Sample records for change mitigation potential

  1. 21st century United States emissions mitigation could increase water stress more than the climate change it is mitigating.

    PubMed

    Hejazi, Mohamad I; Voisin, Nathalie; Liu, Lu; Bramer, Lisa M; Fortin, Daniel C; Hathaway, John E; Huang, Maoyi; Kyle, Page; Leung, L Ruby; Li, Hong-Yi; Liu, Ying; Patel, Pralit L; Pulsipher, Trenton C; Rice, Jennie S; Tesfa, Teklu K; Vernon, Chris R; Zhou, Yuyu

    2015-08-25

    There is evidence that warming leads to greater evapotranspiration and surface drying, thus contributing to increasing intensity and duration of drought and implying that mitigation would reduce water stresses. However, understanding the overall impact of climate change mitigation on water resources requires accounting for the second part of the equation, i.e., the impact of mitigation-induced changes in water demands from human activities. By using integrated, high-resolution models of human and natural system processes to understand potential synergies and/or constraints within the climate-energy-water nexus, we show that in the United States, over the course of the 21st century and under one set of consistent socioeconomics, the reductions in water stress from slower rates of climate change resulting from emission mitigation are overwhelmed by the increased water stress from the emissions mitigation itself. The finding that the human dimension outpaces the benefits from mitigating climate change is contradictory to the general perception that climate change mitigation improves water conditions. This research shows the potential for unintended and negative consequences of climate change mitigation.

  2. A Screening Assessment of the Potential Impacts of Climate ...

    EPA Pesticide Factsheets

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications climate change has had on combined sewer overflow (CSO) mitigation in the Great Lakes and New England Regions. This report describes the potential scope and magnitude of climate change impacts on combined sewer overflow (CSOs) mitigation efforts in the Great Lakes Region and New England Region.

  3. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation

    PubMed Central

    Holmner, Åsa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on ‘green information and communication technology (ICT)’ are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies. PMID:22679398

  4. Climate change and eHealth: a promising strategy for health sector mitigation and adaptation.

    PubMed

    Holmner, Asa; Rocklöv, Joacim; Ng, Nawi; Nilsson, Maria

    2012-01-01

    Climate change is one of today's most pressing global issues. Policies to guide mitigation and adaptation are needed to avoid the devastating impacts of climate change. The health sector is a significant contributor to greenhouse gas emissions in developed countries, and its climate impact in low-income countries is growing steadily. This paper reviews and discusses the literature regarding health sector mitigation potential, known and hypothetical co-benefits, and the potential of health information technology, such as eHealth, in climate change mitigation and adaptation. The promising role of eHealth as an adaptation strategy to reduce societal vulnerability to climate change, and the link's between mitigation and adaptation, are also discussed. The topic of environmental eHealth has gained little attention to date, despite its potential to contribute to more sustainable and green health care. A growing number of local and global initiatives on 'green information and communication technology (ICT)' are now mentioning eHealth as a promising technology with the potential to reduce emission rates from ICT use. However, the embracing of eHealth is slow because of limitations in technological infrastructure, capacity and political will. Further research on potential emissions reductions and co-benefits with green ICT, in terms of health outcomes and economic effectiveness, would be valuable to guide development and implementation of eHealth in health sector mitigation and adaptation policies.

  5. Forest environmental investments and implications for climate change mitigation.

    Treesearch

    Ralph J. Alig; Lucas S. Bair

    2006-01-01

    Forest environmental conditions are affected by climate change, but investments in forest environmental quality can be used as part of the climate change mitigation strategy. A key question involving the potential use of forests to store more carbon as part of climate change mitigation is the impact of forest investments on the timing and quantity of forest volumes...

  6. Quantification of mitigation potentials of agricultural practices for Europe

    NASA Astrophysics Data System (ADS)

    Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.

    2009-04-01

    Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with the largest positive effect on N2O emissions. Overall the results showed that the additional mitigation potential of each individual measure is limited, but taken together they have a significant mitigation potential of about 10 percent of the current GHG emissions from agriculture. Besides, most of the measures with high mitigation potentials are associated with no or low implementation costs. Although CH4 and N2O are the most important GHG emitted from agricultural activities, it is more difficult to mitigate these emissions than increasing soil organic carbon (SOC) stocks and thus compensate them through carbon sequestration. However, the effect on carbon is only temporary and sequestered SOC stocks can easily be lost again, while for N2O the emission reduction is permanent and non-saturating. Another important implication that follows from our results is the large regional difference with regard to mitigation potential and feasibility of implementation. Policy measures to support agricultural mitigation should therefore be adjusted to regional conditions.

  7. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    PubMed

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  8. Land use and climate change: A global perspective on mitigation options: discussion

    Treesearch

    R. J. Alig

    2010-01-01

    Land use change can play a very significant role in climate change mitigation and adaptation, as part of efficient portfolios of many land-related activities. Questions involving forestry’s and agriculture’s potential contributions to climate change mitigation are framed within a national context of increased demands for cropland, forage, and wood products to help feed...

  9. Towards demand-side solutions for mitigating climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Roy, Joyashree; Lamb, William F.; Azevedo, Inês M. L.; Bruine de Bruin, Wändi; Dalkmann, Holger; Edelenbosch, Oreane Y.; Geels, Frank W.; Grubler, Arnulf; Hepburn, Cameron; Hertwich, Edgar G.; Khosla, Radhika; Mattauch, Linus; Minx, Jan C.; Ramakrishnan, Anjali; Rao, Narasimha D.; Steinberger, Julia K.; Tavoni, Massimo; Ürge-Vorsatz, Diana; Weber, Elke U.

    2018-04-01

    Research on climate change mitigation tends to focus on supply-side technology solutions. A better understanding of demand-side solutions is missing. We propose a transdisciplinary approach to identify demand-side climate solutions, investigate their mitigation potential, detail policy measures and assess their implications for well-being.

  10. A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions (Final Report)

    EPA Science Inventory

    EPA announced the availability of the report, A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (CSO) Mitigation in the Great Lakes and New England Regions. This report is a screening-level assessment of the potential implications...

  11. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    PubMed

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The potential of exceptional climate change education on individual lifetime carbon emissions

    NASA Astrophysics Data System (ADS)

    Cordero, E.; Centeno, D.; Todd, A. M.

    2016-12-01

    Strategies to mitigate climate change often center on clean technologies such as electric vehicles and solar panels, while the mitigation potential of a quality educational experience is rarely discussed. We investigate the role of education on individual carbon emissions using case studies from an intensive one-year university general education course focused on climate science and solutions. Results from this analysis demonstrate that students who completed the university course had significantly lower carbon emissions compared to a control group. If such an educational experience could be expanded throughout the United States, we estimate that education could be as valuable a climate change mitigation method as improving the fuel efficiency of automobiles. Relatedly, we also report on a new approach to apply real-time cloud based data to track the environmental impact of students during their participation in educational climate change programs. Such a tool would help illustrate the potential of education as a viable carbon mitigation strategy.

  13. Why do some people do "more" to mitigate climate change than others? Exploring heterogeneity in psycho-social associations.

    PubMed

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized--and differentiated from common mitigation behavior--as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change--but not in motivational or socio-demographic links--with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries.

  14. 78 FR 12807 - Call for Expert Reviewers to the U.S. Government Review of the Working Group III Contribution to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-25

    ... on Climate Change (IPCC), Mitigation of Climate Change SUMMARY: The United States Global Change... Panel on Climate Change (IPCC), Mitigation of Climate Change. The United Nations Environment Programme...-economic information for understanding the scientific basis of climate change, potential impacts, and...

  15. Bird response to future climate and forest management focused on mitigating climate change

    Treesearch

    Jaymi J. LeBrun; Jeffrey E. Schneiderman; Frank R. Thompson; William D. Dijak; Jacob S. Fraser; Hong S. He; Joshua J. Millspaugh

    2016-01-01

    Context. Global temperatures are projected to increase and affect forests and wildlife populations. Forest management can potentially mitigate climateinduced changes through promoting carbon sequestration, forest resilience, and facilitated change. Objectives. We modeled direct and indirect effects of climate change on avian...

  16. Reducing nitrous oxide emissions to mitigate climate change and protect the ozone layer.

    PubMed

    Li, Li; Xu, Jianhua; Hu, Jianxin; Han, Jiarui

    2014-05-06

    Reducing nitrous oxide (N2O) emissions offers the combined benefits of mitigating climate change and protecting the ozone layer. This study estimates historical and future N2O emissions and explores the mitigation potential for China's chemical industry. The results show that (1) from 1990 to 2012, industrial N2O emissions in China grew by some 37-fold from 5.07 to 174 Gg (N2O), with total accumulated emissions of 1.26 Tg, and (2) from 2012 to 2020, the projected emissions are expected to continue growing rapidly from 174 to 561 Gg under current policies and assuming no additional mitigation measures. The total accumulated mitigation potential for this forecast period is about 1.54 Tg, the equivalent of reducing all the 2011 greenhouse gases from Australia or halocarbon ozone-depleting substances from China. Adipic acid production, the major industrial emission source, contributes nearly 80% of the industrial N2O emissions, and represents about 96.2% of the industrial mitigation potential. However, the mitigation will not happen without implementing effective policies and regulatory programs.

  17. Whole-farm models to quantify greenhouse gas emissions and their potential use for linking climate change mitigation and adaptation in temperate grassland ruminant-based farming systems.

    PubMed

    Del Prado, A; Crosson, P; Olesen, J E; Rotz, C A

    2013-06-01

    The farm level is the most appropriate scale for evaluating options for mitigating greenhouse gas (GHG) emissions, because the farm represents the unit at which management decisions in livestock production are made. To date, a number of whole farm modelling approaches have been developed to quantify GHG emissions and explore climate change mitigation strategies for livestock systems. This paper analyses the limitations and strengths of the different existing approaches for modelling GHG mitigation by considering basic model structures, approaches for simulating GHG emissions from various farm components and the sensitivity of GHG outputs and mitigation measures to different approaches. Potential challenges for linking existing models with the simulation of impacts and adaptation measures under climate change are explored along with a brief discussion of the effects on other ecosystem services.

  18. The economics of abrupt climate change.

    PubMed

    Perrings, Charles

    2003-09-15

    The US National Research Council defines abrupt climate change as a change of state that is sufficiently rapid and sufficiently widespread in its effects that economies are unprepared or incapable of adapting. This may be too restrictive a definition, but abrupt climate change does have implications for the choice between the main response options: mitigation (which reduces the risks of climate change) and adaptation (which reduces the costs of climate change). The paper argues that by (i) increasing the costs of change and the potential growth of consumption, and (ii) reducing the time to change, abrupt climate change favours mitigation over adaptation. Furthermore, because the implications of change are fundamentally uncertain and potentially very high, it favours a precautionary approach in which mitigation buys time for learning. Adaptation-oriented decision tools, such as scenario planning, are inappropriate in these circumstances. Hence learning implies the use of probabilistic models that include socioeconomic feedbacks.

  19. Why Do Some People Do “More” to Mitigate Climate Change than Others? Exploring Heterogeneity in Psycho-Social Associations

    PubMed Central

    Ortega-Egea, José Manuel; García-de-Frutos, Nieves; Antolín-López, Raquel

    2014-01-01

    The urgency of climate change mitigation calls for a profound shift in personal behavior. This paper investigates psycho-social correlates of extra mitigation behavior in response to climate change, while also testing for potential (unobserved) heterogeneity in European citizens' decision-making. A person's extra mitigation behavior in response to climate change is conceptualized—and differentiated from common mitigation behavior—as some people's broader and greater levels of behavioral engagement (compared to others) across specific self-reported mitigation actions and behavioral domains. Regression analyses highlight the importance of environmental psychographics (i.e., attitudes, motivations, and knowledge about climate change) and socio-demographics (especially country-level variables) in understanding extra mitigation behavior. By looking at the data through the lens of segmentation, significant heterogeneity is uncovered in the associations of attitudes and knowledge about climate change—but not in motivational or socio-demographic links—with extra mitigation behavior in response to climate change, across two groups of environmentally active respondents. The study has implications for promoting more ambitious behavioral responses to climate change, both at the individual level and across countries. PMID:25191841

  20. Potentials to mitigate climate change using biochar - the Austrian perspective

    NASA Astrophysics Data System (ADS)

    Bruckman, Viktor J.; Klinglmüller, Michaela; Liu, Jay; Uzun, Basak B.; Varol, Esin A.

    2015-04-01

    Biomass utilization is seen as one of various promising strategies to reduce additional carbon emissions. A recent project on potentials of biochar to mitigate climate change (FOREBIOM) goes even a step further towards bioenergy in combination of CCS or "BECS" and tries to assess the current potentials, from sustainable biomass availability to biochar amendment in soils, including the identification of potential disadvantages and current research needs. The current report represents an outcome of the 1st FOREBIOM Workshop held in Vienna in April, 2013 and tries to characterize the Austrian perspective of biochar for climate change mitigation. The survey shows that for a widespread utilization of biochar in climate change mitigation strategies, still a number of obstacles have to be overcome. There are concerns regarding production and application costs, contamination and health issues for both producers and customers besides a fragmentary knowledge about biochar-soil interactions specifically in terms of long-term behavior, biochar stability and the effects on nutrient cycles. However, there are a number of positive examples showing that biochar indeed has the potential to sequester large amounts of carbon while improving soil properties and subsequently leading to a secondary carbon sink via rising soil productivity. Diversification, cascadic utilization and purpose designed biochar production are key strategies overcoming initial concerns, especially regarding economic aspects. A theoretical scenario calculation showed that relatively small amounts of biomass that is currently utilized for energy can reduce the gap between Austria's current GHG emissions and the Kyoto target by about 30% if biomass residues are pyrolized and biochar subsequently used as soil amendment. However, by using a more conservative approach that is representing the aims of the underlying FOREBIOM project (assuming that 10% of the annual biomass increment from forests is used for biochar production), each year 0.38 megatons CO2e could potentially be mitigated in Austria, which is 0.4% of total or 5% of all GHG emissions caused by agriculture in Austria in 2010. In order to produce this amount of biochar annually, about 27 medium-scale or 220 small-scale pyrolysis plants would be required. The economic analysis revealed that biochar yield, carbon sequestration and feedstock costs have the highest influence on GHG abatement costs. Further reading: Bruckman, V.J. and Klinglmüller, M. (2014): Potentials to Mitigate Climate Change Using Biochar - the Austrian Perspective. In: Bruckman, V.J., Liu, J., Başak, B.B. and Apaydın-Varol, E. (Eds.) Potentials to Mitigate Climate Change Using Biochar. IUFRO Occasional Papers 27.

  1. Bethany Speer | NREL

    Science.gov Websites

    Strategic Energy Analysis Center. Areas of Expertise International economic policy Climate change mitigation Markets Climate change mitigation policies Education M.A. in global finance, trade and economic Keyser, Suzanne Tegen. 2016. Floating Offshore Wind in California: Gross Potential for Jobs and Economic

  2. Biodiversity as a solution to mitigate climate change impacts on the functioning of forest ecosystems.

    PubMed

    Hisano, Masumi; Searle, Eric B; Chen, Han Y H

    2018-02-01

    Forest ecosystems are critical to mitigating greenhouse gas emissions through carbon sequestration. However, climate change has affected forest ecosystem functioning in both negative and positive ways, and has led to shifts in species/functional diversity and losses in plant species diversity which may impair the positive effects of diversity on ecosystem functioning. Biodiversity may mitigate climate change impacts on (I) biodiversity itself, as more-diverse systems could be more resilient to climate change impacts, and (II) ecosystem functioning through the positive relationship between diversity and ecosystem functioning. By surveying the literature, we examined how climate change has affected forest ecosystem functioning and plant diversity. Based on the biodiversity effects on ecosystem functioning (B→EF), we specifically address the potential for biodiversity to mitigate climate change impacts on forest ecosystem functioning. For this purpose, we formulate a concept whereby biodiversity may reduce the negative impacts or enhance the positive impacts of climate change on ecosystem functioning. Further B→EF studies on climate change in natural forests are encouraged to elucidate how biodiversity might influence ecosystem functioning. This may be achieved through the detailed scrutiny of large spatial/long temporal scale data sets, such as long-term forest inventories. Forest management strategies based on B→EF have strong potential for augmenting the effectiveness of the roles of forests in the mitigation of climate change impacts on ecosystem functioning. © 2017 Cambridge Philosophical Society.

  3. GHG emissions and mitigation potential in Indian agriculture

    NASA Astrophysics Data System (ADS)

    Vetter, Sylvia; Feliciano, Diana; Sapkota, Tek; Hillier, Jon; Smith, Pete; Stirling, Clare

    2016-04-01

    India is one of the world's largest greenhouse gas (GHG) emitter, accounting for about 5% of global emissions with further increases expected in the future. The Government of India aims to reduce emission intensities by 20-25% by 2020 compared with the 2005 level. In a recent departure from past practice the reconvened Council on Climate Change stated that climate change in agriculture would include a component that would focus on reducing emissions in agriculture, particularly methane and nitrous oxide emissions. To develop recommendations for mitigation in agriculture in India, a baseline study is presented to analyse the GHG emissions from agriculture for current management (Directorate of Economics and Statistics of the government of India). This analysis is done for the two states Bihar and Haryana, which differ in their management and practises based on different climate and policies. This first analysis shows were the highest GHG emissions in agriculture is produced and were the highest mitigation potential might be. The GHG emissions and mitigation potential are calculated using the CCAFS Mitigation Option Tool (CCAFS-MOT) (https://ccafs.cgiar.org/mitigation-option-tool-agriculture#.VpTnWL826d4) with modifications for the special modelling. In a second step, stakeholder meetings provided a wide range of possible and definite scenarios (management, policy, technology, costs, etc.) for the future to mitigate emissions in agriculture as well as how to increase productivity. These information were used to create scenarios to give estimates for the mitigation potential in agriculture for India in 2020.

  4. PROCEEDINGS: THE 1992 GREENHOUSE GAS EMISSIONS AND MITIGATION RESEARCH SYMPOSIUM

    EPA Science Inventory

    The report documents the 1992 Greenhouse Gas Emissions and Mitigation Research Symposium held in Washington, DC, August 18-20, 1992. The symposium provided a forum for exchange of technical information on global change emissions and potential mitigation technologies. The primary ...

  5. Selecting land-based mitigation practices to reduce GHG emissions from the rural land use sector: a case study of North East Scotland.

    PubMed

    Feliciano, Diana; Hunter, Colin; Slee, Bill; Smith, Pete

    2013-05-15

    The Climate Change (Scotland) Act 2009 commits Scotland to reduce GHG emissions by at least 42% by 2020 and 80% by 2050, from 1990 levels. According to the Climate Change Delivery Plan, the desired emission reduction for the rural land use sector (agriculture and other land uses) is 21% compared to 1990, or 10% compared to 2006 levels. In 2006, in North East Scotland, gross greenhouse gas (GHG) emissions from rural land uses were about 1599 ktCO2e. Thus, to achieve a 10% reduction in 2020 relative to 2006, emissions would have to decrease to about 1440 ktCO2e. This study developed a methodology to help selecting land-based practices to mitigate GHG emissions at the regional level. The main criterion used was the "full" mitigation potential of each practice. A mix of methods was used to undertake this study, namely a literature review and quantitative estimates. The mitigation practice that offered greatest "full" mitigation potential (≈66% reduction by 2020 relative to 2006) was woodland planting with Sitka spruce. Several barriers, such as economic, social, political and institutional, affect the uptake of mitigation practices in the region. Consequently the achieved mitigation potential of a practice may be lower than its "full" mitigation potential. Surveys and focus groups, with relevant stakeholders, need to be undertaken to assess the real area where mitigation practices can be implemented and the best way to overcome the barriers for their implementation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Mitigating Greenhouse Gas and Ammonia Emissions from Swine Manure Management: A System Analysis.

    PubMed

    Wang, Yue; Dong, Hongmin; Zhu, Zhiping; Gerber, Pierre J; Xin, Hongwei; Smith, Pete; Opio, Carolyn; Steinfeld, Henning; Chadwick, Dave

    2017-04-18

    Gaseous emissions from animal manure are considerable contributor to global ammonia (NH 3 ) and agriculture greenhouse gas (GHG) emissions. Given the demand to promote mitigation of GHGs while fostering sustainable development of the Paris Agreement, an improvement of management systems is urgently needed to help mitigate climate change and to improve atmospheric air quality. This study presents a meta-analysis and an integrated assessment of gaseous emissions and mitigation potentials for NH 3 , methane (CH 4 ), and nitrous oxide (N 2 O) (direct and indirect) losses from four typical swine manure management systems (MMSs). The resultant emission factors and mitigation efficiencies allow GHG and NH 3 emissions to be estimated, as well as mitigation potentials for different stages of swine operation. In particular, changing swine manure management from liquid systems to solid-liquid separation systems, coupled with mitigation measures, could simultaneously reduce GHG emissions by 65% and NH 3 emissions by 78%. The resultant potential reduction in GHG emissions from China's pig production alone is greater than the entire GHG emissions from agricultural sector of France, Australia, or Germany, while the reduction in NH 3 emissions is equivalent to 40% of the total NH 3 emissions from the European Union. Thus, improved swine manure management could have a significant impact on global environment issues.

  7. The potential role for management of U.S. public lands in greenhouse gas mitigation and climate policy.

    PubMed

    Olander, Lydia P; Cooley, David M; Galik, Christopher S

    2012-03-01

    Management of forests, rangelands, and wetlands on public lands, including the restoration of degraded lands, has the potential to increase carbon sequestration or reduce greenhouse gas (GHG) emissions beyond what is occurring today. In this paper we discuss several policy options for increasing GHG mitigation on public lands. These range from an extension of current policy by generating supplemental mitigation on public lands in an effort to meet national emissions reduction goals, to full participation in an offsets market by allowing GHG mitigation on public lands to be sold as offsets either by the overseeing agency or by private contractors. To help place these policy options in context, we briefly review the literature on GHG mitigation and public lands to examine the potential for enhanced mitigation on federal and state public lands in the United States. This potential will be tempered by consideration of the tradeoffs with other uses of public lands, the needs for climate change adaptation, and the effects on other ecosystem services.

  8. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    PubMed

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  9. Dynamics and climate change mitigation potential of soil organic carbon sequestration.

    PubMed

    Sommer, Rolf; Bossio, Deborah

    2014-11-01

    When assessing soil organic carbon (SOC) sequestration and its climate change (CC) mitigation potential at global scale, the dynamic nature of soil carbon storage and interventions to foster it should be taken into account. Firstly, adoption of SOC-sequestration measures will take time, and reasonably such schemes could only be implemented gradually at large-scale. Secondly, if soils are managed as carbon sinks, then SOC will increase only over a limited time, up to the point when a new SOC equilibrium is reached. This paper combines these two processes and predicts potential SOC sequestration dynamics in agricultural land at global scale and the corresponding CC mitigation potential. Assuming that global governments would agree on a worldwide effort to gradually change land use practices towards turning agricultural soils into carbon sinks starting 2014, the projected 87-year (2014-2100) global SOC sequestration potential of agricultural land ranged between 31 and 64 Gt. This is equal to 1.9-3.9% of the SRES-A2 projected 87-year anthropogenic emissions. SOC sequestration would peak 2032-33, at that time reaching 4.3-8.9% of the projected annual SRES-A2 emission. About 30 years later the sequestration rate would have reduced by half. Thus, SOC sequestration is not a C wedge that could contribute increasingly to mitigating CC. Rather, the mitigation potential is limited, contributing very little to solving the climate problem of the coming decades. However, we deliberately did not elaborate on the importance of maintaining or increasing SOC for sustaining soil health, agro-ecosystem functioning and productivity; an issue of global significance that deserves proper consideration irrespectively of any potential additional sequestration of SOC. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. CERES-Maize model-based simulation of climate change impacts on maize yields and potential adaptive measures in Heilongjiang Province, China.

    PubMed

    Lin, Yumei; Wu, Wenxiang; Ge, Quansheng

    2015-11-01

    Climate change would cause negative impacts on future agricultural production and food security. Adaptive measures should be taken to mitigate the adverse effects. The objectives of this study were to simulate the potential effects of climate change on maize yields in Heilongjiang Province and to evaluate two selected typical household-level autonomous adaptive measures (cultivar changes and planting time adjustments) for mitigating the risks of climate change based on the CERES-Maize model. The results showed that flowering duration and maturity duration of maize would be shortened in the future climate and thus maize yield would reduce by 11-46% during 2011-2099 relative to 1981-2010. Increased CO2 concentration would not benefit maize production significantly. However, substituting local cultivars with later-maturing ones and delaying the planting date could increase yields as the climate changes. The results provide insight regarding the likely impacts of climate change on maize yields and the efficacy of selected adaptive measures by presenting evidence-based implications and mitigation strategies for the potential negative impacts of future climate change. © 2014 Society of Chemical Industry.

  11. Mitigation, adaptation, and climate change: results from recent research on US timber markets.

    Treesearch

    Brent Sohngen; Ralph Alig

    2000-01-01

    This paper reviews recent studies that have addressed how US timber markets may adapt to climate change, and how US forests could be used to mitigate potential climate change. The studies are discussed in light of the ecological and economic assumptions used to estimate adaptation. Estimates of both economic impacts and carbon sequestration costs depend heavily on the...

