carbon sequestration, nutrient and sediment retention, and pollination) impacts associated with a suite of land use change scenarios using the InVEST model; (2) normalize results across categories of ecosystem services to allow cross-service comparison; (3) apply the multi-criteria heuristic algorithm to select sites with the least impact to ecosystem services, including a spatial criterion (separation between sites). As a case study, the multi-criteria impact minimization algorithm was applied to InVEST output to select 25 potential development sites out of 204 possible locations (selected by other criteria) within a 24,000 ha property. This study advanced a generally applicable spatial multi-criteria approach for 1) considering many land use footprint scenarios, 2) balancing impact decisions across a suite of ecosystem services, and 3) determining the restoration potential of ecosystem services after impacts. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Polarizing news? Representations of threat and efficacy in leading US newspapers' coverage of climate change.

    PubMed

    Feldman, Lauren; Hart, P Sol; Milosevic, Tijana

    2017-05-01

    This study examines non-editorial news coverage in leading US newspapers as a source of ideological differences on climate change. A quantitative content analysis compared how the threat of climate change and efficacy for actions to address it were represented in climate change coverage across The New York Times, The Wall Street Journal, The Washington Post, and USA Today between 2006 and 2011. Results show that The Wall Street Journal was least likely to discuss the impacts of and threat posed by climate change and most likely to include negative efficacy information and use conflict and negative economic framing when discussing actions to address climate change. The inclusion of positive efficacy information was similar across newspapers. Also, across all newspapers, climate impacts and actions to address climate change were more likely to be discussed separately than together in the same article. Implications for public engagement and ideological polarization are discussed.

  3. Increasing temperature cuts back crop yields in Hungary over the last 90 years.

    PubMed

    Pinke, Zsolt; Lövei, Gábor L

    2017-12-01

    The transformation of climatic regime has an undeniable impact on plant production, but we rarely have long enough date series to examine the unfolding of such effects. The clarification of the relationship between crop plants and climate has a near-immediate importance due to the impending human-made global change. This study investigated the relationship between temperature, precipitation, drought intensity and the yields of four major cereals in Hungary between 1921 and 2010. The analysis of 30-year segments indicated a monotonously increasing negative impact of temperature on crop yields. A 1°C temperature increase reduced the yield of the four main cereals by 9.6%-14.8% in 1981-2010, which revealed the vulnerability of Eastern European crop farming to recent climate change. Climate accounted for 17%-39% of yield variability over the past 90 years, but this figure reached 33%-67% between 1981 and 2010. Our analysis supports the claim that the mid-20th century green revolution improved yields "at the mercy of the weather": during this period, the impact of increasing fertilization and mechanisation coincided with climatic conditions that were more favourable than today. Crop yields in Eastern Europe have been stagnating or decreasing since the mid-1980s. Although usually attributed to the large socio-economic changes sweeping the region, our analysis indicates that a warming climate is at least partially responsible for this trend. Such a robust impact of increasing temperatures on crop yields also constitutes an obvious warning for this core grain-growing region of the world. © 2017 John Wiley & Sons Ltd.

  4. Climate change, land slide risks and sustainable development, risk analysis and decision support process tool

    NASA Astrophysics Data System (ADS)

    Andersson-sköld, Y. B.; Tremblay, M.

    2011-12-01

    Climate change is in most parts of Sweden expected to result in increased precipitation and increased sea water levels causing flooding, erosion, slope instability and related secondary consequences. Landslide risks are expected to increase with climate change in large parts of Sweden due to increased annual precipitation, more intense precipitation and increased flows combined with dryer summers. In response to the potential climate related risks, and on the commission of the Ministry of Environment, the Swedish Geotechnical Institute (SGI) is at present performing a risk analysis project for the most prominent landslide risk area in Sweden: the Göta river valley. As part of this, a methodology for land slide ex-ante consequence analysis today, and in a future climate, has been developed and applied in the Göta river valley. Human life, settlements, industry, contaminated sites, infrastructure of national importance are invented and assessed important elements at risk. The goal of the consequence analysis is to produce a map of geographically distributed expected losses, which can be combined with a corresponding map displaying landslide probability to describe the risk (the combination of probability and consequence of a (negative) event). The risk analysis is GIS-aided in presenting and visualise the risk and using existing databases for quantification of the consequences represented by ex-ante estimated monetary losses. The results will be used on national, regional and as an indication of the risk on local level, to assess the need of measures to mitigate the risk. The costs and environmental and social impacts to mitigate the risk are expected to be very high but the costs and impacts of a severe landslide are expected to be even higher. Therefore, civil servants have pronounced a need of tools to assess both the vulnerability and a more holistic picture of impacts of climate change adaptation measures. At SGI a tool for the inclusion of sustainability aspects in the decision making process on adaptation measures has been developed and is currently being tested in municipalities including central Gothenburg, and smaller municipalities in Sweden and Norway. The tool is a matrix based decision support tool (MDST) aiming for encoring discussion among experts and stakeholders. The first steps in the decision process include identification, inventory and assessment of the potential impacts of climate change such as landslides (or other events or actions). These steps are also included in general technical/physical risk and vulnerability analyses such as the risk analysis of the Göta älv valley. The MDST also includes further subsequent steps of the risk management process, and the full sequence of the MDST includes risk identification, risk specification, risk assessment, identification of measures, impact analysis of measures including an assessment of environmental, social and economical costs and benefits, a weight process and visualisation of the result. Here the MDST with some examples from the methodology for the Göta river valley analysis and the risk mitigation analysis from Sweden and Norway will be presented.

  5. Factors associated with severe impact of lipodystrophy on the quality of life of patients infected with HIV-1.

    PubMed

    Blanch, Jordi; Rousaud, Araceli; Martinez, Esteban; De Lazzari, Elisa; Milinkovic, Ana; Peri, Josep-Maria; Blanco, José-Luis; Jaen, Jesús; Navarro, Victor; Massana, Guillem; Gatell, Josep-Maria

    2004-05-15

    A standardized questionnaire was used to assess the impact of lipodystrophy (LD) on quality of life (QoL). Eighty-four consecutive asymptomatic human immunodeficiency virus type 1 (HIV-1)-infected outpatients with clinical LD completed a modified version of the Dermatology Life Quality Index (DLQI) survey to measure the impact of body fat changes on their QoL. Body changes influenced dressing for 55 patients (65%), produced feelings of shame for 41 (49%), and disrupted sexual life for 23 (27%). There was a greater impact on the DLQI due to body changes among women, injection drug users, patients with abdominal or breast lipoaccumulation, and patients with a high number of non-LD side effects. Multivariate proportional odds model analysis showed that the severity of non-LD-associated side effects and the presence of breast lipoaccumulation were associated with impaired psychosocial functioning. Specific characteristics of patients, antiretroviral-based side effects, and breast lipoaccumulation exert a greater impact on QoL in HIV-1-infected patients with LD.

  6. The Pacific Northwest's Climate Impacts Group: Climate Science in the Public Interest

    NASA Astrophysics Data System (ADS)

    Mantua, N.; Snover, A.

    2006-12-01

    Since its inception in 1995, the University of Washington's Climate Impacts Group (CIG) (funded under NOAA's Regional Integrated Science and Assessments (RISA) Program) has become the leader in exploring the impacts of climate variability and climate change on natural and human systems in the U.S. Pacific Northwest (PNW), specifically climate impacts on water, forest, fish and coastal resource systems. The CIG's research provides PNW planners, decision makers, resource managers, local media, and the general public with valuable knowledge of ways in which the region's key natural resources are vulnerable to changes in climate, and how this vulnerability can be reduced. The CIG engages in climate science in the public interest, conducting original research on the causes and consequences of climate variability and change for the PNW and developing forecasts and decision support tools to support the use of this information in federal, state, local, tribal, and private sector resource management decisions. The CIG's focus on the intersection of climate science and public policy has placed the CIG nationally at the forefront of regional climate impacts assessment and integrated analysis.

  7. Economic development and coastal ecosystem change in China.

    PubMed

    He, Qiang; Bertness, Mark D; Bruno, John F; Li, Bo; Chen, Guoqian; Coverdale, Tyler C; Altieri, Andrew H; Bai, Junhong; Sun, Tao; Pennings, Steven C; Liu, Jianguo; Ehrlich, Paul R; Cui, Baoshan

    2014-08-08

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems.

  8. Impact of Communication Barriers on Urban Development of Nowogród Bobrzański

    NASA Astrophysics Data System (ADS)

    Laskowski, Janusz; Juszczyk, Artur

    2016-09-01

    Network communication links is an indispensable element of development shaping. Any change in the way of using area should be preceded by an analysis of future impact taking into account the transport capacity. The development of buildings without adequate communication links leads to restrictions on object access, consequently it may lead to dangerous mishaps. Avoiding this type of situation is possible by carrying out sustainable development. The paper describes the relationship between the road system and urban layout on the example of Nowogród Bobrzański part of the city. One presented existing changes in the transportation system and its impact on local residents.

  9. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  10. Divergent Relationships between Fecal Microbiota and Metabolome following Distinct Antibiotic-Induced Disruptions.

    PubMed

    Choo, Jocelyn M; Kanno, Tokuwa; Zain, Nur Masirah Mohd; Leong, Lex E X; Abell, Guy C J; Keeble, Julie E; Bruce, Kenneth D; Mason, A James; Rogers, Geraint B

    2017-01-01

    The intestinal microbiome plays an essential role in regulating many aspects of host physiology, and its disruption through antibiotic exposure has been implicated in the development of a range of serious pathologies. The complex metabolic relationships that exist between members of the intestinal microbiota and the potential redundancy in functional pathways mean that an integrative analysis of changes in both structure and function are needed to understand the impact of antibiotic exposure. We used a combination of next-generation sequencing and nuclear magnetic resonance (NMR) metabolomics to characterize the effects of two clinically important antibiotic treatments, ciprofloxacin and vancomycin-imipenem, on the intestinal microbiomes of female C57BL/6 mice. This assessment was performed longitudinally and encompassed both antibiotic challenge and subsequent microbiome reestablishment. Both antibiotic treatments significantly altered the microbiota and metabolite compositions of fecal pellets during challenge and recovery. Spearman's correlation analysis of microbiota and NMR data revealed that, while some metabolites could be correlated with individual operational taxonomic units (OTUs), frequently multiple OTUs were associated with a significant change in a given metabolite. Furthermore, one metabolite, arginine, can be associated with increases/decreases in different sets of OTUs under differing conditions. Taken together, these findings indicate that reliance on shifts in one data set alone will generate an incomplete picture of the functional effect of antibiotic intervention. A full mechanistic understanding will require knowledge of the baseline microbiota composition, combined with both a comparison and an integration of microbiota, metabolomics, and phenotypic data. IMPORTANCE Despite the fundamental importance of antibiotic therapies to human health, their functional impact on the intestinal microbiome and its subsequent ability to recover are poorly understood. Much research in this area has focused on changes in microbiota composition, despite the interdependency and overlapping functions of many members of the microbial community. These relationships make prediction of the functional impact of microbiota-level changes difficult, while analyses based on the metabolome alone provide relatively little insight into the taxon-level changes that underpin changes in metabolite levels. Here, we used combined microbiota and metabolome profiling to characterize changes associated with clinically important antibiotic combinations with distinct effects on the gut. Correlation analysis of changes in the metabolome and microbiota indicate that a combined approach will be essential for a mechanistic understanding of the functional impact of distinct antibiotic classes.

  11. Assessing backscatter change due to backscatter gradient over the Greenland ice sheet using Envisat and SARAL altimetry

    NASA Astrophysics Data System (ADS)

    Su, Xiaoli; Luo, Zhicai; Zhou, Zebing

    2018-06-01

    Knowledge of backscatter change is important to accurately retrieve elevation change time series from satellite radar altimetry over continental ice sheets. Previously, backscatter coefficients generated in two cases, namely with and without accounting for backscatter gradient (BG), are used. However, the difference between backscatter time series obtained separately in these two cases and its impact on retrieving elevation change are not well known. Here we first compare the mean profiles of the Ku and Ka band backscatter over the Greenland ice sheet (GrIS), with results illustrating that the Ku-band backscatter is 3 ∼ 5 dB larger than that of the Ka band. We then conduct statistic analysis about time series of backscatter formed separately in the above two cases for both Ku and Ka bands over two regions in the GrIS. It is found that the standard deviation of backscatter time series becomes slightly smaller after removing the BG effect, which suggests that the method for the BG correction is effective. Furthermore, the impact on elevation change from backscatter change due to the BG effect is separately assessed for both Ku and Ka bands over the GrIS. We conclude that Ka band altimetry would benefit from a BG induced backscatter analysis (∼10% over region 2). This study may provide a reference to form backscatter time series towards refining elevation change time series from satellite radar altimetry over ice sheets using repeat-track analysis.

  12. Decomposition analysis of the waste generation and management in 30 European countries.

    PubMed

    Korica, Predrag; Cirman, Andreja; Žgajnar Gotvajn, Andreja

    2016-11-01

    An often suggested method for waste prevention is substitution of currently-used materials with materials which are less bulky, contain less hazardous components or are easier to recycle. For policy makers it is important to have tools available that provide information on the impact of this substitution on the changes in total amounts of waste generated and managed. The purpose of this paper is to see how much changes in the mix of 15 waste streams generated in eight economic sectors from 30 European countries have influenced the amounts of waste generated and managed in the period 2004-2012. In order to determine these impacts, two variations of the logarithmic mean Divisia index (LMDI) analysis model were developed and applied. The results show that the changes in the mix of waste streams in most cases did not have a considerable influence on the changes in the amounts of generated waste. In the analyses of waste sent for landfill, incineration without energy recovery, incineration with energy recovery and recovery other than energy recovery, the results also show that the changes in the mix of waste streams in most cases did not have the expected/desired influence on the changes in the amounts of managed waste. This paper provides an example on the possibilities of applying the LMDI analysis as a tool for quantifying the potential of effects which implemented or planned measures could have on the changes in waste management systems. © The Author(s) 2016.

  13. The effects of country-level population policy for enhancing adaptation to climate change

    NASA Astrophysics Data System (ADS)

    Gunasekara, N. K.; Kazama, S.; Yamazaki, D.; Oki, T.

    2012-08-01

    The effectiveness of population policy scenarios in reducing the combined impacts of population change and climate change on water resources is explored. One no-policy scenario and two scenarios with population policy assumptions are employed in combination with water availability under the SRES scenarios A1b, B1 and A2 for the impact analysis. The population data used are from the World Bank. The river discharges per grid of horizontal resolution 0.5° are obtained from the Total Runoff Integrating Pathways (TRIP) of the University of Tokyo, Japan. Unlike the population scenarios utilized in the SRES emission scenarios and the newest Representative Concentration Pathways, the scenarios employed in this research are based, even after 2050, on country-level rather than regional growth assumptions. Our analysis implies that in combination with a more heterogeneous pattern of population changes across the world, a more convergent, environmentally friendly emissions scenario, such as B1, can result in a high-impact climate scenario, similar to A2, for the already water-stressed low latitudes. However, the effect of population change supersedes the changes in the climate scenarios. In 2100, Africa, Middle-East and parts of Asia are in extreme water-stress under all scenarios. For countries with high population momentum, the population policy scenario with fertility-reduction assumptions gained a maximum of 6.1 times the water availability in Niger and 5.3 times that in Uganda compared with the no-policy scenario. Most of these countries are in Sub-Saharan Africa. These countries represent 24.5% of the global population in the no-policy scenario and the scenario with fertility- reduction assumptions reduces it to 8.7% by 2100. This scenario is also effective at reducing the area under extreme water stress in these countries. However, the policy scenario with assumptions of population stabilization at the replacement fertility rate increases the water stress in high-latitude countries. Nevertheless, the impact is low due to the high per capita water availability in the region. This research is expected to widen the understanding of the combined impacts of climate change in the future and of the strategies needed to enhance the space for adaptation.

