Science.gov

Sample records for change impacts adaptation

  1. Climate Change in Myanmar: Impacts and Adaptation

    DTIC Science & Technology

    2014-12-01

    stage, it can be argued that signing on to the Rio Summit, the Kyoto Protocol and other similar treaties was done for purely political benefit with...the Kyoto Protocol . Furthermore, regional agreements are in place to mitigate environmental issues and adapt to climate change. Among these are...the Kyoto Protocol in late 1997. As these developments advanced together, SLORC/SPDC policies showed greater consideration for the environment and

  2. U.S. Global Climate Change Impacts Report, Adaptation

    NASA Astrophysics Data System (ADS)

    Pulwarty, R.

    2009-12-01

    Adaptation measures improve our ability to cope with or avoid harmful climate impacts and take advantage of beneficial ones, now and as climate varies and changes. Adaptation and mitigation are necessary elements of an effective response to climate change. Adaptation options also have the potential to moderate harmful impacts of current and future climate variability and change. The Global Climate Change Impacts Report identifies examples of adaptation-related actions currently being pursued in various sectors and regions to address climate change, as well as other environmental problems that could be exacerbated by climate change such as urban air pollution and heat waves. Some adaptation options that are currently being pursued in various regions and sectors to deal with climate change and/or other environmental issues are identified in this report. A range of adaptation responses can be employed to reduce risks through redesign or relocation of infrastructure, sustainability of ecosystem services, increased redundancy of critical social services, and operational improvements. Adapting to climate change is an evolutionary process and requires both analytic and deliberative decision support. Many of the climate change impacts described in the report have economic consequences. A significant part of these consequences flow through public and private insurance markets, which essentially aggregate and distribute society's risk. However, in most cases, there is currently insufficient robust information to evaluate the practicality, efficiency, effectiveness, costs, or benefits of adaptation measures, highlighting a need for research. Adaptation planning efforts such as that being conducted in New York City and the Colorado River will be described. Climate will be continually changing, moving at a relatively rapid rate, outside the range to which society has adapted in the past. The precise amounts and timing of these changes will not be known with certainty. The

  3. European information on climate change impacts, vulnerability and adaptation

    NASA Astrophysics Data System (ADS)

    Jol, A.; Isoard, S.

    2010-09-01

    Vulnerability to natural and technological disasters is increasing due to a combination of intensifying land use, increasing industrial development, further urban expansion and expanding infrastructure and also climate change. At EU level the European Commission's White Paper on adaptation to climate change (published in 2009) highlights that adaptation actions should be focused on the most vulnerable areas and communities in Europe (e.g. mountains, coastal areas, river flood prone areas, Mediterranean, Arctic). Mainstreaming of climate change into existing EU policies will be a key policy, including within the Water Framework Directive, Marine Strategy Framework Directive, Nature protection and biodiversity policies, integrated coastal zone management, other (sectoral) policies (agriculture, forestry, energy, transport, health) and disaster risk prevention. 2010 is the international year on biodiversity and the Conference of Parties of the biodiversity convention will meet in autumn 2010 (Japan) to discuss amongst other post-2010 strategies, objectives and indicators. Both within the Biodiversity Convention (CBD) and the Climate Change Convention (UNFCCC) there is increasing recognition of the need for integration of biodiversity conservation into climate change mitigation and adaptation activities. Furthermore a number of European countries and also some regions have started to prepare and/or have adopted national adaptation plans or frameworks. Sharing of good practices on climate change vulnerability methods and adaptation actions is so far limited, but is essential to improve such plans, at national, sub national and local level where much of the adaptation action is already taking place and will be expanding in future, also involving increasingly the business community. The EU Clearinghouse on CC impacts, vulnerability and adaptation should address these needs and it is planned to be operational end of 2011. The EEA is expected to have a role in its

  4. IMPACTS OF GLOBAL CLIMATE CHANGE ADAPTION ON SUSTAINABILITY

    EPA Science Inventory

    This presentation presents the potential impacts that global climate change may have on the quality and quantity of water available to drinking water and wastewater treatment systems and the adaptations these systems might have to employ in order to remain in regulatory complianc...

  5. Climate change impacts and adaptive strategies: lessons from the grapevine.

    PubMed

    Mosedale, Jonathan R; Abernethy, Kirsten E; Smart, Richard E; Wilson, Robert J; Maclean, Ilya M D

    2016-11-01

    The cultivation of grapevines for winemaking, known as viticulture, is widely cited as a climate-sensitive agricultural system that has been used as an indicator of both historic and contemporary climate change. Numerous studies have questioned the viability of major viticulture regions under future climate projections. We review the methods used to study the impacts of climate change on viticulture in the light of what is known about the effects of climate and weather on the yields and quality of vineyard harvests. Many potential impacts of climate change on viticulture, particularly those associated with a change in climate variability or seasonal weather patterns, are rarely captured. Key biophysical characteristics of viticulture are often unaccounted for, including the variability of grapevine phenology and the exploitation of microclimatic niches that permit successful cultivation under suboptimal macroclimatic conditions. We consider how these same biophysical characteristics permit a variety of strategies by which viticulture can adapt to changing climatic conditions. The ability to realize these strategies, however, is affected by uneven exposure to risks across the winemaking sector, and the evolving capacity for decision-making within and across organizational boundaries. The role grape provenance plays in shaping perceptions of wine value and quality illustrates how conflicts of interest influence decisions about adaptive strategies within the industry. We conclude by considering what lessons can be taken from viticulture for studies of climate change impacts and the capacity for adaptation in other agricultural and natural systems.

  6. Climate change and Public health: vulnerability, impacts, and adaptation

    NASA Astrophysics Data System (ADS)

    Guzzone, F.; Setegn, S.

    2013-12-01

    Climate Change plays a significant role in public health. Changes in climate affect weather conditions that we are accustomed to. Increases in the frequency or severity of extreme weather events such as storms could increase the risk of dangerous flooding, high winds, and other direct threats to people and property. Changes in temperature, precipitation patterns, and extreme events could enhance the spread of some diseases. According to studies by EPA, the impacts of climate change on health will depend on many factors. These factors include the effectiveness of a community's public health and safety systems to address or prepare for the risk and the behavior, age, gender, and economic status of individuals affected. Impacts will likely vary by region, the sensitivity of populations, the extent and length of exposure to climate change impacts, and society's ability to adapt to change. Transmissions of infectious disease have been associated with social, economic, ecological, health care access, and climatic factors. Some vector-borne diseases typically exhibit seasonal patterns in which the role of temperature and rainfall is well documented. Some of the infectious diseases that have been documented by previous studies, include the correlation between rainfall and drought in the occurrence of malaria, the influence of the dry season on epidemic meningococcal disease in the sub-Saharan African, and the importance of warm ocean waters in driving cholera occurrence in the Ganges River delta in Asia The rise of climate change has been a major concern in the public health sector. Climate change mainly affects vulnerable populations especially in developing countries; therefore, it's important that public health advocates are involve in the decision-making process in order to provide resources and preventative measures for the challenges that are associated with climate change. The main objective of this study is to assess the vulnerability and impact of climate change

  7. Climate change and pastoralism: impacts, consequences and adaptation.

    PubMed

    Herrero, M; Addison, J; Bedelian, C; Carabine, E; Havlík, P; Henderson, B; Van De Steeg, J; Thornton, P K

    2016-11-01

    The authors discuss the main climate change impacts on pastoralist societies, including those on rangelands, livestock and other natural resources, and their extended repercussions on food security, incomes and vulnerability. The impacts of climate change on the rangelands of the globe and on the vulnerability of the people who inhabit them will be severe and diverse, and will require multiple, simultaneous responses. In higher latitudes, the removal of temperature constraints might increase pasture production and livestock productivity, but in tropical arid lands, the impacts are highly location specific, but mostly negative. The authors outline several adaptation options, ranging from implementing new technical practices and diversifying income sources to finding institutional support and introducing new market mechanisms, all of which are pivotal for enhancing the capacity of pastoralists to adapt to climate variability and change. Due to the dynamism of all the changes affecting pastoral societies, strategies that lock pastoral societies into specified development pathways could be maladaptive. Flexible and evolving combinations of practices and policies are the key to successful pastoral adaptation.

  8. Adaptation to Climate change Impacts on the Mediterranean islands' Agriculture (ADAPT2CLIMA)

    NASA Astrophysics Data System (ADS)

    Giannakopoulos, Christos; Karali, Anna; Lemesios, Giannis; Loizidou, Maria; Papadaskalopoulou, Christina; Moustakas, Konstantinos; Papadopoulou, Maria; Moriondo, Marco; Markou, Marinos; Hatziyanni, Eleni; Pasotti, Luigi

    2016-04-01

    Agriculture is one of the economic sectors that will likely be hit hardest by climate change, since it directly depends on climatic factors such as temperature, sunlight, and precipitation. The EU LIFE ADAPT2CLIMA (http://adapt2clima.eu/en/) project aims to facilitate the development of adaptation strategies for agriculture by deploying and demonstrating an innovative decision support tool. The ADAPT2CLIMA tool will make it possible to simulate the impacts of climate change on crop production and the effectiveness of selected adaptation options in decreasing vulnerability to climate change in three Mediterranean islands, namely Crete (Greece), Sicily (Italy), and Cyprus. The islands were selected for two reasons: firstly, they figure among the most important cultivation areas at national level. Secondly, they exhibit similarities in terms of location (climate), size, climate change threats faced (coastal agriculture, own water resources), agricultural practices, and policy relevance. In particular, the tool will provide: i) climate change projections; ii) hydrological conditions related to agriculture: iii) a vulnerability assessment of selected crops; iv) an evaluation of the adaptation options identified. The project is expected to contribute significantly to increasing climate resilience of agriculture areas in Sicily, Cyprus and Crete as well as at EU and international level by: • Developing, implementing and demonstrating an innovative and interactive decision support tool (ADAPT2CLIMA tool) for adaptation planning in agriculture that estimates future climate change impacts on local water resources, as well as the climate change vulnerability of the agricultural crop production in the project areas; • Evaluating the technical and economic viability of the implementation of the ADAPT2CLIMA tool; • Developing climate change adaptation strategies for agriculture (including a monitoring plan) for the three project areas and presenting them to the competent

  9. Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts.

    PubMed

    Bonebrake, Timothy C; Mastrandrea, Michael D

    2010-07-13

    Global patterns of biodiversity and comparisons between tropical and temperate ecosystems have pervaded ecology from its inception. However, the urgency in understanding these global patterns has been accentuated by the threat of rapid climate change. We apply an adaptive model of environmental tolerance evolution to global climate data and climate change model projections to examine the relative impacts of climate change on different regions of the globe. Our results project more adverse impacts of warming on tropical populations due to environmental tolerance adaptation to conditions of low interannual variability in temperature. When applied to present variability and future forecasts of precipitation data, the tolerance adaptation model found large reductions in fitness predicted for populations in high-latitude northern hemisphere regions, although some tropical regions had comparable reductions in fitness. We formulated an evolutionary regional climate change index (ERCCI) to additionally incorporate the predicted changes in the interannual variability of temperature and precipitation. Based on this index, we suggest that the magnitude of climate change impacts could be much more heterogeneous across latitude than previously thought. Specifically, tropical regions are likely to be just as affected as temperate regions and, in some regions under some circumstances, possibly more so.

  10. Congressional Briefing on Climate Change Impacts and Adaptation

    NASA Astrophysics Data System (ADS)

    Landau, Elizabeth

    2010-01-01

    During an 8 January 2010 congressional briefing on climate change cosponsored by AGU, speakers discussed the impacts of climate change in the United States and the ability of society to cope with these impacts. More than 200 congressional and federal agency staff attended the briefing, which featured Michael MacCracken, chief scientist for climate change programs at the Climate Institute; Kristie Ebi, executive director of the Intergovernmental Panel on Climate Change Working Group 2 Technical Support Unit; Katharine Jacobs, professor at the University of Arizona's Soil, Water and Environmental Science Department; and Susanne Moser, director and principal researcher at Susanne Moser Research and Consulting. The briefing was jointly sponsored by AGU, the American Association for the Advancement of Science, American Meteorological Society, Ecological Society of America, and Pew Center on Global Climate Change. For more information about AGU's science policy program, visit http://www.agu.org/sci_pol/.

  11. Climate change impacts and adaptation in the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Lettenmaier, D. P.

    2008-12-01

    The University of Washington Climate Impacts Group (CIG) is an interdisciplinary research group that studies the impacts of natural climate variability and change on the U.S. Pacific Northwest (PNW). Through research and interaction with regional stakeholders, the CIG works to increase the resilience of the Pacific Northwest to fluctuations and long-term changes in climate. The CIG's research focuses on four key sectors of the PNW environment: water resources, aquatic ecosystems, forests, and coasts. This talk focuses specifically on the water resources sector of CIG, and its work addressing potential climate change impacts on the region's hydrology being undertaken under an ongoing statewide climate impacts assessment (known as HB 1303). In the Pacific Northwest, as in most of the western U.S., warming temperatures are expected to result in lower winter snowpack, thus shifting seasonal runoff peaks earlier in the year, and increasing the duration of the summer and fall low flow period. The ongoing HB1303 work is based on IPCC 2007 climate scenarios. Hydrologic scenarios have been generated by downscaling GCM scenarios to 1/16 degree latitude-longitude spatial resolution, and using these downscaled scenarios to force the macroscale Variable Infiltration Capacity (VIC) model. We describe the range of hydrologic projections recently performed for 16 downscaled GCMs and 2 global emissions scenarios for the next 100 years, with particular attention on reservoir systems serving water supply needs in the Puget Sound basin and irrigation water in the Yakima River basin. We also evaluate implications of the changing climate for the Columbia River reservoir system, both in terms of the tradeoff between reservoir releases made for salmonid protection and restoration and hydropower generation, and for flood control.

  12. Adapting to and coping with the threat and impacts of climate change.

    PubMed

    Reser, Joseph P; Swim, Janet K

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to adequately communicate and explain how a more psychological framing of the human dimensions of global environmental change can greatly inform and enhance effective and collaborative climate change adaptation and mitigation policies and research. An integrative framework is provided that identifies and considers important mediating and moderating parameters and processes relating to climate change adaptation, with particular emphasis given to environmental stress and stress and coping perspectives. This psychological perspective on climate change adaptation highlights crucial aspects of adaptation that have been neglected in the arena of climate change science. Of particular importance are intra-individual and social "psychological adaptation" processes that powerfully mediate public risk perceptions and understandings, effective coping responses and resilience, overt behavioral adjustment and change, and psychological and social impacts. This psychological window on climate change adaptation is arguably indispensable to genuinely multidisciplinary and interdisciplinary research and policy initiatives addressing the impacts of climate change.

  13. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    SciTech Connect

    Spickett, Jeffery T.; Brown, Helen L.; Katscherian, Dianne

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location. Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to

  14. Adapting to Climate Change in the Great Lakes Region: The Wisconsin Initiative on Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Vimont, D.; Liebl, D.

    2012-12-01

    The mission of the Wisconsin Initiative on Climate Change Impacts (WICCI; http://www.wicci.wisc.edu) is to assess the impacts of climate change on Wisconsin's natural, human, and built environments; and to assist in developing, recommending, and implementing climate adaptation strategies in Wisconsin. WICCI originated in 2007 as a partnership between the University of Wisconsin Nelson Institute and the Wisconsin Department of Natural Resources, and has since grown to include numerous other state, public, and private institutions. In 2011, WICCI released its First Assessment Report, which documents the efforts of over 200 individuals around the state in assessing vulnerability and estimating the risk that regional climate change poses to Wisconsin. The success of WICCI as an organization can be traced to its existence as a partnership between academic and state institutions, and as a boundary organization that catalyzes cross-disciplinary efforts between science and policy. WICCI's organizational structure and its past success at assessing climate impacts in Wisconsin will be briefly discussed. As WICCI moves into its second phase, it is increasing its emphasis on the second part of its mission: development, and implementation of adaptation strategies. Towards these goals WICCI has expanded its organizational structure to include a Communications and Outreach Committee that further ensures a necessary two-way communication of information between stakeholders / decision makers, and scientific efforts. WICCI is also increasing its focus on place-based efforts that include climate change information as one part of an integrated effort at sustainable development. The talk will include a discussion of current outreach and education efforts, as well as future directions for WICCI efforts.

  15. Adapting to and Coping with the Threat and Impacts of Climate Change

    ERIC Educational Resources Information Center

    Reser, Joseph P.; Swim, Janet K.

    2011-01-01

    This article addresses the nature and challenge of adaptation in the context of global climate change. The complexity of "climate change" as threat, environmental stressor, risk domain, and impacting process with dramatic environmental and human consequences requires a synthesis of perspectives and models from diverse areas of psychology to…

  16. Sink or Swim: Adapting to the Hydrologic Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Gleick, P. H.

    2014-12-01

    Climate changes lead to a wide range of societal and environmental impacts; indeed, strong evidence has accrued that such impacts are already occurring, as summarized by the newest National Climate Assessment and other analyses. Among the most important will be alterations in the hydrologic cycle, changes in water supply and demand, and impacts on existing water-related infrastructure. Because of the complexity of our water systems, adaptation responses will be equally complex. This problem has made it difficult for water managers and planners to develop and implement adaptation strategies. This talk will address three ways to think about water-related adaptation approaches to climate change: (1) strategies that are already being implemented to address population and economic changes without climate change; (2) whether these first-line strategies are appropriate for additional impacts that might result from climatic changes; and (3) new approaches that might be necessary for new, non-linear, or threshold impacts. An effort will also be made to differentiate between adaptation strategies that influence the hydrologic cycle directly (e.g., cloud seeding), those that influence supply management (e.g., construction of additional reservoirs or water-distribution systems), and those that affect water demand (e.g., removal of outdoor landscaping, installation of efficient irrigation systems).

  17. Health impacts of heat in a changing climate: how can emerging science inform urban adaptation planning?

    PubMed Central

    Petkova, Elisaveta P.; Morita, Haruka

    2014-01-01

    Extreme heat is one of the most important global causes of weather-related mortality, and climate change is leading to more frequent and intense heat waves. Recent epidemiologic findings on heat-related health impacts have reinforced our understanding of mortality impacts of extreme heat and have shown a range of impacts on morbidity outcomes including cardiovascular, respiratory and mental health responses. Evidence is also emerging on temporal trends towards decreasing exposure-response, probably reflecting autonomous population adaptation. Many cities are actively engaged in the development of heat adaptation plans to reduce future health impacts. Epidemiologic research into the evolution of local heat-health responses over time can greatly aid adaptation planning for heat, prevention of adverse health outcomes among vulnerable populations, as well as evaluation of new interventions. Such research will be facilitated by the formation of research partnerships involving epidemiologists, climate scientists, and local stakeholders. PMID:25422797

  18. Adapting to Health Impacts of Climate Change in the Department of Defense.

    PubMed

    Chrétien, Jean-Paul

    2016-01-01

    The Department of Defense (DoD) recognizes climate change as a threat to its mission and recently issued policy to implement climate change adaptation measures. However, the DoD has not conducted a comprehensive assessment of health-related climate change effects. To catalyze the needed assessment--a first step toward a comprehensive DoD climate change adaptation plan for health--this article discusses the DoD relevance of 3 selected climate change impacts: heat injuries, vector-borne diseases, and extreme weather that could lead to natural disasters. The author uses these examples to propose a comprehensive approach to planning for health-related climate change impacts in the DoD.

  19. Health impacts of climate change in Vanuatu: an assessment and adaptation action plan.

    PubMed

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-01-30

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change.

  20. Health impacts of climate change in the Solomon Islands: an assessment and adaptation action plan.

    PubMed

    Spickett, Jeffery T; Katscherian, Dianne

    2014-06-25

    The Pacific island countries are particularly vulnerable to the environmental changes wrought by global climate change such as sea level rise, more frequent and intense extreme weather events and increasing temperatures. The potential biophysical changes likely to affect these countries have been identified and it is important that consideration be given to the implications of these changes on the health of their citizens. The potential health impacts of climatic changes on the population of the Solomon Islands were assessed through the use of a Health Impact Assessment framework. The process used a collaborative and consultative approach with local experts to identify the impacts to health that could arise from local environmental changes, considered the risks associated with these and proposed appropriate potential adaptive responses. Participants included knowledgeable representatives from the biophysical, socio-economic, infrastructure, environmental diseases and food sectors. The risk assessments considered both the likelihood and consequences of the health impacts occurring using a qualitative process. To mitigate the adverse effects of the health impacts, an extensive range of potential adaptation strategies were developed. The overall process provided an approach that could be used for further assessments as well as an extensive range of responses which could be used by sectors and to assist future decision making associated with the Solomon Islands' responses to climate change.

  1. Cotton and Climate Change: Impacts and Options to mitigate and adapt.

    NASA Astrophysics Data System (ADS)

    Ton, P.

    2012-04-01

    Cotton & Climate change: Impacts and Options to mitigate and adapt. Climate change will have major impacts on cotton production and trade depending on production location. This report to be presented analyses the impacts of climate change on cotton production and trade in the main producing areas world-wide, and the options available to mitigate and to adapt to these impacts. Cotton production is both a contributor to climate change and subject to its impacts. Agricultural production, processing, trade and consumption contribute up to 40% of the world's emissions when forest clearance is included in the calculation. Cotton production contributes to between 0.3% and 1% of total global GHG emissions. Cotton has a certain resilience to high temperatures and drought due to its vertical tap root. The crop is, however, sensitive to water availability, particularly at the height of flowering and boll formation. Rising temperatures favour plant development, unless day temperatures exceed 32°C. New production areas may be established where cotton was not grown before. Increases in atmospheric CO2 will also favour plant development. In turn, increased pests, water stress, diseases, and weather extremes will pose adaptation challenges. Overall, the negative impacts of climate change on cotton production relate to the reduced availability of water for irrigation, in particular in Xinjiang (China), Pakistan, Australia and the western United States. Heat stress risks creating depressed yields in Pakistan in particular, while in other countries limited increases in temperatures could favour cotton plant growth and lengthen the cotton growing season. The impacts of climate change on rainfall will likely be positive in the Yellow River area (China), in India, the south-eastern United States and south-eastern Anatolia (Turkey). Impacts on rainfall in Brazil and West and Central Africa are unclear. Mitigation and adaptation to climate change in cotton production, as in agriculture

  2. Impact of climate change on human infectious diseases: Empirical evidence and human adaptation.

    PubMed

    Wu, Xiaoxu; Lu, Yongmei; Zhou, Sen; Chen, Lifan; Xu, Bing

    2016-01-01

    Climate change refers to long-term shifts in weather conditions and patterns of extreme weather events. It may lead to changes in health threat to human beings, multiplying existing health problems. This review examines the scientific evidences on the impact of climate change on human infectious diseases. It identifies research progress and gaps on how human society may respond to, adapt to, and prepare for the related changes. Based on a survey of related publications between 1990 and 2015, the terms used for literature selection reflect three aspects--the components of infectious diseases, climate variables, and selected infectious diseases. Humans' vulnerability to the potential health impacts by climate change is evident in literature. As an active agent, human beings may control the related health effects that may be effectively controlled through adopting proactive measures, including better understanding of the climate change patterns and of the compound disease-specific health effects, and effective allocation of technologies and resources to promote healthy lifestyles and public awareness. The following adaptation measures are recommended: 1) to go beyond empirical observations of the association between climate change and infectious diseases and develop more scientific explanations, 2) to improve the prediction of spatial-temporal process of climate change and the associated shifts in infectious diseases at various spatial and temporal scales, and 3) to establish locally effective early warning systems for the health effects of predicated climate change.

  3. Crops and climate change: progress, trends, and challenges in simulating impacts and informing adaptation.

    PubMed

    Challinor, Andrew J; Ewert, Frank; Arnold, Steve; Simelton, Elisabeth; Fraser, Evan

    2009-01-01

    Assessments of the relationships between crop productivity and climate change rely upon a combination of modelling and measurement. As part of this review, this relationship is discussed in the context of crop and climate simulation. Methods for linking these two types of models are reviewed, with a primary focus on large-area crop modelling techniques. Recent progress in simulating the impacts of climate change on crops is presented, and the application of these methods to the exploration of adaptation options is discussed. Specific advances include ensemble simulations and improved understanding of biophysical processes. Finally, the challenges associated with impacts and adaptation research are discussed. It is argued that the generation of knowledge for policy and adaptation should be based not only on syntheses of published studies, but also on a more synergistic and holistic research framework that includes: (i) reliable quantification of uncertainty; (ii) techniques for combining diverse modelling approaches and observations that focus on fundamental processes; and (iii) judicious choice and calibration of models, including simulation at appropriate levels of complexity that accounts for the principal drivers of crop productivity, which may well include both biophysical and socio-economic factors. It is argued that such a framework will lead to reliable methods for linking simulation to real-world adaptation options, thus making practical use of the huge global effort to understand and predict climate change.

  4. Climate change impact and adaptation research requires integrated assessment and farming systems analysis: a case study in the Netherlands

    NASA Astrophysics Data System (ADS)

    Reidsma, Pytrik; Wolf, Joost; Kanellopoulos, Argyris; Schaap, Ben F.; Mandryk, Maryia; Verhagen, Jan; van Ittersum, Martin K.

    2015-04-01

    Rather than on crop modelling only, climate change impact assessments in agriculture need to be based on integrated assessment and farming systems analysis, and account for adaptation at different levels. With a case study for Flevoland, the Netherlands, we illustrate that (1) crop models cannot account for all relevant climate change impacts and adaptation options, and (2) changes in technology, policy and prices have had and are likely to have larger impacts on farms than climate change. While crop modelling indicates positive impacts of climate change on yields of major crops in 2050, a semi-quantitative and participatory method assessing impacts of extreme events shows that there are nevertheless several climate risks. A range of adaptation measures are, however, available to reduce possible negative effects at crop level. In addition, at farm level farmers can change cropping patterns, and adjust inputs and outputs. Also farm structural change will influence impacts and adaptation. While the 5th IPCC report is more negative regarding impacts of climate change on agriculture compared to the previous report, also for temperate regions, our results show that when putting climate change in context of other drivers, and when explicitly accounting for adaptation at crop and farm level, impacts may be less negative in some regions and opportunities are revealed. These results refer to a temperate region, but an integrated assessment may also change perspectives on climate change for other parts of the world.

  5. Adaptation to Externally Driven Change: The Impact of Political Change on Job Satisfaction in the Public Sector

    PubMed Central

    Tabvuma, Vurain; Bui, Hong T M; Homberg, Fabian

    2014-01-01

    This article uses a quasi-natural experiment to investigate the adaptation of job satisfaction to externally driven political change in the public sector. This is important because democratic government bureaucracies often experience changes in leadership after elections. The analyses are based on data drawn from a large longitudinal data set, the British Household Panel Survey. Findings indicate that the impact of political elections is largely weak and temporary and is only present for men. For women, the internal processes of the organization tend to be more important. These findings suggest that changes in political leadership may not be associated with fundamental changes in policy. PMID:25598554

  6. Impacts of Autonomous Adaptations on the Hydrological Drought Under Climate Change Condition

    NASA Astrophysics Data System (ADS)

    Oki, T.; Satoh, Y.; Pokhrel, Y. N.; KIM, H.; Yoshimura, K.

    2014-12-01

    Because of expected effects of climate changes on quantity and spatial distribution of available water resources, assessment of the changes in the balance between the demand and supply of water resources is critical for some regions. Historically, water deficiencies were overcome by planned water management such as dam regulation and irrigation. But only few studies have investigated the effect of anthropogenic factors on the risk of imbalance of water demand and supply under climate change conditions. Therefore, estimation of the potential deficiency in existing infrastructures under water-environment change is needed to support our society to adapt against future climate changes. This study aims to estimate the impacts of climate changes on the risk of water scarcity projected based on CMIP5 RCP scenarios and the efficiency of autonomous adaptation by anthropogenic water management, such as reservoir operation and irrigation using ground water. First, tendencies of the changes in water scarcity under climate change are estimated by an improved land surface model, which integrates natural water cycles and human activities. Second, the efficiencies of human-developed infrastructure are analyzed by comparing the naturalized and fully anthropogenic offline simulations. It was found that number of hydrological drought days will be increased and decreased in approximately 70 % and 24 % of global land, respectively, considering anthropogenic water management, however, they are approximately 82 % and 16 %, respectively, under naturalized condition without anthropogenic water management. The differences indicate how autonomous adaptation through anthropogenic water management can reduce the impacts of climate change. Also, adequate enhancement of infrastructure is necessary against expected water scarcity under climate change because such positive and negative effects of artificial water regulation show comparable impact on water scarcity risk to that of climate change in

  7. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lnkao, Patricia; Rosenzweig, Cynthia; Ruth, Matthias; Solecki, William; Tarr, Joel

    2007-01-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been annunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAPs) reports to support informed discussion and decision making regarding climate change and variability by policy matters, resource managers, stakeholders, the media, and the general public. We are authors on a SAP describing the effects of global climate change on human settlements. This paper will present the elements of our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e

  8. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Wilbanks, Thomas J.; Kirshen, Paul; Romero-Lankao, Patricia; Rosenzweig, Cynthia; Ruth, Mattias; Solecki, William; Tarr, Joel

    2008-01-01

    This slide presentation reviews some of the effects that global change has on urban areas in the United States and how the growth of urban areas will affect the environment. It presents the elements of our Synthesis and Assessment Report (SAP) report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We will also present some recommendations about what should be done to further research on how climate change and variability will impact human settlements in the U.S., as well as how to engage government officials, policy and decision makers, and the general public in understanding the implications of climate change and variability on the local and regional levels. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts (e.g. public health, urban planning for mitigation strategies) on how cities can cope and adapt to climate change and variability. This latter point parallels the concepts and ideas presented in the U.S. National Academy of Sciences, Decadal Survey report on "Earth Science Applications from Space: National Imperatives for the Next Decade and Beyond" wherein the analysis of the impacts of climate change and variability, human health, and land use change are listed as key areas for development of future Earth observing remote sensing systems.

  9. Human Health Impacts of and Public Health Adaptation to Climate Variability and Change

    NASA Astrophysics Data System (ADS)

    Ebi, K. L.

    2007-12-01

    Weather and climate are among the factors that determine the geographic range and incidence of several major causes of ill health, including undernutrition, diarrheal diseases and other conditions due to unsafe water and lack of basic sanitation, and malaria. The Human Health chapter in the Fourth Assessment Report of the Intergovernmental Panel on Climate Change concluded that climate change has begun to negatively affect human health, and that projected climate change will increase the risks of climate-sensitive health outcomes, particularly in lower-income populations, predominantly within tropical/subtropical countries. Those at greatest risk include the urban poor, older adults, children, traditional societies, subsistence farmers, and coastal populations, particularly in low income countries. The cause-and-effect chain from climate change to changing patterns of health determinants and outcomes is complex and includes socioeconomic, institutional, and other factors. The severity of future impacts will be determined by changes in climate as well as by concurrent changes in nonclimatic factors and by the adaptation measures implemented to reduce negative impacts. Public health has a long history of effectively intervening to reduce risks to the health of individuals and communities. Lessons learned from more than 150 years of research and intervention can provide insights to guide the design and implementation of effective and efficient interventions to reduce the current and projected impacts of climate variability and change.

  10. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    NASA Astrophysics Data System (ADS)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  11. IPCC Climate Change 2013: Impacts, Adaptation and Vulnerability: Key findings and lessons learned

    NASA Astrophysics Data System (ADS)

    Giorgi, Filippo; Field, Christopher; Barros, Vicente

    2014-05-01

    The Working Group II contribution to the Fifth Assessment Report of the Intergivernmental Panel on Climate Change, Impacts, Adaptation and Vulnerability, will be completed and approved in March 2014. It includes two parts, Part A covering Global and Sectoral Aspects, and Part B, covering Regional Aspects. The WGII report spans a very broad range of topics which are approached in a strong interdisciplinary context. It highlights how observed impacts of climate change are now widespread and consequential, particularly for natural systems, and can be observed on all continents and across the oceans. Vulnerability to climate change depends on interactions with non-climatic stressors and inequalities, resulting in highly differential risks associated with climate change. It is also found that adaptation is already occurring across scales and is embedded in many planning processes. Continued sustained warming thrughout the 21st century will exacerbate risks and vulnerabilities across multiple sectors, such as freshwater resources, terrestrial and inland water systems, coastal and marine systems, food production, human health, security and livelihood. The report stresses how risks and vulnerabilities need to be assessed within a multi-stressor and regionally specific context, and can be reduced and managed by adopting climate-resilient pathwyas combining suitable adaptation and mitigation options with synergies and tradeoffs occurring both within and across regions. The Working group II report includes a large number of Chapters (30) and contributors (310 including authors and review editors), with expertise in a broad range of disciplines, from the physical science to the impact and socio-economic sciences. The communication across chapters and disciplines has been a challenge, and will continue to be one as the Global Change problem will increasingly require a fully integrated and holistic approach. Note that text on this abstract is not approved at the time its

  12. Impact of climate change and adaptation strategies on crop production in Nigeria

    NASA Astrophysics Data System (ADS)

    Mereu, V.; Gallo, A.; Carboni, G.; Spano, D.

    2012-04-01

    The vulnerability of agricultural to climate change is of particular interest to policy makers because the high social and economical importance of agriculture sector in Nigeria, which contributes approximately 40 percent to total GDP and support 70 percent of the population. It is necessary to investigate the potential climate change impacts in order to identify specific agricultural sectors and Agro-Ecological Zones that will be more vulnerable to changes in climatic conditions and implement and develop the most appropriate policies to cope with these changes. In this framework, this study aimed to assess the climate change impacts on Nigerian agricultural sector and to explore some of potential adaptation strategies for the most important crops in the food basket of the Country. The analysis was made using the DSSAT-CSM (Decision Support System for Agrotechnology Transfer - Cropping System Model) software, version 4.5. Crop simulation models included in DSSAT are tools that allows to simulate physiological process of crop growth, development and production, by combining genetic crop characteristics and environmental (soil and weather) conditions. In this analysis, for each selected crop, the models included into DSSAT-CSM software were ran, after a calibration phase, to evaluate climate change impacts on crop production. The climate data used for the analysis are derived by the Regional Circulation Model COSMO-CLM, from 1971 to 2065, at 8 km of spatial resolution. The RCM model output were "perturbed" with 10 Global Climate Models in order to have a wide variety of possible climate projections for impact analysis. Multiple combinations of soils and climate conditions, crop management and varieties were considered for each Agro-Ecological Zone of Nigeria. The climate impact assessment was made by comparing the yield obtained with the climate data for the present period and the yield obtainable under future changed climate conditions. The models ran by keeping

  13. Adapting water treatment design and operations to the impacts of global climate change

    NASA Astrophysics Data System (ADS)

    Clark, Robert M.; Li, Zhiwei; Buchberger, Steven G.

    2011-12-01

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and will therefore, potentially, impact the design and operation of current and future water treatment systems. The USEPA has initiated an effort called the Water Resources Adaptation Program (WRAP) which is intended to develop tools and techniques that can assess the impact of global climate change on urban drinking water and wastewater infrastructure. A three step approach for assessing climate change impacts on water treatment operation and design is being persude in this effort. The first step is the stochastic characterization of source water quality, the second step is the application of the USEPA Water Treatment Plant model and the third step is the application of cost algorithms to provide a metric that can be used to assess the coat impact of climate change. A model has been validated using data collected from Cincinnati's Richard Miller Water Treatment Plant for the USEPA Information Collection Rule (ICR) database. An analysis of the water treatment processes in response to assumed perturbations in raw water quality identified TOC, pH, and bromide as the three most important parameters affecting performance of the Miller WTP. The Miller Plant was simulated using the EPA WTP model to examine the impact of these parameters on selected regulated water quality parameters. Uncertainty in influent water quality was analyzed to estimate the risk of violating drinking water maximum contaminant levels (MCLs).Water quality changes in the Ohio River were projected for 2050 using Monte Carlo simulation and the WTP model was used to evaluate the effects of water quality changes on design and operation. Results indicate that the existing Miller WTP might not meet Safe Drinking Water Act MCL requirements for certain extreme future conditions. However, it was found that the risk of MCL violations under future conditions could be controlled by

  14. Climate Change Potential Impacts on the Built Environment and Possible Adaptation Strategies

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.

    2014-01-01

    The built environment consists of components that exist at a range of scales from small (e.g., houses, shopping malls) to large (e.g., transportation networks) to highly modified landscapes such as cities. Thus, the impacts of climate change on the built environment may have a multitude of effects on humans and the land. The impact of climate change may be exacerbated by the interaction of different events that singly may be minor, but together may have a synergistic set of impacts that are significant. Also, mechanisms may exist wherein the built environment, particularly in the form of cities, may affect weather and the climate on local and regional scales. Hence, a city may be able to cope with prolonged heat waves, but if this is combined with severe drought, the overall result could be significant or even catastrophic, as accelerating demand for energy to cooling taxes water supplies needed both for energy supply and municipal water needs. This presentation surveys potential climate change impacts on the built environment from the perspective of the National Climate Assessment, and explores adaptation measures that can be employed to mitigate these impacts.

  15. Effects of Global Change on U.S. Urban Areas: Vulnerabilities, Impacts, and Adaptation

    NASA Astrophysics Data System (ADS)

    Quattrochi, D. A.; Wilbanks, T. J.; Kirshen, P. H.; Romero-Lankao, P.; Rosenzweig, C. E.; Ruth, M.; Solecki, W.; Tarr, J. A.

    2007-05-01

    Human settlements, both large and small, are where the vast majority of people on the Earth live. Expansion of cities both in population and areal extent, is a relentless process that will accelerate in the 21st century. As a consequence of urban growth both in the United States and around the globe, it is important to develop an understanding of how urbanization will affect the local and regional environment. Of equal importance, however, is the assessment of how cities will be impacted by the looming prospects of global climate change and climate variability. The potential impacts of climate change and variability has recently been enunciated by the IPCC's "Climate Change 2007" report. Moreover, the U.S. Climate Change Science Program (CCSP) is preparing a series of "Synthesis and Assessment Products" (SAP) reports to support informed discussion and decision making regarding climate change and variability by policy makers, resource managers, stakeholders, the media, and the general public. We are working on a chapter of SAP 4.6 ("Analysis of the Effects of Global Chance on Human Health and Welfare and Human Systems") wherein we wish to describe the effects of global climate change on human settlements. This paper will present the thoughts and ideas that are being formulated for our SAP report that relate to what vulnerabilities and impacts will occur, what adaptation responses may take place, and what possible effects on settlement patterns and characteristics will potentially arise, on human settlements in the U.S. as a result of climate change and climate variability. We wish to present these ideas and concepts as a "work in progress" that are subject to several rounds of review, and we invite comments from listeners at this session on the rationale and veracity of our thoughts. Additionally, we wish to explore how technology such as remote sensing data coupled with modeling, can be employed as synthesis tools for deriving insight across a spectrum of impacts

  16. Adaptation to impacts of climate change on aeroallergens and allergic respiratory diseases.

    PubMed

    Beggs, Paul J

    2010-08-01

    Climate change has the potential to have many significant impacts on aeroallergens such as pollen and mould spores, and therefore related diseases such as asthma and allergic rhinitis. This paper critically reviews this topic, with a focus on the potential adaptation measures that have been identified to date. These are aeroallergen monitoring; aeroallergen forecasting; allergenic plant management; planting practices and policies; urban/settlement planning; building design and heating, ventilating, and air-conditioning (HVAC); access to health care and medications; education; and research.

  17. Key landscape ecology metrics for assessing climate change adaptation options: rate of change and patchiness of impacts

    USGS Publications Warehouse

    López-Hoffman, Laura; Breshears, David D.; Allen, Craig D.; Miller, Marc L.

    2013-01-01

    Under a changing climate, devising strategies to help stakeholders adapt to alterations to ecosystems and their services is of utmost importance. In western North America, diminished snowpack and river flows are causing relatively gradual, homogeneous (system-wide) changes in ecosystems and services. In addition, increased climate variability is also accelerating the incidence of abrupt and patchy disturbances such as fires, floods and droughts. This paper posits that two key variables often considered in landscape ecology—the rate of change and the degree of patchiness of change—can aid in developing climate change adaptation strategies. We use two examples from the “borderland” region of the southwestern United States and northwestern Mexico. In piñon-juniper woodland die-offs that occurred in the southwestern United States during the 2000s, ecosystem services suddenly crashed in some parts of the system while remaining unaffected in other locations. The precise timing and location of die-offs was uncertain. On the other hand, slower, homogeneous change, such as the expected declines in water supply to the Colorado River delta, will likely impact the entire ecosystem, with ecosystem services everywhere in the delta subject to alteration, and all users likely exposed. The rapidity and spatial heterogeneity of faster, patchy climate change exemplified by tree die-off suggests that decision-makers and local stakeholders would be wise to operate under a Rawlsian “veil of ignorance,” and implement adaptation strategies that allow ecosystem service users to equitably share the risk of sudden loss of ecosystem services before actual ecosystem changes occur. On the other hand, in the case of slower, homogeneous, system-wide impacts to ecosystem services as exemplified by the Colorado River delta, adaptation strategies can be implemented after the changes begin, but will require a fundamental rethinking of how ecosystems and services are used and valued. In

  18. Impacts of rainfall variability and expected rainfall changes on cost-effective adaptation of water systems to climate change.

    PubMed

    van der Pol, T D; van Ierland, E C; Gabbert, S; Weikard, H-P; Hendrix, E M T

    2015-05-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change given a predefined system performance target, for example a flood risk standard. Rainfall variability causes system performance estimates to be volatile. These estimates may be used to recurrently evaluate system performance. This paper presents a model for this setting, and develops a solution method to identify cost-effective investments in stormwater drainage adaptations. Runoff and water levels are simulated with rainfall from stationary rainfall distributions, and time series of annual rainfall maxima are simulated for a climate scenario. Cost-effective investment strategies are determined by dynamic programming. The method is applied to study the choice of volume for a storage basin in a Dutch polder. We find that 'white noise', i.e. trend-free variability of rainfall, might cause earlier re-investment than expected under projected changes in rainfall. The risk of early re-investment may be reduced by increasing initial investment. This can be cost-effective if the investment involves fixed costs. Increasing initial investments, therefore, not only increases water system robustness to structural changes in rainfall, but could also offer insurance against additional costs that would occur if system performance is underestimated and re-investment becomes inevitable.

  19. Using Copernicus earth observation services to monitor climate change impacts and adaptations

    NASA Astrophysics Data System (ADS)

    Becker, Daniel; Zebisch, Marc; Sonnenschein, Ruth; Schönthaler, Konstanze; von Andrian-Werburg, Stefan

    2016-04-01

    In the last years, earth observation made a big leap towards an operational monitoring of the state of environment. Remote sensing provides for instance information on the dynamics, trends and anomalies of snow and glaciers, vegetation, soil moisture or water temperature. In particular, the European Copernicus initiative offers new opportunities through new satellites with a higher temporal and spatial resolution, operational services for environmental monitoring and an open data access policy. With the Copernicus climate change service and the ESA climate change initiative, specific earth observation programs are in place to address the impacts of climate change. However, such products and services are until now rarely picked up in the field of policy or decision making oriented climate impact or climate risk assessments. In this talk, we will present results of a study, which focus on the question, if and how remote sensing approaches could be integrated into operational monitoring activities of climate impacts and response measures on a national and subnational scale. We assessed all existing and planned Copernicus services regarding their relevance for climate impact monitoring by comparing them against the indication fields from an indicator system for climate impact and response monitoring in Germany, which has lately been developed in the framework of the German national adaptation strategy. For several climate impact or response indicators, an immediate integration of remote sensing data could be identified and been recommended. For these cases, we will show practical examples on the benefit of remote sensing data. For other indication fields, promising approaches were found, which need further development. We argue that remote sensing is a very valuable complement to the existing indicator schemes by contributing with spatial explicit, timely information but not always easy to integrate with classical approaches, which are oriented towards consistent long

  20. A health impact assessment framework for assessing vulnerability and adaptation planning for climate change.

    PubMed

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-12-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru.

  1. A Health Impact Assessment Framework for Assessing Vulnerability and Adaptation Planning for Climate Change

    PubMed Central

    Brown, Helen; Spickett, Jeffery; Katscherian, Dianne

    2014-01-01

    This paper presents a detailed description of an approach designed to investigate the application of the Health Impact Assessment (HIA) framework to assess the potential health impacts of climate change. A HIA framework has been combined with key climate change terminology and concepts. The fundamental premise of this framework is an understanding of the interactions between people, the environment and climate. The diversity and complexity of these interactions can hinder much needed action on the critical health issue of climate change. The objectives of the framework are to improve the methodology for understanding and assessing the risks associated with potential health impacts of climate change, and to provide decision-makers with information that can facilitate the development of effective adaptation plans. While the process presented here provides guidance with respect to this task it is not intended to be prescriptive. As such, aspects of the process can be amended to suit the scope and available resources of each project. A series of working tables has been developed to assist in the collation of evidence throughout the process. The framework has been tested in a number of locations including Western Australia, Solomon Islands, Vanuatu and Nauru. PMID:25514146

  2. Climate change and health in british columbia: projected impacts and a proposed agenda for adaptation research and policy.

    PubMed

    Ostry, Aleck; Ogborn, Malcolm; Bassil, Kate L; Takaro, Tim K; Allen, Diana M

    2010-03-01

    This is a case study describing how climate change may affect the health of British Columbians and to suggest a way forward to promote health and policy research, and adaptation to these changes. After reviewing the limited evidence of the impacts of climate change on human health we have developed five principles to guide the development of research and policy to better predict future impacts of climate change on health and to enhance adaptation to these change in BC. We suggest that, with some modification, these principles will be useful to policy makers in other jurisdictions.

  3. Adaptive Management for Climate Change Impact for Water Sector in China

    NASA Astrophysics Data System (ADS)

    Xia, Jun

    2013-04-01

    China, as a larger developing country in the world, in facing to bigger challenges than before on wisely managing water resources to support rapidly socio-economic development in 2020 and beyond. China has a vast area of 9.6 million sq. km and relatively abundant water resources with ranked sixth in the world after Brazil, the Russian Federation, Canada, the United States and Indonesia in terms of absolute amount of annual runoff. However, given its large population of over 1.3 billion, China has a very low per capita amount (about one quarter of the world average) of water resources and, is therefore one of the countries with the most severe shortage of water in the world, particular North China. North China is one of very important regions in China. For this region, population has 0.437 billion in 2000 that occupies 35% of total in China, GDP reaches 386 billion US that is also 32% of total in China. Irrigation area of North China is 42% of total in China, and agricultural product has 40% of total in China. However, it is the most water shortage area in China. For instance, water resources per capita in Hai River Basin have only 270 cubic meters, which is only 1/7 of the national average and 1/24 of the world average. Water Resource Vulnerability under impact of both climate change and human activities are rather significantly. This presentation will focus on two issues: (1) how to screening climate changes impact to water sector, and how to quantify water resource vulnerability related to impact of climate change and human activity? (2) how to take adaptation & wisely manage water to changing environment on existing water projects and new water programme & water policy in China? A screening process for climate impact to water sector in North China was proposed. A new study on quantifying water resource vulnerability, based on three practical and workable, i.e., the use to availability ratio, water crowding and per capita water use, were developed. Four case

  4. Agricultural Intensification as a Mechanism of Adaptation to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Kyle, P.; Calvin, K. V.; le Page, Y.; Patel, P.; West, T. O.; Wise, M. A.

    2015-12-01

    The research, policy, and NGO communities have devoted significant attention to the potential for agricultural intensification, or closure of "yield gaps," to alleviate future global hunger, poverty, climate change impacts, and other threats. However, because the research to this point has focused on biophysically attainable yields—assuming optimal choices under ideal conditions—the presently available work has not yet addressed the likely responses of the agricultural sector to real-world conditions in the future. This study investigates endogenous agricultural intensification in response to global climate change impacts—that is, intensification independent of policies or other exogenous interventions to promote yield gap closure. The framework for the analysis is a set of scenarios to 2100 in the GCAM global integrated assessment model, enhanced to include endogenous irrigation, fertilizer application, and yields, in each of 283 land use regions, with maximum yields based on the 95th percentile of attainable yields in a recent global assessment. We assess three levels of agricultural climate impacts, using recent global gridded crop model datasets: none, low (LPJmL), and high (Pegasus). Applying formulations for decomposition of climate change impacts response developed in prior AgMIP work, we find that at the global level, availability of high-yielding technologies mitigates price shocks and shifts the agricultural sector's climate response modestly towards intensification, away from cropland expansion and reduced production. At the regional level, the behavior is more complex; nevertheless, availability of high-yielding production technologies enhances the inter-regional shifts in agricultural production that are induced by climate change, complemented by commensurate changes in trade patterns. The results highlight the importance of policies to facilitate yield gap closure and inter-regional trade as mechanisms for adapting to climate change

  5. Importance of impacts scenarios for the adaptation of agriculture to climate change

    NASA Astrophysics Data System (ADS)

    Zullo, J.; Macedo, C.; Pinto, H. S.; Assad, E. D.; Koga Vicente, A.

    2012-12-01

    The great possibility that the climate is already changing, and the most drastic way possible, increases the challenge of agricultural engineering, especially in environmentally vulnerable areas and in regions where agriculture has a high economic and social importance. Knowledge of potential impacts that may be caused by changes in water and thermal regimes in coming decades is increasingly strategic, as they allow the development of techniques to adapt agriculture to climate change and therefore minimizes the risk of undesirable impacts, for example, in food and nutritional security. Thus, the main objective of this paper is to describe a way to generate impacts scenarios caused by anomalies of precipitation and temperature in the definition of climate risk zoning of an agricultural crop very important in the tropics, such as the sugar cane, especially in central-southern Brazil, which is one of its main world producers. A key point here is the choice of the climate model to be used, considering that 23 different models were used in the fourth IPCC report published in 2007. The number and range of available models requires the definition of criteria for choosing the most suitable for the preparation of the impacts scenarios. One way proposed and used in this work is based on the definition of two groups of models according to 27 technical attributes of them. The clustering of 23 models in two groups, with a model representing each group (UKMO_HadCM3 and MIROC3.2_medres), assists the generation and comparison of impacts scenarios, making them more representative and useful. Another important aspect in the generation of impacts scenarios is the estimate of the relative importance of the anomalies of precipitation and temperature, which are the most commonly used. To assess the relative importance of the anomalies are generated scenarios considering an anomaly at a time and both together. The impacts scenarios for a high emission of greenhouse gases (A2), from 2010

  6. Declining impacts of hot spells on mortality in the Czech Republic: adaptation to climate change?

    NASA Astrophysics Data System (ADS)

    Kysely, Jan; Plavcova, Eva

    2010-05-01

    Extreme temperature events have pronounced negative impacts on ecosystems and society, including human health effects. The study examines temporal changes in mortality associated with spells of large positive temperature anomalies (hot spells) in the population of the Czech Republic (central Europe) during 1986-2006. Declining trends in the mortality impacts are found in summer as well as in transition seasons, in spite of rising temperature trends (warming by 1.4 deg. C in summer over the 21-year period). The finding remains unchanged if possible confounding effects of within-season acclimatization to heat and the mortality displacement effect are taken into account. Recent positive socio-economic development, following the collapse of communism in central and eastern Europe in 1989, and better public awareness of heat-related risks are likely the primary causes of the declining vulnerability. The results suggest that climate change may have relatively little influence on heat-related deaths, since changes in other factors that influence vulnerability of the population are dominant instead of temperature trends. It is essential to better understand the observed non-stationarity of the temperature-mortality relationship and the role of adaptation and its limits, both physiological and technological, and to address associated uncertainties in studies dealing with climate change projections of temperature-related mortality.

  7. Hotspots of climate change impacts in sub-Saharan Africa and implications for adaptation and development.

    PubMed

    Müller, Christoph; Waha, Katharina; Bondeau, Alberte; Heinke, Jens

    2014-08-01

    Development efforts for poverty reduction and food security in sub-Saharan Africa will have to consider future climate change impacts. Large uncertainties in climate change impact assessments do not necessarily complicate, but can inform development strategies. The design of development strategies will need to consider the likelihood, strength, and interaction of climate change impacts across biosphere properties. We here explore the spread of climate change impact projections and develop a composite impact measure to identify hotspots of climate change impacts, addressing likelihood and strength of impacts. Overlapping impacts in different biosphere properties (e.g. flooding, yields) will not only claim additional capacity to respond, but will also narrow the options to respond and develop. Regions with severest projected climate change impacts often coincide with regions of high population density and poverty rates. Science and policy need to propose ways of preparing these areas for development under climate change impacts.

  8. Impact of farm level adaptation to climate change on agricultural productivity and farmers' wellbeing: Empirical evidence from Pakistan

    NASA Astrophysics Data System (ADS)

    Abid, Muhammad; Scheffran, Jürgen

    2016-04-01

    Climate change is projected to adversely affect the agricultural sector and attached rural livelihoods, particularly in the developing countries. Hence adaptation to climate change is crucial to support agricultural productivity and rural livelihoods. The current study is based on comprehensive cross sectional data collected through 450 face-to-face interviews with farmers from three agro-ecological zones of Punjab province, Pakistan. This paper aims to examine the factors that influence the farmers' adaptation decisions and to assess the impact of farm level adaptation on crop productivity and farmers' wellbeing. The paper uses correlation analysis, binary logistic regression and propensity score matching techniques in order to explore the study objectives. The results of the study indicate that education, age, land holdings, farmer-to-farmer interaction, access to weather forecasting information and location in agro-ecological zone does have significant impact on farmers' decision to adapt to climate change. Major adaptation measures adopted by farmers were changing planting dates, changing cropping varieties, planting shaded trees and changing input-mix. Moreover the study found a positive and significant impact of adaptation on productivity of all major crops (wheat, sugarcane, maize and rice) and on farmers' wellbeing in term of farm income. Furthermore, the study also found that the extent of adaptation benefits increases with the number of adaptation measures. The findings of the study suggest to focus on farmers' education and easy access to climate-specific information for better adaptation at farm level and improved farm wellbeing. Key words: Climate change; Farm level adaptation; crop productivity; farmers' wellbeing; Pakistan

  9. Robust Impacts of Climate Change in Europe and Why Study Scale is Important for Adaptation

    NASA Astrophysics Data System (ADS)

    Donnelly, C.; Andersson, J.; Olsson, J.; Bosshard, T.; Yang, W.; Berg, P.; Arheimer, B.

    2015-12-01

    for climate change impact studies where the regional-scale results and their known uncertainties are considered together with local-scale studies designed specifically for the changes to which a system must be adapted. We illustrate the value of the new method in a number of real case studies for various societal sectors.