  12. Agriculture and climate change: Potential for mitigation in Spain.

    PubMed

    Albiac, Jose; Kahil, Taher; Notivol, Eduardo; Calvo, Elena

    2017-08-15

    Agriculture and forestry activities are one of the many sources of greenhouse gas (GHG) emissions, but they are also sources of low-cost opportunities to mitigate these emissions compared to other economic sectors. This paper provides a first estimate of the potential for mitigation in the whole Spanish agriculture. A set of mitigation measures are selected for their cost-effectiveness and abatement potential and an efficient mix of these measures is identified with reference to a social cost of carbon of 40 €/tCO 2 e. This mix of measures includes adjusting crop fertilization and managing forests for carbon sequestration. Results indicate that by using the efficient mix of mitigation measures the annual abatement potential could reach 10 million tCO 2 e, which represents 28% of current agricultural emissions in Spain. This potential could further increase if the social cost of carbon rises covering the costs of applying manure to crops. Results indicate also that economic instruments such as input and emission taxes could be only ancillary measures to address mitigation in agriculture. These findings can be used to support the mitigation efforts in Spain and guide policymakers in the design of country-level mitigation strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Soil mapping and processes models to support climate change mitigation and adaptation strategies: a review

    NASA Astrophysics Data System (ADS)

    Muñoz-Rojas, Miriam; Pereira, Paulo; Brevik, Eric; Cerda, Artemi; Jordan, Antonio

    2017-04-01

    As agreed in Paris in December 2015, global average temperature is to be limited to "well below 2 °C above pre-industrial levels" and efforts will be made to "limit the temperature increase to 1.5 °C above pre-industrial levels. Thus, reducing greenhouse gas emissions (GHG) in all sectors becomes critical and appropriate sustainable land management practices need to be taken (Pereira et al., 2017). Mitigation strategies focus on reducing the rate and magnitude of climate change by reducing its causes. Complementary to mitigation, adaptation strategies aim to minimise impacts and maximize the benefits of new opportunities. The adoption of both practices will require developing system models to integrate and extrapolate anticipated climate changes such as global climate models (GCMs) and regional climate models (RCMs). Furthermore, integrating climate models driven by socio-economic scenarios in soil process models has allowed the investigation of potential changes and threats in soil characteristics and functions in future climate scenarios. One of the options with largest potential for climate change mitigation is sequestering carbon in soils. Therefore, the development of new methods and the use of existing tools for soil carbon monitoring and accounting have therefore become critical in a global change context. For example, soil C maps can help identify potential areas where management practices that promote C sequestration will be productive and guide the formulation of policies for climate change mitigation and adaptation strategies. Despite extensive efforts to compile soil information and map soil C, many uncertainties remain in the determination of soil C stocks, and the reliability of these estimates depends upon the quality and resolution of the spatial datasets used for its calculation. Thus, better estimates of soil C pools and dynamics are needed to advance understanding of the C balance and the potential of soils for climate change mitigation. Here, we discuss the most recent advances on the application of soil mapping and modeling to support climate change mitigation and adaptation strategies; and These strategies are a key component of the implementation of sustainable land management policies need to be integrated are critical to. The objective of this work is to present a review about the advantages of soil mapping and process modeling for sustainable land management. Muñoz-Rojas, M., Pereira, P., Brevic, E., Cerda, A., Jordan, A. (2017) Soil mapping and processes models for sustainable land management applied to modern challenges. In: Pereira, P., Brevik, E., Munoz-Rojas, M., Miller, B. (Eds.) Soil mapping and process modelling for sustainable land use management (Elsevier Publishing House) ISBN: 9780128052006

  14. Assessment of Clmate Change Mitigation Strategies for the Road Transport Sector of India

    NASA Astrophysics Data System (ADS)

    Singh, N.; Mishra, T.; Banerjee, R.

    2017-12-01

    India is one of the fastest growing major economies of the world. It imports three quarters of its oil demand, making transport sector major contributor of greenhouse gas (GHG) emissions. 40% of oil consumption in India comes from transport sector and over 90% of energy demand is from road transport sector. This has led to serious increase in CO2 emission and concentration of air pollutants in India. According to Intergovernmental Panel on Climate Change (IPCC), transport can play a crucial role for mitigation of global greenhouse gas emissions. Therefore, assessment of appropriate mitigation policies is required for emission reduction and cost benefit potential. The present study aims to estimate CO2, SO2, PM and NOx emissions from the road transport sector for the base year (2014) and target year (2030) by applying bottom up emission inventory model. Effectiveness of different mitigation strategies like inclusion of natural gas as alternate fuel, penetration of electric vehicle as alternate vehicle, improvement of fuel efficiency and increase share of public transport is evaluated for the target year. Emission reduction achieved from each mitigation strategies in the target year (2030) is compared with the business as usual scenario for the same year. To obtain cost benefit analysis, marginal abatement cost for each mitigation strategy is estimated. The study evaluates mitigation strategies not only on the basis of emission reduction potential but also on their cost saving potential.

  15. Adaptation strategies for health impacts of climate change in Western Australia: Application of a Health Impact Assessment framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spickett, Jeffery T., E-mail: J.Spickett@curtin.edu.a; Brown, Helen L., E-mail: h.brown@curtin.edu.a; Katscherian, Dianne, E-mail: Dianne.Katscherian@health.wa.gov.a

    2011-04-15

    Climate change is one of the greatest challenges facing the globe and there is substantial evidence that this will result in a number of health impacts, regardless of the level of greenhouse gas mitigation. It is therefore apparent that a combined approach of mitigation and adaptation will be required to protect public health. While the importance of mitigation is recognised, this project focused on the role of adaptation strategies in addressing the potential health impacts of climate change. The nature and magnitude of these health impacts will be determined by a number of parameters that are dependent upon the location.more » Firstly, climate change will vary between regions. Secondly, the characteristics of each region in terms of population and the ability to adapt to changes will greatly influence the extent of the health impacts that are experienced now and into the future. Effective adaptation measures therefore need to be developed with these differences in mind. A Health Impact Assessment (HIA) framework was used to consider the implications of climate change on the health of the population of Western Australia (WA) and to develop a range of adaptive responses suited to WA. A broad range of stakeholders participated in the HIA process, providing informed input into developing an understanding of the potential health impacts and potential adaptation strategies from a diverse sector perspective. Potential health impacts were identified in relation to climate change predictions in WA in the year 2030. The risk associated with each of these impacts was assessed using a qualitative process that considered the consequences and the likelihood of the health impact occurring. Adaptations were then developed which could be used to mitigate the identified health impacts and provide responses which could be used by Government for future decision making. The periodic application of a HIA framework is seen as an ideal tool to develop appropriate adaptation strategies to address the potential health impacts of climate change.« less

  16. Greenhouse Gas Mitigation in Chinese Eco-Industrial Parks by Targeting Energy Infrastructure: A Vintage Stock Model.

    PubMed

    Guo, Yang; Tian, Jinping; Chertow, Marian; Chen, Lujun

    2016-10-03

    Mitigating greenhouse gas (GHG) emissions in China's industrial sector is crucial for addressing climate change. We developed a vintage stock model to quantify the GHG mitigation potential and cost effectiveness in Chinese eco-industrial parks by targeting energy infrastructure with five key measures. The model, integrating energy efficiency assessments, GHG emission accounting, cost-effectiveness analyses, and scenario analyses, was applied to 548 units of energy infrastructure in 106 parks. The results indicate that two measures (shifting coal-fired boilers to natural gas-fired boilers and replacing coal-fired units with natural gas combined cycle units) present a substantial potential to mitigate GHGs (42%-46%) compared with the baseline scenario. The other three measures (installation of municipal solid waste-to-energy units, replacement of small-capacity coal-fired units with large units, and implementation of turbine retrofitting) present potential mitigation values of 6.7%, 0.3%, and 2.1%, respectively. In most cases, substantial economic benefits also can be achieved by GHG emission mitigation. An uncertainty analysis showed that enhancing the annual working time or serviceable lifetime levels could strengthen the GHG mitigation potential at a lower cost for all of the measures.

  17. Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients.

    PubMed

    Paerl, Hans W; Gardner, Wayne S; Havens, Karl E; Joyner, Alan R; McCarthy, Mark J; Newell, Silvia E; Qin, Boqiang; Scott, J Thad

    2016-04-01

    Mitigating the global expansion of cyanobacterial harmful blooms (CyanoHABs) is a major challenge facing researchers and resource managers. A variety of traditional (e.g., nutrient load reduction) and experimental (e.g., artificial mixing and flushing, omnivorous fish removal) approaches have been used to reduce bloom occurrences. Managers now face the additional effects of climate change on watershed hydrologic and nutrient loading dynamics, lake and estuary temperature, mixing regime, internal nutrient dynamics, and other factors. Those changes favor CyanoHABs over other phytoplankton and could influence the efficacy of control measures. Virtually all mitigation strategies are influenced by climate changes, which may require setting new nutrient input reduction targets and establishing nutrient-bloom thresholds for impacted waters. Physical-forcing mitigation techniques, such as flushing and artificial mixing, will need adjustments to deal with the ramifications of climate change. Here, we examine the suite of current mitigation strategies and the potential options for adapting and optimizing them in a world facing increasing human population pressure and climate change. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The idiosyncrasies of streams: local variability mitigates vulnerability of trout to changing conditions

    Treesearch

    Andrea Watts; Brooke Penaluna; Jason Dunham

    2016-01-01

    Land use and climate change are two key factors with the potential to affect stream conditions and fish habitat. Since the 1950s, Washington and Oregon have required forest practices designed to mitigate the effects of timber harvest on streams and fish. Yet questions remain about the extent to which these practices are effective. Add in the effects of climate change—...

  19. Survey data reflecting popular opinions of the causes and mitigation of climate change.

    PubMed

    Thompson, Jonathan E

    2017-10-01

    The data presented within this manuscript reports the results of a 20-question opinion survey concerning popular beliefs regarding the causes of and possible mitigation of climate change. The results and opinions from 746 survey respondents are presented. The data reflects certain misconceptions of climate change, and is useful for investigators to begin forming opinions of the public's knowledge regarding the potentially inflammatory topics of climate change, greenhouse gases, and geo-engineering.

  20. Long-term climate change mitigation potential with organic matter management on grasslands.

    PubMed

    Ryals, Rebecca; Hartman, Melannie D; Parton, William J; DeLonge, Marcia S; Silver, Whendee L

    2015-03-01

    Compost amendments to grasslands have been proposed as a strategy to mitigate climate change through carbon (C) sequestration, yet little research exists exploring the net mitigation potential or the long-term impacts of this strategy. We used field data and the DAYCENT biogeochemical model to investigate the climate change mitigation potential of compost amendments to grasslands in California, USA. The model was used to test ecosystem C and greenhouse gas responses to a range of compost qualities (carbon to nitrogen [C:N] ratios of 11.1, 20, or 30) and application rates (single addition of 14 Mg C/ha or 10 annual additions of 1.4 Mg C · ha(-1) · yr(-1)). The model was parameterized using site-specific weather, vegetation, and edaphic characteristics and was validated by comparing simulated soil C, nitrous oxide (N2O), methane (CH4), and carbon dioxide (CO2) fluxes, and net primary production (NPP) with three years of field data. All compost amendment scenarios led to net greenhouse gas sinks that persisted for several decades. Rates of climate change mitigation potential ranged from 130 ± 3 g to 158 ± 8 g CO2-eq · m(-2) ·yr(-1) (where "eq" stands for "equivalents") when assessed over a 10-year time period and 63 ± 2 g to 84 ± 10 g CO2- eq · m(-2) · yr(-1) over a 30-year time period. Both C storage and greenhouse gas emissions increased rapidly following amendments. Compost amendments with lower C:N led to higher C sequestration rates over time. However, these soils also experienced greater N20 fluxes. Multiple smaller compost additions resulted in similar cumulative C sequestration rates, albeit with a time lag, and lower cumulative N2O emissions. These results identify a trade-off between maximizing C sequestration and minimizing N2O emissions following amendments, and suggest that compost additions to grassland soils can have a long-term impact on C and greenhouse gas dynamics that contributes to climate change mitigation.

  1. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  2. Large uncertainty in carbon uptake potential of land-based climate-change mitigation efforts.

    PubMed

    Krause, Andreas; Pugh, Thomas A M; Bayer, Anita D; Li, Wei; Leung, Felix; Bondeau, Alberte; Doelman, Jonathan C; Humpenöder, Florian; Anthoni, Peter; Bodirsky, Benjamin L; Ciais, Philippe; Müller, Christoph; Murray-Tortarolo, Guillermo; Olin, Stefan; Popp, Alexander; Sitch, Stephen; Stehfest, Elke; Arneth, Almut

    2018-07-01

    Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land-based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land-based mitigation scenarios from two land-use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ-GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land-use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land-use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land-use change. Differences between land-use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land-based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy. © 2018 John Wiley & Sons Ltd.

  3. Engaging western landowners in climate change mitigation: a guide to carbon-oriented forest and range management and carbon market opportunities

    Treesearch

    David D. Diaz; Susan Charnley; Hannah Gosnell

    2009-01-01

    There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...

  4. The underappreciated potential of peatlands in global climate change mitigation strategies.

    PubMed

    Leifeld, J; Menichetti, L

    2018-03-14

    Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31-3.38) Gt CO 2 -eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30-80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.

  5. Public perceptions about climate change mitigation in British Columbia's forest sector

    PubMed Central

    Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia’s forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors. PMID:29684041

  6. Public perceptions about climate change mitigation in British Columbia's forest sector.

    PubMed

    Peterson St-Laurent, Guillaume; Hagerman, Shannon; Kozak, Robert; Hoberg, George

    2018-01-01

    The role of forest management in mitigating climate change is a central concern for the Canadian province of British Columbia. The successful implementation of forest management activities to achieve climate change mitigation in British Columbia will be strongly influenced by public support or opposition. While we now have increasingly clear ideas of the management opportunities associated with forest mitigation and some insight into public support for climate change mitigation in the context of sustainable forest management, very little is known with respect to the levels and basis of public support for potential forest management strategies to mitigate climate change. This paper, by describing the results of a web-based survey, documents levels of public support for the implementation of eight forest carbon mitigation strategies in British Columbia's forest sector, and examines and quantifies the influence of the factors that shape this support. Overall, respondents ascribed a high level of importance to forest carbon mitigation and supported all of the eight proposed strategies, indicating that the British Columbia public is inclined to consider alternative practices in managing forests and wood products to mitigate climate change. That said, we found differences in levels of support for the mitigation strategies. In general, we found greater levels of support for a rehabilitation strategy (e.g. reforestation of unproductive forest land), and to a lesser extent for conservation strategies (e.g. old growth conservation, reduced harvest) over enhanced forest management strategies (e.g. improved harvesting and silvicultural techniques). We also highlighted multiple variables within the British Columbia population that appear to play a role in predicting levels of support for conservation and/or enhanced forest management strategies, including environmental values, risk perception, trust in groups of actors, prioritized objectives of forest management and socio-demographic factors.

  7. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds.

    PubMed

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-07-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union.

  8. Balance between climate change mitigation benefits and land use impacts of bioenergy: conservation implications for European birds

    PubMed Central

    Meller, Laura; Thuiller, Wilfried; Pironon, Samuel; Barbet-Massin, Morgane; Hof, Andries; Cabeza, Mar

    2015-01-01

    Both climate change and habitat modification exert serious pressure on biodiversity. Although climate change mitigation has been identified as an important strategy for biodiversity conservation, bioenergy remains a controversial mitigation action due to its potential negative ecological and socio-economic impacts which arise through habitat modification by land-use change. While the debate continues, the separate or simultaneous impacts of both climate change and bioenergy on biodiversity have not yet been compared. We assess projected range shifts of 156 European bird species by 2050 under two alternative climate change trajectories: a baseline scenario, where the global mean temperature increases by 4°C by the end of the century, and a 2 degrees scenario, where global concerted effort limits the temperature increase to below 2°C. For the latter scenario, we also quantify the pressure exerted by increased cultivation of energy biomass as modelled by IMAGE2.4, an integrated land-use model. The global bioenergy use in this scenario is in the lower end of the range of previously estimated sustainable potential. Under the assumptions of these scenarios, we find that the magnitude of range shifts due to climate change is far greater than the impact of land conversion to woody bioenergy plantations within the European Union, and that mitigation of climate change reduces the exposure experienced by species. However, we identified potential for local conservation conflict between priority areas for conservation and bioenergy production. These conflicts must be addressed by strict bioenergy sustainability criteria that acknowledge biodiversity conservation needs beyond existing protected areas and apply also to biomass imported from outside the European Union. PMID:26681982

  9. Sustainable biochar to mitigate global climate change

    PubMed Central

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. Alayne; Lehmann, Johannes; Joseph, Stephen

    2010-01-01

    Production of biochar (the carbon (C)-rich solid formed by pyrolysis of biomass) and its storage in soils have been suggested as a means of abating climate change by sequestering carbon, while simultaneously providing energy and increasing crop yields. Substantial uncertainties exist, however, regarding the impact, capacity and sustainability of biochar at the global level. In this paper we estimate the maximum sustainable technical potential of biochar to mitigate climate change. Annual net emissions of carbon dioxide (CO2), methane and nitrous oxide could be reduced by a maximum of 1.8 Pg CO2-C equivalent (CO2-Ce) per year (12% of current anthropogenic CO2-Ce emissions; 1 Pg=1 Gt), and total net emissions over the course of a century by 130 Pg CO2-Ce, without endangering food security, habitat or soil conservation. Biochar has a larger climate-change mitigation potential than combustion of the same sustainably procured biomass for bioenergy, except when fertile soils are amended while coal is the fuel being offset. PMID:20975722

  10. Forecasting the effects of land use scenarios on farmland birds reveal a potential mitigation of climate change impacts.

    PubMed

    Princé, Karine; Lorrillière, Romain; Barbet-Massin, Morgane; Léger, François; Jiguet, Frédéric

    2015-01-01

    Climate and land use changes are key drivers of current biodiversity trends, but interactions between these drivers are poorly modeled, even though they could amplify or mitigate negative impacts of climate change. Here, we attempt to predict the impacts of different agricultural change scenarios on common breeding birds within farmland included in the potential future climatic suitable areas for these species. We used the Special Report on Emissions Scenarios (SRES) to integrate likely changes in species climatic suitability, based on species distribution models, and changes in area of farmland, based on the IMAGE model, inside future climatic suitable areas. We also developed six farmland cover scenarios, based on expert opinion, which cover a wide spectrum of potential changes in livestock farming and cropping patterns by 2050. We ran generalized linear mixed models to calibrate the effects of farmland cover and climate change on bird specific abundance within 386 small agricultural regions. We used model outputs to predict potential changes in bird populations on the basis of predicted changes in regional farmland cover, in area of farmland and in species climatic suitability. We then examined the species sensitivity according to their habitat requirements. A scenario based on extensification of agricultural systems (i.e., low-intensity agriculture) showed the greatest potential to reduce reverse current declines in breeding birds. To meet ecological requirements of a larger number of species, agricultural policies accounting for regional disparities and landscape structure appear more efficient than global policies uniformly implemented at national scale. Interestingly, we also found evidence that farmland cover changes can mitigate the negative effect of climate change. Here, we confirm that there is a potential for countering negative effects of climate change by adaptive management of landscape. We argue that such studies will help inform sustainable agricultural policies for the future.

  11. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  12. Climate mitigation and the future of tropical landscapes.

    PubMed

    Thomson, Allison M; Calvin, Katherine V; Chini, Louise P; Hurtt, George; Edmonds, James A; Bond-Lamberty, Ben; Frolking, Steve; Wise, Marshall A; Janetos, Anthony C

    2010-11-16

    Land-use change to meet 21st-century demands for food, fuel, and fiber will depend on many interactive factors, including global policies limiting anthropogenic climate change and realized improvements in agricultural productivity. Climate-change mitigation policies will alter the decision-making environment for land management, and changes in agricultural productivity will influence cultivated land expansion. We explore to what extent future increases in agricultural productivity might offset conversion of tropical forest lands to crop lands under a climate mitigation policy and a contrasting no-policy scenario in a global integrated assessment model. The Global Change Assessment Model is applied here to simulate a mitigation policy that stabilizes radiative forcing at 4.5 W m(-2) (approximately 526 ppm CO(2)) in the year 2100 by introducing a price for all greenhouse gas emissions, including those from land use. These scenarios are simulated with several cases of future agricultural productivity growth rates and the results downscaled to produce gridded maps of potential land-use change. We find that tropical forests are preserved near their present-day extent, and bioenergy crops emerge as an effective mitigation option, only in cases in which a climate mitigation policy that includes an economic price for land-use emissions is in place, and in which agricultural productivity growth continues throughout the century. We find that idealized land-use emissions price assumptions are most effective at limiting deforestation, even when cropland area must increase to meet future food demand. These findings emphasize the importance of accounting for feedbacks from land-use change emissions in global climate change mitigation strategies.

  13. Implications of climate change predictions for UK cropping and prospects for possible mitigation: a review of challenges and potential responses.

    PubMed

    Rial-Lovera, Karen; Davies, W Paul; Cannon, Nicola D

    2017-01-01

    The UK, like the rest of the world, is confronting the impacts of climate change. Further changes are expected and they will have a profound effect on agriculture. Future crop production will take place against increasing CO 2 levels and temperatures, decreasing water availability, and increasing frequency of extreme weather events. This review contributes to research on agricultural practices for climate change, but with a more regional perspective. The present study explores climate change impacts on UK agriculture, particularly food crop production, and how to mitigate and build resilience to climate change by adopting and/or changing soil management practices, including fertilisation and tillage systems, new crop adoption and variety choice. Some mitigation can be adopted in the shorter term, such as changes in crop type and reduction in fertiliser use, but in other cases the options will need greater investment and longer adaptation period. This is the case for new crop variety development and deployment, and possible changes to soil cultivations. Uncertainty of future weather conditions, particularly extreme weather, also affect decision-making for adoption of practices by farmers to ensure more stable and sustainable production. Even when there is real potential for climate change mitigation, it can sometimes be more difficult to accomplish with certainty on-farm. Better future climate projections and long-term investments will be required to create more resilient agricultural systems in the UK in the face of climate change challenges. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Implications of Climate Mitigation for Future Agricultural Production

    NASA Technical Reports Server (NTRS)

    Mueller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Deryng, Delphine; Folberth, Christian; Pugh, Thomas A. M.; Schmid, Erwin

    2015-01-01

    Climate change is projected to negatively impact biophysical agricultural productivity in much of the world. Actions taken to reduce greenhouse gas emissions and mitigate future climate changes, are thus of central importance for agricultural production. Climate impacts are, however, not unidirectional; some crops in some regions (primarily higher latitudes) are projected to benefit, particularly if increased atmospheric carbon dioxide is assumed to strongly increase crop productivity at large spatial and temporal scales. Climate mitigation measures that are implemented by reducing atmospheric carbon dioxide concentrations lead to reductions both in the strength of climate change and in the benefits of carbon dioxide fertilization. Consequently, analysis of the effects of climate mitigation on agricultural productivity must address not only regions for which mitigation is likely to reduce or even reverse climate damages. There are also regions that are likely to see increased crop yields due to climate change, which may lose these added potentials under mitigation action. Comparing data from the most comprehensive archive of crop yield projections publicly available, we find that climate mitigation leads to overall benefits from avoided damages at the global scale and especially in many regions that are already at risk of food insecurity today. Ignoring controversial carbon dioxide fertilization effects on crop productivity, we find that for the median projection aggressive mitigation could eliminate approximately 81% of the negative impacts of climate change on biophysical agricultural productivity globally by the end of the century. In this case, the benefits of mitigation typically extend well into temperate regions, but vary by crop and underlying climate model projections. Should large benefits to crop yields from carbon dioxide fertilization be realized, the effects of mitigation become much more mixed, though still positive globally and beneficial in many food insecure countries.

  15. Urban Heat Islands and Their Mitigation vs. Local Impacts of Climate Change

    NASA Astrophysics Data System (ADS)

    Taha, H.

    2007-12-01

    Urban heat islands and their mitigation take on added significance, both negative and positive, when viewed from a climate-change perspective. In negative terms, urban heat islands can act as local exacerbating factors, or magnifying lenses, to the effects of regional and large-scale climate perturbations and change. They can locally impact meteorology, energy/electricity generation and use, thermal environment (comfort and heat waves), emissions of air pollutants, photochemistry, and air quality. In positive terms, on the other hand, mitigation of urban heat islands (via urban surface modifications and control of man-made heat, for example) can potentially have a beneficial effect of mitigating the local negative impacts of climate change. In addition, mitigation of urban heat islands can, in itself, contribute to preventing regional and global climate change, even if modestly, by helping reduce CO2 emissions from power plants and other sources as a result of decreased energy use for cooling (both direct and indirect) and reducing the rates of meteorology-dependent emissions of air pollutants. This presentation will highlight aspects and characteristics of heat islands, their mitigation, their modeling and quantification techniques, and recent advances in meso-urban modeling of California (funded by the California Energy Commission). In particular, the presentation will focus on results from quantitative, modeling-based analyses of the potential benefits of heat island mitigation in 1) reducing point- and area-source emissions of CO2, NOx, and VOC as a result of reduced cooling energy demand and ambient/surface temperatures, 2) reducing evaporative and fugitive hydrocarbon emissions as a result of lowered temperatures, 3) reducing biogenic hydrocarbon emissions from existing vegetative cover, 4) slowing the rates of tropospheric/ground-level ozone formation and/or accumulation in the urban boundary layer, and 5) helping improve air quality. Quantitative estimates of the above will be presented based on recent and earlier meteorological, energy, thermal environmental, emissions, and photochemical modeling studies for California and Texas.

  16. Climate adaptation as mitigation: the case of agricultural investments

    NASA Astrophysics Data System (ADS)

    Lobell, David B.; Baldos, Uris Lantz C.; Hertel, Thomas W.

    2013-03-01

    Successful adaptation of agriculture to ongoing climate changes would help to maintain productivity growth and thereby reduce pressure to bring new lands into agriculture. In this paper we investigate the potential co-benefits of adaptation in terms of the avoided emissions from land use change. A model of global agricultural trade and land use, called SIMPLE, is utilized to link adaptation investments, yield growth rates, land conversion rates, and land use emissions. A scenario of global adaptation to offset negative yield impacts of temperature and precipitation changes to 2050, which requires a cumulative 225 billion USD of additional investment, results in 61 Mha less conversion of cropland and 15 Gt carbon dioxide equivalent (CO2e) fewer emissions by 2050. Thus our estimates imply an annual mitigation co-benefit of 0.35 GtCO2e yr-1 while spending 15 per tonne CO2e of avoided emissions. Uncertainty analysis is used to estimate a 5-95% confidence interval around these numbers of 0.25-0.43 Gt and 11-22 per tonne CO2e. A scenario of adaptation focused only on Sub-Saharan Africa and Latin America, while less costly in aggregate, results in much smaller mitigation potentials and higher per tonne costs. These results indicate that although investing in the least developed areas may be most desirable for the main objectives of adaptation, it has little net effect on mitigation because production gains are offset by greater rates of land clearing in the benefited regions, which are relatively low yielding and land abundant. Adaptation investments in high yielding, land scarce regions such as Asia and North America are more effective for mitigation. To identify data needs, we conduct a sensitivity analysis using the Morris method (Morris 1991 Technometrics 33 161-74). The three most critical parameters for improving estimates of mitigation potential are (in descending order) the emissions factors for converting land to agriculture, the price elasticity of land supply with respect to land rents, and the elasticity of substitution between land and non-land inputs. For assessing the mitigation costs, the elasticity of productivity with respect to investments in research and development is also very important. Overall, this study finds that broad-based efforts to adapt agriculture to climate change have mitigation co-benefits that, even when forced to shoulder the entire expense of adaptation, are inexpensive relative to many activities whose main purpose is mitigation. These results therefore challenge the current approach of most climate financing portfolios, which support adaptation from funds completely separate from—and often much smaller than—mitigation ones.