  14. Capturing system level activities and impacts of mental health consumer-run organizations.

    PubMed

    Janzen, Rich; Nelson, Geoffrey; Hausfather, Nadia; Ochocka, Joanna

    2007-06-01

    Since the 1970s mental health consumer-run organizations have come to offer not only mutual support, but they have also adopted agendas for broader social change. Despite an awareness of the need for system level efforts that create supportive environments for their members, there has been limited research demonstrating how their system level activities can be documented or their impacts evaluated. The purpose of this paper is to feature a method of evaluating systems change activities and impacts. The paper is based on a longitudinal study evaluating four mental health consumer-run organizations in Ontario, Canada. The study tracked system level activities and impacts using both qualitative and quantitative methodologies. The article begins by describing the development and implementation of these methods. Next it offers a critical analysis of the methods used. It concludes by reflecting on three lessons learned about capturing system level activities and impacts of mental health consumer-run organizations.

  15. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  16. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    NASA Astrophysics Data System (ADS)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weldu, Yemane W., E-mail: ywweldem@ucalgary.ca; Assefa, Getachew; Athena Chair in Life Cycle Assessment in Design

    A roadmap for a more sustainable energy strategy is complex, as its development interacts critically with the economic, social, and environmental dimensions of sustainable development. This paper applied an impact matrix method to evaluate the environmental sustainability and to identify the desirable policy objectives of biomass-based energy strategy for the case of Alberta. A matrix with the sustainability domains on one axis and areas of environmental impact on the other was presented to evaluate the nexus effect of policy objectives and bioenergy production. As per to our analysis, economic diversification, technological innovation, and resource conservation came up as the desirablemore » policy objectives of sustainable development for Alberta because they demonstrated environmental benefits in all environmental impact categories, namely climate change, human health, and ecosystem. On the other hand, human health and ecosystem impacts were identified as trade-offs when the policy objectives for sustainability were energy security, job creation, and climate change. Thus, bioenergy can mitigate climate change but may impact human health and ecosystem which then in turn can become issues of concern. Energy strategies may result in shifting of risks from one environmental impact category to another, and from one sustainable domain to another if the technical and policy-related issues are not identified.« less

  18. Media impact switching surface during an infectious disease outbreak

    NASA Astrophysics Data System (ADS)

    Xiao, Yanni; Tang, Sanyi; Wu, Jianhong

    2015-01-01

    There are many challenges to quantifying and evaluating the media impact on the control of emerging infectious diseases. We modeled such media impacts using a piecewise smooth function depending on both the case number and its rate of change. The proposed model was then converted into a switching system, with the switching surface determined by a functional relationship between susceptible populations and different subgroups of infectives. By parameterizing the proposed model with the 2009 A/H1N1 influenza outbreak data in the Shaanxi province of China, we observed that media impact switched off almost as the epidemic peaked. Our analysis implies that media coverage significantly delayed the epidemic's peak and decreased the severity of the outbreak. Moreover, media impacts are not always effective in lowering the disease transmission during the entire outbreak, but switch on and off in a highly nonlinear fashion with the greatest effect during the early stage of the outbreak. The finding draws the attention to the important role of informing the public about `the rate of change of case numbers' rather than `the absolute number of cases' to alter behavioral changes, through a self-adaptive media impact switching on and off, for better control of disease transmission.

  19. Impacts of Climate Policy on Regional Air Quality, Health, and Air Quality Regulatory Procedures

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2011-12-01

    Both the changing climate, and the policy implemented to address climate change can impact regional air quality. We evaluate the impacts of potential selected climate policies on modeled regional air quality with respect to national pollution standards, human health and the sensitivity of health uncertainty ranges. To assess changes in air quality due to climate policy, we couple output from a regional computable general equilibrium economic model (the US Regional Energy Policy [USREP] model), with a regional air quality model (the Comprehensive Air Quality Model with Extensions [CAMx]). USREP uses economic variables to determine how potential future U.S. climate policy would change emissions of regional pollutants (CO, VOC, NOx, SO2, NH3, black carbon, and organic carbon) from ten emissions-heavy sectors of the economy (electricity, coal, gas, crude oil, refined oil, energy intensive industry, other industry, service, agriculture, and transportation [light duty and heavy duty]). Changes in emissions are then modeled using CAMx to determine the impact on air quality in several cities in the Northeast US. We first calculate the impact of climate policy by using regulatory procedures used to show attainment with National Ambient Air Quality Standards (NAAQS) for ozone and particulate matter. Building on previous work, we compare those results with the calculated results and uncertainties associated with human health impacts due to climate policy. This work addresses a potential disconnect between NAAQS regulatory procedures and the cost/benefit analysis required for and by the Clean Air Act.

  20. Cost Analysis of Water Transport for Climate Change Impact Assessment

    NASA Astrophysics Data System (ADS)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  1. [HAS budget impact analysis guidelines: A new decision-making tool].

    PubMed

    Ghabri, Salah; Poullié, Anne-Isabelle; Autin, Erwan; Josselin, Jean-Michel

    2017-10-02

    Budget impact analysis (BIA) provides short and medium-term estimates on changes in budgets and resources resulting from the adoption of new health interventions. The objective of this article is to present the main messages of the newly developed French National Authority for Health (HAS) guidelines on budget impact analysis : issues, recommendations and perspectives. The HAS guidelines development process was based on data derived from a literature review on BIA (search dates : January 2000 to June 2016), an HAS retrospective investigation, a public consultation, international expert advice, and approval from the HAS Board and the Economic and Public Health Evaluation Committee. Based on its research findings, HAS developed its first BIA guidelines, which include recommendations on the following topics : BIA definition, perspective, populations, time horizon, compared scenarios, budget impact models, costing, discounting, choice of clinical data, reporting of results and uncertainty analysis. The HAS BIA guidelines are expected to enhance the usefulness of BIA as an essential part of a comprehensive economic assessment of healthcare interventions, which itself includes cost-effectiveness analysis and equity of access to healthcare.

  2. Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework

    NASA Astrophysics Data System (ADS)

    Beach, R. H.

    2015-12-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  3. Determining Water Quality Trends in the Sacramento-San Joaquin Delta Watershed in the Face of Climate Change

    NASA Astrophysics Data System (ADS)

    Kynett, K.; Azimi-Gaylon, S.; Doidic, C.

    2014-12-01

    The Sacramento-San Joaquin Delta and Suisun Marsh (Delta) is the largest estuary on the West Coast of the Americas and is a resource of local, State, and national significance. The Delta is simultaneously the most critical component of California's water supply, a primary focus of the state's ecological conservation measures, and a vital resource deeply imperiled by degraded water quality. Delta waterbodies are identified as impaired by salinity, excess nutrients, low dissolved oxygen, pathogens, pesticides, heavy metals, and other contaminants. Climate change is expected to exacerbate the impacts of existing stressors in the Delta and magnify the challenges of managing this natural resource. A clear understanding of the current state of the watershed is needed to better inform scientists, decision makers, and the public about potential impacts from climate change. The Delta Watershed Initiative Network (Delta WIN) leverages the ecological benefits of healthy watersheds, and enhances, expands and creates opportunities for greater watershed health by coordinating with agencies, established programs, and local organizations. At this critical junction, Delta WIN is coordinating data integration and analysis to develop better understanding of the existing and emerging water quality concerns. As first steps, Delta WIN is integrating existing water quality data, analyzing trends, and monitoring to fill data gaps and to evaluate indicators of climate change impacts. Available data will be used for trend analysis; Delta WIN will continue to monitor where data is incomplete and new questions arise. Understanding how climate change conditions may affect water quality will be used to inform efforts to build resilience and maintain water quality levels which sustain aquatic life and human needs. Assessments of historical and new data will aid in recognition of potential climate change impacts and in initiating implementation of best management practices in collaboration with State and local agencies. Ultimately, Delta WIN can inform responsive science and adaptive management in other estuaries and critical natural resource areas facing times of change.

  4. Use of NARCCAP data to characterize regional climate uncertainty in the impact of global climate change on large river fish population: Missouri River sturgeon example

    NASA Astrophysics Data System (ADS)

    Anderson, C. J.; Wildhaber, M. L.; Wikle, C. K.; Moran, E. H.; Franz, K. J.; Dey, R.

    2012-12-01

    Climate change operates over a broad range of spatial and temporal scales. Understanding the effects of change on ecosystems requires accounting for the propagation of information and uncertainty across these scales. For example, to understand potential climate change effects on fish populations in riverine ecosystems, climate conditions predicted by course-resolution atmosphere-ocean global climate models must first be translated to the regional climate scale. In turn, this regional information is used to force watershed models, which are used to force river condition models, which impact the population response. A critical challenge in such a multiscale modeling environment is to quantify sources of uncertainty given the highly nonlinear nature of interactions between climate variables and the individual organism. We use a hierarchical modeling approach for accommodating uncertainty in multiscale ecological impact studies. This framework allows for uncertainty due to system models, model parameter settings, and stochastic parameterizations. This approach is a hybrid between physical (deterministic) downscaling and statistical downscaling, recognizing that there is uncertainty in both. We use NARCCAP data to determine confidence the capability of climate models to simulate relevant processes and to quantify regional climate variability within the context of the hierarchical model of uncertainty quantification. By confidence, we mean the ability of the regional climate model to replicate observed mechanisms. We use the NCEP-driven simulations for this analysis. This provides a base from which regional change can be categorized as either a modification of previously observed mechanisms or emergence of new processes. The management implications for these categories of change are significantly different in that procedures to address impacts from existing processes may already be known and need adjustment; whereas, an emergent processes may require new management strategies. The results from hierarchical analysis of uncertainty are used to study the relative change in weights of the endangered Missouri River pallid sturgeon (Scaphirhynchus albus) under a 21st century climate scenario.

  5. Investigation of Truck Size and Weight Limits - Technical Supplement. Vol. 1. Analysis of Truck Payloads Under Various Limits of Size, Weight and Configuration

    DOT National Transportation Integrated Search

    1981-02-01

    This volume documents the results of an analysis of the impact that various truck size and weight limits have on the carrier equipment selection process as a result of changes, in the design payload and design density of individual trucks. An analysi...

  6. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.

    PubMed

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio

    2016-03-01

    This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Land Use Change Impacts to Flows and Hydropower at the Southern Fringe of the Brazilian Amazon: A Regional, Empirical Study of Land-Water-Energy Nexus Dynamics

    NASA Astrophysics Data System (ADS)

    Levy, M. C.; Thompson, S. E.; Cohn, A.

    2014-12-01

    Land use/cover change (LUCC) has occurred extensively in the Brazilian Amazon rainforest-savanna transition. Agricultural development-driven LUCC at regional scales can alter surface energy budgets, evapotranspiration (ET) and rainfall; these hydroclimatic changes impact streamflows, and thus hydropower. To date, there is only limited empirical understanding of these complex land-water-energy nexus dynamics, yet understanding is important to developing countries where both agriculture and hydropower are expanding and intensifying. To observe these changes and their interconnections, we synthesize a novel combination of ground network, remotely sensed, and empirically modeled data for LUCC, rainfall, flows, and hydropower potential. We connect the extensive temporal and spatial trends in LUCC occurring from 2000-2012 (and thus observable in the satellite record) to long-term historical flow records and run-of-river hydropower generation potential estimates. Changes in hydrologic condition are observed in terms of dry and wet season moments, extremes, and flow duration curves. Run-of-river hydropower generation potential is modeled at basin gauge points using equation models parameterized with literature-based low-head turbine efficiencies, and simple algorithms establishing optimal head and capacity from elevation and flows, respectively. Regression analyses are used to demonstrate a preliminary causal analysis of LUCC impacts to flow and energy, and discuss extension of the analysis to ungauged basins. The results are transferable to tropical and transitional forest regions worldwide where simultaneous agricultural and hydropower development potentially compete for coupled components of regional water cycles, and where policy makers and planners require an understanding of LUCC impacts to hydroclimate-dependent industries and ecosystems.

  8. Choosing and using climate-change scenarios for ecological-impact assessments and conservation decisions.

    PubMed

    Snover, Amy K; Mantua, Nathan J; Littell, Jeremy S; Alexander, Michael A; McClure, Michelle M; Nye, Janet

    2013-12-01

    Increased concern over climate change is demonstrated by the many efforts to assess climate effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly expected to use climate information, but they struggle with its uncertainty. With the current proliferation of climate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on experience working with natural resource scientists and decision makers, we devised guidelines for choosing climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate projections and address common misconceptions about this uncertainty. This approach involves identifying primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate sources of information for future changes in those drivers; considering how well processes controlling local climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative importance of natural climate variability, and risk tolerance and time horizon of the associated decision. The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics, and how well a model simulates the climate parameters and processes of interest. Given these complexities, we recommend interaction among climate scientists, natural and physical scientists, and decision makers throughout the process of choosing and using climate-change scenarios for ecological impact assessment. Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conservación. © 2013 Society for Conservation Biology.

  9. Managing Uncertainty: Environmental Analysis/Forecasting in Academic Planning.

    ERIC Educational Resources Information Center

    Morrison, James L.; Mecca, Thomas V.

    An approach to environmental analysis and forecasting that educational policymakers can employ in dealing with the level of uncertainty in strategic decision making is presented. Traditional planning models are weak in identifying environmental changes and assessing their organizational impact. The proposed approach does not lead decision makers…

  10. Evaluation of Roadway Reallocation Projects: Analysis of Before-and-After Travel Speeds and Congestion Utilizing High-Resolution Bus Transit Data

    DOT National Transportation Integrated Search

    2017-11-01

    The traditional process of identifying corridors for road diet improvements involves selecting potential corridors (mostly based on identifying fourlane roads) and conducting a traffic impact analysis of proposed changes on a selected roadway before ...

  11. Consumer preference for mandarins: Implications of a sensory analysis

    USDA-ARS?s Scientific Manuscript database

    While consumption of mandarins has grown steadily in the United States, mandarin cultivars being produced and consumed have been changing. The goal of this research is to identify factors that impact consumer choice of mandarins. In this analysis, consumers were presented with multiple mandarins for...

  12. Mobilizing Ethnic Equality in Admissions to Schools: Litigation, Politics, and Educational Change

    ERIC Educational Resources Information Center

    Perry-Hazan, Lotem; Perelstain, Oshrat

    2018-01-01

    This study explores the impact of litigation on the mobilization of ethnic equality in the admission to Haredi (ultra-Orthodox) schools in Israel, and examines the socio-political mechanisms that have shaped this impact. It uses a case-study approach and draws on an analysis of documents and interviews. The findings confirm the conclusions of…

  13. Examining the Impact of External Influences on Police Use of Deadly Force over Time.

    ERIC Educational Resources Information Center

    White, Michael D.

    2002-01-01

    Used interrupted time-series analysis (ARIMA) to study the impact of legislation and judicial intervention on the use of deadly force by police officers in Philadelphia, Pennsylvania. Findings generally suggest that dynamic changes in the internal working environment can outweigh the influence of external mechanisms on deadly force use. Findings…

  14. The impact of a scheduling change on ninth grade high school performance on biology benchmark exams and the California Standards Test

    NASA Astrophysics Data System (ADS)

    Leonardi, Marcelo

    The primary purpose of this study was to examine the impact of a scheduling change from a trimester 4x4 block schedule to a modified hybrid schedule on student achievement in ninth grade biology courses. This study examined the impact of the scheduling change on student achievement through teacher created benchmark assessments in Genetics, DNA, and Evolution and on the California Standardized Test in Biology. The secondary purpose of this study examined the ninth grade biology teacher perceptions of ninth grade biology student achievement. Using a mixed methods research approach, data was collected both quantitatively and qualitatively as aligned to research questions. Quantitative methods included gathering data from departmental benchmark exams and California Standardized Test in Biology and conducting multiple analysis of covariance and analysis of covariance to determine significance differences. Qualitative methods include journal entries questions and focus group interviews. The results revealed a statistically significant increase in scores on both the DNA and Evolution benchmark exams. DNA and Evolution benchmark exams showed significant improvements from a change in scheduling format. The scheduling change was responsible for 1.5% of the increase in DNA benchmark scores and 2% of the increase in Evolution benchmark scores. The results revealed a statistically significant decrease in scores on the Genetics Benchmark exam as a result of the scheduling change. The scheduling change was responsible for 1% of the decrease in Genetics benchmark scores. The results also revealed a statistically significant increase in scores on the CST Biology exam. The scheduling change was responsible for .7% of the increase in CST Biology scores. Results of the focus group discussions indicated that all teachers preferred the modified hybrid schedule over the trimester schedule and that it improved student achievement.