  10. A robust impact assessment that informs actionable climate change adaptation: future sunburn browning risk in apple

    NASA Astrophysics Data System (ADS)

    Webb, Leanne; Darbyshire, Rebecca; Erwin, Tim; Goodwin, Ian

    2016-11-01

    Climate change impact assessments are predominantly undertaken for the purpose of informing future adaptation decisions. Often, the complexity of the methodology hinders the actionable outcomes. The approach used here illustrates the importance of considering uncertainty in future climate projections, at the same time providing robust and simple to interpret information for decision-makers. By quantifying current and future exposure of Royal Gala apple to damaging temperature extremes across ten important pome fruit-growing locations in Australia, differences in impact to ripening fruit are highlighted, with, by the end of the twenty-first century, some locations maintaining no sunburn browning risk, while others potentially experiencing the risk for the majority of the January ripening period. Installation of over-tree netting can reduce the impact of sunburn browning. The benefits from employing this management option varied across the ten study locations. The two approaches explored to assist decision-makers assess this information (a) using sunburn browning risk analogues and (b) through identifying hypothetical sunburn browning risk thresholds, resulted in varying recommendations for introducing over-tree netting. These recommendations were location and future time period dependent with some sites showing no benefit for sunburn protection from nets even by the end of the twenty-first century and others already deriving benefits from employing this adaptation option. Potential best and worst cases of sunburn browning risk and its potential reduction through introduction of over-tree nets were explored. The range of results presented highlights the importance of addressing uncertainty in climate projections that result from different global climate models and possible future emission pathways.

  11. Climate change and waterborne diarrhoea in northern India: impacts and adaptation strategies.

    PubMed

    Moors, Eddy; Singh, Tanya; Siderius, Christian; Balakrishnan, Sneha; Mishra, Arabinda

    2013-12-01

    Although several studies show the vulnerability of human health to climate change, a clear comprehensive quantification of the increased health risks attributable to climate change is lacking. Even more complicated are assessments of adaptation measures for this sector. We discuss the impact of climate change on diarrhoea as a representative of a waterborne infectious disease affecting human health in the Ganges basin of northern India. A conceptual framework is presented for climate exposure response relationships based on studies from different countries, as empirical studies and appropriate epidemiological data sets for India are lacking. Four climate variables are included: temperature, increased/extreme precipitation, decreased precipitation/droughts and relative humidity. Applying the conceptual framework to the latest regional climate projections for northern India shows increases between present and future (2040s), varying spatially from no change to an increase of 21% in diarrhoea incidences, with 13.1% increase on average for the Ganges basin. We discuss three types of measures against diarrhoeal disease: reactive actions, preventive actions and national policy options. Preventive actions have the potential to counterbalance this expected increase. However, given the limited progress in reducing incidences over the past decade consorted actions and effective implementation and integration of existing policies are needed.

  12. Climate Change and Waterborne Diarrhoea in Northern India: Impact and Adaptation Strategies

    NASA Astrophysics Data System (ADS)

    Moors, Eddy; Singh, Tanya; Siderius, Christian; Balakrishnan, Sneha; Mishra, Arabinda

    2013-04-01

    Although some studies showed the vulnerability of human health to climate change (e.g. 22.000 to 45.000 excess mortality cases during the heat waves in Europe, or the association of malaria outbreaks with El Niño) a clear quantification of the increased risks attributable to climate change is often lacking. Even more complicated are the assessments of the adaptation measures for this sector. Adaptation measures are in most cases very site specific. We discuss the impact of climate change on diarrhoea as a representative of waterborne disease affecting human health in the Ganges basin of Northern India. India is by far the leading country when it comes to child mortality under five years caused by diarrhoea and accounted for 386.600 deaths in 2007. Estimates on the increased risk of diarrhoea as a result of increased temperature in the 2030ies range between 8-11%. Uncertainties around these estimates mainly relate to the few studies that have characterized the exposure-response relationship and inter-model discrepancy of climate models. The influence of other climate parameters than temperature on diarrhoea in the future has not been assessed. As empirical studies and surveillance data for India are lacking we developed a conceptual framework for climate exposure-response relationships based on a literature review and applied it to future climate projections for the Ganges basin. Four climate variables are analysed: temperature, increased/extreme precipitation, decreased precipitation/droughts and relative humidity. In an analysis of reports on diarrhoea outbreaks we show the spatial and temporal distribution over the subcontinent. Most cases of diarrhoea occur during the hot summer (23%) and the wet and humid monsoon (57%) months. These reports often suggest sewage and pipe leakage as the leading cause of the local outbreaks. We demonstrate the applicability of the conceptual framework for the two districts in West Bengal, North and South 24 Parganas. All climate

  13. Climate Change Impacts on Water Resources and Water Supply Security through Adaptation

    EPA Science Inventory

    This presentation is to describe the water resources adaptation program (WRAP) at the U.S.EPA National Risk Management Research Laboratory, and to highlight initial research results on hydroclimatic periodicity and changes and on adaptation measures including sustainable water in...

  14. The impact of climate change on grain maize production over Europe - adaptation with different irrigation strategies

    NASA Astrophysics Data System (ADS)

    Ceglar, A.; Srivastava, A. K.; Chukaliev, O.; Duveiller, G.; Niemeyer, S.

    2013-12-01

    The spatial distribution of water deficit and maize yield deficit across Europe has been compared between current and expected climatic conditions in the near future (time window 2030). Maize yields and water requirements were simulated using the WOFOST (World Food Studies) crop growth model. In our study, the priority has been given to future projections of the A1B emission scenario produced within the ENSEMBLE project: HadRM3 RCM nested within the HADCM3 GCM (HADLEY) and HIRHAM5 RCM nested within ECHAM5 GCM (ECHAM). The two realizations can be considered as warm (HADLEY) and cold (ECHAM5) according to simulated temperature in the near future and therefore represent the extremes in air temperature change within those analyzed in ENSEMBLES project, allowing us to evaluate the largest range of uncertainty in weather inputs to the impact model. In addition, we also explored the advantages of different irrigation strategies for the target crop to offset climate change impacts. In wake of limited amount of water availability for agriculture purposes, we explored effectiveness of three different irrigation strategies on maize yield over Europe, namely full, deficit and supplemental irrigation. The results of our study indicate that the maize yield under rainfed conditions is expected to decrease over the Southern Europe as well as regions around the Black Sea during the 2030s under both climate model realizations. Water deficit is expected to increase especially in the Mediterranean, whereas slightly less in parts of Central and Western Europe. However, adaptation strategies followed in this study negate the detrimental effect of climate change and result in an increased maize yield. Three irrigation strategies have been simulated differing in timing of water application and in the total volume of water supplied during the growing season. The results show that yields, achieved using deficit and full irrigation strategies, are not significantly different. Hence, at least

  15. Adaptation of land-use demands to the impact of climate change on the hydrological processes of an urbanized watershed.

    PubMed

    Lin, Yu-Pin; Hong, Nien-Ming; Chiang, Li-Chi; Liu, Yen-Lan; Chu, Hone-Jay

    2012-11-12

    The adaptation of land-use patterns is an essential aspect of minimizing the inevitable impact of climate change at regional and local scales; for example, adapting watershed land-use patterns to mitigate the impact of climate change on a region's hydrology. The objective of this study is to simulate and assess a region's ability to adapt to hydrological changes by modifying land-use patterns in the Wu-Du watershed in northern Taiwan. A hydrological GWLF (Generalized Watershed Loading Functions) model is used to simulate three hydrological components, namely, runoff, groundwater and streamflow, based on various land-use scenarios under six global climate models. The land-use allocations are simulated by the CLUE-s model for the various development scenarios. The simulation results show that runoff and streamflow are strongly related to the precipitation levels predicted by different global climate models for the wet and dry seasons, but groundwater cycles are more related to land-use. The effects of climate change on groundwater and runoff can be mitigated by modifying current land-use patterns; and slowing the rate of urbanization would also reduce the impact of climate change on hydrological components. Thus, land-use adaptation on a local/regional scale provides an alternative way to reduce the impacts of global climate change on local hydrology.

  16. Adapting to the impacts of climate change on food security among Inuit in the Western Canadian Arctic.

    PubMed

    Wesche, Sonia D; Chan, Hing Man

    2010-09-01

    This study examined critical impacts of climate change on Inuit diet and nutritional health in four Inuit communities in the Inuvialuit Settlement Region, Western Arctic, Canada. The first objective was to combine data from community observation studies and dietary interview studies to determine potential climate change impacts on nutritional quality. The second objective was to address the scale of data collection and/or availability to compare local versus regional trends, and identify implications for adaptation planning. Information was compiled from 5 reports (4 community reports and 1 synthesis report) of climate change observations, impacts and adaptations in 12 Inuit communities (2005-2006), and from a dietary report of food use from 18 Inuit communities (1997-2000). Changing access to, availability of, quality of, and ability to use traditional food resources has implications for quality of diet. Nutritional implications of lower traditional food use include likely reductions in iron, zinc, protein, vitamin D, and omega-3 fatty acids, among others. The vulnerability of each community to changing food security is differentially influenced by a range of factors, including current harvesting trends, levels of reliance on individual species, opportunities for access to other traditional food species, and exposure to climate change hazards. Understanding linkages between climate change and traditional food security provides a basis for strengthening adaptive capacity and determining effective adaptation options to respond to future change.

  17. Conservation strategies to adapt to projected climate change impacts in Malawi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is potential for climate change to have negative effects on agricultural production via extreme events (Pruski and Nearing, 2002b; Zhang et al., 2012; Walthall 2012), and there is a need to implement conservation practices for climate change adaptation (Delgado et al. 2011; 2013). Recent repo...

  18. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years

    NASA Astrophysics Data System (ADS)

    Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F. M.; Gao, Yongli; Edwards, R. Lawrence; Zhang, Haiwei; Du, Yajuan

    2015-08-01

    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ18O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ18O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.

  19. A Chinese cave links climate change, social impacts, and human adaptation over the last 500 years.

    PubMed

    Tan, Liangcheng; Cai, Yanjun; An, Zhisheng; Cheng, Hai; Shen, Chuan-Chou; Breitenbach, Sebastian F M; Gao, Yongli; Edwards, R Lawrence; Zhang, Haiwei; Du, Yajuan

    2015-08-13

    The collapse of some pre-historical and historical cultures, including Chinese dynasties were presumably linked to widespread droughts, on the basis of synchronicities of societal crises and proxy-based climate events. Here, we present a comparison of ancient inscriptions in Dayu Cave from Qinling Mountains, central China, which described accurate times and detailed impacts of seven drought events during the period of 1520-1920 CE, with high-resolution speleothem records from the same cave. The comparable results provide unique and robust tests on relationships among speleothem δ(18)O changes, drought events, and societal unrest. With direct historical evidences, our results suggest that droughts and even modest events interrupting otherwise wet intervals can cause serious social crises. Modeling results of speleothem δ(18)O series suggest that future precipitation in central China may be below the average of the past 500 years. As Qinling Mountain is the main recharge area of two large water transfer projects and habitats of many endangered species, it is imperative to explore an adaptive strategy for the decline in precipitation and/or drought events.

  20. Assessment of impact of climate change and adaptation strategies on maize production in Uganda

    NASA Astrophysics Data System (ADS)

    Kikoyo, Duncan A.; Nobert, Joel

    2016-06-01

    Globally, various climatic studies have estimated a reduction of crop yields due to changes in surface temperature and precipitation especially for the developing countries which is heavily dependent on agriculture and lacks resources to counter the negative effects of climate change. Uganda's economy and the wellbeing of its populace depend on rain-fed agriculture which is susceptible to climate change. This study quantified the impacts of climate change and variability in Uganda and how coping strategies can enhance crop production against climate change and/or variability. The study used statistical methods to establish various climate change and variability indicators across the country, and uses the FAO AquaCrop model to simulate yields under possible future climate scenarios with and without adaptation strategies. Maize, the most widely grown crop was used for the study. Meteorological, soil and crop data were collected for various districts representing the maize growing ecological zones in the country. Based on this study, it was found that temperatures have increased by up to 1 °C across much of Uganda since the 1970s, with rates of warming around 0.3 °C per decade across the country. High altitude, low rainfall regions experience the highest level of warming, with over 0.5 °C/decade recorded in Kasese. Rainfall is variable and does not follow a specific significant increasing or decreasing trend. For both future climate scenarios, Maize yields will reduce in excess of 4.7% for the fast warming-low rainfall climates but increase on average by 3.5% for slow warming-high rainfall regions, by 2050. Improved soil fertility can improve yields by over 50% while mulching and use of surface water management practices improve yields by single digit percentages. The use of fertilizer application needs to go hand in hand with other water management strategies since more yields as a result of the improved soil fertility leads to increased water stress, especially

  1. Multi-disciplinary assessments of climate change impacts on agriculture to support adaptation decision making in developing countries

    NASA Astrophysics Data System (ADS)

    Fujisawa, Mariko; Kanamaru, Hideki

    2016-04-01

    Many existing climate change impact studies, carried out by academic researchers, are disconnected from decision making processes of stakeholders. On the other hand many climate change adaptation projects in developing countries lack a solid evidence base of current and future climate impacts as well as vulnerabilities assessment at different scales. In order to fill this information gap, FAO has developed and implemented a tool "MOSAICC (Modelling System for Agricultural Impacts of Climate Change)" in several developing countries such as Morocco, the Philippines and Peru, and recently in Malawi and Zambia. MOSAICC employs a multi-disciplinary assessment approach to addressing climate change impacts and adaptation planning in the agriculture and food security sectors, and integrates five components from different academic disciplines: 1. Statistical downscaling of climate change projections, 2. Yield simulation of major crops at regional scale under climate change, 3. Surface hydrology simulation model, 4. Macroeconomic model, and 5. Forestry model. Furthermore MOSAICC has been developed as a capacity development tool for the national scientists so that they can conduct the country assessment themselves, using their own data, and reflect the outcome into the national adaptation policies. The outputs are nation-wide coverage, disaggregated at sub-national level to support strategic planning, investments and decisions by national policy makers. MOSAICC is designed in such a way to promote stakeholders' participation and strengthen technical capacities in developing countries. The paper presents MOSAICC and projects that used MOSAICC as a tool with case studies from countries.

  2. The potential role of health impact assessment in tackling the complexity of climate change adaptation for health.

    PubMed

    Brown, Helen L; Proust, Katrina; Spickett, Jeffery; Capon, Anthony

    2011-12-01

    Managing an issue of the magnitude, scope and complexity of climate change is a daunting prospect, yet one which nations around the world must face. Climate change is an issue without boundaries--impacts will cut across administrative and geographical borders and be felt by every sector of society. Responses to climate change will need to employ system approaches that take into account the relationships that cross organisational and sectoral boundaries. Solutions designed in isolation from these interdependencies will be unlikely to succeed, squandering opportunities for long-term effective adaptation. Health Impact Assessment (HIA) provides a structural approach to identify, evaluate and manage health impacts of climate change that is inclusive of a wide range of stakeholders. Climate change will affect decision-making across every government level and sector and the health implications of these decisions can also be addressed with HIA. Given the nature of the issue, HIA of climate change will identify a large number of variables that influence the type and extent of health impacts and the management of these impacts. In order to implement the most effective adaptation measures, it is critica that an understanding of the interactions between these variables is developed. The outcome of HIA of climate change can therefore be strengthened by the introduction of system dynamics tools, such as causal loop diagrams, that are designed to examine interactions between variables and the resulting behaviour of complex systems.

  3. Forest management under climatic and social uncertainty: trade-offs between reducing climate change impacts and fostering adaptive capacity.

    PubMed

    Seidl, Rupert; Lexer, Manfred J

    2013-01-15

    The unabated continuation of anthropogenic greenhouse gas emissions and the lack of an international consensus on a stringent climate change mitigation policy underscore the importance of adaptation for coping with the all but inevitable changes in the climate system. Adaptation measures in forestry have particularly long lead times. A timely implementation is thus crucial for reducing the considerable climate vulnerability of forest ecosystems. However, since future environmental conditions as well as future societal demands on forests are inherently uncertain, a core requirement for adaptation is robustness to a wide variety of possible futures. Here we explicitly address the roles of climatic and social uncertainty in forest management, and tackle the question of robustness of adaptation measures in the context of multi-objective sustainable forest management (SFM). We used the Austrian Federal Forests (AFF) as a case study, and employed a comprehensive vulnerability assessment framework based on ecosystem modeling, multi-criteria decision analysis, and practitioner participation. We explicitly considered climate uncertainty by means of three climate change scenarios, and accounted for uncertainty in future social demands by means of three societal preference scenarios regarding SFM indicators. We found that the effects of climatic and social uncertainty on the projected performance of management were in the same order of magnitude, underlining the notion that climate change adaptation requires an integrated social-ecological perspective. Furthermore, our analysis of adaptation measures revealed considerable trade-offs between reducing adverse impacts of climate change and facilitating adaptive capacity. This finding implies that prioritization between these two general aims of adaptation is necessary in management planning, which we suggest can draw on uncertainty analysis: Where the variation induced by social-ecological uncertainty renders measures aiming to

  4. Development and climate change: a mainstreaming approach for assessing economic, social, and environmental impacts of adaptation measures.

    PubMed

    Halsnaes, Kirsten; Traerup, Sara

    2009-05-01

    The paper introduces the so-called climate change mainstreaming approach, where vulnerability and adaptation measures are assessed in the context of general development policy objectives. The approach is based on the application of a limited set of indicators. These indicators are selected as representatives of focal development policy objectives, and a stepwise approach for addressing climate change impacts, development linkages, and the economic, social and environmental dimensions related to vulnerability and adaptation are introduced. Within this context it is illustrated using three case studies how development policy indicators in practice can be used to assess climate change impacts and adaptation measures based on three case studies, namely a road project in flood prone areas of Mozambique, rainwater harvesting in the agricultural sector in Tanzania and malaria protection in Tanzania. The conclusions of the paper confirm that climate risks can be reduced at relatively low costs, but the uncertainty is still remaining about some of the wider development impacts of implementing climate change adaptation measures.

  5. Adapting to the health impacts of climate change in a sustainable manner.

    PubMed

    Hoy, Damian; Roth, Adam; Lepers, Christelle; Durham, Jo; Bell, Johann; Durand, Alexis; Lal, Padma Narsey; Souares, Yvan

    2014-12-11

    The climate is changing and this poses significant threats to human health. Climate change is one of the greatest challenges facing Pacific Island countries and territories due to their unique geophysical features, and their social, economic and cultural characteristics. The Pacific region also faces challenges with widely dispersed populations, limited resources and fragmented health systems. Over the past few years, there has been a substantial increase in international aid for health activities aimed at adapting to the threats of climate change. This funding needs to be used strategically to ensure an effective approach to reducing the health risk from climate change. Respecting the principles of development effectiveness will result in more effective and sustainable adaptation, in particular, 1) processes should be owned and driven by local communities, 2) investments should be aligned with existing national priorities and policies, and 3) existing systems must not be ignored, but rather expanded upon and reinforced.

  6. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  7. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change.

    PubMed

    Bowen, Kathryn J; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change.

  8. A multi-layered governance framework for incorporating social science insights into adapting to the health impacts of climate change

    PubMed Central

    Bowen, Kathryn J.; Ebi, Kristie; Friel, Sharon; McMichael, Anthony J.

    2013-01-01

    Background Addressing climate change and its associated effects is a multi-dimensional and ongoing challenge. This includes recognizing that climate change will affect the health and wellbeing of all populations over short and longer terms, albeit in varied ways and intensities. That recognition has drawn attention to the need to take adaptive actions to lessen adverse impacts over the next few decades from unavoidable climate change, particularly in developing country settings. A range of sectors is responsible for appropriate adaptive policies and measures to address the health risks of climate change, including health services, water and sanitation, trade, agriculture, disaster management, and development. Objectives To broaden the framing of governance and decision-making processes by using innovative methods and assessments to illustrate the multi-sectoral nature of health-related adaptation to climate change. This is a shift from sector-specific to multi-level systems encompassing sectors and actors, across temporal and spatial scales. Design A review and synthesis of the current knowledge in the areas of health and climate change adaptation governance and decision-making processes. Results A novel framework is presented that incorporates social science insights into the formulation and implementation of adaptation activities and policies to lessen the health risks posed by climate change. Conclusion Clarification of the roles that different sectors, organizations, and individuals occupy in relation to the development of health-related adaptation strategies will facilitate the inclusion of health and wellbeing within multi-sector adaptation policies, thereby strengthening the overall set of responses to minimize the adverse health effects of climate change. PMID:24028938

  9. Selecting a change and evaluating its impact on the performance of a complex adaptive health care delivery system.

    PubMed

    Boustani, Malaz A; Munger, Stephanie; Gulati, Rajesh; Vogel, Mickey; Beck, Robin A; Callahan, Christopher M

    2010-05-25

    Complexity science suggests that our current health care delivery system acts as a complex adaptive system (CAS). Such systems represent a dynamic and flexible network of individuals who can coevolve with their ever changing environment. The CAS performance fluctuates and its members' interactions continuously change over time in response to the stress generated by its surrounding environment. This paper will review the challenges of intervening and introducing a planned change into a complex adaptive health care delivery system. We explore the role of the "reflective adaptive process" in developing delivery interventions and suggest different evaluation methodologies to study the impact of such interventions on the performance of the entire system. We finally describe the implementation of a new program, the Aging Brain Care Medical Home as a case study of our proposed evaluation process.

  10. Vulnerability of drained and rewetted organic soils to climate change impacts and associated adaptation options

    NASA Astrophysics Data System (ADS)

    Renou-Wilson, Florence; Müller, Christoph; Wilson, David

    2016-04-01

    With 20% of the land covered with peat soils, Ireland needs to develop a deeper understanding among stakeholders of the potential vulnerability of peatlands and organic soils to climate change (both gradual and extreme events) in the context of current land use changes. The fate of carbon in organic soils is critical for predicting future greenhouse gas (GHG) concentrations in the atmosphere. While keeping carbon stock in organic soils (for example by rewetting drained sites) can be an effective mitigation measures to reduce CO2 emissions, adaptation options are also required to ensure their 'resilience'. Rewetting of drained organic soils has been initiated at several sites across the country with the aim to (i) reduce net GHG emissions at the source and/or (ii) create suitable conditions for carbon sequestration in active peatland habitats. We present here two sites: an industrial cutaway peatland and an extensive grassland over organic soil, where long-term (> 4 years) environmental and GHG flux (chamber) datasets in both drained and rewetted areas have provided information on the impact of annual weather variability on net ecosystem exchange (NEE). Statistical response functions estimated for gross primary production (GPP) and ecosystem respiration (Reco) were used to reconstruct annual CO2 balances using site-specific models driven by soil temperature, solar radiation, soil water table levels and leaf area index. The modification of some of the model parameters to fit predicted future climate scenarios for the region allowed potential changes in modelled NEE to be assessed. Both sites were, on average, an annual source of CO2 when drained (138 - 232 g C m-2 yr-1) and a sink when rewetted (ranging from -40 g C m-2 yr-1 in the ungrazed rewetted grassland to a maximum of -260 g C m-2 yr-1 in the rewetted cutaway). At both sites, soil temperatures and water table levels varied significantly between all years. Average NEE at each site displayed a very large

  11. Future Scenarios as a Research Tool: Investigating Climate Change Impacts, Adaptation Options and Outcomes for the Great Barrier Reef, Australia.

    PubMed

    Evans, Louisa S; Hicks, Christina C; Fidelman, Pedro; Tobin, Renae C; Perry, Allison L

    2013-01-01

    Climate change is a significant future driver of change in coastal social-ecological systems. Our knowledge of impacts, adaptation options, and possible outcomes for marine environments and coastal industries is expanding, but remains limited and uncertain. Alternative scenarios are a way to explore potential futures under a range of conditions. We developed four alternative future scenarios for the Great Barrier Reef and its fishing and tourism industries positing moderate and more extreme (2-3 °C above pre-industrial temperatures) warming for 2050 and contrasting 'limited' and 'ideal' ecological and social adaptation. We presented these scenarios to representatives of key stakeholder groups to assess the perceived viability of different social adaptation options to deliver desirable outcomes under varied contexts.

  12. The Impacts and Economic Costs of Climate Change in Agriculture and the Costs and Benefits of Adaptation

    NASA Astrophysics Data System (ADS)

    Iglesias, A.; Quiroga, S.; Garrote, L.; Cunningham, R.

    2012-04-01

    This paper provides monetary estimates of the effects of agricultural adaptation to climate change in Europe. The model computes spatial crop productivity changes as a response to climate change linking biophysical and socioeconomic components. It combines available data sets of crop productivity changes under climate change (Iglesias et al 2011, Ciscar et al 2011), statistical functions of productivity response to water and nitrogen inputs, catchment level water availability, and environmental policy scenarios. Future global change scenarios are derived from several socio-economic futures of representative concentration pathways and regional climate models. The economic valuation is conducted by using GTAP general equilibrium model. The marginal productivity changes has been used as an input for the economic general equilibrium model in order to analyse the economic impact of the agricultural changes induced by climate change in the world. The study also includes the analysis of an adaptive capacity index computed by using the socio-economic results of GTAP. The results are combined to prioritize agricultural adaptation policy needs in Europe.

  13. Advancing scientific base lines for the integrated assessment of climate change impacts and adaptation in mountain regions in developing countries

    NASA Astrophysics Data System (ADS)

    Huggel, C.; Jurt, N. Salzmann, C.; Calanca, P.; Ordonez, A. Diaz, J.; Zappa, T. Jonas M.; Konzelmann, T.; Lagos, P.; Obersteiner, M.; Rohrer, M.; Silverio, W.

    2009-04-01

    Adaptation to climate change impacts is a major challenge for the human society. For countries in development, consistent base lines of expected impacts at the regional scale are required to plan and implement low-cost adaptation measures that effectively address societal needs. However, donors and implementing agencies are often confronted with a lack of scientific data. This poses a serious problem to global adaptation funds, such as the one established under the UNFCCC, which are predominantly directed towards developing countries. This contribution summarizes recent experiences gained from international projects in the Andes, by the Peruvian and Swiss Governments, and the World Bank, on the development of scientific base lines for selected regions in the Peruvian Andes. The focus is on the nexus between water resources, food security and natural disasters. The analysis shows that Peruvian Andes are among the most vulnerable regions to climate change. Negative impacts on water resources are expected from the rapid retreat of glaciers, extended and more frequent drought periods and increasing human needs. Climate change impacts are exacerbated by continued sub-optimal resource management. As a consequence of growing stresses, water availability for human consumption, agriculture and energy generation is increasingly limited. Assessment of the current conditions and reliable projections for the future are hampered by scarce data availability and methodological problems, such as downscaling of global and regional climate scenarios, cross-sector effects, and others. It is critical that related uncertainties, and the propagation thereof, are assessed throughout the impact analysis for an improved management of adaptation measures. Challenges furthermore include communication and understanding among different actors, including the scientific community, political and implementation agencies, and local population. Based on our experiences we will outline a good practice

  14. Toward Collective Impact for Climate Resilience: Maximizing Climate Change Education for Preparedness, Adaptation, and Mitigation

    NASA Astrophysics Data System (ADS)

    Ledley, T. S.; Niepold, F., III; McCaffrey, M.

    2014-12-01

    Increasing the capacity of society to make informed climate decisions based on scientific evidence is imperative. While a wide range of education programs and communication efforts to improve understanding and facilitate responsible effective decision-making have been developed in recent years, these efforts have been largely disconnected. The interdisciplinary and trans-disciplinary nature of the problems and potential responses to climate change requires a broad range of expertise and a strategy that overcomes the inherent limitations of isolated programs and efforts. To extend the reach and impact of climate change education and engagement efforts, it is necessary to have a coordination that results in greater collective impact. The Collective Impact model, as described by Kania & Kramer (2011), requires five elements: 1) a common agenda; 2) shared measurement systems; 3) mutually reinforcing activities; 4) continuous communication; and 5) a well-funded backbone support organization. The CLEAN Network has facilitated a series of discussions at six professional meetings from late 2012 through spring 2014 to begin to develop and define the elements of collective impact on climate change education and engagement. These discussions have focused on getting input from the community on a common agenda and what a backbone support organization could do to help extend their reach and impact and enable a longer-term sustainability. These discussions will continue at future meetings, with the focus shifting to developing a common agenda and shared metrics. In this presentation we will summarize the outcomes of these discussions thus far, especially with respect to what activities a backbone support organization might provide to help increase the collective impact of climate change education effort and invite others to join the development of public-private partnership to improve the nations climate literacy. The cumulative input into this evolving discussion on collective

  15. Financing climate change adaptation.

    PubMed

    Bouwer, Laurens M; Aerts, Jeroen C J H

    2006-03-01

    This paper examines the topic of financing adaptation in future climate change policies. A major question is whether adaptation in developing countries should be financed under the 1992 United Nations Framework Convention on Climate Change (UNFCCC), or whether funding should come from other sources. We present an overview of financial resources and propose the employment of a two-track approach: one track that attempts to secure climate change adaptation funding under the UNFCCC; and a second track that improves mainstreaming of climate risk management in development efforts. Developed countries would need to demonstrate much greater commitment to the funding of adaptation measures if the UNFCCC were to cover a substantial part of the costs. The mainstreaming of climate change adaptation could follow a risk management path, particularly in relation to disaster risk reduction. 'Climate-proofing' of development projects that currently do not consider climate and weather risks could improve their sustainability.

  16. Health Impacts of Climate Change in Pacific Island Countries: A Regional Assessment of Vulnerabilities and Adaptation Priorities

    PubMed Central

    McIver, Lachlan; Kim, Rokho; Woodward, Alistair; Hales, Simon; Spickett, Jeffery; Katscherian, Dianne; Hashizume, Masahiro; Honda, Yasushi; Kim, Ho; Iddings, Steven; Naicker, Jyotishma; Bambrick, Hilary; McMichael, Anthony J.; Ebi, Kristie L.

    2015-01-01

    Background: Between 2010 and 2012, the World Health Organization Division of Pacific Technical Support led a regional climate change and health vulnerability assessment and adaptation planning project, in collaboration with health sector partners, in 13 Pacific island countries—Cook Islands, Federated States of Micronesia, Fiji, Kiribati, Marshall Islands, Nauru, Niue, Palau, Samoa, Solomon Islands, Tonga, Tuvalu, and Vanuatu. Objective: We assessed the vulnerabilities of Pacific island countries to the health impacts of climate change and planned adaptation strategies to minimize such threats to health. Methods: This assessment involved a combination of quantitative and qualitative techniques. The former included descriptive epidemiology, time series analyses, Poisson regression, and spatial modeling of climate and climate-sensitive disease data, in the few instances where this was possible; the latter included wide stakeholder consultations, iterative consensus building, and expert opinion. Vulnerabilities were ranked using a “likelihood versus impact” matrix, and adaptation strategies were prioritized and planned accordingly. Results: The highest-priority climate-sensitive health risks in Pacific island countries included trauma from extreme weather events, heat-related illnesses, compromised safety and security of water and food, vector-borne diseases, zoonoses, respiratory illnesses, psychosocial ill-health, non-communicable diseases, population pressures, and health system deficiencies. Adaptation strategies relating to these climate change and health risks could be clustered according to categories common to many countries in the Pacific region. Conclusion: Pacific island countries are among the most vulnerable in the world to the health impacts of climate change. This vulnerability is a function of their unique geographic, demographic, and socioeconomic characteristics combined with their exposure to changing weather patterns associated with climate

  17. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation.

    PubMed

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  18. Agriculture in West Africa in the Twenty-First Century: Climate Change and Impacts Scenarios, and Potential for Adaptation

    PubMed Central

    Sultan, Benjamin; Gaetani, Marco

    2016-01-01

    West Africa is known to be particularly vulnerable to climate change due to high climate variability, high reliance on rain-fed agriculture, and limited economic and institutional capacity to respond to climate variability and change. In this context, better knowledge of how climate will change in West Africa and how such changes will impact crop productivity is crucial to inform policies that may counteract the adverse effects. This review paper provides a comprehensive overview of climate change impacts on agriculture in West Africa based on the recent scientific literature. West Africa is nowadays experiencing a rapid climate change, characterized by a widespread warming, a recovery of the monsoonal precipitation, and an increase in the occurrence of climate extremes. The observed climate tendencies are also projected to continue in the twenty-first century under moderate and high emission scenarios, although large uncertainties still affect simulations of the future West African climate, especially regarding the summer precipitation. However, despite diverging future projections of the monsoonal rainfall, which is essential for rain-fed agriculture, a robust evidence of yield loss in West Africa emerges. This yield loss is mainly driven by increased mean temperature while potential wetter or drier conditions as well as elevated CO2 concentrations can modulate this effect. Potential for adaptation is illustrated for major crops in West Africa through a selection of studies based on process-based crop models to adjust cropping systems (change in varieties, sowing dates and density, irrigation, fertilizer management) to future climate. Results of the cited studies are crop and region specific and no clear conclusions can be made regarding the most effective adaptation options. Further efforts are needed to improve modeling of the monsoon system and to better quantify the uncertainty in its changes under a warmer climate, in the response of the crops to such

  19. Research, Adaptation, & Change.

    ERIC Educational Resources Information Center

    Morris, Lee A., Ed.; And Others

    Research adaptation is an endeavor that implies solid collaboration among school practitioners and university and college researchers. This volume addresses the broad issues of research as an educational endeavor, adaptation as a necessary function associated with applying research findings to school situations, and change as an inevitable…

  20. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed

    Basso, Bruno; Hyndman, David W; Kendall, Anthony D; Grace, Peter R; Robertson, G Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability.

  1. Evaluating climate change impacts and adaptation options for agriculture in West Africa: a multi-model comparison

    NASA Astrophysics Data System (ADS)

    Sultan, B.; Lobell, D. B.; Biasutti, M.; Guan, K.; Roudier, P.; Piani, C.

    2013-12-01

    Climate change is likely to stress food production in many parts of the developing world over the next few decades. In areas such as West Africa, where poor communities are highly dependent on the direct use of local natural resources, the effects of climate change on food security could be particularly devastating. Given these concerns, there is great interest in identifying and investing in technologies or practices that could help farmers adapt to climate variability and change. Recent studies found a robust agreement across the various climate models of the IPCC Coupled Models Inter-comparison Program ensemble on the seasonal distribution of Sahel rainfall changes (with a drying of the early season and positive rainfall anomaly at the end) in contrast with a large uncertainty for summertime rainfall totals. These changes will therefore certainly impact agriculture strategy (selection of new cultivars, later sowing) and output. This study estimates such impacts by using a series of climate scenarios as input for two crop models for multiple locations within West Africa. Simulations are run for the two major crops in the region - sorghum and millets. Building on the above simulations, we then simulate different scenarios of adaptation that could be used to cope with climate changes.

  2. Can Impacts of Climate Change and Agricultural Adaptation Strategies Be Accurately Quantified if Crop Models Are Annually Re-Initialized?

    PubMed Central

    Basso, Bruno; Hyndman, David W.; Kendall, Anthony D.; Grace, Peter R.; Robertson, G. Philip

    2015-01-01

    Estimates of climate change impacts on global food production are generally based on statistical or process-based models. Process-based models can provide robust predictions of agricultural yield responses to changing climate and management. However, applications of these models often suffer from bias due to the common practice of re-initializing soil conditions to the same state for each year of the forecast period. If simulations neglect to include year-to-year changes in initial soil conditions and water content related to agronomic management, adaptation and mitigation strategies designed to maintain stable yields under climate change cannot be properly evaluated. We apply a process-based crop system model that avoids re-initialization bias to demonstrate the importance of simulating both year-to-year and cumulative changes in pre-season soil carbon, nutrient, and water availability. Results are contrasted with simulations using annual re-initialization, and differences are striking. We then demonstrate the potential for the most likely adaptation strategy to offset climate change impacts on yields using continuous simulations through the end of the 21st century. Simulations that annually re-initialize pre-season soil carbon and water contents introduce an inappropriate yield bias that obscures the potential for agricultural management to ameliorate the deleterious effects of rising temperatures and greater rainfall variability. PMID:26043188

  3. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    NASA Astrophysics Data System (ADS)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  4. Adapting to Climate Change: Research Challenges

    NASA Astrophysics Data System (ADS)

    Palutikof, Jean; Romero-Lankao, Patricia

    2009-06-01

    Climate Change Impacts, Adaptation, and Vulnerability Community Coordination; Boulder, Colorado, 8-9 January 2009; In 2007, the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) reaffirmed that anthropogenic climate change is under way, that future climate change is unavoidable, and that observed impacts can be attributed, at least in part, to anthropogenic warming. In addition, a growing number of climate change adaptation strategies are being developed around the world, indicating that policy makers are waking up to the reality of climate change. While mitigation efforts remain vital for avoiding the most dangerous impacts, adapting to unavoidable climate change is also essential. The climate change impacts, adaptation, and vulnerability (IAV) research community is now being called upon to demonstrate the likely impacts and vulnerabilities associated with future climate changes and to provide scientific advice on the most effective adaptation strategies.

  5. Adapting agriculture to climate change.

    PubMed

    Howden, S Mark; Soussana, Jean-François; Tubiello, Francesco N; Chhetri, Netra; Dunlop, Michael; Meinke, Holger

    2007-12-11

    The strong trends in climate change already evident, the likelihood of further changes occurring, and the increasing scale of potential climate impacts give urgency to addressing agricultural adaptation more coherently. There are many potential adaptation options available for marginal change of existing agricultural systems, often variations of existing climate risk management. We show that implementation of these options is likely to have substantial benefits under moderate climate change for some cropping systems. However, there are limits to their effectiveness under more severe climate changes. Hence, more systemic changes in resource allocation need to be considered, such as targeted diversification of production systems and livelihoods. We argue that achieving increased adaptation action will necessitate integration of climate change-related issues with other risk factors, such as climate variability and market risk, and with other policy domains, such as sustainable development. Dealing with the many barriers to effective adaptation will require a comprehensive and dynamic policy approach covering a range of scales and issues, for example, from the understanding by farmers of change in risk profiles to the establishment of efficient markets that facilitate response strategies. Science, too, has to adapt. Multidisciplinary problems require multidisciplinary solutions, i.e., a focus on integrated rather than disciplinary science and a strengthening of the interface with decision makers. A crucial component of this approach is the implementation of adaptation assessment frameworks that are relevant, robust, and easily operated by all stakeholders, practitioners, policymakers, and scientists.

  6. Policy Directions Addressing the Public Health Impact of Climate Change in South Korea: The Climate-change Health Adaptation and Mitigation Program.

    PubMed

    Shin, Yong Seung; Ha, Jongsik

    2012-01-01

    Climate change, caused by global warming, is increasingly recognized as a major threat to mankind's survival. Climate change concurrently has both direct and modifying influences on environmental, social, and public health systems undermining human health as a whole. Environmental health policy-makers need to make use of political and technological alternatives to address these ramifying effects. The objective of this paper is to review public health policy in Korea, as well as internationally, particularly as it relates to climate change health adaptation and mitigation programs (such as C-CHAMP of Korea), in order to assess and elicit directions for a robust environmental health policy that is adaptive to the health impacts of climate change. In Korea, comprehensive measures to prevent or mitigate overall health effects are limited, and the diffusion of responsibility among various government departments makes consistency in policy execution very difficult. This paper proposes integration, synergy, and utilization as the three core principles of policy direction for the assessment and adaptation to the health impacts of climate change. For specific action plans, we suggest policy making based on scientifically integrated health impact assessments and the prioritization of environmental factors in climate change; the development of practical and technological tools that support policy decisions by making their political implementation more efficient; and customized policy development that deals with the vulnerability of local communities.

  7. Impacts Of Climate Change On Ecosystems Management In Africa: An Assessment Of Disaster Risk Management And Adaptation

    NASA Astrophysics Data System (ADS)

    Ndebele-Murisa, M. R.

    2015-12-01

    This paper is a synthesis of eight studies which demonstrate the interface between disaster risk management (DRM) and adaptation. The studies; conducted from November 2011 to July 2012 included diverse ecosystems from forests, coastlines, rural areas to a lake region and showed that climate change/variability are major factors among other factors such as deforestation and land degradation, unsustainable land use practices, overharvesting of natural products and invasive species encroachment that are causing changes in ecosystems. The most common extreme events reported included shifts in and shorter rainfall seasons, extended droughts, increased temperatures, extreme heat, heavy rainfall, flooding, inundation, strong winds and sea level rises. As a result of these climate phenomena, adverse impacts on ecosystems and communities were reported as biodiversity loss, reduced fish catch, reduced water for forests/agriculture/consumption, increased rough waves, coastal erosion/sediment deposition and lastly land/mud slides in order of commonality. In response to these impacts communities are practicing coping and adaptation strategies but there is a huge gap between proper DRM and adaptation. This is mainly because the adaptation is practiced as an aftermath with very little effort propelled towards proactive DRM or preparedness. In addition, national level policies are archaic and do not address the current environmental changes. This was demonstrated in Togo where wood energy potential is deteriorating at an unprecedented rate but is projected to increase between 6.4% and 101% in the near and far future if the national forest action plans are implemented; preventing an energy crisis in the country. This shows that appropriate legal and policy frameworks and well planned responses to projected extreme events and climate changes are crucial in order to prevent disasters and to achieve sustainable utilisation of resources in the continent.

  8. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.

    2010-07-01

    and institutional arrangements provide a solid foundation for coping with climate change impacts, and that the mandates of existing water resources policy and water resources management institutions are at least consistent with the fundamental objectives of climate change adaptation. A deeper inquiry into the underlying nature of PNW water resources systems, however, reveals significant and persistent obstacles to climate change adaptation, which will need to be overcome if effective use of the region's extensive water resources management capacity can be brought to bear on this problem. Primary obstacles include assumptions of stationarity as the fundamental basis of water resources system design, entrenched use of historic records as the sole basis for planning, problems related to the relatively short time scale of planning, lack of familiarity with climate science and models, downscaling procedures, and hydrologic models, limited access to climate change scenarios and hydrologic products for specific water systems, and rigid water allocation and water resources operating rules that effectively block adaptive response. Institutional barriers include systematic loss of technical capacity in many water resources agencies following the dam building era, jurisdictional fragmentation affecting response to drought, disconnections between water policy and practice, and entrenched bureaucratic resistance to change in many water management agencies. These factors, combined with a federal agenda to block climate change policy in the US during the Bush administration has (with some exceptions) led to institutional "gridlock" in the PNW over the last decade or so despite a growing awareness of climate change as a significant threat to water management. In the last several years, however, significant progress has been made in surmounting these obstacles, and the region's water resources agencies at all levels of governance are making progress in addressing the fundamental

  9. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    NASA Astrophysics Data System (ADS)

    Hamlet, A. F.

    2011-05-01

    provide a reasonably solid foundation for coping with climate change impacts, and that the mandates of existing water resources policy and water resources management institutions are at least consistent with the fundamental objectives of climate change adaptation. A deeper inquiry into the underlying nature of PNW water resources systems, however, reveals significant and persistent obstacles to climate change adaptation, which will need to be overcome if effective use of the region's extensive water resources management capacity can be brought to bear on this problem. Primary obstacles include assumptions of stationarity as the fundamental basis of water resources system design, entrenched use of historical records as the sole basis for planning, problems related to the relatively short time scale of planning, lack of familiarity with climate science and models, downscaling procedures, and hydrologic models, limited access to climate change scenarios and hydrologic products for specific water systems, and rigid water allocation and water resources operating rules that effectively block adaptive response. Institutional barriers include systematic loss of technical capacity in many water resources agencies following the dam building era, jurisdictional fragmentation affecting response to drought, disconnections between water policy and practice, and entrenched bureaucratic resistance to change in many water management agencies. These factors, combined with a federal agenda to block climate change policy in the US during the Bush administration have (with some exceptions) contributed to widespread institutional "gridlock" in the PNW over the last decade or so despite a growing awareness of climate change as a significant threat to water management. In the last several years, however, significant progress has been made in surmounting some of these obstacles, and the region's water resources agencies at all levels of governance are making progress in addressing the fundamental

  10. Climate change impact and potential adaptation strategies under alternate realizations of climate scenarios for three major crops in Europe

    NASA Astrophysics Data System (ADS)

    Donatelli, Marcello; Srivastava, Amit Kumar; Duveiller, Gregory; Niemeyer, Stefan; Fumagalli, Davide

    2015-07-01

    This study presents an estimate of the effects of climate variables and CO2 on three major crops, namely wheat, rapeseed and sunflower, in EU27 Member States. We also investigated some technical adaptation options which could offset climate change impacts. The time-slices 2000, 2020 and 2030 were chosen to represent the baseline and future climate, respectively. Furthermore, two realizations within the A1B emission scenario proposed by the Special Report on Emissions Scenarios (SRES), from the ECHAM5 and HadCM3 GCM, were selected. A time series of 30 years for each GCM and time slice were used as input weather data for simulation. The time series were generated with a stochastic weather generator trained over GCM-RCM time series (downscaled simulations from the ENSEMBLES project which were statistically bias-corrected prior to the use of the weather generator). GCM-RCM simulations differed primarily for rainfall patterns across Europe, whereas the temperature increase was similar in the time horizons considered. Simulations based on the model CropSyst v. 3 were used to estimate crop responses; CropSyst was re-implemented in the modelling framework BioMA. The results presented in this paper refer to abstraction of crop growth with respect to its production system, and consider growth as limited by weather and soil water. How crop growth responds to CO2 concentrations; pests, diseases, and nutrients limitations were not accounted for in simulations. The results show primarily that different realization of the emission scenario lead to noticeably different crop performance projections in the same time slice. Simple adaptation techniques such as changing sowing dates and the use of different varieties, the latter in terms of duration of the crop cycle, may be effective in alleviating the adverse effects of climate change in most areas, although response to best adaptation (within the techniques tested) differed across crops. Although a negative impact of climate

  11. Climate Change Impacts and Adaptation on Water Resources and Agricultural Diversity of the Upper Rio Grande Watershed

    NASA Astrophysics Data System (ADS)

    Rouhi Rad, M.; Hurd, B. H.

    2012-12-01

    Climate change can alter the balance of the water resources systems. It can both change the amount and the timing of the streamflow available in a basin and the amount of water consumed at the end point due to higher temperatures. These changes in the supply and demand sides can result in a different allocation of water and different price for water in basin scale based on economic principles. In a previous study Hurd and Coonrod (2012) modeled the impacts of climate change on the water related economic activities of the Rio Grande. In their study they assumed an aggregated benefit function for the agricultural sector. In another study on the Rio Grande Brinegar and Ward (2009) modeled the agricultural diversity of the Rio Grande within the framework of a hydro-economic model. This study builds upon and extends the previous studies by developing a model that can more carefully assess the role of adaptation in agriculture. Specially, the current study adds quadratic production functions for each crop. These production functions add a major benefit to the modeling of the hydro-economic system, namely that of adding diversity and expanded resolution to the agricultural sector. Using this production function the model includes both land and water as independent variables in the agricultural sector and, therefore this extension of the model has more flexibility to represent adaptive responses to climatic changes by including the capacity to change the crop mix and acreages as well as the water applied i.e. the capacity to deficit irrigate. The results of this study show that the agricultural sector can lose nearly a third of its water and more than 30% of its net economic benefits as a result of possible climate changes. It also shows as the climate become drier and population grows then economic forces will encourage agriculture to move towards more beneficial crops and reduce total acreage and in some cases applied water.

  12. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    NASA Astrophysics Data System (ADS)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  13. Representative Agricultural Pathways and Scenarios for Regional Integrated Assessment of Climate Change Impacts, Vulnerability, and Adaptation. 5; Chapter

    NASA Technical Reports Server (NTRS)

    Valdivia, Roberto O.; Antle, John M.; Rosenzweig, Cynthia; Ruane, Alexander C.; Vervoort, Joost; Ashfaq, Muhammad; Hathie, Ibrahima; Tui, Sabine Homann-Kee; Mulwa, Richard; Nhemachena, Charles; Ponnusamy, Paramasivam; Rasnayaka, Herath; Singh, Harbir

    2015-01-01

    The global change research community has recognized that new pathway and scenario concepts are needed to implement impact and vulnerability assessment where precise prediction is not possible, and also that these scenarios need to be logically consistent across local, regional, and global scales. For global climate models, representative concentration pathways (RCPs) have been developed that provide a range of time-series of atmospheric greenhouse-gas concentrations into the future. For impact and vulnerability assessment, new socio-economic pathway and scenario concepts have also been developed, with leadership from the Integrated Assessment Modeling Consortium (IAMC).This chapter presents concepts and methods for development of regional representative agricultural pathways (RAOs) and scenarios that can be used for agricultural model intercomparison, improvement, and impact assessment in a manner consistent with the new global pathways and scenarios. The development of agriculture-specific pathways and scenarios is motivated by the need for a protocol-based approach to climate impact, vulnerability, and adaptation assessment. Until now, the various global and regional models used for agricultural-impact assessment have been implemented with individualized scenarios using various data and model structures, often without transparent documentation, public availability, and consistency across disciplines. These practices have reduced the credibility of assessments, and also hampered the advancement of the science through model intercomparison, improvement, and synthesis of model results across studies. The recognition of the need for better coordination among the agricultural modeling community, including the development of standard reference scenarios with adequate agriculture-specific detail led to the creation of the Agricultural Model Intercomparison and Improvement Project (AgMIP) in 2010. The development of RAPs is one of the cross-cutting themes in AgMIP's work

  14. Modeling of Climate Change Mitigation, Impacts and Adaptation - Closed Announcement FY 2016

    EPA Pesticide Factsheets

    The Office of Atmospheric Programs is soliciting proposals to advance the field of climate economic modeling to assist decision makers and the public in effectively responding to the challenges and opportunities posed by climate change.

  15. An integrated framework to assess adaptation options to climate change impacts in an irrigated basin in Central North Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Melo, O.; Meza, F. J.; Alvarez, P.; Maureira, F.; Sanchez, A.; Tapia, A.; Cortes, M.; Dale, L. L.

    2013-12-01

    Future climate conditions could potentially affect water supply and demand on water basins throughout the world but especially on snowmelt-driven agriculture oriented basins that can be found throughout central Chile. Increasing temperature and reducing precipitation will affect both the magnitude and timing of water supply this part of the world. Different adaptation strategies could be implemented to reduce the impacts of such scenarios. Some could be incorporated as planned policies decided at the basin or Water Use Organization levels. Examples include changing large scale irrigation infrastructure (reservoirs and main channels) either physically or its operation. Complementing these strategies it is reasonable to think that at a disaggregated level, farmers would also react (adapt) to these new conditions using a mix of options to either modify their patterns of consumption (irrigation efficiency, crop mix, crop area reduction), increase their ability to access new sources of water (groundwater, water markets) or finally compensate their expected losses (insurance). We present a modeling framework developed to represent these issues using as a case study the Limarí basin located in Central Chile. This basin is a renowned example of how the development of reservoirs and irrigation infrastructure can reduce climate vulnerabilities allowing the economic development of a basin. Farmers in this basin tackle climate variability by adopting different strategies that depend first on the reservoir water volume allocation rule, on the type and size of investment they have at their farms and finally their potential access to water markets and other water supplies options. The framework developed can be used to study these strategies under current and future climate scenarios. The cornerstone of the framework is an hydrology and water resources model developed on the WEAP platform. This model is able to reproduce the large scale hydrologic features of the basin such as

  16. Impact of experimental thermal amplitude on ectotherm performance: Adaptation to climate change variability?

    PubMed

    Folguera, Guillermo; Bastías, Daniel A; Bozinovic, Francisco

    2009-11-01

    Global climate change is one of the greatest threats to biodiversity; one of the most important effects is increase in the mean earth surface temperature. However, another but poorly studied main effect of global change appears to be an increase in temperature variability. Most of the current analyses of global change have focused on mean values, paying less attention to the role of the fluctuations of environmental variables. We tested the effects of daily thermal amplitude with constant mean (24-24 degrees C, 27-21 degrees C and 32-16 degrees C) on different performance traits (rollover speed, body mass balance and survival) in populations of woodlouse (Porcellio laevis) from two altitudes. We observed that maximum performance showed a significant effect of population in the first but not in the fifth week, and only the population effect was significant for optimum temperature. Interestingly, populations under higher amplitude in environmental temperature exhibited higher resistance to a fluctuating climatic regime. We suggest that our results indicate that thermal variability may produce important effects on biodiversity. Therefore, in order to develop more realistic scenarios of global climate change effects on biodiversity, the effects of thermal variability as well as mean need to be examined simultaneously.

  17. Climate change and thermal bioclimate in cities: impacts and options for adaptation in Freiburg, Germany.

    PubMed

    Matzarakis, Andreas; Endler, Christina

    2010-07-01

    The concept of physiologically equivalent temperature (PET) has been applied to the analysis of thermal bioclimatic conditions in Freiburg, Germany, to show if days with extreme bioclimatic conditions will change and how extreme thermal conditions can be modified by changes in mean radiant temperature and wind speed. The results show that there will be an increase of days with heat stress (PET > 35 degrees C) in the order of 5% (from 9.2% for 1961-1990) and a decrease of days with cold stress (PET < 0 degrees C) from 16.4% to 3.8% per year. The conditions can be modified by measures modifying radiation and wind speed in the order of more than 10% of days per year by reducing global radiation in complex structures or urban areas.

  18. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: a strategy for mitigating impacts of climate change.

    PubMed

    Redman, Regina S; Kim, Yong Ok; Woodward, Claire J D A; Greer, Chris; Espino, Luis; Doty, Sharon L; Rodriguez, Rusty J

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients.Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions.The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20-30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization).These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  19. Increased fitness of rice plants to abiotic stress via habitat adapted symbiosis: A strategy for mitigating impacts of climate change

    USGS Publications Warehouse

    Redman, R.S.; Kim, Y.-O.; Woodward, C.J.D.A.; Greer, C.; Espino, L.; Doty, S.L.; Rodriguez, R.J.

    2011-01-01

    Climate change and catastrophic events have contributed to rice shortages in several regions due to decreased water availability and soil salinization. Although not adapted to salt or drought stress, two commercial rice varieties achieved tolerance to these stresses by colonizing them with Class 2 fungal endophytes isolated from plants growing across moisture and salinity gradients. Plant growth and development, water usage, ROS sensitivity and osmolytes were measured with and without stress under controlled conditions. The endophytes conferred salt, drought and cold tolerance to growth chamber and greenhouse grown plants. Endophytes reduced water consumption by 20–30% and increased growth rate, reproductive yield, and biomass of greenhouse grown plants. In the absence of stress, there was no apparent cost of the endophytes to plants, however, endophyte colonization decreased from 100% at planting to 65% compared to greenhouse plants grown under continual stress (maintained 100% colonization). These findings indicate that rice plants can exhibit enhanced stress tolerance via symbiosis with Class 2 endophytes, and suggest that symbiotic technology may be useful in mitigating impacts of climate change on other crops and expanding agricultural production onto marginal lands.