  17. Mitigating Methane: Emerging Technologies To Combat Climate Change's Second Leading Contributor.

    PubMed

    Pratt, Chris; Tate, Kevin

    2018-06-05

    Methane (CH 4 ) is the second greatest contributor to anthropogenic climate change. Emissions have tripled since preindustrial times and continue to rise rapidly, given the fact that the key sources of food production, energy generation and waste management, are inexorably tied to population growth. Until recently, the pursuit of CH 4 mitigation approaches has tended to align with opportunities for easy energy recovery through gas capture and flaring. Consequently, effective abatement has been largely restricted to confined high-concentration sources such as landfills and anaerobic digesters, which do not represent a major share of CH 4 's emission profile. However, in more recent years we have witnessed a quantum leap in the sophistication, diversity and affordability of CH 4 mitigation technologies on the back of rapid advances in molecular analytical techniques, developments in material sciences and increasingly efficient engineering processes. Here, we present some of the latest concepts, designs and applications in CH 4 mitigation, identifying a number of abatement synergies across multiple industries and sectors. We also propose novel ways to manipulate cutting-edge technology approaches for even more effective mitigation potential. The goal of this review is to stimulate the ongoing quest for and uptake of practicable CH 4 mitigation options; supplementing established and proven approaches with immature yet potentially high-impact technologies. There has arguably never been, and if we do not act soon nor will there be, a better opportunity to combat climate change's second most significant greenhouse gas.

  18. THE LANDSCAPE PERSPECTIVE IN MITIGATING THE IMPACTS OF WETLAND HABITAT LOSS

    EPA Science Inventory

    Ecological restoration is viewed as a way to mitigate the effects of land uses and, potentially, global change. Research to date has primarily focused on the scale of the individual, restoration project, while restoration at the landscape scale is just beginning to be considered...

  19. Focusing Events and Constrains on Policy Addressing Long-Term Climate Change Risks

    NASA Astrophysics Data System (ADS)

    O'Donovan, K.

    2014-12-01

    When policy makers are aware of immediate and long-term risks to communities, what do they do to plan for and mitigate the effects of climate change? This paper addresses that question in two ways. First, as an organizing framework it presents an overview of the empirical evidence on focusing events. Focusing events are defined as sudden, rare events that reveal harm or the potential for future harm that the general public and policy makers become aware of simultaneously. These large-scale events are typically natural and disasters, crisis, or technological accidents. This paper considers the empirical evidence of the relationship between focusing events, the harm revealed by the event and policy change aimed at reducing future risk of harm. Second, this paper reviews the case of flood mitigation policy in the United States from 1968 to 2008. It considers the ways in which policy makers have and have not integrated future flood risks into mitigation policy and planning, particularly after large-scale floods. It analyzes the political, intergovernmental, demographic and geographic factors that have promoted and constrained long-term flood mitigation policy. This paper concludes with a discussion of the meaning and implications of potential focusing events and constrains on policy for long-term climate change concerns.

  20. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics

    PubMed Central

    Thornton, Philip K.; Herrero, Mario

    2010-01-01

    We estimate the potential reductions in methane and carbon dioxide emissions from several livestock and pasture management options in the mixed and rangeland-based production systems in the tropics. The impacts of adoption of improved pastures, intensifying ruminant diets, changes in land-use practices, and changing breeds of large ruminants on the production of methane and carbon dioxide are calculated for two levels of adoption: complete adoption, to estimate the upper limit to reductions in these greenhouse gases (GHGs), and optimistic but plausible adoption rates taken from the literature, where these exist. Results are expressed both in GHG per ton of livestock product and in Gt CO2-eq. We estimate that the maximum mitigation potential of these options in the land-based livestock systems in the tropics amounts to approximately 7% of the global agricultural mitigation potential to 2030. Using historical adoption rates from the literature, the plausible mitigation potential of these options could contribute approximately 4% of global agricultural GHG mitigation. This could be worth on the order of $1.3 billion per year at a price of $20 per t CO2-eq. The household-level and sociocultural impacts of some of these options warrant further study, however, because livestock have multiple roles in tropical systems that often go far beyond their productive utility. PMID:20823225

  1. Greenhouse gas emission and mitigation potential of changes in water management for two rice sites in Bangladesh

    NASA Astrophysics Data System (ADS)

    Begum, Khadiza; Kuhnert, Matthias; Yeluripati, Jagadeesh; Smith, Pete; Ogle, Stephen; Parton, William; Kader, Abdul; Sleutel, Steven

    2017-04-01

    Agriculture is one of the main contributors to greenhouse gas (GHG) emissions in Bangladesh and rice production is one of the largest sources of GHG emissions. This study considers measurements from two test sites, situated in Mymensingh (Bangladesh), to calibrate and validate the biogeochemical model DailyDayCent and estimate the mitigation potential of alternative management practices at the sites. There are two different N application treatments on the two test sites, which are on the first site a control with no N application and a mineral fertilizer application (120 kg N ha-1) and on the second site only a mineral fertilizer application (110 kg N ha-1). For mitigation, the water management is modified in a modelling approach to estimate the mitigation potential for reducing GHG emissions. The model shows partial agreement with the observations. The modifications to the water management, by changing from permanent wetting to alternate wetting, shows a decrease in GHG emissions of up to 46 % and 37 % for the two test sites, respectively. These tests enable an optimization of the management options to reduce the GHG emissions while maintaining yields.

  2. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  3. On the post mitigation impact risk assessment of possible targets for an asteroid deflection demonstration mission in the NEOShield project.

    NASA Astrophysics Data System (ADS)

    Eggl, Siegfried

    2014-05-01

    Mankind believes to have the capabilities to avert potentially disastrous asteroid impacts. Yet, only the realization of a mitigation demonstration mission can confirm such a claim. The NEOShield project, an international collaboration under European leadership, aims to draw a comprehensive picture of the scientific as well as technical requirements to such an endeavor. One of the top priorities of such a demonstration mission is, of course, that a previously harmless target asteroid shall not be turned into a potentially hazardous object. Given the inherently large uncertainties in an asteroid's physical parameters, as well as the additional uncertainties introduced during the deflection attempt, an in depth analysis of the change in asteroid impact probabilities after a deflection event becomes necessary. We present a post mitigation impact risk analysis of a list of potential deflection test missions and discuss the influence of orbital, physical and mitigation induced uncertainties.

  4. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2017-01-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  5. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret; Fleming, Eric; Newman, Paul; Li, Feng; Liang, Qing

    2017-04-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  6. Revaluing unmanaged forests for climate change mitigation.

    PubMed

    Krug, Joachim; Koehl, Michael; Kownatzki, Dierk

    2012-11-14

    Unmanaged or old-growth forests are of paramount importance for carbon sequestration and thus for the mitigation of climate change among further implications, e.g. biodiversity aspects. Still, the importance of those forests for climate change mitigation compared to managed forests is under controversial debate. We evaluate the adequacy of referring to CO2 flux measurements alone and include external impacts on growth (nitrogen immissions, increasing temperatures, CO2 enrichment, changed precipitation patterns) for an evaluation of central European forests in this context. We deduce that the use of CO2 flux measurements alone does not allow conclusions on a superiority of unmanaged to managed forests for mitigation goals. This is based on the critical consideration of uncertainties and the application of system boundaries. Furthermore, the consideration of wood products for material and energetic substitution obviously overrules the mitigation potential of unmanaged forests. Moreover, impacts of nitrogen immissions, CO2 enrichment of the atmosphere, increasing temperatures and changed precipitation patterns obviously lead to a meaningful increase in growth, even in forests of higher age. An impact of unmanaged forests on climate change mitigation cannot be valued by CO2 flux measurements alone. Further research is needed on cause and effect relationships between management practices and carbon stocks in different compartments of forest ecosystems in order to account for human-induced changes. Unexpected growth rates in old-growth forests - managed or not - can obviously be related to external impacts and additionally to management impacts. This should lead to the reconsideration of forest management strategies.

  7. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution.

    PubMed

    Bodirsky, Benjamin Leon; Popp, Alexander; Lotze-Campen, Hermann; Dietrich, Jan Philipp; Rolinski, Susanne; Weindl, Isabelle; Schmitz, Christoph; Müller, Christoph; Bonsch, Markus; Humpenöder, Florian; Biewald, Anne; Stevanovic, Miodrag

    2014-05-13

    Reactive nitrogen (Nr) is an indispensable nutrient for agricultural production and human alimentation. Simultaneously, agriculture is the largest contributor to Nr pollution, causing severe damages to human health and ecosystem services. The trade-off between food availability and Nr pollution can be attenuated by several key mitigation options, including Nr efficiency improvements in crop and animal production systems, food waste reduction in households and lower consumption of Nr-intensive animal products. However, their quantitative mitigation potential remains unclear, especially under the added pressure of population growth and changes in food consumption. Here we show by model simulations, that under baseline conditions, Nr pollution in 2050 can be expected to rise to 102-156% of the 2010 value. Only under ambitious mitigation, does pollution possibly decrease to 36-76% of the 2010 value. Air, water and atmospheric Nr pollution go far beyond critical environmental thresholds without mitigation actions. Even under ambitious mitigation, the risk remains that thresholds are exceeded.

  8. Public health benefits of strategies to reduce greenhouse-gas emissions: overview and implications for policy makers.

    PubMed

    Haines, Andy; McMichael, Anthony J; Smith, Kirk R; Roberts, Ian; Woodcock, James; Markandya, Anil; Armstrong, Ben G; Campbell-Lendrum, Diarmid; Dangour, Alan D; Davies, Michael; Bruce, Nigel; Tonne, Cathryn; Barrett, Mark; Wilkinson, Paul

    2009-12-19

    This Series has examined the health implications of policies aimed at tackling climate change. Assessments of mitigation strategies in four domains-household energy, transport, food and agriculture, and electricity generation-suggest an important message: that actions to reduce greenhouse-gas emissions often, although not always, entail net benefits for health. In some cases, the potential benefits seem to be substantial. This evidence provides an additional and immediate rationale for reductions in greenhouse-gas emissions beyond that of climate change mitigation alone. Climate change is an increasing and evolving threat to the health of populations worldwide. At the same time, major public health burdens remain in many regions. Climate change therefore adds further urgency to the task of addressing international health priorities, such as the UN Millennium Development Goals. Recognition that mitigation strategies can have substantial benefits for both health and climate protection offers the possibility of policy choices that are potentially both more cost effective and socially attractive than are those that address these priorities independently. Copyright 2009 Elsevier Ltd. All rights reserved.

  9. Global climate change: the quantifiable sustainability challenge.

    PubMed

    Princiotta, Frank T; Loughlin, Daniel H

    2014-09-01

    Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.

  10. The Moving Target of Climate Mitigation: Examples from the Energy Sector in California

    NASA Astrophysics Data System (ADS)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2016-12-01

    In response to the concerns of climate change-induced impacts on human health, environmental integrity, and the secure operation of resource supply infrastructures, strategies to reduce greenhouse gas (GHG) emissions of major societal sectors have been in development. In the energy sector, these strategies are based in low carbon primary energy deployment, increased energy efficiency, and implementing complementary technologies for operational resilience. While these strategies are aimed at climate mitigation, a degree of climate change-induced impacts will occur by the time of their deployment, and many of these impacts can compromise the effectiveness of these climate mitigation strategies. In order to develop climate mitigation strategies that will achieve their GHG reduction and other goals, the impact that climate change-induced conditions can have on different components of climate mitigation strategies must be understood. This presentation will highlight three examples of how climate change-induced conditions affect components of climate mitigation strategies in California: through impacts on 1) hydropower generation, 2) renewable potential for geothermal and solar thermal resources to form part of the renewable resource portfolio, and 3) the magnitudes and shapes of the electric load demand that must be met sustainably. These studies are part of a larger, overarching project to understand how climate change impacts the energy system and how to develop a sustainable energy infrastructure that is resilient against these impacts.

  11. The Land-Potential Knowledge System (LandPKS): mobile apps and collaboration for optimizing climate change investments

    USDA-ARS?s Scientific Manuscript database

    Massive investments in climate change mitigation and adaptation are projected during coming decades. Many of these investments will seek to modify how land is managed. The return on both types of investments can be increased through an understanding of land potential: the potential of the land to s...

  12. Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wise, Marshall; Muratori, Matteo; Kyle, Page

    Although the aviation sector is a relatively small contributor to total greenhouse gas emissions, it is a fast-growing, fossil fuel-intensive transportation mode. Because aviation is a mode for which liquid fuels currently have no practical substitute, biofuels are gaining attention as a promising cleaner alternative. In this paper, we use the GCAM integrated assessment model to develop scenarios that explore the potential impact of biojet fuels for use in aviation in the context of broader climate change mitigation. We show that a carbon price would have a significant impact on the aviation sector. In the absence of alternatives to jetmore » fuel from petroleum, mitigation potential is limited and would be at the expense of aviation service demand growth. However, mitigation efforts through the increased use of biojet fuels show potential to reduce the carbon intensity of aviation, and may not have a significant impact on carbon mitigation and bioenergy use in the rest of the energy system. The potential of biofuel to decarbonize air transport is significantly enhanced when carbon dioxide capture and storage (CCS) is used in the conversion process to produce jet fuels from biomass feedstock.« less

  13. Multiple Changes to Reusable Solid Rocket Motors, Identifying Hidden Risks

    NASA Technical Reports Server (NTRS)

    Greenhalgh, Phillip O.; McCann, Bradley Q.

    2003-01-01

    The Space Shuttle Reusable Solid Rocket Motor (RSRM) baseline is subject to various changes. Changes are necessary due to safety and quality improvements, environmental considerations, vendor changes, obsolescence issues, etc. The RSRM program has a goal to test changes on full-scale static test motors prior to flight due to the unique RSRM operating environment. Each static test motor incorporates several significant changes and numerous minor changes. Flight motors often implement multiple changes simultaneously. While each change is individually verified and assessed, the potential for changes to interact constitutes additional hidden risk. Mitigating this risk depends upon identification of potential interactions. Therefore, the ATK Thiokol Propulsion System Safety organization initiated the use of a risk interaction matrix to identify potential interactions that compound risk. Identifying risk interactions supports flight and test motor decisions. Uncovering hidden risks of a full-scale static test motor gives a broader perspective of the changes being tested. This broader perspective compels the program to focus on solutions for implementing RSRM changes with minimal/mitigated risk. This paper discusses use of a change risk interaction matrix to identify test challenges and uncover hidden risks to the RSRM program.

  14. Global health and climate change: moving from denial and catastrophic fatalism to positive action.

    PubMed

    Costello, Anthony; Maslin, Mark; Montgomery, Hugh; Johnson, Anne M; Ekins, Paul

    2011-05-13

    The health effects of climate change have had relatively little attention from climate scientists and governments. Climate change will be a major threat to population health in the current century through its potential effects on communicable disease, heat stress, food and water security, extreme weather events, vulnerable shelter and population migration. This paper addresses three health-sector strategies to manage the health effects of climate change-promotion of mitigation, tackling the pathways that lead to ill-health and strengthening health systems. Mitigation of greenhouse gas (GHG) emissions is affordable, and low-carbon technologies are available now or will be in the near future. Pathways to ill-health can be managed through better information, poverty reduction, technological innovation, social and cultural change and greater coordination of national and international institutions. Strengthening health systems requires increased investment in order to provide effective public health responses to climate-induced threats to health, equitable treatment of illness, promotion of low-carbon lifestyles and renewable energy solutions within health facilities. Mitigation and adaptation strategies will produce substantial benefits for health, such as reductions in obesity and heart disease, diabetes, stress and depression, pneumonia and asthma, as well as potential cost savings within the health sector. The case for mitigating climate change by reducing GHGs is overwhelming. The need to build population resilience to the global health threat from already unavoidable climate change is real and urgent. Action must not be delayed by contrarians, nor by catastrophic fatalists who say it is all too late. © 2011 Royal Society

  15. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-01-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base-case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  16. GHG emission mitigation measures and technologies in the Czech Republic

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tichy, M.

    1996-12-31

    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  17. Early action on HFCs mitigates future atmospheric change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  18. How CO2 Leakage May Impact the Role of Geologic Carbon Storage in Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Peters, C. A.; Deng, H.; Bielicki, J. M.; Fitts, J. P.; Oppenheimer, M.

    2014-12-01

    Among CCUS technologies (Carbon Capture Utilization and Sequestration), geological storage of CO2 has a large potential to mitigate greenhouse gas emissions, but confidence in its deployment is often clouded by the possibility and cost of leakage. In this study, we took the Michigan sedimentary basin as an example to investigate the monetized risks associated with leakage, using the Risk Interference of Subsurface CO2 Storage (RISCS) model. The model accounts for spatial heterogeneity and variability of hydraulic properties of the subsurface system and permeability of potential leaking wells. In terms of costs, the model quantifies the financial consequences of CO2 escaping back to the atmosphere as well as the costs incurred if CO2 or brine leaks into overlying formations and interferes with other subsurface activities or resources. The monetized leakage risks derived from the RISCS model were then used to modify existing cost curves by shifting them upwards and changing their curvatures. The modified cost curves were used in the integrated assessment model - GCAM (Global Change Assessment Model), which provides policy-relevant results to help inform the potential role of CCUS in future energy systems when carbon mitigation targets and incentives are in place. The results showed that the extent of leakage risks has a significant effect on the extent of CCUS deployment. Under more stringent carbon mitigation policies such as a high carbon tax, higher leakage risks can be afforded and incorporating leakage risks will have a smaller impact on CCUS deployment. Alternatively, if the leakage risks were accounted for by charging a fixed premium, similar to how the risk of nuclear waste disposal is treated, the contribution of CCUS in mitigating climate change varies, depending on the value of the premium.

  19. Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss

    NASA Astrophysics Data System (ADS)

    Warren, R.; Vanderwal, J.; Price, J.; Welbergen, J.; Atkinson, I. M.; Ramirez-Villegas, J.; Osborn, T.; Shoo, L.; Jarvis, A.; Williams, S.; Lowe, J. A.

    2014-12-01

    Quantitative simulations of the global-scale benefits of climate change mitigation in avoiding biodiversity loss are presented. Previous studies have projected widespread global and regional impacts of climate change on biodiversity. However, these have focused on analysis of business-as-usual scenarios, with no explicit mitigation policy included. This study finds that early, stringent mitigation would avoid a large proportion of the impacts of climate change induced biodiversity loss projected for the 2080s. Furthermore, despite the large number of studies addressing extinction risks in particular species groups, few studies have explored the issue of potential range loss in common and widespread species. Our study is a comprehensive global scale analysis of 48,786 common and widespread species. We show that without climate change mitigation, 57+/-6% of the plants and 34+/-7% of the animals studied are likely to lose over 50% of their present climatic range by the 2080s. This estimate incorporates realistic, taxon-specific dispersal rates. With stringent mitigation, in which emissions peak in 2016 and are reduced by 5% annually thereafter, these losses are reduced by 60%. Furthermore, with stringent mitigation, global temperature rises more slowly, allowing an additional three decades for biodiversity to adapt to a temperature rise of 2C above pre-industrial levels. The work also shows that even with mitigation not all the impacts can now be avoided, and ecosystems and biodiversity generally has a very limited capacity to adapt. Delay in mitigation substantially reduces the percentage of impacts that can be avoided, for example if emissions do not peak until 2030, the percentage of losses that can be avoided declines to 40%. Since even small declines in common and widespread species can disrupt ecosystem function and services, these results indicate that without mitigation, globally widespread losses in ecosystem service provision are to be expected.

  20. Global Climate Change and the Mitigation Challenge

    EPA Science Inventory

    Book edited by Frank Princiotta titled Global Climate Change--The Technology Challenge Transparent modeling tools and the most recent literature are used, to quantify the challenge posed by climate change and potential technological remedies. The chapter examines forces driving ...

  1. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE PAGES

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...

    2015-10-28

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  2. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  3. Effects of climate and land cover on hydrology in the southeastern U.S.: Potential impacts on watershed planning

    USGS Publications Warehouse

    LaFontaine, Jacob H.; Hay, Lauren E.; Viger, Roland; Regan, R. Steve; Markstrom, Steven

    2015-01-01

    The hydrologic response to statistically downscaled general circulation model simulations of daily surface climate and land cover through 2099 was assessed for the Apalachicola-Chattahoochee-Flint River Basin located in the southeastern United States. Projections of climate, urbanization, vegetation, and surface-depression storage capacity were used as inputs to the Precipitation-Runoff Modeling System to simulate projected impacts on hydrologic response. Surface runoff substantially increased when land cover change was applied. However, once the surface depression storage was added to mitigate the land cover change and increases of surface runoff (due to urbanization), the groundwater flow component then increased. For hydrologic studies that include projections of land cover change (urbanization in particular), any analysis of runoff beyond the change in total runoff should include effects of stormwater management practices as these features affect flow timing and magnitude and may be useful in mitigating land cover change impacts on streamflow. Potential changes in water availability and how biota may respond to changes in flow regime in response to climate and land cover change may prove challenging for managers attempting to balance the needs of future development and the environment. However, these models are still useful for assessing the relative impacts of climate and land cover change and for evaluating tradeoffs when managing to mitigate different stressors.

  4. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    NASA Astrophysics Data System (ADS)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand (population density) and transport infrastructure is used as input data to an engineering model (BeWhere) for optimizing scale and location of waste treatment plants with potential energy and fertilizer co-generation. Finally, this paper quantifies the economic dimension of mitigation through innovative waste treatment while considering the additional business-feasibility and potential benefits from waste treatment co-products such as energy generation, fertilizer and biochar production for counteracting soil degradation.

  5. Interactions between carbon sequestration and shade tree diversity in a smallholder coffee cooperative in El Salvador.

    PubMed

    Richards, Meryl Breton; Méndez, V Ernesto

    2014-04-01

    Agroforestry systems have substantial potential to conserve native biodiversity and provide ecosystem services. In particular, agroforestry systems have the potential to conserve native tree diversity and sequester carbon for climate change mitigation. However, little research has been conducted on the temporal stability of species diversity and aboveground carbon stocks in these systems or the relation between species diversity and aboveground carbon sequestration. We measured changes in shade-tree diversity and shade-tree carbon stocks in 14 plots of a 35-ha coffee cooperative over 9 years and analyzed relations between species diversity and carbon sequestration. Carbon sequestration was positively correlated with initial species richness of shade trees. Species diversity of shade trees did not change significantly over the study period, but carbon stocks increased due to tree growth. Our results show a potential for carbon sequestration and long-term biodiversity conservation in smallholder coffee agroforestry systems and illustrate the opportunity for synergies between biodiversity conservation and climate change mitigation. © 2013 Society for Conservation Biology.

  6. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    NASA Astrophysics Data System (ADS)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%-31%, partially achieves the national milk productivity target for 2030 by 38%-41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed intensification and manure management to mitigate GHG emissions and to increase milk yields at sectoral-level and at a high spatial resolution for an SSA country. The scientific evidence is tailored to support actual policy and decision-making processes at the national level, such as ‘Nationally Appropriate Mitigation Actions’. Linking feed intensification and manure management strategies with spatially-explicit estimates of mitigation and food production to national targets may help the sector to access climate financing while contributing to food security.

  7. Renewable Energy and Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chum, H. L.

    2012-01-01

    The Intergovernmental Panel on Climate Change issued the Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) at http://srren.ipcc-wg3.de/ (May 2011 electronic version; printed form ISBN 978-1-107-60710-1, 2012). More than 130 scientists contributed to the report.* The SRREN assessed existing literature on the future potential of renewable energy for the mitigation of climate change within a portfolio of mitigation options including energy conservation and efficiency, fossil fuel switching, RE, nuclear and carbon capture and storage (CCS). It covers the six most important renewable energy technologies - bioenergy, direct solar, geothermal, hydropower, ocean and wind, as well as theirmore » integration into present and future energy systems. It also takes into consideration the environmental and social consequences associated with these technologies, the cost and strategies to overcome technical as well as non-technical obstacles to their application and diffusion.« less

  8. Mitigation potential of horizontal ground coupled heat pumps for current and future climatic conditions: UK environmental modelling and monitoring studies

    NASA Astrophysics Data System (ADS)

    García González, Raquel; Verhoef, Anne; Vidale, Pier Luigi; Gan, Guohui; Wu, Yupeng; Hughes, Andrew; Mansour, Majdi; Blyth, Eleanor; Finch, Jon; Main, Bruce

    2010-05-01

    An increased uptake of alternative low or non-CO2 emitting energy sources is one of the key priorities for policy makers to mitigate the effects of environmental change. Relatively little work has been undertaken on the mitigation potential of Ground Coupled Heat Pumps (GCHPs) despite the fact that a GCHP could significantly reduce CO2 emissions from heating systems. It is predicted that under climate change the most probable scenario is for UK temperatures to increase and for winter rainfall to become more abundant; the latter is likely to cause a general rise in groundwater levels. Summer rainfall may reduce considerably, while vegetation type and density may change. Furthermore, recent studies underline the likelihood of an increase in the number of heat waves. Under such a scenario, GCHPs will increasingly be used for cooling as well as heating. These factors will affect long-term performance of horizontal GCHP systems and hence their economic viability and mitigation potential during their life span ( 50 years). The seasonal temperature differences encountered in soil are harnessed by GCHPs to provide heating in the winter and cooling in the summer. The performance of a GCHP system will depend on technical factors (heat exchanger (HE) type, length, depth, and spacing of pipes), but also it will be determined to a large extent by interactions between the below-ground parts of the system and the environment (atmospheric conditions, vegetation and soil characteristics). Depending on the balance between extraction and rejection of heat from and to the ground, the soil temperature in the neighbourhood of the HE may fall or rise. The GROMIT project (GROund coupled heat pumps MITigation potential), funded by the Natural Environment Research Council (UK), is a multi-disciplinary research project, in collaboration with EarthEnergy Ltd., which aims to quantify the CO2 mitigation potential of horizontal GCHPs. It considers changing environmental conditions and combines model predictions of soil moisture content and soil temperature with measurements at different GCHP locations over the UK. The combined effect of environment dynamics and horizontal GCHP technical properties on long-term GCHP performance will be assessed using a detailed land surface model (JULES: Joint UK Land Environment Simulator, Meteorological Office, UK) with additional equations embedded describing the interaction between GCHP heat exchangers and the surrounding soil. However, a number of key soil physical processes are currently not incorporated in JULES, such as groundwater flow, which, especially in lowland areas, can have an important effect on the heat flow between soil and HE. Furthermore, the interaction between HE and soil may also cause soil vapour and moisture fluxes. These will affect soil thermal conductivity and hence heat flow between the HE and the surrounding soil, which will in turn influence system performance. The project will address these issues. We propose to drive an improved version of JULES (with equations to simulate GCHP exchange embedded), with long-term gridded (1 km) atmospheric, soil and vegetation data (reflecting current and future environmental conditions) to reliably assess the mitigation potential of GCHPs over the entire domain of the UK, where uptake of GCHPs has been low traditionally. In this way we can identify areas that are most suitable for the installation of GCHPs. Only then recommendations can be made to local and regional governments, for example, on how to improve the mitigation potential in less suitable areas by adjusting GCHP configurations or design.

  9. Predictors and correlates for weight changes in patients co-treated with olanzapine and weight mitigating agents; a post-hoc analysis.