  15. Changes in the long-term hydrological regimes and the impacts of human activities in the main Wei River, China

    NASA Astrophysics Data System (ADS)

    Zhang, Hongbo; Huang, Qiang; Zhang, Qiang; Gu, Lei; Chen, Keyu; Yu, Qijun

    2016-03-01

    Under the combined influence of climate changes and human activities, the hydrological regime of the Wei River shows remarkable variations which have caused many issues in the Wei River in recent decades, such as a lack of freshwater, water pollution, disastrous flooding and channel sedimentation. Hence, hydrological regime changes and potential human-induced impacts have been drawing increasing attention from local government and hydrologists. This study investigates hydrological regime changes in the natural and measured runoff series at four hydrological stations on the main Wei River and quantifies features of their long-term change by analysing their historical annual and seasonal runoff data using several approaches, i.e., continuous wavelet transform, cross-wavelet, wavelet coherence, trend-free pre-whitening Mann-Kendall test and detrended fluctuation analysis. By contrasting two different analysis results between natural and measured river runoff series, the impacts of human activities on the long-term hydrological regime were investigated via the changes of spatio-temporal distribution in dominant periods, the trends and long-range memory of river runoff. The results show : (a) that periodic properties of the streamflow changes are the result of climate, referring to precipitation changes in particular, while human activities play a minor role; (b) a significant decreasing trend can be observed in the natural streamflow series along the entire main stream of the Wei River and the more serious decrease emerging in measured flow should result from human-induced influences in recent decades; and (c) continuous decreasing streamflow in the Wei River will trigger serious shortages of freshwater in the future, which may challenge the sustainability and safety of water resources development in the river basin, and should be paid great attention before 2020.

  16. An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Gao, G.; Fu, B.

    2017-12-01

    Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.

  17. Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology

    NASA Astrophysics Data System (ADS)

    Shen, Mingxi; Chen, Jie; Zhuan, Meijia; Chen, Hua; Xu, Chong-Yu; Xiong, Lihua

    2018-01-01

    Uncertainty estimation of climate change impacts on hydrology has received much attention in the research community. The choice of a global climate model (GCM) is usually considered as the largest contributor to the uncertainty of climate change impacts. The temporal variation of GCM uncertainty needs to be investigated for making long-term decisions to deal with climate change. Accordingly, this study investigated the temporal variation (mainly long-term) of uncertainty related to the choice of a GCM in predicting climate change impacts on hydrology by using multi-GCMs over multiple continuous future periods. Specifically, twenty CMIP5 GCMs under RCP4.5 and RCP8.5 emission scenarios were adapted to adequately represent this uncertainty envelope, fifty-one 30-year future periods moving from 2021 to 2100 with 1-year interval were produced to express the temporal variation. Future climatic and hydrological regimes over all future periods were compared to those in the reference period (1971-2000) using a set of metrics, including mean and extremes. The periodicity of climatic and hydrological changes and their uncertainty were analyzed using wavelet analysis, while the trend was analyzed using Mann-Kendall trend test and regression analysis. The results showed that both future climate change (precipitation and temperature) and hydrological response predicted by the twenty GCMs were highly uncertain, and the uncertainty increased significantly over time. For example, the change of mean annual precipitation increased from 1.4% in 2021-2050 to 6.5% in 2071-2100 for RCP4.5 in terms of the median value of multi-models, but the projected uncertainty reached 21.7% in 2021-2050 and 25.1% in 2071-2100 for RCP4.5. The uncertainty under a high emission scenario (RCP8.5) was much larger than that under a relatively low emission scenario (RCP4.5). Almost all climatic and hydrological regimes and their uncertainty did not show significant periodicity at the P = .05 significance level, but their temporal variation could be well modeled by using the fourth-order polynomial. Overall, this study further emphasized the importance of using multiple GCMs for studying climate change impacts on hydrology. Furthermore, the temporal variation of uncertainty sourced from GCMs should be given more attention.

  18. A Two-Stage Method to Determine Optimal Product Sampling considering Dynamic Potential Market

    PubMed Central

    Hu, Zhineng; Lu, Wei; Han, Bing

    2015-01-01

    This paper develops an optimization model for the diffusion effects of free samples under dynamic changes in potential market based on the characteristics of independent product and presents a two-stage method to figure out the sampling level. The impact analysis of the key factors on the sampling level shows that the increase of the external coefficient or internal coefficient has a negative influence on the sampling level. And the changing rate of the potential market has no significant influence on the sampling level whereas the repeat purchase has a positive one. Using logistic analysis and regression analysis, the global sensitivity analysis gives a whole analysis of the interaction of all parameters, which provides a two-stage method to estimate the impact of the relevant parameters in the case of inaccuracy of the parameters and to be able to construct a 95% confidence interval for the predicted sampling level. Finally, the paper provides the operational steps to improve the accuracy of the parameter estimation and an innovational way to estimate the sampling level. PMID:25821847

  19. Georgia science curriculum alignment and accountability: A blueprint for student success

    NASA Astrophysics Data System (ADS)

    Reining-Gray, Kimberly M.

    Current trends and legislation in education indicate an increased dependency on standardized test results as a measure for learner success. This study analyzed test data in an effort to assess the impact of curriculum alignment on learner success as well as teacher perceptions of the changes in classroom instruction due to curriculum alignment. Qualitative and quantitative design methods were used to determine the impact of science curriculum alignment in grades 9-12. To determine the impact of science curriculum alignment from the Quality Core Curriculum (QCC) to the Georgia Performance Standards (GPS) test data and teacher opinion surveys from one Georgia School system were examined. Standardized test scores before and after curriculum alignment were analyzed as well as teacher perception survey data regarding the impact of curriculum change. A quantitative teacher perception survey was administered to science teachers in the school system to identify significant changes in teacher perceptions or teaching strategies following curriculum realignment. Responses to the survey were assigned Likert scale values for analysis purposes. Selected teachers were also interviewed using panel-approved questions to further determine teacher opinions of curriculum realignment and the impact on student success and teaching strategies. Results of this study indicate significant changes related to curriculum alignment. Teachers reported a positive change in teaching strategies and instructional delivery as a result of curriculum alignment and implementation. Student scores also showed improvement, but more research is recommended in this area.

  20. Characterizing storm response and recovery using the beach change envelope: Fire Island, New York

    USGS Publications Warehouse

    Brenner, Owen T.; Lentz, Erika; Hapke, Cheryl J.; Henderson, Rachel; Wilson, Kathleen; Nelson, Timothy

    2018-01-01

    Hurricane Sandy at Fire Island, New York presented unique challenges in the quantification of storm impacts using traditional metrics of coastal change, wherein measured changes (shoreline, dune crest, and volume change) did not fully reflect the substantial changes in sediment redistribution following the storm. We used a time series of beach profile data at Fire Island, New York to define a new contour-based morphologic change metric, the Beach Change Envelope (BCE). The BCE quantifies changes to the upper portion of the beach likely to sustain measurable impacts from storm waves and capture a variety of storm and post-storm beach states. We evaluated the ability of the BCE to characterize cycles of beach change by relating it to a conceptual beach recovery regime, and demonstrated that BCE width and BCE height from the profile time series correlate well with established stages of recovery. We also investigated additional applications of this metric to capture impacts from storms and human modification by applying it to several post-storm historical datasets in which impacts varied considerably; Nor'Ida (2009), Hurricane Irene (2011), Hurricane Sandy (2012), and a 2009 community replenishment. In each case, the BCE captured distinctive upper beach morphologic change characteristic of these different beach building and erosional events. Analysis of the beach state at multiple profile locations showed spatial trends in recovery consistent with recent morphologic island evolution, which other studies have linked with sediment availability and the geologic framework. Ultimately we demonstrate a new way of more effectively characterizing beach response and recovery cycles to evaluate change along sandy coasts.

  1. Uncertainty of climate change impact on groundwater reserves - Application to a chalk aquifer

    NASA Astrophysics Data System (ADS)

    Goderniaux, Pascal; Brouyère, Serge; Wildemeersch, Samuel; Therrien, René; Dassargues, Alain

    2015-09-01

    Recent studies have evaluated the impact of climate change on groundwater resources for different geographical and climatic contexts. However, most studies have either not estimated the uncertainty around projected impacts or have limited the analysis to the uncertainty related to climate models. In this study, the uncertainties around impact projections from several sources (climate models, natural variability of the weather, hydrological model calibration) are calculated and compared for the Geer catchment (465 km2) in Belgium. We use a surface-subsurface integrated model implemented using the finite element code HydroGeoSphere, coupled with climate change scenarios (2010-2085) and the UCODE_2005 inverse model, to assess the uncertainty related to the calibration of the hydrological model. This integrated model provides a more realistic representation of the water exchanges between surface and subsurface domains and constrains more the calibration with the use of both surface and subsurface observed data. Sensitivity and uncertainty analyses were performed on predictions. The linear uncertainty analysis is approximate for this nonlinear system, but it provides some measure of uncertainty for computationally demanding models. Results show that, for the Geer catchment, the most important uncertainty is related to calibration of the hydrological model. The total uncertainty associated with the prediction of groundwater levels remains large. By the end of the century, however, the uncertainty becomes smaller than the predicted decline in groundwater levels.

  2. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models.

    PubMed

    Shooshtarian, Mohammad Reza; Dehghani, Mansooreh; Margherita, Ferrante; Gea, Oliveri Conti; Mortezazadeh, Shima

    2018-04-01

    This study aggregated Land Change Modeller (LCM) as a useful model in GIS with an extended Groundwater Quality Index (GWQI) developed by fuzzy Multi-Criteria Group Decision-Making models to investigate the effect of land use change and conversion on groundwater quality being supplied for drinking. The model's performance was examined through an applied study in Shiraz, Iran, in a five year period (2011 to 2015). Four land use maps including urban, industrial, garden, and bare were employed in LCM model and the impact of change in area and their conversion to each other on GWQI changes was analysed. The correlation analysis indicated that increase in the urban land use area and conversion of bare to the residential/industrial land uses, had a relation with water quality decrease. Integration of LCM and GWQI can accurately and logically provide a numerical analysis of the possible impact of land use change and conversion, as one of the influencing factors, on the groundwater quality. Hence, the methodology could be used in urban development planning and management in macro level. Copyright © 2018. Published by Elsevier Ltd.

  3. Soil response to long-term projections of extreme temperature and precipitation in the southern La Plata Basin

    NASA Astrophysics Data System (ADS)

    Pántano, Vanesa C.; Penalba, Olga C.

    2017-12-01

    Projected changes were estimated considering the main variables which take part in soil-atmosphere interaction. The analysis was focused on the potential impact of these changes on soil hydric condition under extreme precipitation and evapotranspiration, using the combination of Global Climate Models (GCMs) and observational data. The region of study is the southern La Plata Basin that covers part of Argentine territory, where rainfed agriculture production is one of the most important economic activities. Monthly precipitation and maximum and minimum temperatures were used from high quality-controlled observed data from 46 meteorological stations and the ensemble of seven CMIP5 GCMs in two periods: 1970-2005 and 2065-2100. Projected changes in monthly effective temperature and precipitation were analysed. These changes were combined with observed series for each probabilistic interval. The result was used as input variables for the water balance model in order to obtain consequent soil hydric condition (deficit or excess). Effective temperature and precipitation are expected to increase according to the projections of GCMs, with few exceptions. The analysis revealed increase (decrease) in the prevalence of evapotranspiration over precipitation, during spring (winter). Projections for autumn months show precipitation higher than potential evapotranspiration more frequently. Under dry extremes, the analysis revealed higher projected deficit conditions, impacting on crop development. On the other hand, under wet extremes, excess would reach higher values only in particular months. During December, projected increase in temperatures reduces the impact of extreme high precipitation but favours deficit conditions, affecting flower-fructification stage of summer crops.

  4. Landsat Evapotranspiration for Historical Field-scale Water Use (1984-2015) in the Upper Rio Grande River Basin

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Schauer, M.; Singh, R. K.; Friedrichs, M.

    2017-12-01

    Field-scale water use maps derived from evapotranspiration (ET) can characterize water use patterns and the impacts of water management decisions. This project generated historical (1984-2015) Landsat-based ET maps for the entire Upper Rio Grande basin which makes this one of the largest regions in the United States with remotely sensed historical ET at Landsat resolution. More than 10,000 Landsat images spanning 32 years were processed using the Operational Simplified Surface Energy Balance (SSEBop) model which integrates weather data and remotely sensed images to estimate monthly and annual ET. Time-series analysis focused on three water-intensive study areas within the basin: the San Luis Valley in Colorado, irrigated fields along the Rio Grande River near Albuquerque, NM, and irrigated fields near Las Cruces, NM. Preliminary analysis suggests land use changes result in declining water use in irrigated areas of the basin which corresponds with increases in land surface temperatures. Time-series analysis of water use patterns at multiple temporal and spatial scales demonstrates the impact of water management decisions on the availability of water in the basin. Comparisons with cropland data from the USDA (NASS CDL) demonstrate how water use for particular crop types changes over time in response to land use changes and shifts in water management. This study illustrates a useful application of "Big Data" earth observation science for quantifying impacts of climate and land use changes on water availability within the United States as well as applications in planning water resource allocation, managing water rights, and sustaining agricultural production in the Upper Rio Grande basin.

  5. [Short-term impact of changes in drinking-and-driving legislation in Guadalajara and Zapopan, Jalisco, Mexico].

    PubMed

    Gómez-García, Lourdes; Pérez-Núñez, Ricardo; Hidalgo-Solórzano, Elisa

    2014-06-01

    The municipalities of Guadalajara and Zapopan, Jalisco State, Mexico, have participated in efforts to reduce road traffic injuries. They have participated actively in the Mexican Road Safety Initiative since 2008. As a result, in September 2010 they passed laws to reduce the legal alcohol levels for driving motor vehicles. To assess the short-term impact of these measures on rates and severity of alcohol-related collisions and injuries, we conducted a secondary analysis of official databases on mortality, morbidity, and collisions. We performed a time-series analysis to assess the trend. Significant changes were observed in the monthly proportion of alcohol-related deaths and collision rates following these interventions. The article concludes with recommendations to improve the reform's enforcement and results.

  6. Online Hydrologic Impact Assessment Decision Support System using Internet and Web-GIS Capability

    NASA Astrophysics Data System (ADS)

    Choi, J.; Engel, B. A.; Harbor, J.