  20. Impacts of Climate Changes in Ukraine on Hydrological Regime and Water Resources: Assessment and Measures of Adaptation

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2009-12-01

    year; about 50% of annual flow will pass in winter months. An increase of risks of meteorological and hydrological droughts in the steppe zone and in the southern part of forest - steppe zone is projected. The region most prone to a rise in river flood frequency is the Ukrainian Carpathians. Generally, a negative impact of climate changes on hydrological regime is expected to outweigh a benefit for the most of regions. The most likely affected sectors by negative impact are: agriculture, industry, drinking water supply, human settlements, river ecosystems. In order to eliminate a possible negative effect on water resources, the adaptation strategies addressed on the national level will have to incorporate a number of legislative, organizational and technical measures aimed at protecting the water resources. The development of integrated water resources management is the essential terms in order to achieve adaptation measures across socio-economic, environmental and administrative systems.

  1. Projected 21st Century Impacts of Climate Change on the Performance of the Los Angeles Aqueduct and Adaptation Measures to Mitigate Adverse Impacts

    NASA Astrophysics Data System (ADS)

    Mills, B.; Sayenko, K.; Roy, S. B.; Lew, C.

    2011-12-01

    One of the largest sources of drinking water to the City of Los Angeles (the City) comes from snow melt from the Eastern Sierra Nevada Mountains that drain into Owens Valley and Mono Basin. Much of this water is then transported to the City via the Los Angeles Aqueduct (LAA) originally built in 1913. During the 1980s and earlier, up to 500,000 acre-feet (af) of water was conveyed annually, but more recently less water has been transported due to increasing usage in Owens Valley, and due to a series of dry years.The City is concerned about potential impacts of climate change on this water supply, and commissioned the authors to perform a study to evaluate these potential impacts on both the infrastructure of the LAA and water supply to the City. This presentation focuses on the water supply issue, which has the potential to impact millions of customers. The study results presented here are part of a larger study where 16 global climate models were downscaled and applied to the Owens Valley and Mono Basin watersheds. This presentation begins by assuming base-of-mountain runoff is known from the 16 GCMs, and does not focus on the GCMs or downscaling.The results of the study described in this presentation are those of the authors and not of the LADWP. One of the most consequential findings of the study is the projected decrease in runoff from the watershed over the 21st century. While wet years are still dispersed between dry years, over the 21st century the loss in runoff is equivalent to approximately five years of historical average runoff. In addition to climate change impacts, water usage in the Owens valley is projected to increase over the 21st century and that increasing usage is projected to be comparable to climate change impacts. Eight adaptation options were identified to mitigate potential impacts. These included increasing storage volume of reservoirs in Owens Valley, changing operational rules for releasing water, construction of surface storage or

  2. Adaptation to climate change in developing countries.

    PubMed

    Mertz, Ole; Halsnaes, Kirsten; Olesen, Jørgen E; Rasmussen, Kjeld

    2009-05-01

    Adaptation to climate change is given increasing international attention as the confidence in climate change projections is getting higher. Developing countries have specific needs for adaptation due to high vulnerabilities, and they will in this way carry a great part of the global costs of climate change although the rising atmospheric greenhouse gas concentrations are mainly the responsibility of industrialized countries. This article provides a status of climate change adaptation in developing countries. An overview of observed and projected climate change is given, and recent literature on impacts, vulnerability, and adaptation are reviewed, including the emerging focus on mainstreaming of climate change and adaptation in development plans and programs. The article also serves as an introduction to the seven research articles of this special issue on climate change adaptation in developing countries. It is concluded that although many useful steps have been taken in the direction of ensuring adequate adaptation in developing countries, much work still remains to fully understand the drivers of past adaptation efforts, the need for future adaptation, and how to mainstream climate into general development policies.

  3. Classifying climate change adaptation frameworks

    NASA Astrophysics Data System (ADS)

    Armstrong, Jennifer

    2014-05-01

    Complex socio-ecological demographics are factors that must be considered when addressing adaptation to the potential effects of climate change. As such, a suite of deployable climate change adaptation frameworks is necessary. Multiple frameworks that are required to communicate the risks of climate change and facilitate adaptation. Three principal adaptation frameworks have emerged from the literature; Scenario - Led (SL), Vulnerability - Led (VL) and Decision - Centric (DC). This study aims to identify to what extent these adaptation frameworks; either, planned or deployed are used in a neighbourhood vulnerable to climate change. This work presents a criterion that may be used as a tool for identifying the hallmarks of adaptation frameworks and thus enabling categorisation of projects. The study focussed on the coastal zone surrounding the Sizewell nuclear power plant in Suffolk in the UK. An online survey was conducted identifying climate change adaptation projects operating in the study area. This inventory was analysed to identify the hallmarks of each adaptation project; Levels of dependency on climate model information, Metrics/units of analysis utilised, Level of demographic knowledge, Level of stakeholder engagement, Adaptation implementation strategies and Scale of adaptation implementation. The study found that climate change adaptation projects could be categorised, based on the hallmarks identified, in accordance with the published literature. As such, the criterion may be used to establish the matrix of adaptation frameworks present in a given area. A comprehensive summary of the nature of adaptation frameworks in operation in a locality provides a platform for further comparative analysis. Such analysis, enabled by the criterion, may aid the selection of appropriate frameworks enhancing the efficacy of climate change adaptation.

  4. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved

  5. Predicting the impacts of climate change on animal distributions: the importance of local adaptation and species' traits

    SciTech Connect

    HELLMANN, J. J.; LOBO, N. F.

    2011-12-20

    The geographic range limits of many species are strongly affected by climate and are expected to change under global warming. For species that are able to track changing climate over broad geographic areas, we expect to see shifts in species distributions toward the poles and away from the equator. A number of ecological and evolutionary factors, however, could restrict this shifting or redistribution under climate change. These factors include restricted habitat availability, restricted capacity for or barriers to movement, or reduced abundance of colonists due the perturbation effect of climate change. This research project examined the last of these constraints - that climate change could perturb local conditions to which populations are adapted, reducing the likelihood that a species will shift its distribution by diminishing the number of potential colonists. In the most extreme cases, species ranges could collapse over a broad geographic area with no poleward migration and an increased risk of species extinction. Changes in individual species ranges are the processes that drive larger phenomena such as changes in land cover, ecosystem type, and even changes in carbon cycling. For example, consider the poleward range shift and population outbreaks of the mountain pine beetle that has decimated millions of acres of Douglas fir trees in the western US and Canada. Standing dead trees cause forest fires and release vast quantities of carbon to the atmosphere. The beetle likely shifted its range because it is not locally adapted across its range, and it appears to be limited by winter low temperatures that have steadily increased in the last decades. To understand range and abundance changes like the pine beetle, we must reveal the extent of adaptive variation across species ranges - and the physiological basis of that adaptation - to know if other species will change as readily as the pine beetle. Ecologists tend to assume that range shifts are the dominant

  6. Narrative, Adaptation, and Change

    ERIC Educational Resources Information Center

    Bateson, Mary Catherine

    2007-01-01

    This paper explores how individuals and communities orient themselves to the future by the way they story the past. There is a persistent tendency to think of such narratives as factual and therefore stable. The mutability of such narratives is actually a key adaptive characteristic, ranging from complete repression of individual traumas to public…

  7. Impacts of decline harvest of country food on nutrient intake among Inuit in Arctic Canada: impact of climate change and possible adaptation plan

    PubMed Central

    Rosol, Renata; Powell-Hellyer, Stephanie; Chan, Hing Man

    2016-01-01

    Background The pervasive food insecurity and the diet transition away from local, nutrient-rich country foods present a public health challenge among Inuit living in the Canadian Arctic. While environmental factors such as climate change decreased the accessibility and availability of many country food species, new species were introduced into regions where they were previously unavailable. An adaptation such as turning to alternate country food species can be a viable solution to substitute for the nutrients provided by the declined food species. The objective of this study was to estimate the impact on nutrient intake using hypothetical scenarios that current commonly harvested country foods were reduced by 50%, and were replaced with alternate or new species. Methods Data collected during the 2007–2008 Inuit Health Survey from 36 Canadian Arctic communities spanning Nunavut, the Inuvialuit Settlement Region and Nunatsiavut were used. Results A 50% decline in consumption of fish, whale, ringed seals and birds (the food that was reported to be in decline) resulted in a significant decrease in essential nutrient intake. Possible substitute foods were identified but some nutrients such as zinc and especially vitamin D were most often found lacking in the alternative diet. Conclusions If the alternative species are not available or feasible, more expensive and less nutritionally dense store-bought foods may be sought. Given the superior quality of country foods and their association with food security, and Inuit cultural health and personal identity, developing skills and awareness for adaptation, promoting regional sharing networks, forming a co-management agency and continuing nutritional monitoring may potentially preserve the nutritional integrity of Inuit diet, and in turn their health and cultural survival. PMID:27388896

  8. Impacts of Climate Change on Vector Borne Diseases in the Mediterranean Basin — Implications for Preparedness and Adaptation Policy

    PubMed Central

    Negev, Maya; Paz, Shlomit; Clermont, Alexandra; Pri-Or, Noemie Groag; Shalom, Uri; Yeger, Tamar; Green, Manfred S.

    2015-01-01

    The Mediterranean region is vulnerable to climatic changes. A warming trend exists in the basin with changes in rainfall patterns. It is expected that vector-borne diseases (VBD) in the region will be influenced by climate change since weather conditions influence their emergence. For some diseases (i.e., West Nile virus) the linkage between emergence andclimate change was recently proved; for others (such as dengue) the risk for local transmission is real. Consequently, adaptation and preparation for changing patterns of VBD distribution is crucial in the Mediterranean basin. We analyzed six representative Mediterranean countries and found that they have started to prepare for this threat, but the preparation levels among them differ, and policy mechanisms are limited and basic. Furthermore, cross-border cooperation is not stable and depends on international frameworks. The Mediterranean countries should improve their adaptation plans, and develop more cross-sectoral, multidisciplinary and participatory approaches. In addition, based on experience from existing local networks in advancing national legislation and trans-border cooperation, we outline recommendations for a regional cooperation framework. We suggest that a stable and neutral framework is required, and that it should address the characteristics and needs of African, Asian and European countries around the Mediterranean in order to ensure participation. Such a regional framework is essential to reduce the risk of VBD transmission, since the vectors of infectious diseases know no political borders. PMID:26084000

  9. Impacts of Climate Change on Vector Borne Diseases in the Mediterranean Basin - Implications for Preparedness and Adaptation Policy.

    PubMed

    Negev, Maya; Paz, Shlomit; Clermont, Alexandra; Pri-Or, Noemie Groag; Shalom, Uri; Yeger, Tamar; Green, Manfred S

    2015-06-15

    The Mediterranean region is vulnerable to climatic changes. A warming trend exists in the basin with changes in rainfall patterns. It is expected that vector-borne diseases (VBD) in the region will be influenced by climate change since weather conditions influence their emergence. For some diseases (i.e., West Nile virus) the linkage between emergence andclimate change was recently proved; for others (such as dengue) the risk for local transmission is real. Consequently, adaptation and preparation for changing patterns of VBD distribution is crucial in the Mediterranean basin. We analyzed six representative Mediterranean countries and found that they have started to prepare for this threat, but the preparation levels among them differ, and policy mechanisms are limited and basic. Furthermore, cross-border cooperation is not stable and depends on international frameworks. The Mediterranean countries should improve their adaptation plans, and develop more cross-sectoral, multidisciplinary and participatory approaches. In addition, based on experience from existing local networks in advancing national legislation and trans-border cooperation, we outline recommendations for a regional cooperation framework. We suggest that a stable and neutral framework is required, and that it should address the characteristics and needs of African, Asian and European countries around the Mediterranean in order to ensure participation. Such a regional framework is essential to reduce the risk of VBD transmission, since the vectors of infectious diseases know no political borders.

  10. Climate Change Adaptation Plan

    DTIC Science & Technology

    2014-06-01

    currently valid OMB control number. 1. REPORT DATE JUN 2014 2 . REPORT TYPE 3. DATES COVERED 00-00-2014 to 00-00-2014 4. TITLE AND SUBTITLE Climate...PERSON a. REPORT unclassified b. ABSTRACT unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 2 I...policy and guidance. 3 I N T R O D U C T I O NC O N T E N T S EXECUTIVE SUMMARY 2 CONTENTS 3 INTRODUCTION 4 What’s new in the 2014 Adaptation Plan 4

  11. Climate Change Adaptation Training

    EPA Pesticide Factsheets

    A list of on-line training modules to help local government officials and those interested in water management issues better understand how the changing climate affects the services and resources they care about

  12. Adapting to change

    NASA Astrophysics Data System (ADS)

    Anscombe, Nadya

    2009-11-01

    From humble beginnings, the Belgian company Xenics has grown to become one of the world's leading suppliers of short-wave infrared cameras outside the US. Nadya Anscombe finds out how the company has survived the economic crisis by changing its business strategy and continually developing its products.

  13. Urban Impact Assessment and Adaptation Strategies to Climate Change in Europe: A Case Study for Antwerp, Berlin and Almada

    NASA Astrophysics Data System (ADS)

    Stevens, Catherine; Thomas, Bart

    2014-05-01

    Climate change is driven by global processes such as the global ocean circulation and its variability over time leading to changing weather patterns on regional scales as well as changes in the severity and occurrence of extreme events such as heat waves. For example, the summer 2003 European heat wave caused up to 70.000 excess deaths over four months in Central and Western Europe. As around 75% of Europe's population resides in urban areas, it is of particular relevance to examine the impact of seasonal to decadal-scale climate variability on urban areas and their populations. This study aims at downscaling the spatially coarse resolution CMIP5 climate predictions to the local urban scale and investigating the relation between heat waves and the urban-rural temperature increment (urban heat island effect). The resulting heat stress effect is not only driven by climatic variables but also impacted by urban morphology. Moreover, the exposure varies significantly with the geographical location. All this information is coupled with relevant socio-economic datasets such as population density, age structure, etc. focussing on human health. The analyses are conducted in the framework of the NACLIM FP7 project funded by the European Commission involving local stakeholders such as the cities of Antwerp (BE), Berlin (DE) and Almada (PT) represented by different climate and urban characteristics. The end-user needs have been consolidated in a climate services plan including the production of heat risk exposure maps and the analysis of various scenarios considering e.g. the uncertainty of the global climate predictions, urban expansion over time and the impact of mitigation measures such as green roofs. The results of this study will allow urban planners and policy makers facing the challenges of climate change and develop sound strategies for the design and management of climate resilient cities.

  14. Evaluating the contribution of Sustainable Land Management to climate change adaptation and mitigation, and its impacts on Mediterranean ecosystem services.

    NASA Astrophysics Data System (ADS)

    de Vente, Joris; Zagaria, Cecilia; Pérez-Cutillas, Pedro; Almagro, Maria; Martínez-Mena, Maria; Baartman, Jantiene; Boix-Fayos, Carolina

    2015-04-01

    Changing climate and land management have strong implications for soil and water resources and for many essential ecosystem services (ES), such as provision of drinking and irrigation water, soil erosion control, and carbon sequestration. Large impacts of climate change are expected in the Mediterranean, characterized by a high dependence on scarce soil and water resources. On the other hand, well designed Sustainable Land Management (SLM) strategies can reduce the risks associated with climate change, but their design requires knowledge of their multiple effects on ecosystem services under present and future climate scenarios and of possible tradeoffs. Moreover, strategies are only viable if suited to local environmental, socio-economic and cultural conditions, so stakeholder engagement is crucial during their selection, evaluation and implementation. We present preliminary results of a catchment wide assessment of the expected impacts of climate change on water availability in the Segura basin (18800 km2) southeastern Spain. Furthermore, we evaluated the impacts of past land use changes and the benefits of catchment wide implementation of SLM practices to protect soil and water resources, prevent sedimentation of reservoirs and increase carbon sequestration in soil and vegetation. We used the InVEST modeling framework to simulate the water availability and sediment export under different climate, land use and land management scenarios, and quantified carbon stocks in soil and vegetation. Realistic scenarios of implementation of SLM practices were prepared based on an extensive process of stakeholder engagement and using latest climate change predictions from Regional Climate Models for different emission scenarios. Results indicate a strong decrease in water availability in the Segura catchment under expected climate change, with average reductions of upto 60% and large spatial variability. Land use changes (1990 - 2006) resulted in a slight increase in water

  15. Climate Change Adaptation in the Urban Environment

    SciTech Connect

    Wilbanks, Thomas J

    2011-01-01

    This overview chapter considers five questions that cut across the four case studies in the section to follow: (1) why are urban environments of particular interest; (2) what does an 'urban environment' mean as a focus for adaptation actions, (3) what do we know about climate change vulnerabilities and adaptation potentials in urban areas; (4) what can we expect in the future with adaptation in urban areas; and (5) what is happening with climate change adaptation in urban areas? After decades of inattention, adaptation to risks and impacts of climate change is now receiving long overdue attention, and it is only natural that a considerable share of this attention is focused on the places where most people live. This section considers climate change adaptation in the urban environment, defined as settings where human populations cluster - generally implying relatively large clusters, but not excluding smaller settlements that operate as coherent geopolitical and economic entities. Consistent with the topic of the book, the emphasis of this overview will be on urban environments in developed countries, but it will also draw on knowledge being developed from urban experiences across the globe.

  16. Climate change: Cropping system changes and adaptations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change impacts the life of every person; however, there is little comprehensive understanding of the direct and indirect effects of climate change on agriculture. Since our food, feed, fiber, and fruit is derived from agricultural systems, understanding the effects of changing temperature, p...

  17. Projected impacts of climate change on hydrology, water resource use and adaptation needs for the Chu and Talas cross-border rivers basin, Central Asia

    NASA Astrophysics Data System (ADS)

    Shamil Iliasov, Shamil; Dolgikh, Svetlana; Lipponen, Annukka; Novikov, Viktor

    2014-05-01

    The observed long-term trends, variability and projections of future climate and hydrology of the Chu and Talas transboundary rivers basin were analysed using a common approach for Kazakhstan and Kyrgyzstan parts of the basin. Historical, current and forecasted demands and main uses of water in the basin were elaborated by the joint effort of both countries. Such cooperative approach combining scientific data, water practitioners' outlook with decision making needs allowed the first time to produce a comprehensive assessment of climate change impacts on water resources in the Chu-Talas transboundary rivers basin, identify future needs and develop the initial set of adaptation measures and recommendations. This work was carried out under the project "Promoting Cooperation to Adapt to Climate Change in the Chu and Talas Transboundary Basin", supported by the United Nations Economic Commission for Europe (UNECE) and the United Nations Development Programme (UNDP). Climate change projections, including air temperatures and rainfall in the 21st century were determined with a spatial resolution 0.5 degrees based on the integration of 15 climate change model outputs (derived from IPCC's 4th Assessment Report, and partially 5th Assessment Report) combined with locally-designed hydrology and glacier models. A significant increase in surface air temperatures by 3-6°C may be expected in the basin area, especially in summer and autumn. This change is likely to be accompanied by rainfall increase during the cold season and a decrease in the warm half of the year. As a result, a deterioration of moisture conditions during the summer-autumn period is possible. Furthermore, milder winters and hotter summers can be expected. Mountains will likely receive more liquid precipitation, than snow, while the area and volume of glaciers may significantly reduce. Projected changes in climate and glaciers have implications for river hydrology and different sectors of the economy dependent

  18. Assessment of the impacts of climate change and brackish irrigation water on rice productivity and evaluation of adaptation measures in Ca Mau province, Vietnam

    NASA Astrophysics Data System (ADS)

    Deb, Proloy; Tran, Duong Anh; Udmale, Parmeshwar D.

    2016-08-01

    This study investigates the temporal impacts of climate change on rice yield for summer-autumn (SA) and autumn-winter (AW) cropping pattern along with implication of brackish irrigation water for the SA season. Furthermore, evaluation of different agro-adaptations to overcome negative impacts of climate change was also done for Ca Mau province of Vietnam. Climatic variables were derived from six general circulation models which were further bias corrected at Ca Mau city station for three future time periods (2025s, 2055s, and 2085s). Calibrated AquaCrop 4.0 was used to project the future rice yield under climate change and different salinity levels in irrigation water. Simulation shows a decline in rice yield ranging from 1.60 to 23.69 % and 8.06 to 20.15 % by 2085s relative to baseline climate for A2 and B2 scenarios respectively in the case of the SA cropping season. However, an increase in rice yield ranging from 3.29 to 12.35 % and 6.64 to 17.23 % is observed for the corresponding time period and scenarios. Further simulations for the SA cropping season under climate change and increasing salinity in irrigation water suggest an insignificant increase in yield relative to the yield obtained without irrigation. Moreover, proper management practices, namely forward and early shifts in transplanting dates along with increasing fertilizer application rates, are observed to be beneficial to enhance the rice yield under climate change.

  19. Operator adaptation to changes in system reliability under adaptable automation.

    PubMed

    Chavaillaz, Alain; Sauer, Juergen

    2016-11-25

    This experiment examined how operators coped with a change in system reliability between training and testing. Forty participants were trained for 3 h on a complex process control simulation modelling six levels of automation (LOA). In training, participants either experienced a high- (100%) or low-reliability system (50%). The impact of training experience on operator behaviour was examined during a 2.5 h testing session, in which participants either experienced a high- (100%) or low-reliability system (60%). The results showed that most operators did not often switch between LOA. Most chose an LOA that relieved them of most tasks but maintained their decision authority. Training experience did not have a strong impact on the outcome measures (e.g. performance, complacency). Low system reliability led to decreased performance and self-confidence. Furthermore, complacency was observed under high system reliability. Overall, the findings suggest benefits of adaptable automation because it accommodates different operator preferences for LOA. Practitioner Summary: The present research shows that operators can adapt to changes in system reliability between training and testing sessions. Furthermore, it provides evidence that each operator has his/her preferred automation level. Since this preference varies strongly between operators, adaptable automation seems to be suitable to accommodate these large differences.

  20. Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk.

    PubMed

    Bird, David Neil; Benabdallah, Sihem; Gouda, Nadine; Hummel, Franz; Koeberl, Judith; La Jeunesse, Isabelle; Meyer, Swen; Prettenthaler, Franz; Soddu, Antonino; Woess-Gallasch, Susanne

    2016-02-01

    In Europe, there is concern that climate change will cause significant impacts around the Mediterranean. The goals of this study are to quantify the economic risk to crop production, to demonstrate the variability of yield by soil texture and climate model and to investigate possible adaptation strategies. In the Rio Mannu di San Sperate watershed, located in Sardinia (Italy) we investigate production of wheat, a rainfed crop. In the Chiba watershed located in Cap Bon (Tunisia), we analyze irrigated tomato production. We find, using the FAO model AquaCrop that crop production will decrease significantly in a future climate (2040-2070) as compared to the present without adaptation measures. Using "value-at-risk", we show that production should be viewed in a statistical manner. Wheat yields in Sardinia are modelled to decrease by 64% on clay loams, and to increase by 8% and 26% respectively on sandy loams and sandy clay loams. Assuming constant irrigation, tomatoes sown in August in Cap Bon are modelled to have a 45% chance of crop failure on loamy sands; a 39% decrease in yields on sandy clay loams; and a 12% increase in yields on sandy loams. For tomatoes sown in March; sandy clay loams will fail 81% of the time; on loamy sands the crop yields will be 63% less while on sandy loams, the yield will increase by 12%. However, if one assume 10% less water available for irrigation then tomatoes sown in March are not viable. Some adaptation strategies will be able to counteract the modelled crop losses. Increasing the amount of irrigation one strategy however this may not be sustainable. Changes in agricultural management such as changing the planting date of wheat to coincide with changing rainfall patterns in Sardinia or mulching of tomatoes in Tunisia can be effective at reducing crop losses.

  1. Evolutionary adaptations to dietary changes.

    PubMed

    Luca, F; Perry, G H; Di Rienzo, A

    2010-08-21

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area.

  2. Evolutionary Adaptations to Dietary Changes

    PubMed Central

    Luca, F.; Perry, G.H.; Di Rienzo, A.

    2014-01-01

    Through cultural innovation and changes in habitat and ecology, there have been a number of major dietary shifts in human evolution, including meat eating, cooking, and those associated with plant and animal domestication. The identification of signatures of adaptations to such dietary changes in the genome of extant primates (including humans) may shed light not only on the evolutionary history of our species, but also on the mechanisms that underlie common metabolic diseases in modern human populations. In this review, we provide a brief overview of the major dietary shifts that occurred during hominin evolution, and we discuss the methods and approaches used to identify signals of natural selection in patterns of sequence variation. We then review the results of studies aimed at detecting the genetic loci that played a major role in dietary adaptations and conclude by outlining the potential of future studies in this area. PMID:20420525

  3. LandCaRe DSS--an interactive decision support system for climate change impact assessment and the analysis of potential agricultural land use adaptation strategies.

    PubMed

    Wenkel, Karl-Otto; Berg, Michael; Mirschel, Wilfried; Wieland, Ralf; Nendel, Claas; Köstner, Barbara

    2013-09-01

    Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously

  4. Changing social contracts in climate-change adaptation

    NASA Astrophysics Data System (ADS)

    Adger, W. Neil; Quinn, Tara; Lorenzoni, Irene; Murphy, Conor; Sweeney, John

    2013-04-01

    Risks from extreme weather events are mediated through state, civil society and individual action. We propose evolving social contracts as a primary mechanism by which adaptation to climate change proceeds. We use a natural experiment of policy and social contexts of the UK and Ireland affected by the same meteorological event and resultant flooding in November 2009. We analyse data from policy documents and from household surveys of 356 residents in western Ireland and northwest England. We find significant differences between perceptions of individual responsibility for protection across the jurisdictions and between perceptions of future risk from populations directly affected by flooding events. These explain differences in stated willingness to take individual adaptive actions when state support retrenches. We therefore show that expectations for state protection are critical in mediating impacts and promoting longer-term adaptation. We argue that making social contracts explicit may smooth pathways to effective and legitimate adaptation.

  5. Impacts of Climate Change and of Anthropisation on Water Resources: from the Risk Assessment to Adaptation, the Case of the Seine Basin (including Paris, France)

    NASA Astrophysics Data System (ADS)

    Habets, F.; Viennot, P.; Thierion, C.; Vergnes, J. P.; Ait Kaci, A.; Caballero, Y.

    2015-12-01

    The Seine river, located in the temperate climate of northern France and flowing over a large sedimentary basins that hosts multilayer aquifers, is characterized by small temporal variations of its discharge. However, the presence of a megacity (Paris) and a wide area of intensive agriculture combined with climate change puts pressure on the water resources both in terms of quality and quantity. Previous research projects have estimated the impact of climate change on the water resource of the Seine basin, with the uncertainties associated to climate projections, hydrological models or downscaling methods. The water resource was projected to decrease by -14 % ± 10 % in 2050 and -28 +/-16% in 2100. This led to new studies that focus on the combined impact of climate change and adaptations. The tested adaptations are: a reduction of the groundwater abstractions, evolution of land use, development of small dams to « harvest water » or artificial recharge of aquifers. The communication of the results of these projects to stakeholders have led to the development on new indicators that better express the risk on the water resource management, especially for the groundwater. For instance maps of the evolution of piezometric head are difficult to interpret. To better express the risk evolution, a new indicator was defined: the evolution of the groundwater crisis duration, ie, the period when the charge of the aquifer is below the crisis piezometric level defined by the stakeholders. Such crisis piezometric levels are used to help defining the period when the groundwater abstraction should be reduced. Such maps are more efficient to communicate with water resources managers. This communication will focus on the results from the MEDDE Explore 2070 and ANR Oracle projects.

  6. [Review on farmer's climate change perception and adaptation].

    PubMed

    Zhao, Xue-Yan

    2014-08-01

    As the most serious challenge that the humankind is facing, climate change has been strengthened vulnerability in many countries and regions, and how to scientifically adapt to climate change has become the global issue of common concern to the international community today. The impact of climate change on farming people depending on the nature resource is especially remarkable, and understanding farmers' adaptation mechanism and process is very important to effectively make the adaptation policy. As the basis of understanding the human response action, public perception has provided a new perspective to verify the farmers' adaptation mechanism and process about climate change. Based on the recent theoretical and empirical developments of farmers' perception and adaptation, the impact of climate change on the farmers' livelihood was analyzed, and the main adaptation obstacles which the farmers faced in response to climate change were summarized systematically. Then, we analyzed the relationship between the farmers' climate change perception and adaptation, illuminated the key cognitive elements in the process of the farmers' climate change adaptation and introduced the framework to analyze the relationship between the farmers' climate change perception and adaptation. At last, this review put forward the key questions which should be considered in study on the relationship between the farmers' climate change perception and adaptation.

  7. Changes in Rumen Microbial Community Composition during Adaption to an In Vitro System and the Impact of Different Forages

    PubMed Central

    Lengowski, Melanie B.; Zuber, Karin H. R.; Witzig, Maren; Möhring, Jens; Boguhn, Jeannette; Rodehutscord, Markus

    2016-01-01

    This study examined ruminal microbial community composition alterations during initial adaption to and following incubation in a rumen simulation system (Rusitec) using grass or corn silage as substrates. Samples were collected from fermenter liquids at 0, 2, 4, 12, 24, and 48 h and from feed residues at 0, 24, and 48 h after initiation of incubation (period 1) and on day 13 (period 2). Microbial DNA was extracted and real-time qPCR was used to quantify differences in the abundance of protozoa, methanogens, total bacteria, Fibrobacter succinogenes, Ruminococcus albus, Ruminobacter amylophilus, Prevotella bryantii, Selenomonas ruminantium, and Clostridium aminophilum. We found that forage source and sampling time significantly influenced the ruminal microbial community. The gene copy numbers of most microbial species (except C. aminophilum) decreased in period 1; however, adaption continued through period 2 for several species. The addition of fresh substrate in period 2 led to increasing copy numbers of all microbial species during the first 2–4 h in the fermenter liquid except protozoa, which showed a postprandial decrease. Corn silage enhanced the growth of R. amylophilus and F. succinogenes, and grass silage enhanced R. albus, P. bryantii, and C. aminophilum. No effect of forage source was detected on total bacteria, protozoa, S. ruminantium, or methanogens or on total gas production, although grass silage enhanced methane production. This study showed that the Rusitec provides a stable system after an adaption phase that should last longer than 48 h, and that the forage source influenced several microbial species. PMID:26928330

  8. The impact of climate change and sustainable land management based adaptation on hydrology and soil erosion of a large semiarid catchment

    NASA Astrophysics Data System (ADS)

    Eekhout, Joris; de Vente, Joris; Terink, Wilco

    2016-04-01

    Climate change has strong implications for many essential ecosystem services, such as provision of drinking and irrigation water, soil erosion and flood control. Especially large impacts are expected in the Mediterranean, already characterised by frequent floods and droughts, and for which less rainfall and more extreme weather events are projected for the coming decades. Sustainable Land Management (SLM) strategies are increasingly promoted to reduce the risks associated with climate change on ecosystem services. However, there is surprisingly little known about their impacts and trade-offs on ecosystem services at regional scales. The aim of this research is to provide insight in the potential of SLM for climate change adaptation, focusing on regional-scale impacts on soil and water resources. We applied the processed-based spatially-distributed hydrological model SPHY (Spatial Processes in HYdrology) on a daily timescale to the semi-arid Segura River catchment (18,800 km2) in SE Spain. In addition, we coupled the MUSLE soil erosion equation to the hydrological model to simulate soil erosion and sediment transport. We run the model for three periods: one historic (1981-2000) and two future scenarios (2031-2050 and 2081-2100), with and without implementation of SLM strategies. Climate input data for the historic scenario was based on interpolated measured data and for the future scenarios on output from regional climate models for different emission scenarios (RCP4.5 and RCP8.5). Realistic scenarios of SLM practices were based on a previous stakeholder consultation process. Analysis of the regional climate models under the most extreme emission scenario showed an average decrease of yearly precipitation of 97 mm (28%) and an increase of average temperature of 4.8 °C (29%). Preliminary model results, based on these scenarios, show a maximum 80% decrease in discharge under future climate conditions. Wide-scale implementation of SLM can effectively contribute to

  9. Transformational adaptation when incremental adaptations to climate change are insufficient.

    PubMed

    Kates, Robert W; Travis, William R; Wilbanks, Thomas J

    2012-05-08

    All human-environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations.

  10. Transformational adaptation when incremental adaptations to climate change are insufficient

    PubMed Central

    Kates, Robert W.; Travis, William R.; Wilbanks, Thomas J.

    2012-01-01

    All human–environment systems adapt to climate and its natural variation. Adaptation to human-induced change in climate has largely been envisioned as increments of these adaptations intended to avoid disruptions of systems at their current locations. In some places, for some systems, however, vulnerabilities and risks may be so sizeable that they require transformational rather than incremental adaptations. Three classes of transformational adaptations are those that are adopted at a much larger scale, that are truly new to a particular region or resource system, and that transform places and shift locations. We illustrate these with examples drawn from Africa, Europe, and North America. Two conditions set the stage for transformational adaptation to climate change: large vulnerability in certain regions, populations, or resource systems; and severe climate change that overwhelms even robust human use systems. However, anticipatory transformational adaptation may be difficult to implement because of uncertainties about climate change risks and adaptation benefits, the high costs of transformational actions, and institutional and behavioral actions that tend to maintain existing resource systems and policies. Implementing transformational adaptation requires effort to initiate it and then to sustain the effort over time. In initiating transformational adaptation focusing events and multiple stresses are important, combined with local leadership. In sustaining transformational adaptation, it seems likely that supportive social contexts and the availability of acceptable options and resources for actions are key enabling factors. Early steps would include incorporating transformation adaptation into risk management and initiating research to expand the menu of innovative transformational adaptations. PMID:22509036

  11. Procedures to Evaluate Sea Level Change; Impacts, Responses and Adaptation; U.S. Army Corps of Engineers’ Approach

    DTIC Science & Technology

    2012-01-01

    human health and safety, economic costs and benefits , environmental impacts, and other social effects. Annapolis, MD 4 5 6 7 8 9 10 11 12 13 14 15...strategy. Additional information regarding project area sensitivity, potential consequences, available response time as well as benefit / cost ...environmental, policy, benefit - cost , and residual risk for a project. Early on in the process the goal is to determine to what extent different

  12. Adaptation pathways of global wheat production: Importance of strategic adaptation to climate change.

    PubMed

    Tanaka, Akemi; Takahashi, Kiyoshi; Masutomi, Yuji; Hanasaki, Naota; Hijioka, Yasuaki; Shiogama, Hideo; Yamanaka, Yasuhiro

    2015-09-16

    Agricultural adaptation is necessary to reduce the negative impacts of climate change on crop yields and to maintain food production. However, few studies have assessed the course of adaptation along with the progress of climate change in each of the current major food producing countries. Adaptation pathways, which describe the temporal sequences of adaptations, are helpful for illustrating the timing and intensity of the adaptation required. Here we present adaptation pathways in the current major wheat-producing countries, based on sequential introduction of the minimum adaptation measures necessary to maintain current wheat yields through the 21st century. We considered two adaptation options: (i) expanding irrigation infrastructure; and (ii) switching crop varieties and developing new heat-tolerant varieties. We find that the adaptation pathways differ markedly among the countries. The adaptation pathways are sensitive to both the climate model uncertainty and natural variability of the climate system, and the degree of sensitivity differs among countries. Finally, the negative impacts of climate change could be moderated by implementing adaptations steadily according to forecasts of the necessary future adaptations, as compared to missing the appropriate timing to implement adaptations.

  13. IPCC Working Group II: Impacts and Adaptation Part I

    NASA Astrophysics Data System (ADS)

    Pulwarty, R. S.

    2007-12-01

    The IPCC (as opposed to the UN Framework Convention) defines climate change as" any change in climate over time, whether due to natural variability or as a result of human activity". The IPCC Working Group II (Impacts, Adaptation, Vulnerability) was charged with assessing the scientific, technical, environmental, economic, and social aspects of vulnerability to climate change, and, the negative and positive consequences for ecological systems, socio-economic sectors, and human health. The Working Group II report focused on the following issues for different sectors and regions (e.g. water, agriculture, biodiversity) and communities (coastal, island, etc.): · The role of adaptation in reducing vulnerability and impacts, · Assessment of adaptation capacity, options and constraints, and · Enhancing adaptation practice and operations. This presentation will address the following questions in the context of the results of the IPCC Fourth Assessment Report WG II: · What are the barriers, knowledge gaps, and opportunities for impacts assessments? · How are decisions about adaptation being made, and what types of adaptation strategies are being undertaken? · What are good adaptation practices and how are they learned over time? Examples will be drawn from the freshwater resources, small islands and adaptation chapters to which the presenter contributed. Many lessons have been identified but few have been implemented or evaluated over time. Adaptation occurs in the context of multiple stresses. Adaptation will be important in coping with early impacts in the near-term and continue to be important as our climate changes, regardless of how that change is derived. It is important to note that unmitigated climate change could, in the long term, exceed the capacity of different natural, managed and human systems to adapt. The assessment leads to the following conclusions: · Adaptation to climate change is already taking place, but on a limited basis · Adaptation measures

  14. Climate Change Adaptation: Putting Principles into Practice

    NASA Astrophysics Data System (ADS)

    Ausden, Malcolm

    2014-10-01

    Carrying out wildlife conservation in a changing climate requires planning on long timescales at both a site and network level, while also having the flexibility to adapt actions at sites over short timescales in response to changing conditions and new information. The Royal Society for the Protection of Birds (RSPB), a land-owning wildlife conservation charity in the UK, achieves this on its nature reserves through its system of management planning. This involves setting network-wide objectives which inform the 25-year vision and 5-year conservation objectives for each site. Progress toward achieving each site's conservation objectives is reviewed annually, to identify any adjustments which might be needed to the site's management. The conservation objectives and 25-year vision of each site are reviewed every 5 years. Significant long-term impacts of climate change most frequently identified at RSPB reserves are: loss of intertidal habitat through coastal squeeze, loss of low-lying islands due to higher sea levels and coastal erosion, loss of coastal freshwater and brackish wetlands due to increased coastal flooding, and changes in the hydrology of wetlands. The main types of adaptation measures in place on RSPB reserves to address climate change-related impacts are: re-creation of intertidal habitat, re-creation and restoration of freshwater wetlands away from vulnerable coastal areas, blocking artificial drainage on peatlands, and addressing pressures on freshwater supply for lowland wet grasslands in eastern and southeastern England. Developing partnerships between organizations has been crucial in delivering large-scale adaptation projects.

  15. The effects of global climate change on Southeast Asia: A survey of likely impacts and problems of adaptation

    NASA Technical Reports Server (NTRS)

    Njoto, Sukrisno; Howe, Charles W.

    1991-01-01

    Study results indicate the likelihood of significant net damages from climate change, in particular damages from sea-level rise and higher temperatures that seem unlikely to be offset by favorable shifts in precipitation and carbon dioxide. Also indicated was the importance of better climate models, in particular models that can calculate climate change on a regional scale appropriate to policy-making. In spite of this potential for damage, there seems to be a low level of awareness and concern, probably caused by the higher priority given to economic growth and reinforced by the great uncertainty in the forecasts. The common property nature of global environment systems also leads to a feeling of helplessness on the part of country governments.

  16. Impact assessment of climate change on wheat (Triticum aestivum L.) and mustard (Brassica spp.) production and its adaptation strategies in different districts of Gujarat, India

    NASA Astrophysics Data System (ADS)

    Pandey, V.; Patel, H. R.; Yadav, S. B.; Patil, D. D.

    2015-12-01

    Gujarat is the western-most state of India with a long (1600 km) sea coast on the Arabian Sea. Average annual rainfall ranges from as high as 1900 mm in the sub-humid southeast to as low as 250 mm in the arid north. There are three distinct crop seasons- rainy (June to September), winter (Oct.-Nov. through Feb.-March) and summer (Feb-March through May-June). Wheat and mustard are grown during winter seasons. The past climatic records suggested increasing trends in rainfall( 2 to 5 mm per year), maximum (0.03 to 0.05 0C per year) and minimum temperatures (0.02 to 0.05 0C per year) at most of places in Gujarat. But the minimum temperature is fould to be increasing significantly at all the locations. This affects the winter season crops viz. wheat and mustard adversely. Simulation results with DSSAT CERES-wheat model revealed that with increase in temperature by 2 0C in different months (November to February) the decrease in wheat yield is observed between 7 to 29 per cent. The impact of increase in maximum temperature during early (November) and late (February) is less (<12.5 %) than that during active vegetative and reproductive period (December and January; >24.8 %). The climate change projections during 2071-2100 using PRECIS output suggested that there would be increase in maximum temperature by 3.2 to 5.2 0C in different districts of Gujarat over baseline period of 1961-1990 while minimum temperature is project to increase by 2.8 to 5.8 0C. Rainfall is also projected to increase by 28 to 70 per cent in different districts. The impact of climate change on wheat would be reduction in its duration by 14-20 days and the grain yield would be reduced by 20-55 per cent in different districts. In case of mustard crops the duration of crop would be reduced by 11 to 16 days and seed yield would be reduced by 32-50 per cent. In order to mitigate the ill effect of climate change, various adaptation strategies vis change in dates of sowing, change in variety, additional

  17. A Model for Climate Change Adaptation

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Keating, G. N.

    2009-12-01

    Climate models predict serious impacts on the western U.S. in the next few decades, including increased temperatures and reduced precipitation. In combination, these changes are linked to profound impacts on fundamental systems, such as water and energy supplies, agriculture, population stability, and the economy. Global and national imperatives for climate change mitigation and adaptation are made actionable at the state level, for instance through greenhouse gas (GHG) emission regulations and incentives for renewable energy sources. However, adaptation occurs at the local level, where energy and water usage can be understood relative to local patterns of agriculture, industry, and culture. In response to the greenhouse gas emission reductions required by California’s Assembly Bill 32 (2006), Sonoma County has committed to sharp emissions reductions across several sectors, including water, energy, and transportation. To assist Sonoma County develop a renewable energy (RE) portfolio to achieve this goal we have developed an integrated assessment model, CLEAR (CLimate-Energy Assessment for Resiliency) model. Building on Sonoma County’s existing baseline studies of energy use, carbon emissions and potential RE sources, the CLEAR model simulates the complex interactions among technology deployment, economics and social behavior. This model enables assessment of these and other components with specific analysis of their coupling and feedbacks because, due to the complex nature of the problem, the interrelated sectors cannot be studied independently. The goal is an approach to climate change mitigation and adaptation that is replicable for use by other interested communities. The model user interfaces helps stakeholders and policymakers understand options for technology implementation.

  18. EMS adaptation for climate change

    NASA Astrophysics Data System (ADS)

    Pan, C.; Chang, Y.; Wen, J.; Tsai, M.

    2010-12-01

    The purpose of this study was to find an appropriate scenario of pre-hospital transportation of an emergency medical service (EMS) system for burdensome casualties resulting from extreme climate events. A case of natural catastrophic events in Taiwan, 88 wind-caused disasters, was reviewed and analyzed. A sequential-conveyance method was designed to shorten the casualty transportation time and to promote the efficiency of ambulance services. A proposed mobile emergency medical center was first constructed in a safe area, but nearby the disaster area. The Center consists of professional medical personnel who process the triage of incoming patients and take care of casualties with minor injuries. Ambulances in the Center were ready to sequentially convey the casualties with severer conditions to an assigned hospital that is distant from the disaster area for further treatment. The study suggests that if we could construct a spacious and well-equipped mobile emergency medical center, only a small portion of casualties would need to be transferred to distant hospitals. This would reduce the over-crowding problem in hospital ERs. First-line ambulances only reciprocated between the mobile emergency medical center and the disaster area, saving time and shortening the working distances. Second-line ambulances were highly regulated between the mobile emergency medical center and requested hospitals. The ambulance service of the sequential-conveyance method was found to be more efficient than the conventional method and was concluded to be more profitable and reasonable on paper in adapting to climate change. Therefore, additional practical work should be launched to collect more precise quantitative data.

  19. A roadmap for climate change adaptation in Sweden's forests: addressing wicked problems using adaptive management

    NASA Astrophysics Data System (ADS)

    Rist, L.; Felton, A.; Samuelsson, L.; Marald, E.; Karlsson, B.; Johansson, U.; Rosvall, O.

    2013-12-01

    Climate change is expected to have significant direct and indirect effects on forest ecosystems. Forests will have to adapt not only to changes in mean climate variables but also to increased climatic variability and altered disturbance regimes. Rates of change will likely exceed many forests capabilities to naturally adapt and many of today's trees will be exposed to the climates of 2090. In Sweden the effects are already being seen and more severe impacts are expected in the future. Exacerbating the challenge posed by climate change, a large proportion of Sweden's forests are, as a consequence of dominant production goals, greatly simplified and thus potentially more vulnerable to the uncertainties and risks associated with climate change. This simplification also confers reduced adaptive capacity to respond to potential impacts. Furthermore, many adaptation measures themselves carry uncertainties and risks. Future changes and effects are thus uncertain, yet forest managers, policymakers, scientists and other stakeholders must act. Strategies that build social and ecological resilience in the face of multiple interacting unknowns and surprises are needed. Adaptive management aims to collect and integrate knowledge about how a managed system is likely to respond to alternative management schemes and changing environmental conditions within a continuous decision process. There have been suggestions that adaptive management is not well suited to the large complex uncertainties associated with climate change and associated adaptation measures. However, more recently it has been suggested that adaptive management can handle such wicked problems, given adequate resources and a suitable breakdown of the targeted uncertainties. Here we test this hypothesis by evaluating how an adaptive management process could be used to manage the uncertainties and risks associated with securing resilient, biodiverse and productive forests in Sweden in the face of climate change. We

  20. Reconciling adaptation and mitigation to climate change in agricultureast

    NASA Astrophysics Data System (ADS)

    Olesen, J. E.

    2006-12-01

    An effective adaptation to the changing climate at farm, sector and policy level is a prerequisite for reducing negative impacts and for obtaining possible benefits. These adaptations include land use and land management, as well as changes in inputs of water, nutrients and pesticides. Some of the most wide ranging adaptations involve changes in water management and water conservation, which involves issues such as changing irrigation, adoption of drought tolerant crops and water saving cropping methods (e.g. mulching and minimum tillage). Many of these adaptation options have substantial effects on greenhouse gas emissions from agriculture. However, so far few studies have attempted to link the issue of adaptation and mitigation in agriculture. This is primarily because the issues have so far been dealt with by different research communities and within different policy contexts. As both issues are becoming increasingly relevant from a policy perspective, these issues will have to be reconciled. Dealing with these issues requires a highly interdisciplinary approach.

  1. Conservation and adaptation to climate change.

    PubMed

    Brooke, Cassandra

    2008-12-01

    The need to adapt to climate change has become increasingly apparent, and many believe the practice of biodiversity conservation will need to alter to face this challenge. Conservation organizations are eager to determine how they should adapt their practices to climate change. This involves asking the fundamental question of what adaptation to climate change means. Most studies on climate change and conservation, if they consider adaptation at all, assume it is equivalent to the ability of species to adapt naturally to climate change as stated in Article 2 of the United Nations Framework Convention on Climate Change. Adaptation, however, can refer to an array of activities that range from natural adaptation, at one end of the spectrum, to sustainability science in coupled human and natural systems at the other. Most conservation organizations deal with complex systems in which adaptation to climate change involves making decisions on priorities for biodiversity conservation in the face of dynamic risks and involving the public in these decisions. Discursive methods such as analytic deliberation are useful for integrating scientific knowledge with public perceptions and values, particularly when large uncertainties and risks are involved. The use of scenarios in conservation planning is a useful way to build shared understanding at the science-policy interface. Similarly, boundary organizations-organizations or institutions that bridge different scales or mediate the relationship between science and policy-could prove useful for managing the transdisciplinary nature of adaptation to climate change, providing communication and brokerage services and helping to build adaptive capacity. The fact that some nongovernmental organizations (NGOs) are active across the areas of science, policy, and practice makes them well placed to fulfill this role in integrated assessments of biodiversity conservation and adaptation to climate change.

  2. 2012 NEHA/UL sabbatical report: vulnerability to potential impacts of climate change: adaptation and risk communication strategies for environmental health practitioners in the United Kingdom.

    PubMed

    Ratnapradipa, Dhitinut

    2014-04-01

    Climate change risk assessment, adaptation, and mitigation planning have become increasingly important to environmental health practitioners (EHPs). The NEHA/UL Sabbatical Exchange Award allowed me to investigate how EHPs in the UK are incorporating climate change planning and communication strategies into their work. Projected climate change risks in the UK include flooding, extreme heat, water shortages, severe weather, decreased air quality, and changes in vectors. Despite public perception and funding challenges, all the local government representatives with whom I met incorporated climate change risk assessment, adaptation, and mitigation planning into their work. The mandated Community Risk Register serves as a key planning document developed by each local government authority and is a meaningful way to look at potential climate change health risks. Adaptation and sustainability were common threads in my meetings. These often took the form of "going green" with transportation, energy efficiency, conserving resources, and building design because the efforts made sense monetarily as future cost savings. Communication strategies targeted a variety of audiences (EHPs, non-EHP government employees, politicians, and the general public) using a broad range of communication channels (professional training, lobbying, conferences and fairs, publications, print materials, Internet resources, social media, billboards, etc).

  3. Addressing Climate Change Adaptation in Regional Transportation Plans in California: A Guide and Online Visualization Tool for Planners to Incorporate Risks of Climate Change Impacts in Policy and Decision-Making

    NASA Astrophysics Data System (ADS)

    Tao, W.; Tucker, K.; DeFlorio, J.

    2012-12-01

    for the strategy framework. The strategy framework for MPOs and RTPAs is used to: 1) Assess the relative risks to their transportation system infrastructure and services of different climate stressors (sea level rise, temperature changes, snow melt, precipita¬tion changes, flooding, extreme weather events); 2) Conduct an asset inventory and vulnerability assessment of existing infrastructure; 3) Prioritize segments and facilities for adaptation action; 4) Identify appropriate and cost-effective adaptation strategies; and 5) Incorporate climate impact considerations into future long-range transportation planning and investment decisions. This framework complements the broader planning and investment processes that MPOs and RTPAs already manage. It recognizes the varying capacities and resources among MPOs and RTPAs and provide methods that can be used by organizations seeking to conduct in-depth analysis or a more sketch-level assessment.

  4. Assessing urban adaptive capacity to climate change.

    PubMed

    Araya-Muñoz, Dahyann; Metzger, Marc J; Stuart, Neil; Wilson, A Meriwether W; Alvarez, Luis

    2016-12-01

    Despite the growing number of studies focusing on urban vulnerability to climate change, adaptive capacity, which is a key component of the IPCC definition of vulnerability, is rarely assessed quantitatively. We examine the capacity of adaptation in the Concepción Metropolitan Area, Chile. A flexible methodology based on spatial fuzzy modelling was developed to standardise and aggregate, through a stepwise approach, seventeen indicators derived from widely available census statistical data into an adaptive capacity index. The results indicate that all the municipalities in the CMA increased their level of adaptive capacity between 1992 and 2002. However, the relative differences between municipalities did not change significantly over the studied timeframe. Fuzzy overlay allowed us to standardise and to effectively aggregate indicators with differing ranges and granularities of attribute values into an overall index. It also provided a conceptually sound and reproducible means of exploring the interplay of many indicators that individually influence adaptive capacity. Furthermore, it captured the complex, aggregated and continued nature of the adaptive capacity, favouring to deal with gaps of data and knowledge associated with the concept of adaptive capacity. The resulting maps can help identify municipalities where adaptive capacity is weak and identify which components of adaptive capacity need strengthening. Identification of these capacity conditions can stimulate dialogue amongst policymakers and stakeholders regarding how to manage urban areas and how to prioritise resources for urban development in ways that can also improve adaptive capacity and thus reduce vulnerability to climate change.

  5. The state of climate change adaptation in the Arctic

    NASA Astrophysics Data System (ADS)

    Ford, James D.; McDowell, Graham; Jones, Julie

    2014-10-01

    The Arctic climate is rapidly changing, with wide ranging impacts on natural and social systems. A variety of adaptation policies, programs and practices have been adopted to this end, yet our understanding of if, how, and where adaptation is occurring is limited. In response, this paper develops a systematic approach to characterize the current state of adaptation in the Arctic. Using reported adaptations in the English language peer reviewed literature as our data source, we document 157 discrete adaptation initiatives between 2003 and 2013. Results indicate large variations in adaptation by region and sector, dominated by reporting from North America, particularly with regards to subsistence harvesting by Inuit communities. Few adaptations were documented in the European and Russian Arctic, or have a focus on the business and economy, or infrastructure sectors. Adaptations are being motivated primarily by the combination of climatic and non-climatic factors, have a strong emphasis on reducing current vulnerability involving incremental changes to existing risk management processes, and are primarily initiated and led at the individual/community level. There is limited evidence of trans-boundary adaptations or initiatives considering potential cross-scale/sector impacts.

  6. Engaging a moving target: Adapting to rates of climate change

    NASA Astrophysics Data System (ADS)

    Shayegh, S.; Caldeira, K.; Moreno-Cruz, J.

    2015-12-01

    Climate change is affecting the planet and its human and natural systems at an increasing rate. As temperatures continue to rise, the international community has increasingly been considering adaptation measures to prepare for future climate change. However, most discussion around adaptation strategies has focused on preparedness for some expected amount of climate change impacts, e.g. 2 meters sea level rise. In this study, we discuss adaptation to rates of change as an alternative conceptual framework for thinking about adaptation. Adaptation is not only about adapting to amounts of change, but the rate at which these changes occur is also critically important. We ground our discussion with an example of optimal coastal investment in the face of ongoing sea level rise. Sea level rise threatens coastal assets. Finite resources could be devoted to building infrastructure further inland or to building coastal defense systems. A possible policy response could be to create a "no-build" coastal buffer zone that anticipates a future higher sea level. We present a quantitative model that illustrates the interplay among various important factors (rate of sea level rise, discount rate, capital depreciation rate, attractiveness of coastal land, etc). For some cases, strategies that combine periodic defensive investments (e.g. dikes) with planned retreat can maximize welfare when adapting to rates of climate change. In other cases, planned retreat may be optimal. It is important to prepare for ongoing increasing amounts of climate change. Preparing for a fixed amount of climate change can lead to a suboptimal solution. Climate is likely to continue changing throughout this century and beyond. To reduce adverse climate impacts, ecosystems and human systems will need to continuously adapt to a moving target.