    PubMed

    Stauffer, Virginia L; Lipkovich, Ilya; Hoffmann, Vicki Poole; Heinloth, Alexandra N; McGregor, H Scott; Kinon, Bruce J

    2009-03-28

    This study focuses on exploring the relationship between changes in appetite or eating behaviors and subsequent weight change for adult patients with schizophrenia or bipolar disorder treated with olanzapine and adjunctive potential weight mitigating pharmacotherapy. The aim is not to compare different weight mitigating agents, but to evaluate patients' characteristics and changes in their eating behaviors during treatment. Identification of patient subgroups with different degrees of susceptibility to the effect of weight mitigating agents during olanzapine treatment may aid clinicians in treatment decisions. Data were obtained from 3 randomized, double-blind, placebo-controlled, 16-week clinical trials. Included were 158 patients with schizophrenia or bipolar disorder and a body mass index (BMI) > or = 25 kg/m2 who had received olanzapine treatment in combination with nizatidine (n = 68), sibutramine (n = 42), or amantadine (n = 48). Individual patients were analyzed for categorical weight loss > or= 2 kg and weight gain > or = 1 kg. Variables that were evaluated as potential predictors of weight outcomes included baseline patient characteristics, factors of the Eating Inventory, individual items of the Eating Behavior Assessment, and the Visual Analog Scale. Predictors/correlates of weight loss > or = 2 kg included: high baseline BMI, low baseline interest in food, and a decrease from baseline to endpoint in appetite, hunger, or cravings for carbohydrates. Reduced cognitive restraint, increase in hunger, and increased overeating were associated with a higher probability of weight gain > or = 1 kg. The association between weight gain and lack of cognitive restraint in the presence of increased appetite suggests potential benefit of psychoeducational counseling in conjunction with adjunctive pharmacotherapeutic agents in limiting weight gain during antipsychotic drug therapy. This analysis was not a clinical trial and did not involve any medical intervention.

  10. The role of non-CO2 mitigation within the dairy sector in pursuing climate goals

    NASA Astrophysics Data System (ADS)

    Rolph, K.; Forest, C. E.

    2017-12-01

    Mitigation of non-CO2 climate forcing agents must complement the mitigation of carbon dioxide (CO2) to achieve long-term temperature and climate policy goals. By using multi-gas mitigation strategies, society can limit the rate of temperature change on decadal timescales and reduce the cost of implementing policies that only consider CO2 mitigation. The largest share of global non-CO2 greenhouse gas emissions is attributed to agriculture, with activities related to dairy production contributing the most in this sector. Approximately 4% of global anthropogenic greenhouse gas emissions is released from the dairy sub-sector, primarily through enteric fermentation, feed production, and manure management. Dairy farmers can significantly reduce their emissions by implementing better management practices. This study assesses the potential mitigation of projected climate change if greenhouse gases associated with the dairy sector were reduced. To compare the performance of several mitigation measures under future climate change, we employ a fully coupled earth system model of intermediate complexity, the MIT Integrated Global System Model (IGSM). The model includes an interactive carbon-cycle capable of addressing important feedbacks between the climate and terrestrial biosphere. Mitigation scenarios are developed using estimated emission reductions of implemented management practices studied by the USDA-funded Sustainable Dairy Project (Dairy-CAP). We examine pathways to reach the US dairy industry's voluntary goal of reducing dairy emissions 25% by 2020. We illustrate the importance of ongoing mitigation efforts in the agricultural industry to reduce non-CO2 greenhouse gas emissions towards established climate goals.

  11. Soil organic carbon pool's contribution to climate change mitigation on marginal land of a Mediterranean montane area in Italy.

    PubMed

    Tommaso, Chiti; Emanuele, Blasi; Guido, Pellis; Lucia, Perugini; Vincenza, Chiriacò Maria; Riccardo, Valentini

    2018-07-15

    To evaluate the mitigation potential provided by the SOC pool, we investigated the impact of woody encroachment in the 0-30 cm depth of mineral soil across a natural succession from abandoned pastures and croplands to broadleaves forests on the central Apennine in Italy. In parallel, to assess the effect of the land use change (LUC) from cropland to pasture, a series of pastures established on former agricultural sites, abandoned at different time in the past, were also investigated. Our results show that woody encroachment on former pastures and croplands contributes largely to mitigate climate change, with an increase of the original SOC stock of 45% (40.5 Mg C ha -1 ) and 120% (66.5 Mg C ha -1 ), respectively. Also the LUC from croplands to pastures, greatly contributes to climate change mitigation trough a SOC increase of about 80% of the original SOC (45.9 Mg C ha -1 ). The management of abandoned lands represent a crucial point in the mitigation potential of agriculture and forestry activities, and particularly the role of the SOC pool. A policy effort should focus on minimizing the risk of speculative management options, particularly when the value of woody biomass become convenient to supply new energy systems allowing monetizing a long term forests productivity. In conclusion, despite both the land abandonment and the LUC can have a different impact on the SOC pool under different climatic conditions, these results can be useful to improve the SOC estimates in the National greenhouse gases Inventory at country level. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. On the global limits of bioenergy and land use for climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  13. On the global limits of bioenergy and land use for climate change mitigation

    DOE PAGES

    Strapasson, Alexandre; Woods, Jeremy; Chum, Helena; ...

    2017-05-24

    Across energy, agricultural and forestry landscapes, the production of biomass for energy has emerged as a controversial driver of land-use change. We present a novel, simple methodology, to probe the potential global sustainability limits of bioenergy over time for energy provision and climate change mitigation using a complex-systems approach for assessing land-use dynamics. Primary biomass that could provide between 70 EJ year -1 and 360 EJ year -1, globally, by 2050 was simulated in the context of different land-use futures, food diet patterns and climate change mitigation efforts. Our simulations also show ranges of potential greenhouse gas emissions for agriculture,more » forestry and other land uses by 2050, including not only above-ground biomass-related emissions, but also from changes in soil carbon, from as high as 24 GtCO 2eq year-1 to as low as minus 21 GtCO 2eq year -1, which would represent a significant source of negative emissions. Based on the modelling simulations, the discussions offer novel insights about bioenergy as part of a broader integrated system. As a result, there are sustainability limits to the scale of bioenergy provision, they are dynamic over time, being responsive to land management options deployed worldwide.« less

  14. The contribution of future agricultural trends in the US Midwest to global climate change mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Kyle, G. Page; Zhang, Xuesong

    2014-01-19

    Land use change is a complex response to changing environmental and socioeconomic systems. Historical drivers of land use change include changes in the natural resource availability of a region, changes in economic conditions for production of certain products and changing policies. Most recently, introduction of policy incentives for biofuel production have influenced land use change in the US Midwest, leading to concerns that bioenergy production systems may compete with food production and land conservation. Here we explore how land use may be impacted by future climate mitigation measures by nesting a high resolution agricultural model (EPIC – Environmental Policy Indicatormore » Climate) for the US Midwest within a global integrated assessment model (GCAM – Global Change Assessment Model). This approach is designed to provide greater spatial resolution and detailed agricultural practice information by focusing on the climate mitigation potential of agriculture and land use in a specific region, while retaining the global economic context necessary to understand the far ranging effects of climate mitigation targets. We find that until the simulated carbon prices are very high, the US Midwest has a comparative advantage in producing traditional food and feed crops over bioenergy crops. Overall, the model responds to multiple pressures by adopting a mix of future responses. We also find that the GCAM model is capable of simulations at multiple spatial scales and agricultural technology resolution, which provides the capability to examine regional response to global policy and economic conditions in the context of climate mitigation.« less

  15. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  16. Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation.

    PubMed

    Jantz, Samuel M; Barker, Brian; Brooks, Thomas M; Chini, Louise P; Huang, Qiongyu; Moore, Rachel M; Noel, Jacob; Hurtt, George C

    2015-08-01

    Numerous species have been pushed into extinction as an increasing portion of Earth's land surface has been appropriated for human enterprise. In the future, global biodiversity will be affected by both climate change and land-use change, the latter of which is currently the primary driver of species extinctions. How societies address climate change will critically affect biodiversity because climate-change mitigation policies will reduce direct climate-change impacts; however, these policies will influence land-use decisions, which could have negative impacts on habitat for a substantial number of species. We assessed the potential impact future climate policy could have on the loss of habitable area in biodiversity hotspots due to associated land-use changes. We estimated past extinctions from historical land-use changes (1500-2005) based on the global gridded land-use data used for the Intergovernmental Panel on Climate Change Fifth Assessment Report and habitat extent and species data for each hotspot. We then estimated potential extinctions due to future land-use changes under alternative climate-change scenarios (2005-2100). Future land-use changes are projected to reduce natural vegetative cover by 26-58% in the hotspots. As a consequence, the number of additional species extinctions, relative to those already incurred between 1500 and 2005, due to land-use change by 2100 across all hotspots ranged from about 220 to 21000 (0.2% to 16%), depending on the climate-change mitigation scenario and biological factors such as the slope of the species-area relationship and the contribution of wood harvest to extinctions. These estimates of potential future extinctions were driven by land-use change only and likely would have been higher if the direct effects of climate change had been considered. Future extinctions could potentially be reduced by incorporating habitat preservation into scenario development to reduce projected future land-use changes in hotspots or by lessening the impact of future land-use activities on biodiversity within hotspots. © 2015 Society for Conservation Biology.

  17. Urban heat island-induced increases in evapotranspirative demand

    NASA Astrophysics Data System (ADS)

    Zipper, Samuel C.; Schatz, Jason; Kucharik, Christopher J.; Loheide, Steven P.

    2017-01-01

    Although the importance of vegetation in mitigating the urban heat island (UHI) is known, the impacts of UHI-induced changes in micrometeorological conditions on vegetation are not well understood. Here we show that plant water requirements are significantly higher in urban areas compared to rural areas surrounding Madison, WI, driven by increased air temperature with minimal effects of decreased air moisture content. Local increases in impervious cover are strongly associated with increased evapotranspirative demand in a consistent manner across years, with most increases caused by elevated temperatures during the growing season rather than changes in changes in growing season length. Potential evapotranspiration is up to 10% higher due to the UHI, potentially mitigating changes to the water and energy balances caused by urbanization. Our results indicate that local-scale land cover decisions (increases in impervious cover) can significantly impact evapotranspirative demand, with likely implications for water and carbon cycling in urban ecosystems.

  18. Climate Change Impacts and Greenhouse Gas Mitigation Effects on U.S. Hydropower Generation

    EPA Science Inventory

    Climate change will have potentially significant effects on hydropower generation due to changes in the magnitude and seasonality of river runoff and increases in reservoir evaporation. These physical impacts will in turn have economic consequences through both producer revenues ...

  19. Quantifying the biophysical climate change mitigation potential of Canada's forest sector

    NASA Astrophysics Data System (ADS)

    Smyth, C. E.; Stinson, G.; Neilson, E.; Lemprière, T. C.; Hafer, M.; Rampley, G. J.; Kurz, W. A.

    2014-07-01

    The potential of forests and the forest sector to mitigate greenhouse gas (GHG) emissions is widely recognized, but challenging to quantify at a national scale. Forests and their carbon (C) sequestration potential are affected by management practices, where wood harvesting transfers C out of the forest into products, and subsequent regrowth allows further C sequestration. Here we determine the mitigation potential of the 2.3 × 106 km2 of Canada's managed forests from 2015 to 2050 using the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3), a harvested wood products (HWP) model that estimates emissions based on product half-life decay times, and an account of emission substitution benefits from the use of wood products and bioenergy. We examine several mitigation scenarios with different assumptions about forest management activity levels relative to a base case scenario, including improved growth from silvicultural activities, increased harvest and residue management for bioenergy, and reduced harvest for conservation. We combine forest management options with two mitigation scenarios for harvested wood product use involving an increase in either long-lived products or bioenergy uses. Results demonstrate large differences among alternative scenarios, and we identify potential mitigation scenarios with increasing benefits to the atmosphere for many decades into the future, as well as scenarios with no net benefit over many decades. The greatest mitigation impact was achieved through a mix of strategies that varied across the country and had cumulative mitigation of 254 Tg CO2e in 2030, and 1180 Tg CO2e in 2050. There was a trade-off between short-term and long-term goals, in that maximizing short-term emissions reduction could reduce the forest sector's ability to contribute to longer-term objectives. We conclude that (i) national-scale forest sector mitigation options need to be assessed rigorously from a systems perspective to avoid the development of policies that deliver no net benefits to the atmosphere, (ii) a mix of strategies implemented across the country achieves the greatest mitigation impact, and (iii) because of the time delays in achieving carbon benefits for many forest-based mitigation activities, future contributions of the forest sector to climate mitigation can be maximized if implemented soon.

  20. Global consequences of afforestation and bioenergy cultivation on ecosystem service indicators

    NASA Astrophysics Data System (ADS)

    Krause, Andreas; Pugh, Thomas A. M.; Bayer, Anita D.; Doelman, Jonathan C.; Humpenöder, Florian; Anthoni, Peter; Olin, Stefan; Bodirsky, Benjamin L.; Popp, Alexander; Stehfest, Elke; Arneth, Almut

    2017-11-01

    Land management for carbon storage is discussed as being indispensable for climate change mitigation because of its large potential to remove carbon dioxide from the atmosphere, and to avoid further emissions from deforestation. However, the acceptance and feasibility of land-based mitigation projects depends on potential side effects on other important ecosystem functions and their services. Here, we use projections of future land use and land cover for different land-based mitigation options from two land-use models (IMAGE and MAgPIE) and evaluate their effects with a global dynamic vegetation model (LPJ-GUESS). In the land-use models, carbon removal was achieved either via growth of bioenergy crops combined with carbon capture and storage, via avoided deforestation and afforestation, or via a combination of both. We compare these scenarios to a reference scenario without land-based mitigation and analyse the LPJ-GUESS simulations with the aim of assessing synergies and trade-offs across a range of ecosystem service indicators: carbon storage, surface albedo, evapotranspiration, water runoff, crop production, nitrogen loss, and emissions of biogenic volatile organic compounds. In our mitigation simulations cumulative carbon storage by year 2099 ranged between 55 and 89 GtC. Other ecosystem service indicators were influenced heterogeneously both positively and negatively, with large variability across regions and land-use scenarios. Avoided deforestation and afforestation led to an increase in evapotranspiration and enhanced emissions of biogenic volatile organic compounds, and to a decrease in albedo, runoff, and nitrogen loss. Crop production could also decrease in the afforestation scenarios as a result of reduced crop area, especially for MAgPIE land-use patterns, if assumed increases in crop yields cannot be realized. Bioenergy-based climate change mitigation was projected to affect less area globally than in the forest expansion scenarios, and resulted in less pronounced changes in most ecosystem service indicators than forest-based mitigation, but included a possible decrease in nitrogen loss, crop production, and biogenic volatile organic compounds emissions.

  1. Outreach programs, peer pressure, and common sense: What motivates homeowners to mitigate wildfire risk?

    Treesearch

    Sarah M. McCaffrey; Melanie Stidham; Eric Toman; Bruce Shindler

    2011-01-01

    In recent years, altered forest conditions, climate change, and the increasing numbers of homes built in fire prone areas has meant that wildfires are affecting more people. An important part of minimizing the potential negative impacts of wildfire is engaging homeowners in mitigating the fire hazard on their land. It is therefore important to understand what makes...

  2. Strong biotic influences on regional patterns of climate regulation services

    NASA Astrophysics Data System (ADS)

    Serna-Chavez, H. M.; Swenson, N. G.; Weiser, M. D.; van Loon, E. E.; Bouten, W.; Davidson, M. D.; van Bodegom, P. M.

    2017-05-01

    Climate regulation services from forests are an important leverage in global-change mitigation treaties. Like most ecosystem services, climate regulation is the product of various ecological phenomena with unique spatial features. Elucidating which abiotic and biotic factors relate to spatial patterns of climate regulation services advances our understanding of what underlies climate-mitigation potential and its variation within and across ecosystems. Here we quantify and contrast the statistical relations between climate regulation services (albedo and evapotranspiration, primary productivity, and soil carbon) and abiotic and biotic factors. We focus on 16,955 forest plots in a regional extent across the eastern United States. We find the statistical effects of forest litter and understory carbon on climate regulation services to be as strong as those of temperature-precipitation interactions. These biotic factors likely influence climate regulation through changes in vegetation and canopy density, radiance scattering, and decomposition rates. We also find a moderate relation between leaf nitrogen traits and primary productivity at this regional scale. The statistical relation between climate regulation and temperature-precipitation ranges, seasonality, and climatic thresholds highlights a strong feedback with global climate change. Our assessment suggests the expression of strong biotic influences on climate regulation services at a regional, temperate extent. Biotic homogenization and management practices manipulating forest structure and succession will likely strongly impact climate-mitigation potential. The identity, strength, and direction of primary influences differed for each process involved in climate regulation. Hence, different abiotic and biotic factors are needed to monitor and quantify the full climate-mitigation potential of temperate forest ecosystems.

  3. Rapid emergence of climate change in environmental drivers of marine ecosystems.

    PubMed

    Henson, Stephanie A; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L

    2017-03-07

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a 'business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  4. Rapid emergence of climate change in environmental drivers of marine ecosystems

    PubMed Central

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-01-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a ‘business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike. PMID:28267144

  5. Rapid emergence of climate change in environmental drivers of marine ecosystems

    NASA Astrophysics Data System (ADS)

    Henson, Stephanie A.; Beaulieu, Claudie; Ilyina, Tatiana; John, Jasmin G.; Long, Matthew; Séférian, Roland; Tjiputra, Jerry; Sarmiento, Jorge L.

    2017-03-01

    Climate change is expected to modify ecological responses in the ocean, with the potential for important effects on the ecosystem services provided to humankind. Here we address the question of how rapidly multiple drivers of marine ecosystem change develop in the future ocean. By analysing an ensemble of models we find that, within the next 15 years, the climate change-driven trends in multiple ecosystem drivers emerge from the background of natural variability in 55% of the ocean and propagate rapidly to encompass 86% of the ocean by 2050 under a `business-as-usual' scenario. However, we also demonstrate that the exposure of marine ecosystems to climate change-induced stress can be drastically reduced via climate mitigation measures; with mitigation, the proportion of ocean susceptible to multiple drivers within the next 15 years is reduced to 34%. Mitigation slows the pace at which multiple drivers emerge, allowing an additional 20 years for adaptation in marine ecological and socio-economic systems alike.

  6. Modelling the combined impacts of climate change and direct anthropogenic drivers on the ecosystem of the northwest European continental shelf

    NASA Astrophysics Data System (ADS)

    Wakelin, Sarah L.; Artioli, Yuri; Butenschön, Momme; Allen, J. Icarus; Holt, Jason T.

    2015-12-01

    The potential response of the marine ecosystem of the northwest European continental shelf to climate change under a medium emissions scenario (SRES A1B) is investigated using the coupled hydrodynamics-ecosystem model POLCOMS-ERSEM. Changes in the near future (2030-2040) and the far future (2082-2099) are compared to the recent past (1983-2000). The sensitivity of the ecosystem to potential changes in multiple anthropogenic drivers (river nutrient loads and benthic trawling) in the near future is compared to the impact of changes in climate. With the exception of the biomass of benthic organisms, the influence of the anthropogenic drivers only exceeds the impact of climate change in coastal regions. Increasing river nitrogen loads has a limited impact on the ecosystem whilst reducing river nitrogen and phosphate concentrations affects net primary production (netPP) and phytoplankton and zooplankton biomass. Direct anthropogenic forcing is seen to mitigate/amplify the effects of climate change. Increasing river nitrogen has the potential to amplify the effects of climate change at the coast by increasing netPP. Reducing river nitrogen and phosphate mitigates the effects of climate change for netPP and the biomass of small phytoplankton and large zooplankton species but amplifies changes in the biomass of large phytoplankton and small zooplankton.

  7. Managing U.S. climate risk through mitigation: Insights from the American Climate Prospectus

    NASA Astrophysics Data System (ADS)

    Kopp, R. E., III; Hsiang, S. M.; Houser, T.; Larsen, K.; Rasmussen, D. M., Jr.; Jina, A.; Rising, J.; Delgado, M.; Mohan, S.; Muir-Wood, R.; Wilson, P. S.

    2014-12-01

    The American Climate Prospectus (ACP), the technical analysis underlying the Risky Business project, quantitatively assessed the economic risks posed to the United States by six categories of climate change impacts: crop yield, energy demand, coastal storm damage, criminal activity, labor productivity, and mortality [1]. At a national level, measured by impact on gross domestic product, increased mortality and decreased labor productivity pose the large risks, followed by increased energy demand and coastal damages. Changes in crop yield and crime have smaller impacts. The ACP was not intended to conduct a benefit-cost analysis of climate change mitigation. It assessed the economic consequences of future impacts on an economy with a structure equivalent to that of the current economy, not accounting for socio-economic development and adaptation, and did not assess the cost of mitigation. One of its primary goals was to inform adaptation decisions that are conventionally considered 'endogenous' in economic analyses of climate change. Nonetheless, its results provide insight into the potential of mitigation to manage climate risk. Differences between RCP 8.5 (moderately-high business-as-usual emissions), RCP 4.5 (moderate mitigation) and RCP 2.6 (extremely strong mitigation) are not apparent until mid-century and become significant only late in the century. For all impacts except coastal damages, mitigation significantly reduces uncertainty in late-century impact estimates. Nationally, mitigation significantly and monotonically reduces median projected labor productivity losses and violent crime. Switching from RCP 8.5 to RCP 4.5 also significantly reduces median projections of mortality and energy demand, but the domestic value to the U.S. of further mitigation to RCP 2.6 is less clear. The marginal benefits decline in part because some regions of the country (especially the Northwest) may experience increased crop yields, reduced mortality, and reduced energy demand under all RCPs. Because of the slow response time of sea level to change in emissions, the coastal risk reduction in the current century from mitigation is least clear. References: [1] T. Houser et al. (2014), American Climate Prospectus, www.climateprospectus.org.

  8. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    NASA Astrophysics Data System (ADS)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent

    2015-09-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  9. Adaptation and Mitigation in Agriculture: A Review of Synergies and Tradeoffs and How EO Could Improve Understanding and Outcomes

    NASA Astrophysics Data System (ADS)

    Barbieri, L.; Wollenberg, E.

    2017-12-01

    We present a review of the published literature on agricultural adaptation and mitigation, and report on the current evidence as to whether changes in agricultural practices meant to achieve mitigation or adaptation goals can be dual purpose: simultaneously reducing greenhouse gas (GHG) emissions and helping to facilitate adaptation. We characterize the spatio-temporal and system trends in how adaptation and mitigation outcomes are being achieved, and report on the current technical and knowledge gaps that exist and where Earth observations (EO) could improve our understanding. Agriculture contributes 12% GHG emissions globally, roughly one third from the developing world. Nearly 70% of the technical mitigation potential in agriculture sector occurs in these countries, however, while the mitigation potential is high, agricultural productivity also relies heavily on climate factors. With climate change, agricultural systems already, and will increasingly, need to adapt to extreme events and variability in temperatures and precipitation. This underscores the importance of implementing agricultural practices that can both reduce GHG emissions and help facilitate adaptation. Until recently, these objectives have been treated separately, but policy makers are increasingly calling for a joint approach to improve synergies, and avoid tradeoffs. There remain many complications in considering a joint approach: lack of clear conceptual frameworks, knowledge gaps in scientific understanding and evidence associated with adaptation and mitigation outcomes, and the abilities and motivations of stakeholders to consider both objectives. We review 56 peer-reviewed publications and present results from an in-depth analysis to answer two major concerns: to what extent is evidence provided for claims of synergistic outcomes, and what uncertainty surrounds this evidence. Our results show that only 21% of studies empirically measured both mitigation and adaptation outcomes, and claims of synergies are not well substantiated, and evidence is provided at questionable spatio-temporal scales. We highlight information that could be provided by coordinated, comprehensive and sustained EO which could benefit this critical goal of simultaneously achieving agricultural adaptation and mitigation.

  10. Global land-use and market interactions between climate and bioenergy policies

    NASA Astrophysics Data System (ADS)

    Golub, A.; Hertel, T. W.; Rose, S. K.

    2011-12-01

    Over the past few years, interest in bioenergy has boomed with higher oil prices and concerns about energy security, farm incomes, and mitigation of climate change. Large-scale commercial bioenergy production could have far reaching implications for regional and global land use and output markets associated with food, forestry, chemical, and energy sectors, as well as household welfare. Similarly, there is significant interest in international agricultural and forestry based carbon sequestration and greenhouse gas (GHG) mitigation policies, which could also provide revenue to developing countries and farmers in exchange for modifying land management practices. However, bioenergy and climate policies are being formulated largely independent of one another. Understanding the interaction between these potentially competing policy objectives is important for identifying possible constraints that one policy might place on the other, potential complementarities that could be exploited in policy design, and net land-use change and management implications over time. This study develops a new dynamic global computable general equilibrium (CGE) model GDyn-E-AEZ to assess the interaction between biofuels production and climate mitigation policies. The model is built on several existing CGE platforms, including 1) GTAP-AEZ-GHG model (Golub et al., 2009), 2) GTAP-BIO (Birur et al., 2008; Taheripour and Tyner, 2011), and 3) GDyn framework (Ianchovichina and McDougall, 2001) extended to investigate the role of population and per capita income growth, changing consumption patterns, and global economic integration in determining long-run patterns of land-use change. The new model is used to assess the effects of domestic and global bioenergy expansion on future land use, as well as sectoral, regional and global GHG emissions mitigation potential. Do bioenergy programs facilitate or constrain GHG mitigation opportunities? For instance, Golub et al. (2009) estimate substantial GHG mitigation potential in non-US forests (8.9 GtCO2yr-1 at $27/tCO2eq). Furthermore, a carbon tax could lead to input substitution in agricultural production away from land and fertilizer (e.g., in China, an approximate 20% reduction in paddy rice acreage and 10% reduction in crop production fertilizer use at the same GHG price). Both results run counter to the changes in land-use induced by biofuels. However, given the energy security benefits for bioenergy, this study also evaluate whether a land GHG policy could manage international indirect land-use leakage concerns for bioenergy. In addition to a global perspective, a US perspective is taken to evaluate the implications of joint and separate bioenergy and climate policies on domestic offset and bioenergy supplies. Preliminary results indicate that US biofuels mandate reduces the global abatement potential for agriculture and forestry and thereby imposes an additional cost on society. There are regional comparative advantages in biofuels production (as well as non-biofuels crops and timber production). There are also regional comparative advantages in land-based GHG mitigation. By modeling bioenergy and climate policies separately and simultaneously, this study assess the net comparative advantage regions have in meeting these two sets of goals.

  11. The potential for land sparing to offset greenhouse gas emissions from agriculture

    NASA Astrophysics Data System (ADS)

    Lamb, Anthony; Green, Rhys; Bateman, Ian; Broadmeadow, Mark; Bruce, Toby; Burney, Jennifer; Carey, Pete; Chadwick, David; Crane, Ellie; Field, Rob; Goulding, Keith; Griffiths, Howard; Hastings, Astley; Kasoar, Tim; Kindred, Daniel; Phalan, Ben; Pickett, John; Smith, Pete; Wall, Eileen; Zu Ermgassen, Erasmus K. H. J.; Balmford, Andrew

    2016-05-01

    Greenhouse gas emissions from global agriculture are increasing at around 1% per annum, yet substantial cuts in emissions are needed across all sectors. The challenge of reducing agricultural emissions is particularly acute, because the reductions achievable by changing farming practices are limited and are hampered by rapidly rising food demand. Here we assess the technical mitigation potential offered by land sparing--increasing agricultural yields, reducing farmland area and actively restoring natural habitats on the land spared. Restored habitats can sequester carbon and can offset emissions from agriculture. Using the UK as an example, we estimate net emissions in 2050 under a range of future agricultural scenarios. We find that a land-sparing strategy has the technical potential to achieve significant reductions in net emissions from agriculture and land-use change. Coupling land sparing with demand-side strategies to reduce meat consumption and food waste can further increase the technical mitigation potential--however, economic and implementation considerations might limit the degree to which this technical potential could be realized in practice.