    2002-05-01

    Urban sprawl and the corresponding land use change from lower intensity uses, such as agriculture and forests, to higher intensity uses including high density residential and commercial has various long- and short-term environment impacts on ground water recharge, water pollution, and storm water drainage. A web-based Spatial Decision Support System, SDSS, for Web-based operation of long-term hydrologic impact modeling and analysis was developed. The system combines a hydrologic model, databases, web-GIS capability and HTML user interfaces to create a comprehensive hydrologic analysis system. The hydrologic model estimates daily direct runoff using the NRCS Curve Number technique and annual nonpoint source pollution loading by an event mean concentration approach. This is supported by a rainfall database with over 30 years of daily rainfall for the continental US. A web-GIS interface and a robust Web-based watershed delineation capability were developed to simplify the spatial data preparation task that is often a barrier to hydrologic model operation. The web-GIS supports browsing of map layers including hydrologic soil groups, roads, counties, streams, lakes and railroads, as well as on-line watershed delineation for any geographic point the user selects with a simple mouse click. The watershed delineation results can also be used to generate data for the hydrologic and water quality models available in the DSS. This system is already being used by city and local government planners for hydrologic impact evaluation of land use change from urbanization, and can be found at http://pasture.ecn.purdue.edu/~watergen/hymaps. This system can assist local community, city and watershed planners, and even professionals when they are examining impacts of land use change on water resources. They can estimate the hydrologic impact of possible land use changes using this system with readily available data supported through the Internet. This system provides a cost effective approach to serve potential users who require easy-to-use tools.

  7. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955-2006

    NASA Astrophysics Data System (ADS)

    Aguilar, E.; Aziz Barry, A.; Brunet, M.; Ekang, L.; Fernandes, A.; Massoukina, M.; Mbah, J.; Mhanda, A.; Do Nascimento, D. J.; Peterson, T. C.; Thamba Umba, O.; Tomou, M.; Zhang, X.

    2009-01-01

    Understanding how extremes are changing globally, regionally, and locally is an important first step for planning appropriate adaptation measures, as changes in extremes have major impacts. The Intergovernmental Panel on Climate Change's synthesis of global extremes was not able to say anything about western central Africa, as no analysis of the region was available nor was there an adequate internationally exchanged long-term daily data set available to use for analysis of extremes. This paper presents the first analysis of extremes in this climatically important region along with analysis of Guinea Conakry and Zimbabwe. As per many other parts of the world, the analysis shows a decrease in cold extremes and an increase in warm extremes. However, while the majority of the analyzed world has shown an increase in heavy precipitation over the last half century, central Africa showed a decrease. Furthermore, the companion analysis of Guinea Conakry and Zimbabwe showed no significant increases.

  8. Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki

    2017-11-01

    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

  9. A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Trieu; Wiser, Ryan; Barbose, Galen

    This report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plant operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts,more » renewable energy workforce and economic development, and natural gas price suppression. This analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less

  10. Impact of Redevelopment Projects on Waste Water Infrastructure

    NASA Astrophysics Data System (ADS)

    Bhave, Prashant; Rahate, Sarvesh

    2018-05-01

    In the last few decades there has been a tremendous increase in urban population globally. Metropolitan cities in India are experiencing rapid change in their population due to migration from rural to urban areas. Due to limited land Mumbai city is experiencing vertical growth in the form of redevelopment projects, signifying a change in population density. Wastewater collection systems greatly contribute to the cost of the overall municipal sewerage system. Present study is an attempt to understand the impact of the redevelopment activities on the wastewater infrastructure. Existing sewerage network of an urban area in Central Mumbai was redesigned and analysed for four different planning scenarios with Bentley's SewerGEM. Results have shown significant change in diameters of the conduits within the sewer network, thus making it inefficient by 13, 19, 31 and 42% with each changing scenario. The results and analysis derived from the study are significant with respect to the urban town planners, developing solutions in alleviating the rising problem of sewer overflows and the economic impact being caused.

  11. Climate change-associated trends in net biomass change are age dependent in western boreal forests of Canada.

    PubMed

    Chen, Han Y H; Luo, Yong; Reich, Peter B; Searle, Eric B; Biswas, Shekhar R

    2016-09-01

    The impacts of climate change on forest net biomass change are poorly understood but critical for predicting forest's contribution to the global carbon cycle. Recent studies show climate change-associated net biomass declines in mature forest plots. The representativeness of these plots for regional forests, however, remains uncertain because we lack an assessment of whether climate change impacts differ with forest age. Using data from plots of varying ages from 17 to 210 years, monitored from 1958 to 2011 in western Canada, we found that climate change has little effect on net biomass change in forests ≤ 40 years of age due to increased growth offsetting increased mortality, but has led to large decreases in older forests due to increased mortality accompanying little growth gain. Our analysis highlights the need to incorporate forest age profiles in examining past and projecting future forest responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.

  12. Changes in dark chocolate volatiles during storage.

    PubMed

    Nightingale, Lia M; Cadwallader, Keith R; Engeseth, Nicki J

    2012-05-09

    Chocolate storage is critical to the quality of the final product. Inadequate storage, especially with temperature fluctuations, may lead to a change in crystal structure, which may eventually cause fat bloom. Bloom is the main cause of quality loss in the chocolate industry. The impact of various storage conditions on the flavor quality of dark chocolate was determined. Dark chocolate was stored in different conditions leading to either fat or sugar bloom and analyzed at 0, 4, and 8 weeks of storage. Changes in chocolate flavor were determined by volatile analysis and descriptive sensory evaluation. Results were analyzed by analysis of variance (ANOVA), cluster analysis, principal component analysis (PCA), and linear partial least-squares regression analysis (PLS). Volatile concentration and loss were significantly affected by storage conditions. Chocolates stored at high temperature were the most visually and texturally compromised, but volatile concentrations were affected the least, whereas samples stored at ambient, frozen, and high relative humidity conditions had significant volatile loss during storage. It was determined that high-temperature storage caused a change in crystal state due to the polymorphic shift to form VI, leading to an increase in sample hardness. Decreased solid fat content (SFC) during high-temperature storage increased instrumentally determined volatile retention, although no difference was detected in chocolate flavor during sensory analysis, possibly due to instrumental and sensory sampling techniques. When all instrumental and sensory data had been taken into account, the storage condition that had the least impact on texture, surface roughness, grain size, lipid polymorphism, fat bloom formation, volatile concentrations, and sensory attributes was storage at constant temperature and 75% relative humidity.

  13. Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa

    DTIC Science & Technology

    2009-10-23

    commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How

  14. Quantitative analysis of the impacts of terrestrial environmental factors on precipitation variation over the Beibu Gulf Economic Zone in Coastal Southwest China.

    PubMed

    Zhao, Yinjun; Deng, Qiyu; Lin, Qing; Cai, Chunting

    2017-03-15

    Taking the Guangxi Beibu Gulf Economic Zone as the study area, this paper utilizes the geographical detector model to quantify the feedback effects from the terrestrial environment on precipitation variation from 1985 to 2010 with a comprehensive consideration of natural factors (forest coverage rate, vegetation type, terrain, terrestrial ecosystem types, land use and land cover change) and social factors (population density, farmland rate, GDP and urbanization rate). First, we found that the precipitation trend rate in the Beibu Gulf Economic Zone is between -47 and 96 mm/10a. Second, forest coverage rate change (FCRC), urbanization rate change (URC), GDP change (GDPC) and population density change (PDC) have a larger contribution to precipitation change through land-surface feedback, which makes them the leading factors. Third, the human element is found to primarily account for the precipitation changes in this region, as humans are the active media linking and enhancing these impact factors. Finally, it can be concluded that the interaction of impact factor pairs has a significant effect compared to the corresponding single factor on precipitation changes. The geographical detector model offers an analytical framework to reveal the terrestrial factors affecting the precipitation change, which gives direction for future work on regional climate modeling and analyses.

  15. Quantitative analysis of the impacts of terrestrial environmental factors on precipitation variation over the Beibu Gulf Economic Zone in Coastal Southwest China

    NASA Astrophysics Data System (ADS)

    Zhao, Yinjun; Deng, Qiyu; Lin, Qing; Cai, Chunting

    2017-03-01

    Taking the Guangxi Beibu Gulf Economic Zone as the study area, this paper utilizes the geographical detector model to quantify the feedback effects from the terrestrial environment on precipitation variation from 1985 to 2010 with a comprehensive consideration of natural factors (forest coverage rate, vegetation type, terrain, terrestrial ecosystem types, land use and land cover change) and social factors (population density, farmland rate, GDP and urbanization rate). First, we found that the precipitation trend rate in the Beibu Gulf Economic Zone is between -47 and 96 mm/10a. Second, forest coverage rate change (FCRC), urbanization rate change (URC), GDP change (GDPC) and population density change (PDC) have a larger contribution to precipitation change through land-surface feedback, which makes them the leading factors. Third, the human element is found to primarily account for the precipitation changes in this region, as humans are the active media linking and enhancing these impact factors. Finally, it can be concluded that the interaction of impact factor pairs has a significant effect compared to the corresponding single factor on precipitation changes. The geographical detector model offers an analytical framework to reveal the terrestrial factors affecting the precipitation change, which gives direction for future work on regional climate modeling and analyses.

  16. [A general review of the discussion at the Beijing International Symposium on Population and Development].

    PubMed

    Ren, Y

    1985-03-29

    A general review of papers and discussions at the Beijing International Symposium on Population and Development held December 10-14, 1984 is presented. Discussions on population and development included China's population change 1949-1982, impacts of economic change on Tianjin's population, the population factor in economic development policy-making, Japanese population and development, recent population development in Hungary, population and economy, comprehensive long-term population development in Russia, fertility rate change factors in China, Shanghai's population change, and population and economic development in Mian County, Shaanxi Province. Fertility rate changes were discussed, including multinational borderline value assumptions, recent trends in life span fertility rate in China, fertility rate in Jiangsu Province, fertility rate change in Zhejiang Province, and sterilization in Yangjiaping, Thailand. Population and employment discussions included the economic impact of world population change, the 1984 International Population Conference, changes in economically productive population and employment strategy, employed/unemployed populations in Guangdong Province, and the economic composition of China's population. Urbanization discussions covered population and development methodological problems, population growth and economic development in the Pacific region, surplus rural population transfer and economic development in China, urbanization analysis, trends and urban population distribution problems, and Laioning Province population development. Issues in migration, population distribution, and regional population included migration and development of the Great Northwest, internal migration to Beijing, Chinese population growth and economic development by major region, and current population changes of Chinese Tibetans. Under social problems of population, discussions included women's status, development and population change, Shanghai's aging trend, analysis of the aged population, analysis of educational quality in Anhui Province, and the retirement system in Chinese villages.

  17. Diagnosing climate change impacts and identifying adaptation strategies by involving key stakeholder organisations and farmers in Sikkim, India: Challenges and opportunities.

    PubMed

    Azhoni, Adani; Goyal, Manish Kumar

    2018-06-01

    Narrowing the gap between research, policy making and implementing adaptation remains a challenge in many parts of the world where climate change is likely to severely impact water security. This research aims to narrow this gap by matching the adaptation strategies being framed by policy makers to that of the perspectives of development agencies, researchers and farmers in the Himalayan state of Sikkim in India. Our case study examined the perspectives of various stakeholders for climate change impacts, current adaptation strategies, knowledge gaps and adaptation barriers, particularly in the context of implementing the Sikkim State Action Plan on Climate Change through semi-structured interviews carried out with decision makers in the Sikkim State Government, researchers, consultants, local academia, development agencies and farmers. Using Stakeholders Network Analysis tools, this research unravels the complexities of perceiving climate change impacts, identifying strategies, and implementing adaptation. While farmers are less aware about the global phenomenon of climate change impacts for water security, their knowledge of the local conditions and their close interaction with the State Government Agriculture Department provides them opportunities. Although important steps are being initiated through the Sikkim State Action Plan on Climate Change it is yet to deliver effective means of adaptation implementation and hence, strengthening the networks of close coordination between the various implementing agencies will pay dividends. Knowledge gaps and the need for capacity building identified in this research, based on the understandings of key stakeholders are highly relevant to both the research community and for informing policy. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Sexual Orientation Identity Change and Depressive Symptoms: A Longitudinal Analysis

    PubMed Central

    Everett, Bethany

    2015-01-01

    Several new studies have documented high rates of sexual identity mobility among young adults, but little work has investigated the links between identity change and mental health. This study uses the National Longitudinal Study of Adolescent to Adult Health (N = 11,727) and employs multivariate regression and propensity score matching to investigate the impact of identity change on depressive symptoms. The results reveal that only changes in sexual identity toward more same-sex-oriented identities are associated with increases in depressive symptoms. Moreover, the negative impacts of identity change are concentrated among individuals who at baseline identified as heterosexual or had not reported same-sex romantic attraction or relationships. No differences in depressive symptoms by sexual orientation identity were found among respondents who reported stable identities. Future research should continue to investigate the factors that contribute to the relationship between identity change and depression, such as stigma surrounding sexual fluidity. PMID:25690912

  19. Effect of baseline plasma fatty acids on eicosapentaenoic acid levels in individuals supplemented with alpha-linolenic acid.

    PubMed

    DeFilippis, Andrew P; Harper, Charles R; Cotsonis, George A; Jacobson, Terry A

    2009-01-01

    We previously reported a >50% increase in mean plasma eicosapentaenoic acid levels in a general medicine clinic population after supplementation with alpha-linolenic acid. In the current analysis, we evaluate the variability of changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid and evaluated the impact of baseline plasma fatty acids levels on changes in eicosapentaenoic acid levels in these individuals. Changes in eicosapentaenoic acid levels among individuals supplemented with alpha-linolenic acid ranged from a 55% decrease to a 967% increase. Baseline plasma fatty acids had no statistically significant effect on changes in eicosapentaenoic levels acid after alpha-linolenic acid supplementation. Changes in eicosapentaenoic acid levels varied considerably in a general internal medicine clinic population supplemented with alpha-linolenic acid. Factors that may impact changes in plasma eicosapentaenoic acid levels after alpha-linolenic acid supplementation warrant further study.

  20. The Impact of Changes to Finance-Major Assessment Structures on Student Engagement and Success

    ERIC Educational Resources Information Center

    Burrow, Michael; McIver, Ron P.

    2012-01-01

    Analysis of assessment activities that encourage student engagement and attainment of higher-order cognitive outcomes within Bloom's Taxonomy (deep learning; Anderson & Krathwohl, 2001) supports greater use of individual and group presentations, research reports, and open-book exams. Consistent with this analysis this paper outlines changes…

  1. Stitching Footballs: Voices of Children in Sailkot, Pakistan.

    ERIC Educational Resources Information Center

    Marcus, Rachel; Husselbee, David; Shah, Faiz; Harper, Annie; Ali, Bahar

    This report details a situation analysis of children working in football stitching around Sialkot, Pakistan. The analysis (1) examined the reasons that children work and the probable impact of eradicating children's involvement and phasing out home-based production and (2) determined a baseline for monitoring changes in children's and families'…

  2. A comparative analysis of protected area planning and management frameworks

    Treesearch

    Per Nilsen; Grant Tayler

    1997-01-01

    A comparative analysis of the Recreation Opportunity Spectrum (ROS), Limits of Acceptable Change (LAC), a Process for Visitor Impact Management (VIM), Visitor Experience and Resource Protection (VERP), and the Management Process for Visitor Activities (known as VAMP) decision frameworks examines their origins; methodology; use of factors, indicators, and standards;...

  3. Trend analysis of stressors and ecological responses, particularly nutrients, in the Narragansett Bay Watershed.

    EPA Science Inventory

    Current and historic impacts of nitrogen on water quality were evaluated and relationships between nutrients and ecosystem structure and function were developed for Narragansett Bay, RI. Land use land cover change analysis from 1985 thru 2005 resulted in a 7% increase in urban la...

  4. Environmental Impacts and Hotspots of Food Losses: Value Chain Analysis of Swiss Food Consumption.

    PubMed

    Beretta, Claudio; Stucki, Matthias; Hellweg, Stefanie

    2017-10-03

    Reducing food losses and waste is crucial to making our food system more efficient and sustainable. This is the first paper that quantifies the environmental impacts of food waste by distinguishing the various stages of the food value chain, 33 food categories that represent the whole food basket in Switzerland, and including food waste treatment. Environmental impacts are expressed in terms of climate change and biodiversity impacts due to water and land use. Climate change impacts of food waste are highest for fresh vegetables, due to the large amounts wasted, while the specific impact per kg is largest for beef. Biodiversity impacts are mainly caused by cocoa and coffee (16% of total) and by beef (12%). Food waste at the end of the food value chain (households and food services) causes almost 60% of the total climate impacts of food waste, because of the large quantities lost at this stage and the higher accumulated impacts per kg of product. The net environmental benefits from food waste treatment are only 5-10% of the impacts from production and supply of the wasted food. Thus, avoiding food waste should be a first-line priority, while optimizing the method of treatment is less relevant.