  7. Adaptive Landscapes of Resistance Genes Change as Antibiotic Concentrations Change.

    PubMed

    Mira, Portia M; Meza, Juan C; Nandipati, Anna; Barlow, Miriam

    2015-10-01

    Most studies on the evolution of antibiotic resistance are focused on selection for resistance at lethal antibiotic concentrations, which has allowed the detection of mutant strains that show strong phenotypic traits. However, solely focusing on lethal concentrations of antibiotics narrowly limits our perspective of antibiotic resistance evolution. New high-resolution competition assays have shown that resistant bacteria are selected at relatively low concentrations of antibiotics. This finding is important because sublethal concentrations of antibiotics are found widely in patients undergoing antibiotic therapies, and in nonmedical conditions such as wastewater treatment plants, and food and water used in agriculture and farming. To understand the impacts of sublethal concentrations on selection, we measured 30 adaptive landscapes for a set of TEM β-lactamases containing all combinations of the four amino acid substitutions that exist in TEM-50 for 15 β-lactam antibiotics at multiple concentrations. We found that there are many evolutionary pathways within this collection of landscapes that lead to nearly every TEM-genotype that we studied. While it is known that the pathways change depending on the type of β-lactam, this study demonstrates that the landscapes including fitness optima also change dramatically as the concentrations of antibiotics change. Based on these results we conclude that the presence of multiple concentrations of β-lactams in an environment result in many different adaptive landscapes through which pathways to nearly every genotype are available. Ultimately this may increase the diversity of genotypes in microbial populations.

  8. Public Libraries: Adapting to Change.

    ERIC Educational Resources Information Center

    Durrance, Joan; Van Fleet, Connie

    1992-01-01

    Reports on a study of changing trends in public libraries. Interviews with public library leaders identified five areas of changing emphasis: information technology, community needs, strategic planning, public relations and marketing, and funding. (seven references) (EA)

  9. Are conservation organizations configured for effective adaptation to global change?

    USGS Publications Warehouse

    Armsworth, Paul R.; Larson, Eric R.; Jackson, Stephen T.; Sax, Dov F.; Simonin, Paul W.; Blossey, Bernd; Green, Nancy; Lester, Liza; Klein, Mary L.; Ricketts, Taylor H.; Runge, Michael C.; Shaw, M. Rebecca

    2015-01-01

    Conservation organizations must adapt to respond to the ecological impacts of global change. Numerous changes to conservation actions (eg facilitated ecological transitions, managed relocations, or increased corridor development) have been recommended, but some institutional restructuring within organizations may also be needed. Here we discuss the capacity of conservation organizations to adapt to changing environmental conditions, focusing primarily on public agencies and nonprofits active in land protection and management in the US. After first reviewing how these organizations anticipate and detect impacts affecting target species and ecosystems, we then discuss whether they are sufficiently flexible to prepare and respond by reallocating funding, staff, or other resources. We raise new hypotheses about how the configuration of different organizations enables them to protect particular conservation targets and manage for particular biophysical changes that require coordinated management actions over different spatial and temporal scales. Finally, we provide a discussion resource to help conservation organizations assess their capacity to adapt.

  10. Climate variability and climate change vulnerability and adaptation. Workshop summary

    SciTech Connect

    Bhatti, N.; Cirillo, R.R.; Dixon, R.K.

    1995-12-31

    Representatives from fifteen countries met in Prague, Czech Republic, on September 11-15, 1995, to share results from the analysis of vulnerability and adaptation to global climate change. The workshop focused on the issues of global climate change and its impacts on various sectors of a national economy. The U.N. Framework Convention on Climate Change (FCCC), which has been signed by more than 150 governments worldwide, calls on signatory parties to develop and communicate measures they are implementing to respond to global climate change. An analysis of a country`s vulnerability to changes in the climate helps it identify suitable adaptation measures. These analyses are designed to determine the extent of the impacts of global climate change on sensitive sectors such as agricultural crops, forests, grasslands and livestock, water resources, and coastal areas. Once it is determined how vulnerable a country may be to climate change, it is possible to identify adaptation measures for ameliorating some or all of the effects.The objectives of the vulnerability and adaptation workshop were to: The objectives of the vulnerability and adaptation workshop were to: Provide an opportunity for countries to describe their study results; Encourage countries to learn from the experience of the more complete assessments and adjust their studies accordingly; Identify issues and analyses that require further investigation; and Summarize results and experiences for governmental and intergovernmental organizations.

  11. A Decision Analysis Tool for Climate Impacts, Adaptations, and Vulnerabilities

    SciTech Connect

    Omitaomu, Olufemi A; Parish, Esther S; Nugent, Philip J

    2016-01-01

    Climate change related extreme events (such as flooding, storms, and drought) are already impacting millions of people globally at a cost of billions of dollars annually. Hence, there are urgent needs for urban areas to develop adaptation strategies that will alleviate the impacts of these extreme events. However, lack of appropriate decision support tools that match local applications is limiting local planning efforts. In this paper, we present a quantitative analysis and optimization system with customized decision support modules built on geographic information system (GIS) platform to bridge this gap. This platform is called Urban Climate Adaptation Tool (Urban-CAT). For all Urban-CAT models, we divide a city into a grid with tens of thousands of cells; then compute a list of metrics for each cell from the GIS data. These metrics are used as independent variables to predict climate impacts, compute vulnerability score, and evaluate adaptation options. Overall, the Urban-CAT system has three layers: data layer (that contains spatial data, socio-economic and environmental data, and analytic data), middle layer (that handles data processing, model management, and GIS operation), and application layer (that provides climate impacts forecast, adaptation optimization, and site evaluation). The Urban-CAT platform can guide city and county governments in identifying and planning for effective climate change adaptation strategies.

  12. "Climate change impact on water resources - a challenge for IWRM". BRAHMATWINN - Twinning European and South Asian River Basins to enhance capacity and implement adaptive management approaches

    NASA Astrophysics Data System (ADS)

    Bartosch, A.; Pechstädt, J.; Müller Schmied, H.; Flügel, W.-A.

    2009-04-01

    BRAHMATWINN addresses climate change impact of the hydrology of two macro-scale river basins having headwaters in alpine mountain massifs. The project will elaborate on the consequential vulnerability of present IWRM and river basin management that have been persistent in these basins during the past decades and will develop tested approaches and technologies for adaptive IWRM and resilience. The overall objective of BRAHMATWINN is to enhance and improve capacity to carry out a harmonized integrated water resources management (IWRM) approach as addressed by the European Water Initiative (EWI) in headwater river systems of alpine mountain massifs in respect to impacts from likely climate change, and to transfer professional IWRM expertise, approaches and tools based on case studies carried out in twinning European and Asian river basins, the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB). Sustainable IWRM in river basins of such kind face common problems: (i) floods e.g. during spring melt or heavy storms and droughts during summer; (ii) competing water demands for agriculture, hydropower, rural, urban and industrial development, and the environment; (iii) pollution from point as well as diffuse sources; and (iv) socio-economic and legal issues related to water allocation. Besides those common topics both basins also differ in other issues requiring the adaptation of the IWRM tools; these are for example climate conditions, the density of monitoring network, political framework and trans-boundary conflicts. An IWRM has to consider all water-related issues like the securing of water supply for the population in sufficient quantity and quality, the protection of the ecological function of water bodies and it has to consider the probability of natural hazards like floods and droughts. Furthermore the resource water should be threatened in a way that the needs of future generations can be satisfied. Sustainable development is one of the

  13. Climate Change and Agriculture: Effects and Adaptation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This document is a synthesis of science literature on the effects of climate change on agriculture and issues associated with agricultural adaptation to climate change. Information is presented on how long-term changes in air temperatures, precipitation, and atmospheric levels of carbon dioxide wi...

  14. Beyond Adapting to Climate Change: Embedding Adaptation in Responses to Multiple Threats and Stresses

    SciTech Connect

    Wilbanks, Thomas J; Kates, Dr. Robert W.

    2010-01-01

    Climate change impacts are already being experienced in every region of the United States and every part of the world most severely in Arctic regions and adaptation is needed now. Although climate change adaptation research is still in its infancy, significant adaptation planning in the United States has already begun in a number of localities. This article seeks to broaden the adaptation effort by integrating it with broader frameworks of hazards research, sustainability science, and community and regional resilience. To extend the range of experience, we draw from ongoing case studies in the Southeastern United States and the environmental history of New Orleans to consider the multiple threats and stresses that all communities and regions experience. Embedding climate adaptation in responses to multiple threats and stresses helps us to understand climate change impacts, themselves often products of multiple stresses, to achieve community acceptance of needed adaptations as co-benefits of addressing multiple threats, and to mainstream the process of climate adaptation through the larger envelope of social relationships, communication channels, and broad-based awareness of needs for risk management that accompany community resilience.

  15. A Climate Change Adaptation Strategy for Management of ...

    EPA Pesticide Factsheets

    Sea level rise is causing shoreline erosion, increased coastal flooding, and marsh vulnerability to the impact of storms. Coastal marshes provide flood abatement, carbon and nutrient sequestration, water quality maintenance, and habitat for fish, shellfish, and wildlife, including species of concern, such as the saltmarsh sparrow (Ammodramus caudacutus). We present a climate change adaptation strategy (CCAS) adopted by scientific, management, and policy stakeholders for managing coastal marshes and enhancing system resiliency. A common adaptive management approach previously used for restoration projects was modified to identify climate-related vulnerabilities and plan climate change adaptive actions. As an example of implementation of the CCAS, we describe the stakeholder plans and management actions the US Fish and Wildlife Service and partners developed to build coastal resiliency in the Narrow River Estuary, RI, in the aftermath of Superstorm Sandy. When possible, an experimental BACI (before-after, control-impact) design, described as pre- and post-sampling at the impact site and one or more control sites, was incorporated into the climate change adaptation and implementation plans. Specific climate change adaptive actions and monitoring plans are described and include shoreline stabilization, restoring marsh drainage, increasing marsh elevation, and enabling upland marsh migration. The CCAS provides a framework and methodology for successfully managing coa

  16. VisAdapt: A Visualization Tool to Support Climate Change Adaptation.

    PubMed

    Johansson, Jimmy; Opach, Tomasz; Glaas, Erik; Neset, Tina-Simone; Navarra, Carlo; Linner, Bjorn-Ola; Rod, Jan Ketil

    2017-01-01

    The web-based visualization VisAdapt tool was developed to help laypeople in the Nordic countries assess how anticipated climate change will impact their homes. The tool guides users through a three-step visual process that helps them explore risks and identify adaptive actions specifically modified to their location and house type. This article walks through the tool's multistep, user-centered design process. Although VisAdapt's target end users are Nordic homeowners, the insights gained from the development process and the lessons learned from the project are applicable to a wide range of domains.

  17. Phytoplankton adapt to changing ocean environments.

    PubMed

    Irwin, Andrew J; Finkel, Zoe V; Müller-Karger, Frank E; Troccoli Ghinaglia, Luis

    2015-05-05

    Model projections indicate that climate change may dramatically restructure phytoplankton communities, with cascading consequences for marine food webs. It is currently not known whether evolutionary change is likely to be able to keep pace with the rate of climate change. For simplicity, and in the absence of evidence to the contrary, most model projections assume species have fixed environmental preferences and will not adapt to changing environmental conditions on the century scale. Using 15 y of observations from Station CARIACO (Carbon Retention in a Colored Ocean), we show that most of the dominant species from a marine phytoplankton community were able to adapt their realized niches to track average increases in water temperature and irradiance, but the majority of species exhibited a fixed niche for nitrate. We do not know the extent of this adaptive capacity, so we cannot conclude that phytoplankton will be able to adapt to the changes anticipated over the next century, but community ecosystem models can no longer assume that phytoplankton cannot adapt.

  18. The psychological impacts of global climate change.

    PubMed

    Doherty, Thomas J; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological impacts: direct (e.g., acute or traumatic effects of extreme weather events and a changed environment); indirect (e.g., threats to emotional well-being based on observation of impacts and concern or uncertainty about future risks); and psychosocial (e.g., chronic social and community effects of heat, drought, migrations, and climate-related conflicts, and postdisaster adjustment). Responses include providing psychological interventions in the wake of acute impacts and reducing the vulnerabilities contributing to their severity; promoting emotional resiliency and empowerment in the context of indirect impacts; and acting at systems and policy levels to address broad psychosocial impacts. The challenge of climate change calls for increased ecological literacy, a widened ethical responsibility, investigations into a range of psychological and social adaptations, and an allocation of resources and training to improve psychologists' competency in addressing climate change-related impacts.

  19. Development of Climate Change Adaptation Platform using Spatial Information

    NASA Astrophysics Data System (ADS)

    Lee, J.; Oh, K. Y.; Lee, M. J.; Han, W. J.

    2014-12-01

    Climate change adaptation has attracted growing attention with the recent extreme weather conditions that affect people around the world. More and more countries, including the Republic of Korea, have begun to hatch adaptation plan to resolve these matters of great concern. They all, meanwhile, have mentioned that it should come first to integrate climate information in all analysed areas. That's because climate information is not independently made through one source; that is to say, the climate information is connected one another in a complicated way. That is the reason why we have to promote integrated climate change adaptation platform before setting up climate change adaptation plan. Therefore, the large-scaled project has been actively launched and worked on. To date, we researched 620 literatures and interviewed 51 government organizations. Based on the results of the researches and interviews, we obtained 2,725 impacts about vulnerability assessment information such as Monitoring and Forecasting, Health, Disaster, Agriculture, Forest, Water Management, Ecosystem, Ocean/Fisheries, Industry/Energy. Among 2,725 impacts, 995 impacts are made into a database until now. This database is made up 3 sub categories like Climate-Exposure, Sensitivity, Adaptive capacity, presented by IPCC. Based on the constructed database, vulnerability assessments were carried out in order to evaluate climate change capacity of local governments all over the country. These assessments were conducted by using web-based vulnerability assessment tool which was newly developed through this project. These results have shown that, metropolitan areas like Seoul, Pusan, Inchon, and so on have high risks more than twice than rural areas. Acknowledgements: The authors appreciate the support that this study has received from "Development of integrated model for climate change impact and vulnerability assessment and strengthening the framework for model implementation ", an initiative of the

  20. Adapting agriculture to climate change: a review

    NASA Astrophysics Data System (ADS)

    Anwar, Muhuddin Rajin; Liu, De Li; Macadam, Ian; Kelly, Georgina

    2013-07-01

    The agricultural sector is highly vulnerable to future climate changes and climate variability, including increases in the incidence of extreme climate events. Changes in temperature and precipitation will result in changes in land and water regimes that will subsequently affect agricultural productivity. Given the gradual change of climate in the past, historically, farmers have adapted in an autonomous manner. However, with large and discrete climate change anticipated by the end of this century, planned and transformational changes will be needed. In light of these, the focus of this review is on farm-level and farmers responses to the challenges of climate change both spatially and over time. In this review of adapting agriculture to climate change, the nature, extent, and causes of climate change are analyzed and assessed. These provide the context for adapting agriculture to climate change. The review identifies the binding constraints to adaptation at the farm level. Four major priority areas are identified to relax these constraints, where new initiatives would be required, i.e., information generation and dissemination to enhance farm-level awareness, research and development (R&D) in agricultural technology, policy formulation that facilitates appropriate adaptation at the farm level, and strengthening partnerships among the relevant stakeholders. Forging partnerships among R&D providers, policy makers, extension agencies, and farmers would be at the heart of transformational adaptation to climate change at the farm level. In effecting this transformational change, sustained efforts would be needed for the attendant requirements of climate and weather forecasting and innovation, farmer's training, and further research to improve the quality of information, invention, and application in agriculture. The investment required for these would be highly significant. The review suggests a sequenced approach through grouping research initiatives into short

  1. Changes in adaptive capacity of Kenyan fishing communities

    NASA Astrophysics Data System (ADS)

    Cinner, Joshua E.; Huchery, Cindy; Hicks, Christina C.; Daw, Tim M.; Marshall, Nadine; Wamukota, Andrew; Allison, Edward H.

    2015-09-01

    Coastal communities are particularly at risk from the impacts of a changing climate. Building the capacity of coastal communities to cope with and recover from a changing environment is a critical means to reducing their vulnerability. Yet, few studies have quantitatively examined adaptive capacity in such communities. Here, we build on an emerging body of research examining adaptive capacity in natural resource-dependent communities in two important ways. We examine how nine indicators of adaptive capacity vary: among segments of Kenyan fishing communities; and over time. Socially disaggregated analyses found that the young, those who had migrated, and those who do not participate in decision-making seemed least prepared for adapting to change in these resource-dependent communities. These results highlight the most vulnerable segments of society when it comes to preparing for and adapting to change in resource-dependent communities. Comparisons through time showed that aspects of adaptive capacity seemed to have increased between 2008 and 2012 owing to higher observed community infrastructure and perceived availability of credit.

  2. Adaptation responses to climate change differ between global megacities

    NASA Astrophysics Data System (ADS)

    Georgeson, Lucien; Maslin, Mark; Poessinouw, Martyn; Howard, Steve

    2016-06-01

    Urban areas are increasingly at risk from climate change, with negative impacts predicted for human health, the economy and ecosystems. These risks require responses from cities to improve their resilience. Policymakers need to understand current adaptation spend to plan comprehensively and effectively. Through the measurement of spend in the newly defined `adaptation economy', we analyse current climate change adaptation efforts in ten megacities. In all cases, the adaptation economy remains a small part of the overall economy, representing a maximum of 0.33% of a city's gross domestic product (here referred to as GDPc). Differences in total spend are significant between cities in developed, emerging and developing countries, ranging from #15 million to #1,600 million. Comparing key subsectors, we demonstrate the differences in adaptation profiles. Developing cities have higher proportional spend on health and agriculture, whereas developed cities have higher spend on energy and water. Spend per capita and percentage of GDPc comparisons more clearly show disparities between cities. Developing country cities spend half the proportion of GDPc and significantly less per capita, suggesting that adaptation spend is driven by wealth rather than the number of vulnerable people. This indicates that current adaptation activities are insufficient in major population centres in developing and emerging economies.

  3. Impact of Pre-adapted HIV Transmission

    PubMed Central

    Carlson, Jonathan M.; Du, Victor Y.; Pfeifer, Nico; Bansal, Anju; Tan, Vincent Y.F.; Power, Karen; Brumme, Chanson J.; Kreimer, Anat; DeZiel, Charles E.; Fusi, Nicolo; Schaefer, Malinda; Brockman, Mark A.; Gilmour, Jill; Price, Matt A.; Kilembe, William; Haubrich, Richard; John, Mina; Mallal, Simon; Shapiro, Roger; Frater, John; Harrigan, P. Richard; Ndung’u, Thumbi; Allen, Susan; Heckerman, David; Sidney, John; Allen, Todd M.; Goulder, Philip J.R.; Brumme, Zabrina L.; Hunter, Eric; Goepfert, Paul A.

    2016-01-01

    Human Leukocyte Antigen class I (HLA) restricted CD8+ T lymphocyte (CTL) responses are critical to HIV-1 control. Although HIV can evade these responses, the longer-term impact of viral escape mutants remains unclear, since these variants can also reduce intrinsic viral fitness. To address this question, we here develop a metric to determine the degree of HIV adaptation to an HLA profile. We demonstrate that transmission of viruses pre-adapted to the HLA molecules expressed in the recipient is associated with impaired immunogenicity, elevated viral load and accelerated CD4 decline. Furthermore, the extent of pre-adaptation among circulating viruses explains much of the variation in outcomes attributed to expression of certain HLA alleles. Thus, viral pre-adaptation exploits “holes” in the immune response. Accounting for these holes may be critical for vaccine strategies seeking to elicit functional responses from viral variants, and to HIV cure strategies requiring broad CTL responses to achieve successful eradication of HIV reservoirs. PMID:27183217

  4. Data Bus Adapts to Changing Traffic Level

    NASA Technical Reports Server (NTRS)

    Lew, Eugene; Deruiter, John; Varga, Mike

    1987-01-01

    Access becomes timed when collisions threaten. Two-mode scheme used to grant terminals access to data bus. Causes bus to alternate between random accessibility and controlled accessibility to optimize performance and adapt to changing data-traffic conditions. Bus is part of 100-Mb/s optical-fiber packet data system.

  5. Climate change: believing and seeing implies adapting.

    PubMed

    Blennow, Kristina; Persson, Johannes; Tomé, Margarida; Hanewinkel, Marc

    2012-01-01

    Knowledge of factors that trigger human response to climate change is crucial for effective climate change policy communication. Climate change has been claimed to have low salience as a risk issue because it cannot be directly experienced. Still, personal factors such as strength of belief in local effects of climate change have been shown to correlate strongly with responses to climate change and there is a growing literature on the hypothesis that personal experience of climate change (and/or its effects) explains responses to climate change. Here we provide, using survey data from 845 private forest owners operating in a wide range of bio-climatic as well as economic-social-political structures in a latitudinal gradient across Europe, the first evidence that the personal strength of belief and perception of local effects of climate change, highly significantly explain human responses to climate change. A logistic regression model was fitted to the two variables, estimating expected probabilities ranging from 0.07 (SD ± 0.01) to 0.81 (SD ± 0.03) for self-reported adaptive measures taken. Adding socio-demographic variables improved the fit, estimating expected probabilities ranging from 0.022 (SD ± 0.008) to 0.91 (SD ± 0.02). We conclude that to explain and predict adaptation to climate change, the combination of personal experience and belief must be considered.

  6. Integrated Decision Support for Global Environmental Change Adaptation

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cantrell, S.; Higgins, G. J.; Marshall, J.; VanWijngaarden, F.

    2011-12-01

    Environmental changes are happening now that has caused concern in many parts of the world; particularly vulnerable are the countries and communities with limited resources and with natural environments that are more susceptible to climate change impacts. Global leaders are concerned about the observed phenomena and events such as Amazon deforestation, shifting monsoon patterns affecting agriculture in the mountain slopes of Peru, floods in Pakistan, water shortages in Middle East, droughts impacting water supplies and wildlife migration in Africa, and sea level rise impacts on low lying coastal communities in Bangladesh. These environmental changes are likely to get exacerbated as the temperatures rise, the weather and climate patterns change, and sea level rise continues. Large populations and billions of dollars of infrastructure could be affected. At Northrop Grumman, we have developed an integrated decision support framework for providing necessary information to stakeholders and planners to adapt to the impacts of climate variability and change at the regional and local levels. This integrated approach takes into account assimilation and exploitation of large and disparate weather and climate data sets, regional downscaling (dynamic and statistical), uncertainty quantification and reduction, and a synthesis of scientific data with demographic and economic data to generate actionable information for the stakeholders and decision makers. Utilizing a flexible service oriented architecture and state-of-the-art visualization techniques, this information can be delivered via tailored GIS portals to meet diverse set of user needs and expectations. This integrated approach can be applied to regional and local risk assessments, predictions and decadal projections, and proactive adaptation planning for vulnerable communities. In this paper we will describe this comprehensive decision support approach with selected applications and case studies to illustrate how this

  7. Adaptation Strategies for Global Environmental Change

    NASA Astrophysics Data System (ADS)

    Ojima, D. S.; Corell, R.

    2007-12-01

    The global environmental challenges society faces today are unheralded due to the pace at which human activities are affecting the earth system. The rates of energy consumption, nitrogen use and production, and water use increases each year leading to greater global environmental changes affecting warming of the earth system and loss of ecosystem services. The challenge we face today as a society is the manner and speed at which we can adapt to these changes affecting the ecosystem services we depend upon. Innovative strategies are needed to develop the adaptive management tools to integrate the sectors and science necessary to deal with the complexity of effects. Developing strategies to better guide decision making related to climate change trends into changing weather patterns at meaningful temporal and spatial scales are needed, observations and prognostic analyses of climate related triggers of threshold events in ecosystem dynamics, and transfer of knowledge between science, technology, and decision makers. These strategies need to better integrate science (physical, biological, and social knowledge), engineering, policy, and economics interests to create a framework to develop strategies for adaptation and mitigation to global change and to create bridges with institutions and organizations that deal with these issues as a governmental agency or private sector enterprise.

  8. Adapting environmental management to uncertain but inevitable change

    PubMed Central

    Nicol, Sam; Fuller, Richard A.; Iwamura, Takuya; Chadès, Iadine

    2015-01-01

    Implementation of adaptation actions to protect biodiversity is limited by uncertainty about the future. One reason for this is the fear of making the wrong decisions caused by the myriad future scenarios presented to decision-makers. We propose an adaptive management (AM) method for optimally managing a population under uncertain and changing habitat conditions. Our approach incorporates multiple future scenarios and continually learns the best management strategy from observations, even as conditions change. We demonstrate the performance of our AM approach by applying it to the spatial management of migratory shorebird habitats on the East Asian–Australasian flyway, predicted to be severely impacted by future sea-level rise. By accounting for non-stationary dynamics, our solution protects 25 000 more birds per year than the current best stationary approach. Our approach can be applied to many ecological systems that require efficient adaptation strategies for an uncertain future. PMID:25972463

  9. Managing climate change refugia for climate adaptation

    USGS Publications Warehouse

    Morelli, Toni; Jackson, Stephen T.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  10. Managing Climate Change Refugia for Climate Adaptation

    PubMed Central

    Daly, Christopher; Dobrowski, Solomon Z.; Dulen, Deanna M.; Ebersole, Joseph L.; Jackson, Stephen T.; Lundquist, Jessica D.; Millar, Constance I.; Maher, Sean P.; Monahan, William B.; Nydick, Koren R.; Redmond, Kelly T.; Sawyer, Sarah C.; Stock, Sarah; Beissinger, Steven R.

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change. PMID:27509088

  11. Managing Climate Change Refugia for Climate Adaptation.

    PubMed

    Morelli, Toni Lyn; Daly, Christopher; Dobrowski, Solomon Z; Dulen, Deanna M; Ebersole, Joseph L; Jackson, Stephen T; Lundquist, Jessica D; Millar, Constance I; Maher, Sean P; Monahan, William B; Nydick, Koren R; Redmond, Kelly T; Sawyer, Sarah C; Stock, Sarah; Beissinger, Steven R

    2016-01-01

    Refugia have long been studied from paleontological and biogeographical perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, here defined as areas relatively buffered from contemporary climate change over time that enable persistence of valued physical, ecological, and socio-cultural resources. We differentiate historical and contemporary views, and characterize physical and ecological processes that create and maintain climate change refugia. We then delineate how refugia can fit into existing decision support frameworks for climate adaptation and describe seven steps for managing them. Finally, we identify challenges and opportunities for operationalizing the concept of climate change refugia. Managing climate change refugia can be an important option for conservation in the face of ongoing climate change.

  12. Some guidelines for helping natural resources adapt to climate change

    USGS Publications Warehouse

    Baron, Jill S.; Julius, Susan Herrod; West, Jordan M.; Joyce, Linda A.; Blate, Geoffrey; Peterson, Charles H.; Palmer, Margaret; Keller, Brian D.; Kareiva, Peter; Scott, J. Michael; Griffith, Brad

    2008-01-01

    The changes occurring in mountain regions are an epitome of climate change. The dramatic shrinkage of major glaciers over the past century – and especially in the last 30 years – is one of several iconic images that have come to symbolize climate change. Climate creates the context for ecosystems, and climate variables strongly influence the structure, composition, and processes that characterize distinct ecosystems. Climate change, therefore, is having direct and indirect effects on species attributes, ecological interactions, and ecosystem processes. Because changes in the climate system will continue regardless of emissions mitigation, management strategies to enhance the resilience of ecosystems will become increasingly important. It is essential that management responses to climate change proceed using the best available science despite uncertainties associated with the future path of climate change, the response of ecosystems to climate effects, and the effects of management. Given these uncertainties, management adaptation will require flexibility to reflect our growing understanding of climate change impacts and management effectiveness.

  13. Managing Climate Change Refugia for Climate Adaptation ...

    EPA Pesticide Factsheets

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change refugia, locations that may be unusually buffered from climate change effects so as to increase persistence of valued resources. Here we distinguish between paleoecological and contemporary viewpoints, characterize physical and ecological processes that create and maintain climate change refugia, summarize the process of identifying and mapping them, and delineate how refugia can fit into the existing framework of natural resource management. We also suggest three primary courses of action at these sites: prioritization, protection, and propagation. Although not a panacea, managing climate change refugia can be an important adaptation option for conserving valuable resources in the face of ongoing and future climate change. “In a nutshell” (100 words) • Climate change refugia are defined as areas relatively buffered from contemporary climate change, enabling persistence of valued physical, ecological, and cultural resources. • Refugia can be incorporated as key components of a climate adaptation strategy because their prioritization by management may enable their associated resources to persist locally and eventually spread to future suitable habitat. • Steps for

  14. World agriculture and climate change: Economic adaptations. Agriculture economic report

    SciTech Connect

    Darwin, R.; Tsigas, M.; Lewandrowski, J.; Raneses, A.

    1995-06-01

    Recent studies suggest that global increases in temperature and changes in precipitation patterns during the next century will affect world agriculture. Because farmer adaptations, however, these changes are not likely to imperil world food production. Nevertheless, world production of all goods and services may decline if climate change is severe enough or if cropland expansion is hindered. Impacts are not equally distributed around the world. Agricultural production may increase in polar and alpine areas, but decrease in tropical and some other areas. In the United States, soil moisture losses may reduce agricultural production in the Corn Belt or Southeast.

  15. Competencies Demonstrated by Municipal Employees during Adaptation to Climate Change: A Pilot Study

    ERIC Educational Resources Information Center

    Pruneau, Diane; Kerry, Jackie; Blain, Sylvie; Evichnevetski, Evgueni; Deguire, Paul; Barbier, Pierre-Yves; Freiman, Viktor; Therrien, Jimmy; Langis, Joanne; Lang, Mathieu

    2013-01-01

    Since coastal communities are already subjected to the impacts of climate change, adaptation has become a necessity. This article presents competencies demonstrated by Canadian municipal employees during an adaptation process to sea level rise. To adapt, the participants demonstrated the following competencies: problem solving (highlighting…

  16. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  17. Cellular modes of adaptation to environmental changes

    NASA Astrophysics Data System (ADS)

    Huckle, William R.

    2001-10-01

    Eukaryotic cells are remarkably adaptable entities. Whether embedded in solid tissues or freely suspended in blood or other fluids, cells principally exist in an aqueous environment but maintain a hydrophobic barrier, the plasma membrane, across which changes in the environment are detected. Utilizing specialized macromolecular components, cells can sense changes in temperature, hydrostatic pressure, oxygen tension, shear, shape, osmolarity, pH, electrical potential, electromagnetic radiation, and the concentrations of specific chemical compounds. Modes of response are equally varied, ranging from rapid secretion of stored substances to irreversible functional differentiation to self-destruction. Recent research has elucidated many of the enzymatic and genetic programs that accomplish these adaptations and suggests novel targets for therapeutic intervention.

  18. Vulnerability assessment and risk level of ecosystem services for climate change impacts and adaptation in the High-Atlas mountain of Morocco

    NASA Astrophysics Data System (ADS)

    Messouli, Mohammed; Bounoua, Lahouari; Babqiqi, Abdelaziz; Ben Salem, Abdelkrim; Yacoubi-Khebiza, Mohammed

    2010-05-01

    Moroccan mountain biomes are considered endangered due to climate change that affects directly or indirectly different key features (biodiversity, snow cover, run-off processes, and water availability). The present article describes the strategy for achieving collaboration between natural and social scientists, stakeholders, decision-makers, and other societal groups, in order to carry out an integrated assessment of climate change in the High-Atlas Mountains of Morocco, with an emphasis on vulnerability and adaptation. We will use a robust statistical technique to dynamically downscale outputs from the IPCC climates models to the regional study area. Statistical downscaling provides a powerful method for deriving local-to-regional scale information on climate variables from large-scale climate model outputs. The SDSM will be used to produce the high resolution climate change scenarios from climate model outputs at low resolution. These data will be combined with socio-economic attributes such as the amount of water used for irrigation of agricultural lands, agricultural practices and phenology, cost of water delivery and non-market values of produced goods and services. This study, also analyzed spatial and temporal in land use/land cover changes (LUCC) in a typical watershed covering an area of 203 km2 by comparing classified satellite images from 1976, 1989 and 2000 coupled by GIS analyses and also investigated changes in the shape of land use patches over the period. The GIS-platform, which compiles gridded spatial and temporal information of environmental, socio-economic and biophysical data is used to map vulnerability assessment and risk levels over a wide region of Southern High-Atlas. For each scenario, we will derive and analyze near future (10-15 years) key climate indicators strongly related to sustainable management of ecosystem goods and services. Forest cover declined at an average rate of 0.35 ha per year due to timber extraction, cultivation

  19. CSIR Contribution to Defining Adaptive Capacity in the Context of Environmental Change

    DTIC Science & Technology

    2016-01-31

    including the Intergovernmental Panel on Climate Change (IPCC), stating that adaptation options exist in all sectors, but some adaptation responses...supports CSIR and ERDC research in adaptation to water-related impacts of climate change . The grant supports a comparison of historic human responses to...reducing the exposure to the hazard or reducing the vulnerability associated with the hazard. Whereas the reduction of the hazard ( climate change

  20. [Caffeine and adaptive changes in the circulatory system during pregnancy].

    PubMed

    Cendrowska-Pinkosz, Monika; Dworzański, Wojciech; Krauze, Magdalena; Burdan, Franciszek

    2017-01-23

    Adaptive physiological changes that occur in pregnant women can fluctuate with the intake of substances with proven, adverse biological effect on the body. Due to the fact that caffeine is one of the most chronically used xenobiotics, the impact of consuming caffeine on adaptive processes in the circulatory system of a pregnant women required a research. Many researchers emphasise its negative effect on the circulatory system of the mother and her offspring. However, in spite of years of observation, there is no clear answer to what extent dose or in what period of time the caffeine modulates the adaptive processes during pregnancy. Because of the potential risk the supply of caffeine during pregnancy should be subjected to considerable restrictions.

  1. Climate change impacts on forestry

    SciTech Connect

    Kirilenko, A.P.; Sedjo, R.A.

    2007-12-11

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO{sub 2} are likely to drive significant modifications in natural and modified forests. The authors' review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. They concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand.

  2. Climate change impacts on forestry

    PubMed Central

    Kirilenko, Andrei P.; Sedjo, Roger A.

    2007-01-01

    Changing temperature and precipitation pattern and increasing concentrations of atmospheric CO2 are likely to drive significant modifications in natural and modified forests. Our review is focused on recent publications that discuss the changes in commercial forestry, excluding the ecosystem functions of forests and nontimber forest products. We concentrate on potential direct and indirect impacts of climate change on forest industry, the projections of future trends in commercial forestry, the possible role of biofuels, and changes in supply and demand. PMID:18077403

  3. Assessing adaptation to the health risks of climate change: what guidance can existing frameworks provide?

    PubMed

    Füssel, Hans-Martin

    2008-02-01

    Climate change adaptation assessments aim at assisting policy-makers in reducing the health risks associated with climate change and variability. This paper identifies key characteristics of the climate-health relationship and of the adaptation decision problem that require consideration in climate change adaptation assessments. It then analyzes whether these characteristics are appropriately considered in existing guidelines for climate impact and adaptation assessment and in pertinent conceptual models from environmental epidemiology. The review finds three assessment guidelines based on a generalized risk management framework to be most useful for guiding adaptation assessments of human health. Since none of them adequately addresses all key challenges of the adaptation decision problem, actual adaptation assessments need to combine elements from different guidelines. Established conceptual models from environmental epidemiology are found to be of limited relevance for assessing and planning adaptation to climate change since the prevailing toxicological model of environmental health is not applicable to many climate-sensitive health risks.

  4. Climate change adaptation strategies for resource management and conservation planning.

    PubMed

    Lawler, Joshua J

    2009-04-01

    Recent rapid changes in the Earth's climate have altered ecological systems around the globe. Global warming has been linked to changes in physiology, phenology, species distributions, interspecific interactions, and disturbance regimes. Projected future climate change will undoubtedly result in even more dramatic shifts in the states of many ecosystems. These shifts will provide one of the largest challenges to natural resource managers and conservation planners. Managing natural resources and ecosystems in the face of uncertain climate requires new approaches. Here, the many adaptation strategies that have been proposed for managing natural systems in a changing climate are reviewed. Most of the recommended approaches are general principles and many are tools that managers are already using. What is new is a turning toward a more agile management perspective. To address climate change, managers will need to act over different spatial and temporal scales. The focus of restoration will need to shift from historic species assemblages to potential future ecosystem services. Active adaptive management based on potential future climate impact scenarios will need to be a part of everyday operations. And triage will likely become a critical option. Although many concepts and tools for addressing climate change have been proposed, key pieces of information are still missing. To successfully manage for climate change, a better understanding will be needed of which species and systems will likely be most affected by climate change, how to preserve and enhance the evolutionary capacity of species, how to implement effective adaptive management in new systems, and perhaps most importantly, in which situations and systems will the general adaptation strategies that have been proposed work and how can they be effectively applied.

  5. Adaptive robot path planning in changing environments

    SciTech Connect

    Chen, P.C.

    1994-08-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses past experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving products and waste-site remediation. The algorithm allows the robot to adapt to its environment by having two experience manipulation schemes: For minor environmental change, we use an object-attached experience abstraction scheme to increase the flexibility of the learned experience; for major environmental change, we use an on-demand experience repair scheme to retain those experiences that remain valid and useful. Using this algorithm, we can effectively reduce the overall robot planning time by re-using the computation result for one task to plan a path for another.

  6. Online participation in climate change adaptation: A case study of agricultural adaptation measures in Northern Italy.

    PubMed

    Bojovic, Dragana; Bonzanigo, Laura; Giupponi, Carlo; Maziotis, Alexandros

    2015-07-01

    The new EU strategy on adaptation to climate change suggests flexible and participatory approaches. Face-to-face contact, although it involves time-consuming procedures with a limited audience, has often been considered the most effective participatory approach. In recent years, however, there has been an increase in the visibility of different citizens' initiatives in the online world, which strengthens the possibility of greater citizen agency. This paper investigates whether the Internet can ensure efficient public participation with meaningful engagement in climate change adaptation. In elucidating issues regarding climate change adaptation, we developed an eParticipation framework to explore adaptation capacity of agriculture to climate change in Northern Italy. Farmers were mobilised using a pre-existing online network. First they took part in an online questionnaire for revealing their perceptions of and reactions to the impacts of ongoing changes in agriculture. We used these results to suggest a portfolio of policy measures and to set evaluation criteria. Farmers then evaluated these policy options, using a multi criteria analysis tool with a simple user-friendly interface. Our results showed that eParticipation is efficient: it supports a rapid data collection, while involving high number of participants. Moreover, we demonstrated that the digital divide is decreasingly an obstacle for using online spaces for public engagement. This research does not present eParticipation as a panacea. Rather, eParticipation was implemented with well-established participatory approaches to both validate the results and, consequently, communicate meaningful messages on local agricultural adaptation practices to regional decision-makers. Feedbacks from the regional decision-makers showed their interest in using eParticipation to improve communication with farmers in the future. We expect that, with further Internet proliferation, eParticipation may allow the inclusion of

  7. Probabilistic adaptation in changing microbial environments

    PubMed Central

    Springer, Michael

    2016-01-01

    Microbes growing in animal host environments face fluctuations that have elements of both randomness and predictability. In the mammalian gut, fluctuations in nutrient levels and other physiological parameters are structured by the host’s behavior, diet, health and microbiota composition. Microbial cells that can anticipate environmental fluctuations by exploiting this structure would likely gain a fitness advantage (by adapting their internal state in advance). We propose that the problem of adaptive growth in structured changing environments, such as the gut, can be viewed as probabilistic inference. We analyze environments that are “meta-changing”: where there are changes in the way the environment fluctuates, governed by a mechanism unobservable to cells. We develop a dynamic Bayesian model of these environments and show that a real-time inference algorithm (particle filtering) for this model can be used as a microbial growth strategy implementable in molecular circuits. The growth strategy suggested by our model outperforms heuristic strategies, and points to a class of algorithms that could support real-time probabilistic inference in natural or synthetic cellular circuits. PMID:27994963

  8. Adaptive path planning in changing environments

    SciTech Connect

    Chen, Pang C.

    1993-10-01

    Path planning needs to be fast to facilitate real-time robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To overcome this difficulty, we present an adaptive algorithm that uses previous experience to speed up future performance. It is a learning algorithm suitable for incrementally-changing environments such as those encountered in manufacturing of evolving products and waste-site remediation. The algorithm extends our previous work for stationary environments in two directions: For minor environmental change, an object-attached experience abstraction scheme is introduced to increase the flexibility of the learned experience; for major environmental change, an on-demand experience repair scheme is also introduced to retain those experiences that remain valid and useful. In addition to presenting this algorithm, we identify three other variants with different repair strategies. To compare these algorithms, we develop an analytic model to compare the costs and benefits of the corresponding repair processes. Using this model, we formalize the concept of incremental change, and prove the optimality of our proposed algorithm under such change. Empirically, we also characterize the performance curve of each variant, confirm our theoretical optimality results, and demonstrate the practicality of our algorithm.

  9. Adaptation to Impacts of Greenhouse Gases on the Ocean (Invited)

    NASA Astrophysics Data System (ADS)

    Caldeira, K.

    2010-12-01

    Greenhouse gases are producing changes in ocean temperature and circulation, and these changes are already adversely affecting marine biota. Furthermore, carbon dioxide is absorbed by the oceans from the atmosphere, and this too is already adversely affecting some marine ecosystems. And, of course, sea-level rise affects both what is above and below the waterline. Clearly, the most effective approach to limit the negative impacts of climate change and acidification on the marine environment is to greatly diminish the rate of greenhouse gas emissions. However, there are other measures that can be taken to limit some of the negative effects of these stresses in the marine environment. Marine ecosystems are subject to multiple stresses, including overfishing, pollution, and loss of coastal wetlands that often serve as nurseries for the open ocean. The adaptive capacity of marine environments can be improved by limiting these other stresses. If current carbon dioxide emission trends continue, for some cases (e.g., coral reefs), it is possible that no amount of reduction in other stresses can offset the increase in stresses posed by warming and acidification. For other cases (e.g., blue-water top-predator fisheries), better fisheries management might yield improved population health despite continued warming and acidification. In addition to reducing stresses so as to improve the adaptive capacity of marine ecosystems, there is also the issue of adaptation in human communities that depend on this changing marine environment. For example, communities that depend on services provided by coral reefs may need to locate alternative foundations for their economies. The fishery industry will need to adapt to changes in fish abundance, timing and location. Most of the things we would like to do to increase the adaptive capacity of marine ecosystems (e.g., reduce fishing pressure, reduce coastal pollution, preserve coastal wetlands) are things that would make sense to do even in

  10. The full spectrum of climate change adaptation: testing an analytical framework in Tyrolean mountain agriculture (Austria).

    PubMed

    Grüneis, Heidelinde; Penker, Marianne; Höferl, Karl-Michael

    2016-01-01

    Our scientific view on climate change adaptation (CCA) is unsatisfying in many ways: It is often dominated by a modernistic perspective of planned pro-active adaptation, with a selective focus on measures directly responding to climate change impacts and thus it is far from real-life conditions of those who are actually affected by climate change. Farmers have to simultaneously adapt to multiple changes. Therefore, also empirical climate change adaptation research needs a more integrative perspective on real-life climate change adaptations. This also has to consider "hidden" adaptations, which are not explicitly and directly motivated by CCA but actually contribute to the sector's adaptability to climate change. The aim of the present study is to develop and test an analytic framework that contributes to a broader understanding of CCA and to bridge the gap between scientific expertise and practical action. The framework distinguishes three types of CCA according to their climate related motivations: explicit adaptations, multi-purpose adaptations, and hidden adaptations. Although agriculture is among the sectors that are most affected by climate change, results from the case study of Tyrolean mountain agriculture show that climate change is ranked behind other more pressing "real-life-challenges" such as changing agricultural policies or market conditions. We identified numerous hidden adaptations which make a valuable contribution when dealing with climate change impacts. We conclude that these hidden adaptations have not only to be considered to get an integrative und more realistic view on CCA; they also provide a great opportunity for linking adaptation strategies to farmers' realities.

  11. Climate Change Adaptation Challenges and EO Business Opportunities

    NASA Astrophysics Data System (ADS)

    Lopez-Baeza, Ernesto; Mathieu, Pierre-Philippe; Bansal, Rahul; Del Rey, Maria; Mohamed, Ebrahim; Ruiz, Paz; Signes, Marcos

    Climate change is one of the defining challenges of the 21st century, but is no longer a matter of just scientific concern. It encompasses economics, sociology, global politics as well as national and local politics, law, health and environmental security, etc. The challenge of facing the impacts of climate change is often framed in terms of two potential paths that civilization might take: mitigation and adaptation. On the one hand, mitigation involves reducing the magnitude of climate change itself and is composed of emissions reductions and geoengineering. On the other hand and by contrast, adaptation involves efforts to limit our vulnerability to climate change impacts through various measures. It refers to our ability to adjust ourselves to climate change -including climate variability and extremes, to moderate potential damage, to take advantage of opportunities, or to cope with the consequences. Therefore, we are now faced with a double challenge: next to deep cuts in greenhouse gas emissions, we also need to adapt to the changing climate conditions. The use of satellites to monitor processes and trends at the global scale is essential in the context of climate change. Earth Observation has the potential to improve our predictive vision and to advance climate models. Space sciences and technologies constitute a significant issue in Education and Public Awareness of Science. Space missions face the probably largest scientific and industrial challenges of humanity. It is thus a fact that space drives innovation in the major breakthrough and cutting edge technological advances of mankind (techniques, processes, new products, … as well as in markets and business models). Technology and innovation is the basis of all space activities. Space agencies offer an entire range of space-related activities - from space science and environmental monitoring to industrial competitiveness and end-user services. More specifically, Earth Observation satellites have a unique

  12. Trade in water and commodities as adaptations to global change

    NASA Astrophysics Data System (ADS)

    Lammers, R. B.; Hertel, T. W.; Prousevitch, A.; Baldos, U. L. C.; Frolking, S. E.; Liu, J.; Grogan, D. S.

    2015-12-01

    The human capacity for altering the water cycle has been well documented and given the expected change due to population, income growth, biofuels, climate, and associated land use change, there remains great uncertainty in both the degree of increased pressure on land and water resources and in our ability to adapt to these changes. Alleviating regional shortages in water supply can be carried out in a spatial hierarchy through i) direct trade of water between all regions, ii) development of infrastructure to improve water availability within regions (e.g. impounding rivers), iii) via inter-basin hydrological transfer between neighboring regions and, iv) via virtual water trade. These adaptation strategies can be managed via market trade in water and commodities to identify those strategies most likely to be adopted. This work combines the physically-based University of New Hampshire Water Balance Model (WBM) with the macro-scale Purdue University Simplified International Model of agricultural Prices Land use and the Environment (SIMPLE) to explore the interaction of supply and demand for fresh water globally. In this work we use a newly developed grid cell-based version of SIMPLE to achieve a more direct connection between the two modeling paradigms of physically-based models with optimization-driven approaches characteristic of economic models. We explore questions related to the global and regional impact of water scarcity and water surplus on the ability of regions to adapt to future change. Allowing for a variety of adaptation strategies such as direct trade of water and expanding the built water infrastructure, as well as indirect trade in commodities, will reduce overall global water stress and, in some regions, significantly reduce their vulnerability to these future changes.

  13. Implications of simultaneously mitigating and adapting to climate change: Initial experiments using GCAM

    SciTech Connect

    Calvin, Katherine V.; Wise, Marshall A.; Clarke, Leon E.; Edmonds, James A.; Kyle, G. Page; Luckow, Patrick W.; Thomson, Allison M.

    2013-04-01

    Historically climate impacts research and climate mitigation research have been two separate and independent domains of inquiry. Climate mitigation research has investigated greenhouse gas emissions assuming that climate is unchanging. At the same time climate mitigation research has investigated the implications of climate change on the assumption that climate mitigation will proceed without affecting the degree of climate impacts or the ability of human and natural systems to adapt. The Global Change Assessment Model (GCAM) has largely been employed to study climate mitigation. Here we explore the development of capabilities to assess climate change impacts and adaptation within the GCAM model. These capabilities are being developed so as to be able to simultaneously reconcile the joint implications of climate change mitigation, impacts and adaptive potential. This is an important step forward in that it enables direct comparison between climate mitigation activities and climate impacts and the opportunity to understand interactions between the two.

  14. Selecting downscaled climate projections for water resource impacts and adaptation

    NASA Astrophysics Data System (ADS)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    variables - climate change signal in temporally and spatially integrated variables - has been carefully made with respect their relevance for water resource management. This work proposes a twofold assessment of this selection approach. First, a climate validation allows checking the selection response of more extreme climate variables critical for hydrological impacts as well as spatially distributed ones. Second, a hydrological validation allows checking the selection response of streamflow variables relevant for water resource management. Findings highlight that such validations may critically help preventing misinterpretations and misuses of impact model ensemble outputs for integrated adaptation purposes. This work is part of the GICC R2D2-2050 project (Risk, water Resources and sustainable Development of the Durance catchment in 2050) and the EU FP7 COMPLEX project (Knowledge Based Climate Mitigation Systems for a Low Carbon Economy). Christierson, B. v., Vidal, J.-P., & Wade, S. D. (2012) Using UKCP09 probabilistic climate information for UK water resource planning}. J. Hydrol., {424-425}, 48-67. doi: 10.1016/j.jhydrol.2011.12.020} Lafaysse, M.; Hingray, B.; Terray, L.; Mezghani, A. & Gailhard, J. (2014) Internal variability and model uncertainty components in future hydrometeorological projections: The Alpine Durance basin. Water Resour. Res., {50}, 3317-3341. doi: 10.1002/2013WR014897 Vidal, J.-P. & Hingray, B. (2014) A framework for identifying tailored subsets of climate projections for impact and adaptation studies. EGU2014-7851

  15. Widespread parallel population adaptation to climate variation across a radiation: implications for adaptation to climate change.

    PubMed

    Thorpe, Roger S; Barlow, Axel; Malhotra, Anita; Surget-Groba, Yann

    2015-03-01

    Global warming will impact species in a number of ways, and it is important to know the extent to which natural populations can adapt to anthropogenic climate change by natural selection. Parallel microevolution within separate species can demonstrate natural selection, but several studies of homoplasy have not yet revealed examples of widespread parallel evolution in a generic radiation. Taking into account primary phylogeographic divisions, we investigate numerous quantitative traits (size, shape, scalation, colour pattern and hue) in anole radiations from the mountainous Lesser Antillean islands. Adaptation to climatic differences can lead to very pronounced differences between spatially close populations with all studied traits showing some evidence of parallel evolution. Traits from shape, scalation, pattern and hue (particularly the latter) show widespread evolutionary parallels within these species in response to altitudinal climate variation greater than extreme anthropogenic climate change predicted for 2080. This gives strong evidence of the ability to adapt to climate variation by natural selection throughout this radiation. As anoles can evolve very rapidly, it suggests anthropogenic climate change is likely to be less of a conservation threat than other factors, such as habitat loss and invasive species, in this, Lesser Antillean, biodiversity hot spot.

  16. Assessment of the health impacts of climate change in Kiribati.

    PubMed

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-05-14

    Kiribati-a low-lying, resource-poor Pacific atoll nation-is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health.

  17. Assessment of the Health Impacts of Climate Change in Kiribati

    PubMed Central

    McIver, Lachlan; Woodward, Alistair; Davies, Seren; Tibwe, Tebikau; Iddings, Steven

    2014-01-01

    Kiribati—a low-lying, resource-poor Pacific atoll nation—is one of the most vulnerable countries in the World to the impacts of climate change, including the likely detrimental effects on human health. We describe the preparation of a climate change and health adaptation plan for Kiribati carried out by the World Health Organization and the Kiribati Ministry of Health and Medical Services, including an assessment of risks to health, sources of vulnerability and suggestions for highest priority adaptation responses. This paper identifies advantages and disadvantages in the process that was followed, lays out a future direction of climate change and health adaptation work in Kiribati, and proposes lessons that may be applicable to other small, developing island nations as they prepare for and adapt to the impacts of climate change on health. PMID:24830452

  18. Adapting to climate change or to stakeholders?

    NASA Astrophysics Data System (ADS)

    Bruggeman, Adriana; Camera, Corrado; Giannakis, Elias; Zoumides, Christos; Eliades, Marinos; Djuma, Hakan

    2015-04-01

    The Tamassos dam protects the Pedieos watershed in Cyprus against floods. The waterbody behind the dam serves as a new biodiversity and recreational resource. Water from the dam is also used for domestic water supply for nearby rural communities. However, this peaceful picture is threatened by climate change. Regional Climate Models indicate a drier and warmer Pedieos watershed in the near future (2020-2050). Interviews and meetings with a wide variety of stakeholders, for the development of a climate change adaptation plan for the Pedieos watershed, has created even more uncertainties than climate change. Environmental-minded stakeholders suggested to demolish the dam and to return the watershed to its natural state and the water to downstream ecosystems. Agricultural producers would also like to see the return of stream flows, such that they can divert or impound the water for groundwater recharge and subsequent irrigation. Community leaders similarly prefer stream flows for the recharge of the alluvial river aquifers, to allow them to abstract more groundwater for community water supply. Downstream authorities have different concerns. Here the usually dry river bed serves as the drainage of the urban agglomeration of the capital of Nicosia; and has been identified as an area of potentially significant flood risk for the European Flood Directive (2007/60/EC). The largest storm event in the upstream area in the recent past occurred in January 1989, before the construction of the dam. The runoff totalled 3.1 million m3 in one day and 4.4 million m3 in two days. Thus, part of the runoff would have flown straight through the spillway of the 2.8 million m3 dam reservoir. Average annual precipitation in the highly sloping, forested upstream area is 500 mm, while stream flows average 4.7 million m3/yr (1981-2001). This results in an average runoff coefficient of 19% for the 45-km2 upstream area. Past observations, climate change projections and hydrologic models

  19. Burden Sharing with Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.

    2014-12-01

    Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.

  20. Development of drought and/or heat tolerant crop varieties, an adaptation approach to mitigate impact of climate change on agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As global climate change becomes inevitable, the sustainability of agricultural production in US and worldwide faces serious threat from extreme weather conditions, such as drought and high temperature (heat wave). Development of drought and/or heat tolerant crop varieties is one of the most effecti...

  1. Community-Based Adaptation To A Changing Climate

    EPA Pesticide Factsheets

    This resource discusses how climate change is affecting community services, presents sample adaptation strategies, gives examples of successful community adaptation actions, and provides links to other key federal resources.

  2. Facilitating Adaptation to Changing Storm Surge Patterns in Western Alaska.

    NASA Astrophysics Data System (ADS)

    Murphy, K. A.; Holman, A.; Reynolds, J.