  12. Potential climate engineering effectiveness and side effects during a high carbon dioxide-emission scenario

    PubMed Central

    Keller, David P.; Feng, Ellias Y.; Oschlies, Andreas

    2014-01-01

    The realization that mitigation efforts to reduce carbon dioxide emissions have, until now, been relatively ineffective has led to an increasing interest in climate engineering as a possible means of preventing the potentially catastrophic consequences of climate change. While many studies have addressed the potential effectiveness of individual methods there have been few attempts to compare them. Here we use an Earth system model to compare the effectiveness and side effects of afforestation, artificial ocean upwelling, ocean iron fertilization, ocean alkalinization and solar radiation management during a high carbon dioxide-emission scenario. We find that even when applied continuously and at scales as large as currently deemed possible, all methods are, individually, either relatively ineffective with limited (<8%) warming reductions, or they have potentially severe side effects and cannot be stopped without causing rapid climate change. Our simulations suggest that the potential for these types of climate engineering to make up for failed mitigation may be very limited. PMID:24569320

  13. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  14. 76 FR 65311 - Self-Regulatory Organizations; The NASDAQ Stock Market LLC; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-20

    ... members raises the potential for unfair competitive advantage and potential conflicts of interest between... these mitigate the aforementioned concerns about potential conflicts of interest and unfair competitive advantage. 2. Statutory Basis The Exchange believes that the proposed rule change is consistent with the...

  15. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  16. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  17. Impacts of land use, restoration, and climate change on tropical peat carbon stocks in the twenty-first century: implications for climate mitigation

    Treesearch

    Matthew W. Warren; Steve Frolking; Zhaohua Dai; Sofyan Kurnianto

    2016-01-01

    The climate mitigation potential of tropical peatlands has gained increased attention as Southeast Asian peatlands are being deforested, drained and burned at very high rates, causing globally significant carbon dioxide (CO2) emissions to the atmosphere. We used a process-based dynamic tropical peatland model to explore peat carbon (C) dynamics...

  18. Modeling the greenhouse gas budget of straw returning in China: feasibility of mitigation and countermeasures.

    PubMed

    Lu, Fei; Wang, Xiao-Ke; Han, Bing; Ouyang, Zhi-Yun; Zheng, Hua

    2010-05-01

    Straw returning is considered to be one of the most promising carbon sequestration measures in China's cropland. A compound model, namely "Straw Returning and Burning Model-Expansion" (SRBME), was built to estimate the net mitigation potential, economic benefits, and air pollutant reduction of straw returning. Three scenarios, that is, baseline, "full popularization of straw returning (FP)," and "full popularization of straw returning and precision fertilization (FP + P)," were set to reflect popularization of straw returning. The results of the SRBME indicated that (1) compared with the soil carbon sequestration of 13.37 Tg/yr, the net mitigation potentials, which were 6.328 Tg/yr for the FP scenario and 9.179 Tg/yr for the FP + P scenario, had different trends when the full budget of the greenhouse gases was considered; (2) when the feasibility in connection with greenhouse gas (GHG) mitigation, economic benefits, and environmental benefits was taken into consideration, straw returning was feasible in 15 provinces in the FP scenario, with a total net mitigation potential of 7.192 TgCe/yr and the total benefits of CNY 1.473 billion (USD 216.6 million); (3) in the FP + P scenario, with the implementation of precision fertilization, straw returning was feasible in 26 provinces with a total net mitigation potential of 10.39 TgCe/yr and the total benefits of CNY 5.466 billion (USD 803.8 million); (4) any extent of change in the treatment of straw from being burnt to being returned would contribute to air pollution reduction; (5) some countermeasures, such as CH(4) reduction in rice paddies, precision fertilization, financial support, education and propaganda, would promote the feasibility of straw returning as a mitigation measure.

  19. Mitigation Strategies for Greenhouse Gas Emissions from Agriculture and Land-Use Change: Consequences for Food Prices.

    PubMed

    Stevanović, Miodrag; Popp, Alexander; Bodirsky, Benjamin Leon; Humpenöder, Florian; Müller, Christoph; Weindl, Isabelle; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Kreidenweis, Ulrich; Rolinski, Susanne; Biewald, Anne; Wang, Xiaoxi

    2017-01-03

    The land use sector of agriculture, forestry, and other land use (AFOLU) plays a central role in ambitious climate change mitigation efforts. Yet, mitigation policies in agriculture may be in conflict with food security related targets. Using a global agro-economic model, we analyze the impacts on food prices under mitigation policies targeting either incentives for producers (e.g., through taxes) or consumer preferences (e.g., through education programs). Despite having a similar reduction potential of 43-44% in 2100, the two types of policy instruments result in opposite outcomes for food prices. Incentive-based mitigation, such as protecting carbon-rich forests or adopting low-emission production techniques, increase land scarcity and production costs and thereby food prices. Preference-based mitigation, such as reduced household waste or lower consumption of animal-based products, decreases land scarcity, prevents emissions leakage, and concentrates production on the most productive sites and consequently lowers food prices. Whereas agricultural emissions are further abated in the combination of these mitigation measures, the synergy of strategies fails to substantially lower food prices. Additionally, we demonstrate that the efficiency of agricultural emission abatement is stable across a range of greenhouse-gas (GHG) tax levels, while resulting food prices exhibit a disproportionally larger spread.

  20. Applying a systems approach to assess carbon emission reductions from climate change mitigation in Mexico’s forest sector

    NASA Astrophysics Data System (ADS)

    Olguin, Marcela; Wayson, Craig; Fellows, Max; Birdsey, Richard; Smyth, Carolyn E.; Magnan, Michael; Dugan, Alexa J.; Mascorro, Vanessa S.; Alanís, Armando; Serrano, Enrique; Kurz, Werner A.

    2018-03-01

    The Paris Agreement of the United Nation Framework Convention on Climate Change calls for a balance of anthropogenic greenhouse emissions and removals in the latter part of this century. Mexico indicated in its Intended Nationally Determined Contribution and its Climate Change Mid-Century Strategy that the land sector will contribute to meeting GHG emission reduction goals. Since 2012, the Mexican government through its National Forestry Commission, with international financial and technical support, has been developing carbon dynamics models to explore climate change mitigation options in the forest sector. Following a systems approach, here we assess the biophysical mitigation potential of forest ecosystems, harvested wood products and their substitution benefits (i.e. the change in emissions resulting from substitution of wood for more emissions-intensive products and fossil fuels), for policy alternatives considered by the Mexican government, such as a net zero deforestation rate and sustainable forest management. We used available analytical frameworks (Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model), parameterized with local input data in two contrasting Mexican states. Using information from the National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data), we demonstrate that activities aimed at reaching a net-zero deforestation rate can yield significant CO2e mitigation benefits by 2030 and 2050 relative to a baseline scenario (‘business as usual’), but if combined with increasing forest harvest to produce long-lived products and substitute more energy-intensive materials, emissions reductions could also provide other co-benefits (e.g. jobs, illegal logging reduction). We concluded that the relative impact of mitigation activities is locally dependent, suggesting that mitigation strategies should be designed and implemented at sub-national scales. We were also encouraged about the ability of the modeling framework to effectively use Mexico’s data, and showed the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation.

  1. Assessing the 100-Year Climate Change Mitigation Potential of Large-Scale Tropical Forest Restoration Under the Bonn Challenge

    NASA Astrophysics Data System (ADS)

    Wheeler, C. E.; Mitchard, E. T.; Lewis, S. L.

    2017-12-01

    Restoring degraded and deforested tropical lands to sequester carbon is widely considered to offer substantial climate change mitigation opportunities, if conducted over large spatial scales. Despite this assertion, explicit estimates of how much carbon could be sequestered because of large-scale restoration are rare and have large uncertainties. This is principally due to the many different characteristics of land available for restoration, and different potential restoration activities, which together cause very different rates of carbon sequestration. For different restoration pathways: natural regeneration of degraded and secondary forest, timber plantations and agroforestry, we estimate carbon sequestration rates from the published literature. Then based on tropical restoration commitments made under the Bonn challenge and using carbon density maps, these carbon sequestration rates were used to predict total pan-tropical carbon sequestration to 2100. Restoration of degraded or secondary forest via natural regeneration offers the greatest carbon sequestration potential, considerably exceeding the carbon captured by either timber plantations or agroforestry. This is predominantly due to naturally regenerating forests representing a more permanent store of carbon in comparison to timber plantations and agroforestry land-use options, which, due to their rotational nature, result in the sequential return of carbon to the atmosphere. If the Bonn Challenge is to achieve its ambition of providing substantial climate change mitigation from restoration it must incorporate large areas of natural regeneration back to an intact forest state, otherwise it stands to be a missed opportunity in helping meet the Paris climate change goals.

  2. Considering WTO law in the design of climate change regimes beyond Kyoto

    NASA Astrophysics Data System (ADS)

    Gaines, Sanford E.

    2009-11-01

    This article describes the most important provisions of World Trade Organization (WTO) agreements that should be considered in designing laws and regulations under likely post-Kyoto climate change mitigation regimes. The Kyoto Protocol and the expected post-Kyoto international climate agreement depend on national measures to implement market-based mitigation measures. This market strategy promotes international exchanges of goods, investments, and services such as cross-border trading of credits for emissions reductions and transnational financing for projects that avoid emissions through the Clean Development Mechanism. Moreover, the United States and other countries, concerned over "leakage" of greenhouse gas (GHG) emissions through relocation of industry to other countries coupled with political worry over manufacturing competitiveness, have proposed national climate legislation containing border adjustments on imported goods or implicit subsidies for national producers, raising additional WTO considerations. The article assesses the likely effectiveness of such trade-related measures in achieving climate change mitigation goals and the potential trade policy infringements and trade distortions that they might bring about. Alternative strategies for achieving GHG mitigation goals in closer conformity with WTO law and policy will be suggested.

  3. Invasive alien pests threaten the carbon stored in Europe's forests.

    PubMed

    Seidl, Rupert; Klonner, Günther; Rammer, Werner; Essl, Franz; Moreno, Adam; Neumann, Mathias; Dullinger, Stefan

    2018-04-24

    Forests mitigate climate change by sequestering large amounts of carbon (C). However, forest C storage is not permanent, and large pulses of tree mortality can thwart climate mitigation efforts. Forest pests are increasingly redistributed around the globe. Yet, the potential future impact of invasive alien pests on the forest C cycle remains uncertain. Here we show that large parts of Europe could be invaded by five detrimental alien pests already under current climate. Climate change increases the potential range of alien pests particularly in Northern and Eastern Europe. We estimate the live C at risk from a potential future invasion as 1027 Tg C (10% of the European total), with a C recovery time of 34 years. We show that the impact of introduced pests could be as severe as the current natural disturbance regime in Europe, calling for increased efforts to halt the introduction and spread of invasive alien species.

  4. Reducing greenhouse gas emissions and adapting agricultural management for climate change in developing countries: providing the basis for action.

    PubMed

    Ogle, Stephen M; Olander, Lydia; Wollenberg, Lini; Rosenstock, Todd; Tubiello, Francesco; Paustian, Keith; Buendia, Leandro; Nihart, Alison; Smith, Pete

    2014-01-01

    Agriculture in developing countries has attracted increasing attention in international negotiations within the United Nations Framework Convention on Climate Change for both adaptation to climate change and greenhouse gas mitigation. However, there is limited understanding about potential complementarity between management practices that promote adaptation and mitigation, and limited basis to account for greenhouse gas emission reductions in this sector. The good news is that the global research community could provide the support needed to address these issues through further research linking adaptation and mitigation. In addition, a small shift in strategy by the Intergovernmental Panel on Climate Change (IPCC) and ongoing assistance from agricultural organizations could produce a framework to move the research and development from concept to reality. In turn, significant progress is possible in the near term providing the basis for UNFCCC negotiations to move beyond discussion to action for the agricultural sector in developing countries. © 2013 John Wiley & Sons Ltd.

  5. Modelling climate change effects on Atlantic salmon: Implications for mitigation in regulated rivers.

    PubMed

    Sundt-Hansen, L E; Hedger, R D; Ugedal, O; Diserud, O H; Finstad, A G; Sauterleute, J F; Tøfte, L; Alfredsen, K; Forseth, T

    2018-08-01

    Climate change is expected to alter future temperature and discharge regimes of rivers. These regimes have a strong influence on the life history of most aquatic river species, and are key variables controlling the growth and survival of Atlantic salmon. This study explores how the future abundance of Atlantic salmon may be influenced by climate-induced changes in water temperature and discharge in a regulated river, and investigates how negative impacts in the future can be mitigated by applying different regulated discharge regimes during critical periods for salmon survival. A spatially explicit individual-based model was used to predict juvenile Atlantic salmon population abundance in a regulated river under a range of future water temperature and discharge scenarios (derived from climate data predicted by the Hadley Centre's Global Climate Model (GCM) HadAm3H and the Max Plank Institute's GCM ECHAM4), which were then compared with populations predicted under control scenarios representing past conditions. Parr abundance decreased in all future scenarios compared to the control scenarios due to reduced wetted areas (with the effect depending on climate scenario, GCM, and GCM spatial domain). To examine the potential for mitigation of climate change-induced reductions in wetted area, simulations were run with specific minimum discharge regimes. An increase in abundance of both parr and smolt occurred with an increase in the limit of minimum permitted discharge for three of the four GCM/GCM spatial domains examined. This study shows that, in regulated rivers with upstream storage capacity, negative effects of climate change on Atlantic salmon populations can potentially be mitigated by release of water from reservoirs during critical periods for juvenile salmon. Copyright © 2018. Published by Elsevier B.V.

  6. Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework

    NASA Astrophysics Data System (ADS)

    Beach, R. H.

    2015-12-01

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.

  7. The Lifestyle Carbon Dividend: Assessment of the Carbon Sequestration Potential of Grasslands and Pasturelands Reverted to Native Forests

    NASA Astrophysics Data System (ADS)

    Rao, S.; Jain, A. K.; Shu, S.

    2015-12-01

    What is the potential of a global transition to a vegan lifestyle to sequester carbon and mitigate climate change? To answer this question, we use an Earth System Model (ESM), the Integrated Science Assessment Model (ISAM). ISAM is a fully coupled biogeochemistry (carbon and nitrogen cycles) and biogeophysics (hydrology and thermal energy) ESM, which calculates carbon sources and sinks due to land cover and land use change activities, such as reforestation and afforestation. We calculate the carbon sequestration potential of grasslands and pasturelands that can be reverted to native forests as 265 GtC on 1.96E+7 km2 of land area, just 41% of the total area of such lands on Earth. The grasslands and pasturelands are assumed to revert back to native forests which existed prior to any human intervention and these include tropical, temperate and boreal forests. The results are validated with above ground regrowth measurements. Since this carbon sequestration potential is greater than the 240 GtC of that has been added to the atmosphere since the industrial era began, it shows that such global lifestyle transitions have tremendous potential to mitigate and even reverse climate change.

  8. Untangling the confusion around land carbon science and climate change mitigation policy

    NASA Astrophysics Data System (ADS)

    Mackey, Brendan; Prentice, I. Colin; Steffen, Will; House, Joanna I.; Lindenmayer, David; Keith, Heather; Berry, Sandra

    2013-06-01

    Depletion of ecosystem carbon stocks is a significant source of atmospheric CO2 and reducing land-based emissions and maintaining land carbon stocks contributes to climate change mitigation. We summarize current understanding about human perturbation of the global carbon cycle, examine three scientific issues and consider implications for the interpretation of international climate change policy decisions, concluding that considering carbon storage on land as a means to 'offset' CO2 emissions from burning fossil fuels (an idea with wide currency) is scientifically flawed. The capacity of terrestrial ecosystems to store carbon is finite and the current sequestration potential primarily reflects depletion due to past land use. Avoiding emissions from land carbon stocks and refilling depleted stocks reduces atmospheric CO2 concentration, but the maximum amount of this reduction is equivalent to only a small fraction of potential fossil fuel emissions.

  9. Glacier protection laws: Potential conflicts in managing glacial hazards and adapting to climate change.

    PubMed

    Anacona, Pablo Iribarren; Kinney, Josie; Schaefer, Marius; Harrison, Stephan; Wilson, Ryan; Segovia, Alexis; Mazzorana, Bruno; Guerra, Felipe; Farías, David; Reynolds, John M; Glasser, Neil F

    2018-03-13

    The environmental, socioeconomic and cultural significance of glaciers has motivated several countries to regulate activities on glaciers and glacierized surroundings. However, laws written to specifically protect mountain glaciers have only recently been considered within national political agendas. Glacier Protection Laws (GPLs) originate in countries where mining has damaged glaciers and have been adopted with the aim of protecting the cryosphere from harmful activities. Here, we analyze GPLs in Argentina (approved) and Chile (under discussion) to identify potential environmental conflicts arising from law restrictions and omissions. We conclude that GPLs overlook the dynamics of glaciers and could prevent or delay actions needed to mitigate glacial hazards (e.g. artificial drainage of glacial lakes) thus placing populations at risk. Furthermore, GPL restrictions could hinder strategies (e.g. use of glacial lakes as reservoirs) to mitigate adverse impacts of climate change. Arguably, more flexible GPLs are needed to protect us from the changing cryosphere.

  10. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    NASA Astrophysics Data System (ADS)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  11. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  12. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    PubMed

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  13. Mitigation potential and global health impacts from emissions pricing of food commodities

    NASA Astrophysics Data System (ADS)

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter

    2017-01-01

    The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.

  14. Interaction of ice storms and management practices on current carbon sequestration in forests with potential mitigation under future CO2 atmosphere

    Treesearch

    Heather R. McCarthy; Ram Oren; Hyun-Seok Kim; Kurt H. Johnsen; Chris Maier; Seth G. Pritchard; Michael A. Davis

    2006-01-01

    Ice storms are disturbance events with potential impacts on carbon sequestration. Common forest management practices, such as fertilization and thinning, can change wood and stand properties and thus may change vulnerability to ice storm damage. At the same time, increasing atmospheric CO2 levels may also influence ice storm vulnerability. Here...

  15. Estimating European soil organic carbon mitigation potential in a global integrated land use model

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Böttcher, Hannes; Schneider, Uwe; Schmid, Erwin; Havlík, Petr

    2013-04-01

    Several studies have shown the dynamic interaction between soil organic carbon (SOC) sequestration rates, soil management decisions and SOC levels. Management practices such as reduced and no-tillage, improved residue management and crop rotations as well as the conversion of marginal cropland to native vegetation or conversion of cultivated land to permanent grassland offer the potential to increase SOC content. Even though dynamic interactions are widely acknowledged in literature, they have not been implemented in most existing land use decision models. A major obstacle is the high data and computing requirements for an explicit representation of alternative land use sequences since a model has to be able to track all different management decision paths. To our knowledge no study accounted so far for SOC dynamics explicitly in a global integrated land use model. To overcome these conceptual difficulties described above we apply an approach capable of accounting for SOC dynamics in GLOBIOM (Global Biosphere Management Model), a global recursive dynamic partial equilibrium bottom-up model integrating the agricultural, bioenergy and forestry sectors. GLOBIOM represents all major land based sectors and therefore is able to account for direct and indirect effects of land use change as well as leakage effects (e.g. through trade) implicitly. Together with the detailed representation of technologies (e.g. tillage and fertilizer management systems), these characteristics make the model a highly valuable tool for assessing European SOC emissions and mitigation potential. Demand and international trade are represented in this version of the model at the level of 27 EU member states and 23 aggregated world regions outside Europe. Changes in the demand on the one side, and profitability of the different land based activities on the other side, are the major determinants of land use change in GLOBIOM. In this paper we estimate SOC emissions from cropland for the EU until 2050 explicitly considering SOC dynamics due to land use and land management in a global integrated land use model. Moreover, we calculate the EU SOC mitigation potential taking into account leakage effects outside Europe as well as related feed backs from other sectors. In sensitivity analysis, we disaggregate the SOC mitigation potential i.e. we quantify the impact of different management systems and crop rotations to identify most promising mitigation strategies.

  16. Ready for the Storm: Education for Disaster Risk Reduction and Climate Change Adaptation and Mitigation

    ERIC Educational Resources Information Center

    Kagawa, Fumiyo; Selby, David

    2012-01-01

    Incidences of disaster and climate change impacts are rising globally. Disaster risk reduction and climate change education are two educational responses to present and anticipated increases in the severity and frequency of hazards. They share significant complementarities and potential synergies, the latter as yet largely unexploited. Three…

  17. Southwest regional climate hub and California subsidiary hub assessment of climate change vulnerability and adaptation and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    This report describes the potential vulnerability of specialty crops, field crops, forests, and animal agriculture to climate-driven environmental changes. Here, vulnerability is defined as a function of exposure to climate change effects, sensitivity to these effects, and adaptive capacity. The exp...

  18. Alternative energy balances for Bulgaria to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Christov, Christo

    1996-01-01

    Alternative energy balances aimed to mitigate greenhouse gas (GHG) emissions are developed as alternatives to the baseline energy balance. The section of mitigation options is based on the results of the GHG emission inventory for the 1987 1992 period. The energy sector is the main contributor to the total CO2 emissions of Bulgaria. Stationary combustion for heat and electricity production as well as direct end-use combustion amounts to 80% of the total emissions. The parts of the energy network that could have the biggest influence on GHG emission reduction are identified. The potential effects of the following mitigation measures are discussed: rehabilitation of the combustion facilities currently in operation; repowering to natural gas; reduction of losses in thermal and electrical transmission and distribution networks; penetration of new combustion technologies; tariff structure improvement; renewable sources for electricity and heat production; wasteheat utilization; and supply of households with natural gas to substitute for electricity in space heating and cooking. The total available and the achievable potentials are estimated and the implementation barriers are discussed.

  19. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  20. Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, Robert H.; Cai, Yongxia; Thomson, Allison

    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less

  1. Carbon sequestration in managed temperate coniferous forests under climate change

    NASA Astrophysics Data System (ADS)

    Dymond, Caren C.; Beukema, Sarah; Nitschke, Craig R.; Coates, K. David; Scheller, Robert M.

    2016-03-01

    Management of temperate forests has the potential to increase carbon sinks and mitigate climate change. However, those opportunities may be confounded by negative climate change impacts. We therefore need a better understanding of climate change alterations to temperate forest carbon dynamics before developing mitigation strategies. The purpose of this project was to investigate the interactions of species composition, fire, management, and climate change in the Copper-Pine Creek valley, a temperate coniferous forest with a wide range of growing conditions. To do so, we used the LANDIS-II modelling framework including the new Forest Carbon Succession extension to simulate forest ecosystems under four different productivity scenarios, with and without climate change effects, until 2050. Significantly, the new extension allowed us to calculate the net sector productivity, a carbon accounting metric that integrates aboveground and belowground carbon dynamics, disturbances, and the eventual fate of forest products. The model output was validated against literature values. The results implied that the species optimum growing conditions relative to current and future conditions strongly influenced future carbon dynamics. Warmer growing conditions led to increased carbon sinks and storage in the colder and wetter ecoregions but not necessarily in the others. Climate change impacts varied among species and site conditions, and this indicates that both of these components need to be taken into account when considering climate change mitigation activities and adaptive management. The introduction of a new carbon indicator, net sector productivity, promises to be useful in assessing management effectiveness and mitigation activities.

  2. Climate Change Adaptation: DOD Can Improve Infrastructure Planning and Processes to Better Account for Potential Impacts

    DTIC Science & Technology

    2014-05-01

    changes in ocean temperature, circulation, salinity, and acidity with potential climate change impacts such as coral reef losses that may negatively...Corps installation we visited states that increases in ocean temperature could lead to degradation of coral reefs in the waters offshore of the... coral - reef losses that may undermine the reef’s ability to mitigate the effects of storm surge on the installation and may lead to associated mission

  3. Greenhouse gas emissions reduction in different economic sectors: Mitigation measures, health co-benefits, knowledge gaps, and policy implications.

    PubMed

    Gao, Jinghong; Hou, Hongli; Zhai, Yunkai; Woodward, Alistair; Vardoulakis, Sotiris; Kovats, Sari; Wilkinson, Paul; Li, Liping; Song, Xiaoqin; Xu, Lei; Meng, Bohan; Liu, Xiaobo; Wang, Jun; Zhao, Jie; Liu, Qiyong

    2018-09-01

    To date, greenhouse gas (GHG) emissions, mitigation strategies and the accompanying health co-benefits in different economic sectors have not been fully investigated. The purpose of this paper is to review comprehensively the evidence on GHG mitigation measures and the related health co-benefits, identify knowledge gaps, and provide recommendations to promote further development and implementation of climate change response policies. Evidence on GHG emissions, abatement measures and related health co-benefits has been observed at regional, national and global levels, involving both low- and high-income societies. GHG mitigation actions have mainly been taken in five sectors: energy generation, transport, food and agriculture, household and industry, consistent with the main sources of GHG emissions. GHGs and air pollutants to a large extent stem from the same sources and are inseparable in terms of their atmospheric evolution and effects on ecosystem; thus, GHG reductions are usually, although not always, estimated to have cost effective co-benefits for public health. Some integrated mitigation strategies involving multiple sectors, which tend to create greater health benefits. The pros and cons of different mitigation measures, issues with existing knowledge, priorities for research, and potential policy implications were also discussed. Findings from this study can play a role not only in motivating large GHG emitters to make decisive changes in GHG emissions, but also in facilitating cooperation at international, national and regional levels, to promote GHG mitigation policies that protect public health from climate change and air pollution simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Designing climate change mitigation plans that add up.

    PubMed

    Bajželj, Bojana; Allwood, Julian M; Cullen, Jonathan M

    2013-07-16

    Mitigation plans to combat climate change depend on the combined implementation of many abatement options, but the options interact. Published anthropogenic emissions inventories are disaggregated by gas, sector, country, or final energy form. This allows the assessment of novel energy supply options, but is insufficient for understanding how options for efficiency and demand reduction interact. A consistent framework for understanding the drivers of emissions is therefore developed, with a set of seven complete inventories reflecting all technical options for mitigation connected through lossless allocation matrices. The required data set is compiled and calculated from a wide range of industry, government, and academic reports. The framework is used to create a global Sankey diagram to relate human demand for services to anthropogenic emissions. The application of this framework is demonstrated through a prediction of per-capita emissions based on service demand in different countries, and through an example showing how the "technical potentials" of a set of separate mitigation options should be combined.