  5. Modeling technical change in climate analysis: evidence from agricultural crop damages.

    PubMed

    Ahmed, Adeel; Devadason, Evelyn S; Al-Amin, Abul Quasem

    2017-05-01

    This study accounts for the Hicks neutral technical change in a calibrated model of climate analysis, to identify the optimum level of technical change for addressing climate changes. It demonstrates the reduction to crop damages, the costs to technical change, and the net gains for the adoption of technical change for a climate-sensitive Pakistan economy. The calibrated model assesses the net gains of technical change for the overall economy and at the agriculture-specific level. The study finds that the gains of technical change are overwhelmingly higher than the costs across the agriculture subsectors. The gains and costs following technical change differ substantially for different crops. More importantly, the study finds a cost-effective optimal level of technical change that potentially reduces crop damages to a minimum possible level. The study therefore contends that the climate policy for Pakistan should consider the role of technical change in addressing climate impacts on the agriculture sector.

  6. A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Parish, Esther S; Nugent, Philip J

    Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). Formore » all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.« less

  7. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities

    PubMed Central

    Reckien, Diana; Flacke, Johannes

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future. PMID:26317420

  8. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans-An Empirical Analysis of European Cities.

    PubMed

    Reckien, Diana; Flacke, Johannes; Olazabal, Marta; Heidrich, Oliver

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.

  9. [CLIMATE CHANGE AND ALLERGIC AIRWAY DISEASE] OBSERVATIONAL,LABORATORY, AND MODELING STUDIES OF THE IMPACTS OF CLIMATE CHANGE ONALLERGIC AIRWAY DISEASE

    EPA Science Inventory

    Based on these data and preliminary studies, this proposal will be composed of a multiscale source-to-dose analysis approach for assessing the exposure interactions of environmental and biological systems. Once the entire modeling system is validated, it will run f...

  10. Transformative Change in Higher Education through Participatory Action Research: A Capabilities Analysis

    ERIC Educational Resources Information Center

    Walker, Melanie; Loots, Sonja

    2018-01-01

    As a methodological approach, participatory action research (PAR), and its variant of critical action research in education, aims to further social justice and generate transformative change. Although this understanding of PAR is well rehearsed, there is still a gap in detailed explorations of the transformative impact of PAR projects in higher…

  11. The fate of Amazonian ecosystems over the coming century arising from changes in climate, atmospheric CO2, and land use.

    PubMed

    Zhang, Ke; de Almeida Castanho, Andrea D; Galbraith, David R; Moghim, Sanaz; Levine, Naomi M; Bras, Rafael L; Coe, Michael T; Costa, Marcos H; Malhi, Yadvinder; Longo, Marcos; Knox, Ryan G; McKnight, Shawna; Wang, Jingfeng; Moorcroft, Paul R

    2015-02-20

    There is considerable interest in understanding the fate of the Amazon over the coming century in the face of climate change, rising atmospheric CO 2 levels, ongoing land transformation, and changing fire regimes within the region. In this analysis, we explore the fate of Amazonian ecosystems under the combined impact of these four environmental forcings using three terrestrial biosphere models (ED2, IBIS, and JULES) forced by three bias-corrected IPCC AR4 climate projections (PCM1, CCSM3, and HadCM3) under two land-use change scenarios. We assess the relative roles of climate change, CO 2 fertilization, land-use change, and fire in driving the projected changes in Amazonian biomass and forest extent. Our results indicate that the impacts of climate change are primarily determined by the direction and severity of projected changes in regional precipitation: under the driest climate projection, climate change alone is predicted to reduce Amazonian forest cover by an average of 14%. However, the models predict that CO 2 fertilization will enhance vegetation productivity and alleviate climate-induced increases in plant water stress, and, as a result, sustain high biomass forests, even under the driest climate scenario. Land-use change and climate-driven changes in fire frequency are predicted to cause additional aboveground biomass loss and reductions in forest extent. The relative impact of land use and fire dynamics compared to climate and CO 2 impacts varies considerably, depending on both the climate and land-use scenario, and on the terrestrial biosphere model used, highlighting the importance of improved quantitative understanding of all four factors - climate change, CO 2 fertilization effects, fire, and land use - to the fate of the Amazon over the coming century. © 2015 John Wiley & Sons Ltd.

  12. Hydrology of the Po River: looking for changing patterns in river discharge

    NASA Astrophysics Data System (ADS)

    Montanari, A.

    2012-05-01

    Scientists and public administrators are devoting increasing attention to the Po River, in Italy, in view of concerns related to the impact of increasing urbanisation and exploitation of water resources. A better understanding of the hydrological regime of the river is necessary to improve water resources management and flood protection. In particular, the analysis of the effects of hydrological and climatic change is crucial for planning sustainable development and economic growth. An extremely interesting issue is to inspect to what extent river flows can be naturally affected by the occurrence of long periods of water abundance or scarcity, which can be erroneously interpreted as irreversible changes due to human impact. In fact, drought and flood periods alternatively occurred in the recent past in the form of long term cycles. This paper presents advanced graphical and analytical methods to gain a better understanding of the temporal distribution of the Po River discharge. In particular, we present an analysis of river flow variability and memory properties to better understand natural patterns and in particular long term changes, which may affect the future flood risk and availability of water resources.

  13. Experimental and observational studies find contrasting responses of soil nutrients to climate change

    PubMed Central

    Yuan, ZY; Jiao, F; Shi, XR; Sardans, Jordi; Maestre, Fernando T; Delgado-Baquerizo, Manuel; Reich, Peter B; Peñuelas, Josep

    2017-01-01

    Manipulative experiments and observations along environmental gradients, the two most common approaches to evaluate the impacts of climate change on nutrient cycling, are generally assumed to produce similar results, but this assumption has rarely been tested. We did so by conducting a meta-analysis and found that soil nutrients responded differentially to drivers of climate change depending on the approach considered. Soil carbon, nitrogen, and phosphorus concentrations generally decreased with water addition in manipulative experiments but increased with annual precipitation along environmental gradients. Different patterns were also observed between warming experiments and temperature gradients. Our findings provide evidence of inconsistent results and suggest that manipulative experiments may be better predictors of the causal impacts of short-term (months to years) climate change on soil nutrients but environmental gradients may provide better information for long-term correlations (centuries to millennia) between these nutrients and climatic features. Ecosystem models should consequently incorporate both experimental and observational data to properly assess the impacts of climate change on nutrient cycling. DOI: http://dx.doi.org/10.7554/eLife.23255.001 PMID:28570219

  14. Measuring the impact of medicines regulatory interventions - Systematic review and methodological considerations.

    PubMed

    Goedecke, Thomas; Morales, Daniel R; Pacurariu, Alexandra; Kurz, Xavier

    2018-03-01

    Evaluating the public health impact of regulatory interventions is important but there is currently no common methodological approach to guide this evaluation. This systematic review provides a descriptive overview of the analytical methods for impact research. We searched MEDLINE and EMBASE for articles with an empirical analysis evaluating the impact of European Union or non-European Union regulatory actions to safeguard public health published until March 2017. References from systematic reviews and articles from other known sources were added. Regulatory interventions, data sources, outcomes of interest, methodology and key findings were extracted. From 1246 screened articles, 229 were eligible for full-text review and 153 articles in English language were included in the descriptive analysis. Over a third of articles studied analgesics and antidepressants. Interventions most frequently evaluated are regulatory safety communications (28.8%), black box warnings (23.5%) and direct healthcare professional communications (10.5%); 55% of studies measured changes in drug utilization patterns, 27% evaluated health outcomes, and 18% targeted knowledge, behaviour or changes in clinical practice. Unintended consequences like switching therapies or spill-over effects were rarely evaluated. Two-thirds used before-after time series and 15.7% before-after cross-sectional study designs. Various analytical approaches were applied including interrupted time series regression (31.4%), simple descriptive analysis (28.8%) and descriptive analysis with significance tests (23.5%). Whilst impact evaluation of pharmacovigilance and product-specific regulatory interventions is increasing, the marked heterogeneity in study conduct and reporting highlights the need for scientific guidance to ensure robust methodologies are applied and systematic dissemination of results occurs. © 2017 The Authors. British Journal of Clinical Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.

  15. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy demand under all RCPs. Because of the slow response time of sea level to change in emissions, the coastal risk reduction in the current century from mitigation is least clear. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  16. Relative importance of climate changes at different time scales on net primary productivity-a case study of the Karst area of northwest Guangxi, China.

    PubMed

    Liu, Huiyu; Zhang, Mingyang; Lin, Zhenshan

    2017-10-05

    Climate changes are considered to significantly impact net primary productivity (NPP). However, there are few studies on how climate changes at multiple time scales impact NPP. With MODIS NPP product and station-based observations of sunshine duration, annual average temperature and annual precipitation, impacts of climate changes at different time scales on annual NPP, have been studied with EEMD (ensemble empirical mode decomposition) method in the Karst area of northwest Guangxi, China, during 2000-2013. Moreover, with partial least squares regression (PLSR) model, the relative importance of climatic variables for annual NPP has been explored. The results show that (1) only at quasi 3-year time scale do sunshine duration and temperature have significantly positive relations with NPP. (2) Annual precipitation has no significant relation to NPP by direct comparison, but significantly positive relation at 5-year time scale, which is because 5-year time scale is not the dominant scale of precipitation; (3) the changes of NPP may be dominated by inter-annual variabilities. (4) Multiple time scales analysis will greatly improve the performance of PLSR model for estimating NPP. The variable importance in projection (VIP) scores of sunshine duration and temperature at quasi 3-year time scale, and precipitation at quasi 5-year time scale are greater than 0.8, indicating important for NPP during 2000-2013. However, sunshine duration and temperature at quasi 3-year time scale are much more important. Our results underscore the importance of multiple time scales analysis for revealing the relations of NPP to changing climate.

  17. Subject-specific longitudinal shape analysis by coupling spatiotemporal shape modeling with medial analysis

    NASA Astrophysics Data System (ADS)

    Hong, Sungmin; Fishbaugh, James; Rezanejad, Morteza; Siddiqi, Kaleem; Johnson, Hans; Paulsen, Jane; Kim, Eun Young; Gerig, Guido

    2017-02-01

    Modeling subject-specific shape change is one of the most important challenges in longitudinal shape analysis of disease progression. Whereas anatomical change over time can be a function of normal aging, anatomy can also be impacted by disease related degeneration. Anatomical shape change may also be affected by structural changes from neighboring shapes, which may cause non-linear variations in pose. In this paper, we propose a framework to analyze disease related shape changes by coupling extrinsic modeling of the ambient anatomical space via spatiotemporal deformations with intrinsic shape properties from medial surface analysis. We compare intrinsic shape properties of a subject-specific shape trajectory to a normative 4D shape atlas representing normal aging to isolate shape changes related to disease. The spatiotemporal shape modeling establishes inter/intra subject anatomical correspondence, which in turn enables comparisons between subjects and the 4D shape atlas, and also quantitative analysis of disease related shape change. The medial surface analysis captures intrinsic shape properties related to local patterns of deformation. The proposed framework jointly models extrinsic longitudinal shape changes in the ambient anatomical space, as well as intrinsic shape properties to give localized measurements of degeneration. Six high risk subjects and six controls are randomly sampled from a Huntington's disease image database for qualitative and quantitative comparison.

  18. Economic analysis of effluent limitation guidelines and standards for the centralized waste treatment industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, W.

    1998-12-01

    This report estimates the economic and financial effects and the benefits of compliance with the proposed effluent limitations guidelines and standards for the Centralized Waste Treatment (CWT) industry. The Environmental Protection Agency (EPA) has measured these impacts in terms of changes in the profitability of waste treatment operations at CWT facilities, changes in market prices to CWT services, and changes in the quantities of waste management at CWT facilities in six geographic regions. EPA has also examined the impacts on companies owning CWT facilities (including impacts on small entities), on communities in which CWT facilities are located, and on environmentalmore » justice. EPA examined the benefits to society of the CWT effluent limitations guidelines and standards by examining cancer and non-cancer health effects of the regulation, recreational benefits, and cost savings to publicly owned treatment works (POTWs) to which indirect-discharging CWT facilities send their wastewater.« less

  19. 'Changing climate, changing health, changing stories' profile: using an EcoHealth approach to explore impacts of climate change on inuit health.

    PubMed

    Harper, S L; Edge, V L; Cunsolo Willox, A

    2012-03-01

    Global climate change and its impact on public health exemplify the challenge of managing complexity and uncertainty in health research. The Canadian North is currently experiencing dramatic shifts in climate, resulting in environmental changes which impact Inuit livelihoods, cultural practices, and health. For researchers investigating potential climate change impacts on Inuit health, it has become clear that comprehensive and meaningful research outcomes depend on taking a systemic and transdisciplinary approach that engages local citizens in project design, data collection, and analysis. While it is increasingly recognised that using approaches that embrace complexity is a necessity in public health, mobilizing such approaches from theory into practice can be challenging. In 2009, the Rigolet Inuit Community Government in Rigolet, Nunatsiavut, Canada partnered with a transdisciplinary team of researchers, health practitioners, and community storytelling facilitators to create the Changing Climate, Changing Health, Changing Stories project, aimed at developing a multi-media participatory, community-run methodological strategy to gather locally appropriate and meaningful data to explore climate-health relationships. The goal of this profile paper is to describe how an EcoHealth approach guided by principles of transdisciplinarity, community participation, and social equity was used to plan and implement this climate-health research project. An overview of the project, including project development, research methods, project outcomes to date, and challenges encountered, is presented. Though introduced in this one case study, the processes, methods, and lessons learned are broadly applicable to researchers and communities interested in implementing EcoHealth approaches in community-based research.

  20. Dynamic Crushing Response of Closed-cell Aluminium Foam at Variable Strain Rates

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Kader, M. A.; Escobedo, J. P.; Hazell, P. J.; Appleby-Thomas, G. J.; Quadir, M. Z.

    2015-06-01

    The impact response of aluminium foams is essential for assessing their crashworthiness and energy absorption capacity for potential applications. The dynamic compactions of closed-cell aluminium foams (CYMAT) have been tested at variable strain rates. Microstructural characterization has also been carried out. The low strain rate impact test has been carried out using drop weight experiments while the high strain compaction test has been carried out via plate impact experiments. The post impacted samples have been examined using optical and electron microscopy to observe the microstructural changes during dynamic loading. This combination of dynamic deformation during impact and post impact microstructural analysis helped to evaluate the pore collapse mechanism and impact energy absorption characteristics.

  1. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by enhancing existing WTP design and operation or by process retrofitting and modification.

  2. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China.

    PubMed

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-11-09

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution-severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems.

  3. Spatially Explicit Landscape-Level Ecological Risks Induced by Land Use and Land Cover Change in a National Ecologically Representative Region in China

    PubMed Central

    Gong, Jian; Yang, Jianxin; Tang, Wenwu

    2015-01-01

    Land use and land cover change is driven by multiple influential factors from environmental and social dimensions in a land system. Land use practices of human decision-makers modify the landscape of the land system, possibly leading to landscape fragmentation, biodiversity loss, or environmental pollution—severe environmental or ecological impacts. While landscape-level ecological risk assessment supports the evaluation of these impacts, investigations on how these ecological risks induced by land use practices change over space and time in response to alternative policy intervention remain inadequate. In this article, we conducted spatially explicit landscape ecological risk analysis in Ezhou City, China. Our study area is a national ecologically representative region experiencing drastic land use and land cover change, and is regulated by multiple policies represented by farmland protection, ecological conservation, and urban development. We employed landscape metrics to consider the influence of potential landscape-level disturbance for the evaluation of landscape ecological risks. Using spatiotemporal simulation, we designed scenarios to examine spatiotemporal patterns in landscape ecological risks in response to policy intervention. Our study demonstrated that spatially explicit landscape ecological risk analysis combined with simulation-driven scenario analysis is of particular importance for guiding the sustainable development of ecologically vulnerable land systems. PMID:26569270

  4. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  5. Effect of differential forest management on land-use change (LUC) in a tropical hill forest of Malaysia.