    2014-12-01

    Coastal regions of North America are already experiencing the effects of climate change and the consequences of new storm patterns and sea level rise. These climate change effects are even more pronounced in western Alaska where the loss of sea ice in early winter and spring are exposing the coast to powerful winter storms that are visibly altering the landscape, putting coastal communities at risk, and are likely impacting important coastal wildlife habitat in ways we don't yet understand. The Western Alaska Landscape Conservation Cooperative has funded a suite of projects to improve the information available to assist managers and communities to adapt changes in coastal storms and their impacts. Projects range from modeling tide, wave and storm surge patters, to ShoreZone and NHD mapping, to bathymetry mapping, community vulnerability assessments and risks to important wildlife habitat. This group of diverse projects has helped stimulate momentum among partners which will lead to better tools for communities to respond to dangerous storms. For example, the State of Alaska and NOAA are working together to compile a series of community-scale maps that utilize best-available datasets to streamline communication about forecasted storm surges, local elevations and potentially impacted infrastructure during storm events that may lead to coastal flooding.

  3. Climate change refugia as a tool for climate adaptation

    EPA Science Inventory

    Climate change refugia, areas relatively buffered from contemporary climate change so as to increase persistence of valued physical, ecological, and cultural resources, are considered as potential adaptation options in the face of anthropogenic climate change. In a collaboration ...

  4. Adapting wheat in Europe for climate change.

    PubMed

    Semenov, M A; Stratonovitch, P; Alghabari, F; Gooding, M J

    2014-05-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.

  5. Adapting wheat in Europe for climate change

    PubMed Central

    Semenov, M.A.; Stratonovitch, P.; Alghabari, F.; Gooding, M.J.

    2014-01-01

    Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat. PMID:24882934

  6. Conceptual Model of Climate Change Impacts at LANL

    SciTech Connect

    Dewart, Jean Marie

    2016-05-17

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual model of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).

  7. Development of adaptive IWRM options for climate change mitigation and adaptation

    NASA Astrophysics Data System (ADS)

    Flügel, W.-A.

    2011-04-01

    Adaptive Integrated Water Resources Management (IWRM) options related to the impacts of climate change in the twinning basins of the Upper Danube River Basin (UDRB) and the Upper Brahmaputra River Basin (UBRB) are developed based on the results obtained in the different work packages of the BRAHMATWINN project. They have been described and discussed in Chapter 2 till Chapter 9 and the paper is referring to and is integrating these findings with respect to their application and interpretation for the development of adaptive IWRM options addressing impacts of climate change in river basins. The data and information related to the results discussed in Chapter 2 till 8 have been input to the RBIS as a central component of the IWRMS (Chapter 9). Meanwhile the UDRB has been analysed with respect to IWRM and climate change impacts by various projects, i.e. the GLOWA-Danube BMBF funded project (GLOWA Danube, 2009; Mauser and Ludwig, 2002) the UBRB has not been studied so far in a similar way as it was done in the BRAHMATWINN project. Therefore the IWRM option development is focussing on the UBRB but the methodology presented can be applied for the UDRB and other river basins as well. Data presented and analysed in this chapter have been elaborated by the BRAHMATWINN project partners and are published in the project deliverable reports available from the project homepage http://www.brahmatwinn.uni-jena.de/index.php?id=5311&L=2.

  8. Beyond Reduction: Climate Change Adaptation Planning for Universities and Colleges

    ERIC Educational Resources Information Center

    Owen, Rochelle; Fisher, Erica; McKenzie, Kyle

    2013-01-01

    Purpose: The purpose of this paper is to outline a unique six-step process for the inclusion of climate change adaption goals and strategies in a University Climate Change Plan. Design/methodology/approach: A mixed-method approach was used to gather data on campus climate change vulnerabilities and adaption strategies. A literature review…

  9. A National Climate Change Adaptation Network for Protecting Water Security

    NASA Astrophysics Data System (ADS)

    Weaver, A.; Sauchyn, D.; Byrne, J. M.

    2009-12-01

    Water security and resource-dependent community-survival are being increasingly challenged as a consequence of climate change, and it is urgent that we plan now for the security of our water supplies which support our lives and livelihoods. However, the range of impacts of climate change on water availability, and the consequent environmental and human adaptations that are required, is so complex and serious that it will take the combined work of natural, health and social scientists working with industries and communities to solve them. Networks are needed that will identify crucial water issues under climate change at a range of scales in order to provide regionally-sensitive, solutions-oriented research and adaptation. We suggest national and supra-national water availability and community sustainability issues must be addressed by multidisciplinary research and adaptation networks. The work must be driven by a bottom-up research paradigm — science in the service of community and governance. We suggest that interdisciplinary teams of researchers, in partnership with community decision makers and local industries, are the best means to develop solutions as communities attempt to address future water demands, protect their homes from infrastructure damage, and meet their food, drinking water, and other essential resource requirements. The intention is to cover: the impact of climate change on Canadian natural resources, both marine and terrestrial; issues of long-term sustainability and resilience in human communities and the environments in which they are embedded; the making and moving of knowledge, be that between members of Indigenous and non-Indigenous communities, researchers of different disciplines, communities, industry, policymakers and the academy and the crucial involvement of the various orders of government in the response to water problems, under conditions of heightened uncertainty. Such an adaptation network must include a national

  10. Characterizing Uncertainty for Regional Climate Change Mitigation and Adaptation Decisions

    SciTech Connect

    Unwin, Stephen D.; Moss, Richard H.; Rice, Jennie S.; Scott, Michael J.

    2011-09-30

    This white paper describes the results of new research to develop an uncertainty characterization process to help address the challenges of regional climate change mitigation and adaptation decisions.

  11. Detection and Attribution of Anthropogenic Climate Change Impacts

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia; Neofotis, Peter

    2013-01-01

    Human-influenced climate change is an observed phenomenon affecting physical and biological systems across the globe. The majority of observed impacts are related to temperature changes and are located in the northern high- and midlatitudes. However, new evidence is emerging that demonstrates that impacts are related to precipitation changes as well as temperature, and that climate change is impacting systems and sectors beyond the Northern Hemisphere. In this paper, we highlight some of this new evidence-focusing on regions and sectors that the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) noted as under-represented-in the context of observed climate change impacts, direct and indirect drivers of change (including carbon dioxide itself), and methods of detection. We also present methods and studies attributing observed impacts to anthropogenic forcing. We argue that the expansion of methods of detection (in terms of a broader array of climate variables and data sources, inclusion of the major modes of climate variability, and incorporation of other drivers of change) is key to discerning the climate sensitivities of sectors and systems in regions where the impacts of climate change currently remain elusive. Attributing such changes to human forcing of the climate system, where possible, is important for development of effective mitigation and adaptation. Current challenges in documenting adaptation and the role of indigenous knowledge in detection and attribution are described.

  12. Styles of Adaptation: The Impact of Frequency and Valence of Adaptation on Preventing Substance Use

    ERIC Educational Resources Information Center

    Hansen, William B.; Pankratz, Melinda M.; Dusenbury, Linda; Giles, Steven M.; Bishop, Dana C.; Albritton, Jordan; Albritton, Lauren P.; Strack, Joann

    2013-01-01

    Purpose: To be effective, evidence-based programs should be delivered as prescribed. This suggests that adaptations that deviate from intervention goals may limit a program's effectiveness. This study aims to examine the impact that number and quality of adaptations have on substance use outcomes. Design/methodology/approach: The authors examined…

  13. Transitional states in marine fisheries: adapting to predicted global change.

    PubMed

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  14. Weather Extremes, Climate Change and Adaptive Governance

    NASA Astrophysics Data System (ADS)

    Veland, S.; Lynch, A. H.

    2014-12-01

    Human societies have become a geologic agent of change, and with this is an increasing awareness of the environment risks that confront human activities and values. More frequent and extreme hydroclimate events, anomalous tropical cyclone seasons, heat waves and droughts have all been documented, and many rigorously attributed to fossil fuel emissions (e.g. DeGaetano 2009; Hoyos et al. 2006). These extremes, however, do not register themselves in the abstract - they occur in particular places, affecting particular populations and ecosystems (Turner et al. 2003). This can be considered to present a policy window to decrease vulnerability and enhance emergency management. However, the asymmetrical character of these events may lead some to treat remote areas or disenfranchised populations as capable of absorbing the environmental damage attributable to the collective behavior of those residing in wealthy, populous, industrialized societies (Young 1989). Sound policies for adaptation to changing extremes must take into account the multiple interests and resource constraints for the populations affected and their broader contexts. Minimizing vulnerability to weather extremes is only one of many interests in human societies, and as noted, this interest competes with the others for limited time, attention, funds and other resources. Progress in reducing vulnerability also depends on policy that integrates the best available local and scientific knowledge and experience elsewhere. This improves the chance that each policy will succeed, but there are no guarantees. Each policy must be recognized as a matter of trial and error to some extent; surprises are inevitable. Thus each policy should be designed to fail gracefully if it fails, to learn from the experience, and to leave resources sufficient to implement the lessons learned. Overall policy processes must be quasi-evolutionary, avoiding replication without modification of failed policies and building on the successes

  15. Estimating the Importance of Private Adaptation to Climate Change in Agriculture: A Review of Empirical Methods

    NASA Astrophysics Data System (ADS)

    Moore, F.; Burke, M.

    2015-12-01

    A wide range of studies using a variety of methods strongly suggest that climate change will have a negative impact on agricultural production in many areas. Farmers though should be able to learn about a changing climate and to adjust what they grow and how they grow it in order to reduce these negative impacts. However, it remains unclear how effective these private (autonomous) adaptations will be, or how quickly they will be adopted. Constraining the uncertainty on this adaptation is important for understanding the impacts of climate change on agriculture. Here we review a number of empirical methods that have been proposed for understanding the rate and effectiveness of private adaptation to climate change. We compare these methods using data on agricultural yields in the United States and western Europe.

  16. An Evidence-Based Public Health Approach to Climate Change Adaptation

    PubMed Central

    Eidson, Millicent; Tlumak, Jennifer E.; Raab, Kristin K.; Luber, George

    2014-01-01

    Background: Public health is committed to evidence-based practice, yet there has been minimal discussion of how to apply an evidence-based practice framework to climate change adaptation. Objectives: Our goal was to review the literature on evidence-based public health (EBPH), to determine whether it can be applied to climate change adaptation, and to consider how emphasizing evidence-based practice may influence research and practice decisions related to public health adaptation to climate change. Methods: We conducted a substantive review of EBPH, identified a consensus EBPH framework, and modified it to support an EBPH approach to climate change adaptation. We applied the framework to an example and considered implications for stakeholders. Discussion: A modified EBPH framework can accommodate the wide range of exposures, outcomes, and modes of inquiry associated with climate change adaptation and the variety of settings in which adaptation activities will be pursued. Several factors currently limit application of the framework, including a lack of higher-level evidence of intervention efficacy and a lack of guidelines for reporting climate change health impact projections. To enhance the evidence base, there must be increased attention to designing, evaluating, and reporting adaptation interventions; standardized health impact projection reporting; and increased attention to knowledge translation. This approach has implications for funders, researchers, journal editors, practitioners, and policy makers. Conclusions: The current approach to EBPH can, with modifications, support climate change adaptation activities, but there is little evidence regarding interventions and knowledge translation, and guidelines for projecting health impacts are lacking. Realizing the goal of an evidence-based approach will require systematic, coordinated efforts among various stakeholders. Citation: Hess JJ, Eidson M, Tlumak JE, Raab KK, Luber G. 2014. An evidence-based public

  17. Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    PubMed Central

    Hannah, Lee; Ikegami, Makihiko; Hole, David G.; Seo, Changwan; Butchart, Stuart H. M.; Peterson, A. Townsend; Roehrdanz, Patrick R.

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services. PMID:23991125

  18. Global climate change adaptation priorities for biodiversity and food security.

    PubMed

    Hannah, Lee; Ikegami, Makihiko; Hole, David G; Seo, Changwan; Butchart, Stuart H M; Peterson, A Townsend; Roehrdanz, Patrick R

    2013-01-01

    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services.

  19. Delivering organisational adaptation through legislative mechanisms: Evidence from the Adaptation Reporting Power (Climate Change Act 2008).

    PubMed

    Jude, S R; Drew, G H; Pollard, S J T; Rocks, S A; Jenkinson, K; Lamb, R

    2017-01-01

    There is increasing recognition that organisations, particularly in key infrastructure sectors, are potentially vulnerable to climate change and extreme weather events, and require organisational responses to ensure they are resilient and adaptive. However, detailed evidence of how adaptation is facilitated, implemented and reported, particularly through legislative mechanisms is lacking. The United Kingdom Climate Change Act (2008), introduced the Adaptation Reporting Power, enabling the Government to direct so-called reporting authorities to report their climate change risks and adaptation plans. We describe the authors' unique role and experience supporting the Department for Environment, Food and Rural Affairs (Defra) during the Adaptation Reporting Power's first round. An evaluation framework, used to review the adaptation reports, is presented alongside evidence on how the process provides new insights into adaptation activities and triggered organisational change in 78% of reporting authorities, including the embedding of climate risk and adaptation issues. The role of legislative mechanisms and risk-based approaches in driving and delivering adaptation is discussed alongside future research needs, including the development of organisational maturity models to determine resilient and well adapting organisations. The Adaptation Reporting Power process provides a basis for similar initiatives in other countries, although a clear engagement strategy to ensure buy-in to the process and research on its long-term legacy, including the potential merits of voluntary approaches, is required.

  20. Adapting Dam and Reservoir Design and Operations to Climate Change

    NASA Astrophysics Data System (ADS)

    Roy, René; Braun, Marco; Chaumont, Diane

    2013-04-01

    In order to identify the potential initiatives that the dam, reservoir and water resources systems owners and operators may undertake to cope with climate change issues, it is essential to determine the current state of knowledge of their impacts on hydrological variables at regional and local scales. Future climate scenarios derived from climate model simulations can be combined with operational hydrological modeling tools and historical observations to evaluate realistic pathways of future hydrological conditions for specific drainage basins. In the case of hydropower production those changes in hydrological conditions may have significant economic impacts. For over a decade the state owned hydropower producer Hydro Québec has been exploring the physical impacts on their watersheds by relying on climate services in collaboration with Ouranos, a consortium on regional climatology and adaptation to climate change. Previous climate change impact analysis had been including different sources of climate simulation data, explored different post-processing approaches and used hydrological impact models. At a new stage of this collaboration the operational management of Hydro Quebec aspired to carry out a cost-benefit analysis of considering climate change in the refactoring of hydro-power installations. In the process of the project not only a set of scenarios of future runoff regimes had to be defined to support long term planning decisions of a dam and reservoir operator, but also the significance of uncertainties needed to be communicated and made understood. We provide insight into a case study that took some unexpected turns and leaps by bringing together climate scientists, hydrologists and hydro-power operation managers. The study includes the selection of appropriate climate scenarios, the correction of biases, the application of hydrological models and the assessment of uncertainties. However, it turned out that communicating the science properly and

  1. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans

    PubMed Central

    Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S.

    2016-01-01

    Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago’s are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others. PMID:27110801

  2. Health Aspects of Climate Change in Cities with Mediterranean Climate, and Local Adaptation Plans.

    PubMed

    Paz, Shlomit; Negev, Maya; Clermont, Alexandra; Green, Manfred S

    2016-04-21

    Cities with a Mediterranean-type climate (Med-cities) are particularly susceptible to health risks from climate change since they are located in biogeographical hot-spots that experience some of the strongest effects of the changing climate. The study aims to highlight health impacts of climate change in Med-cities, analyze local climate adaptation plans and make adaptation policy recommendations for the Med-city level. We identified five Med-cities with a climate change adaptation plan: Adelaide, Barcelona, Cape Town, Los Angeles and Santiago. Beyond their similar Med-climate features (although Santiago's are slightly different), the cities have different socio-economic characteristics in various aspects. We analyzed each plan according to how it addresses climate change-related drivers of health impacts among city dwellers. For each driver, we identified the types of policy adaptation tools that address it in the urban climate adaptation plans. The surveyed cities address most of the fundamental climate change-related drivers of risks to human health, including rising temperatures, flooding and drought, but the policy measures to reduce negative impacts vary across cities. We suggest recommendations for Med-cities in various aspects, depending on their local needs and vulnerability challenges: assessment of health risks, extreme events management and long-term adaptation, among others.

  3. Adapting natural resource management to climate change: The South Central Oregon and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2015-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and one national park in south central Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  4. Adapting Natural Resource Management to Climate Change: The Blue Mountains and Northern Rockies Adaptation Partnerships

    NASA Astrophysics Data System (ADS)

    Halofsky, J.; Peterson, D. L.

    2014-12-01

    Concrete ways to adapt to climate change are needed to help natural resource managers take the first steps to incorporate climate change into management and take advantage of opportunities to balance the negative effects of climate change. We recently initiated two science-management climate change adaptation partnerships, one with three national forests and other key stakeholders in the Blue Mountains region of northeastern Oregon, and the other with 16 national forests, three national parks and other stakeholders in the northern Rockies region. Goals of both partnerships were to: (1) synthesize published information and data to assess the exposure, sensitivity, and adaptive capacity of key resource areas, including water use, infrastructure, fisheries, and vegetation and disturbance; (2) develop science-based adaptation strategies and tactics that will help to mitigate the negative effects of climate change and assist the transition of biological systems and management to a warmer climate; (3) ensure adaptation strategies and tactics are incorporated into relevant planning documents; and (4) foster an enduring partnership to facilitate ongoing dialogue and activities related to climate change in the partnerships regions. After an initial vulnerability assessment by agency and university scientists and local resource specialists, adaptation strategies and tactics were developed in a series of scientist-manager workshops. The final vulnerability assessments and adaptation actions are incorporated in technical reports. The partnerships produced concrete adaptation options for national forest and other natural resource managers and illustrated the utility of place-based vulnerability assessments and scientist-manager workshops in adapting to climate change.

  5. An adaptability limit to climate change due to heat stress

    PubMed Central

    Sherwood, Steven C.; Huber, Matthew

    2010-01-01

    Despite the uncertainty in future climate-change impacts, it is often assumed that humans would be able to adapt to any possible warming. Here we argue that heat stress imposes a robust upper limit to such adaptation. Peak heat stress, quantified by the wet-bulb temperature TW, is surprisingly similar across diverse climates today. TW never exceeds 31 °C. Any exceedence of 35 °C for extended periods should induce hyperthermia in humans and other mammals, as dissipation of metabolic heat becomes impossible. While this never happens now, it would begin to occur with global-mean warming of about 7 °C, calling the habitability of some regions into question. With 11–12 °C warming, such regions would spread to encompass the majority of the human population as currently distributed. Eventual warmings of 12 °C are possible from fossil fuel burning. One implication is that recent estimates of the costs of unmitigated climate change are too low unless the range of possible warming can somehow be narrowed. Heat stress also may help explain trends in the mammalian fossil record. PMID:20439769

  6. Adapting Scotland’s forests to climate change using an action expiration chart

    NASA Astrophysics Data System (ADS)

    Petr, M.; Boerboom, L. G. J.; Ray, D.; van der Veen, A.

    2015-10-01

    The inherent uncertainty of climate change impacts is one of the main challenges for adaptation in environmental management. The lack of knowledge about climate impacts on ecosystem services at high spatial and temporal resolution limits when and what adaptation measures should be taken. We addressed these limits by assessing four ecosystem services—forest production, tree growth, sequestered carbon, and tourism potential—under drought or climate change. To support adaptation, we adapted the existing concept of ‘dynamic adaptive policy pathways’ for forest management by developing an action expiration chart, which helps to define expiry dates for forestry actions using ecosystem services delivery thresholds. We assessed services for Sitka spruce, Scots pine, and pedunculate oak on the National Forest Estate in Scotland for the next 80 years using probabilistic climate change data from the UKCP09 weather generator. Findings showed that drought would have an overall long-term negative impact on the provision of three services with a decrease up to 41%, whereas climate change has a positive impact on tourism potential with up to five times higher frequency of good climate conditions during summer months. Furthermore, the results highlighted when forestry actions, mainly in the lowlands, will reach their environmental limits during the next 80 years. Our findings reduce knowledge uncertainty and highlight when and where adaptation should be implemented to ensure the provision of future forest ecosystem services in Scotland.

  7. Farm Level Adaptation to Climate Change: The Case of Farmer's in the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Gebrehiwot, Tagel; van der Veen, Anne

    2013-07-01

    In Ethiopia, climate change and associated risks are expected to have serious consequences for agriculture and food security. This in turn will seriously impact on the welfare of the people, particularly the rural farmers whose main livelihood depends on rain-fed agriculture. The level of impacts will mainly depend on the awareness and the level of adaptation in response to the changing climate. It is thus important to understand the role of the different factors that influence farmers' adaptation to ensure the development of appropriate policy measures and the design of successful development projects. This study examines farmers' perception of change in climatic attributes and the factors that influence farmers' choice of adaptation measures to climate change and variability. The estimated results from the climate change adaptation models indicate that level of education, age and wealth of the head of the household; access to credit and agricultural services; information on climate, and temperature all influence farmers' choices of adaptation. Moreover, lack of information on adaptation measures and lack of finance are seen as the main factors inhibiting adaptation to climate change. These conclusions were obtained with a Multinomial logit model, employing the results from a survey of 400 smallholder farmers in three districts in Tigray, northern Ethiopian.

  8. Public Health Adaptation to Climate Change in Canadian Jurisdictions

    PubMed Central

    Austin, Stephanie E.; Ford, James D.; Berrang-Ford, Lea; Araos, Malcolm; Parker, Stephen; Fleury, Manon D.

    2015-01-01

    Climate change poses numerous risks to the health of Canadians. Extreme weather events, poor air quality, and food insecurity in northern regions are likely to increase along with the increasing incidence and range of infectious diseases. In this study we identify and characterize Canadian federal, provincial, territorial and municipal adaptation to these health risks based on publically available information. Federal health adaptation initiatives emphasize capacity building and gathering information to address general health, infectious disease and heat-related risks. Provincial and territorial adaptation is varied. Quebec is a leader in climate change adaptation, having a notably higher number of adaptation initiatives reported, addressing almost all risks posed by climate change in the province, and having implemented various adaptation types. Meanwhile, all other Canadian provinces and territories are in the early stages of health adaptation. Based on publically available information, reported adaptation also varies greatly by municipality. The six sampled Canadian regional health authorities (or equivalent) are not reporting any adaptation initiatives. We also find little relationship between the number of initiatives reported in the six sampled municipalities and their provinces, suggesting that municipalities are adapting (or not adapting) autonomously. PMID:25588156

  9. Transient scenarios for robust climate change adaptation illustrated for water management in The Netherlands

    NASA Astrophysics Data System (ADS)

    Haasnoot, M.; Schellekens, J.; Beersma, J. J.; Middelkoop, H.; Kwadijk, J. C. J.

    2015-10-01

    Climate scenarios are used to explore impacts of possible future climates and to assess the robustness of adaptation actions across a range of futures. Time-dependent climate scenarios are commonly used in mitigation studies. However, despite the dynamic nature of adaptation, most scenarios for local or regional decision making on climate adaptation are static ‘endpoint’ projections. This paper describes the development and use of transient (time-dependent) scenarios by means of a case on water management in the Netherlands. Relevant boundary conditions (sea level, precipitation and evaporation) were constructed by generating an ensemble of synthetic time-series with a rainfall generator and a transient delta change method. Climate change impacted river flows were then generated with a hydrological simulation model for the Rhine basin. The transient scenarios were applied in model simulations and game experiments. We argue that there are at least three important assets of using transient scenarios for supporting robust climate adaptation: (1) raise awareness about (a) the implications of climate variability and climate change for decision making and (b) the difficulty of finding proof of climate change in relevant variables for water management; (2) assessment of when to adapt by identifying adaptation tipping points which can then be used to explore adaptation pathways, and (3) identification of triggers for climate adaptation.

  10. Extratropical Transitions in Atlantic Canada: Impacts and Adaptive Responses

    NASA Astrophysics Data System (ADS)

    Masson, Athena; Catto, Norm

    2013-04-01

    . Storm surge damage occurred along the north shore of the Bonavista Peninsula. Similar effects, differing only in the size of the affected areas, have resulted from several extratropical transitions which have impacted Atlantic Canada since July 1989. Extratropical transition "Leslie" impacted Newfoundland on 10-11 September 2012. Although the area affected was comparable to "Igor", wind velocities and rainfall totals were less, fortunately limiting damage. Preparation, advance warning to the population, proaction, and response efforts all showed significant improvement, however, indicating that the experience gained from coping with "Igor" had been successfully applied in adaptation to "Leslie". Extratropical transitions pose a significantly different set of challenges for adaptation in comparison to purely tropical hurricanes, and responses and adaptation strategies should be tailored to address these specific events. Calculating the frequency, magnitude and intensity of potential shifts is important for accurate forecasting and public awareness, safety management, preparedness, and adaptation. Available data indicate an increase in extratropical frequency and severity in Atlantic Canada since 1991, but there are difficulties in establishing the extent and nature of transition for previous storm events. A cautionary policy would assume no significant changes in extratropical transition frequency for Atlantic Canada, but would also acknowledge that large events remain probable.

  11. Adapting inland fisheries management to a changing climate

    USGS Publications Warehouse

    Paukert, Craig; Glazer, Bob A.; Hansen, Gretchen J. A.; Irwin, Brian J.; Jacobson, Peter C.; Kershner, Jeffrey L.; Shuter, Brian J.; Whitney, James E.; Lynch, Abigail J.

    2016-01-01

    Natural resource decision makers are challenged to adapt management to a changing climate while balancing short-term management goals with long-term changes in aquatic systems. Adaptation will require developing resilient ecosystems and resilient management systems. Decision makers already have tools to develop or ensure resilient aquatic systems and fisheries such as managing harvest and riparian zones. Because fisheries management often interacts with multiple stakeholders, adaptation strategies involving fisheries managers and other partners focused on land use, policy, and human systems, coupled with long-term monitoring, are necessary for resilient systems. We show how agencies and organizations are adapting to a changing climate in Minnesota and Ontario lakes and Montana streams. We also present how the Florida Fish and Wildlife Commission created a management structure to develop adaptation strategies. These examples demonstrate how organizations and agencies can cope with climate change effects on fishes and fisheries through creating resilient management and ecological systems.

  12. Projecting Climate Change Impacts on Wildfire Probabilities

    NASA Astrophysics Data System (ADS)

    Westerling, A. L.; Bryant, B. P.; Preisler, H.

    2008-12-01

    We present preliminary results of the 2008 Climate Change Impact Assessment for wildfire in California, part of the second biennial science report to the California Climate Action Team organized via the California Climate Change Center by the California Energy Commission's Public Interest Energy Research Program pursuant to Executive Order S-03-05 of Governor Schwarzenegger. In order to support decision making by the State pertaining to mitigation of and adaptation to climate change and its impacts, we model wildfire occurrence monthly from 1950 to 2100 under a range of climate scenarios from the Intergovernmental Panel on Climate Change. We use six climate change models (GFDL CM2.1, NCAR PCM1, CNRM CM3, MPI ECHAM5, MIROC3.2 med, NCAR CCSM3) under two emissions scenarios--A2 (C02 850ppm max atmospheric concentration) and B1(CO2 550ppm max concentration). Climate model output has been downscaled to a 1/8 degree (~12 km) grid using two alternative methods: a Bias Correction and Spatial Donwscaling (BCSD) and a Constructed Analogues (CA) downscaling. Hydrologic variables have been simulated from temperature, precipitation, wind and radiation forcing data using the Variable Infiltration Capacity (VIC) Macroscale Hydrologic Model. We model wildfire as a function of temperature, moisture deficit, and land surface characteristics using nonlinear logistic regression techniques. Previous work on wildfire climatology and seasonal forecasting has demonstrated that these variables account for much of the inter-annual and seasonal variation in wildfire. The results of this study are monthly gridded probabilities of wildfire occurrence by fire size class, and estimates of the number of structures potentially affected by fires. In this presentation we will explore the range of modeled outcomes for wildfire in California, considering the effects of emissions scenarios, climate model sensitivities, downscaling methods, hydrologic simulations, statistical model specifications for

  13. Public Health Adaptation to Climate Change in OECD Countries.

    PubMed

    Austin, Stephanie E; Biesbroek, Robbert; Berrang-Ford, Lea; Ford, James D; Parker, Stephen; Fleury, Manon D

    2016-09-07

    Climate change is a major challenge facing public health. National governments play a key role in public health adaptation to climate change, but there are competing views on what responsibilities and obligations this will-or should-include in different nations. This study aims to: (1) examine how national-level public health adaptation is occurring in Organization for Economic Cooperation and Development (OECD) countries; (2) examine the roles national governments are taking in public health adaptation; and (3) critically appraise three key governance dimensions of national-level health adaptation-cross-sectoral collaboration, vertical coordination and national health adaptation planning-and identify practical examples suited to different contexts. We systematically reviewed publicly available public health adaptation to climate change documents and webpages by national governments in ten OECD countries using systematic web searches, assessment of self-reporting, and content analysis. Our findings suggest national governments are primarily addressing infectious disease and heat-related risks posed by climate change, typically emphasizing capacity building or information-based groundwork initiatives. We find national governments are taking a variety of approaches to public health adaptation to climate change that do not follow expected convergence and divergence by governance structure. We discuss practical options for incorporating cross-sectoral collaboration, vertical coordination and national health adaptation planning into a variety of contexts and identify leaders national governments can look to to inform their public health adaptation planning. Following the adoption of the Paris Agreement and subsequent increased momentum for adaptation, research tracking adaptation is needed to define what health adaptation looks like in practice, reveal insights that can be taken up across states and sectors, and ensure policy orientated learning.

  14. Planning for Adaptation to Climate Change in the City of Chicago

    NASA Astrophysics Data System (ADS)

    Wuebbles, D. J.; Hayhoe, K.; Coffee, J.; McGraw, J.; Parzen, J.

    2008-12-01

    Under Mayor Richard M. Daley's leadership, the City of Chicago initiated the Chicago Climate Action Plan (CCAP) to better understand local implications of global climate change in both higher and lower emissions scenarios, reduce greenhouse gas emissions, and implement programs to build future climate change resilience. The City approached this work not only as a way to make Chicago more adaptable in the future, but also to improve Chicago's quality of life today. The Chicago Climate Action Plan adopted stresses the importance of both reducing greenhouse gas emissions in Chicago and preparing for climate changes that may be unavoidable. Building off of the City's significant environmental programs and projects, and based on our analyses of the climate effects and impacts that improved the scientific understanding of future climate change impacts on Chicago, the City then developed a set of climate change adaptation strategies, resulting in the City of Chicago Climate Change Adaptation Summary. This document includes prioritization of climate change adaptations based on relative risk as well as framework strategies for those tactics categorized as "must do/early action." In early 2008, The Mayor's Office asked five Commissioners from its Green Steering Committee to chair adaptation work groups including: extreme heat; extreme precipitation; buildings, infrastructure and equipment; ecosystems; and leadership, planning and communications. Working with staff from relevant departments, sister agencies and other stakeholders, these work groups developed 39 basic adaptation work plans, including plans for enhancing the City's existing projects and programs that relate to climate change adaptation. Climate change adaptation work will be on-going in City Departments under the Mayor's Office leadership. The City intends to continually monitor and improve its response to climate change, resulting in an improved quality of life for Chicago residents.

  15. Climate change in the oceans: Human impacts and responses.

    PubMed

    Allison, Edward H; Bassett, Hannah R

    2015-11-13

    Although it has far-reaching consequences for humanity, attention to climate change impacts on the ocean lags behind concern for impacts on the atmosphere and land. Understanding these impacts, as well as society's diverse perspectives and multiscale responses to the changing oceans, requires a correspondingly diverse body of scholarship in the physical, biological, and social sciences and humanities. This can ensure that a plurality of values and viewpoints is reflected in the research that informs climate policy and may enable the concerns of maritime societies and economic sectors to be heard in key adaptation and mitigation discussions.

  16. Climate Change Education for Mitigation and Adaptation

    ERIC Educational Resources Information Center

    Anderson, Allison

    2012-01-01

    This article makes the case for the education sector an untapped opportunity to combat climate change. It sets forth a definition of Climate Change Education for Sustainable Development that is comprehensive and multidisciplinary and asserts that it must not only include relevant content knowledge on climate change, environmental and social…

  17. Public Health Adaptation to Climate Change in OECD Countries

    PubMed Central

    Austin, Stephanie E.; Biesbroek, Robbert; Berrang-Ford, Lea; Ford, James D.; Parker, Stephen; Fleury, Manon D.

    2016-01-01

    Climate change is a major challenge facing public health. National governments play a key role in public health adaptation to climate change, but there are competing views on what responsibilities and obligations this will—or should—include in different nations. This study aims to: (1) examine how national-level public health adaptation is occurring in Organization for Economic Cooperation and Development (OECD) countries; (2) examine the roles national governments are taking in public health adaptation; and (3) critically appraise three key governance dimensions of national-level health adaptation—cross-sectoral collaboration, vertical coordination and national health adaptation planning—and identify practical examples suited to different contexts. We systematically reviewed publicly available public health adaptation to climate change documents and webpages by national governments in ten OECD countries using systematic web searches, assessment of self-reporting, and content analysis. Our findings suggest national governments are primarily addressing infectious disease and heat-related risks posed by climate change, typically emphasizing capacity building or information-based groundwork initiatives. We find national governments are taking a variety of approaches to public health adaptation to climate change that do not follow expected convergence and divergence by governance structure. We discuss practical options for incorporating cross-sectoral collaboration, vertical coordination and national health adaptation planning into a variety of contexts and identify leaders national governments can look to to inform their public health adaptation planning. Following the adoption of the Paris Agreement and subsequent increased momentum for adaptation, research tracking adaptation is needed to define what health adaptation looks like in practice, reveal insights that can be taken up across states and sectors, and ensure policy orientated learning. PMID:27618074

  18. Adapting to the Effects of Climate Change on Inuit Health

    PubMed Central

    Ford, James D.; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan

    2014-01-01

    Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risks—one that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context. PMID:24754615

  19. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  20. Adapting to the effects of climate change on Inuit health.

    PubMed

    Ford, James D; Willox, Ashlee Cunsolo; Chatwood, Susan; Furgal, Christopher; Harper, Sherilee; Mauro, Ian; Pearce, Tristan

    2014-06-01

    Climate change will have far-reaching implications for Inuit health. Focusing on adaptation offers a proactive approach for managing climate-related health risks-one that views Inuit populations as active agents in planning and responding at household, community, and regional levels. Adaptation can direct attention to the root causes of climate vulnerability and emphasize the importance of traditional knowledge regarding environmental change and adaptive strategies. An evidence base on adaptation options and processes for Inuit regions is currently lacking, however, thus constraining climate policy development. In this article, we tackled this deficit, drawing upon our understanding of the determinants of health vulnerability to climate change in Canada to propose key considerations for adaptation decision-making in an Inuit context.

  1. A Meta-Analysis of Urban Climate Change Adaptation ...

    EPA Pesticide Factsheets

    The concentration of people, infrastructure, and ecosystem services in urban areas make them prime sites for climate change adaptation. While advances have been made in developing frameworks for adaptation planning and identifying both real and potential barriers to action, empirical work evaluating urban adaptation planning processes has been relatively piecemeal. Existing assessments of current experience with urban adaptation provide necessarily broad generalizations based on the available peer-reviewed literature. This paper uses a meta-analysis of U.S. cities’ current experience with urban adaptation planning drawing from 54 sources that include peer-reviewed literature, government reports, white papers, and reports published by non-governmental organizations. The analysis specifically evaluates the institutional support structures being developed for urban climate change adaptation. The results demonstrate that adaptation planning is driven by a desire to reduce vulnerability and often catalyzes new collaborations and coordination mechanisms in urban governance. As a result, building capacity for urban climate change adaptation planning requires a focus not only on city governments themselves but also on the complex horizontal and vertical networks that have arisen around such efforts. Existing adaptation planning often lacks attention to equity issues, social vulnerability, and the influence of non-climatic factors on vulnerability. Engaging city govern

  2. Adaptation to climate change in the Ontario public health sector

    PubMed Central

    2012-01-01

    Background Climate change is among the major challenges for health this century, and adaptation to manage adverse health outcomes will be unavoidable. The risks in Ontario – Canada’s most populous province – include increasing temperatures, more frequent and intense extreme weather events, and alterations to precipitation regimes. Socio-economic-demographic patterns could magnify the implications climate change has for Ontario, including the presence of rapidly growing vulnerable populations, exacerbation of warming trends by heat-islands in large urban areas, and connectedness to global transportation networks. This study examines climate change adaptation in the public health sector in Ontario using information from interviews with government officials. Methods Fifty-three semi-structured interviews were conducted, four with provincial and federal health officials and 49 with actors in public health and health relevant sectors at the municipal level. We identify adaptation efforts, barriers and opportunities for current and future intervention. Results Results indicate recognition that climate change will affect the health of Ontarians. Health officials are concerned about how a changing climate could exacerbate existing health issues or create new health burdens, specifically extreme heat (71%), severe weather (68%) and poor air-quality (57%). Adaptation is currently taking the form of mainstreaming climate change into existing public health programs. While adaptive progress has relied on local leadership, federal support, political will, and inter-agency efforts, a lack of resources constrains the sustainability of long-term adaptation programs and the acquisition of data necessary to support effective policies. Conclusions This study provides a snapshot of climate change adaptation and needs in the public health sector in Ontario. Public health departments will need to capitalize on opportunities to integrate climate change into policies and programs

  3. The Dynamics of Vulnerability and Implications for Climate Change Adaptation: Lessons from Urban Water Management

    NASA Astrophysics Data System (ADS)

    Dilling, L.; Daly, M.; Travis, W.; Wilhelmi, O.; Klein, R.; Kenney, D.; Ray, A. J.; Miller, K.

    2013-12-01

    Recent reports and scholarship have suggested that adapting to current climate variability may represent a "no regrets" strategy for adapting to climate change. Filling "adaptation deficits" and other approaches that rely on addressing current vulnerabilities are of course helpful for responding to current climate variability, but we find here that they are not sufficient for adapting to climate change. First, following a comprehensive review and unique synthesis of the natural hazards and climate adaptation literatures, we advance six reasons why adapting to climate variability is not sufficient for adapting to climate change: 1) Vulnerability is different at different levels of exposure; 2) Coping with climate variability is not equivalent to adaptation to longer term change; 3) The socioeconomic context for vulnerability is constantly changing; 4) The perception of risk associated with climate variability does not necessarily promote adaptive behavior in the face of climate change; 5) Adaptations made to short term climate variability may reduce the flexibility of the system in the long term; and 6) Adaptive actions may shift vulnerabilities to other parts of the system or to other people. Instead we suggest that decision makers faced with choices to adapt to climate change must consider the dynamics of vulnerability in a connected system-- how choices made in one part of the system might impact other valued outcomes or even create new vulnerabilities. Furthermore we suggest that rather than expressing climate change adaptation as an extension of adaptation to climate variability, the research and practice communities would do well to articulate adaptation as an imperfect policy, with tradeoffs and consequences and that decisions be prioritized to preserve flexibility be revisited often as climate change unfolds. We then present the results of a number of empirical studies of decision making for drought in urban water systems in the United States to understand

  4. Complex Adaptive Schools: Educational Leadership and School Change

    ERIC Educational Resources Information Center

    Kershner, Brad; McQuillan, Patrick

    2016-01-01

    This paper utilizes the theoretical framework of complexity theory to compare and contrast leadership and educational change in two urban schools. Drawing on the notion of a complex adaptive system--an interdependent network of interacting elements that learns and evolves in adapting to an ever-shifting context--our case studies seek to reveal the…

  5. Modeling Two Types of Adaptation to Climate Change

    EPA Science Inventory

    Mitigation and adaptation are the two key responses available to policymakers to reduce the risks of climate change. We model these two policies together in a new DICE-based integrated assessment model that characterizes adaptation as either short-lived flow spending or long-live...

  6. Assessing institutional capacities to adapt to climate change - integrating psychological dimensions in the Adaptive Capacity Wheel

    NASA Astrophysics Data System (ADS)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-03-01

    Several case studies show that "soft social factors" (e.g. institutions, perceptions, social capital) strongly affect social capacities to adapt to climate change. Many soft social factors can probably be changed faster than "hard social factors" (e.g. economic and technological development) and are therefore particularly important for building social capacities. However, there are almost no methodologies for the systematic assessment of soft social factors. Gupta et al. (2010) have developed the Adaptive Capacity Wheel (ACW) for assessing the adaptive capacity of institutions. The ACW differentiates 22 criteria to assess six dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate. "Adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in North Western Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  7. The Psychological Impacts of Global Climate Change

    ERIC Educational Resources Information Center

    Doherty, Thomas J.; Clayton, Susan

    2011-01-01

    An appreciation of the psychological impacts of global climate change entails recognizing the complexity and multiple meanings associated with climate change; situating impacts within other social, technological, and ecological transitions; and recognizing mediators and moderators of impacts. This article describes three classes of psychological…

  8. Regional Climate Tutorial: Assessing Regional Climate Change and Its Impacts

    NASA Astrophysics Data System (ADS)

    Barron, E.; Fisher, A.

    2002-05-01

    Recent scientific progress now enables credible projections of global changes in climate over long time periods. But people will experience global climate change where they live and work, and have difficulty thinking of a future beyond their grandchildren's lifetime. Although the task of projecting climate change and its impacts is far more challenging for regional and relatively near-term time scales, these are the scales at which actions most easily can be taken to moderate negative impacts. This tutorial will summarize what is known about projecting changes in regional climate, and about assessing the impacts for sectors such as forests, agriculture, fresh water quantity and quality, coastal zones, human health, and ecosystems. The Mid-Atlantic Regional Assessment (MARA) is used to provide context and illustrate how adaptation within the region and feedback from other regions influence the impacts that might be experienced.

  9. Linking population, fertility, and family planning with adaptation to climate change: perspectives from Ethiopia.

    PubMed

    Rovin, Kimberly; Hardee, Karen; Kidanu, Aklilu

    2013-09-01

    Global climate change is felt disproportionately in the world's most economically disadvantaged countries. As adaption to an evolving climate becomes increasingly salient on national and global scales, it is important to assess how people at the local-level are already coping with changes. Understanding local responses to climate change is essential for helping countries to construct strategies to bolster resilience to current and future effects. This qualitative research investigated responses to climate change in Ethiopia; specifically, how communities react to and cope with climate variation, which groups are most vulnerable, and the role of family planning in increasing resilience. Participants were highly aware of changing climate effects, impacts of rapid population growth, and the need for increased access to voluntary family planning. Identification of family planning as an important adaptation strategy supports the inclusion of rights-based voluntary family planning and reproductive health into local and national climate change adaptation plans.

  10. Uncertainty assessment of urban pluvial flood risk in a context of climate change adaptation decision making

    NASA Astrophysics Data System (ADS)

    Arnbjerg-Nielsen, Karsten; Zhou, Qianqian

    2014-05-01

    There has been a significant increase in climatic extremes in many regions. In Central and Northern Europe, this has led to more frequent and more severe floods. Along with improved flood modelling technologies this has enabled development of economic assessment of climate change adaptation to increasing urban flood risk. Assessment of adaptation strategies often requires a comprehensive risk-based economic analysis of current risk, drivers of change of risk over time, and measures to reduce the risk. However, such studies are often associated with large uncertainties. The uncertainties arise from basic assumptions in the economic analysis and the hydrological model, but also from the projection of future societies to local climate change impacts and suitable adaptation options. This presents a challenge to decision makers when trying to identify robust measures. We present an integrated uncertainty analysis, which can assess and quantify the overall uncertainty in relation to climate change adaptation to urban flash floods. The analysis is based on an uncertainty cascade that by means of Monte Carlo simulations of flood risk assessments incorporates climate change impacts as a key driver of risk changes over time. The overall uncertainty is then attributed to six bulk processes: climate change impact, urban rainfall-runoff processes, stage-depth functions, unit cost of repair, cost of adaptation measures, and discount rate. We apply the approach on an urban hydrological catchment in Odense, Denmark, and find that the uncertainty on the climate change impact appears to have the least influence on the net present value of the studied adaptation measures-. This does not imply that the climate change impact is not important, but that the uncertainties are not dominating when deciding on action or in-action. We then consider the uncertainty related to choosing between adaptation options given that a decision of action has been taken. In this case the major part of the

  11. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  12. Effects of local adaptation and interspecific competition on species' responses to climate change.

    PubMed

    Bocedi, Greta; Atkins, Katherine E; Liao, Jishan; Henry, Roslyn C; Travis, Justin M J; Hellmann, Jessica J

    2013-09-01

    Local adaptation and species interactions have been shown to affect geographic ranges; therefore, we need models of climate impact that include both factors. To identify possible dynamics of species when including these factors, we ran simulations of two competing species using an individual-based, coupled map-lattice model using a linear climatic gradient that varies across latitude and is warmed over time. Reproductive success is governed by an individual's adaptation to local climate as well as its location relative to global constraints. In exploratory experiments varying the strength of adaptation and competition, competition reduces genetic diversity and slows range change, although the two species can coexist in the absence of climate change and shift in the absence of competitors. We also found that one species can drive the other to extinction, sometimes long after climate change ends. Weak selection on local adaptation and poor dispersal ability also caused surfing of cooler-adapted phenotypes from the expanding margin backwards, causing loss of warmer-adapted phenotypes. Finally, geographic ranges can become disjointed, losing centrally-adapted genotypes. These initial results suggest that the interplay between local adaptation and interspecific competition can significantly influence species' responses to climate change, in a way that demands future research.

  13. Climate change adaptation and Integrated Water Resource Management in the water sector

    NASA Astrophysics Data System (ADS)

    Ludwig, Fulco; van Slobbe, Erik; Cofino, Wim

    2014-10-01

    Integrated Water Resources Management (IWRM) was introduced in 1980s to better optimise water uses between different water demanding sectors. However, since it was introduced water systems have become more complicated due to changes in the global water cycle as a result of climate change. The realization that climate change will have a significant impact on water availability and flood risks has driven research and policy making on adaptation. This paper discusses the main similarities and differences between climate change adaptation and IWRM. The main difference between the two is the focus on current and historic issues of IWRM compared to the (long-term) future focus of adaptation. One of the main problems of implementing climate change adaptation is the large uncertainties in future projections. Two completely different approaches to adaptation have been developed in response to these large uncertainties. A top-down approach based on large scale biophysical impacts analyses focussing on quantifying and minimizing uncertainty by using a large range of scenarios and different climate and impact models. The main problem with this approach is the propagation of uncertainties within the modelling chain. The opposite is the bottom up approach which basically ignores uncertainty. It focusses on reducing vulnerabilities, often at local scale, by developing resilient water systems. Both these approaches however are unsuitable for integrating into water management. The bottom up approach focuses too much on socio-economic vulnerability and too little on developing (technical) solutions. The top-down approach often results in an “explosion” of uncertainty and therefore complicates decision making. A more promising direction of adaptation would be a risk based approach. Future research should further develop and test an approach which starts with developing adaptation strategies based on current and future risks. These strategies should then be evaluated using a range

  14. Recent Advances in Climate Impacts, Vulnerability, and Adaptation Studies in California

    NASA Astrophysics Data System (ADS)

    Franco, G.; Cayan, D. R.; Moser, S. C.; Hanemann, M.; Pittiglio, S.

    2010-12-01

    The State of California is committed to preparing periodic climate change impacts and adaptation assessments to inform and develop policy in the State. The most recent assessment was released late in 2009 and a new vulnerability and adaptation assessment is underway for release in late 2011. Both assessments use IPCC climate simulations that were statistically downscaled to a horizontal resolution of about 12 Km. The 2009 California assessment attempted to translate some impacts and adaptation options into monetary terms which introduced additional uncertainties. The 2011 California assessment combines a set of coordinated statewide and regional/local studies because many adaptation options, though informed by state and national policies, will be implemented at regional and local levels. The 2011 assessment expands the number of climate simulations that are employed in order to form a fuller estimate of the potential envelope of climate change and its impacts in the state. It also introduces a subset of dynamically downscaled scenarios to understand how well statistical relationships, developed using historical data, hold up in future climate regimes. Investigations are on-going to translate the ensemble of climate simulations and to begin to attach probabilities to the scenarios using subjective and objective techniques. In addition to advances in climate simulations and downscaling techniques, the new vulnerability and adaptation assessment also increasingly integrates social science approaches to assessing vulnerabilities and adaptation options. This presentation will illustrate results from the 2009 assessment and describe the design and initial implementation of the 2011 assessment.

  15. Adapting to climate change despite scientific uncertainty: A case study of coastal protection from sea-level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.

    2013-12-01

    Climate change adaptation is an increasing focus of international aid. At recent meetings of the parties to the United Nations Framework Convention on Climate Change (UNFCCC), the developed world agreed to rapidly increase international assistance to help developing countries, like the low-lying island nation of Kiribati, respond to the impacts of climate change. These emerging adaptation efforts must proceed despite the large and partially irreducible scientific uncertainty about the magnitude of those future climate impacts. In this study, we use the example of efforts to adapt to sea-level rise in Kiribati to document the challenges facing such internationally-funded climate change adaptation projects given the scientific uncertainty about climate impacts. Drawing on field and document research, we describe the scientific uncertainty about projected sea-level rise in Tarawa, the capital of Kiribati, how that uncertainty can create trade-offs between adaptation measures, and the social, political and economic context in which adaptation decisions must be made. The analysis shows there is no 'silver bullet' adaptation strategy in countries like Kiribati, given the long-term scientific uncertainty about sea-level rise and the environment of climate change aid. The existence of irreducible scientific uncertainty does not preclude effective climate change adaptation, but instead requires adaptation programs that embrace multiple strategies and planning horizons, and continually build on and re-adjust previous investments. This work highlights the importance of sustained international climate change financing, as proposed in UNFCCC negotiations.

  16. Managing Climate Change Refugia for Climate Adaptation

    EPA Science Inventory

    The concept of refugia has long been studied from theoretical and paleontological perspectives to understand how populations persisted during past periods of unfavorable climate. Recently, researchers have applied the idea to contemporary landscapes to identify climate change ref...

  17. Iowa Climate Change Adaptation and Resilience Report

    EPA Pesticide Factsheets

    The findings of a pilot project to work with stakeholders and governments in Iowa to identify barriers to and incentives for considering regional effects of climate change in hazard mitigation planning and other community planning processes.

  18. Impacts of local adaptation of forest trees on associations with herbivorous insects: implications for adaptive forest management

    PubMed Central

    Sinclair, Frazer H; Stone, Graham N; Nicholls, James A; Cavers, Stephen; Gibbs, Melanie; Butterill, Philip; Wagner, Stefanie; Ducousso, Alexis; Gerber, Sophie; Petit, Rémy J; Kremer, Antoine; Schönrogge, Karsten

    2015-01-01

    Disruption of species interactions is a key issue in climate change biology. Interactions involving forest trees may be particularly vulnerable due to evolutionary rate limitations imposed by long generation times. One mitigation strategy for such impacts is Climate matching – the augmentation of local native tree populations by input from nonlocal populations currently experiencing predicted future climates. This strategy is controversial because of potential cascading impacts on locally adapted animal communities. We explored these impacts using abundance data for local native gallwasp herbivores sampled from 20 provenances of sessile oak (Quercus petraea) planted in a common garden trial. We hypothesized that non-native provenances would show (i) declining growth performance with increasing distance between provenance origin and trial site, and (ii) phenological differences to local oaks that increased with latitudinal differences between origin and trial site. Under a local adaptation hypothesis, we predicted declining gallwasp abundance with increasing phenological mismatch between native and climate-matched trees. Both hypotheses for oaks were supported. Provenance explained significant variation in gallwasp abundance, but no gall type showed the relationship between abundance and phenological mismatch predicted by a local adaptation hypothesis. Our results show that climate matching would have complex and variable impacts on oak gall communities. PMID:26640522

  19. Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies

    SciTech Connect

    Absar, Syeda Mariya; Preston, Benjamin L.

    2015-05-25

    The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However, the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.

  20. Savings in locomotor adaptation explained by changes in learning parameters following initial adaptation.

    PubMed

    Mawase, Firas; Shmuelof, Lior; Bar-Haim, Simona; Karniel, Amir

    2014-04-01

    Faster relearning of an external perturbation, savings, offers a behavioral linkage between motor learning and memory. To explain savings effects in reaching adaptation experiments, recent models suggested the existence of multiple learning components, each shows different learning and forgetting properties that may change following initial learning. Nevertheless, the existence of these components in rhythmic movements with other effectors, such as during locomotor adaptation, has not yet been studied. Here, we study savings in locomotor adaptation in two experiments; in the first, subjects adapted to speed perturbations during walking on a split-belt treadmill, briefly adapted to a counter-perturbation and then readapted. In a second experiment, subjects readapted after a prolonged period of washout of initial adaptation. In both experiments we find clear evidence for increased learning rates (savings) during readaptation. We show that the basic error-based multiple timescales linear state space model is not sufficient to explain savings during locomotor adaptation. Instead, we show that locomotor adaptation leads to changes in learning parameters, so that learning rates are faster during readaptation. Interestingly, we find an intersubject correlation between the slow learning component in initial adaptation and the fast learning component in the readaptation phase, suggesting an underlying mechanism for savings. Together, these findings suggest that savings in locomotion and in reaching may share common computational and neuronal mechanisms; both are driven by the slow learning component and are likely to depend on cortical plasticity.

  1. Assessing institutional capacities to adapt to climate change: integrating psychological dimensions in the Adaptive Capacity Wheel

    NASA Astrophysics Data System (ADS)

    Grothmann, T.; Grecksch, K.; Winges, M.; Siebenhüner, B.

    2013-12-01

    Several case studies show that social factors like institutions, perceptions and social capital strongly affect social capacities to adapt to climate change. Together with economic and technological development they are important for building social capacities. However, there are almost no methodologies for the systematic assessment of social factors. After reviewing existing methodologies we identify the Adaptive Capacity Wheel (ACW) by Gupta et al. (2010), developed for assessing the adaptive capacity of institutions, as the most comprehensive and operationalised framework to assess social factors. The ACW differentiates 22 criteria to assess 6 dimensions: variety, learning capacity, room for autonomous change, leadership, availability of resources, fair governance. To include important psychological factors we extended the ACW by two dimensions: "adaptation motivation" refers to actors' motivation to realise, support and/or promote adaptation to climate; "adaptation belief" refers to actors' perceptions of realisability and effectiveness of adaptation measures. We applied the extended ACW to assess adaptive capacities of four sectors - water management, flood/coastal protection, civil protection and regional planning - in northwestern Germany. The assessments of adaptation motivation and belief provided a clear added value. The results also revealed some methodological problems in applying the ACW (e.g. overlap of dimensions), for which we propose methodological solutions.