  5. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC's Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits.

  6. Under What Circumstances Do Wood Products from Native Forests Benefit Climate Change Mitigation?

    PubMed Central

    Keith, Heather; Lindenmayer, David; Macintosh, Andrew; Mackey, Brendan

    2015-01-01

    Climate change mitigation benefits from the land sector are not being fully realised because of uncertainty and controversy about the role of native forest management. The dominant policy view, as stated in the IPCC’s Fifth Assessment Report, is that sustainable forest harvesting yielding wood products, generates the largest mitigation benefit. We demonstrate that changing native forest management from commercial harvesting to conservation can make an important contribution to mitigation. Conservation of native forests results in an immediate and substantial reduction in net emissions relative to a reference case of commercial harvesting. We calibrated models to simulate scenarios of native forest management for two Australian case studies: mixed-eucalypt in New South Wales and Mountain Ash in Victoria. Carbon stocks in the harvested forest included forest biomass, wood and paper products, waste in landfill, and bioenergy that substituted for fossil fuel energy. The conservation forest included forest biomass, and subtracted stocks for the foregone products that were substituted by non-wood products or plantation products. Total carbon stocks were lower in harvested forest than in conservation forest in both case studies over the 100-year simulation period. We tested a range of potential parameter values reported in the literature: none could increase the combined carbon stock in products, slash, landfill and substitution sufficiently to exceed the increase in carbon stock due to changing management of native forest to conservation. The key parameters determining carbon stock change under different forest management scenarios are those affecting accumulation of carbon in forest biomass, rather than parameters affecting transfers among wood products. This analysis helps prioritise mitigation activities to focus on maximising forest biomass. International forest-related policies, including negotiations under the UNFCCC, have failed to recognize fully the mitigation value of native forest conservation. Our analyses provide evidence for decision-making about the circumstances under which forest management provides mitigation benefits. PMID:26436916

  7. Potentials for sustainable transportation in cities to alleviate climate change impacts.

    PubMed

    Mashayekh, Yeganeh; Jaramillo, Paulina; Samaras, Constantine; Hendrickson, Chris T; Blackhurst, Michael; MacLean, Heather L; Matthews, H Scott

    2012-03-06

    Reducing greenhouse gas emissions (GHG) is an important social goal to mitigate climate change. A common mitigation paradigm is to consider strategy "wedges" that can be applied to different activities to achieve desired GHG reductions. In this policy analysis piece, we consider a wide range of possible strategies to reduce light-duty vehicle GHG emissions, including fuel and vehicle options, low carbon and renewable power, travel demand management and land use changes. We conclude that no one strategy will be sufficient to meet GHG emissions reduction goals to avoid climate change. However, many of these changes have positive combinatorial effects, so the best strategy is to pursue combinations of transportation GHG reduction strategies to meet reduction goals. Agencies need to broaden their agendas to incorporate such combination in their planning.

  8. How much land-based greenhouse gas mitigation can be achieved without compromising food security and environmental goals?

    PubMed

    Smith, Pete; Haberl, Helmut; Popp, Alexander; Erb, Karl-Heinz; Lauk, Christian; Harper, Richard; Tubiello, Francesco N; de Siqueira Pinto, Alexandre; Jafari, Mostafa; Sohi, Saran; Masera, Omar; Böttcher, Hannes; Berndes, Göran; Bustamante, Mercedes; Ahammad, Helal; Clark, Harry; Dong, Hongmin; Elsiddig, Elnour A; Mbow, Cheikh; Ravindranath, Nijavalli H; Rice, Charles W; Robledo Abad, Carmenza; Romanovskaya, Anna; Sperling, Frank; Herrero, Mario; House, Joanna I; Rose, Steven

    2013-08-01

    Feeding 9-10 billion people by 2050 and preventing dangerous climate change are two of the greatest challenges facing humanity. Both challenges must be met while reducing the impact of land management on ecosystem services that deliver vital goods and services, and support human health and well-being. Few studies to date have considered the interactions between these challenges. In this study we briefly outline the challenges, review the supply- and demand-side climate mitigation potential available in the Agriculture, Forestry and Other Land Use AFOLU sector and options for delivering food security. We briefly outline some of the synergies and trade-offs afforded by mitigation practices, before presenting an assessment of the mitigation potential possible in the AFOLU sector under possible future scenarios in which demand-side measures codeliver to aid food security. We conclude that while supply-side mitigation measures, such as changes in land management, might either enhance or negatively impact food security, demand-side mitigation measures, such as reduced waste or demand for livestock products, should benefit both food security and greenhouse gas (GHG) mitigation. Demand-side measures offer a greater potential (1.5-15.6 Gt CO2 -eq. yr(-1) ) in meeting both challenges than do supply-side measures (1.5-4.3 Gt CO2 -eq. yr(-1) at carbon prices between 20 and 100 US$ tCO2 -eq. yr(-1) ), but given the enormity of challenges, all options need to be considered. Supply-side measures should be implemented immediately, focussing on those that allow the production of more agricultural product per unit of input. For demand-side measures, given the difficulties in their implementation and lag in their effectiveness, policy should be introduced quickly, and should aim to codeliver to other policy agenda, such as improving environmental quality or improving dietary health. These problems facing humanity in the 21st Century are extremely challenging, and policy that addresses multiple objectives is required now more than ever. © 2013 John Wiley & Sons Ltd.

  9. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    NASA Astrophysics Data System (ADS)

    Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.

    2018-03-01

    We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.

  10. Evaluating the Contribution of Soil Carbon to Global Climate Change Mitigation in an Integrated Assessment

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.

    2006-12-01

    Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.

  11. Mitigation of climate change impacts on raptors by behavioural adaptation: ecological buffering mechanisms

    NASA Astrophysics Data System (ADS)

    Wichmann, Matthias C.; Groeneveld, Jürgen; Jeltsch, Florian; Grimm, Volker

    2005-07-01

    The predicted climate change causes deep concerns on the effects of increasing temperatures and changing precipitation patterns on species viability and, in turn, on biodiversity. Models of Population Viability Analysis (PVA) provide a powerful tool to assess the risk of species extinction. However, most PVA models do not take into account the potential effects of behavioural adaptations. Organisms might adapt to new environmental situations and thereby mitigate negative effects of climate change. To demonstrate such mitigation effects, we use an existing PVA model describing a population of the tawny eagle ( Aquila rapax) in the southern Kalahari. This model does not include behavioural adaptations. We develop a new model by assuming that the birds enlarge their average territory size to compensate for lower amounts of precipitation. Here, we found the predicted increase in risk of extinction due to climate change to be much lower than in the original model. However, this "buffering" of climate change by behavioural adaptation is not very effective in coping with increasing interannual variances. We refer to further examples of ecological "buffering mechanisms" from the literature and argue that possible buffering mechanisms should be given due consideration when the effects of climate change on biodiversity are to be predicted.

  12. Climate change and sugarcane production: potential impact and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...

  13. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    NASA Astrophysics Data System (ADS)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  14. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    NASA Astrophysics Data System (ADS)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  15. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    PubMed

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  16. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    PubMed Central

    Erb, K.-H.; Bais, A.L.S.; Carvalhais, N.; Fetzel, T.; Gingrich, S.; Haberl, H.; Lauk, C.; Niedertscheider, M.; Pongratz, J.; Thurner, M.; Luyssaert, S.

    2017-01-01

    Carbon stocks in vegetation play a key role in the climate system1–4, but their magnitude and patterns, their uncertainties, and the impact of land use on them remain poorly quantified. Based on a consistent integration of state-of-the art datasets, we show that vegetation currently stores ~450 PgC. In the hypothetical absence of land use, potential vegetation would store ~916 PgC, under current climate. This difference singles out the massive effect land use has on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects, i.e. land-use induced biomass stock changes within the same land cover, contribute 42-47% but are underappreciated in the current literature. Avoiding deforestation hence is necessary but not sufficient for climate-change mitigation. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for climate change mitigation. Efforts to raise biomass stocks are currently only verifiable in temperate forests, where potentials are limited. In contrast, large uncertainties hamper verification in the tropical forest where the largest potentials are located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement. PMID:29258288

  17. Model-data frameworks for determining greenhouse gas implications of bioenergy landscapes in the US

    NASA Astrophysics Data System (ADS)

    Hudiburg, T. W.; Kent, J.; DeLucia, E. H.; Law, B. E.

    2017-12-01

    A sustainable, carbon-negative, bio-based portion of the energy sector may require considerable changes in land use. Perennial grasses have been proposed because of their potential to yield substantial biomass on marginal lands without displacing food and reduce GHG emissions by storing soil carbon. Woody biomass from harvest residues and forest health thinning operations have also been proposed, however the GHG mitigation potential is less clear. Through integration of observations, ecosystem, and economic models we have assessed the potential for a US Renewable Fuel Standard (RFS) to displace gasoline and reduce GHG emissions from the transportation sector, through the use of cellulosic biofuels (e.g. perennial grasses). We found that 2022 US transportation sector GHG emissions are decreased by 7.0 ± 2.5%; an estimate that is 50% less than those unconstrained by economic feasibility. Also, through integration of observations, ecosystem modeling, and life cycle assessment, we investigated potential carbon mitigation by replacing an Oregon coal plant with wood (bio-coal) from harvest residues and thinning operations in forests vulnerable to drought and fire. We found that carbon emissions varied from no change to moderate increases compared to the current emissions from the coal plant depending on transportation distance, energy inputs for conversion to bio-coal, and avoided emissions from fire and drought. Our work indicates that integrated assessment using ecosystem and economic models that are constrained by observations is required to evaluate potential GHG and carbon mitigation scenarios from varied feedstock sources.

  18. A meta-analysis of the greenhouse gas abatement of bioenergy factoring in land use changes.

    PubMed

    El Akkari, M; Réchauchère, O; Bispo, A; Gabrielle, B; Makowski, D

    2018-06-04

    Non-food biomass production is developing rapidly to fuel the bioenergy sector and substitute dwindling fossil resources, which is likely to impact land-use patterns worldwide. Recent publications attempting to factor this effect into the climate mitigation potential of bioenergy chains have come to widely variable conclusions depending on their scope, data sources or methodology. Here, we conducted a first of its kind, systematic review of scientific literature on this topic and derived quantitative trends through a meta-analysis. We showed that second-generation biofuels and bioelectricity have a larger greenhouse gas (GHG) abatement potential than first generation biofuels, and stand the best chances (with a 80 to 90% probability range) of achieving a 50% reduction compared to fossil fuels. Conversely, directly converting forest ecosystems to produce bioenergy feedstock appeared as the worst-case scenario, systematically leading to negative GHG savings. On the other hand, converting grassland appeared to be a better option and entailed a 60% chance of halving GHG emissions compared to fossil energy sources. Since most climate mitigation scenarios assume still larger savings, it is critical to gain better insight into land-use change effects to provide a more realistic estimate of the mitigation potential associated with bioenergy.

  19. Global typology of urban energy use and potentials for an urbanization mitigation wedge

    PubMed Central

    Creutzig, Felix; Baiocchi, Giovanni; Bierkandt, Robert; Pichler, Peter-Paul; Seto, Karen C.

    2015-01-01

    The aggregate potential for urban mitigation of global climate change is insufficiently understood. Our analysis, using a dataset of 274 cities representing all city sizes and regions worldwide, demonstrates that economic activity, transport costs, geographic factors, and urban form explain 37% of urban direct energy use and 88% of urban transport energy use. If current trends in urban expansion continue, urban energy use will increase more than threefold, from 240 EJ in 2005 to 730 EJ in 2050. Our model shows that urban planning and transport policies can limit the future increase in urban energy use to 540 EJ in 2050 and contribute to mitigating climate change. However, effective policies for reducing urban greenhouse gas emissions differ with city type. The results show that, for affluent and mature cities, higher gasoline prices combined with compact urban form can result in savings in both residential and transport energy use. In contrast, for developing-country cities with emerging or nascent infrastructures, compact urban form, and transport planning can encourage higher population densities and subsequently avoid lock-in of high carbon emission patterns for travel. The results underscore a significant potential urbanization wedge for reducing energy use in rapidly urbanizing Asia, Africa, and the Middle East. PMID:25583508

  20. Generating carbon finance through avoided deforestation and its potential to create climatic, conservation and human development benefits.

    PubMed

    Ebeling, Johannes; Yasué, Maï

    2008-05-27

    Recent proposals to compensate developing countries for reducing emissions from deforestation (RED) under forthcoming climate change mitigation regimes are receiving increasing attention. Here we demonstrate that if RED credits were traded on international carbon markets, even moderate decreases in deforestation rates could generate billions of Euros annually for tropical forest conservation. We also discuss the main challenges for a RED mechanism that delivers real climatic benefits. These include providing sufficient incentives while only rewarding deforestation reductions beyond business-as-usual scenarios, addressing risks arising from forest degradation and international leakage, and ensuring permanence of emission reductions. Governance may become a formidable challenge for RED because some countries with the highest RED potentials score poorly on governance indices. In addition to climate mitigation, RED funds could help achieve substantial co-benefits for biodiversity conservation and human development. However, this will probably require targeted additional support because the highest biodiversity threats and human development needs may exist in countries that have limited income potentials from RED. In conclusion, how successfully a market-based RED mechanism can contribute to climate change mitigation, conservation and development will strongly depend on accompanying measures and carefully designed incentive structures involving governments, business, as well as the conservation and development communities.

  1. Modeling climate change effects on runoff and soil erosion in southeastern Arizona rangelands and implications for mitigation with rangeland conservation practices

    USDA-ARS?s Scientific Manuscript database

    Climate change is expected to impact runoff and soil erosion on rangelands in the southwestern United States. This study was done to evaluate the potential impacts of precipitation changes on soil erosion and surface runoff in southeastern Arizona using seven GCM models with three emission scenarios...

  2. Early forest thinning changes aboveground carbon distribution among pools, but not total amount

    Treesearch

    Michael S. Schaedel; Andrew J. Larson; David L. R. Affleck; Travis Belote; John M. Goodburn; Deborah S. Page-Dumroese

    2017-01-01

    Mounting concerns about global climate change have increased interest in the potential to use common forest management practices, such as forest density management with thinning, in climate change mitigation and adaptation efforts. Long-term effects of forest density management on total aboveground C are not well understood, especially for precommercial thinning (PCT)...

  3. Voluntary climate change mitigation actions of young adults: a classification of mitigators through latent class analysis.

    PubMed

    Korkala, Essi A E; Hugg, Timo T; Jaakkola, Jouni J K

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns.

  4. Voluntary Climate Change Mitigation Actions of Young Adults: A Classification of Mitigators through Latent Class Analysis

    PubMed Central

    Korkala, Essi A. E.; Hugg, Timo T.; Jaakkola, Jouni J. K.

    2014-01-01

    Encouraging individuals to take action is important for the overall success of climate change mitigation. Campaigns promoting climate change mitigation could address particular groups of the population on the basis of what kind of mitigation actions the group is already taking. To increase the knowledge of such groups performing similar mitigation actions we conducted a population-based cross-sectional study in Finland. The study population comprised 1623 young adults who returned a self-administered questionnaire (response rate 64%). Our aims were to identify groups of people engaged in similar climate change mitigation actions and to study the gender differences in the grouping. We also determined if socio-demographic characteristics can predict group membership. We performed latent class analysis using 14 mitigation actions as manifest variables. Three classes were identified among men: the Inactive (26%), the Semi-active (63%) and the Active (11%) and two classes among women: the Semi-active (72%) and the Active (28%). The Active among both genders were likely to have mitigated climate change through several actions, such as recycling, using environmentally friendly products, preferring public transport, and conserving energy. The Semi-Active had most probably recycled and preferred public transport because of climate change. The Inactive, a class identified among men only, had very probably done nothing to mitigate climate change. Among males, being single or divorced predicted little involvement in climate change mitigation. Among females, those without tertiary degree and those with annual income €≥16801 were less involved in climate change mitigation. Our results illustrate to what extent young adults are engaged in climate change mitigation, which factors predict little involvement in mitigation and give insight to which segments of the public could be the audiences of targeted mitigation campaigns. PMID:25054549

  5. Climate change : preliminary observations on geoengineering science, federal efforts, and governance issues : testimony before the Committee on Science and Technology, House of Representatives.

    DOT National Transportation Integrated Search

    2010-03-18

    Key scientific assessments have underscored the urgency of reducing emissions of carbon dioxide to help mitigate potentially negative effects of climate change; however, many countries with significant greenhouse gas emissions, including the United S...

  6. Branching out: Agroforestry as a climate change mitigation and adaptation tool for agriculture

    USDA-ARS?s Scientific Manuscript database

    The United States and Canadian agricultural lands are being targeted to provide more environmental and economic services while at the same time their capacity to provide these services under potential climate change (CC) is being questioned. Predictions of future climate conditions include longer gr...

  7. Economic Incentives in the Socially Optimal Management of Infectious Disease: When [Formula: see text] is Not Enough.

    PubMed

    Morin, B R; Kinzig, A P; Levin, S A; Perrings, C A

    2017-09-29

    Does society benefit from encouraging or discouraging private infectious disease-risk mitigation? Private individuals routinely mitigate infectious disease risks through the adoption of a range of precautions, from vaccination to changes in their contact with others. Such precautions have epidemiological consequences. Private disease-risk mitigation generally reduces both peak prevalence of symptomatic infection and the number of people who fall ill. At the same time, however, it can prolong an epidemic. A reduction in prevalence is socially beneficial. Prolongation of an epidemic is not. We find that for a large class of infectious diseases, private risk mitigation is socially suboptimal-either too low or too high. The social optimum requires either more or less private mitigation. Since private mitigation effort depends on the cost of mitigation and the cost of illness, interventions that change either of these costs may be used to alter mitigation decisions. We model the potential for instruments that affect the cost of illness to yield net social benefits. We find that where a disease is not very infectious or the duration of illness is short, it may be socially optimal to promote private mitigation effort by increasing the cost of illness. By contrast, where a disease is highly infectious or long lasting, it may be optimal to discourage private mitigation by reducing the cost of disease. Society would prefer a shorter, more intense, epidemic to a longer, less intense epidemic. There is, however, a region in parameter space where the relationship is more complicated. For moderately infectious diseases with medium infectious periods, the social optimum depends on interactions between prevalence and duration. Basic reproduction numbers are not sufficient to predict the social optimum.

  8. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    NASA Astrophysics Data System (ADS)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  9. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals

    NASA Astrophysics Data System (ADS)

    Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya

    2018-05-01

    The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.

  10. Synergy between land use and climate change increases future fire risk in Amazon forests

    NASA Astrophysics Data System (ADS)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; Bond-Lamberty, Ben; Cardoso Pereira, José Miguel; Hurtt, George; Asrar, Ghassem

    2017-12-01

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactions between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change - Representative Concentration Pathway (RCP) 8.5 - projected understory fires increase in frequency and duration, burning 4-28 times more forest in 2080-2100 than during 1990-2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9-5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.

  11. A method to assess the potential effects of air pollution mitigation on healthcare costs.

    PubMed

    Sætterstrøm, Bjørn; Kruse, Marie; Brønnum-Hansen, Henrik; Bønløkke, Jakob Hjort; Flachs, Esben Meulengracht; Sørensen, Jan

    2012-01-01

    The aim of this study was to develop a method to assess the potential effects of air pollution mitigation on healthcare costs and to apply this method to assess the potential savings related to a reduction in fine particle matter in Denmark. The effects of air pollution on health were used to identify "exposed" individuals (i.e., cases). Coronary heart disease, stroke, chronic obstructive pulmonary disease, and lung cancer were considered to be associated with air pollution. We used propensity score matching, two-part estimation, and Lin's method to estimate healthcare costs. Subsequently, we multiplied the number of saved cases due to mitigation with the healthcare costs to arrive to an expression for healthcare cost savings. The potential cost saving in the healthcare system arising from a modelled reduction in air pollution was estimated at €0.1-2.6 million per 100,000 inhabitants for the four diseases. We have illustrated an application of a method to assess the potential changes in healthcare costs due to a reduction in air pollution. The method relies on a large volume of administrative data and combines a number of established methods for epidemiological analysis.

  12. Mitigation options for the industrial sector in Egypt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelil, I.A.; El-Touny, S.; Korkor, H.

    1996-12-31

    Though its contribution to the global Greenhouse gases emission is relatively small, Egypt has signed and ratified the United Nations Framework Convention on Climate Change (UN FCCC) and has been playing an active role in the international efforts to deal with such environmental challenges. Energy efficiency has been one of the main strategies that Egypt has adopted to improve environmental quality and enhance economic competitiveness. This paper highlights three initiatives currently underway to improve energy efficiency of the Egyptian industry. The first is a project that has been recently completed by OECP to assess potential GHG mitigation options available inmore » Egypt`s oil refineries. The second initiative is an assessment of GHG mitigation potential in the Small and Medium size Enterprises (SME) in the Mediterranean city of Alexandria. The third one focuses on identifying demand side management options in some industrial electricity consumers in the same city.« less

  13. Impact of climate change on the domestic indoor environment and associated health risks in the UK.

    PubMed

    Vardoulakis, Sotiris; Dimitroulopoulou, Chrysanthi; Thornes, John; Lai, Ka-Man; Taylor, Jonathon; Myers, Isabella; Heaviside, Clare; Mavrogianni, Anna; Shrubsole, Clive; Chalabi, Zaid; Davies, Michael; Wilkinson, Paul

    2015-12-01

    There is growing evidence that projected climate change has the potential to significantly affect public health. In the UK, much of this impact is likely to arise by amplifying existing risks related to heat exposure, flooding, and chemical and biological contamination in buildings. Identifying the health effects of climate change on the indoor environment, and risks and opportunities related to climate change adaptation and mitigation, can help protect public health. We explored a range of health risks in the domestic indoor environment related to climate change, as well as the potential health benefits and unintended harmful effects of climate change mitigation and adaptation policies in the UK housing sector. We reviewed relevant scientific literature, focusing on housing-related health effects in the UK likely to arise through either direct or indirect mechanisms of climate change or mitigation and adaptation measures in the built environment. We considered the following categories of effect: (i) indoor temperatures, (ii) indoor air quality, (iii) indoor allergens and infections, and (iv) flood damage and water contamination. Climate change may exacerbate health risks and inequalities across these categories and in a variety of ways, if adequate adaptation measures are not taken. Certain changes to the indoor environment can affect indoor air quality or promote the growth and propagation of pathogenic organisms. Measures aimed at reducing greenhouse gas emissions have the potential for ancillary public health benefits including reductions in health burdens related heat and cold, indoor exposure to air pollution derived from outdoor sources, and mould growth. However, increasing airtightness of dwellings in pursuit of energy efficiency could also have negative effects by increasing concentrations of pollutants (such as PM2.5, CO and radon) derived from indoor or ground sources, and biological contamination. These effects can largely be ameliorated by mechanical ventilation with heat recovery (MVHR) and air filtration, where such solution is feasible and when the system is properly installed, operated and maintained. Groups at high risk of these adverse health effects include the elderly (especially those living on their own), individuals with pre-existing illnesses, people living in overcrowded accommodation, and the socioeconomically deprived. A better understanding of how current and emerging building infrastructure design, construction, and materials may affect health in the context of climate change and mitigation and adaptation measures is needed in the UK and other high income countries. Long-term, energy efficient building design interventions, ensuring adequate ventilation, need to be promoted. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  14. Climate change and fire management in the mid-Atlantic region

    Treesearch

    Kenneth L. Clark; Nicholas Skowronski; Heidi Renninger; Robert Scheller

    2014-01-01

    In this review, we summarize the potential impacts of climate change on wildfire activity in the mid-Atlantic region, and then consider how the beneficial uses of prescribed fire could conflict with mitigation needs for climate change, focusing on patters of carbon (C) sequestration by forests in the region. We use a synthesis of field studies, eddy flux tower...

  15. Soil organic carbon stability across a Mediterranean oak agroecosystem

    Treesearch

    Leslie M. Roche; James F. Chang; Johan Six; Anthony T. O' Geen; Kenneth W. Tate

    2015-01-01

    Rangelands are estimated to cover 30 to 50 percent of the world's land surface and have significant belowground carbon (C) storage potential. Given their geographical extent, many have suggested that even modest changes in C storage via management practices could alter the global C cycle, creating climate change mitigation opportunities. Our objective was to...

  16. Communicating Environmental Risks: Clarifying the Severity Effect in Interpretations of Verbal Probability Expressions

    ERIC Educational Resources Information Center

    Harris, Adam J. L.; Corner, Adam

    2011-01-01

    Verbal probability expressions are frequently used to communicate risk and uncertainty. The Intergovernmental Panel on Climate Change (IPCC), for example, uses them to convey risks associated with climate change. Given the potential for human action to mitigate future environmental risks, it is important to understand how people respond to these…

  17. Quantifying and Monetizing Potential Climate Change Policy Impacts on Terrestrial Ecosystem Carbon Storage and Wildfires in the United States

    EPA Science Inventory

    This paper quantifies and monetizes climate change impacts on carbon stored in terrestrial vegetation and wildfire incidence in the contiguous United States to assess the benefits of alternative mitigation policies. The MC-1 dynamic global vegetation model was used to develop int...

  18. Middle and High School Students' Conceptions of Climate Change Mitigation and Adaptation Strategies

    ERIC Educational Resources Information Center

    Bofferding, Laura; Kloser, Matthew

    2015-01-01

    Both scientists and policy-makers emphasize the importance of education for influencing pro-environmental behavior and minimizing the effects of climate change on biological and physical systems. Education has the potential to impact students' system knowledge--their understanding of the variables that affect the climate system--and action…

  19. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed.

    PubMed

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO 2 eq ha -1 yr -1 . Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO 2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO 2 eq ha -1 yr -1 . Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  20. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, Mukesh Dev; Secchi, Silvia; Schoof, Justin

    2017-01-01

    Land-based carbon sequestration constitutes a major low cost and immediately viable option in climate change mitigation. Using downscaled data from eight atmosphere-ocean general circulation models for a simulation period between 2015 and 2099, we examine the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed and the impact of climate change on crop yields. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 192.1 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 2.26 MtCO2 eq ha-1 yr-1. Our results also indicate that switchgrass can sequester the equivalent of 310.7 MtCO2 eq of soil organic carbon per hectare with a sequestration rate of 3.65 MtCO2 eq ha-1 yr-1. Our findings suggest that, unlike for corn and soybean yields, climate change does not have a significant effect on switchgrass yields, possibly due to the carbon fertilization effect.

  1. Help the climate, change your diet: A cross-sectional study on how to involve consumers in a transition to a low-carbon society.