    PubMed

    Masum, Kazi Mohammad; Mansor, Asyraf; Sah, Shahrul Anuar Mohd; Lim, Hwee San

    2017-09-15

    Forest ownership is considered as a vital aspect for sustainable management of forest and its associated biodiversity. The Global Forest Resources Assessment 2015 reported that privately owned forest area are increasing on a global scale, but deforestation was found very active in privately owned hill forest areas of Malaysia. Penang State was purposively chosen as it has been experiencing rapid and radical changes due to urban expansion over the last three decades. In this study, analyses of land-use changes were done by PCI Geomatica using Landsat images from 1991 to 2015, future trends of land-use change were assessed using EXCEL forecast function, and its impact on the surrounding environment were conducted by reviewing already published articles on changing environment of the study area. This study revealed an annual deforestation rate of 1.4% in Penang Island since 1991. Trend analysis forecasted a forest area smaller than the current forest reserves by the year 2039. Impact analysis revealed a rapid biodiversity loss with increasing landslides, mudflows, water pollution, flash flood, and health hazard. An immediate ban over hill-land development is crucial for overall environmental safety. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives

    NASA Astrophysics Data System (ADS)

    Loboda, Tatiana V.

    2014-11-01

    Arctic regions have experienced and will continue to experience the greatest rates of warming compared to any other region of the world. The people living in the Arctic are considered among most vulnerable to the impacts of environmental change ranging from decline in natural resources to increasing mental health concerns (IPCC 2014 Climate Change 2014: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge: Cambridge University Press)). A meta-analysis study by Ford et al (2014 Environ. Res. Lett. 9 104005) has assessed the volume, scope and geographic distribution of reported in the English language peer-reviewed literature initiatives for adaptation to climate change in the Arctic. Their analysis highlights the reactive nature of the adopted policies with a strong emphasis on local and community-level policies mostly targeting indigenous population in Canada and Alaska. The study raises concerns about the lack of monitoring and evaluation mechanism to track the success rate of the existing policies and the need for long-term strategic planning in adaption policies spanning international boundaries and including all groups of population.

  7. What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference? Results from ISI-MIP the first Inter-Sectoral Impact Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Huber, V.; Piontek, F.; Schewe, J.; Serdeczny, O.; Warszawski, L.

    2012-12-01

    The Inter-sectoral Impact Model Intercomparison Project (ISI-MIP) aims to synthesize the state-of-the-art knowledge of climate change impacts at different levels of global warming. Over 25 climate impact modelling teams from around the world, working within the agriculture, water, biomes, infrastructure and health sectors, are collaborating to find answers to the question "What is the difference between a 2, 3, 4, or 5 °C world and how good are we at telling this difference?". The analysis is based on common, bias-corrected climate projections, and socio-economic pathways. The first, fast-tracked phase of the ISI-MIP has a focus on global impact models. The project's experimental design is formulated to distinguish the uncertainty introduced by the impact models themselves, from the inherent uncertainty in the climate projections and the variety of plausible socio-economic futures. Novel metrics, developed to emphasize societal impacts, will be used to identify regional 'hot-spots' of climate change impacts, as well as to quantify the cross-sectoral impact of the increasing frequency of extreme events in future climates. We present here first results from the Fast-Track phase of the project covering impact simulations in the biomes, agriculture and water sectors, in which the societal impacts of climate change are quantified for different levels of global warming. We also discuss the design of the scenario set-up and impact indicators chosen to suit the unique cross-sectoral, multi-model nature of the project.

  8. Evaluation of short-term changes of hydrological response in mountainous basins of the Vitim Plateau (Russia) after forest fires based on data analysis and hydrological modelling

    NASA Astrophysics Data System (ADS)

    Semenova, O. M.; Lebedeva, L. S.; Nesterova, N. V.; Vinogradova, T. A.

    2015-06-01

    Twelve mountainous basins of the Vitim Plateau (Eastern Siberia, Russia) with areas ranging from 967 to 18 200 km2 affected by extensive fires in 2003 (from 13 to 78% of burnt area) were delineated based on MODIS Burned Area Product. The studied area is characterized by scarcity of hydrometeorological observations and complex hydrological processes. Combined analysis of monthly series of flow and precipitation was conducted to detect short-term fire impact on hydrological response of the basins. The idea of basin-analogues which have significant correlation of flow with "burnt" watersheds in stationary (pre-fire) period with the assumption that fire impact produced an outlier of established dependence was applied. Available data allowed for qualitative detection of fire-induced changes at two basins from twelve studied. Summer flow at the Amalat and Vitimkan Rivers (22 and 78% proportion of burnt area in 2003, respectively) increased by 40-50% following the fire.The impact of fire on flow from the other basins was not detectable.The hydrological model Hydrograph was applied to simulate runoff formation processes for stationary pre-fire and non-stationary post-fire conditions. It was assumed that landscape properties changed after the fire suggest a flow increase. These changes were used to assess the model parameters which allowed for better model performance in the post-fire period.

  9. Occidental Geothermal, Inc. , Oxy geothermal power plant No. 1. Final environmental impact report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-12-01

    The project-specific environmental analysis covers the following: geology, soils, water resources, biology, air quality, noise, waste management, health, safety, transportation, energy and material resources, cultural resources, socioeconomics, public services, land use, and aesthetics. Other topics covered are: the cumulative envionmental analysis; unavoidable significant adverse environmental effects; irreversible environmental changes and irretrievable commitments of energy and materials; the relationship between local short-term uses of man's environment and the maintenance and enhancement of long-term productivity; growth-inducing impacts; and alternatives to the proposed action. (MHR)

  10. Exploring longitudinal shifts in international nurse migration to the United States between 2003 and 2013 through a random effects panel data analysis.

    PubMed

    Squires, Allison; Ojemeni, Melissa T; Jones, Simon

    2016-06-30

    No study has examined the longitudinal trends in National Council Licensure Exam for Registered Nurse (NCLEX-RN) applicants and pass rates among internationally-educated nurses (IENs) seeking to work in the United States, nor has any analysis explored the impact of specific events on these trends, including changes to the NCLEX-RN exam, the role of the economic crisis, or the passing of the WHO Code on the International Recruitment of Health Personnel. This study seeks to understand the impact of the three aforementioned factors that may be influencing current and future IEN recruitment patterns in the United States. In this random effects panel data analysis, we analyzed 11 years (2003-2013) of annual IEN applicant numbers and pass rates for registered nurse credentialing. Data were obtained from publicly available reports on exam pass rates. With the global economic crisis and NCLEX-RN changes in 2008 coupled with the WHO Code passage in 2010, we sought to compare if (1) the number of applicants changed significantly after those 2 years and (2) if pass rates changed following exam modifications implemented in 2008 and 2011. A total of 177 countries were eligible for inclusion in this analysis, representing findings from 200,453 IEN applicants to the United States between 2003 and 2013. The majority of applicants were from the Philippines (58 %) and India (11 %), with these two countries combined representing 69 % of the total. Candidates from Sub-Saharan African countries totalled 7133 (3 % of all applications) over the study period, with half of these coming from Nigeria alone. No significant changes were found in the number of candidates following the 2008 economic crisis or the 2010 WHO Code, although pass rates decreased significantly following the 2008 exam modifications and the WHO Code implementation. This study suggests that, while the WHO Code has had an influence on overall IEN migration dynamics to the United States by decreasing candidate numbers, in most cases, the WHO Code was not the single cause of these fluctuations. Indeed, the impact of the NCLEX-RN exam changes appears to exert a larger influence.

  11. Climate Change Research in View of Bibliometrics

    PubMed Central

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5–6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top—the impact of their contributions is on a high level. The title word analysis shows that the term climate change comes forward with time. Furthermore, the term impact arises and points to research dealing with the various effects of climate change. The discussion of the question of human induced climate change towards a clear fact (for the majority of the scientific community) stimulated research on future pathways for adaptation and mitigation. Finally, the term model and related terms prominently appear independent of time, indicating the high relevance of climate modeling. PMID:27472663

  12. Climate Change Research in View of Bibliometrics.

    PubMed

    Haunschild, Robin; Bornmann, Lutz; Marx, Werner

    2016-01-01

    This bibliometric study of a large publication set dealing with research on climate change aims at mapping the relevant literature from a bibliometric perspective and presents a multitude of quantitative data: (1) The growth of the overall publication output as well as (2) of some major subfields, (3) the contributing journals and countries as well as their citation impact, and (4) a title word analysis aiming to illustrate the time evolution and relative importance of specific research topics. The study is based on 222,060 papers (articles and reviews only) published between 1980 and 2014. The total number of papers shows a strong increase with a doubling every 5-6 years. Continental biomass related research is the major subfield, closely followed by climate modeling. Research dealing with adaptation, mitigation, risks, and vulnerability of global warming is comparatively small, but their share of papers increased exponentially since 2005. Research on vulnerability and on adaptation published the largest proportion of very important papers (in terms of citation impact). Climate change research has become an issue also for disciplines beyond the natural sciences. The categories Engineering and Social Sciences show the strongest field-specific relative increase. The Journal of Geophysical Research, the Journal of Climate, the Geophysical Research Letters, and Climatic Change appear at the top positions in terms of the total number of papers published. Research on climate change is quantitatively dominated by the USA, followed by the UK, Germany, and Canada. The citation-based indicators exhibit consistently that the UK has produced the largest proportion of high impact papers compared to the other countries (having published more than 10,000 papers). Also, Switzerland, Denmark and also The Netherlands (with a publication output between around 3,000 and 6,000 papers) perform top-the impact of their contributions is on a high level. The title word analysis shows that the term climate change comes forward with time. Furthermore, the term impact arises and points to research dealing with the various effects of climate change. The discussion of the question of human induced climate change towards a clear fact (for the majority of the scientific community) stimulated research on future pathways for adaptation and mitigation. Finally, the term model and related terms prominently appear independent of time, indicating the high relevance of climate modeling.

  13. Impact of the Climate Change on Cultural Heritage Sites in Cyprus

    NASA Astrophysics Data System (ADS)

    Cuca, Branka; Agapiou, Athos; Lysandrou, Vasiliki; Themistocleous, Kyriacos; Nisantzi, Argyro; Michaelides, Silas; Hadjimitsis, Diofantos G.

    2016-04-01

    Climate change is one of the main factors with a significant impact on changes of cultural heritage and landscapes. Exposed and buried archaeological remains are particularly endangered by effects of climate change processes hence it is of great importance to understand the type of risks and the degree of their impact on such assets. Some of the potential risks for cultural heritage and landscape include flooding, intense rainfall, increase in time of wetness, extreme events in temperature change, coastal flooding, drought, wind driven/transported agents (sand, rain or salt) and so forth. From the geo-science perspective, the topic of climate change and the risks it causes is of crucial importance for environmental monitoring in general and it is one of the main applications of the European program on Earth Observation Copernicus. The activities performed in CLIMA project - "Cultural Landscape risk Identification, Management and Assessment" have as one of the main tasks to combining the fields of remote sensing technologies, including the Sentinel data, and cultural heritage monitoring. Such interdisciplinary approach was undertaken in order to identify major climate change risks affecting archaeological heritage in rural areas in Cyprus and to identify the most suitable Earth Observation (EO) and ground-based methods that might be effective in the mapping, diagnostics and monitoring of such risks. This thorough analysis will support the overall design of the CLIMA platform based in EO data analysis, risk models and ground-based methods to provide integrated information for specialists in remote sensing but also to archeologists and policy makers engaged in heritage preservation and management. The case study selected for Cyprus is the awarded Nea Paphos archeological site and historical center of Paphos that is surrounding this UNSECO World Heritage site.

  14. An Analysis of the Impact of Heat Waves in Labor and Crop Productivity in the Agricultural Sector in California

    NASA Astrophysics Data System (ADS)

    Castillo, F.; Wehner, M. F.; Gilless, J. K.

    2017-12-01

    California agriculture is an important economic activity for the state. California leads the nation in farms sales since 1950. In addition, agricultural employment in California reached approximately 410,000. Production of many fruits and vegetables is labor intensive and labor costs represent anywhere from 20% to 40% of total production costs. In additon, agricutlural production growth has been the highest for labor intensive crops such as berries (all types) and nuts. Given the importance of the agricultural sector and the labor component whithin it, the analysis of the impact of climate change on the agricultural sector of California becomes imperative. Heat waves are a weather related extreme that impact labor productivity, specially outdoor labor producitivity. We use crop production function analysis that incorporates socio economic variables such as crop prices, total acreage, production levels and harvest timiline with climate related variables such as an estimated Heat Index (HI) to analize the impact of heat waves on crop production via an impact on labor productivity for selected crops in the Central and Imperial Valleys in California. The analysis finds that the impact of heat waves varies by the degree of labor intensity of the crop and the relative intensity of the heat wave.

  15. PREDICTING THE RELATIVE IMPACTS OF URBAN DEVELOPMENT POLICIES AND ON-ROAD VEHICLE TECHNOLOGIES ON AIR QUALITY IN THE UNITED STATES: MODELING AND ANALYSIS OF A CASE STUDY IN AUSTIN, TEXAS

    EPA Science Inventory

    Urban development results in changes to land use and land cover and, consequently, to biogenic and anthropogenic emissions, meteorological processes, and processes such as dry deposition that influence future predictions of air quality. This study examines the impacts of alter...

  16. German Youth and the Issue of Reunification: A Comparative Analysis of the Impact of the Educational System and the Family on Changing Perceptions of Reality.

    ERIC Educational Resources Information Center

    Megnin, Donald F.; Force, George T.

    1984-01-01

    Education has a greater impact on the nature of German youth's perception of the reunification of East and West Germany than do extensive family discussions of political matters. There appears to be less support for reunification as a political symbol with each succeeding generation. (RM)

  17. STAPOL: A Simulation of the Impact of Policy, Values, and Technological and Societal Developments upon the Quality of Life.

    ERIC Educational Resources Information Center

    Little, Dennis; Feller, Richard

    The Institute for the Future has been conducting research in technological and societal forecasting, social indicators, value change, and simulation gaming. This paper describes an effort to bring together parts of that research into a simulation game ("State Policy," or STAPOL) for analysis of the impact of government policy, social values, and…

  18. Unequal Moving to Being Equal: Impact of "No Child Left Behind" in the Mississippi Delta

    ERIC Educational Resources Information Center

    Al-Fadhli, Hussain M.; Singh, Madhu

    2010-01-01

    The impact of the "No Child Left Behind Act" on the Achievement Level Index (ALI) of three elementary schools in the Mississippi Delta was explored. Achievement variation over five years (2003-2007) was examined through the perceptions of 58 teachers with regard to changes in their schools due to the Act. Using analysis of variance,…

  19. Desktop microsimulation: a tool to improve efficiency in the medical office practice.

    PubMed

    Montgomery, James B; Linville, Beth A; Slonim, Anthony D

    2013-01-01

    Because the economic crisis in the United States continues to have an impact on healthcare organizations, industry leaders must optimize their decision making. Discrete-event computer simulation is a quality tool with a demonstrated track record of improving the precision of analysis for process redesign. However, the use of simulation to consolidate practices and design efficiencies into an unfinished medical office building was a unique task. A discrete-event computer simulation package was used to model the operations and forecast future results for four orthopedic surgery practices. The scenarios were created to allow an evaluation of the impact of process change on the output variables of exam room utilization, patient queue size, and staff utilization. The model helped with decisions regarding space allocation and efficient exam room use by demonstrating the impact of process changes in patient queues at check-in/out, x-ray, and cast room locations when compared to the status quo model. The analysis impacted decisions on facility layout, patient flow, and staff functions in this newly consolidated practice. Simulation was found to be a useful tool for process redesign and decision making even prior to building occupancy. © 2011 National Association for Healthcare Quality.