  2. Evolutionary adaptation of marine zooplankton to global change.

    PubMed

    Dam, Hans G

    2013-01-01

    Predicting the response of the biota to global change remains a formidable endeavor. Zooplankton face challenges related to global warming, ocean acidification, the proliferation of toxic algal blooms, and increasing pollution, eutrophication, and hypoxia. They can respond to these changes by phenotypic plasticity or genetic adaptation. Using the concept of the evolution of reaction norms, I address how adaptive responses can be unequivocally discerned from phenotypic plasticity. To date, relatively few zooplankton studies have been designed for such a purpose. As case studies, I review the evidence for zooplankton adaptation to toxic algal blooms, hypoxia, and climate change. Predicting the response of zooplankton to global change requires new information to determine (a) the trade-offs and costs of adaptation, (b) the rates of evolution versus environmental change, (c) the consequences of adaptation to stochastic or cyclic (toxic algal blooms, coastal hypoxia) versus directional (temperature, acidification, open ocean hypoxia) environmental change, and (d) the interaction of selective pressures, and evolutionary and ecological processes, in promoting or hindering adaptation.

  3. Explaining and overcoming barriers to climate change adaptation

    NASA Astrophysics Data System (ADS)

    Eisenack, Klaus; Moser, Susanne C.; Hoffmann, Esther; Klein, Richard J. T.; Oberlack, Christoph; Pechan, Anna; Rotter, Maja; Termeer, Catrien J. A. M.

    2014-10-01

    The concept of barriers is increasingly used to describe the obstacles that hinder the planning and implementation of climate change adaptation. The growing literature on barriers to adaptation reveals not only commonly reported barriers, but also conflicting evidence, and few explanations of why barriers exist and change. There is thus a need for research that focuses on the interdependencies between barriers and considers the dynamic ways in which barriers develop and persist. Such research, which would be actor-centred and comparative, would help to explain barriers to adaptation and provide insights into how to overcome them.

  4. ELICITED EXPERT PERCEPTIONS FOR CLIMATE CHANGE RISKS AND ADAPTATION IN AGRICULTURE AND FOOD PRODUCTION THROUGH MENTAL MODELS APPROACH

    NASA Astrophysics Data System (ADS)

    Suda, Eiko; Kubota, Hiromi; Baba, Kenshi; Hijioka, Yasuaki; Takahashi, Kiyoshi; Hanasaki, Naota

    Impacts of climate change have become obvious in agriculture and food production in Japan these days, and researches to adapt to their risks have been conducted as a key effort to cope with the climate change. Numerous scientific findings on climate change impacts have been presented so far; however, prospective risks to be adapted to and their management in the context of individual on-site situations have not been investigated in detail. The structure of climate change risks and their management vary depending on geographical and social features in the regions where the adaptation options should be applied; therefore, a practical adaptation strategy should consider actual on-site situations. This study intended to clarify climate change risks to be adapted to in the Japanese agricultural sector, and factors to be considered in adaptation options, for encouragement of decision-making on adaptation implementation in the field. Semi-structured individual interviews have been conducted with 9 multidisciplinary experts engaging in climate change impacts research in agricultural production, economics, engineering, policy, and so on. Based on the results of the interviews, and the latest literatures available for risk assessment and adaptation, an expert mental model including their perceptions which cover the process from climate change impacts assessment to adaptation has been developed. The prospective risks, adaptation options, and issues to be examined to progress the development of practical and effective adaptation options and to support individual or social decision-making, have been shown on the developed expert mental model. It is the basic information for developing social communication and stakeholders cooperations in climate change adaptation strategies in agriculture and food production in Japan.

  5. INVESTIGATION OF EXISTING POLICIES CONTRIBUTION TO PROMOTING CLIMATE CHANGE ADAPTATION -A CASE STUDY IN TOKYO-

    NASA Astrophysics Data System (ADS)

    Hijioka, Yasuaki; Oka, Kazutaka; Takano, Saneyuki; Yoshikawa, Minoru; Ichihashi, Arata

    The impacts of global warming are already appearing in various regions of the world. Therefore, in addition to strongly promoting mitigation policies, it is an urgent need to study and implement adaptation policies from a long-term perspective in preparation for some possible negative impacts. The Japanese Government has long promoted various countermeasures for disaster prevention, environmental management, food production and protection of the nation's health. These counterm easures are considered to have potential effects asclimate change adaptation. This study investigated to what extent the existing policies for Tokyo can contribute to its climate change adaptation on the basis of comprehensively organizing targeted fields an dindicators in which adaptation policies should be taken. Research results indicated that the existing policies could be useful as climate change adaptation in many fields and indicators. Furthermore, the present problems were clarified accompanied with implementation of climate change adaptation at the municipalities' level, and solutions were proposed on how to use scientific knowledge to solve the problems.

  6. [Adaptive changes in the body upon exposure to electromagnetic radiation].

    PubMed

    Zubkova, S M

    1996-01-01

    The chance to use electromagnetic exposures as active adaptogen and the detecting of adaptive changes following them were objects of our studies. The data of experimental and clinical studies significative the dependence of changes on the functional state of organism were seen. Particular attention is paid to the site of exposure and to the advantages in the action of electromagnetic exposures on areas overlaying the endocrine glands and control centers of central nerve system. In these conditions electromagnetic exposures play a part of trigger initiated natural processes of homeostatic regulation in the organism functional systems. It is shown that the course of electromagnetic exposures in wide frequency range until laser radiation (infrared and red) arises adaptive changes of the regulator systems, of the bioenergetic and the biosynthetic processes in myocardium, liver, brain, thymus and other tissues predetermined genetically and secured the power of the adaptive systems. The cross-adaptation effects underlie the electromagnetic exposures medical action.

  7. Changing Rural Social Systems: Adaptation and Survival.

    ERIC Educational Resources Information Center

    Johnson, Nan E., Ed.; Wang, Ching-li, Ed.

    This book includes studies of globalization-related social changes in rural areas of the United States and other countries and implications of these studies for sociological theory. Although no chapter focuses exclusively on education, education-related themes include rural school dropouts and intergenerational poverty, the migration of rural…

  8. Adapting dairy farms to climate change

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Climate change is projected to affect many aspects of dairy production. These aspects include the growing season length, crop growth processes, harvest timing and losses, heat stress on cattle, nutrient emissions and losses, and ultimately farm profitability. To assess the sensitivity of dairy farms...

  9. Adapting to a changing world: Implications for water management.

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel

    2010-05-01

    Everyone is aware that the world is changing, and that many of these changes will impact our water resource supplies and how they are used and managed. It's always a challenge to try to predict the future, especially the very uncertain distant future. But one thing is certain, the future environment our descendants will experience will differ from the economic, social, technological and natural conditions we experience today. Some aspects of the changes that are happening may not be under human control, but many are. And to the extent they are, we can influence that future. In this paper I attempt to speculate about a future some 40 to 50 years from now, and how water will need to be managed then. My goal is to motivate some thinking and discussion about how we as water managers can influence and prepare ourselves (or our successors) for that future. It will require collaboration among multiple disciplines to determine how best we as a profession can help society adapt to these changes, and this in turn will require all of us to learn how to work together more effectively than we do now. This theme fits in with the current interest in sustainability, for no matter how it is defined, sustainability makes us think about the long-term future. How do we develop and manage our natural and cultural resources in ways that benefit both us and future generations of people living on this earth? What will their needs and goals be? We don't know and that is the major challenge in deciding what decisions we might make today on their behalf. Here I attempt to identify the challenges and issues water managers could be addressing some 40 to 50 years from now, and what we in each of our disciplines, and together, can begin to do now to address them.

  10. Integrating human responses to climate change into conservation vulnerability assessments and adaptation planning.

    PubMed

    Maxwell, Sean L; Venter, Oscar; Jones, Kendall R; Watson, James E M

    2015-10-01

    The impact of climate change on biodiversity is now evident, with the direct impacts of changing temperature and rainfall patterns and increases in the magnitude and frequency of extreme events on species distribution, populations, and overall ecosystem function being increasingly publicized. Changes in the climate system are also affecting human communities, and a range of human responses across terrestrial and marine realms have been witnessed, including altered agricultural activities, shifting fishing efforts, and human migration. Failing to account for the human responses to climate change is likely to compromise climate-smart conservation efforts. Here, we use a well-established conservation planning framework to show how integrating human responses to climate change into both species- and site-based vulnerability assessments and adaptation plans is possible. By explicitly taking into account human responses, conservation practitioners will improve their evaluation of species and ecosystem vulnerability, and will be better able to deliver win-wins for human- and biodiversity-focused climate adaptation.

  11. Forest climate change Vulnerability and Adaptation Assessment in Himalayas

    NASA Astrophysics Data System (ADS)

    Chitale, V. S.; Shrestha, H. L.; Agarwal, N. K.; Choudhurya, D.; Gilani, H.; Dhonju, H. K.; Murthy, M. S. R.

    2014-11-01

    Forests offer an important basis for creating and safeguarding more climate-resilient communities over Hindu Kush Himalayan region. The forest ecosystem vulnerability assessment to climate change and developing knowledge base to identify and support relevant adaptation strategies is realized as an urgent need. The multi scale adaptation strategies portray increasing complexity with the increasing levels in terms of data requirements, vulnerability understanding and decision making to choose a particular adaptation strategy. We present here how such complexities could be addressed and adaptation decisions could be either directly supported by open source remote sensing based forestry products or geospatial analysis and modelled products. The forest vulnerability assessment under climate change scenario coupled with increasing forest social dependence was studied using IPCC Landscape scale Vulnerability framework in Chitwan-Annapurna Landscape (CHAL) situated in Nepal. Around twenty layers of geospatial information on climate, forest biophysical and forest social dependence data was used to assess forest vulnerability and associated adaptation needs using self-learning decision tree based approaches. The increase in forest fires, evapotranspiration and reduction in productivity over changing climate scenario was observed. The adaptation measures on enhancing productivity, improving resilience, reducing or avoiding pressure with spatial specificity are identified to support suitable decision making. The study provides spatial analytical framework to evaluate multitude of parameters to understand vulnerabilities and assess scope for alternative adaptation strategies with spatial explicitness.

  12. Program on Promoting Climate Change Adaptation Technologies Bridging Policy Making and Science Research in Taiwan

    NASA Astrophysics Data System (ADS)

    Chiang, Y.; Chiang, W.; Sui, C.; Tung, C.; Ho, H.; Li, M.; Chan, S.; Climate Change Adaptation Technologies Program, National Science Council, Taiwan

    2010-12-01

    Climate changes adaptation needs innovative technological revolution on demand for transdisciplinary studies in various temporal and spatial scales. In our proposed program, a systematic and scientific framework will be developed to promote innovative adaptation technologies with respect to providing decision making information for government sectors, enhancing applicability of scientific research output, strengthening national research capabilities, and integrating both academic and non-academic resources. The objectives of this program are to identify key issues, required technologies, and scientific knowledge for climate change adaptations, and to build a transdisciplinary platform bridging science-supported technologies required by government sectors and demand-oriented scientific research conducted by academic communities. The approach proposed herein will be practiced in vulnerable regions, such as urban, rural, mountain, river basin, and coastal areas, which are particularly sensitive to climate change. The first phase of 3-year (2011~2013) work is to deploy framework and strategies of climate change impact assessment and adaptation measures between related government sectors and researchers from academic communities. The proposed framework involves three principle research groups, namely Environmental System, Vulnerability Assessment, and Risk Management and Adaptation Technology. The goal of the first group, Environmental System, is to combine climate change projections with enhanced scientific and environmental monitoring technologies for better adaptations to future scenarios in different social, economic, and environmental sectors to support adaptation measures planning and to reduce uncertainties on assessing vulnerability. The goal of the second group, Vulnerability Assessment, is to identify interfaces and information structures of climate change vulnerably issues and to develop protocol, models, and indices for vulnerability assessment. The goal of

  13. Managing the Risks of Extreme Events and Disasters in a Changing Climate: Lessons for Adaptation to Climate Change (Invited)

    NASA Astrophysics Data System (ADS)

    Mastrandrea, M.; Field, C. B.; Mach, K. J.; Barros, V.

    2013-12-01

    The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, published in 2012, integrates expertise in climate science, disaster risk reduction, and adaptation to inform discussions on how to reduce and manage the risks of extreme events and disasters in a changing climate. Impacts and the risks of disasters are determined by the interaction of the physical characteristics of weather and climate events with the vulnerability of exposed human society and ecosystems. The Special Report evaluates the factors that make people and infrastructure vulnerable to extreme events, trends in disaster losses, recent and future changes in the relationship between climate change and extremes, and experience with a wide range of options used by institutions, organizations, and communities to reduce exposure and vulnerability, and improve resilience, to climate extremes. Actions ranging from incremental improvements in governance and technology to more transformational changes are assessed. The Special Report provides a knowledge base that is also relevant to the broader context of managing the risks of climate change through mitigation, adaptation, and other responses, assessed in the IPCC's Fifth Assessment Report (AR5), to be completed in 2014. These themes include managing risks through an iterative process involving learning about risks and the effectiveness of responses, employing a portfolio of actions tailored to local circumstances but with links from local to global scales, and considering additional benefits of actions such as improving livelihoods and well-being. The Working Group II contribution to the AR5 also examines the ways that extreme events and their impacts contribute to understanding of vulnerabilities and adaptation deficits in the context of climate change, the extent to which impacts of climate change are experienced through changes in the frequency and severity of extremes as opposed to mean changes

  14. Adaptation responses of crops to climate change

    SciTech Connect

    Seino, Hiroshi

    1993-12-31

    Appreciable global climatic responses to increasing levels of atmospheric CO{sub 2} and other trace gases are expected to take place over the next 50 to 80 years. Increasing atmospheric concentrations of carbon dioxide and other greenhouse gases are producing or will produce changes in the climate of the Earth. In particular, numerous efforts of climate modeling project very substantial increase of surface air temperature. In addition to a general warming of the atmosphere, the possibility of increased summer dryness in the continental mid-latitudes has been suggested on the basis of both historical analogues and some General Circulation Model (GCM) studies. There are three types of effect of climatic change on agriculture: (1) the physiological (direct) effect of elevated levels of atmospheric CO{sub 2} on crop plants and weeds, (2) the effect of changes in parameters of climate (e.g., temperature, precipitation, and solar radiation) on plants and animals, and (3) the effects of climate-related rises in sea-level on land use. The direct effects of elevated CO{sub 2} are on photosynthesis and respiration and thereby on growth, and there are additional effects of increased CO{sub 2} on development, yield quality and stomatal aperture and water use. A doubling of CO{sub 2} increases the instantaneous photosynthetic rate by 30% to 100%, depending on the other environmental conditions, and reduce water requirements of plants by reducing transpiration (per unit leaf area) through reductions in stomatal aperture. A doubling of CO{sub 2} causes partial stomatal closure on both C{sub 3} and C{sub 4} plants (approximately a 40% decrease in aperture). In many experiments this results in reductions of transpiration of about 23% to 46%. However. there is considerable uncertainty over the magnitude of this in natural conditions.

  15. Environmental insurance adapts to changing needs

    SciTech Connect

    Vuono, M. )

    1995-03-01

    No longer simply a specialty service niche, environmental insurance has become an increasingly important asset to businesses worldwide. Companies of all sizes are using insurance as a proactive tool for prudent environmental risk management. During the last five years, the environmental insurance industry has matured to meet the ever-changing environmental insurance needs of business. A broad range of policies and programs offers coverage against damages caused by chemical spills, hazardous material and related environmental contaminants. Securing environmental insurance coverage has become as customary for many businesses as acquiring general liability and automobile insurance.

  16. Probable impacts of climate change on public health in Bangladesh.

    PubMed

    Shahid, Shamsuddin

    2010-07-01

    The recent report of the Intergovernmental Panel on Climate Change confirmed that there is overwhelming evidence that the global climate will severely affect human health. Climate change might have severe consequences on public health in Bangladesh, especially in light of the poor state of the country's public health infrastructure. A number of possible direct and indirect impacts of climate change on public health in Bangladesh have been identified in this article. Adaptive measures that should be taken to reduce the negative consequences of climate change on public health have also been discussed.

  17. Climate change adaptation: where does global health fit in the agenda?

    PubMed

    Bowen, Kathryn J; Friel, Sharon

    2012-05-27

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities.

  18. Climate change adaptation: Where does global health fit in the agenda?

    PubMed Central

    2012-01-01

    Human-induced climate change will affect the lives of most populations in the next decade and beyond. It will have greatest, and generally earliest, impact on the poorest and most disadvantaged populations on the planet. Changes in climatic conditions and increases in weather variability affect human wellbeing, safety, health and survival in many ways. Some impacts are direct-acting and immediate, such as impaired food yields and storm surges. Other health effects are less immediate and typically occur via more complex causal pathways that involve a range of underlying social conditions and sectors such as water and sanitation, agriculture and urban planning. Climate change adaptation is receiving much attention given the inevitability of climate change and its effects, particularly in developing contexts, where the effects of climate change will be experienced most strongly and the response mechanisms are weakest. Financial support towards adaptation activities from various actors including the World Bank, the European Union and the United Nations is increasing substantially. With this new global impetus and funding for adaptation action come challenges such as the importance of developing adaptation activities on a sound understanding of baseline community needs and vulnerabilities, and how these may alter with changes in climate. The global health community is paying heed to the strengthening focus on adaptation, albeit in a slow and unstructured manner. The aim of this paper is to provide an overview of adaptation and its relevance to global health, and highlight the opportunities to improve health and reduce health inequities via the new and additional funding that is available for climate change adaptation activities. PMID:22632569

  19. Adaptation to climate change: changes in farmland use and stocking rate in the U.S.

    USGS Publications Warehouse

    Mu, Jianhong E.; McCarl, Bruce A.; Wein, Anne M.

    2013-01-01

    This paper examines possible adaptations to climate change in terms of pasture and crop land use and stocking rate in the United States (U.S.). Using Agricultural Census and climate data in a statistical model, we find that as temperature and precipitation increases agricultural commodity producers respond by reducing crop land and increasing pasture land. In addition, cattle stocking rate decreases as the summer Temperature-humidity Index (THI) increases and summer precipitation decreases. Using the statistical model with climate data from four General Circulation Models (GCMs), we project that land use shifts from cropping to grazing and the stocking rate declines, and these adaptations are more pronounced in the central and the southeast regions of the U.S. Controlling for other farm production variables, crop land decreases by 6 % and pasture land increases by 33 % from the baseline. Correspondingly, the associated economic impact due to adaptation is around -14 and 29 million dollars to crop producers and pasture producers by the end of this century, respectively. The national and regional results have implications for farm programs and subsidy policies.

  20. Climate Change Impact Assessments for International Market Systems (CLIMARK)

    NASA Astrophysics Data System (ADS)

    Winkler, J. A.; Andresen, J.; Black, J.; Bujdoso, G.; Chmielewski, F.; Kirschke, D.; Kurlus, R.; Liszewska, M.; Loveridge, S.; Niedzwiedz, T.; Nizalov, D.; Rothwell, N.; Tan, P.; Ustrnul, Z.; von Witzke, H.; Zavalloni, C.; Zhao, J.; Zhong, S.

    2012-12-01

    The vast majority of climate change impact assessments evaluate how local or regional systems and processes may be affected by a future climate. Alternative strategies that extend beyond the local or regional scale are needed when assessing the potential impacts of climate change on international market systems, including agricultural commodities. These industries have multiple production regions that are distributed worldwide and are likely to be differentially impacted by climate change. Furthermore, for many industries and market systems, especially those with long-term climate-dependent investments, temporal dynamics need to be incorporated into the assessment process, including changing patterns of international trade, consumption and production, and evolving adaptation strategies by industry stakeholder groups. A framework for conducting climate change assessments for international market systems, developed as part of the CLIMARK (Climate Change and International Markets) project is outlined, and progress toward applying the framework for an impact assessment for the international tart cherry industry is described. The tart cherry industry was selected for analysis in part because tart cherries are a perennial crop requiring long-term investments by the producer. Components of the project include the preparation of fine resolution climate scenarios, evaluation of phenological models for diverse production regions, the development of a yield model for tart cherry production, new methods for incorporating individual decision making and adaptation options into impact assessments, and modification of international trade models for use in impact studies. Innovative aspects of the project include linkages between model components and evaluation of the mega-uncertainty surrounding the assessment outcomes. Incorporation of spatial and temporal dynamics provides a more comprehensive evaluation of climate change impacts and an assessment product of potentially greater

  1. Adaptation strategies to climate change and climate variability: a comparative study between seven contrasting river basins.

    NASA Astrophysics Data System (ADS)

    Droogers, P.

    2003-04-01

    Climate change and climate variability is and will have a tremendous impact on hydrology and consequently on food security and environmental protection. From the four major components in climate change and climate variability studies, projection, mitigation, impact and adaptation, has the latter so far received less attention than the other three. An international collaboration of ten institutions is comparing adaptation strategies between contrasting basins ranging from wet to dry and from poor to rich. Basins included are: Mekong, Walawe (Sri Lanka), Rhine, Sacramento, Syr Darya, Volta, and Zayandeh (Iran). Simulation models at basin and field scale have been set up and possible adaptation strategies are explored by these models. Preliminary results indicate that appropriate adaptation strategies are different between these seven contrasting basins. It is also clear that these adaptation strategies should focus on increased variability rather than on the overall change of the mean. The focus was hereby not only on an increase in variation but especially on the number of successive dry and wet years. Results show that the studies on these adaptation strategies could not be performed only at one scale, but that a combination of field scale as well as basin scale analysis is essential.

  2. Resituation or Resistance? Higher Education Teachers' Adaptations to Technological Change

    ERIC Educational Resources Information Center

    Westberry, Nicola; McNaughton, Susan; Billot, Jennie; Gaeta, Helen

    2015-01-01

    This paper presents the findings from a project that explored teachers' adaptations to technological change in four large classes in higher education. In these classes, lecturers changed from single- to multi-lecture settings mediated by videoconferencing, requiring them to transfer their beliefs and practices into a new pedagogical space. The…

  3. Governance of social dilemmas in climate change adaptation

    NASA Astrophysics Data System (ADS)

    Bisaro, Alexander; Hinkel, Jochen

    2016-04-01

    In the field of adaptation governance research, current discussion on the barriers to adaptation shows that theoretical explanations for why institutions emerge and how they enable or constrain adaptation are underdeveloped. In this Perspective, we show that there is a significant opportunity to advance the understanding of adaptation governance by integrating insights that have been developed in the extensive commons literature on the institutions that work to overcome social conflicts or dilemmas. 'Realist-materialist' approaches to understanding such collective action are particularly valuable to adaptation governance research because they emphasize how biophysical conditions give rise to certain types of social dilemma. Climate change affects these biophysical conditions, and thus may alter dilemmas or create new ones. Based on realist-materialist reasoning, this Perspective describes six types of dilemma, illustrates each with a case from the adaptation literature and draws on insights from the commons literature regarding relevant contextual conditions and effective policy instruments for overcoming social dilemmas. The dilemma types provide entry points for rigorous comparative adaptation research to deepen understanding of how context influences adaptation governance processes.

  4. National Hydroclimatic Change and Infrastructure Adaptation Assessment: Region-Specific Adaptation Factors

    EPA Science Inventory

    Climate change, land use and socioeconomic developments are principal variables that define the need and scope of adaptive engineering and management to sustain water resource and infrastructure development. As described in IPCC (2007), hydroclimatic changes in the next 30-50 ye...

  5. Impacts of Climate Change on Ecosystem Services

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ecosystems, and the biodiversity and services they support, are intrinsically dependent on climate. During the twentieth century, climate change has had documented impacts on ecological systems, and impacts are expected to increase as climate change continues and perhaps even accelerates. This techn...

  6. Adaptive potential of a Pacific salmon challenged by climate change

    NASA Astrophysics Data System (ADS)

    Muñoz, Nicolas J.; Farrell, Anthony P.; Heath, John W.; Neff, Bryan D.

    2015-02-01

    Pacific salmon provide critical sustenance for millions of people worldwide and have far-reaching impacts on the productivity of ecosystems. Rising temperatures now threaten the persistence of these important fishes, yet it remains unknown whether populations can adapt. Here, we provide the first evidence that a Pacific salmon has both physiological and genetic capacities to increase its thermal tolerance in response to rising temperatures. In juvenile chinook salmon (Oncorhynchus tshawytscha), a 4 °C increase in developmental temperature was associated with a 2 °C increase in key measures of the thermal performance of cardiac function. Moreover, additive genetic effects significantly influenced several measures of cardiac capacity, indicative of heritable variation on which selection can act. However, a lack of both plasticity and genetic variation was found for the arrhythmic temperature of the heart, constraining this upper thermal limit to a maximum of 24.5 +/- 2.2 °C. Linking this constraint on thermal tolerance with present-day river temperatures and projected warming scenarios, we predict a 17% chance of catastrophic loss in the population by 2100 based on the average warming projection, with this chance increasing to 98% in the maximum warming scenario. Climate change mitigation is thus necessary to ensure the future viability of Pacific salmon populations.

  7. Health care facilities resilient to climate change impacts.

    PubMed

    Paterson, Jaclyn; Berry, Peter; Ebi, Kristie; Varangu, Linda

    2014-12-01

    Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator's guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change.

  8. Health Care Facilities Resilient to Climate Change Impacts

    PubMed Central

    Paterson, Jaclyn; Berry, Peter; Ebi, Kristie; Varangu, Linda

    2014-01-01

    Climate change will increase the frequency and magnitude of extreme weather events and create risks that will impact health care facilities. Health care facilities will need to assess climate change risks and adopt adaptive management strategies to be resilient, but guidance tools are lacking. In this study, a toolkit was developed for health care facility officials to assess the resiliency of their facility to climate change impacts. A mixed methods approach was used to develop climate change resiliency indicators to inform the development of the toolkit. The toolkit consists of a checklist for officials who work in areas of emergency management, facilities management and health care services and supply chain management, a facilitator’s guide for administering the checklist, and a resource guidebook to inform adaptation. Six health care facilities representing three provinces in Canada piloted the checklist. Senior level officials with expertise in the aforementioned areas were invited to review the checklist, provide feedback during qualitative interviews and review the final toolkit at a stakeholder workshop. The toolkit helps health care facility officials identify gaps in climate change preparedness, direct allocation of adaptation resources and inform strategic planning to increase resiliency to climate change. PMID:25522050

  9. Adaptable habitablity, niche filling and exo-climate change

    NASA Astrophysics Data System (ADS)

    Hagai, Perets

    2015-07-01

    Planetary orbits may change due to gravitational perturbations by external bodies. Such changes can occur both on short and long timescales, and give rise to significant changes in the planetary climate and habitability. Such changes may render the climate inhabitable for any original pre-existing organisms. However, if the climate change timescale is longer than the timescale for organism genetic adaptation over several generations, the population of pre- existing organisms may evolve and adapt to the new conditions. This raises the possibility for the existence of planets in which life formed and evolved under favorable conditions, and then adapted to extreme conditions once significant climate-change occured. Such planets may therefore appear today as having too-extreme conditions as to allow for the emergence of life, even though life could have formed at ealier epoch at which time the planet climate differed. One can therefore discuss the possibility of "adaptable habitability", which relies not only on the current conditions but on the climate history and the dynamics of the planetary system. Moreover, once life emerges and evolves to the stage in which rapid adaptababilty is possible, organisms may adapt as to fill extreme environmental nches (e.g. extremophiles on Earth). Once climate-change leads to overall extreme planetary conditions, such originally extreme- niche filling organisms can prevail and occupy the main environments of the planets, where as such extreme planetary conditions, if they existed primordially, wouldn't have allowed for the emergence of life to begin with. We discuss these issues, and provide detailed planetary dynamics examples for such adaptable habitability to occur.

  10. Synthetic circuit for exact adaptation and fold-change detection.

    PubMed

    Kim, Jongmin; Khetarpal, Ishan; Sen, Shaunak; Murray, Richard M

    2014-05-01

    Biological organisms use their sensory systems to detect changes in their environment. The ability of sensory systems to adapt to static inputs allows wide dynamic range as well as sensitivity to input changes including fold-change detection, a response that depends only on fold changes in input, and not on absolute changes. This input scale invariance underlies an important strategy for search that depends solely on the spatial profile of the input. Synthetic efforts to reproduce the architecture and response of cellular circuits provide an important step to foster understanding at the molecular level. We report the bottom-up assembly of biochemical systems that show exact adaptation and fold-change detection. Using a malachite green aptamer as the output, a synthetic transcriptional circuit with the connectivity of an incoherent feed-forward loop motif exhibits pulse generation and exact adaptation. A simple mathematical model was used to assess the amplitude and duration of pulse response as well as the parameter regimes required for fold-change detection. Upon parameter tuning, this synthetic circuit exhibits fold-change detection for four successive rounds of two-fold input changes. The experimental realization of fold-change detection circuit highlights the programmability of transcriptional switches and the ability to obtain predictive dynamical systems in a cell-free environment for technological applications.

  11. Synthetic circuit for exact adaptation and fold-change detection

    PubMed Central

    Kim, Jongmin; Khetarpal, Ishan; Murray, Richard M.

    2014-01-01

    Biological organisms use their sensory systems to detect changes in their environment. The ability of sensory systems to adapt to static inputs allows wide dynamic range as well as sensitivity to input changes including fold-change detection, a response that depends only on fold changes in input, and not on absolute changes. This input scale invariance underlies an important strategy for search that depends solely on the spatial profile of the input. Synthetic efforts to reproduce the architecture and response of cellular circuits provide an important step to foster understanding at the molecular level. We report the bottom-up assembly of biochemical systems that show exact adaptation and fold-change detection. Using a malachite green aptamer as the output, a synthetic transcriptional circuit with the connectivity of an incoherent feed-forward loop motif exhibits pulse generation and exact adaptation. A simple mathematical model was used to assess the amplitude and duration of pulse response as well as the parameter regimes required for fold-change detection. Upon parameter tuning, this synthetic circuit exhibits fold-change detection for four successive rounds of two-fold input changes. The experimental realization of fold-change detection circuit highlights the programmability of transcriptional switches and the ability to obtain predictive dynamical systems in a cell-free environment for technological applications. PMID:24728988

  12. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  13. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  14. Public Health Adaptation to Climate Change in Large Cities: A Global Baseline.

    PubMed

    Araos, Malcolm; Austin, Stephanie E; Berrang-Ford, Lea; Ford, James D

    2016-01-01

    Climate change will have significant impacts on human health, and urban populations are expected to be highly sensitive. The health risks from climate change in cities are compounded by rapid urbanization, high population density, and climate-sensitive built environments. Local governments are positioned to protect populations from climate health risks, but it is unclear whether municipalities are producing climate-adaptive policies. In this article, we develop and apply systematic methods to assess the state of public health adaptation in 401 urban areas globally with more than 1 million people, creating the first global baseline for urban public health adaptation. We find that only 10% of the sampled urban areas report any public health adaptation initiatives. The initiatives identified most frequently address risks posed by extreme weather events and involve direct changes in management or behavior rather than capacity building, research, or long-term investments in infrastructure. Based on our characterization of the current urban health adaptation landscape, we identify several gaps: limited evidence of reporting of institutional adaptation at the municipal level in urban areas in the Global South; lack of information-based adaptation initiatives; limited focus on initiatives addressing infectious disease risks; and absence of monitoring, reporting, and evaluation.

  15. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region.

    PubMed

    Evans, Louisa S; Hicks, Christina C; Adger, W Neil; Barnett, Jon; Perry, Allison L; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute.

  16. Structural and Psycho-Social Limits to Climate Change Adaptation in the Great Barrier Reef Region

    PubMed Central

    Evans, Louisa S.; Hicks, Christina C.; Adger, W. Neil; Barnett, Jon; Perry, Allison L.; Fidelman, Pedro; Tobin, Renae

    2016-01-01

    Adaptation, as a strategy to respond to climate change, has limits: there are conditions under which adaptation strategies fail to alleviate impacts from climate change. Research has primarily focused on identifying absolute bio-physical limits. This paper contributes empirical insight to an emerging literature on the social limits to adaptation. Such limits arise from the ways in which societies perceive, experience and respond to climate change. Using qualitative data from multi-stakeholder workshops and key-informant interviews with representatives of the fisheries and tourism sectors of the Great Barrier Reef region, we identify psycho-social and structural limits associated with key adaptation strategies, and examine how these are perceived as more or less absolute across levels of organisation. We find that actors experience social limits to adaptation when: i) the effort of pursuing a strategy exceeds the benefits of desired adaptation outcomes; ii) the particular strategy does not address the actual source of vulnerability, and; iii) the benefits derived from adaptation are undermined by external factors. We also find that social limits are not necessarily more absolute at higher levels of organisation: respondents perceived considerable opportunities to address some psycho-social limits at the national-international interface, while they considered some social limits at the local and regional levels to be effectively absolute. PMID:26960200

  17. Local adaptation and the evolution of species' ranges under climate change.

    PubMed

    Atkins, K E; Travis, J M J

    2010-10-07

    The potential impact of climate change on biodiversity is well documented. A well developed range of statistical methods currently exists that projects the possible future habitat of a species directly from the current climate and a species distribution. However, studies incorporating ecological and evolutionary processes remain limited. Here, we focus on the potential role that local adaptation to climate may play in driving the range dynamics of sessile organisms. Incorporating environmental adaptation into a stochastic simulation yields several new insights. Counter-intuitively, our simulation results suggest that species with broader ranges are not necessarily more robust to climate change. Instead, species with broader ranges can be more susceptible to extinction as locally adapted genotypes are often blocked from range shifting by the presence of cooler adapted genotypes that persist even when their optimum climate has left them behind. Interestingly, our results also suggest that it will not always be the cold-adapted phenotypes that drive polewards range expansion. Instead, range shifts may be driven by phenotypes conferring adaptation to conditions prevalent towards the centre of a species' equilibrium distribution. This may have important consequences for the conservation method termed predictive provenancing. These initial results highlight the potential importance of local adaptation in determining how species will respond to climate change and we argue that this is an area requiring urgent theoretical and empirical attention.

  18. Limits to health adaptation in a changing climate

    NASA Astrophysics Data System (ADS)

    Ebi, K. L.

    2015-12-01

    Introduction: Because the health risks of climate variability and change are not new, it has been assumed that health systems have the capacity, experience, and tools to effectively adapt to changing burdens of climate-sensitive health outcomes with additional climate change. However, as illustrated in the Ebola crisis, health systems in many low-income countries have insufficient capacity to manage current health burdens. These countries also are those most vulnerable to climate change, including changes in food and water safety and security, increases in extreme weather and climate events, and increases in the geographic range, incidence, and seasonality of a variety of infectious diseases. The extent to which they might be able to keep pace with projected risks depends on assumptions of the sustainability of development pathways. At the same time, the magnitude and pattern of climate change will depend on greenhouse gas emission pathways. Methods: Review of the success of health adaptation projects and expert judgment assessment of the degree to which adaptation efforts will be able to keep pace with projected changes in climate variability and change. Results: Health adaptation can reduce the current and projected burdens of climate-sensitive health outcomes over the short term in many countries, but the extent to which it could do so past mid-century will depend on emission and development pathways. Under high emission scenarios, climate change will be rapid and extensive, leading to fundamental shifts in the burden of climate-sensitive health outcomes that will challenging for many countries to manage. Sustainable development pathways could delay but not eliminate associated health burdens. Conclusions: To prepare for and cope with the Anthropocene, health systems need additional adaptation policies and measures to develop more robust health systems, and need to advocate for rapid and significant reductions in greenhouse gas emissions.

  19. Data and knowledge gaps in glacier, snow and related runoff research - A climate change adaptation perspective

    NASA Astrophysics Data System (ADS)

    Salzmann, Nadine; Huggel, Christian; Rohrer, Mario; Stoffel, Markus

    2014-10-01

    Glacier and snow cover changes with related impacts on melt runoff can seriously affect human societies which are depending on fresh water from cryospheric sources. Observed trends and projected future evolutions of climatic and cryospheric variables clearly show the need to adapt to these changes. Accordingly, the topics addressed herein have been put on the agendas of many larger funding agencies. This article provides a brief overview on major ongoing activities on glacier, snow and related runoff research in order to then analyze data gaps and research needs from a climate change adaptation perspective. Major data needs are identified with respect to the spatial and temporal coverage of local-scale data and related needs for (data) services that distribute and maintain these data sets. Moreover, clear research needs are also recognized at the local scale where process knowledge needs to be improved (e.g., the influence of albedo on snow and ice or debris cover on glaciers) in order to derive plausible climate change impacts assessments. The paper then discusses directions on how to move forward to better serve the practical needs for climate change adaptation planning. In the future, substantial support by large funding agencies might be key for capacity building in target regions of climate change adaptation programs, for longer-term and more sustainable commitments, and for the development of approaches, which aim at assessing the transferability of data, techniques, and tools.

  20. A Web Based Geographic Information Platform to Support Urban Adaptation to Climate Change

    SciTech Connect

    Nugent, Philip J; Omitaomu, Olufemi A; Parish, Esther S; Mei, Rui; Ernst, Kathleen M; Absar, Mariya

    2015-01-01

    The urban climate is changing rapidly. Therefore, climate change and its projected impacts on environmental conditions must be considered in assessing and comparing urban planning alternatives. In this paper, we present an integrated framework for urban climate adaptation tool (Urban-CAT) that will help cities to plan for, rather than react to, possible risks. Urban-CAT will be developed as a scenario planning tool that is locally relevant to existing urban decision-making processes.

  1. Adapting to Change: The Value of Change Information and Meaning-Making

    ERIC Educational Resources Information Center

    van den Heuvel, Machteld; Demerouti, Evangelia; Bakker, Arnold B.; Schaufeli, Wilmar B.

    2013-01-01

    The purpose of this 3-wave study is to examine the micro process of how employees adapt to change over time. We combined Conservation of Resources theory with insights from the organizational change literature to study employees in a Dutch police district undergoing reorganization. A model was tested where employee adaptability, operationalized by…

  2. Climate change: impacts on and implications for global health.

    PubMed

    St Louis, Michael E; Hess, Jeremy J

    2008-11-01

    The most severe consequences of climate change will accrue to the poorest people in the poorest countries, despite their own negligible contribution to greenhouse gas emissions. In recent years, global health efforts in those same countries have grown dramatically. However, the emerging scientific consensus about climate change has not yet had much influence on the routine practice and strategies of global health. We review here the anticipated types and global distribution of health impacts of climate change, discuss relevant aspects of current global interventions for health in low-income countries, and consider potential elements of a framework for appropriately and efficiently mainstreaming global climate change-mitigation and -adaptation strategies into the ongoing enterprise of global health. We propose a collaborative learning initiative involving four areas: (1) increased awareness among current global health practitioners of climate change and its potential impacts for the most disadvantaged, (2) strengthening of the evidence base, (3) incorporation now of climate change-mitigation and -adaptation concerns into design of ongoing global health programs, and (4) alignment of current global health program targets and methods with larger frameworks for climate change and sustainable development. The great vulnerability to climate change of populations reached by current global health efforts should prompt all concerned with global health to take a leading role in advocating for climate change mitigation in their own countries.

  3. Agricultural Adaptations to Climate Changes in West Africa

    NASA Astrophysics Data System (ADS)

    Guan, K.; Sultan, B.; Lobell, D. B.; Biasutti, M.; Piani, C.; Hammer, G. L.; McLean, G.

    2014-12-01

    Agricultural production in West Africa is highly vulnerable to climate variability and change and a fast growing demand for food adds yet another challenge. Assessing possible adaptation strategies of crop production in West Africa under climate change is thus critical for ensuring regional food security and improving human welfare. Our previous efforts have identified as the main features of climate change in West Africa a robust increase in temperature and a complex shift in the rainfall pattern (i.e. seasonality delay and total amount change). Unaddressed, these robust climate changes would reduce regional crop production by up to 20%. In the current work, we use two well-validated crop models (APSIM and SARRA-H) to comprehensively assess different crop adaptation options under future climate scenarios. Particularly, we assess adaptations in both the choice of crop types and management strategies. The expected outcome of this study is to provide West Africa with region-specific adaptation recommendations that take into account both climate variability and climate change.

  4. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    NASA Astrophysics Data System (ADS)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  5. Climate Change Adaptation Science Activities at NASA Johnson Space Center

    NASA Technical Reports Server (NTRS)

    Stefanov, William L.; Lulla, Kamlesh

    2012-01-01

    The Johnson Space Center (JSC), located in the southeast metropolitan region of Houston, TX is the prime NASA center for human spaceflight operations and astronaut training, but it also houses the unique collection of returned extraterrestrial samples, including lunar samples from the Apollo missions. The Center's location adjacent to Clear Lake and the Clear Creek watershed, an estuary of Galveston Bay, puts it at direct annual risk from hurricanes, but also from a number of other climate-related hazards including drought, floods, sea level rise, heat waves, and high wind events all assigned Threat Levels of 2 or 3 in the most recent NASA Center Disaster/Risk Matrix produced by the Climate Adaptation Science Investigator Working Group. Based on prior CASI workshops at other NASA centers, it is recognized that JSC is highly vulnerable to climate-change related hazards and has a need for adaptation strategies. We will present an overview of prior CASI-related work at JSC, including publication of a climate change and adaptation informational data brochure, and a Resilience and Adaptation to Climate Risks Workshop that was held at JSC in early March 2012. Major outcomes of that workshop that form a basis for work going forward are 1) a realization that JSC is embedded in a regional environmental and social context, and that potential climate change effects and adaptation strategies will not, and should not, be constrained by the Center fence line; 2) a desire to coordinate data collection and adaptation planning activities with interested stakeholders to form a regional climate change adaptation center that could facilitate interaction with CASI; 3) recognition that there is a wide array of basic data (remotely sensed, in situ, GIS/mapping, and historical) available through JSC and other stakeholders, but this data is not yet centrally accessible for planning purposes.

  6. Adaptation services of floodplains and wetlands under transformational climate change.

    PubMed

    Colloff, Matthew; Lavorel, Sandra; Wise, Russell M; Dunlop, Michael; Overton, Ian C; Williams, Kristen J

    2016-06-01

    Adaptation services are the ecosystem processes and services that benefit people by increasing their ability to adapt to change. Benefits may accrue from existing but newly used services where ecosystems persist or from novel services supplied following ecosystem transformation. Ecosystem properties that enable persistence or transformation are important adaptation services because they support future options. The adaptation services approach can be applied to decisions on trade-offs between currently valued services and benefits from maintaining future options. For example, ecosystem functions and services of floodplains depend on river flows. In those regions of the world where climate change projections are for hotter, drier conditions, floods will be less frequent and floodplains will either persist, though with modified structure and function, or transform to terrestrial (flood-independent) ecosystems. Many currently valued ecosystem services will reduce in supply or become unavailable, but new options are provided by adaptation services. We present a case study from the Murray-Darling Basin, Australia, for operationalizing the adaptation services concept for floodplains and wetlands. We found large changes in flow and flood regimes are likely under a scenario of +1.6°C by 2030, even with additional water restored to rivers under the proposed Murray-Darling Basin Plan. We predict major changes to floodplain ecosystems, including contraction of riparian forests and woodlands and expansion of terrestrial, drought-tolerant vegetation communities. Examples of adaptation services under this scenario include substitution of irrigated agriculture with dryland cropping and floodplain grazing; mitigation of damage from rarer, extreme floods; and increased tourism, recreational, and cultural values derived from fewer, smaller wetlands that can be maintained with environmental flows. Management for adaptation services will require decisions on where intervention can

  7. The role of interactions in a world implementing adaptation and mitigation solutions to climate change.

    PubMed

    Warren, Rachel

    2011-01-13

    The papers in this volume discuss projections of climate change impacts upon humans and ecosystems under a global mean temperature rise of 4°C above preindustrial levels. Like most studies, they are mainly single-sector or single-region-based assessments. Even the multi-sector or multi-region approaches generally consider impacts in sectors and regions independently, ignoring interactions. Extreme weather and adaptation processes are often poorly represented and losses of ecosystem services induced by climate change or human adaptation are generally omitted. This paper addresses this gap by reviewing some potential interactions in a 4°C world, and also makes a comparison with a 2°C world. In a 4°C world, major shifts in agricultural land use and increased drought are projected, and an increased human population might increasingly be concentrated in areas remaining wet enough for economic prosperity. Ecosystem services that enable prosperity would be declining, with carbon cycle feedbacks and fire causing forest losses. There is an urgent need for integrated assessments considering the synergy of impacts and limits to adaptation in multiple sectors and regions in a 4°C world. By contrast, a 2°C world is projected to experience about one-half of the climate change impacts, with concomitantly smaller challenges for adaptation. Ecosystem services, including the carbon sink provided by the Earth's forests, would be expected to be largely preserved, with much less potential for interaction processes to increase challenges to adaptation. However, demands for land and water for biofuel cropping could reduce the availability of these resources for agricultural and natural systems. Hence, a whole system approach to mitigation and adaptation, considering interactions, potential human and species migration, allocation of land and water resources and ecosystem services, will be important in either a 2°C or a 4°C world.

  8. Mulit Criteria - Application on Climate Change Adaptation and Biofuel Cultivation on Contaminated Land

    NASA Astrophysics Data System (ADS)

    Andersson-Sköld, Yvonne; Suer, Pascal; Bergman, Ramona; Helgesson, Helena

    2010-05-01

    A decision support tool/method has been developed to systematically include sustainability at an early stage in planning issues. Sustainability was subdivided into human health, environmental impacts, resources, and social and economic impacts. Health, environmental and resources impacts were based on the Swedish environmental objectives, life cycle assessment (LCA) impact categories, and contaminated soil guidelines. The resulting impact indicators were climate change - global warming potential, large scale and local air quality, water and soil quality, landscape, energy, materials, wellbeing/welfare, direct financial costs, social economic aspects, and flexi-bility. The method offers an iterative discussion framework that is systematic, condensed and yet a simplistic way of describing consequences of climate change and related adaptation measures including economic, social and environmental aspects. Application of the tool to biofuel cultivation on contaminated soil indicated that traditional soil remediation may have higher social and economical benefits but be less suitable from a health, environment, and resources perspective. The tool has further been applied in municipalities on climate change impacts and adaptation measures. Re-sults from the application in tree municipalities will be presented: Gothenburg City, Lidköping and Arvika. In Gothenburg and Lidköping the major impact of climate change is increase in sea water level (North Sea and Lake Vänern respectively) combined with extreme weather conditions. According to regional climate change scenarios Arvika is located in one of the worst affected areas in Sweden with respect to increase of intensive rainfall and extreme flows. The adaptation measures investigated at the three locations include doing nothing, different constructions and planning. The results are based on previous risk identification investigations, flood and land slide maps and interviews with civil servants in the three municipalities.

  9. Integrated Climate Change Impacts Assessment in California

    NASA Astrophysics Data System (ADS)

    Cayan, D. R.; Franco, G.; Meyer, R.; Anderson, M.; Bromirski, P. D.

    2014-12-01

    This paper summarizes lessons learned from an ongoing series of climate change assessments for California, conducted by the scientific community and State and local agencies. A series of three Assessments have considered vulnerability and adaptation issues for both managed and natural systems. California's vulnerability is many faceted, arising because of an exceptionally drought prone climate, open coast and large estuary exposure to sea level rise, sensitive ecosystems and complex human footprint and economy. Key elements of the assessments have been a common set of climate and sea-level rise scenarios, based upon IPCC GCM simulations. Regionalized and localized output from GCM projections was provided to research teams investigating water supply, agriculture, coastal resources, ecosystem services, forestry, public health, and energy demand and hydropower generation. The assessment results are helping to investigate the broad range of uncertainty that is inherent in climate projections, and users are becoming better equipped to process an envelope of potential climate and impacts. Some projections suggest that without changes in California's present fresh-water delivery system, serious water shortages would take place, but that technical solutions are possible. Under a warmer climate, wildfire vulnerability is heightened markedly in some areas--estimated increases in burned area by the end of the 21st Century exceed 100% of the historical area burned in much of the forested areas of Northern California Along California coast and estuaries, projected rise in mean sea level will accelerate flooding occurrences, prompting the need for better education and preparedness. Many policymakers and agency personnel in California are factoring in results from the assessments and recognize the need for a sustained assessment process. An ongoing challenge, of course, is to achieve more engagement with a broader community of decision makers, and notably with the private sector.

  10. Accelerating adaptation of natural resource management to address climate change.

    PubMed

    Cross, Molly S; McCarthy, Patrick D; Garfin, Gregg; Gori, David; Enquist, Carolyn A F

    2013-02-01

    Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants' self-reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross-jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate-change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world.

  11. Climate change risks to United States infrastructure: impacts on coastal development, roads, bridges, and urban drainage

    EPA Science Inventory

    Changes in temperature, precipitation, sea level, and coastal storms will likely increase the vulnerability of infrastructure across the United States. Using four models of vulnerability, impacts, and adaptation of infrastructure, its deployment, and its role in protecting econom...

  12. Visuomotor adaptation changes stereoscopic depth perception and tactile discrimination.

    PubMed

    Volcic, Robert; Fantoni, Carlo; Caudek, Corrado; Assad, John A; Domini, Fulvio

    2013-10-23

    Perceptual judgments of relative depth from binocular disparity are systematically distorted in humans, despite in principle having access to reliable 3D information. Interestingly, these distortions vanish at a natural grasping distance, as if perceived stereo depth is contingent on a specific reference distance for depth-disparity scaling that corresponds to the length of our arm. Here we show that the brain's representation of the arm indeed powerfully modulates depth perception, and that this internal calibration can be quickly updated. We used a classic visuomotor adaptation task in which subjects execute reaching movements with the visual feedback of their reaching finger displaced farther in depth, as if they had a longer arm. After adaptation, 3D perception changed dramatically, and became accurate at the "new" natural grasping distance, the updated disparity scaling reference distance. We further tested whether the rapid adaptive changes were restricted to the visual modality or were characteristic of sensory systems in general. Remarkably, we found an improvement in tactile discrimination consistent with a magnified internal image of the arm. This suggests that the brain integrates sensory signals with information about arm length, and quickly adapts to an artificially updated body structure. These adaptive processes are most likely a relic of the mechanisms needed to optimally correct for changes in size and shape of the body during ontogenesis.

  13. Rice Production Vulnerability to Climate Change in Indonesia: An Overview on Community-based Adaptation

    NASA Astrophysics Data System (ADS)

    Komaladara, A. A. S. P.; Budiasa, I. W.; Ambarawati, I. G. A. A.

    2015-12-01

    Rice remains to be a major crop and staple food in Indonesia. The task to ensure that rice production meets the demand of a growing population continues to engage the attention of national planners and policy makers. However, the adverse effects of climate change on agriculture production have presented Indonesia with yet another significant challenge. The exposure of rice crops to climate-related hazards such as temperature stress, floods, and drought, may lead to lower yield and self-sufficiency rate. This study explores the vulnerability of rice production to the effects of climate change in Indonesia. Considering the vast geographical span of the country and varying exposure, sensitivity, and adaptive capacity to climate change at regional level, this study emphasize the importance of community-based adaptation. Results from a simulation based on production and climate data from 1984 to 2014 indicates that rice production is sensitive to variation in growing season temperature and precipitation. A projection of these climate factors in 2050 has a significant impact on the major rice crop. To manage the impact of climate change, this study turns to the potential roles of farmer organizations, such as Subak, in adaptation strategies. The Subak in Bali is recognized for its cultural and organizational framework that highlights the sharing of knowledge and local wisdom in rice production. This is demonstrated by its efficient community-based irrigation management system, leading to sustainable rice production. Keywords: rice production, climate change, community-based adaptation, Indonesia

  14. Adapting California’s ecosystems to a changing climate

    USGS Publications Warehouse

    Elizabeth Chornesky,; David Ackerly,; Paul Beier,; Frank Davis,; Flint, Lorraine E.; Lawler, Joshua J.; Moyle, Peter B.; Moritz, Max A.; Scoonover, Mary; Byrd, Kristin B.; Alvarez, Pelayo; Heller, Nicole E.; Micheli, Elisabeth; Weiss, Stuart

    2017-01-01

    Significant efforts are underway to translate improved understanding of how climate change is altering ecosystems into practical actions for sustaining ecosystem functions and benefits. We explore this transition in California, where adaptation and mitigation are advancing relatively rapidly, through four case studies that span large spatial domains and encompass diverse ecological systems, institutions, ownerships, and policies. The case studies demonstrate the context specificity of societal efforts to adapt ecosystems to climate change and involve applications of diverse scientific tools (e.g., scenario analyses, downscaled climate projections, ecological and connectivity models) tailored to specific planning and management situations (alternative energy siting, wetland management, rangeland management, open space planning). They illustrate how existing institutional and policy frameworks provide numerous opportunities to advance adaptation related to ecosystems and suggest that progress is likely to be greatest when scientific knowledge is integrated into collective planning and when supportive policies and financing enable action.

  15. Adaptability in IT Sourcing: The Impact of Switching Costs

    NASA Astrophysics Data System (ADS)

    Whitten, Dwayne

    IT sourcing decisions are increasingly becoming more strategic than in the past. As this occurs, firms should maintain a strategy of adaptability in order to mitigate the risks inherently associated with sourcing. A major influence on the adaptability of a firm in the short- and long-term are the switching costs associated with moving an activity from one source to another. As switching costs increase, firms may be "locked in" to one source. Firms should therefore work to decrease the switching costs so that they are more able to move an activity from one source to another if the market changes or an outsourcing relationship sours. Three strategies are presented for lowering switching costs which will ultimately help increase adaptability.

  16. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    PubMed

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized.

  17. Climate Change and the Los Alamos National Laboratory. The Adaptation Challenge

    SciTech Connect

    Fowler, Kimberly M.; Hjeresen, Dennis; Silverman, Josh

    2015-02-01

    The Los Alamos National Laboratory (LANL) has been adapting to climate change related impacts that have been occurring on decadal time scales. The region where LANL is located has been subject to a cascade of climate related impacts: drought, devastating wildfires, and historic flooding events. Instead of buckling under the pressure, LANL and the surrounding communities have integrated climate change mitigation strategies into their daily operations and long-term plans by increasing coordination and communication between the Federal, State, and local agencies in the region, identifying and aggressively managing forested areas in need of near-term attention, addressing flood control and retention issues, and more.

  18. Climate change adaptation through urban heat management in Atlanta, Georgia.

    PubMed

    Stone, Brian; Vargo, Jason; Liu, Peng; Hu, Yongtao; Russell, Armistead

    2013-07-16

    This study explores the potential effectiveness of metropolitan land cover change as a climate change adaptation strategy for managing rising temperatures in a large and rapidly warming metropolitan region of the United States. Through the integration of a mesoscale meteorological model with estimated land cover data for the Atlanta, Georgia region in 2010, this study quantifies the influence of extensive land cover change at the periphery of a large metropolitan region on temperature within the city center. The first study to directly model a metropolitan scale heat transfer mechanism, we find both enhanced tree canopy and impervious cover in the suburban zones of the Atlanta region to produce statistically significant cooling and warming effects in the urban core. Based on these findings, we conclude that urban heat island management both within and beyond the central developed core of large cities may provide an effective climate change adaptation strategy for large metropolitan regions.