    PubMed

    de Boer, Joop; de Witt, Annick; Aiking, Harry

    2016-03-01

    This paper explores how the transition to a low-carbon society to mitigate climate change can be better supported by a diet change. As climate mitigation is not the focal goal of consumers who are buying or consuming food, the study highlighted the role of motivational and cognitive background factors, including possible spillover effects. Consumer samples in the Netherlands (n = 527) and the United States (n = 556) were asked to evaluate food-related and energy-related mitigation options in a design that included three food-related options with very different mitigation potentials (i.e. eating less meat, buying local and seasonal food, and buying organic food). They rated each option's effectiveness and their willingness to adopt it. The outstanding effectiveness of the less meat option (as established by climate experts) was recognized by merely 12% of the Dutch and 6% of the American sample. Many more participants gave fairly positive effectiveness ratings and this was correlated with belief in human causation of climate change, personal importance of climate change, and being a moderate meat eater. Willingness to adopt the less meat option increased with its perceived effectiveness and, controlling for that, it was significantly related to various motivationally relevant factors. The local food option appealed to consumer segments with overlapping but partly different motivational orientations. It was concluded that a transition to a low carbon society can significantly benefit from a special focus on the food-related options to involve more consumers and to improve mitigation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Quantifying climate change mitigation potential in Great Plains wetlands for three greenhouse gas emission scenarios

    USGS Publications Warehouse

    Byrd, Kristin B.; Ratliff, Jamie L.; Wein, Anne; Bliss, Norman B.; Sleeter, Benjamin M.; Sohl, Terry L.; Li, Zhengpeng

    2015-01-01

    We examined opportunities for avoided loss of wetland carbon stocks in the Great Plains of the United States in the context of future agricultural expansion through analysis of land-use land-cover (LULC) change scenarios, baseline carbon datasets and biogeochemical model outputs. A wetland map that classifies wetlands according to carbon pools was created to describe future patterns of carbon loss and potential carbon savings. Wetland avoided loss scenarios, superimposed upon LULC change scenarios, quantified carbon stocks preserved under criteria of carbon densities or land value plus cropland suitability. Up to 3420 km2 of wetlands may be lost in the region by 2050, mainly due to conversion of herbaceous wetlands in the Temperate Prairies where soil organic carbon (SOC) is highest. SOC loss would be approximately 0.20 ± 0.15 megagrams of carbon per hectare per year (MgC ha−1 yr−1), depending upon tillage practices on converted wetlands, and total ecosystem carbon loss in woody wetlands would be approximately 0.81 ± 0.41 MgC ha−1 yr−1, based on biogeochemical model results. Among wetlands vulnerable to conversion, wetlands in the Northern Glaciated Plains and Lake Agassiz Plains ecoregions exhibit very high mean SOC and on average, relatively low land values, potentially creating economically competitive opportunities for avoided carbon loss. This mitigation scenarios approach may be adapted by managers using their own preferred criteria to select sites that best meet their objectives. Results can help prioritize field-based assessments, where site-level investigations of carbon stocks, land value, and consideration of local priorities for climate change mitigation programs are needed.

  3. Defense Science And Technology: Further DOD And DOE Actions Needed to Provide Timely Conference Decisions and Analyze Risks from Changes in Participation

    DTIC Science & Technology

    2015-03-01

    Conference Planning and Food and Beverage Costs, Audit Report 11-43 (October 2011). 5White House, Executive Order 13589, Promoting Efficient Spending, 76...and conducted a content analysis of these interviews. Based on this analysis, we enumerated challenges and mitigation strategies as well as benefits...of officials, asking respondents to rate the effect of each potential mitigation strategy and prioritize steps for implementing the strategies . We

  4. Land-Sparing Opportunities for Solar Energy Development in Agricultural Landscapes: A Case Study of the Great Central Valley, CA, United States.

    PubMed

    Hoffacker, Madison K; Allen, Michael F; Hernandez, Rebecca R

    2017-12-19

    Land-cover change from energy development, including solar energy, presents trade-offs for land used for the production of food and the conservation of ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development on nonconventional surfaces can mitigate land scarcity is understudied. Here, we evaluate the land sparing potential of solar energy development across four nonconventional land-cover types: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics), within the Great Central Valley (CV, CA), a globally significant agricultural region where land for food production, urban development, and conservation collide. Furthermore, we calculate the technical potential (TWh year -1 ) of these land sparing sites and test the degree to which projected electricity needs for the state of California can be met therein. In total, the CV encompasses 15% of CA, 8415 km 2 of which was identified as potentially land-sparing for solar energy development. These areas comprise a capacity-based energy potential of at least 17 348 TWh year -1 for photovoltaic (PV) and 2213 TWh year -1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy sprawl in agricultural landscapes.

  5. Co-benefits of greenhouse gas mitigation: a review and classification by type, mitigation sector, and geography

    NASA Astrophysics Data System (ADS)

    Deng, Hong-Mei; Liang, Qiao-Mei; Liu, Li-Jing; Diaz Anadon, Laura

    2017-12-01

    The perceived inability of climate change mitigation goals alone to mobilize sufficient climate change mitigation efforts has, among other factors, led to growing research on the co-benefits of reducing greenhouse gas (GHG) emissions. This study conducts a systematic review (SR) of the literature on the co-benefits of mitigating GHG emissions resulting in 1554 papers. We analyze these papers using bibliometric analysis, including a keyword co-occurrence analysis. We then iteratively develop and present a typology of co-benefits, mitigation sectors, geographic scope, and methods based on the manual double coding of the papers resulting from the SR. We find that the co-benefits from GHG mitigation that have received the largest attention of researchers are impacts on ecosystems, economic activity, health, air pollution, and resource efficiency. The co-benefits that have received the least attention include the impacts on conflict and disaster resilience, poverty alleviation (or exacerbation), energy security, technological spillovers and innovation, and food security. Most research has investigated co-benefits from GHG mitigation in the agriculture, forestry and other land use (AFOLU), electricity, transport, and residential sectors, with the industrial sector being the subject of significantly less research. The largest number of co-benefits publications provide analysis at a global level, with relatively few studies providing local (city) level analysis or studying co-benefits in Oceanian or African contexts. Finally, science and engineering methods, in contrast to economic or social science methods, are the methods most commonly employed in co-benefits papers. We conclude that given the potential mobilizing power of understudied co-benefits (e.g. poverty alleviation) and local impacts, the magnitude of GHG emissions from the industrial sector, and the fact that Africa and South America are likely to be severely affected by climate change, there is an opportunity for the research community to fill these gaps.

  6. Challenges in predicting climate and environmental effects on vector-borne disease episystems in a changing world.

    PubMed

    Tabachnick, W J

    2010-03-15

    Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.

  7. Adaptation of farming practices could buffer effects of climate change on northern prairie wetlands

    USGS Publications Warehouse

    Voldseth, R.A.; Johnson, W.C.; Guntenspergen, G.R.; Gilmanov, T.; Millett, B.V.

    2009-01-01

    Wetlands of the Prairie Pothole Region of North America are vulnerable to climate change. Adaptation of farming practices to mitigate adverse impacts of climate change on wetland water levels is a potential watershed management option. We chose a modeling approach (WETSIM 3.2) to examine the effects of changes in climate and watershed cover on the water levels of a semi-permanent wetland in eastern South Dakota. Land-use practices simulated were unmanaged grassland, grassland managed with moderately heavy grazing, and cultivated crops. Climate scenarios were developed by adjusting the historical climate in combinations of 2??C and 4??C air temperature and ??10% precipitation. For these climate change scenarios, simulations of land use that produced water levels equal to or greater than unmanaged grassland under historical climate were judged to have mitigative potential against a drier climate. Water levels in wetlands surrounded by managed grasslands were significantly greater than those surrounded by unmanaged grassland. Management reduced both the proportion of years the wetland went dry and the frequency of dry periods, producing the most dynamic vegetation cycle for this modeled wetland. Both cultivated crops and managed grassland achieved water levels that were equal or greater than unmanaged grassland under historical climate for the 2??C rise in air temperature, and the 2??C rise plus 10% increase in precipitation scenarios. Managed grassland also produced water levels that were equal or greater than unmanaged grassland under historical climate for the 4??C rise plus 10% increase in precipitation scenario. Although these modeling results stand as hypotheses, they indicate that amelioration potential exists for a change in climate up to an increase of 2??C or 4??C with a concomitant 10% increase in precipitation. Few empirical data exist to verify the results of such land-use simulations; however, adaptation of farming practices is one possible mitigation avenue available for prairie wetlands. ?? 2009, The Society of Wetland Scientists.

  8. Envisioning a metropolitan foodshed: potential environmental consequences of increasing food-crop production around Chicago

    NASA Astrophysics Data System (ADS)

    Bowen, E. E.; Martin, P. A.; Schuble, T. J.

    2009-12-01

    Nationwide, cities are increasingly developing policies aimed at greater sustainability, particularly focusing on reducing environmental impact. Such policies commonly emphasize more efficiently using energy to decrease the greenhouse gas (GHG) footprint of the city. However, most plans ignore the food system as a factor in regional energy use and GHG emissions. Yet, the food system in the United States accounts for ~20% of per capita greenhouse gas emissions. Local, sustainable food production is cited as one strategy for mitigating GHG emissions of large metropolitan areas. “Sustainable” for regional agriculture is often identified as small-scale, diversified food crop production using best practices management. Localized food production (termed “foodshed”) using sustainable agriculture could mitigate climate change in multiple ways: (1) energy and therefore CO2-intensive portions of the conventional food system might be replaced by local, lower-input food production resulting in carbon offsets; (2) increased regional carbon storage might result from well-managed food crop production vs. commodity crop production; and (3) averted N2O emissions might result from closing nutrient cycles on agricultural lands following changes in management practices. The broader implications for environmental impact of widespread conversion to sustainable food crop agriculture, however, remain largely unknown. We examine the Chicago metropolitan region to quantify the impact of increased local food production on regional energy efficiency and GHG emissions. Geospatial analysis is used to quantify the resource potential for establishing a Chicago metropolitan foodshed. A regional foodshed is defined by minimizing cost through transportation mode (road, rail, or water) and maximizing the production potential of different soil types. Simple biogeochemical modeling is used to predict changes in N2O emissions and nutrient flows following changes in land management practices. Ultimately, quantification of impacts from changes in regional land use can inform regional planning for climate change mitigation strategies.

  9. Visual Impairment and Intracranial Hypertension: An Emerging Spaceflight Risk

    NASA Technical Reports Server (NTRS)

    Taddeo, Terrance A.

    2010-01-01

    During recent long duration missions to the International Space Station (ISS) crewmembers have reported changes in visual acuity or visual field defects. Exams in the postflight period revealed changes to the visual system and elevated intracranial pressures. As a result, NASA Space Medicine has added a number of tests to be performed in the preflight, inflight and postflight periods for ISS and shuttle missions with the goal of determining the processes at work and any potential mitigation strategies. This discussion will acquaint you with the changes that NASA has made to its medical requirements in order to address the microgravity induced intracranial hypertension and associated visual changes. Key personnel have been assembled to provide you information on this topic. Educational Objectives: Provide an overview of the current Medical Operations requirements and the mitigation steps taken to operationally address the issue.

  10. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  11. Early Action on Hfcs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-01-01

    As countries take action to mitigate global warming, both by ratifying theUNFCCCParis Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid- 21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 Kat 80 hPa. The HFCmitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  12. Global climate change and international security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less

  13. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.

  14. A Global Mitigation Hierarchy for Nature Conservation

    PubMed Central

    Bull, Joseph W; Addison, Prue F E; Burgass, Michael J; Gianuca, Dimas; Gorham, Taylor M; Jacob, Céline; Watson, James E M; Wilcox, Chris; Milner-Gulland, E J

    2018-01-01

    Abstract Efforts to conserve biodiversity comprise a patchwork of international goals, national-level plans, and local interventions that, overall, are failing. We discuss the potential utility of applying the mitigation hierarchy, widely used during economic development activities, to all negative human impacts on biodiversity. Evaluating all biodiversity losses and gains through the mitigation hierarchy could help prioritize consideration of conservation goals and drive the empirical evaluation of conservation investments through the explicit consideration of counterfactual trends and ecosystem dynamics across scales. We explore the challenges in using this framework to achieve global conservation goals, including operationalization and monitoring and compliance, and we discuss solutions and research priorities. The mitigation hierarchy's conceptual power and ability to clarify thinking could provide the step change needed to integrate the multiple elements of conservation goals and interventions in order to achieve successful biodiversity outcomes. PMID:29731513

  15. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhiliang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd J.; Wein, Anne M.; Liu, Shuguang; Kanengieter, Ronald L.; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and land-management activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  16. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes

    USGS Publications Warehouse

    Sohl, Terry L.; Sleeter, Benjamin M.; Zhu, Zhi-Liang; Sayler, Kristi L.; Bennett, Stacie; Bouchard, Michelle; Reker, Ryan R.; Hawbaker, Todd; Wein, Anne; Liu, Shu-Guang; Kanengleter, Ronald; Acevedo, William

    2012-01-01

    Changes in land use, land cover, disturbance regimes, and land management have considerable influence on carbon and greenhouse gas (GHG) fluxes within ecosystems. Through targeted land-use and landmanagement activities, ecosystems can be managed to enhance carbon sequestration and mitigate fluxes of other GHGs. National-scale, comprehensive analyses of carbon sequestration potential by ecosystem are needed, with a consistent, nationally applicable land-use and land-cover (LULC) modeling framework a key component of such analyses. The U.S. Geological Survey has initiated a project to analyze current and projected future GHG fluxes by ecosystem and quantify potential mitigation strategies. We have developed a unique LULC modeling framework to support this work. Downscaled scenarios consistent with IPCC Special Report on Emissions Scenarios (SRES) were constructed for U.S. ecoregions, and the FORE-SCE model was used to spatially map the scenarios. Results for a prototype demonstrate our ability to model LULC change and inform a biogeochemical modeling framework for analysis of subsequent GHG fluxes. The methodology was then successfully used to model LULC change for four IPCC SRES scenarios for an ecoregion in the Great Plains. The scenario-based LULC projections are now being used to analyze potential GHG impacts of LULC change across the U.S.

  17. Applying a Systems Approach to Monitoring and Assessing Climate Change Mitigation Potential in Mexico's Forest Sector

    NASA Astrophysics Data System (ADS)

    Olguin-Alvarez, M. I.; Wayson, C.; Fellows, M.; Birdsey, R.; Smyth, C.; Magnan, M.; Dugan, A.; Mascorro, V.; Alanís, A.; Serrano, E.; Kurz, W. A.

    2017-12-01

    Since 2012, the Mexican government through its National Forestry Commission, with support from the Commission for Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made important progress towards the use of carbon dynamics models ("gain-loss" approach) for greenhouse gas (GHG) emissions monitoring and projections into the future. Here we assess the biophysical mitigation potential of policy alternatives identified by the Mexican Government (e.g. net zero deforestation rate, sustainable forest management) based on a systems approach that models carbon dynamics in forest ecosystems, harvested wood products and substitution benefits in two contrasting states of Mexico. We provide key messages and results derived from the use of the Carbon Budget Model of the Canadian Forest Sector and a harvested wood products model, parameterized with input data from Mexicós National Forest Monitoring System (e.g. forest inventories, remote sensing, disturbance data). The ultimate goal of this tri-national effort is to develop data and tools for carbon assessment in strategic landscapes in North America, emphasizing the need to include multiple sectors and types of collaborators (scientific and policy-maker communities) to design more comprehensive portfolios for climate change mitigation in accordance with the Paris Agreement of the United Nation Framework Convention on Climate Change (e.g. Mid-Century Strategy, NDC goals).

  18. Assessment of Emerging Regional Air Quality (AQ) and Greenhouse Gas (GHG) Impacts and Potential Mitigation Strategies in U.S. Energy Sectors

    NASA Astrophysics Data System (ADS)

    Kinnon, Michael Mac

    The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction and AQ. Findings include changes in the relative contribution to AQ that elevate the importance of addressing emissions from all sectors and sources including some that may be more difficult to control, including industry, petroleum refineries, and nonlight duty vehicle transportation sources. Additionally, mitigation strategies must consider the full range of life cycle and system effects in order to avoid AQ tradeoffs spatially and temporally.

  19. Obesity and climate change mitigation in Australia: overview and analysis of policies with co-benefits.

    PubMed

    Lowe, Melanie

    2014-02-01

    To provide an overview of the shared structural causes of obesity and climate change, and analyse policies that could be implemented in Australia to both equitably reduce obesity rates and contribute to mitigating climate change. Informed by the political economy of health theoretical framework, a review was conducted of the literature on the shared causes of, and solutions to, obesity and climate change. Policies with potential co-benefits for climate change and obesity were then analysed based upon their feasibility and capacity to reduce greenhouse gas emissions and equitably reduce obesity rates in Australia. Policies with potential co-benefits fit within three broad categories: those to replace car use with low-emissions, active modes of transport; those to improve diets and reduce emissions from the food system; and macro-level economic policies to reduce the over-consumption of food and fossil fuel energy. Given the complex causes of both problems, it is argued that a full spectrum of complementary strategies across different sectors should be utilised. Such an approach would have significant public health, social and environmental benefits. © 2014 The Authors. ANZJPH © 2014 Public Health Association of Australia.

  20. Modelling effects of geoengineering options in response to climate change and global warming: implications for coral reefs.

    PubMed

    Crabbe, M J C

    2009-12-01

    Climate change will have serious effects on the planet and on its ecosystems. Currently, mitigation efforts are proving ineffectual in reducing anthropogenic CO2 emissions. Coral reefs are the most sensitive ecosystems on the planet to climate change, and here we review modelling a number of geoengineering options, and their potential influence on coral reefs. There are two categories of geoengineering, shortwave solar radiation management and longwave carbon dioxide removal. The first set of techniques only reduce some, but not all, effects of climate change, while possibly creating other problems. They also do not affect CO2 levels and therefore fail to address the wider effects of rising CO2, including ocean acidification, important for coral reefs. Solar radiation is important to coral growth and survival, and solar radiation management is not in general appropriate for this ecosystem. Longwave carbon dioxide removal techniques address the root cause of climate change, rising CO2 concentrations, they have relatively low uncertainties and risks. They are worthy of further research and potential implementation, particularly carbon capture and storage, biochar, and afforestation methods, alongside increased mitigation of atmospheric CO2 concentrations.

  1. Methodological Issues In Forestry Mitigation Projects: A CaseStudy Of Kolar District

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ravindranath, N.H.; Murthy, I.K.; Sudha, P.

    2007-06-01

    There is a need to assess climate change mitigationopportunities in forest sector in India in the context of methodologicalissues such as additionality, permanence, leakage, measurement andbaseline development in formulating forestry mitigation projects. A casestudy of forestry mitigation project in semi-arid community grazing landsand farmlands in Kolar district of Karnataka, was undertaken with regardto baseline and project scenariodevelopment, estimation of carbon stockchange in the project, leakage estimation and assessment ofcost-effectiveness of mitigation projects. Further, the transaction coststo develop project, and environmental and socio-economic impact ofmitigation project was assessed.The study shows the feasibility ofestablishing baselines and project C-stock changes. Since the areamore » haslow or insignificant biomass, leakage is not an issue. The overallmitigation potential in Kolar for a total area of 14,000 ha under variousmitigation options is 278,380 tC at a rate of 20 tC/ha for the period2005-2035, which is approximately 0.67 tC/ha/yr inclusive of harvestregimes under short rotation and long rotation mitigation options. Thetransaction cost for baseline establishment is less than a rupee/tC andfor project scenario development is about Rs. 1.5-3.75/tC. The projectenhances biodiversity and the socio-economic impact is alsosignificant.« less

  2. EU mitigation potential of harvested wood products.

    PubMed

    Pilli, Roberto; Fiorese, Giulia; Grassi, Giacomo

    2015-12-01

    The new rules for the Land Use, Land Use Change and Forestry sector under the Kyoto Protocol recognized the importance of Harvested Wood Products (HWP) in climate change mitigation. We used the Tier 2 method proposed in the 2013 IPCC KP Supplement to estimate emissions and removals from HWP from 1990 to 2030 in EU-28 countries with three future harvest scenarios (constant historical average, and +/-20% in 2030). For the historical period (2000-2012) our results are consistent with other studies, indicating a HWP sink equal on average to -44.0 Mt CO 2 yr -1 (about 10% of the sink by forest pools). Assuming a constant historical harvest scenario and future distribution of the total harvest among each commodity, the HWP sink decreases to -22.9 Mt CO 2 yr -1 in 2030. The increasing and decreasing harvest scenarios produced a HWP sink of -43.2 and -9.0 Mt CO 2 yr -1 in 2030, respectively. Other factors may play an important role on HWP sink, including: (i) the relative share of different wood products, and (ii) the combined effect of production, import and export on the domestic production of each commodity. Maintaining a constant historical harvest, the HWP sink will slowly tend to saturate, i.e. to approach zero in the long term. The current HWP sink will be maintained only by further increasing the current harvest; however, this will tend to reduce the current sink in forest biomass, at least in the short term. Overall, our results suggest that: (i) there is limited potential for additional HWP sink in the EU; (ii) the HWP mitigation potential should be analyzed in conjunction with other mitigation components (e.g. sink in forest biomass, energy and material substitution by wood).

  3. The Value of Linking Mitigation and Adaptation: A Case Study of Bangladesh

    NASA Astrophysics Data System (ADS)

    Ayers, Jessica M.; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  4. The value of linking mitigation and adaptation: a case study of Bangladesh.

    PubMed

    Ayers, Jessica M; Huq, Saleemul

    2009-05-01

    There are two principal strategies for managing climate change risks: mitigation and adaptation. Until recently, mitigation and adaptation have been considered separately in both climate change science and policy. Mitigation has been treated as an issue for developed countries, which hold the greatest responsibility for climate change, while adaptation is seen as a priority for the South, where mitigative capacity is low and vulnerability is high. This conceptual divide has hindered progress against the achievement of the fundamental sustainable development challenges of climate change. Recent attention to exploring the synergies between mitigation and adaptation suggests that an integrated approach could go some way to bridging the gap between the development and adaptation priorities of the South and the need to achieve global engagement in mitigation. These issues are explored through a case study analysis of climate change policy and practice in Bangladesh. Using the example of waste-to-compost projects, a mitigation-adaptation-development nexus is demonstrated, as projects contribute to mitigation through reducing methane emissions; adaptation through soil improvement in drought-prone areas; and sustainable development, because poverty is exacerbated when climate change reduces the flows of ecosystem services. Further, linking adaptation to mitigation makes mitigation action more relevant to policymakers in Bangladesh, increasing engagement in the international climate change agenda in preparation for a post-Kyoto global strategy. This case study strengthens the argument that while combining mitigation and adaptation is not a magic bullet for climate policy, synergies, particularly at the project level, can contribute to the sustainable development goals of climate change and are worth exploring.

  5. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE PAGES

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne; ...

    2017-12-20

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  6. Synergy between land use and climate change increases future fire risk in Amazon forests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Le Page, Yannick; Morton, Douglas; Hartin, Corinne

    Tropical forests have been a permanent feature of the Amazon basin for at least 55 million years, yet climate change and land use threaten the forest's future over the next century. Understory forest fires, which are common under the current climate in frontier forests, may accelerate Amazon forest losses from climate-driven dieback and deforestation. Far from land use frontiers, scarce fire ignitions and high moisture levels preclude significant burning, yet projected climate and land use changes may increase fire activity in these remote regions. Here, we used a fire model specifically parameterized for Amazon understory fires to examine the interactionsmore » between anthropogenic activities and climate under current and projected conditions. In a scenario of low mitigation efforts with substantial land use expansion and climate change – Representative Concentration Pathway (RCP) 8.5 – projected understory fires increase in frequency and duration, burning 4–28 times more forest in 2080–2100 than during 1990–2010. In contrast, active climate mitigation and land use contraction in RCP4.5 constrain the projected increase in fire activity to 0.9–5.4 times contemporary burned area. Importantly, if climate mitigation is not successful, land use contraction alone is very effective under low to moderate climate change, but does little to reduce fire activity under the most severe climate projections. These results underscore the potential for a fire-driven transformation of Amazon forests if recent regional policies for forest conservation are not paired with global efforts to mitigate climate change.« less

  7. 2012 NEHA/UL sabbatical report: vulnerability to potential impacts of climate change: adaptation and risk communication strategies for environmental health practitioners in the United Kingdom.

    PubMed

    Ratnapradipa, Dhitinut

    2014-04-01

    Climate change risk assessment, adaptation, and mitigation planning have become increasingly important to environmental health practitioners (EHPs). The NEHA/UL Sabbatical Exchange Award allowed me to investigate how EHPs in the UK are incorporating climate change planning and communication strategies into their work. Projected climate change risks in the UK include flooding, extreme heat, water shortages, severe weather, decreased air quality, and changes in vectors. Despite public perception and funding challenges, all the local government representatives with whom I met incorporated climate change risk assessment, adaptation, and mitigation planning into their work. The mandated Community Risk Register serves as a key planning document developed by each local government authority and is a meaningful way to look at potential climate change health risks. Adaptation and sustainability were common threads in my meetings. These often took the form of "going green" with transportation, energy efficiency, conserving resources, and building design because the efforts made sense monetarily as future cost savings. Communication strategies targeted a variety of audiences (EHPs, non-EHP government employees, politicians, and the general public) using a broad range of communication channels (professional training, lobbying, conferences and fairs, publications, print materials, Internet resources, social media, billboards, etc).

  8. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries.

    PubMed

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production's effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species.

  9. Utilization of farm animal genetic resources in a changing agro-ecological environment in the Nordic countries

    PubMed Central

    Kantanen, Juha; Løvendahl, Peter; Strandberg, Erling; Eythorsdottir, Emma; Li, Meng-Hua; Kettunen-Præbel, Anne; Berg, Peer; Meuwissen, Theo

    2015-01-01

    Livestock production is the most important component of northern European agriculture and contributes to and will be affected by climate change. Nevertheless, the role of farm animal genetic resources in the adaptation to new agro-ecological conditions and mitigation of animal production’s effects on climate change has been inadequately discussed despite there being several important associations between animal genetic resources and climate change issues. The sustainability of animal production systems and future food security require access to a wide diversity of animal genetic resources. There are several genetic questions that should be considered in strategies promoting adaptation to climate change and mitigation of environmental effects of livestock production. For example, it may become important to choose among breeds and even among farm animal species according to their suitability to a future with altered production systems. Some animals with useful phenotypes and genotypes may be more useful than others in the changing environment. Robust animal breeds with the potential to adapt to new agro-ecological conditions and tolerate new diseases will be needed. The key issue in mitigation of harmful greenhouse gas effects induced by livestock production is the reduction of methane (CH4) emissions from ruminants. There are differences in CH4 emissions among breeds and among individual animals within breeds that suggest a potential for improvement in the trait through genetic selection. Characterization of breeds and individuals with modern genomic tools should be applied to identify breeds that have genetically adapted to marginal conditions and to get critical information for breeding and conservation programs for farm animal genetic resources. We conclude that phenotyping and genomic technologies and adoption of new breeding approaches, such as genomic selection introgression, will promote breeding for useful characters in livestock species. PMID:25767477

  10. Climate Change Communication by a Research Institute: Experiences, Successes, and Challenges from a North European Perspective

    ERIC Educational Resources Information Center

    Lyytimäki, Jari; Nygrén, Nina A.; Ala-Ketola, Ulla; Pellinen, Sirpa; Ruohomäki, Virpi; Inkinen, Aino

    2013-01-01

    Communicating about climate change is challenging not only because of the multidisciplinary and complex nature of the issue itself and multiple policy options related to mitigation and adaptation, but also because of the plenitude of potential communication methods coupled with limited resources for communication. This article explores climate…

  11. Modeling the influence of climate change on watershed systems: Adaptation through targeted practices

    NASA Astrophysics Data System (ADS)

    Dudula, John; Randhir, Timothy O.