  20. Impacts of extratropical storm tracks on Arctic sea ice export through Fram Strait

    NASA Astrophysics Data System (ADS)

    Wei, Jianfen; Zhang, Xiangdong; Wang, Zhaomin

    2018-05-01

    Studies have indicated regime shifts in atmospheric circulation, and associated changes in extratropical storm tracks and Arctic storm activity, in particular on the North Atlantic side of the Arctic Ocean. To improve understanding of changes in Arctic sea ice mass balance, we examined the impacts of the changed storm tracks and cyclone activity on Arctic sea ice export through Fram Strait by using a high resolution global ocean-sea ice model, MITgcm-ECCO2. The model was forced by the Japanese 25-year Reanalysis (JRA-25) dataset. The results show that storm-induced strong northerly wind stress can cause simultaneous response of daily sea ice export and, in turn, exert cumulative effects on interannual variability and long-term changes of sea ice export. Further analysis indicates that storm impact on sea ice export is spatially dependent. The storms occurring southeast of Fram Strait exhibit the largest impacts. The weakened intensity of winter (in this study winter is defined as October-March and summer as April-September) storms in this region after 1994/95 could be responsible for the decrease of total winter sea ice export during the same time period.

  1. Impacts of future climate change on river discharge based on hydrological inference: A case study of the Grand River Watershed in Ontario, Canada.

    PubMed

    Li, Zhong; Huang, Guohe; Wang, Xiuquan; Han, Jingcheng; Fan, Yurui

    2016-04-01

    Over the recent years, climate change impacts have been increasingly studied at the watershed scale. However, the impact assessment is strongly dependent upon the performance of the climatic and hydrological models. This study developed a two-step method to assess climate change impacts on water resources based on the Providing Regional Climates for Impacts Studies (PRECIS) modeling system and a Hydrological Inference Model (HIM). PRECIS runs provided future temperature and precipitation projections for the watershed under the Intergovernmental Panel on Climate Change SRES A2 and B2 emission scenarios. The HIM based on stepwise cluster analysis is developed to imitate the complex nonlinear relationships between climate input variables and targeted hydrological variables. Its robust mathematical structure and flexibility in predictor selection makes it a desirable tool for fully utilizing various climate modeling outputs. Although PRECIS and HIM cannot fully cover the uncertainties in hydro-climate modeling, they could provide efficient decision support for investigating the impacts of climate change on water resources. The proposed method is applied to the Grand River Watershed in Ontario, Canada. The model performance is demonstrated with comparison to observation data from the watershed during the period 1972-2006. Future river discharge intervals that accommodate uncertainties in hydro-climatic modeling are presented and future river discharge variations are analyzed. The results indicate that even though the total annual precipitation would not change significantly in the future, the inter-annual distribution is very likely to be altered. The water availability is expected to increase in Winter while it is very likely to decrease in Summer over the Grand River Watershed, and adaptation strategies would be necessary. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Linear and volumetric dimensional changes of injection-molded PMMA denture base resins.

    PubMed

    El Bahra, Shadi; Ludwig, Klaus; Samran, Abdulaziz; Freitag-Wolf, Sandra; Kern, Matthias

    2013-11-01

    The aim of this study was to evaluate the linear and volumetric dimensional changes of six denture base resins processed by their corresponding injection-molding systems at 3 time intervals of water storage. Two heat-curing (SR Ivocap Hi Impact and Lucitone 199) and four auto-curing (IvoBase Hybrid, IvoBase Hi Impact, PalaXpress, and Futura Gen) acrylic resins were used with their specific injection-molding technique to fabricate 6 specimens of each material. Linear and volumetric dimensional changes were determined by means of a digital caliper and an electronic hydrostatic balance, respectively, after water storage of 1, 30, or 90 days. Means and standard deviations of linear and volumetric dimensional changes were calculated in percentage (%). Statistical analysis was done using Student's and Welch's t tests with Bonferroni-Holm correction for multiple comparisons (α=0.05). Statistically significant differences in linear dimensional changes between resins were demonstrated at all three time intervals of water immersion (p≤0.05), with exception of the following comparisons which showed no significant difference: IvoBase Hi Impact/SR Ivocap Hi Impact and PalaXpress/Lucitone 199 after 1 day, Futura Gen/PalaXpress and PalaXpress/Lucitone 199 after 30 days, and IvoBase Hybrid/IvoBase Hi Impact after 90 days. Also, statistically significant differences in volumetric dimensional changes between resins were found at all three time intervals of water immersion (p≤0.05), with exception of the comparison between PalaXpress and Futura Gen. Denture base resins (IvoBase Hybrid and IvoBase Hi Impact) processed by the new injection-molding system (IvoBase), revealed superior dimensional precision. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  3. Impact of platform switching on marginal peri-implant bone-level changes. A systematic review and meta-analysis

    PubMed Central

    Strietzel, Frank Peter; Neumann, Konrad; Hertel, Moritz

    2015-01-01

    Objective To address the focused question, is there an impact of platform switching (PS) on marginal bone level (MBL) changes around endosseous implants compared to implants with platform matching (PM) implant-abutment configurations? Material and methods A systematic literature search was conducted using electronic databases PubMed, Web of Science, Journals@Ovid Full Text and Embase, manual search for human randomized clinical trials (RCTs) and prospective clinical controlled cohort studies (PCCS) reporting on MBL changes at implants with PS-, compared with PM-implant-abutment connections, published between 2005 and June 2013. Results Twenty-two publications were eligible for the systematic review. The qualitative analysis of 15 RCTs and seven PCCS revealed more studies (13 RCTs and three PCCS) showing a significantly less mean marginal bone loss around implants with PS- compared to PM-implant-abutment connections, indicating a clear tendency favoring the PS technique. A meta-analysis including 13 RCTs revealed a significantly less mean MBL change (0.49 mm [CI95% 0.38; 0.60]) at PS implants, compared with PM implants (1.01 mm [CI95% 0.62; 1.40] (P < 0.0001). Conclusions The meta-analysis revealed a significantly less mean MBL change at implants with a PS compared to PM-implant-abutment configuration. Studies included herein showed an unclear as well as high risk of bias mostly, and relatively short follow-up periods. The qualitative analysis revealed a tendency favoring the PS technique to prevent or minimize peri-implant marginal bone loss compared with PM technique. Due to heterogeneity of the included studies, their results require cautious interpretation. PMID:24438506

  4. Global warming potential of pavements

    NASA Astrophysics Data System (ADS)

    Santero, Nicholas J.; Horvath, Arpad

    2009-09-01

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  5. Assessing Climate Change Impacts on Wildfire Exposure in Mediterranean Areas.

    PubMed

    Lozano, Olga M; Salis, Michele; Ager, Alan A; Arca, Bachisio; Alcasena, Fermin J; Monteiro, Antonio T; Finney, Mark A; Del Giudice, Liliana; Scoccimarro, Enrico; Spano, Donatella

    2017-10-01

    We used simulation modeling to assess potential climate change impacts on wildfire exposure in Italy and Corsica (France). Weather data were obtained from a regional climate model for the period 1981-2070 using the IPCC A1B emissions scenario. Wildfire simulations were performed with the minimum travel time fire spread algorithm using predicted fuel moisture, wind speed, and wind direction to simulate expected changes in weather for three climatic periods (1981-2010, 2011-2040, and 2041-2070). Overall, the wildfire simulations showed very slight changes in flame length, while other outputs such as burn probability and fire size increased significantly in the second future period (2041-2070), especially in the southern portion of the study area. The projected changes fuel moisture could result in a lengthening of the fire season for the entire study area. This work represents the first application in Europe of a methodology based on high resolution (250 m) landscape wildfire modeling to assess potential impacts of climate changes on wildfire exposure at a national scale. The findings can provide information and support in wildfire management planning and fire risk mitigation activities. © 2016 Society for Risk Analysis.

  6. Land use change and effects on water quality and ecosystem health in the Lake Tahoe basin, Nevada and California

    USGS Publications Warehouse

    Forney, William; Richards, Lora; Adams, Kenneth D.; Minor, Timothy B.; Rowe, Timothy G.; Smith, J. LaRue; Raumann, Christian G.

    2001-01-01

    Human activity in the Lake Tahoe Basin has increased substantially in the past four decades, causing significant impacts on the quality and clarity of the lake's famous deep, clear water. Protection of Lake Tahoe and the surrounding environment has become an important activity in recent years. A variety of agencies, including the Tahoe Regional Planning Agency, Tahoe Research Group of the University of California at Davis, Desert Research Institute of the University and Community College System of Nevada, U.S. Geological Survey (USGS), and a host of State (both Nevada and California) and local agencies have been monitoring and conducting research in the Basin in order to understand how the lake functions and to what extent humans have affected its landscape and ecosystem processes. In spite of all of these activities, there remains a lack of comprehensive land use change data and analysis for the Basin. A project is underway that unites the land cover mapping expertise of the USGS National Mapping Discipline with the hydrologic expertise of the Water Resources Discipline to assess the impacts of urban growth and land use change in the Lake Tahoe Basin. Three activities are planned over the next 3 years: (1) mapping the current and historic state of the land surface, (2) conducting analysis to document patterns, rates, and trends in urbanization, land use change, and ecosystem health, and (3) assessing the causes and consequences of land use change with regard to water quality and ecosystem health. We hypothesize that changes in the extent of urban growth and the corresponding increases in impervious surfaces and decreases in natural vegetation have resulted in severe impacts on ecosystem health and integrity, riparian zones and water quality over time. We are acting on multiple fronts to test this hypothesis through the quantification of landscape disturbances and impacts.

  7. Land use scenarios development and impacts assessment on vegetation carbon/nitrogen sequestration in the West African Sudan savanna watershed, Benin

    NASA Astrophysics Data System (ADS)

    Chabi, A.

    2015-12-01

    ackground: Reduced Emissions from Deforestation and Degradation (REDD+), being developed through the United Nations Framework Convention on Climate Change (UNFCCC) requires information on the carbon/nitrogen stocks in the plant biomass for predicting future climate under scenarios development. The development of land use scenarios in West Africa is needed to predict future impacts of change in the environment and the socio-economic status of rural communities. The study aims at developing land use scenario based on mitigation strategy to climate change as an issue of contributing for carbon and nitrogen sequestration, the condition 'food focused' as a scenario based crop production and 'financial investment' as scenario based on an economic development pathway, and to explore the possible future temporal and spatial impacts on vegetation carbon/nitrogen sequestration/emission and socio-economic status of rural communities. Preliminary results: BEN-LUDAS (Benin-Land Use DyNamic Simulator) model, carbon and nitrogen equations, remote sensing and socio-economic data were used to predict the future impacts of each scenario in the environment and human systems. The preliminary results which are under analysis will be presented soon. Conclusion: The proposed BEN-LUDAS models will help to contribute to policy decision making at the local and regional scale and to predict future impacts of change in the environment and socio-economic status of the rural communities. Keywords: Land use scenarios development, BEN-LUDAS, socio-economic status of rural communities, future impacts of change, assessment, West African Sudan savanna watershed, Benin

  8. A climate analysis using CORDEX simulations in a cooperation framework: the case of Paraguay

    NASA Astrophysics Data System (ADS)

    Mercogliano, Paola; Bucchignani, Edoardo; Ciervo, Fabio; Montesarchio, Myriam; Zollo, Alessandra Lucia; Villani, Veronica; Barbato, Giuliana; Vendemia, Rosalba; Polato, Raul; Baez, Julian; Pasten, Max

    2017-04-01

    In recent years, changes in climate have entailed variations in surface temperature and precipitation patterns in various countries of the South America, among which Paraguay. Climate change-attributed effects on weather impacts, such as river and urban floods, droughts and heat waves could severely affect the actual conditions of the country. In fact, Paraguay exhibits significant vulnerabilities to climate changes, especially because of its dependence on commodities production (e.g. agriculture, livestock, etc.) and its infrastructural and logistic asset not yet fully formed. In this context, climate change analysis can be an important technical support for practitioners to assist - under uncertainty - national/regional planning, financial resources managing and development (e.g. land-use practices, population growth, economic and community behavior, health, etc.). Moreover, actions in adaptation, disaster risk reduction (DRR), social protection and impacts mitigation may involve high costs if not properly contextualized. The assessment of 21st century climate change and development of whatever response strategies requires climate scenarios at high resolution, including an accurate evaluation of projection uncertainties (i.e. robustness of the analysis). This should ensure adequate insights into the potential impacts of climate change and allow practitioners, usually ill equipped to consider uncertain climate outputs into a broader context (e.g. planning, designing, managing), to make appropriate choices. In the framework of CORDEX initiative, Paraguay is included into the SOUTH-AMERICA-CORDEX one. Three climate simulations over this area are available at the spatial resolution of 0.44° (about 50km), obtained with RCM SMHI-RCA4 (forced by GCMs ICHEC-EC-EARTH and MPI-M-MPI-ESM-LR) and RCM MPI-CSC-REMO2009 (forced by MPI-M-MPI-ESM-LR). Simulations over the 21st century have been performed according with IPCC RCP2.6, RCP4.5 and RCP8.5 scenarios. The plausibility of the acquired climate simulations has been determined by comparison with different observational datasets over the baseline period. Three future periods have been selected for the analysis: 2011-2040, 2041-2070 and 2071-2100. The analysis is carried out in order to address the mean changes in seasonal mean temperature and total precipitation, and of some indicators suitable to quantify the impact of climate extreme events. The analysis is performed in the framework of the Chake Ou project "Strengthening of institutional and community preparedness and coordination capacities for disaster risk reduction in Paraguay" funded by the European Commission's Humanitarian Aid and Civil Protection Department (ECHO), in the context of the Disaster Preparedness Action Plan (DIPECHO) (code ECHO/-SM/BUD/2015/91028). The partners of the project are COOPI (a humanitarian, no-confessional and independent organization that works to support civil, economic and social development of populations struck by emergencies (disasters and conflicts), PLAN International (a child-centered community development organization) and CMCC Foundation (Euro-Mediterranean Center on Climate Change). The consortium works in close collaboration with the local institutions such as the Secretaria de Emergencia Nacional (SEN) and the Dirección de Meteorología e Hidrología (DMH - DINAC).

  9. A Methodological Review of US Budget-Impact Models for New Drugs.

    PubMed

    Mauskopf, Josephine; Earnshaw, Stephanie

    2016-11-01

    A budget-impact analysis is required by many jurisdictions when adding a new drug to the formulary. However, previous reviews have indicated that adherence to methodological guidelines is variable. In this methodological review, we assess the extent to which US budget-impact analyses for new drugs use recommended practices. We describe recommended practice for seven key elements in the design of a budget-impact analysis. Targeted literature searches for US studies reporting estimates of the budget impact of a new drug were performed and we prepared a summary of how each study addressed the seven key elements. The primary finding from this review is that recommended practice is not followed in many budget-impact analyses. For example, we found that growth in the treated population size and/or changes in disease-related costs expected during the model time horizon for more effective treatments was not included in several analyses for chronic conditions. In addition, all drug-related costs were not captured in the majority of the models. Finally, for most studies, one-way sensitivity and scenario analyses were very limited, and the ranges used in one-way sensitivity analyses were frequently arbitrary percentages rather than being data driven. The conclusions from our review are that changes in population size, disease severity mix, and/or disease-related costs should be properly accounted for to avoid over- or underestimating the budget impact. Since each budget holder might have different perspectives and different values for many of the input parameters, it is also critical for published budget-impact analyses to include extensive sensitivity and scenario analyses based on realistic input values.