  19. A need for planned adaptation to climate change in the wine industry

    NASA Astrophysics Data System (ADS)

    Metzger, Marc J.; Rounsevell, Mark D. A.

    2011-09-01

    The diversity of wine production depends on subtle differences in microclimate and is therefore especially sensitive to climate change. A warmer climate will impact directly on wine-grapes through over-ripening, drying out, rising acidity levels, and greater vulnerability to pests and disease, resulting in changes in wine quality (e.g. complexity, balance and structure) or potentially the style of wine that can be produced. The growing scientific evidence for significant climate change in the coming decades means that adaptation will be of critical importance to the multi-billion dollar global wine-industry in general, and to quality wine producers in particular (White et al 2006, 2009; Hertsgaard 2011). Adaptation is understood as an adjustment in natural or human systems in response to actual or expected environmental change, which moderates harm or exploits beneficial opportunities (IPCC 2007). Autonomous adaptation has been an integral part of the 20th century wine industry. Technological advances, changes in consumer demand, and global competition have meant that growers and producers have had to adapt to stay in business. The gradual temperature rise in the 20th Century (0.7 °C globally) has been accommodated successfully by gradual changes in vine management, technological measures, production control, and marketing (White et al 2009), although this has in many cases resulted in the production of bolder, more alcoholic wines (Hertsgaard 2011). In spite of this success, the wine industry is surprisingly conservative when it comes to considering longer term planned adaptation for substantial climate change impacts. A few producers are expanding to new locations at higher altitudes or cooler climates (e.g. Torres is developing new vineyards high in the Pyrenees, and Mouton Rothschild is setting up new vineyards in South America), and the legal and cultural restrictions of Appelation d'Origine Cȏntrollée (AOC) systems are being discussed (White et al 2009

  20. Decisions from Experience: How Groups and Individuals Adapt to Change

    DTIC Science & Technology

    2014-01-01

    Experience: How Groups and Individuals Adapt to Change Every morning, Ferran Adrià receives fresh products from his suppliers on Spain‘s Costa Brava. High...involved in this decision? Perhaps. Only a few kilometers from El Bulli, Joan , Josep, and Jordi Roca manage El Celler de Can Roca, currently

  1. Adapting the Transtheoretical Model of Change to the Bereavement Process

    ERIC Educational Resources Information Center

    Calderwood, Kimberly A.

    2011-01-01

    Theorists currently believe that bereaved people undergo some transformation of self rather than returning to their original state. To advance our understanding of this process, this article presents an adaptation of Prochaska and DiClemente's transtheoretical model of change as it could be applied to the journey that bereaved individuals…

  2. Climate Change and Food Security: Health Impacts in Developed Countries

    PubMed Central

    Hooper, Lee; Abdelhamid, Asmaa; Bentham, Graham; Boxall, Alistair B.A.; Draper, Alizon; Fairweather-Tait, Susan; Hulme, Mike; Hunter, Paul R.; Nichols, Gordon; Waldron, Keith W.

    2012-01-01

    Background: Anthropogenic climate change will affect global food production, with uncertain consequences for human health in developed countries. Objectives: We investigated the potential impact of climate change on food security (nutrition and food safety) and the implications for human health in developed countries. Methods: Expert input and structured literature searches were conducted and synthesized to produce overall assessments of the likely impacts of climate change on global food production and recommendations for future research and policy changes. Results: Increasing food prices may lower the nutritional quality of dietary intakes, exacerbate obesity, and amplify health inequalities. Altered conditions for food production may result in emerging pathogens, new crop and livestock species, and altered use of pesticides and veterinary medicines, and affect the main transfer mechanisms through which contaminants move from the environment into food. All these have implications for food safety and the nutritional content of food. Climate change mitigation may increase consumption of foods whose production reduces greenhouse gas emissions. Impacts may include reduced red meat consumption (with positive effects on saturated fat, but negative impacts on zinc and iron intake) and reduced winter fruit and vegetable consumption. Developed countries have complex structures in place that may be used to adapt to the food safety consequences of climate change, although their effectiveness will vary between countries, and the ability to respond to nutritional challenges is less certain. Conclusions: Climate change will have notable impacts upon nutrition and food safety in developed countries, but further research is necessary to accurately quantify these impacts. Uncertainty about future impacts, coupled with evidence that climate change may lead to more variable food quality, emphasizes the need to maintain and strengthen existing structures and policies to regulate

  3. "Intelligent Ensemble" Projections of Precipitation and Surface Radiation in Support of Agricultural Climate Change Adaptation

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick C.; Baker, Noel C.

    2015-01-01

    Earth's climate is changing and will continue to change into the foreseeable future. Expected changes in the climatological distribution of precipitation, surface temperature, and surface solar radiation will significantly impact agriculture. Adaptation strategies are, therefore, required to reduce the agricultural impacts of climate change. Climate change projections of precipitation, surface temperature, and surface solar radiation distributions are necessary input for adaption planning studies. These projections are conventionally constructed from an ensemble of climate model simulations (e.g., the Coupled Model Intercomparison Project 5 (CMIP5)) as an equal weighted average, one model one vote. Each climate model, however, represents the array of climate-relevant physical processes with varying degrees of fidelity influencing the projection of individual climate variables differently. Presented here is a new approach, termed the "Intelligent Ensemble, that constructs climate variable projections by weighting each model according to its ability to represent key physical processes, e.g., precipitation probability distribution. This approach provides added value over the equal weighted average method. Physical process metrics applied in the "Intelligent Ensemble" method are created using a combination of NASA and NOAA satellite and surface-based cloud, radiation, temperature, and precipitation data sets. The "Intelligent Ensemble" method is applied to the RCP4.5 and RCP8.5 anthropogenic climate forcing simulations within the CMIP5 archive to develop a set of climate change scenarios for precipitation, temperature, and surface solar radiation in each USDA Farm Resource Region for use in climate change adaptation studies.

  4. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  5. Modelling impacts of climate change on arable crop diseases: progress, challenges and applications.

    PubMed

    Newbery, Fay; Qi, Aiming; Fitt, Bruce Dl

    2016-08-01

    Combining climate change, crop growth and crop disease models to predict impacts of climate change on crop diseases can guide planning of climate change adaptation strategies to ensure future food security. This review summarises recent developments in modelling climate change impacts on crop diseases, emphasises some major challenges and highlights recent trends. The use of multi-model ensembles in climate change modelling and crop modelling is contributing towards measures of uncertainty in climate change impact projections but other aspects of uncertainty remain largely unexplored. Impact assessments are still concentrated on few crops and few diseases but are beginning to investigate arable crop disease dynamics at the landscape level.

  6. Coastal Community Adaptation to Future Potential Climate Change

    NASA Astrophysics Data System (ADS)

    Prime, Thomas

    2014-05-01

    This research project aims to determine the physical and economic resilience of coastal communities. This translates into identifying how such communities can adapt to potential future climate change in the most efficient cost effective way. Fleetwood in Lancashire has been chosen as a case study site, with recently refurbished sea defences. This research is interested in the best way to maintain resilience of the defences over long time horizons and against low probability high impact events as the coastal defences deteriorate. We assess coastal flood risk using a flood inundation model called LISFLOOD-FP, this is a 2D hydrodynamic model designed to simulate flood inundation over complex topography. LISFLOOD-FP predicts water depths in each grid cell at each time step, simulating the dynamic propagation of flood waves over fluvial, coastal and estuarine floodplains. The model is forced at the boundary with an extreme water level that has a defined probability of occurring, e.g. 1 in 100 years. This is combined with a scaled surge curve for the area, a high spring tidal curve and the addition of a sea level rise parameter, which is dependent on the defined time horizon and future carbon emissions scenarios. LISFLOOD-FP has been extended to simulate wave over-topping of sea defences, this is achieved by using a Shallow Water And Boussinesq (SWAB) 1D model which models wave over-topping of sea defences. The outputs from this model can be added into LISFLOOD as a flow of water that originates from the top of the sea defences and simulates the over topping. The simulation has also been extended further by adding a river component. The flow within the river channel has been added into the model as a 1D vector with bed elevation and width, the river flow vector consists of a hydro-graph of a high flow event. Return period analysis will be applied to the river peaks over threshold data and the example hydro-graph can then be tailored to the peak return period flow rate

  7. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    NASA Astrophysics Data System (ADS)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37 % of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90 %) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  8. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  9. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    NASA Astrophysics Data System (ADS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Havlík, Petr; Herrero, Mario; Schmitz, Christoph; Rolinski, Susanne

    2015-09-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction.

  10. Understanding Climate Change Impacts on Water Resources

    EPA Pesticide Factsheets

    This training module will increase your understanding of the causes of climate change, its potential impacts on water resources, and the challenges it brings. You also will learn about how managers are working to make the United States more resilient..

  11. Assessing Hydrologic Impacts of Future Land Cover Change ...

    EPA Pesticide Factsheets

    Long‐term land‐use and land cover change and their associated impacts pose critical challenges to sustaining vital hydrological ecosystem services for future generations. In this study, a methodology was developed on the San Pedro River Basin to characterize hydrologic impacts from future urban growth through time. This methodology was then expanded and utilized to characterize the changing hydrology on the South Platte River Basin. Future urban growth is represented by housingdensity maps generated in decadal intervals from 2010 to 2100, produced by the U.S. Environmental Protection Agency (EPA) Integrated Climate and Land‐Use Scenarios (ICLUS) project. ICLUS developed future housing density maps by adapting the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) social, economic, and demographic storylines to the conterminous United States. To characterize hydrologic impacts from future growth, the housing density maps were reclassified to National Land Cover Database (NLCD) 2006 land cover classes and used to parameterize the Soil and Water Assessment Tool (SWAT) using the Automated Geospatial Watershed Assessment (AGWA) tool. The objectives of this project were to 1) develop and describe a methodology for adapting the ICLUS data for use in AGWA as anapproach to evaluate basin‐wide impacts of development on water‐quantity and ‐quality, 2) present initial results from the application of the methodology to

  12. HyCAW: Hydrological Climate change Adaptation Wizard

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  13. Climate Change Adaptation Among Tibetan Pastoralists: Challenges in Enhancing Local Adaptation Through Policy Support

    NASA Astrophysics Data System (ADS)

    Fu, Yao; Grumbine, R. Edward; Wilkes, Andreas; Wang, Yun; Xu, Jian-Chu; Yang, Yong-Ping

    2012-10-01

    While researchers are aware that a mix of Local Ecological Knowledge (LEK), community-based resource management institutions, and higher-level institutions and policies can facilitate pastoralists' adaptation to climate change, policy makers have been slow to understand these linkages. Two critical issues are to what extent these factors play a role, and how to enhance local adaptation through government support. We investigated these issues through a case study of two pastoral communities on the Tibetan Plateau in China employing an analytical framework to understand local climate adaptation processes. We concluded that LEK and community-based institutions improve adaptation outcomes for Tibetan pastoralists through shaping and mobilizing resource availability to reduce risks. Higher-level institutions and policies contribute by providing resources from outside communities. There are dynamic interrelationships among these factors that can lead to support, conflict, and fragmentation. Government policy could enhance local adaptation through improvement of supportive relationships among these factors. While central government policies allow only limited room for overt integration of local knowledge/institutions, local governments often have some flexibility to buffer conflicts. In addition, government policies to support market-based economic development have greatly benefited adaptation outcomes for pastoralists. Overall, in China, there are still questions over how to create innovative institutions that blend LEK and community-based institutions with government policy making.

  14. Climate change adaptation among Tibetan pastoralists: challenges in enhancing local adaptation through policy support.

    PubMed

    Fu, Yao; Grumbine, R Edward; Wilkes, Andreas; Wang, Yun; Xu, Jian-Chu; Yang, Yong-Ping

    2012-10-01

    While researchers are aware that a mix of Local Ecological Knowledge (LEK), community-based resource management institutions, and higher-level institutions and policies can facilitate pastoralists' adaptation to climate change, policy makers have been slow to understand these linkages. Two critical issues are to what extent these factors play a role, and how to enhance local adaptation through government support. We investigated these issues through a case study of two pastoral communities on the Tibetan Plateau in China employing an analytical framework to understand local climate adaptation processes. We concluded that LEK and community-based institutions improve adaptation outcomes for Tibetan pastoralists through shaping and mobilizing resource availability to reduce risks. Higher-level institutions and policies contribute by providing resources from outside communities. There are dynamic interrelationships among these factors that can lead to support, conflict, and fragmentation. Government policy could enhance local adaptation through improvement of supportive relationships among these factors. While central government policies allow only limited room for overt integration of local knowledge/institutions, local governments often have some flexibility to buffer conflicts. In addition, government policies to support market-based economic development have greatly benefited adaptation outcomes for pastoralists. Overall, in China, there are still questions over how to create innovative institutions that blend LEK and community-based institutions with government policy making.

  15. An Approach for Assessing Human Health Vulnerability and Public Health Interventions to Adapt to Climate Change

    PubMed Central

    Ebi, Kristie L.; Kovats, R. Sari; Menne, Bettina

    2006-01-01

    Assessments of the potential human health impacts of climate change are needed to inform the development of adaptation strategies, policies, and measures to lessen projected adverse impacts. We developed methods for country-level assessments to help policy makers make evidence-based decisions to increase resilience to current and future climates, and to provide information for national communications to the United Nations Framework Convention on Climate Change. The steps in an assessment should include the following: a) determine the scope of the assessment; b) describe the current distribution and burden of climate-sensitive health determinants and outcomes; c) identify and describe current strategies, policies, and measures designed to reduce the burden of climate-sensitive health determinants and outcomes; d) review the health implications of the potential impacts of climate variability and change in other sectors; e) estimate the future potential health impacts using scenarios of future changes in climate, socioeconomic, and other factors; f) synthesize the results; and g) identify additional adaptation policies and measures to reduce potential negative health impacts. Key issues for ensuring that an assessment is informative, timely, and useful include stakeholder involvement, an adequate management structure, and a communication strategy. PMID:17185287

  16. Change of ruminal sodium transport in sheep during dietary adaptation.

    PubMed

    Etschmann, Benjamin; Suplie, Annabelle; Martens, Holger

    2009-02-01

    Rumen adaptation plays an important role in the productive cycle of dairy cattle. In this study, the time course of functional rumen epithelium adaptation after a change from hay feeding (ad libitum) to a mixed hay/concentrate diet was monitored by measuring Na+ transport rates in Ussing chamber experiments. A total of 18 sheep were subjected to different periods of mixed hay/concentrate feeding ranging from 0 weeks (control; hay ad libitum) to 12 weeks (800 g hay plus 800 g concentrate per day in two equal portions). For each animal, the net absorption of sodium was measured following the mixed hay/concentrate feeding period. Net Na transport, Jnet, significantly rose from 2.15 +/- 0.43 (control) to 3.73 +/- 1.02 microeq x cm(-2) x h(-1) after one week of mixed hay/ concentrate diet, reached peak levels of 4.55 +/- 0.50 microEq x cm(-2) x h(-1) after four weeks and levelled out at 3.92 +/- 0.36 microeq x cm(-2) x h(-1) after 12 weeks of mixed feeding. Thus, 73% of functional adaptation occurred during the first week after diet change. This is in apparent contrast to findings that morphological adaptation takes approximately six weeks to reach peak levels. Hence, early functional adaptation to a mixed hay/concentrate diet is characterised by enhanced Na absorption rates per epithelial cell. Absorption rates are likely to be further enhanced by proliferative effects on the rumen epithelium (number and size of papillae) when concentrate diets are fed over longer periods of time. Early functional adaptation without surface area enlargement of the rumen epithelium appears to be the first step in coping with altered fermentation rates following diet change.

  17. Climate change adaptation under uncertainty in the developing world: A case study of sea level rise in Kiribati

    NASA Astrophysics Data System (ADS)

    Donner, S. D.; Webber, S.

    2011-12-01

    Climate change is expected to have the greatest impact in parts of the developing world. At the 2010 meeting of U.N. Framework Convention on Climate Change in Cancun, industrialized countries agreed in principle to provide US$100 billion per year by 2020 to assist the developing world respond to climate change. This "Green Climate Fund" is a critical step towards addressing the challenge of climate change. However, the policy and discourse on supporting adaptation in the developing world remains highly idealized. For example, the efficacy of "no regrets" adaptation efforts or "mainstreaming" adaptation into decision-making are rarely evaluated in the real world. In this presentation, I will discuss the gap between adaptation theory and practice using a multi-year case study of the cultural, social and scientific obstacles to adapting to sea level rise in the Pacific atoll nation of Kiribati. Our field research reveals how scientific and institutional uncertainty can limit international efforts to fund adaptation and lead to spiraling costs. Scientific uncertainty about hyper-local impacts of sea level rise, though irreducible, can at times limit decision-making about adaptation measures, contrary to the notion that "good" decision-making practices can incorporate scientific uncertainty. Efforts to improve institutional capacity must be done carefully, or they risk inadvertently slowing the implementation of adaptation measures and increasing the likelihood of "mal"-adaptation.

  18. Adaptive thermoregulation in endotherms may alter responses to climate change.

    PubMed

    Boyles, Justin G; Seebacher, Frank; Smit, Ben; McKechnie, Andrew E

    2011-11-01

    Climate change is one of the major issues facing natural populations and thus a focus of recent research has been to predict the responses of organisms to these changes. Models are becoming more complex and now commonly include physiological traits of the organisms of interest. However, endothermic species have received less attention than have ectotherms in these mechanistic models. Further, it is not clear whether responses of endotherms to climate change are modified by variation in thermoregulatory characteristics associated with phenotypic plasticity and/or adaptation to past selective pressures. Here, we review the empirical data on thermal adaptation and acclimatization in endotherms and discuss how those factors may be important in models of responses to climate change. We begin with a discussion of why thermoregulation and thermal sensitivity at high body temperatures should be co-adapted. Importantly, we show that there is, in fact, considerable variation in the ability of endotherms to tolerate high body temperatures and/or high environmental temperatures, but a better understanding of this variation will likely be critical for predicting responses to future climatic scenarios. Next, we discuss why variation in thermoregulatory characteristics should be considered when modeling the effects of climate change on heterothermic endotherms. Finally, we review some biophysical and biochemical factors that will limit adaptation and acclimation in endotherms. We consider both long-term, directional climate change and short-term (but increasingly common) anomalies in climate such as extreme heat waves and we suggest areas of important future research relating to both our basic understanding of endothermic thermoregulation and the responses of endotherms to climate change.

  19. Climate Change Predictions and Adaption Strategies for Coastal NASA Langley Research Center

    NASA Astrophysics Data System (ADS)

    De Young, R.

    2012-12-01

    Climate change could significantly impact the personal and operations of federal coastal laboratories. The Goddard Institute for Space Studies has made downscaled climate projections for Hampton Roads, Virginia a coastal region which includes NASA Langley Research Center (LaRC). These projections are being used to formulate adaptation and mitigation strategies to reduce climate change impacts at the center. Sea level rise and hurricanes will have significant impacts on LaRC and strategies such as surge modeling and tide gauge measurements and now underway. A proposed windbreak will reduce the impact of hurricane winds on center infrastructure. Disease vectors such as mosquitoes and ticks are being monitored and studied for their response to climate change. LaRC has significant forest and ecosystems which will be impacted by climate change and these impacts are being quantified. Mitigation strategies are being proposed such as the design of a 3 MW solar photovoltaic array to protect the center from brownouts and loss of power to critical missions. These and other programs will be discussed to reduce climate change impacts and allow LaRC to accomplish its mission into the next century.

  20. Extending the Shared Socioeconomic Pathways for sub-national impacts, adaptation, and vulnerability studies

    DOE PAGES

    Absar, Syeda Mariya; Preston, Benjamin L.

    2015-05-25

    The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impact, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impact, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However,more » the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impact, adaptation and vulnerability, and increasingly integrated assessment modeling, studies are conducted. Our objective for this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor-Actor-Sector framework. Finally, in addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative subnational socioeconomic futures for the assessment of climate change impacts and adaptation.« less

  1. Adaptive magnetorheological shock isolation mounts for drop-induced impacts

    NASA Astrophysics Data System (ADS)

    Singh, Harinder J.; Wereley, Norman M.

    2013-12-01

    Non-dimensional analysis and optimal control design of adaptive magnetorheological shock isolation (MRSI) mounts are addressed for drop-induced impacts. The governing equation of motion of a single degree-of-freedom under impact was derived, where a magnetorheological energy absorber (MREA), which has controllable stroking load and a passive linear spring, isolate the payload mass from the base that impacts the ground. During the impact event, the payload experiences both a compression and a rebound stroke. During the compression stroke, the payload descends as the MREA dissipates and the spring stores, the energy of impact. During the rebound stroke, the spring releases its stored energy under the control of the MREA. The Bingham number, defined as the ratio of the MREA yield force to its viscous force, is utilized as the control variable. A non-dimensional analysis was conducted using key parameters such as available MREA stroke and Bingham number. The first control objective was to ensure that the payload achieved a soft landing (i.e., comes to rest) at the end of the compression stroke by fully utilizing the available stroke of the MREA. The second control objective was to completely recover the available MREA stroke during rebound, with no overshoot of the equilibrium point, i.e. dead-beat control. It is shown that the optimal MRSI control strategy implies the selection of two distinct Bingham numbers, one for the compression stroke and one for the rebound stroke, which achieve the control objectives.

  2. A Meta-Analysis of Local Climate Change Adaptation Actions ...

    EPA Pesticide Factsheets

    Local governments are beginning to take steps to address the consequences of climate change, such as sea level rise and heat events. However, we do not have a clear understanding of what local governments are doing -- the extent to which they expect climate change to affect their community, the types of actions they have in place to address climate change, and the resources at their disposal for implementation. Several studies have been conducted by academics, non-governmental organizations, and public agencies to assess the status of local climate change adaptation. This project collates the findings from dozens of such studies to conduct a meta-analysis of local climate change adaptation actions. The studies will be characterized along several dimensions, including (a) methods used, (b) timing and geographic scope, (c) topics covered, (d) types of adaptation actions identified, (e) implementation status, and (f) public engagement and environmental justice dimensions considered. The poster presents the project's rationale and approach and some illustrative findings from early analyses. [Note: The document being reviewed is an abstract in which a poster is being proposed. The poster will enter clearance if the abstract is accepted] The purpose of this poster is to present the research framework and approaches I am developing for my ORISE postdoctoral project, and to get feedback on early analyses.

  3. Vulnerability and adaptation to climate change in the Comoe River Basin (West Africa).

    PubMed

    Yéo, Wonnan Eugène; Goula, Bi Tié Albert; Diekkrüger, Bernd; Afouda, Abel

    2016-01-01

    Climate change is impacting water users in many sectors: water supply, farming, industry, hydropower, fishing, housing, navigation and health. Existing situations, like population growth, movement of populations from rural to urban areas, poverty and pollution can aggravate the impacts of climate change. The aim of the study is to evaluate the vulnerability of different water user groups to climate change and define communities' adaptation strategies in the Comoe River Basin. Information was collected on communities' concerns and perception on changes in climate and potential adaptation measures and strategies. Results show that 95 % of the sample in the study communities had heard of it and are aware that climate change is occurring. They have been experiencing changes in economic activity and cropping pattern, reduced water level in rivers, crop failure, delay in cropping season, new pests and diseases, food insecurity, drop in income and decline in crop yield. Results also show that communities employ various adaptation strategies including crops diversification, substitution and calendar redefinition, agroforestry, borrowing from friends and money lenders and increasing fertilizer application.

  4. Adaptive Governance, Uncertainty, and Risk: Policy Framing and Responses to Climate Change, Drought, and Flood.

    PubMed

    Hurlbert, Margot; Gupta, Joyeeta

    2016-02-01

    As climate change impacts result in more extreme events (such as droughts and floods), the need to understand which policies facilitate effective climate change adaptation becomes crucial. Hence, this article answers the question: How do governments and policymakers frame policy in relation to climate change, droughts, and floods and what governance structures facilitate adaptation? This research interrogates and analyzes through content analysis, supplemented by semi-structured qualitative interviews, the policy response to climate change, drought, and flood in relation to agricultural producers in four case studies in river basins in Chile, Argentina, and Canada. First, an epistemological explanation of risk and uncertainty underscores a brief literature review of adaptive governance, followed by policy framing in relation to risk and uncertainty, and an analytical model is developed. Pertinent findings of the four cases are recounted, followed by a comparative analysis. In conclusion, recommendations are made to improve policies and expand adaptive governance to better account for uncertainty and risk. This article is innovative in that it proposes an expanded model of adaptive governance in relation to "risk" that can help bridge the barrier of uncertainty in science and policy.

  5. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    NASA Astrophysics Data System (ADS)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  6. Water Demands with Two Adaptation Responses to Climate Change in a Mexican Irrigation District

    NASA Astrophysics Data System (ADS)

    Ojeda, W.; Iñiguez-Covarrubias, M.; Rojano, A.

    2012-12-01

    It is well documented that climate change is inevitable and that farmers need to adapt to changes in projected climate. Changes in water demands for a Mexican irrigation district were assessed using an irrigation scheduling model. The impact of two adaptations actions on water demands were estimated and compared with a baseline scenario. Wet and dry cropping plans were selected from the last 15 water years with actual climatology (1961-1990) taken as reference and three A1B climate change projection periods P1, P2 and P3 (2011-2040, 2041-2070, and 2071-2098). Projected precipitation and air temperature (medium, maximum and minimum) data were obtained through weighted averages of the best CGCM projections for Mexico, available at the IPCC data distribution center, using the Reliability Ensemble Averaging method (REA). Two adaptation farmers' responses were analyzed: use of longer season varieties and reduction of planting dates toward colder season as warming intensifies in the future. An annual accumulated ETo value of 1554 mm was estimated for the base period P0. Cumulative and Daily irrigations demands were generated for each agricultural season using the four climate projection series and considering adaptations actions. Figure 1 integrates in a unique net flow curve for the Fall-Winter season under selected adaptations actions. The simulation results indicated that for mid century (Period P2), the use of longer-season cultivars (AV) will have more pronounced effect in daily net flow based than the reduction of planting season (APS) as climate change intensifies during present century. Without adaptation (WA), the increase in temperature will shorten the growing season of all annual crops, generating a peak shift with respect to reference case (WA-P0). Combined adoptions of adaptation actions (AP+V) can generate higher, peak and cumulative, crop water requirements than actual values as Figure 1 shows. There are clear trends that without adaptations, water

  7. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  8. Adaptive strategies to climate change in Southern Malawi

    NASA Astrophysics Data System (ADS)

    Chidanti-Malunga, J.

    Climate change poses a big challenge to rural livelihoods in the Shire Valley area of Southern Malawi, where communities have depended almost entirely on rain-fed agriculture for generations. The Shire Valley area comprises of low-altitude dambo areas and uplands which have been the main agricultural areas. Since early to mid 1980s, the uplands have experienced prolonged droughts and poor rainfall distribution, while the dambos have experienced recurrent seasonal floods. This study assessed some of the adaptive strategies exercised by small-scale rural farmers in response to climate change in the Shire Valley. The methodology used in collecting information includes group discussions, household surveys in the area, secondary data, and field observations. The results show that small-scale rural farmers exercise a number of adaptive strategies in response to climate change. These adaptive strategies include: increased use of water resources for small-scale irrigation or wetland farming, mostly using simple delivery techniques; increased management of residual moisture; and increased alternative sources of income such as fishing and crop diversity. It was also observed that government promoted the use of portable motorized pumps for small-scale irrigation in order to mitigate the effects of climate change. However, these external interventions were not fully adopted; instead the farmers preferred local interventions which mostly had indigenous elements.

  9. The impact of misregistration on change detection

    NASA Technical Reports Server (NTRS)

    Townshend, John R. G.; Justice, Christopher O.; Gurney, Charlotte; Mcmanus, James

    1992-01-01

    The impact of images misregistration on the detection of changes in land cover was studied using spatially degraded Landsat MSS images. Emphasis is placed on simulated images of the Normalized Difference Vegetation Index (NDVI) at spatial resolutions of 250 and 500 m. It is pointed out that there is the need to achieve high values of registration accuracy. The evidence from simulations suggests that misregistrations can have a marked effect on the ability of remotely sensed data to detect changes in land cover. Even subpixel misregistrations can have a major impact, and the most marked proportional changes will tend to occur at the finest misregistrations.

  10. Demographic aspects of climate change mitigation and adaptation.

    PubMed

    Lutz, Wolfgang; Striessnig, Erich

    2015-01-01

    This paper addresses the contribution of changes in population size and structures to greenhouse gas emissions and to the capacity to adapt to climate change. The paper goes beyond the conventional focus on the changing composition by age and sex. It does so by addressing explicitly the changing composition of the population by level of educational attainment, taking into account new evidence about the effect of educational attainment in reducing significantly the vulnerability of populations to climatic challenges. This evidence, which has inspired a new generation of socio-economic climate change scenarios, is summarized. While the earlier IPCC-SRES (Intergovernmental Panel on Climate Change-Special Report on Emissions Scenarios) scenarios only included alternative trajectories for total population size (treating population essentially as a scaling parameter), the Shared Socio-economic Pathways (SSPs) in the new scenarios were designed to capture the socio-economic challenges to climate change mitigation and adaptation, and include full age, sex, and education details for all countries.

  11. The impacts of climate change in coastal marine systems.

    PubMed

    Harley, Christopher D G; Randall Hughes, A; Hultgren, Kristin M; Miner, Benjamin G; Sorte, Cascade J B; Thornber, Carol S; Rodriguez, Laura F; Tomanek, Lars; Williams, Susan L

    2006-02-01

    Anthropogenically induced global climate change has profound implications for marine ecosystems and the economic and social systems that depend upon them. The relationship between temperature and individual performance is reasonably well understood, and much climate-related research has focused on potential shifts in distribution and abundance driven directly by temperature. However, recent work has revealed that both abiotic changes and biological responses in the ocean will be substantially more complex. For example, changes in ocean chemistry may be more important than changes in temperature for the performance and survival of many organisms. Ocean circulation, which drives larval transport, will also change, with important consequences for population dynamics. Furthermore, climatic impacts on one or a few 'leverage species' may result in sweeping community-level changes. Finally, synergistic effects between climate and other anthropogenic variables, particularly fishing pressure, will likely exacerbate climate-induced changes. Efforts to manage and conserve living marine systems in the face of climate change will require improvements to the existing predictive framework. Key directions for future research include identifying key demographic transitions that influence population dynamics, predicting changes in the community-level impacts of ecologically dominant species, incorporating populations' ability to evolve (adapt), and understanding the scales over which climate will change and living systems will respond.

  12. Creating a New Model for Mainstreaming Climate Change Adaptation for Critical Infrastructure: The New York City Climate Change Adaptation Task Force and the NYC Panel on Climate Change

    NASA Astrophysics Data System (ADS)

    Rosenzweig, C.; Solecki, W. D.; Freed, A. M.

    2008-12-01

    The New York City Climate Change Adaptation Task Force, launched in August 2008, aims to secure the city's critical infrastructure against rising seas, higher temperatures and fluctuating water supplies projected to result from climate change. The Climate Change Adaptation Task Force is part of PlaNYC, the city's long- term sustainability plan, and is composed of over 30 city and state agencies, public authorities and companies that operate the region's roads, bridges, tunnels, mass transit, and water, sewer, energy and telecommunications systems - all with critical infrastructure identified as vulnerable. It is one of the most comprehensive adaptation efforts yet launched by an urban region. To guide the effort, Mayor Michael Bloomberg has formed the New York City Panel on Climate Change (NPCC), modeled on the Intergovernmental Panel on Climate Change (IPCC). Experts on the panel include climatologists, sea-level rise specialists, adaptation experts, and engineers, as well as representatives from the insurance and legal sectors. The NPCC is developing planning tools for use by the Task Force members that provide information about climate risks, adaptation and risk assessment, prioritization frameworks, and climate protection levels. The advisory panel is supplying climate change projections, helping to identify at- risk infrastructure, and assisting the Task Force in developing adaptation strategies and guidelines for design of new structures. The NPCC will also publish an assessment report in 2009 that will serve as the foundation for climate change adaptation in the New York City region, similar to the IPCC reports. Issues that the Climate Change Adaptation Task Force and the NPCC are addressing include decision- making under climate change uncertainty, effective ways for expert knowledge to be incorporated into public actions, and strategies for maintaining consistent and effective attention to long-term climate change even as municipal governments cycle

  13. WITHDRAWN: Axisymmetric Adaptive Drop/Interface Impacting Study

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoming; Lowengrub, John; Cristini, Vittorio

    2005-11-01

    The impact of a drop upon an interface is studied using an axisymmetric adaptive level-set/finite element method. Under certain conditions, the drop will rebound off the interface before breaking through. The drop fluid and the fluid below the interface are identical. We characterize the behavior in terms of the relevant nondimensional parameters: the Reynolds number, the Weber number, and the viscosity and density ratios of the fluid components. One of the primary difficulties in performing numerical simulations of such flows is the accurate resolution of the lubrication forces that arise in the near contact region between the drop and interface. To overcome this difficulty, we use a spatially and temporally adaptive mesh together with a new, stable and accurate projection method for the Navier-Stokes equations and a mass-conserving level-set algorithm for capturing the motion of the drop and interface (J. Comp. Phys., v. 208, 2005). We validate our algorithm by successfully matching the recent experimental results on drop/interface impact by Mohamed-Kassim and Longmire (Phys. Fluids, v. 15, 2003).

  14. An assessment of the impact of climate adaptation measures to reduce flood risk on ecosystem services.

    PubMed

    Verburg, Peter H; Koomen, Eric; Hilferink, Maarten; Pérez-Soba, Marta; Lesschen, Jan Peter

    Measures of climate change adaptation often involve modification of land use and land use planning practices. Such changes in land use affect the provision of various ecosystem goods and services. Therefore, it is likely that adaptation measures may result in synergies and trade-offs between a range of ecosystems goods and services. An integrative land use modelling approach is presented to assess such impacts for the European Union. A reference scenario accounts for current trends in global drivers and includes a number of important policy developments that correspond to on-going changes in European policies. The reference scenario is compared to a policy scenario in which a range of measures is implemented to regulate flood risk and protect soils under conditions of climate change. The impacts of the simulated land use dynamics are assessed for four key indicators of ecosystem service provision: flood risk, carbon sequestration, habitat connectivity and biodiversity. The results indicate a large spatial variation in the consequences of the adaptation measures on the provisioning of ecosystem services. Synergies are frequently observed at the location of the measures itself, whereas trade-offs are found at other locations. Reducing land use intensity in specific parts of the catchment may lead to increased pressure in other regions, resulting in trade-offs. Consequently, when aggregating the results to larger spatial scales the positive and negative impacts may be off-set, indicating the need for detailed spatial assessments. The modelled results indicate that for a careful planning and evaluation of adaptation measures it is needed to consider the trade-offs accounting for the negative effects of a measure at locations distant from the actual measure. Integrated land use modelling can help land use planning in such complex trade-off evaluation by providing evidence on synergies and trade-offs between ecosystem services, different policy fields and societal

  15. Preface: Monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate

    NASA Astrophysics Data System (ADS)

    Brown, J. M.; Ciavola, P.; Masselink, G.; McCall, R.; Plater, A. J.

    2016-02-01

    Storms across the globe and their associated consequences in coastal zones (flooding and erosion), combined with the long-term geomorphic evolution of our coastlines, are a threat to life and assets, both socioeconomic and environmental. In a changing climate, with a rising global sea level, potentially changing patterns in storm tracks and storminess, and rising population density and pressures on the coastal zone, the future risk of coastal storm impacts is likely to increase. Coastal managers and policy makers therefore need to make effective and timely decisions on the use of resources for the immediate and longer Research focused on "monitoring and modelling to guide coastal adaptation to extreme storm events in a changing climate" is becoming more common; its goal is to provide science-based decision support for effective adaptation to the consequences of storm impacts, both now and under future climate scenarios at the coast. The growing transfer of information between the science community and end-users is enabling leading research to have a greater impact on the socioeconomic resilience of coastal communities. This special issue covers recent research activities relating to coastal hazard mapping in response to extreme events, economic impacts of long-term change, coastal processes influencing management decisions and the development of online decision support tools.

  16. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation

    PubMed Central

    Melvin, April M.; Larsen, Peter; Boehlert, Brent; Neumann, James E.; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S.; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J.; Marchenko, Sergey S.

    2017-01-01

    Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80–100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5. PMID:28028223

  17. Climate change damages to Alaska public infrastructure and the economics of proactive adaptation.

    PubMed

    Melvin, April M; Larsen, Peter; Boehlert, Brent; Neumann, James E; Chinowsky, Paul; Espinet, Xavier; Martinich, Jeremy; Baumann, Matthew S; Rennels, Lisa; Bothner, Alexandra; Nicolsky, Dmitry J; Marchenko, Sergey S

    2017-01-10

    Climate change in the circumpolar region is causing dramatic environmental change that is increasing the vulnerability of infrastructure. We quantified the economic impacts of climate change on Alaska public infrastructure under relatively high and low climate forcing scenarios [representative concentration pathway 8.5 (RCP8.5) and RCP4.5] using an infrastructure model modified to account for unique climate impacts at northern latitudes, including near-surface permafrost thaw. Additionally, we evaluated how proactive adaptation influenced economic impacts on select infrastructure types and developed first-order estimates of potential land losses associated with coastal erosion and lengthening of the coastal ice-free season for 12 communities. Cumulative estimated expenses from climate-related damage to infrastructure without adaptation measures (hereafter damages) from 2015 to 2099 totaled $5.5 billion (2015 dollars, 3% discount) for RCP8.5 and $4.2 billion for RCP4.5, suggesting that reducing greenhouse gas emissions could lessen damages by $1.3 billion this century. The distribution of damages varied across the state, with the largest damages projected for the interior and southcentral Alaska. The largest source of damages was road flooding caused by increased precipitation followed by damages to buildings associated with near-surface permafrost thaw. Smaller damages were observed for airports, railroads, and pipelines. Proactive adaptation reduced total projected cumulative expenditures to $2.9 billion for RCP8.5 and $2.3 billion for RCP4.5. For road flooding, adaptation provided an annual savings of 80-100% across four study eras. For nearly all infrastructure types and time periods evaluated, damages and adaptation costs were larger for RCP8.5 than RCP4.5. Estimated coastal erosion losses were also larger for RCP8.5.

  18. Adaptation.

    PubMed

    Broom, Donald M

    2006-01-01

    The term adaptation is used in biology in three different ways. It may refer to changes which occur at the cell and organ level, or at the individual level, or at the level of gene action and evolutionary processes. Adaptation by cells, especially nerve cells helps in: communication within the body, the distinguishing of stimuli, the avoidance of overload and the conservation of energy. The time course and complexity of these mechanisms varies. Adaptive characters of organisms, including adaptive behaviours, increase fitness so this adaptation is evolutionary. The major part of this paper concerns adaptation by individuals and its relationships to welfare. In complex animals, feed forward control is widely used. Individuals predict problems and adapt by acting before the environmental effect is substantial. Much of adaptation involves brain control and animals have a set of needs, located in the brain and acting largely via motivational mechanisms, to regulate life. Needs may be for resources but are also for actions and stimuli which are part of the mechanism which has evolved to obtain the resources. Hence pigs do not just need food but need to be able to carry out actions like rooting in earth or manipulating materials which are part of foraging behaviour. The welfare of an individual is its state as regards its attempts to cope with its environment. This state includes various adaptive mechanisms including feelings and those which cope with disease. The part of welfare which is concerned with coping with pathology is health. Disease, which implies some significant effect of pathology, always results in poor welfare. Welfare varies over a range from very good, when adaptation is effective and there are feelings of pleasure or contentment, to very poor. A key point concerning the concept of individual adaptation in relation to welfare is that welfare may be good or poor while adaptation is occurring. Some adaptation is very easy and energetically cheap and

  19. Assessing ozone-related health impacts under a changing climate.

    PubMed

    Knowlton, Kim; Rosenthal, Joyce E; Hogrefe, Christian; Lynn, Barry; Gaffin, Stuart; Goldberg, Richard; Rosenzweig, Cynthia; Civerolo, Kevin; Ku, Jia-Yeong; Kinney, Patrick L

    2004-11-01

    Climate change may increase the frequency and intensity of ozone episodes in future summers in the United States. However, only recently have models become available that can assess the impact of climate change on O3 concentrations and health effects at regional and local scales that are relevant to adaptive planning. We developed and applied an integrated modeling framework to assess potential O3-related health impacts in future decades under a changing climate. The National Aeronautics and Space Administration-Goddard Institute for Space Studies global climate model at 4 degrees x 5 degrees resolution was linked to the Penn State/National Center for Atmospheric Research Mesoscale Model 5 and the Community Multiscale Air Quality atmospheric chemistry model at 36 km horizontal grid resolution to simulate hourly regional meteorology and O3 in five summers of the 2050s decade across the 31-county New York metropolitan region. We assessed changes in O3-related impacts on summer mortality resulting from climate change alone and with climate change superimposed on changes in O3 precursor emissions and population growth. Considering climate change alone, there was a median 4.5% increase in O3-related acute mortality across the 31 counties. Incorporating O3 precursor emission increases along with climate change yielded similar results. When population growth was factored into the projections, absolute impacts increased substantially. Counties with the highest percent increases in projected O3 mortality spread beyond the urban core into less densely populated suburban counties. This modeling framework provides a potentially useful new tool for assessing the health risks of climate change.

  20. 76 FR 12945 - Instructions for Implementing Climate Change Adaptation Planning in Accordance With Executive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... QUALITY Instructions for Implementing Climate Change Adaptation Planning in Accordance With Executive Order 13514 AGENCY: Council on Environmental Quality. ACTION: Notice of Availability of Climate Change... (CEQ) is issuing instructions to Federal agencies for integrating climate change adaptation into...

  1. Climate change adaptation in a highly urbanized snowmelt dominated basin in Central Chile

    NASA Astrophysics Data System (ADS)

    Vicuna, S.; Bustos, E.; Merino, P.; Henriquez Dole, L. E.; Jansen, S.; Gil, M.; Ocampo, A.; Poblete, D.; Tosoni, D.; Meza, F. J.; Donoso, G.; Melo, O.

    2015-12-01

    The Maipo river basin holds 40% of Chile's total population and produces almost half of the country's Gross Domestic Product. The basin is located in the semiarid and snowmelt dominated central region of the country and, aside from the typical pressures of growth in developing country basins, the Maipo river basin faces climate change impacts associated with a reduction in total runoff and changes in its seasonality. Surface water is the main water source for human settlements, natural ecosystems, and economic activities including agriculture, mining and hydropower production. In 2012 a research project, called MAPA (Maipo Plan de Adaptacion), began with the objective of articulating a climate variability and climate change adaptation plan for the Maipo river basin. The project engaged at the beginning a group of relevant water and land use stakeholders which allowed for a good representation of critical aspects of an adaptation plan such as the definition of objectives and performance indicators, future land use scenarios, modeling of the different components of the system and design of adaptation strategies. The presentation will highlight the main results of the research project with a special focus on the upper catchments of the basin. These results include the assessment of impacts associated with future climate and land use scenarios on key components of the hydrologic cycle including snowmelt and glacier contribution to runoff and subsequent impacts on water availability for the operation of hydropower facilities, satisfaction of instream (recreation and aquatic ecosystem) uses and provision of water for the city of Santiago (7 million people) and to irrigate more than 100,000 hectares of high value crops. The integrative approach followed in this project including different perspectives on the use of water in the basin provides a good opportunity to test the varying degree of impacts that could be associated with a given future scenario and also understand

  2. The impact of changing technologies on instruction

    NASA Astrophysics Data System (ADS)

    Beichner, Robert

    2011-04-01

    Over the past decade technology has changed enormously. Google has made access to information nearly instantaneous while cell phones, which provide connections to both people and data, are now ubiquitous. This has led to large-scale changes in how students live their everyday lives and therefore impacts their expectations of higher education. Professors no longer need to serve as the main sources of content, but students need more guidance than ever to find the ``pearls of truth'' in the great sea of data now before them. This should impact how we do our jobs as instructors. This talk will discuss the impact of technology on students, how they learn, and how our roles as instructors will change.

  3. Hand in hand: public endorsement of climate change mitigation and adaptation.

    PubMed

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  4. Hand in Hand: Public Endorsement of Climate Change Mitigation and Adaptation

    PubMed Central

    Brügger, Adrian; Morton, Thomas A.; Dessai, Suraje

    2015-01-01

    This research investigated how an individual’s endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that “localising” climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research. PMID:25922938

  5. Handling preference heterogeneity for river services' adaptation to climate change.

    PubMed

    Andreopoulos, Dimitrios; Damigos, Dimitrios; Comiti, Francesco; Fischer, Christian

    2015-09-01

    Climate projection models for the Southern Mediterranean basin indicate a strong drought trend. This pattern is anticipated to affect a range of services derived from river ecosystems and consecutively deteriorate the sectoral outputs and household welfare. This paper aims to evaluate local residents' adaptation preferences for the Piave River basin in Italy. A Discrete Choice Experiment accounting for adaptation scenarios of the Piave River services was conducted and the collected data were econometrically analyzed using Random Parameters Logit, Latent Class and Covariance Heterogeneity models. In terms of policy-relevant outcomes, the analysis indicates that respondents are willing to pay for adaptation plans. This attitude is reflected on the compensating surplus to sustain the current state of the Piave, which corresponds to a monthly contribution of 80€ per household. From an econometric point of view, the results show that it is not sufficient to take solely into account general heterogeneity, provided that distinct treatment of the heterogeneity produces rather different welfare estimates. This implies that analysts should examine a set of criteria when deciding on how to better approach heterogeneity for each empirical data set. Overall, non-market values of environmental services should be considered when formulating cost-effective adaptation measures for river systems undergoing climate change effects and appropriate heterogeneity approximation could render these values unbiased and accurate.

  6. Climate change impacts on southeastern U.S. basins

    USGS Publications Warehouse

    Georgakakos, Aris P.; Yao, Huaming

    2000-01-01

    The work described herein aims to assess the impacts of potential climate change on the Apalachicola-Chattahoochee-Flint (ACF) and Alabama-Coosa-Talapoosa (ACT) river basins in the Southeastern US. The assessment addresses the potential impacts on watershed hydrology (soil moisture and streamflow) and on major water uses including water supply, drought management, hydropower, environmental and ecological protection, recreation, and navigation. This investigation develops new methods, establishes and uses an integrated modeling framework, and reaches several important conclusions that bear upon river basin planning and management. Although the specific impacts vary significantly with the choice of the GCM scenario, some general conclusions are that (1) soil moisture and streamflow variability is expected to increase, and (2) flexible and adaptive water sharing agreements, management strategies, and institutional processes are best suited to cope with the uncertainty associated with future climate scenarios.

  7. Teaching older adults by adapting for aging changes.

    PubMed

    Weinrich, S P; Weinrich, M C; Boyd, M D; Atwood, J; Cervenka, B

    1994-12-01

    Few teaching programs are geared to meet the special learning needs of the elderly. This pilot study used a quasi-experimental pretest-posttest design to measure the effect of the Adaptation for Aging Changes (AAC) Method on fecal occult blood screening (FOBS) at meal sites for the elderly in the South. The AAC Method uses techniques that adjust the presentation to accommodate for normal aging changes and includes a demonstration of the procedure for collection of the stool blood test, memory reminders of the date to return the stool blood test, and written materials adapted to the 5th grade reading level. In addition, actual practice of the FOBS with the use of peanut butter was added to the AAC Method, making it the AAC with Practice Method (AACP) in two sites. The American Cancer Society's colorectal cancer educational slide-tape show served as the basis for all of the methods. Hemoccult II kits were distributed at no cost to the participants. Descriptive statistics, chi 2, and logistic regressions were used to analyze data from 135 Council on Aging meal sites' participants. The average age of the participants was 72 years; the average educational level was 8th grade; over half the sample was African-American; and half of the participants had incomes below the poverty level. Results support a significant increase in participation in FOBS in participants taught by the AACP Method [chi 2 (1, n = 56) = 5.34, p = 0.02; odds ratio = 6.2]. This research provides support for teaching that makes adaptations for aging changes, especially adaptations that include actual practice of the procedure.

  8. Climate impacts of Australian land cover change

    NASA Astrophysics Data System (ADS)

    Lawrence, P. J.

    2004-05-01

    Australian land cover has been dramatically altered since European settlement primarily for agricultural utilization, with native vegetation widely replaced or modified for cropping and intensive animal production. While there have been numerous investigations into the regional and near surface climate impacts of Australian land cover change, these investigation have not included the climate impacts of larger-scale changes in atmospheric circulation and their associated feedbacks, or the impacts of longer-term soil moisture feedbacks. In this research the CSIRO General Circulation Model (GCM) was used to investigate the climate impacts of Australian land cover change, with larger-scale and longer-term feedbacks. To avoid the common problem of overstating the magnitude and spatial extent of changes in land surface conditions prescribed in land cover change experiments, the current Australian land surface properties were described from finer-scale, satellite derived land cover datasets, with land surface conditions extrapolating from remnant native vegetation to pre-clearing extents to recreate the pre-clearing land surface properties. Aggregation rules were applied to the fine-scale data to generate the land surface parameters of the GCM, ensuring the equivalent sub-grid heterogeneity and land surface biogeophysics were captured in both the current and pre-clearing land surface parameters. The differences in climate simulated in the pre-clearing and current experiments were analyzed for changes in Australian continental and regional climate to assess the modeled climate impacts of Australian land cover change. The changes in modeled climate were compared to observed changes in Australian precipitation over the last 50 and 100 years to assess whether modeled results could be detected in the historical record. The differences in climate simulation also were analyzed at the global scale to assess the impacts of local changes on larger scale circulation and climate at

  9. Potential Impacts of Climatic Change on European Breeding Birds

    PubMed Central

    Huntley, Brian; Collingham, Yvonne C.; Willis, Stephen G.; Green, Rhys E.

    2008-01-01

    Background Climatic change is expected to lead to changes in species' geographical ranges. Adaptation strategies for biodiversity conservation require quantitative estimates of the magnitude, direction and rates of these potential changes. Such estimates are of greatest value when they are made for large ensembles of species and for extensive (sub-continental or continental) regions. Methodology/Principal Findings For six climate scenarios for 2070–99 changes have been estimated for 431 European breeding bird species using models relating species' distributions in Europe to climate. Mean range centroid potentially shifted 258–882 km in a direction between 341° (NNW) and 45° (NE), depending upon the climate scenario considered. Potential future range extent averaged 72–89% of the present range, and overlapped the present range by an average of 31–53% of the extent of the present range. Even if potential range changes were realised, the average number of species breeding per 50×50 km grid square would decrease by 6·8–23·2%. Many species endemic or near-endemic to Europe have little or no overlap between their present and potential future ranges; such species face an enhanced extinction risk as a consequence of climatic change. Conclusions/Significance Although many human activities exert pressures upon wildlife, the magnitude of the potential impacts estimated for European breeding birds emphasises the importance of climatic change. The development of adaptation strategies for biodiversity conservation in the face of climatic change is an urgent need; such strategies must take into account quantitative evidence of potential climatic change impacts such as is presented here. PMID:18197250

  10. Assessing the impacts of climatic change on mountain water resources.

    PubMed

    Beniston, Martin; Stoffel, Markus

    2014-09-15

    As the evidence for human induced climate change becomes clearer, so too does the realization that its effects will have impacts on numerous environmental and socio-economic systems. Mountains are recognized as very sensitive physical environments with populations whose histories and current social positions often strain their capacity to accommodate intense and rapid changes to their resource base. It is thus essential to assess the impacts of a changing climate, focusing on the quantity of water originating in mountain regions, particularly where snow and ice melt represent a large streamflow component as well as a local resource in terms of freshwater supply, hydropower generation, or irrigation. Increasing evidence of glacier retreat, permafrost degradation and reduced mountain snowpack has been observed in many regions, thereby suggesting that climate change may seriously affect streamflow regimes. These changes could in turn threaten the availability of water resources for many environmental and economic systems, and exacerbate a range of natural hazards that would compound these impacts. As a consequence, socio-economic structures of downstream living populations would be also impacted, calling for better preparedness and strategies to avoid conflicts of interest between water-dependent economic actors. This paper is thus an introduction to the Special Issue of this journal dedicated to the European Union Seventh Framework Program (EU-FP7) project ACQWA (Assessing Climate Impacts on the Quantity and Quality of WAter), a major European network of scientists that was coordinated by the University of Geneva from 2008 to 2014. The goal of ACQWA has been to address a number of these issues and propose a range of solutions for adaptation to change and to help improve water governance in regions where quantity, seasonality, and perhaps quality of water may substantially change in coming decades.

  11. Climate change adaptation for the US National Wildlife Refuge System

    USGS Publications Warehouse

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  12. Climate change adaptation for the US National Wildlife Refuge System.

    PubMed

    Griffith, Brad; Scott, J Michael; Adamcik, Robert; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua; McGuire, A David; Pidgorna, Anna

    2009-12-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  13. Aiding cities in their work on climate change adaptation

    NASA Astrophysics Data System (ADS)

    Hamilton, P.

    2013-12-01

    Urban areas around the world are at the frontlines of climate change because of their enormous aggregate populations and because of their vulnerability to multiple climate change stressors. Half of our planet's 7.1 billion inhabitants currently reside in cities with six billion people projected to call cities home by 2050. In the U.S. and much of the rest of the world, cities are warming at twice the rate of the planet. Superimposed on urban climate changes driven by global warming are the regional effects of urban heat domes driven by large differences in land use, building materials, and vegetation between cities and their rural surroundings. In megacities - those with populations exceeding 10 million people - such as Tokyo - urban heat domes can contribute to daytime temperatures that soar to more than 11°C higher than their rural surroundings. In addition, the localized warming can alter patterns of precipitation in metropolitan regions and perhaps even influence the frequency and severity of severe weather. Municipal officials need to accelerate their efforts to prepare and implement climate change adaptation strategies but what are the institutions that can help enable this work? Informal science education centers can play vital roles because they are overwhelmingly in urban settings and because they can act as ';competent outsiders.' They are neither responsible for conducting climate change research nor accountable for implementing public policies to address climate change. They instead can play an essential role of ensuring that solid science informs the formulation of good practices and policies. It is incumbent, therefore, for informal science education centers to accelerate and enhance their abilities to help translate scientific insights into on-the-ground actions. This session will explore the potential roles of informal science education centers to advance climate change adaptation through a review of the urban climate change education initiatives

  14. Robust negative impacts of climate change on African agriculture

    NASA Astrophysics Data System (ADS)

    Schlenker, Wolfram; Lobell, David B.