  10. Climate impacts on human livelihoods: where uncertainty matters in projections of water availability

    NASA Astrophysics Data System (ADS)

    Lissner, T. K.; Reusser, D. E.; Schewe, J.; Lakes, T.; Kropp, J. P.

    2014-10-01

    Climate change will have adverse impacts on many different sectors of society, with manifold consequences for human livelihoods and well-being. However, a systematic method to quantify human well-being and livelihoods across sectors is so far unavailable, making it difficult to determine the extent of such impacts. Climate impact analyses are often limited to individual sectors (e.g. food or water) and employ sector-specific target measures, while systematic linkages to general livelihood conditions remain unexplored. Further, recent multi-model assessments have shown that uncertainties in projections of climate impacts deriving from climate and impact models, as well as greenhouse gas scenarios, are substantial, posing an additional challenge in linking climate impacts with livelihood conditions. This article first presents a methodology to consistently measure what is referred to here as AHEAD (Adequate Human livelihood conditions for wEll-being And Development). Based on a trans-disciplinary sample of concepts addressing human well-being and livelihoods, the approach measures the adequacy of conditions of 16 elements. We implement the method at global scale, using results from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to show how changes in water availability affect the fulfilment of AHEAD at national resolution. In addition, AHEAD allows for the uncertainty of climate and impact model projections to be identified and differentiated. We show how the approach can help to put the substantial inter-model spread into the context of country-specific livelihood conditions by differentiating where the uncertainty about water scarcity is relevant with regard to livelihood conditions - and where it is not. The results indicate that livelihood conditions are compromised by water scarcity in 34 countries. However, more often, AHEAD fulfilment is limited through other elements. The analysis shows that the water-specific uncertainty ranges of the model output are outside relevant thresholds for AHEAD for 65 out of 111 countries, and therefore do not contribute to the overall uncertainty about climate change impacts on livelihoods. In 46 of the countries in the analysis, water-specific uncertainty is relevant to AHEAD. The AHEAD method presented here, together with first results, forms an important step towards making scientific results more applicable for policy decisions.

  11. The contribution of sea-level rise to flooding in large river catchments

    NASA Astrophysics Data System (ADS)

    Thiele-Eich, I.; Hopson, T. M.; Gilleland, E.; Lamarque, J.; Hu, A.; Simmer, C.

    2012-12-01

    Climate change is expected to both impact sea level rise as well as flooding. Our study focuses on the combined effect of climate change on upper catchment precipitation as well as on sea-level rise at the river mouths and the impact this will have on river flooding both at the coast and further upstream. We concentrate on the eight catchments of the Amazonas, Congo, Orinoco, Ganges/Brahmaputra/Meghna, Mississippi, St. Lawrence, Danube and Niger rivers. To assess the impact of climate change, upper catchment precipitation as well as monthly mean thermosteric sea-level rise at the river mouth outflow are taken from the four CCSM4 1° 20th Century ensemble members as well as from six CCSM4 1° ensemble members for the RCP scenarios RCP8.5, 6.0, 4.5 and 2.6. Continuous daily time series for average catchment precipitation and discharge are available for each of the catchments. To arrive at a future discharge time series, we used these observations to develop a simple statistical hydrological model which can be applied to the modelled future upper catchment precipitation values. The analysis of this surrogate discharge time series alone already yields significant changes in flood return levels as well as flood duration. Using the geometry of the river channel, the backwater effect of sea-level rise is incorporated in our analysis of both flood frequencies and magnitudes by calculating the effective additional discharge due to the increase in water level at the river mouth outflow, as well as its tapering impact upstream. By combining these effects, our results focus on the merged impact of changes in extreme precipitation with increases in river height due to sea-level rise at the river mouths. Judging from our preliminary results, the increase in effective discharge due to sea-level rise cannot be neglected when discussing late 21st century flooding in the respective river basins. In particular, we find that especially in countries with low elevation gradient, flood characteristics are impacted by changes in sea-level rise as far inland as 150 kilometers. Therefore, a larger population than the coastal inhabitants alone are exposed to risks of further projected increases of sea-level rise. A prime example for a megacity greatly put at risk by this is Dhaka City in Bangladesh, with a population of roughly 14 million people.

  12. Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity.

    PubMed

    Seidl, Rupert; Lexer, Manfred J

    2013-01-15

    The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to reduce climate change impacts statistically insignificant (i.e., for approximately one third of the investigated management units of the AFF case study), fostering adaptive capacity is suggested as the preferred pathway for adaptation. We conclude that climate change adaptation needs to balance between anticipating expected future conditions and building the capacity to address unknowns and surprises. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Real options analysis for photovoltaic project under climate uncertainty

    NASA Astrophysics Data System (ADS)

    Kim, Kyeongseok; Kim, Sejong; Kim, Hyoungkwan

    2016-08-01

    The decision on photovoltaic project depends on the level of climate environments. Changes in temperature and insolation affect photovoltaic output. It is important for investors to consider future climate conditions for determining investments on photovoltaic projects. We propose a real options-based framework to assess economic feasibility of photovoltaic project under climate change. The framework supports investors to evaluate climate change impact on photovoltaic projects under future climate uncertainty.

  14. A rapid response air quality analysis system for use in projects having stringent quality assurance requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, A.W.

    1990-04-01

    This paper describes an approach to solve air quality problems which frequently occur during iterations of the baseline change process. From a schedule standpoint, it is desirable to perform this evaluation in as short a time as possible while budgetary pressures limit the size of the staff available to do the work. Without a method in place to deal with baseline change proposal requests the environment analysts may not be able to produce the analysis results in the time frame expected. Using a concept called the Rapid Response Air Quality Analysis System (RAAS), the problems of timing and cost becomemore » tractable. The system could be adapted to assess other atmospheric pathway impacts, e.g., acoustics or visibility. The air quality analysis system used to perform the EA analysis (EA) for the Salt Repository Project (part of the Civilian Radioactive Waste Management Program), and later to evaluate the consequences of proposed baseline changes, consists of three components: Emission source data files; Emission rates contained in spreadsheets; Impact assessment model codes. The spreadsheets contain user-written codes (macros) that calculate emission rates from (1) emission source data (e.g., numbers and locations of sources, detailed operating schedules, and source specifications including horsepower, load factor, and duty cycle); (2) emission factors such as those published by the U.S. Environmental Protection Agency, and (3) control efficiencies.« less

  15. Are High-Impact Species Predictable? An Analysis of Naturalised Grasses in Northern Australia

    PubMed Central

    van Klinken, Rieks D.; Panetta, F. Dane; Coutts, Shaun R.

    2013-01-01

    Predicting which species are likely to cause serious impacts in the future is crucial for targeting management efforts, but the characteristics of such species remain largely unconfirmed. We use data and expert opinion on tropical and subtropical grasses naturalised in Australia since European settlement to identify naturalised and high-impact species and subsequently to test whether high-impact species are predictable. High-impact species for the three main affected sectors (environment, pastoral and agriculture) were determined by assessing evidence against pre-defined criteria. Twenty-one of the 155 naturalised species (14%) were classified as high-impact, including four that affected more than one sector. High-impact species were more likely to have faster spread rates (regions invaded per decade) and to be semi-aquatic. Spread rate was best explained by whether species had been actively spread (as pasture), and time since naturalisation, but may not be explanatory as it was tightly correlated with range size and incidence rate. Giving more weight to minimising the chance of overlooking high-impact species, a priority for biosecurity, meant a wider range of predictors was required to identify high-impact species, and the predictive power of the models was reduced. By-sector analysis of predictors of high impact species was limited by their relative rarity, but showed sector differences, including to the universal predictors (spread rate and habitat) and life history. Furthermore, species causing high impact to agriculture have changed in the past 10 years with changes in farming practice, highlighting the importance of context in determining impact. A rationale for invasion ecology is to improve the prediction and response to future threats. Although our study identifies some universal predictors, it suggests improved prediction will require a far greater emphasis on impact rather than invasiveness, and will need to account for the individual circumstances of affected sectors and the relative rarity of high-impact species. PMID:23874718

  16. Future Costs, Benefits, and Impacts of Renewables Used to Meet U.S. Renewable Portfolio Standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    This brochure provides a brief overview of the report titled 'A Prospective Analysis of the Costs, Benefits, and Impacts of U.S. Renewable Portfolio Standards.' The report evaluates the future costs, benefits, and other impacts of renewable energy used to meet current state renewable portfolio standards (RPSs). It also examines a future scenario where RPSs are expanded. The analysis examines changes in electric system costs and retail electricity prices, which include all fixed and operating costs, including capital costs for all renewable, non-renewable, and supporting (e.g., transmission and storage) electric sector infrastructure; fossil fuel, uranium, and biomass fuel costs; and plantmore » operations and maintenance expenditures. The analysis evaluates three specific benefits: air pollution, greenhouse gas emissions, and water use. It also analyzes two other impacts, renewable energy workforce and economic development, and natural gas price suppression. The analysis finds that the benefits or renewable energy used to meet RPS polices exceed the costs, even when considering the highest cost and lowest benefit outcomes.« less

  17. The American Climate Prospectus: a risk-centered analysis of the economic impacts of climate change

    NASA Astrophysics Data System (ADS)

    Jina, A.; Houser, T.; Hsiang, S. M.; Kopp, R. E., III; Delgado, M.; Larsen, K.; Mohan, S.; Rasmussen, D.; Rising, J.; Wilson, P. S.; Muir-Wood, R.

    2014-12-01

    The American Climate Prospectus (ACP), the analysis underlying the Risky Business project, quantitatively assessed the climate risks posed to the United States' economy in six sectors - crop yields, energy demand, coastal property, crime, labor productivity, and mortality [1]. The ACP is unique in its characterization of the full probability distribution of economic impacts of climate change throughout the 21st century, making it an extremely useful basis for risk assessments. Three key innovations allow for this characterization. First, climate projections from CMIP5 models are scaled to a temperature probability distribution derived from a coarser climate model (MAGICC). This allows a more accurate representation of the whole distribution of future climates (in particular the tails) than a simple ensemble average. These are downscaled both temporally and spatially. Second, a set of local sea level rise and tropical cyclone projections are used in conjunction with the most detailed dataset of coastal property in the US in order to capture the risks of rising seas and storm surge. Third, we base many of our sectors on empirically-derived responses to temperature and precipitation. Each of these dose-response functions is resampled many times to populate a statistical distribution. Combining these with uncertainty in emissions scenario, climate model, and weather, we create the full probability distribution of climate impacts from county up to national levels, as well as model the effects upon the economy as a whole. Results are presented as likelihood ranges, as well as changes to return intervals of extreme events. The ACP analysis allows us to compare between sectors to understand the magnitude of required policy responses, and also to identify risks through time. Many sectors displaying large impacts at the end of the century, like those of mortality, have smaller changes in the near-term, due to non-linearities in the response functions. Other sectors, like coastal damages, have monotonically increasing costs throughout the 21st century. Taken together, the results from the ACP presents a unique and novel view of the short-, medium-, and long-term economic risks of climate change in the US. References: [1] T. Houser et al (2014), American Climate Prospectus, www.climateprospectus.org.

  18. Climate impacts on agricultural land use in the USA: the role of socio-economic scenarios

    USGS Publications Warehouse

    Mu, Jianhong E.; Sleeter, Benjamin M.; Abatzoglou, John T.; Antle, John M.

    2017-01-01

    We examine the impacts of climate on net returns from crop and livestock production and the resulting impact on land-use change across the contiguous USA. We first estimate an econometric model to project effects of weather fluctuations on crop and livestock net returns and then use a semi-reduced form land-use share model to study agricultural land-use changes under future climate and socio-economic scenarios. Estimation results show that crop net returns are more sensitive to thermal and less sensitive to moisture variability than livestock net returns; other agricultural land uses substitute cropland use when 30-year averaged degree-days or precipitation are not beneficial for crop production. Under future climate and socio-economic scenarios, we project that crop and livestock net returns are both increasing, but with crop net returns increasing at a higher rate; cropland increases with declines of marginal and pastureland by the end of the twenty-first century. Projections also show that impacts of future climate on agricultural land uses are substantially different and a larger variation of land-use change is evident when socio-economic scenarios are incorporated into the climate impact analysis.

  19. Economic development and coastal ecosystem change in China

    PubMed Central

    He, Qiang; Bertness, Mark D.; Bruno, John F.; Li, Bo; Chen, Guoqian; Coverdale, Tyler C.; Altieri, Andrew H.; Bai, Junhong; Sun, Tao; Pennings, Steven C.; Liu, Jianguo; Ehrlich, Paul R.; Cui, Baoshan

    2014-01-01

    Despite their value, coastal ecosystems are globally threatened by anthropogenic impacts, yet how these impacts are driven by economic development is not well understood. We compiled a multifaceted dataset to quantify coastal trends and examine the role of economic growth in China's coastal degradation since the 1950s. Although China's coastal population growth did not change following the 1978 economic reforms, its coastal economy increased by orders of magnitude. All 15 coastal human impacts examined increased over time, especially after the reforms. Econometric analysis revealed positive relationships between most impacts and GDP across temporal and spatial scales, often lacking dropping thresholds. These relationships generally held when influences of population growth were addressed by analyzing per capita impacts, and when population density was included as explanatory variables. Historical trends in physical and biotic indicators showed that China's coastal ecosystems changed little or slowly between the 1950s and 1978, but have degraded at accelerated rates since 1978. Thus economic growth has been the cause of accelerating human damage to China's coastal ecosystems. China's GDP per capita remains very low. Without strict conservation efforts, continuing economic growth will further degrade China's coastal ecosystems. PMID:25104138

  20. Can a quality improvement project impact maternal and child health outcomes at scale in northern Ghana?

    PubMed

    Singh, Kavita; Brodish, Paul; Speizer, Ilene; Barker, Pierre; Amenga-Etego, Issac; Dasoberi, Ireneous; Kanyoke, Ernest; Boadu, Eric A; Yabang, Elma; Sodzi-Tettey, Sodzi

    2016-06-16

    Quality improvement (QI) interventions are becoming more common in low- and middle-income countries, yet few studies have presented impact evaluations of these approaches. In this paper, we present an impact evaluation of a scale-up phase of 'Project Fives Alive!', a QI intervention in Ghana that aims to improve maternal and child health outcomes. 'Project Fives Alive!' employed a QI methodology to recognize barriers to care-seeking and care provision at the facility level and then to identify, test and implement simple and low-cost local solutions that address the barriers. A quasi-experimental design, multivariable interrupted time series analysis, with data coming from 744 health facilities and controlling for potential confounding factors, was used to study the effect of the project. The key independent variables were the change categories (interventions implemented) and implementation phase - Wave 2a (early phase) versus Wave 2b (later phase). The outcomes studied were early antenatal care (ANC), skilled delivery, facility-level under-five mortality and attendance of underweight infants at child welfare clinics. We stratified the analysis by facility type, namely health posts, health centres and hospitals. Several of the specific change categories were significantly associated with improved outcomes. For example, three of five change categories (early ANC, four or more ANC visits and skilled delivery/immediate postnatal care (PNC)) for health posts and two of five change categories (health education and triage) for hospitals were associated with increased skilled delivery. These change categories were associated with increases in skilled delivery varying from 28% to 58%. PNC changes for health posts and health centres were associated with greater attendance of underweight infants at child welfare clinics. The triage change category was associated with increased early antenatal care in hospitals. Intensity, the number of change categories tested, was associated with increased skilled delivery in health centres and reduced under-five mortality in hospitals. Using an innovative evaluation technique we determined that 'Project Fives Alive!' demonstrated impact at scale for the outcomes studied. The QI approach used by this project should be considered by other low- and middle-income countries in their efforts to improve maternal and child health.

Top