    2010-01-01

    There is widespread interest in the impacts of climate change on agriculture in Sub-Saharan Africa (SSA), and on the most effective investments to assist adaptation to these changes, yet the scientific basis for estimating production risks and prioritizing investments has been quite limited. Here we show that by combining historical crop production and weather data into a panel analysis, a robust model of yield response to climate change emerges for several key African crops. By mid-century, the mean estimates of aggregate production changes in SSA under our preferred model specification are - 22, - 17, - 17, - 18, and - 8% for maize, sorghum, millet, groundnut, and cassava, respectively. In all cases except cassava, there is a 95% probability that damages exceed 7%, and a 5% probability that they exceed 27%. Moreover, countries with the highest average yields have the largest projected yield losses, suggesting that well-fertilized modern seed varieties are more susceptible to heat related losses.

  15. An analysis of the impact of auditory-nerve adaptation on behavioral measures of temporal integration in cochlear implant recipients

    NASA Astrophysics Data System (ADS)

    Hay-McCutcheon, Marcia J.; Brown, Carolyn J.; Abbas, Paul J.

    2005-10-01

    The objective of this study was to determine the impact that auditory-nerve adaptation has on behavioral measures of temporal integration in Nucleus 24 cochlear implant recipients. It was expected that, because the auditory nerve serves as the input to central temporal integrator, a large degree of auditory-nerve adaptation would reduce the amount of temporal integration. Neural adaptation was measured by tracking amplitude changes of the electrically evoked compound action potential (ECAP) in response to 1000-pps biphasic pulse trains of varying durations. Temporal integration was measured at both suprathreshold and threshold levels by an adaptive procedure. Although varying degrees of neural adaptation and temporal integration were observed across individuals, results of this investigation revealed no correlation between the degree of neural adaptation and psychophysical measures of temporal integration.

  16. An analysis of the impact of auditory-nerve adaptation on behavioral measures of temporal integration in cochlear implant recipients.

    PubMed

    Hay-McCutcheon, Marcia J; Brown, Carolyn J; Abbas, Paul J

    2005-10-01

    The objective of this study was to determine the impact that auditory-nerve adaptation has on behavioral measures of temporal integration in Nucleus 24 cochlear implant recipients. It was expected that, because the auditory nerve serves as the input to central temporal integrator, a large degree of auditory-nerve adaptation would reduce the amount of temporal integration. Neural adaptation was measured by tracking amplitude changes of the electrically evoked compound action potential (ECAP) in response to 1000-pps biphasic pulse trains of varying durations. Temporal integration was measured at both suprathreshold and threshold levels by an adaptive procedure. Although varying degrees of neural adaptation and temporal integration were observed across individuals, results of this investigation revealed no correlation between the degree of neural adaptation and psychophysical measures of temporal integration.

  17. Using Web GIS "Climate" for Adaptation to Climate Change

    NASA Astrophysics Data System (ADS)

    Gordova, Yulia; Martynova, Yulia; Shulgina, Tamara

    2015-04-01

    A work is devoted to the application of an information-computational Web GIS "Climate" developed by joint team of the Institute of Monitoring of Climatic and Ecological Systems SB RAS and Tomsk State University to raise awareness about current and future climate change as a basis for further adaptation. Web-GIS "Climate» (http://climate.scert.ru/) based on modern concepts of Web 2.0 provides opportunities to study regional climate change and its consequences by providing access to climate and weather models, a large set of geophysical data and means of processing and visualization. Also, the system is used for the joint development of software applications by distributed research teams, research based on these applications and undergraduate and graduate students training. In addition, the system capabilities allow creating information resources to raise public awareness about climate change, its causes and consequences, which is a necessary step for the subsequent adaptation to these changes. Basic information course on climate change is placed in the public domain and is aimed at local population. Basic concepts and problems of modern climate change and its possible consequences are set out and illustrated in accessible language. Particular attention is paid to regional climate changes. In addition to the information part, the course also includes a selection of links to popular science network resources on current issues in Earth Sciences and a number of practical tasks to consolidate the material. These tasks are performed for a particular territory. Within the tasks users need to analyze the prepared within the "Climate" map layers and answer questions of direct interest to the public: "How did the minimum value of winter temperatures change in your area?", "What are the dynamics of maximum summer temperatures?", etc. Carrying out the analysis of the dynamics of climate change contributes to a better understanding of climate processes and further adaptation

  18. Economic valuation of climate change adaptation in developing countries.

    PubMed

    Stage, Jesper

    2010-01-01

    This paper reviews the literature on the economics of climate change adaptation in developing countries, and identifies three key points for consideration in future studies. One key point is that all development policy should be formulated using forecasts from climate science as a baseline. When this is not done, there is risk that a false status quo without climate change is seen as an implicit baseline. Another key point is that authors must be clearer about their behavioral assumptions: Many studies either (problematically) assume profit maximization on the side of farm households, or do not specify behavioral assumptions at all. A third important point is that the allocation of rights is crucial for the results; if households have a right to maintain their current livelihoods, the costs of climate change in developing countries are considerably greater than traditional willingness-to-pay studies would indicate. Thus, costs and benefits of climate change adaptation cannot be analyzed using economic aspects only; climate science, behavioral science, and legal and moral aspects have crucial implications for the outcome of the analysis.

  19. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    PubMed

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  20. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    NASA Astrophysics Data System (ADS)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  1. Potential economic benefits of adapting agricultural production systems to future climate change

    USGS Publications Warehouse

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  2. Potential economic benefits of adapting agricultural production systems to future climate change.

    PubMed

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  3. [Ecophysiological adaptability of tropical water organisms to salinity changes].

    PubMed

    Chung, K S

    2001-03-01

    Physiological response of tropical organisms to salinity changes was studied for some marine, estuarine and freshwater fishes (Astyanax bimaculatus, Petenia karussii, Cyprinodon dearborni, and Oreochromis mossambicus), marine and freshwater crustaceans (Penaeus brasiliensis, Penaeus schmitti and Macrobrachium carcinus), and marine bivalves (Perna perna, Crassostrea rhizophorae, and Arca zebra) collected from Northeast Venezuela. They were acclimated for four weeks at various salinities, and (1) placed at high salinities to determine mean lethal salinity, (2) tested by increasing salinity 5@1000 per day to define upper lethal salinity tolerance limit, or (3) observed in a saline gradient tank to determine salinity preference. Acclimation level was the most significant factor. This phenomenon is important for tropical aquatic organisms in shallow waters, where they can adapt to high salinity during the dry season and cannot lose their acclimation level at low salinity during abrupt rain. For saline adaptation of tropical organisms, this behavior will contribute to their proliferation and distribution in fluctuating salinity environments.

  4. Integrated Climate Change Information for Resilient Adaptation Planning

    EPA Science Inventory

    Awareness is growing that some air, water, and ecosystem impacts from climate change are inevitable due to the long residence times of key greenhouse gases (GHGs), including carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O), which are in...

  5. Impact of aging on long-term ocular reflex adaptation.

    PubMed

    Gutierrez-Castellanos, Nicolas; Winkelman, Beerend H J; Tolosa-Rodriguez, Leonardo; De Gruijl, Jornt R; De Zeeuw, Chris I

    2013-12-01

    Compensatory eye movements (CEMs) stabilize the field of view enabling visual sharpness despite self-induced motion or environmental perturbations. The vestibulocerebellum makes it possible to adapt these reflex behaviors to perform optimally under novel circumstances that are sustained over time. Because of this and the fact that the eye is relatively insensitive to fatigue and musculoskeletal aging effects, CEMs form an ideal motor system to assess aging effects on cerebellar motor learning. In the present study, we performed an extensive behavioral examination of the impact of aging on both basic CEMs and oculomotor-based learning paradigms spanning multiple days. Our data show that healthy aging has little to no effect on basic CEM performance despite sensory deterioration, suggesting a central compensatory mechanism. Young mice are capable of adapting their oculomotor output to novel conditions rapidly and accurately, even to the point of reversing the direction of the reflex entirely. However, oculomotor learning and consolidation capabilities show a progressive decay as age increases.

  6. The impact of neglect on initial adaptation to school.

    PubMed

    Manly, Jody Todd; Lynch, Michael; Oshri, Assaf; Herzog, Margaret; Wortel, Sanne N

    2013-08-01

    This study examined the impact of child neglect during the first 4 years of life on adaptation to school during kindergarten and first grade in the context of neighborhood poverty (NP). Processes related to the development of school competencies were examined, including the mediational role of cognitive functioning and ego-resiliency (ER) in shaping children's school outcomes. A total of 170 low-income urban children were followed prospectively for 2 years (ages 4-6). Results indicated that neglected children had significantly lower scores on kindergarten classroom behavior and first-grade academic performance than nonneglected children. Children's cognitive performance at age 4, controlling for maternal intelligence quotient, mediated the relation between severity of neglect and children's behavior in kindergarten as well as their academic performance in first grade. Moreover, severity of neglect was related to children's ER at age 4. However, additional ecological adversity in the form of NP moderated the link between ER and classroom behavior, such that at lower levels of poverty, ER mediated the relation between severity of neglect and school adaptation. Conversely, when NP was extreme, the effects of ER were attenuated and ER ceased to predict behavioral performance in kindergarten. The implications of these findings for prevention and intervention are discussed.

  7. An Adaptation Dilemma Caused by Impacts-Modeling Uncertainty

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Müller, C.; Elliott, J. W.; Heinke, J.; Arneth, A.; Bierkens, M. F.; Ciais, P.; Clark, D. H.; Deryng, D.; Doll, P. M.; Falloon, P.; Fekete, B. M.; Folberth, C.; Friend, A. D.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M. R.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.

    2013-12-01

    Ensuring future well-being for a growing population under either strong climate change or an aggressive mitigation strategy requires a subtle balance of potentially conflicting response measures. In the case of competing goals, uncertainty in impact estimates plays a central role when high confidence in achieving a primary objective (such as food security) directly implies an increased probability of uncertainty induced failure with regard to a competing target (such as climate protection). We use cross sectoral consistent multi-impact model simulations from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP, www.isi-mip.org) to illustrate this uncertainty dilemma: RCP projections from 7 global crop, 11 hydrological, and 7 biomes models are combined to analyze irrigation and land use changes as possible responses to climate change and increasing crop demand due to population growth and economic development. We show that - while a no-regrets option with regard to climate protection - additional irrigation alone is not expected to balance the demand increase by 2050. In contrast, a strong expansion of cultivated land closes the projected production-demand gap in some crop models. However, it comes at the expense of a loss of natural carbon sinks of order 50%. Given the large uncertainty of state of the art crop model projections even these strong land use changes would not bring us ';on the safe side' with respect to food supply. In a world where increasing carbon emissions continue to shrink the overall solution space, we demonstrate that current impacts-modeling uncertainty is a luxury we cannot afford. ISI-MIP is intended to provide cross sectoral consistent impact projections for model intercomparison and improvement as well as cross-sectoral integration. The results presented here were generated within the first Fast-Track phase of the project covering global impact projections. The second phase will also include regional projections. It is the aim

  8. Climate change vulnerability, adaptation and risk perceptions at farm level in Punjab, Pakistan.

    PubMed

    Abid, Muhammad; Schilling, Janpeter; Scheffran, Jürgen; Zulfiqar, Farhad

    2016-03-15

    Pakistan is among the countries highly exposed and vulnerable to climate change. The country has experienced many severe floods, droughts and storms over the last decades. However, little research has focused on the investigation of vulnerability and adaptation to climate-related risks in Pakistan. Against this backdrop, this article investigates the farm level risk perceptions and different aspects of vulnerability to climate change including sensitivity and adaptive capacity at farm level in Pakistan. We interviewed a total of 450 farming households through structured questionnaires in three districts of Punjab province of Pakistan. This study identified a number of climate-related risks perceived by farm households such as extreme temperature events, insect attacks, animal diseases and crop pests. Limited water availability, high levels of poverty and a weak role of local government in providing proper infrastructure were the factors that make farmers more sensitive to climate-related risks. Uncertainty or reduction in crop and livestock yields; changed cropping calendars and water shortage were the major adverse impacts of climate-related risks reported by farmers in the study districts. Better crop production was reported as the only positive effect. Further, this study identified a number of farm level adaptation methods employed by farm households that include changes in crop variety, crop types, planting dates and input mix, depending upon the nature of the climate-related risks. Lack of resources, limited information, lack of finances and institutional support were some constraints that limit the adaptive capacity of farm households. This study also reveals a positive role of cooperation and negative role of conflict in the adaptation process. The study suggests to address the constraints to adaptation and to improve farm level cooperation through extended outreach and distribution of institutional services, particularly climate-specific farm advisory

  9. Adaptive changes in renal mitochondrial redox status in diabetic nephropathy

    SciTech Connect

    Putt, David A.; Zhong, Qing; Lash, Lawrence H.

    2012-01-15

    Nephropathy is a serious and common complication of diabetes. In the streptozotocin (STZ)-treated rat model of diabetes, nephropathy does not typically develop until 30 to 45 days post-injection, although hyperglycemia occurs within 24 h. We tested the hypothesis that chronic hyperglycemia results in a modest degree of oxidative stress that is accompanied by compensatory changes in certain antioxidants and mitochondrial redox status. We propose that as kidneys progress to a state of diabetic nephropathy, further adaptations occur in mitochondrial redox status. Basic parameters of renal function in vivo and several parameters of mitochondrial function and glutathione (GSH) and redox status in isolated renal cortical mitochondria from STZ-treated and age-matched control rats were examined at 30 days and 90 days post-injection. While there was no effect of diabetes on blood urea nitrogen, measurement of other, more sensitive parameters, such as urinary albumin and protein, and histopathology showed significant and progressive worsening in diabetic rats. Thus, renal function is compromised even prior to the onset of frank nephropathy. Changes in mitochondrial respiration and enzyme activities indicated existence of a hypermetabolic state. Higher mitochondrial GSH content and rates of GSH transport into mitochondria in kidneys from diabetic rats were only partially due to changes in expression of mitochondrial GSH carriers and were mostly due to higher substrate supply. Although there are few clear indicators of oxidative stress, there are several redox changes that occur early and change further as nephropathy progresses, highlighting the complexity of the disease. Highlights: ►Adaptive changes in renal mitochondrial and redox status in diabetic rats. ►Modest renal dysfunction even prior to onset of nephropathy. ►Elevated concentrations of mitochondrial GSH in diabetic kidneys. ►Change in GSH due partly to increased protein expression of transporter.

  10. Land Use and Management Change in the U.S. with Adaptation and Mitigation under Climate Change

    NASA Astrophysics Data System (ADS)

    Mu, J. E.; McCarl, B.

    2011-12-01

    in the absence of GHG prices, but when those prices are introduced emissions are reduced by 6 millions tones CO2 equivalent. Similarly, under climate change, GHG prices stimulate a gain in carbon sequestration in the agricultural and forestry sectors. 4. Forest sector welfare and crop producer surplus is reduced under the adaption policy by a small amount, that is -0.02 and 0.14-0.2 billion dollars respectively. However, forest welfare, agricultural welfare, crop producer surplus and livestock producer surplus all increased, by 0.62, 0.67, 0.84 and 1.48 billion dollars, respectively when GHG prices are introduced. References Adams DM, Alig RJ, McCarl BA et al., 2005. FASOMGHG conceptual structure, and specification: documentation. Texas A&M University, (http://agecon2.tamu.edu/people/faculty/mccarl-bruce/papers/ 1212FASOMGHG_doc.pdf) IPCC (Intergovernmental Panel on Climate Change), 2007. Impacts, Adaptation and Vulnerability. Cambridge University Press, Cambridge, UK Mendelsohn R, Dinar A. 2009. Land Use and Climate Change Interactions. Annual Review of Resource Economics. 1: 309-332.

  11. California Action to Increase Resiliency to Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Brunello, A.

    2008-12-01

    With the passage and implementation of California's Global Warming Solutions Act (AB 32), California is providing international leadership in mitigating greenhouse gas emissions. In concert with these efforts, California is also developing a comprehensive state climate adaptation strategy to increase the state's resiliency to existing and projected sea level rise, rising temperatures, and precipitation changes. I will describe the process being used to develop the strategy, which focuses on identifying areas most vulnerable to climate impacts, developing strategies to reduce risks to vulnerable areas, and implementing an action plan. An emphasis on strategies related to mountain environments such as the Sierra Nevada Mountain range will be presented.

  12. Adaptive impact of the chimeric gene Quetzalcoatl in Drosophila melanogaster.

    PubMed

    Rogers, Rebekah L; Bedford, Trevor; Lyons, Ana M; Hartl, Daniel L

    2010-06-15

    Chimeric genes, which form through the genomic fusion of two protein-coding genes, are a significant source of evolutionary novelty in Drosophila melanogaster. However, the propensity of chimeric genes to produce adaptive phenotypic changes is not fully understood. Here, we describe the chimeric gene Quetzalcoatl (Qtzl; CG31864), which formed in the recent past and swept to fixation in D. melanogaster. Qtzl arose through a duplication on chromosome 2L that united a portion of the mitochondrially targeted peptide CG12264 with a segment of the polycomb gene escl. The 3' segment of the gene, which is derived from escl, is inherited out of frame, producing a unique peptide sequence. Nucleotide diversity is drastically reduced and site frequency spectra are significantly skewed surrounding the duplicated region, a finding consistent with a selective sweep on the duplicate region containing Qtzl. Qtzl has an expression profile that largely resembles that of escl, with expression in early pupae, adult females, and male testes. However, expression patterns appear to have been decoupled from both parental genes during later embryonic development and in head tissues of adult males, indicating that Qtzl has developed a distinct regulatory profile through the rearrangement of different 5' and 3' regulatory domains. Furthermore, misexpression of Qtzl suppresses defects in the formation of the neuromuscular junction in larvae, demonstrating that Qtzl can produce phenotypic effects in cells. Together, these results show that chimeric genes can produce structural and regulatory changes in a single mutational step and may be a major factor in adaptive evolution.

  13. Adaptation response surfaces from an ensemble of wheat projections under climate change in Europe

    NASA Astrophysics Data System (ADS)

    Ruiz-Ramos, Margarita; Ferrise, Roberto

    2016-04-01

    The uncertainty about climate change (CC) complicates impact adaptation and risk management evaluation at the regional level. Approaches for managing this uncertainty and for simulating and communicating climate change impacts and adaptation opportunities are required. Here we apply an ensemble of crop models for adapting rainfed winter wheat at Lleida (NE Spain), constructing adaptation response surfaces (ARS). Our methodology has been adapted from Pirttioja et al. (2015). Impact response surfaces (IRS) are plotted surfaces showing the response of an impact variable (here crop yield Y) to changes in two explanatory variables (here precipitation P and temperature T). By analyzing adaptation variables such as changes in crop yield (ΔY) when an adaptation option is simulated, these can be interpreted as the adaptation response to potential changes of P and T, i.e. ARS. To build these ARS, we explore the sensitivity of an ensemble of wheat models to changes in T and P. Baseline (1981-2010) T and P were modified using a delta change approach with changes in the seasonal patterns. Three levels of CO2 (representing future conditions until 2050) and two actual soil profiles are considered. Crop models were calibrated with field data from Abeledo et al. (2008) and Cartelle et al. (2006). Most promising adaptation options to be analyzed by the ARS approach are identified in a pilot stage with the models DSSAT4.5 and SiriusQuality v.2, subsequently simulating the selected adaptation combinations by the whole ensemble of 11 crop models. The adaptation options identified from pilot stage were: a cultivar with no vernalisation requirements, shortening or extending a 10 % the crop cycle of the standard cultivar, sowing 15 days earlier and 30 days later than the standard date, supplementary irrigation with 40 mm at flowering and full irrigation. These options and those of the standard cultivar and management resulted in 54 combinations and 450.000 runs per crop model. Our

  14. Sea Extremes: Integrated impact assessment in coastal climate adaptation

    NASA Astrophysics Data System (ADS)

    Sorensen, Carlo; Knudsen, Per; Broge, Niels; Molgaard, Mads; Andersen, Ole

    2016-04-01

    We investigate effects of sea level rise and a change in precipitation pattern on coastal flooding hazards. Historic and present in situ and satellite data of water and groundwater levels, precipitation, vertical ground motion, geology, and geotechnical soil properties are combined with flood protection measures, topography, and infrastructure to provide a more complete picture of the water-related impact from climate change at an exposed coastal location. Results show that future sea extremes evaluated from extreme value statistics may, indeed, have a large impact. The integrated effects from future storm surges and other geo- and hydro-parameters need to be considered in order to provide for the best protection and mitigation efforts, however. Based on the results we present and discuss a simple conceptual model setup that can e.g. be used for 'translation' of regional sea level rise evidence and projections to concrete impact measures. This may be used by potentially affected stakeholders -often working in different sectors and across levels of governance, in a common appraisal of the challenges faced ahead. The model may also enter dynamic tools to evaluate local impact as sea level research advances and projections for the future are updated.

  15. Impact of Changing Societal Pressures Affecting Mothers.

    ERIC Educational Resources Information Center

    Tuma, June M.

    This review examines the literature on the effect of marriage and motherhood on women's psychological well-being. The paper discusses the impact of child rearing on life satisfaction and feelings of stress and considers the special problems of the working mother. Changing social attitudes surrounding a woman's role as wife and marital dissolution…

  16. The role of coastal plant communities for climate change mitigation and adaptation

    NASA Astrophysics Data System (ADS)

    Duarte, Carlos M.; Losada, Iñigo J.; Hendriks, Iris E.; Mazarrasa, Inés; Marbà, Núria

    2013-11-01

    Marine vegetated habitats (seagrasses, salt-marshes, macroalgae and mangroves) occupy 0.2% of the ocean surface, but contribute 50% of carbon burial in marine sediments. Their canopies dissipate wave energy and high burial rates raise the seafloor, buffering the impacts of rising sea level and wave action that are associated with climate change. The loss of a third of the global cover of these ecosystems involves a loss of CO2 sinks and the emission of 1 Pg CO2 annually. The conservation, restoration and use of vegetated coastal habitats in eco-engineering solutions for coastal protection provide a promising strategy, delivering significant capacity for climate change mitigation and adaption.

  17. Adapting My Weather Impacts Decision Aid (MyWIDA) to Additional Web Application Server Technologies

    DTIC Science & Technology

    2015-08-01

    ARL-TN-0688 ● AUG 2015 US Army Research Laboratory Adapting My Weather Impacts Decision Aid (MyWIDA) to Additional Web...Laboratory Adapting My Weather Impacts Decision Aid (MyWIDA) to Additional Web Application Server Technologies by Jacob C Randall and Jeffrey O...COVERED (From - To) May–Aug 2015 4. TITLE AND SUBTITLE Adapting My Weather Impacts Decision Aid (MyWIDA) to Additional Web Application Server

  18. Lethal aggression in Pan is better explained by adaptive strategies than human impacts.

    PubMed

    Wilson, Michael L; Boesch, Christophe; Fruth, Barbara; Furuichi, Takeshi; Gilby, Ian C; Hashimoto, Chie; Hobaiter, Catherine L; Hohmann, Gottfried; Itoh, Noriko; Koops, Kathelijne; Lloyd, Julia N; Matsuzawa, Tetsuro; Mitani, John C; Mjungu, Deus C; Morgan, David; Muller, Martin N; Mundry, Roger; Nakamura, Michio; Pruetz, Jill; Pusey, Anne E; Riedel, Julia; Sanz, Crickette; Schel, Anne M; Simmons, Nicole; Waller, Michel; Watts, David P; White, Frances; Wittig, Roman M; Zuberbühler, Klaus; Wrangham, Richard W

    2014-09-18

    Observations of chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) provide valuable comparative data for understanding the significance of conspecific killing. Two kinds of hypothesis have been proposed. Lethal violence is sometimes concluded to be the result of adaptive strategies, such that killers ultimately gain fitness benefits by increasing their access to resources such as food or mates. Alternatively, it could be a non-adaptive result of human impacts, such as habitat change or food provisioning. To discriminate between these hypotheses we compiled information from 18 chimpanzee communities and 4 bonobo communities studied over five decades. Our data include 152 killings (n = 58 observed, 41 inferred, and 53 suspected killings) by chimpanzees in 15 communities and one suspected killing by bonobos. We found that males were the most frequent attackers (92% of participants) and victims (73%); most killings (66%) involved intercommunity attacks; and attackers greatly outnumbered their victims (median 8:1 ratio). Variation in killing rates was unrelated to measures of human impacts. Our results are compatible with previously proposed adaptive explanations for killing by chimpanzees, whereas the human impact hypothesis is not supported.

  19. Climate Change Impact Assessment of Food- and Waterborne Diseases

    PubMed Central

    Semenza, Jan C.; Herbst, Susanne; Rechenburg, Andrea; Suk, Jonathan E.; Höser, Christoph; Schreiber, Christiane; Kistemann, Thomas

    2011-01-01

    The PubMed and ScienceDirect bibliographic databases were searched for the period of 1998–2009 to evaluate the impact of climatic and environmental determinants on food- and waterborne diseases. The authors assessed 1,642 short and concise sentences (key facts), which were extracted from 722 relevant articles and stored in a climate change knowledge base. Key facts pertaining to temperature, precipitation, water, and food for 6 selected pathogens were scrutinized, evaluated, and compiled according to exposure pathways. These key facts (corresponding to approximately 50,000 words) were mapped to 275 terminology terms identified in the literature, which generated 6,341 connections. These relationships were plotted on semantic network maps to examine the interconnections between variables. The risk of campylobacteriosis is associated with mean weekly temperatures, although this link is shown more strongly in the literature relating to salmonellosis. Irregular and severe rain events are associated with Cryptosporidium sp. outbreaks, while noncholera Vibrio sp. displays increased growth rates in coastal waters during hot summers. In contrast, for Norovirus and Listeria sp. the association with climatic variables was relatively weak, but much stronger for food determinants. Electronic data mining to assess the impact of climate change on food- and waterborne diseases assured a methodical appraisal of the field. This climate change knowledge base can support national climate change vulnerability, impact, and adaptation assessments and facilitate the management of future threats from infectious diseases. In the light of diminishing resources for public health this approach can help balance different climate change adaptation options. PMID:24808720

  20. Conservation strategies to mitigate impacts from climate change in Amazonia.

    PubMed

    Killeen, Timothy J; Solórzano, Luis A

    2008-05-27

    Protected area systems and conservation corridors can help mitigate the impacts of climate change on Amazonian biodiversity. We propose conservation design criteria that will help species survive in situ or adjust range distributions in response to increased drought. The first priority is to protect the western Amazon, identified as the 'Core Amazon', due to stable rainfall regimes and macro-ecological phenomena that have led to the evolution of high levels of biodiversity. Ecotones can buffer the impact from climate change because populations are genetically adapted to climate extremes, particularly seasonality, because high levels of habitat diversity are associated with edaphic variability. Future climatic tension zones should be surveyed for geomorphological features that capture rain or conserve soil moisture to identify potential refugia for humid forest species. Conservation corridors should span environmental gradients to ensure that species can shift range distributions. Riparian corridors provide protection to both terrestrial and aquatic ecosystems. Multiple potential altitudinal corridors exist in the Andes, but natural and anthropogenic bottlenecks will constrain the ability of species to shift their ranges and adapt to climate change. Planned infrastructure investments are a serious threat to the potential to consolidate corridors over the short and medium term.

  1. Regional Collaborations to Combat Climate Change: The Climate Science Centers as Strategies for Climate Adaptation

    NASA Astrophysics Data System (ADS)

    Morelli, T. L.; Palmer, R. N.

    2014-12-01

    The Department of Interior Northeast Climate Science Center (NE CSC) is part of a federal network of eight Climate Science Centers created to provide scientific information, tools, and techniques that managers and other parties interested in land, water, wildlife and cultural resources can use to anticipate, monitor, and adapt to climate change. The consortium approach taken by the CSCs allows the academic side of the Centers to gather expertise across departments, disciplines, and even institutions. This interdisciplinary approach is needed for successfully meeting regional needs for climate impact assessment, adaptive management, education, and stakeholder outreach. Partnership with the federal government facilitates interactions with the key on-the-ground stakeholders who are able to operationalize the results and conclusions of that research, monitor the progress of management actions, and provide feedback to refine future methodology and decisions as new information on climate impacts is discovered. For example, NE CSC researchers are analyzing the effect of climate change on the timing and volume of seasonal and annual streamflows and the concomitant effects on ecological and cultural resources; developing techniques to monitor tree range dynamics as affected by natural disturbances which can enable adaptation of projected climate impacts; studying the effects of changes in the frequency and magnitude of drought and stream temperature on brook trout habitats, spatial distribution and population persistence; and conducting assessments of northeastern regional climate projections and high-resolution downscaling. Project methods are being developed in collaboration with stakeholders and results are being shared broadly with federal, state, and other partners to implement and refine effective and adaptive management actions.

  2. Impact of climate change on waterborne diseases.

    PubMed

    Funari, Enzo; Manganelli, Maura; Sinisi, Luciana

    2012-01-01

    Change in climate and water cycle will challenge water availability but it will also increase the exposure to unsafe water. Floods, droughts, heavy storms, changes in rain pattern, increase of temperature and sea level, they all show an increasing trend worldwide and will affect biological, physical and chemical components of water through different paths thus enhancing the risk of waterborne diseases. This paper is intended, through reviewing the available literature, to highlight environmental changes and critical situations caused by floods, drought and warmer temperature that will lead to an increase of exposure to water related pathogens, chemical hazards and cyanotoxins. The final aim is provide knowledge-based elements for more focused adaptation measures.

  3. Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska

    USGS Publications Warehouse

    Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, Anthony; Huntington, Orville; Duffy, Paul A; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren

    2009-01-01

    This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.

  4. Preventing disasters: public health vulnerability reduction as a sustainable adaptation to climate change.

    PubMed

    Keim, Mark E

    2011-06-01

    Global warming could increase the number and severity of extreme weather events. These events are often known to result in public health disasters, but we can lessen the effects of these disasters. By addressing the factors that cause changes in climate, we can mitigate the effects of climate change. By addressing the factors that make society vulnerable to the effects of climate, we can adapt to climate change. To adapt to climate change, a comprehensive approach to disaster risk reduction has been proposed. By reducing human vulnerability to disasters, we can lessen--and at times even prevent--their impact. Human vulnerability is a complex phenomenon that comprises social, economic, health, and cultural factors. Because public health is uniquely placed at the community level, it has the opportunity to lessen human vulnerability to climate-related disasters. At the national and international level, a supportive policy environment can enable local adaptation to disaster events. The purpose of this article is to introduce the basic concept of disaster risk reduction so that it can be applied to preventing and mitigating the negative effects of climate change and to examine the role of community-focused public health as a means for lessening human vulnerability and, as a result, the overall risk of climate-related disasters.

  5. In Brief: U.S. regional impacts of climate change

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-12-01

    On 4 December, the Pew Center on Global Climate Change released a report that assesses climate vulnerabilities in four different areas of the United States. ``Regional impacts of climate change: Four case studies in the United States'' notes that midwestern cities are likely to experience more frequent, longer, and hotter heat waves; that wildfires are likely to increase in the U.S. West; that sustaining fragile Gulf Coast wetlands ecosystems will be increasingly difficult due to climate change; and that the Chesapeake Bay may respond to climate change with more frequent and larger hypoxia events. The report indicates that adaptation measures need to be a critical component of any long-term U.S. climate strategy. ``The degree to which we can adapt to the consequences of climate change will be determined in large part by the policies and management practices we put in place today,'' said Pew Center president Eileen Claussen. For more information, visit the Web site: http://www.pewclimate.org.

  6. Identifying alternate pathways for climate change to impact inland recreational fishers

    USGS Publications Warehouse

    Hunt, Len M.; Fenichel, Eli P.; Fulton, David C.; Mendelsohn, Robert; Smith, Jordan W.; Tunney, Tyler D.; Lynch, Abigail J.; Paukert, Craig P.; Whitney, James E.

    2016-01-01

    Fisheries and human dimensions literature suggests that climate change influences inland recreational fishers in North America through three major pathways. The most widely recognized pathway suggests that climate change impacts habitat and fish populations (e.g., water temperature impacting fish survival) and cascades to impact fishers. Climate change also impacts recreational fishers by influencing environmental conditions that directly affect fishers (e.g., increased temperatures in northern climates resulting in extended open water fishing seasons and increased fishing effort). The final pathway occurs from climate change mitigation and adaptation efforts (e.g., refined energy policies result in higher fuel costs, making distant trips more expensive). To address limitations of past research (e.g., assessing climate change impacts for only one pathway at a time and not accounting for climate variability, extreme weather events, or heterogeneity among fishers), we encourage researchers to refocus their efforts to understand and document climate change impacts to inland fishers.

  7. Risk-based climate-change impact assessment for the water industry.

    PubMed

    Thorne, O M; Fenner, R A

    2009-01-01

    In response to a rapidly changing and highly variable climate, engineers are being asked to perform climate-change impact assessments on existing water industry systems. There is currently no single method of best practice for engineers to interpret output from global climate models (GCMs) and calculate probabilistic distributions of future climate changes as required for risk-based impact assessments. The simplified climate change impact assessment tool (SCIAT) has been developed to address the specific needs of the water industry and provides a tool to translate climate change projections into 'real world' impacts or for detailed statistical analysis. Through the use of SCIAT, water system operators are provided with knowledge of potential impacts and an associated probability of occurrence, enabling them to make informed, risk-based adaptation and planning decisions. This paper demonstrates the application of SCIAT to the consideration of the impacts of climate change on reservoir water quality under future climate scenarios.

  8. An Assessment of the Impact of Climate Change in India

    NASA Astrophysics Data System (ADS)

    Nair, K. S.

    2009-09-01

    adaptation, mitigation and post-hazard recovery and resettlement measures. Providing basic necessities such as water, food and power, maintaining public health, implementing protective measures in the coastal zones and modifications in the urban infrastructure, especially in the coastal megacities become expensive. Impact of extremes on rails, roads and building are also becoming a major issue in the coastal zones and urban centres. Industrial sector is facing a threat from the falling reliable supply of water and power. However, procedure for the implementation of the strategies to mitigate the climate change impact and of the policy for the adaptation to climate change is slow. There are several hurdles for this, including various ecological, socio-economic, technical and political issues, alterations of the physical environment, inability of certain habitats and species to adapt to a new environment, abject poverty, lack of awareness, and the inefficient administrative mechanism. A comprehensive assessment of the shifts in regional climate and the impact of climate change on different facets of life in India, and of the current strategies and polices to face such challenges is made in this study. Suggestions for the improvement of the climate policy and adaptation strategy have been provided.

  9. Cenozoic Bolide Impacts and Biotic Change in North American Mammals

    NASA Astrophysics Data System (ADS)

    Alroy, John

    2003-01-01

    North American mammals experienced a major mass extinction at the Cretaceous/Tertiary (K/T) boundary that is tied unambiguously to the Chicxulub impact event. Immediately afterwards, there was an immense adaptive radiation that greatly expanded taxonomic diversity and the range of body sizes and ecological strategies. However, ties between later, Cenozoic impact events and specific episodes in mammalian evolution cannot be demonstrated. A time series of maximum known crater sizes within 1.0-million-year-long temporal bins is shown not to cross-correlate with five separate measures of taxonomic turnover rate, one measure of change in relative taxonomic composition, and four measures of change in body mass distributions. The lack of correlation persists even after excluding the volatile Paleocene mammalian data, adding dummy data to represent intervals without known craters, or lagging the time series against each other for up to 5 million years. Furthermore, the data fail to support broad-brush correspondences between ages of major (>20 km in diameter) craters and the timing of five key, post-K/T biotic transitions, including medium-sized extinction episodes during the late Paleocene and latest Miocene. The results challenge the idea that extraterrestrial impacts drive all, most, or even many extinction and radiation episodes in terrestrial organisms, and add to other evidence that natural, long-term biotic changes are often independent of changes in the physical environment.

  10. Modeling irrigation-based climate change adaptation in agriculture: Model development and evaluation in Northeast China

    NASA Astrophysics Data System (ADS)

    Okada, Masashi; Iizumi, Toshichika; Sakurai, Gen; Hanasaki, Naota; Sakai, Toru; Okamoto, Katsuo; Yokozawa, Masayuki

    2015-09-01

    Replacing a rainfed cropping system with an irrigated one is widely assumed to be an effective measure for climate change adaptation. However, many agricultural impact studies have not necessarily accounted for the space-time variations in the water availability under changing climate and land use. Moreover, many hydrologic and agricultural assessments of climate change impacts are not fully integrated. To overcome this shortcoming, a tool that can simultaneously simulate the dynamic interactions between crop production and water resources in a watershed is essential. Here we propose the regional production and circulation coupled model (CROVER) by embedding the PRYSBI-2 (Process-based Regional Yield Simulator with Bayesian Inference version 2) large-area crop model into the global water resources model (called H08), and apply this model to the Songhua River watershed in Northeast China. The evaluation reveals that the model's performance in capturing the major characteristics of historical change in surface soil moisture, river discharge, actual crop evapotranspiration, and soybean yield relative to the reference data during the interval 1979-2010 is satisfactory accurate. The simulation experiments using the model demonstrated that subregional irrigation management, such as designating the area to which irrigation is primarily applied, has measurable influences on the regional crop production in a drought year. This finding suggests that reassessing climate change risk in agriculture using this type of modeling is crucial not to overestimate potential of irrigation-based adaptation.

  11. Climate Change Assessment and Adaptation Planning for the Southeast US

    NASA Astrophysics Data System (ADS)

    Georgakakos, A. P.; Yao, H.; Zhang, F.

    2012-12-01

    A climate change assessment is carried out for the Apalachicola-Chattahoochee-Flint River Basin in the southeast US following an integrated water resources assessment and planning framework. The assessment process begins with the development/selection of consistent climate, demographic, socio-economic, and land use/cover scenarios. Historical scenarios and responses are analyzed first to establish baseline conditions. Future climate scenarios are based on GCMs available through the IPCC. Statistical and/or dynamic downscaling of GCM outputs is applied to generate high resolution (12x12 km) atmospheric forcing, such as rainfall, temperature, and ET demand, over the ACF River Basin watersheds. Physically based watershed, aquifer, and estuary models (lumped and distributed) are used to quantify the hydrologic and water quality river basin response to alternative climate and land use/cover scenarios. Demand assessments are carried out for each water sector, for example, water supply for urban, agricultural, and industrial users; hydro-thermal facilities; navigation reaches; and environmental/ecological flow and lake level requirements, aiming to establish aspirational water use targets, performance metrics, and management/adaptation options. Response models for the interconnected river-reservoir-aquifer-estuary system are employed next to assess actual water use levels and other sector outputs under a specific set of hydrologic inputs, demand targets, and management/adaptation options. Adaptive optimization methods are used to generate system-wide management policies conditional on inflow forecasts. The generated information is used to inform stakeholder planning and decision processes aiming to develop consensus on adaptation measures, management strategies, and performance monitoring indicators. The assessment and planning process is driven by stakeholder input and is inherently iterative and sequential.

  12. Developing services for climate impact and adaptation baseline information and methodologies for the Andes

    NASA Astrophysics Data System (ADS)

    Huggel, C.

    2012-04-01

    Impacts of climate change are observed and projected across a range of ecosystems and economic sectors, and mountain regions thereby rank among the hotspots of climate change. The Andes are considered particularly vulnerable to climate change, not only due to fragile ecosystems but also due to the high vulnerability of the population. Natural resources such as water systems play a critical role and are observed and projected to be seriously affected. Adaptation to climate change impacts is therefore crucial to contain the negative effects on the population. Adaptation projects require information on the climate and affected socio-environmental systems. There is, however, generally a lack of methodological guidelines how to generate the necessary scientific information and how to communicate to implementing governmental and non-governmental institutions. This is particularly important in view of the international funds for adaptation such as the Green Climate Fund established and set into process at the UNFCCC Conferences of the Parties in Cancun 2010 and Durban 2011. To facilitate this process international and regional organizations (World Bank and Andean Community) and a consortium of research institutions have joined forces to develop and define comprehensive methodologies for baseline and climate change impact assessments for the Andes, with an application potential to other mountain regions (AndesPlus project). Considered are the climatological baseline of a region, and the assessment of trends based on ground meteorological stations, reanalysis data, and satellite information. A challenge is the scarcity of climate information in the Andes, and the complex climatology of the mountain terrain. A climate data platform has been developed for the southern Peruvian Andes and is a key element for climate data service and exchange. Water resources are among the key livelihood components for the Andean population, and local and national economy, in particular for

  13. The Role of Culture in Adaptation and Vulnerability to Climate Change.

    NASA Astrophysics Data System (ADS)

    Nielsen, J. O.; Sandholt, I.; Mertz, O.; Mbow, C.

    2008-12-01

    AMMA (African Monsoon Multidisciplinary Analyses) aims to improve our ability to forecast weather and climate in the West African region as well as understanding the impacts and adaptive responses of people and environment. While the complexity and unpredictability of the West African monsoon systems provide an intriguing challenge for science, it is potentially devastating for the many West African people affected by it. Across the region from Senegal to Niger people are trying to deal with and negotiate the consequences of this complexity and unpredictability. The objective of the AMMA Word Package 3.2 is to understand and map how they do this and to attempt to single out the importance of climate factors for local land use and livelihood strategies, decision-making and social relations. Researchers from Senegal, Mali, Burkina Faso, Niger, Nigeria and Denmark developed a common questionnaire and interview guide that was implemented at 16 field sites in 5 countries. The sites were selected to represent the region and were located along north- south and east-west transects, and included both agricultural and pastoral locations. Moreover, in depth studies took place in several sites. In one of these, located in Northern Burkina Faso, there was a specific focus on how adaptation to climate change is related to ethnicity and the issue of values and culture in adaptation and vulnerability to climate change was raised. Strategies of two ethnic groups, Rimaiibe and Fulbe, were compared and it was shown that despite their presence in the same physical environment and their shared experience of climate change, the two groups have adapted very different strategies due to cultural values and historical relations. This has had profound impacts on the relations between the two ethnic groups. The former masters, Fulbe, have been much less successful with their strategies than their former slaves, Rimaiibe, and today the latter group is the dominant one within the village. It is

  14. Adaptation to urbanization impacts on drainage in the city of Hohhot, China.

    PubMed

    Zhou, Qianqian; Ren, Yi; Xu, Miaomiao; Han, Nini; Wang, Heping

    2016-01-01

    This study presents a quantitative assessment of urbanization effects on hydrological runoff and drainage network in the city of Hohhot, China. The evolution of urban spatial morphology for the historical years (1987-2010) and projected year (2020) is described by changes in geographic information system (GIS)-based land use maps and further represented in hydrological parameters in the Storm Water Management Model (SWMM) simulation. The results show the levels of service of historical drainage were too low to have dominant impacts on flood risks, and hence a significant upward trend in catchment runoff response was observed over time. Comparisons with changes in system overloading indicate that the relative increase in flood risk is greatest at the early stage of urbanization with relatively low levels of development. The proposed adaptation measures based on a cost-effective optimal approach was found feasible to significantly improve the drainage performance and mitigate the increasing flooding impacts.

  15. Biochar soil amendments as a tool for climate change adaptation in PNW agriculture

    NASA Astrophysics Data System (ADS)

    Phillips, C. L.; Trippe, K. M.; Murphy, B. A.; Beovich, A. V.; Griffith, S. M.

    2015-12-01

    Loss of snow pack, changing hydrographs, and increased temperatures and irrigation demands as a result of climate change all threaten to create transformational drought for growers in the Pacific Northwest. One approach for adapting to drought is to improve moisture retention through soil management practices. Recent efforts at the FSCRU to develop on-farm power have produced a biochar from gasification of seed mill waste that may prove useful as a tool for drought adaption. Testing of this biochar revealed that it contains no toxic elements, making it suitable as a soil amendment, and additions of 20 tonnes ha-1 in dryland wheat system showed improved soil moisture and yield increases of 250%. Persistent but weaker impacts were observed in growing years 2 and 3 following the biochar amendments. Here we present results from a series of laboratory and field studies characterizing how grass seed screening biochar, which is produced from a regionally abundant feedstock, impacted soil hydraulic and thermal properties, soil chemistry, and plant growth. Because of the liming qualities of gasified biochar, the greatest growth benefits are likely to be realized in acidified soils, a growing problem in the PNW. Although the persistence of biochar impacts in soil is still unknown, our results indicate that gasified biochar, particularly when utilized as part of a system of on-farm power production, waste reduction, and nutrient recycling, can improve agricultural sustainability in the context of climate change.

  16. Climate change and climate variability: personal motivation for adaptation and mitigation

    PubMed Central

    2011-01-01

    Background Global climate change impacts on human and natural systems are predicted to be severe, far reaching, and to affect the most physically and economically vulnerable disproportionately. Society can respond to these threats through two strategies: mitigation and adaptation. Industry, commerce, and government play indispensable roles in these actions but so do individuals, if they are receptive to behavior change. We explored whether the health frame can be used as a context to motivate behavioral reductions of greenhouse gas emissions and adaptation measures. Methods In 2008, we conducted a cross-sectional survey in the United States using random digit dialing. Personal relevance of climate change from health threats was explored with the Health Belief Model (HBM) as a conceptual frame and analyzed through logistic regressions and path analysis. Results Of 771 individuals surveyed, 81% (n = 622) acknowledged that climate change was occurring, and were aware of the associated ecologic and human health risks. Respondents reported reduced energy consumption if they believed climate change could affect their way of life (perceived susceptibility), Odds Ratio (OR) = 2.4 (95% Confidence Interval (CI): 1.4 - 4.0), endanger their life (perceived severity), OR = 1.9 (95% CI: 1.1 - 3.1), or saw serious barriers to protecting themselves from climate change, OR = 2.1 (95% CI: 1.2 - 3.5). Perceived susceptibility had the strongest effect on reduced energy consumption, either directly or indirectly via perceived severity. Those that reported having the necessary information to prepare for climate change impacts were more likely to have an emergency kit OR = 2.1 (95% CI: 1.4 - 3.1) or plan, OR = 2.2 (95% CI: 1.5 -3.2) for their household, but also saw serious barriers to protecting themselves from climate change or climate variability, either by having an emergency kit OR = 1.6 (95% CI: 1.1 - 2.4) or an emergency plan OR = 1.5 (95%CI: 1.0 - 2.2). Conclusions Motivation for

  17. Adaptive forest management for drinking water protection under climate change

    NASA Astrophysics Data System (ADS)

    Koeck, R.; Hochbichler, E.

    2012-04-01

    Drinking water resources drawn from forested catchment areas are prominent for providing water supply on our planet. Despite the fact that source waters stemming from forested watersheds have generally lower water quality problems than those stemming from agriculturally used watersheds, it has to be guaranteed that the forest stands meet high standards regarding their water protection functionality. For fulfilling these, forest management concepts have to be applied, which are adaptive regarding the specific forest site conditions and also regarding climate change scenarios. In the past century forest management in the alpine area of Austria was mainly based on the cultivation of Norway spruce, by the way neglecting specific forest site conditions, what caused in many cases highly vulnerable mono-species forest stands. The GIS based forest hydrotope model (FoHyM) provides a framework for forest management, which defines the most crucial parameters in a spatial explicit form. FoHyM stratifies the spacious drinking water protection catchments into forest hydrotopes, being operational units for forest management. The primary information layer of FoHyM is the potential natural forest community, which reflects the specific forest site conditions regarding geology, soil types, elevation above sea level, exposition and inclination adequately and hence defines the specific forest hydrotopes. For each forest hydrotope, the adequate tree species composition and forest stand structure for drinking water protection functionality was deduced, based on the plant-sociological information base provided by FoHyM. The most important overall purpose for the related elaboration of adaptive forest management concepts and measures was the improvement of forest stand stability, which can be seen as the crucial parameter for drinking water protection. Only stable forest stands can protect the fragile soil and humus layers and hence prevent erosion process which could endanger the water

  18. Projected Climate Change Impacts on Pennsylvania

    NASA Astrophysics Data System (ADS)

    Najjar, R.; Shortle, J.; Abler, D.; Blumsack, S.; Crane, R.; Kaufman, Z.; McDill, M.; Ready, R.; Rydzik, M.; Wagener, T.; Wardrop, D.; Wilson, T.

    2009-05-01

    We present an assessment of the potential impacts of human-induced climate change on the commonwealth of Pennsylvania, U.S.A. We first assess a suite of 21 global climate models for the state, rating them based on their ability to simulate the climate of Pennsylvania on time scales ranging from submonthly to interannual. The multi-model mean is superior to any individual model. Median projections by late century are 2-4 degrees C warming and 5-10 percent precipitation increases (B1 and A2 scenarios), with larger precipitation increases in winter and spring. Impacts on the commonwealth's aquatic and terrestrial ecosystems, water resources, agriculture, forests, energy, outdoor recreation, tourism, and human health, are evaluated. We also examine barriers and opportunities for Pennsylvania created by climate change mitigation. This assessment was sponsored by the Pennsylvania Department of Environmental Protection which, pursuant to the Pennsylvania Climate Change Act, Act 70 of 2008, is required to develop a report on the potential scientific and economic impacts of climate change to Pennsylvania.

  19. Impacts of climate change and past land use change on the water resources in Pune, India

    NASA Astrophysics Data System (ADS)

    Wagner, P. D.; Kumar, S.; Schneider, K.

    2012-12-01

    Global change affects local and regional water resources and is therefore of major concern in current hydrologic research. Especially in regions with scarce water resources, high climate sensitivity, and/or dynamic socio-economic development, research on developing suitable adaptation and mitigation strategies is needed. In this study, we used the well-established and widely-used hydrologic model SWAT (Soil and Water Assessment Tool) to study the impact of climate change and past land use change on water resources. Our study aims at analyzing the impact of global change on the water balance components in the meso-scale Mula and Mutha Rivers catchment upstream of the city of Pune, India. To analyze climate change impacts regional climate model data based on IPCC emission scenario A1B was used by employing a downscaling method that rearranges historically measured data. The hydrologic model was run with the rearranged scenario weather data and model results were analyzed for the scenario period from 2020 to 2099. Past land use changes between 1989 and 2009 were identified with the help of three multi-temporal land use classifications, which were based on multi-spectral satellite data. Two model runs were performed and compared using the land use classifications of 1989 and 2009. Climate change leads to a slight increase of evapotranspiration. Particularly in the rainy season and in the first months of the dry season higher evapotranspiration can be observed. Towards the end of the scenario period low water storages in the major dams of the catchment at the beginning of the dry season indicate severe impacts on water availability. The impacts of land use changes balance out on the catchment scale and are hence more obvious at the sub-basin scale, where e.g., urbanization results in increased runoff and decreased evapotranspiration.

  20. Climate change and evolutionary adaptations at species' range margins.

    PubMed

    Hill, Jane K; Griffiths, Hannah M; Thomas, Chris D

    2011-01-01

    During recent climate warming, many insect species have shifted their ranges to higher latitudes and altitudes. These expansions mirror those that occurred after the Last Glacial Maximum when species expanded from their ice age refugia. Postglacial range expansions have resulted in clines in genetic diversity across present-day distributions, with a reduction in genetic diversity observed in a wide range of insect taxa as one moves from the historical distribution core to the current range margin. Evolutionary increases in dispersal at expanding range boundaries are commonly observed in virtually all insects that have been studied, suggesting a positive feedback between range expansion and the evolution of traits that accelerate range expansion. The ubiquity of this phenomenon suggests that it is likely to be an important determinant of range changes. A better understanding of the extent and speed of adaptation will be crucial to the responses of biodiversity and ecosystems to climate change.

  1. Climate change mitigation and adaptation in strategic environmental assessment

    SciTech Connect

    Wende, Wolfgang; Bond, Alan; Bobylev, Nikolai; Stratmann, Lars

    2012-01-15

    Countries are implementing CO{sub 2} emission reduction targets in order to meet a globally agreed global warming limit of +2 Degree-Sign C. However, it was hypothesised that these national reduction targets are not translated to regional or state level planning, and are not considered through Strategic Environmental Assessment (SEA) in order to meet emission reduction obligations falling on the transport, energy, housing, agriculture, and forestry sectors. SEAs of land use plans in the German state of Saxony, and the English region of the East of England were examined for their consideration of climate change impacts based on a set of criteria drawn from the literature. It was found that SEAs in both cases failed to consider climate change impacts at scales larger than the boundary of the spatial plan, and that CO{sub 2} reduction targets were not considered. This suggests a need for more clarity in the legal obligations for climate change consideration within the text of the SEA Directive, a requirement for monitoring of carbon emissions, a need for methodological guidance to devolve global climate change targets down to regional and local levels, and a need for guidance on properly implementing climate change protection in SEA. - Highlights: Black-Right-Pointing-Pointer Strategic Environmental Assessments (SEA) of 12 land use plans from Germany and England have been examined. Black-Right-Pointing-Pointer SEA failed to consider climate change impacts at scales larger than the boundary of the land use plans. Black-Right-Pointing-Pointer SEA should be an important instrument for climate protection. Black-Right-Pointing-Pointer Concrete steps for climate protection mainstreaming into SEA at the European Union and national levels have been suggested.

  2. Climate change impacts on agriculture in Apulia

    NASA Astrophysics Data System (ADS)

    Lionello, Piero; Congedi, Letizia; Reale, Marco; Scarascia, Luca; Tanzarella, Annalisa

    2013-04-01

    This study describes the evolution of climate from recent past to the next decades in Apulia, a region in Southern Italy, and estimates its future impacts on its main agricultural products. The analysis is based on instrumental data, on an ensemble of climate projections and on a linear regression model linking typical Mediterranean products (wheat, olive oil and wine) to seasonal values of temperature and precipitation. In the past decades, wheat, olive oil and wine production records (the three main agricultural products in Apulia) show large inter-annual variabilityand an important fraction of it is explained by past climate variability. Regional Climate Model simulations show a large acceleration of the warming rate and a decrease of precipitation in the period 2001-2050. Results (considering no adaptation of crops) suggest that climate evolution in the first half of the 21st century would decrease wine production, have a small effect on wheat and increase olive oil production.

  3. The importance of socio-ecological system dynamics in understanding adaptation to global change in the forestry sector.

    PubMed

    Blanco, Victor; Brown, Calum; Holzhauer, Sascha; Vulturius, Gregor; Rounsevell, Mark D A

    2017-03-08

    Adaptation is necessary to cope with or take advantage of the effects of climate change on socio-ecological systems. This is especially important in the forestry sector, which is sensitive to the ecological and economic impacts of climate change, and where the adaptive decisions of owners play out over long periods of time. Relatively little is known about how successful these decisions are likely to be in meeting demands for ecosystem services in an uncertain future. We explore adaptation to global change in the