    2016-10-01

    Climate change may influence hydrologic processes of watersheds (IPCC, 2013) and increased runoff may cause flooding, eroded stream banks, widening of stream channels, increased pollutant loading, and consequently impairment of aquatic life. The goal of this study was to quantify the potential impacts of climate change on watershed hydrologic processes and to evaluate scale and effectiveness of management practices for adaptation. We simulate baseline watershed conditions using the Hydrological Simulation Program Fortran (HSPF) simulation model to examine the possible effects of changing climate on watershed processes. We also simulate the effects of adaptation and mitigation through specific best management strategies for various climatic scenarios. With continuing low-flow conditions and vulnerability to climate change, the Ipswich watershed is the focus of this study. We quantify fluxes in runoff, evapotranspiration, infiltration, sediment load, and nutrient concentrations under baseline and climate change scenarios (near and far future). We model adaptation options for mitigating climate effects on watershed processes using bioretention/raingarden Best Management Practices (BMPs). It was observed that climate change has a significant impact on watershed runoff and carefully designed and maintained BMPs at subwatershed scale can be effective in mitigating some of the problems related to stormwater runoff. Policy options include implementation of BMPs through education and incentives for scale-dependent and site specific bioretention units/raingardens to increase the resilience of the watershed system to current and future climate change.

  12. Mitigating Agricultural Diffuse Pollution: Learning from The River Eden Demonstration Test Catchment Experiments

    NASA Astrophysics Data System (ADS)

    Reaney, S. M.; Barker, P. A.; Haygarth, P.; Quinn, P. F.; Aftab, A.; Barber, N.; Burke, S.; Cleasby, W.; Jonczyk, J. C.; Owen, G. J.; Perks, M. T.; Snell, M. A.; Surridge, B.

    2016-12-01

    Freshwater systems continue to fail to achieve their ecological potential and provide associated ecological services due to poor water quality. A key driver of the failure to achieve good status under the EU Water Framework Directive derives from non-point (diffuse) pollution of sediment, phosphorus and nitrogen from agricultural landscapes. While many mitigation options exist, a framework is lacking which provides a holistic understanding of the impact of mitigation scheme design on catchment function and agronomics. The River Eden Demonstration Test Catchment project (2009-2017) in NW England uses an interdisciplinary approach including catchment hydrology, sediment-nutrient fluxes and farmer attitudes, to understand ecological function and diffuse pollution mitigation feature performance. Water flow (both surface and groundwater) and quality monitoring focused on three ca. 10km2 catchments with N and P measurements every 30 minutes. Ecological status was determined by monthly diatom community analysis and supplemented by macrophyte, macroinvertebrate and fish surveys. Changes in erosion potential and hydrological connectivity were monitored using extensive Landsat images and detailed UAV monitoring. Simulation modelling work utilised hydrological simulation models (CRAFT, CRUM3 and HBV-Light) and SCIMAP based risk mapping. Farmer behaviour and attitudes have been assessed with surveys, interviews and diaries. A suite of mitigation features have been installed including changes to land management - e.g. aeriation, storage features within a `treatment train', riparian fencing and woodland creation. A detailed dataset of the integrated catchment hydrological, water quality and ecological behaviour over multiple years, including a drought period and an extreme rainfall event, highlights the interaction between ecology, hydrological and nutrient dynamics that are driven by sediment and nutrients exported within a small number of high magnitude storm events. Hence these high-resolution processes must be studied in conjunction, rather than in isolation, to understand system dynamics and critically to evaluate effective mitigation schemes.

  13. Integrating U.S. climate, energy, and transportation policies : RAND workshops address challenges and potential solutions

    DOT National Transportation Integrated Search

    2009-01-01

    There is growing consensus among policymakers that bold government action is needed : to mitigate climate change, particularly through integrated climate, energy, and transportation : policy initiatives. In an effort to share different perspectives o...

  14. Global Climate Change:A Monumental Mitigation Challenge

    EPA Science Inventory

    A holistic view of long-term sustainability cannot ignore humanity’s ever-growing demands on fossil fuels, water, and other finite geological resources. Figure 1 (Princiotta et. al., 2014) illustrates the key factors that are responsible for potentially unsustainable global impac...

  15. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.

    PubMed

    La Scala, N; De Figueiredo, E B; Panosso, A R

    2012-08-01

    Agricultural areas deal with enormous CO2 intake fluxes offering an opportunity for greenhouse effect mitigation. In this work we studied the potential of soil carbon sequestration due to the management conversion in major agricultural activities in Brazil. Data from several studies indicate that in soybean/maize, and related rotation systems, a significant soil carbon sequestration was observed over the year of conversion from conventional to no-till practices, with a mean rate of 0.41 Mg C ha(-1) year(-1). The same effect was observed in sugarcane fields, but with a much higher accumulation of carbon in soil stocks, when sugarcane fields are converted from burned to mechanised based harvest, where large amounts of sugarcane residues remain on the soil surface (1.8 Mg C ha(-1) year(-1)). The higher sequestration potential of sugarcane crops, when compared to the others, has a direct relation to the primary production of this crop. Nevertheless, much of this mitigation potential of soil carbon accumulation in sugarcane fields is lost once areas are reformed, or intensive tillage is applied. Pasture lands have shown soil carbon depletion once natural areas are converted to livestock use, while integration of those areas with agriculture use has shown an improvement in soil carbon stocks. Those works have shown that the main crop systems of Brazil have a huge mitigation potential, especially in soil carbon form, being an opportunity for future mitigation strategies.

  16. A Framework for the Cross-Sectoral Integration of Multi-Model Impact Projections: Land Use Decisions Under Climate Impacts Uncertainties

    NASA Technical Reports Server (NTRS)

    Frieler, K.; Elliott, Joshua; Levermann, A.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Doll, P.; hide

    2015-01-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impactmodel setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making

  17. A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties

    NASA Astrophysics Data System (ADS)

    Frieler, K.; Levermann, A.; Elliott, J.; Heinke, J.; Arneth, A.; Bierkens, M. F. P.; Ciais, P.; Clark, D. B.; Deryng, D.; Döll, P.; Falloon, P.; Fekete, B.; Folberth, C.; Friend, A. D.; Gellhorn, C.; Gosling, S. N.; Haddeland, I.; Khabarov, N.; Lomas, M.; Masaki, Y.; Nishina, K.; Neumann, K.; Oki, T.; Pavlick, R.; Ruane, A. C.; Schmid, E.; Schmitz, C.; Stacke, T.; Stehfest, E.; Tang, Q.; Wisser, D.; Huber, V.; Piontek, F.; Warszawski, L.; Schewe, J.; Lotze-Campen, H.; Schellnhuber, H. J.

    2015-07-01

    Climate change and its impacts already pose considerable challenges for societies that will further increase with global warming (IPCC, 2014a, b). Uncertainties of the climatic response to greenhouse gas emissions include the potential passing of large-scale tipping points (e.g. Lenton et al., 2008; Levermann et al., 2012; Schellnhuber, 2010) and changes in extreme meteorological events (Field et al., 2012) with complex impacts on societies (Hallegatte et al., 2013). Thus climate change mitigation is considered a necessary societal response for avoiding uncontrollable impacts (Conference of the Parties, 2010). On the other hand, large-scale climate change mitigation itself implies fundamental changes in, for example, the global energy system. The associated challenges come on top of others that derive from equally important ethical imperatives like the fulfilment of increasing food demand that may draw on the same resources. For example, ensuring food security for a growing population may require an expansion of cropland, thereby reducing natural carbon sinks or the area available for bio-energy production. So far, available studies addressing this problem have relied on individual impact models, ignoring uncertainty in crop model and biome model projections. Here, we propose a probabilistic decision framework that allows for an evaluation of agricultural management and mitigation options in a multi-impact-model setting. Based on simulations generated within the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), we outline how cross-sectorally consistent multi-model impact simulations could be used to generate the information required for robust decision making. Using an illustrative future land use pattern, we discuss the trade-off between potential gains in crop production and associated losses in natural carbon sinks in the new multiple crop- and biome-model setting. In addition, crop and water model simulations are combined to explore irrigation increases as one possible measure of agricultural intensification that could limit the expansion of cropland required in response to climate change and growing food demand. This example shows that current impact model uncertainties pose an important challenge to long-term mitigation planning and must not be ignored in long-term strategic decision making.

  18. Assessments of species' vulnerability to climate change: From pseudo to science

    USGS Publications Warehouse

    Wade, Alisa A.; Hand, Brian K.; Kovach, Ryan; Muhlfeld, Clint C.; Waples, Robin S.; Luikart, Gordon

    2017-01-01

    Climate change vulnerability assessments (CCVAs) are important tools to plan for and mitigate potential impacts of climate change. However, CCVAs often lack scientific rigor, which can ultimately lead to poor conservation prioritization and associated ecological and economic costs. We discuss the need to improve comparability and consistency of CCVAs and either validate their findings or improve assessment of CCVA uncertainty and sensitivity to methodological assumptions.

  19. Preface

    NASA Technical Reports Server (NTRS)

    Rosenzweig, Cynthia (Editor); Hillel, Daniel (Editor)

    2015-01-01

    The potential effects of climate change on the food production system are raising concern both globally and regionally. The system is already challenged to deliver sufficient and healthy sustenance to all people, and is certain to be even further challenged as world population grows and price shocks loom. The prospect of climate change intensifies these challenges, raising the risk that more frequent and intense extreme weather events threaten the stability of agricultural production in regions around the globe. This two-part set is an important contribution to the ongoing Imperial College Press (ICP) Series on Climate Change Impacts, Adaptation, and Mitigation. This series aims to provide the know ledge base necessary for understanding and responding to climate change, in both its current form and future manifestations. In these volumes, ·leading agricultural researchers have come together to contribute their expertise on actual and potential climate change impacts, adaptation strategies, and mitigation efforts. This ongoing series is jointly published by The American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA), together with ICP. We hope that this fruitful cooperation will continue for many years to come, as it spurs the global effort to define and meet the great food security and climate change challenges of our time.

  20. Social acceptability of bioenergy in the U.S

    Treesearch

    J. Peter Brosius; John Schelhas; Sarah Hitchner

    2013-01-01

    Global interest in bioenergy development has increased dramatically in recent years, due to its promise to reduce dependence on fossil fuel energy supplies, its contribution to global and national energy security, its potential to produce a carbon negative or neutral fuel source and to mitigate climate change, and its potential as a vehicle for rural development....

  1. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    USDA-ARS?s Scientific Manuscript database

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  2. Wildfire and fuel treatment effects on forest carbon dynamics in the western United States

    Treesearch

    Joseph C. Restiano; David L. Peterson

    2013-01-01

    Sequestration of carbon (C) in forests has the potential to mitigate the effects of climate change by offsetting future emissions of greenhouse gases. However, in dry temperate forests, wildfire is a natural disturbance agent with the potential to release large fluxes of C into the atmosphere. Climate-driven increases in wildfire extent and severity arc expected to...

  3. Never Let the Opportunity to Prepare for a Crisis Go to Waste: The Need for Proactive Measures in the Asia-Pacific Region to Mitigate the Impacts of Climate Change

    DTIC Science & Technology

    2015-05-21

    mitigation plan in place. In the long term, it is likely that the Filipinos will contend with both rising sea levels and acidification of the ocean . The... acidification of the oceans will likely have a deleterious effect on fisheries, increasing the potential for food...Persian Gulf to both the South China Sea and the Pacific Ocean . 34 With such enormous economic value, it should come as no surprise that nations

  4. Characterizing the Effects of Stormwater Mitigation on Nutrient Export and Stream Concentrations

    NASA Astrophysics Data System (ADS)

    Bell, Colin D.; McMillan, Sara K.; Clinton, Sandra M.; Jefferson, Anne J.

    2017-04-01

    Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.

  5. Can isolated and riparian wetlands mitigate the impact of climate change on watershed hydrology? A case study approach.

    PubMed

    Fossey, M; Rousseau, A N

    2016-12-15

    The effects of wetlands on stream flows are well established, namely mitigating flow regimes through water storage and slow water release. However, their effectiveness in reducing flood peaks and sustaining low flows is mainly driven by climate conditions and wetland type with respect to their connectivity to the hydrographic network (i.e. isolated or riparian wetlands). While some studies have demonstrated these hydrological functions/services, few of them have focused on the benefits to the hydrological regimes and their evolution under climate change (CC) and, thus, some gaps persist. The objective of this study was to further advance our knowledge with that respect. The PHYSITEL/HYDROTEL modelling platform was used to assess current and future states of watershed hydrology of the Becancour and Yamaska watersheds, Quebec, Canada. Simulation results showed that CC will induce similar changes on mean seasonal flows, namely larger and earlier spring flows leading to decreases in summer and fall flows. These expected changes will have different effects on 20-year and 100-year peak flows with respect to the considered watershed. Nevertheless, conservation of current wetland states should: (i) for the Becancour watershed, mitigate the potential increase in 2-year, 20-year and 100-year peak flows; and (ii) for the Yamaska watershed, accentuate the potential decrease in the aforementioned indicators. However, any loss of existing wetlands would be detrimental for 7-day 2-year and 10-year as well as 30-day 5-year low flows. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans—An Empirical Analysis of European Cities

    PubMed Central

    Reckien, Diana; Flacke, Johannes

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future. PMID:26317420

  7. Carbon sequestration index as a determinant for climate change mitigation: Case study of Bintan Island

    NASA Astrophysics Data System (ADS)

    Wahyudi, A.'an J.; Afdal; Prayudha, Bayu; Dharmawan, I. W. E.; Irawan, Andri; Abimanyu, Haznan; Meirinawati, Hanny; Surinati, Dewi; Syukri, Agus F.; Yuliana, Chitra I.; Yuniati, Putri I.

    2018-02-01

    The increase of the anthropogenic carbon dioxide (CO2) affects the global carbon cycle altering the atmospheric system and initiates the climate changes. There are two ways to mitigate these changes, by maintaining the greenhouse gasses below the carbon budget and by conserving the marine and terrestrial vegetation for carbon sequestration. These two strategies become variable to the carbon sequestration index (CSI) that represents the potential of a region in carbon sequestration, according to its natural capacity. As a study case, we conducted carbon sequestration research in Bintan region (Bintan Island and its surrounding), Riau Archipelago province. This research was aimed to assess the CSI and its possibility for climate change mitigation. We observed carbon sequestration of seagrass meadows and mangrove, greenhouse gas (CO2) emission (correlated to population growth, the increase of vehicles), and CSI. Bintan region has 125,849.9 ha of vegetation area and 14,879.6 ha of terrestrial and marine vegetation area, respectively. Both vegetation areas are able to sequester 0.262 Tg C yr-1 in total and marine vegetation contributes about 77.1%. Total CO2 emission in Bintan region is up to 0.273 Tg C yr-1, produced by transportation, industry and land use sectors. Therefore, CSI of the Bintan region is 0.98, which is above the global average (i.e. 0.58). This value demonstrates that the degree of sequestration is comparable to the total carbon emission. This result suggests that Bintan’s vegetation has high potential for reducing greenhouse gas effects.

  8. The Influence of Drivers and Barriers on Urban Adaptation and Mitigation Plans-An Empirical Analysis of European Cities.

    PubMed

    Reckien, Diana; Flacke, Johannes; Olazabal, Marta; Heidrich, Oliver

    2015-01-01

    Cities are recognised as key players in global adaptation and mitigation efforts because the majority of people live in cities. However, in Europe, which is highly urbanized and one of the most advanced regions in terms of environmental policies, there is considerable diversity in the regional distribution, ambition and scope of climate change responses. This paper explores potential factors contributing to such diversity in 200 large and medium-sized cities across 11 European countries. We statistically investigate institutional, socio-economic, environmental and vulnerability characteristics of cities as potential drivers of or barriers to the development of urban climate change plans. Our results show that factors such as membership of climate networks, population size, GDP per capita and adaptive capacity act as drivers of mitigation and adaptation plans. By contrast, factors such as the unemployment rate, warmer summers, proximity to the coast and projected exposure to future climate impacts act as barriers. We see that, overall, it is predominantly large and prosperous cities that engage in climate planning, while vulnerable cities and those at risk of severe climate impacts in the future are less active. Our analysis suggests that climate change planning in European cities is not proactive, i.e. not significantly influenced by anticipated future impacts. Instead, we found that the current adaptive capacity of a city significantly relates to climate planning. Along with the need to further explore these relations, we see a need for more economic and institutional support for smaller and less resourceful cities and those at high risk from climate change impacts in the future.

  9. Species and media effects on soil carbon dynamics in the landscape: opportunities for climate change mitigation from urban landscape plantings

    USDA-ARS?s Scientific Manuscript database

    Most scientists now agree that climate change is occurring as a direct result of human activities. Agricultural production has been shown to be a major emitter of greenhouse gas (GHG) emissions; however, horticulture production is unique in that it also has the potential to serve as a major carbon (...

  10. The Nanchang communication about the potential for the implementation of conservation practices for climate change mitigation and adaptation to achieve food security in the 21st century

    USDA-ARS?s Scientific Manuscript database

    Several recent peer reviewed manuscripts have reported on the great challenges humanity is confronting during the XXI century, including a changing climate, depletion of water resources from groundwater and/or snow caps sources that are needed for agricultural production, deforestation, desertificat...

  11. Carbon pool and biomass dynamics associated with deforestation, land use, and agricultural abandonment in the neotropics

    Treesearch

    J.B. Kauffman; R.F. Hughes; C. Heider

    2009-01-01

    Current rates of deforestation and the resulting C emissions in the tropics exceed those of secondary forest regrowth and C sequestration. Changing land-use strategies that would maintain standing forests may be among the least expensive of climate change mitigation options. Further, secondary tropical forests have been suggested to have great value for their potential...

  12. Looking to nature for solutions

    NASA Astrophysics Data System (ADS)

    Turner, Will R.

    2018-01-01

    Completely stopping fossil fuel use may not be enough to avoid dangerous climate change. Recent research on the mitigation potential of conservation, restoration, and improved land management demonstrates that natural solutions can reduce emissions and remove atmospheric CO2 while safeguarding food security and biodiversity.

  13. A horizon scan of future threats and opportunities for pollinators and pollination.

    PubMed

    Brown, Mark J F; Dicks, Lynn V; Paxton, Robert J; Baldock, Katherine C R; Barron, Andrew B; Chauzat, Marie-Pierre; Freitas, Breno M; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E; Potts, Simon G; Schweiger, Oliver; Seymour, Colleen L; Stout, Jane C

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations.

  14. A horizon scan of future threats and opportunities for pollinators and pollination

    PubMed Central

    Dicks, Lynn V.; Paxton, Robert J.; Baldock, Katherine C.R.; Barron, Andrew B.; Chauzat, Marie-Pierre; Freitas, Breno M.; Goulson, Dave; Jepsen, Sarina; Kremen, Claire; Li, Jilian; Neumann, Peter; Pattemore, David E.; Potts, Simon G.; Schweiger, Oliver; Seymour, Colleen L.; Stout, Jane C.

    2016-01-01

    Background. Pollinators, which provide the agriculturally and ecologically essential service of pollination, are under threat at a global scale. Habitat loss and homogenisation, pesticides, parasites and pathogens, invasive species, and climate change have been identified as past and current threats to pollinators. Actions to mitigate these threats, e.g., agri-environment schemes and pesticide-use moratoriums, exist, but have largely been applied post-hoc. However, future sustainability of pollinators and the service they provide requires anticipation of potential threats and opportunities before they occur, enabling timely implementation of policy and practice to prevent, rather than mitigate, further pollinator declines. Methods.Using a horizon scanning approach we identified issues that are likely to impact pollinators, either positively or negatively, over the coming three decades. Results.Our analysis highlights six high priority, and nine secondary issues. High priorities are: (1) corporate control of global agriculture, (2) novel systemic pesticides, (3) novel RNA viruses, (4) the development of new managed pollinators, (5) more frequent heatwaves and drought under climate change, and (6) the potential positive impact of reduced chemical use on pollinators in non-agricultural settings. Discussion. While current pollinator management approaches are largely driven by mitigating past impacts, we present opportunities for pre-emptive practice, legislation, and policy to sustainably manage pollinators for future generations. PMID:27602260

  15. Can reducing black carbon emissions counteract global warming?

    PubMed

    Bond, Tami C; Sun, Haolin

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. We review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. We argue that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. We synthesize results from published climate-modeling studies to obtain a global warming potential for black carbon relative to that of CO2 (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. We find that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, we propose a role for black carbon in climate mitigation strategies that is consistent with the apparently conflicting arguments raised during our discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement.

  16. Net mitigation potential of straw return to Chinese cropland: estimation with a full greenhouse gas budget model.

    PubMed

    Lu, Fei; Wang, Xiaoke; Han, Bing; Ouyang, Zhiyun; Duan, Xiaonan; Zheng, Hua

    2010-04-01

    Based on the carbon-nitrogen cycles and greenhouse gas (GHG) mitigation and emission processes related to straw return and burning, a compound greenhouse gas budget model, the "Straw Return and Burning Model" (SRBM), was constructed to estimate the net mitigation potential of straw return to the soil in China. As a full GHG budget model, the SRBM addressed the following five processes: (1) soil carbon sequestration, (2) mitigation of synthetic N fertilizer substitution, (3) methane emission from rice paddies, (4) additional fossil fuel use for straw return, and (5) CH4 and N2O emissions from straw burning in the fields. Two comparable scenarios were created to reflect different degrees of implementation for straw return and straw burning. With GHG emissions and mitigation effects of the five processes converted into global warming potential (GWP), the net GHG mitigation was estimated. We concluded that (1) when the full greenhouse gas budget is considered, the net mitigation potential of straw return differs from that when soil carbon sequestration is considered alone; (2) implementation of straw return across a larger area of cropland in 10 provinces (i.e., Shanghai, Jiangsu, Zhejiang, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, and Hainan) will increase net GHG emission; (3) if straw return is promoted as a feasible mitigation measure in the remaining provinces, the total net mitigation potential before soil organic carbon (SOC) saturation will be 71.89 Tg CO2 equivalent (eqv)/yr, which is equivalent to 1.733% of the annual carbon emission from fossil fuel use in China in 2003; (4) after SOC saturation, only 13 of 21 provinces retain a relatively small but permanent net mitigation potential, while in the others the net GHG mitigation potential will gradually diminish; and (5) the major obstacle to the feasibility or permanence of straw return as a mitigation measure is the increased CH4 emission from rice paddies. The paper also suggests that comparable scenarios in which all the related carbon-nitrogen cycles are taken into account be created to estimate the mitigation potentials of organic wastes in different utilizations and treatments.

  17. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike

    PubMed Central

    Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R.

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species. PMID:27732622

  18. Current and Future Distribution of the Tropical Tree Cedrela odorata L. in Mexico under Climate Change Scenarios Using MaxLike.

    PubMed

    Estrada-Contreras, Israel; Equihua, Miguel; Laborde, Javier; Martínez Meyer, Enrique; Sánchez-Velásquez, Lázaro R

    2016-01-01

    Climate change is recognized as an important threat to global biodiversity because it increases the risk of extinction of many species on the planet. Mexico is a megadiverse country and native tree species such as red cedar (Cedrela odorata) can be used to maintain forests while helping mitigate climate change, because it is considered a fast growing pioneer species with great economic potential in the forestry industry. In order to assess possible shifts in areas suitable for C. odorata plantations in Mexico with ecological niche models, we used the MaxLike algorithm, climate variables, the geo-referenced records of this species, three general circulation models and three scenarios of future emissions. Results show a current potential distribution of 573,079 km2 with an average probability of occurrence of 0.93 (± 0.13). The potential distribution area could increase up to 650,356 km2 by 2060 according to the general circulation model HADCM3 B2, with an average probability of occurrence of 0.86 (± 0.14). Finally, we delimited an area of 35,377 km2 that has a high potential for the establishment of C. odorata plantations, by selecting those sites with optimal conditions for its growth that are outside protected areas and are currently devoid of trees. C. odorata has a significant potential to help in the mitigation of the effects of climate change. Using MaxLike we identified extense areas in Mexico suitable to increase carbon sequestration through plantations of this highly valued native tree species.

  19. Soil biochar amendment as a climate change mitigation tool: Key parameters and mechanisms involved.

    PubMed

    Brassard, Patrick; Godbout, Stéphane; Raghavan, Vijaya

    2016-10-01

    Biochar, a solid porous material obtained from the carbonization of biomass under low or no oxygen conditions, has been proposed as a climate change mitigation tool because it is expected to sequester carbon (C) for centuries and to reduce greenhouse gas (GHG) emissions from soils. This review aimed to identify key biochar properties and production parameters that have an effect on these specific applications of the biochar. Moreover, mechanisms involved in interactions between biochar and soils were highlighted. Following a compilation and comparison of the characteristics of 76 biochars from 40 research studies, biochars with a lower N content, and consequently a higher C/N ratio (>30), were found to be more suitable for mitigation of N2O emissions from soils. Moreover, biochars produced at a higher pyrolysis temperature, and with O/C ratio <0.2, H/Corg ratio <0.4 and volatile matter below 80% may have high C sequestration potential. Based on these observations, biochar production and application to the field can be used as a tool to mitigate climate change. However, it is important to determine the pyrolysis conditions and feedstock needed to produce a biochar with the desired properties for a specific application. More research studies are needed to identify the exact mechanisms involved following biochar amendment to soil. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Eye Disease Resulting From Increased Use of Fluorescent Lighting as a Climate Change Mitigation Strategy

    PubMed Central

    Walls, Kelvin L.; Benke, Geza

    2011-01-01

    Increased use of fluorescent lighting as a climate change mitigation strategy may increase eye disease. The safe range of light to avoid exposing the eye to potentially damaging ultraviolet (UV) radiation is 2000 to 3500K and greater than 500 nanometers. Some fluorescent lights fall outside this safe range. Fluorescent lighting may increase UV-related eye diseases by up to 12% and, according to our calculations, may cause an additional 3000 cases of cataracts and 7500 cases of pterygia annually in Australia. Greater control of UV exposure from fluorescent lights is required. This may be of particular concern for aging populations in developed countries and countries in northern latitudes where there is a greater dependence on artificial lighting. PMID:22021286

  1. PRA (Probabilistic Risk Assessments) Participation versus Validation

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Banke, Richard

    2013-01-01

    Probabilistic Risk Assessments (PRAs) are performed for projects or programs where the consequences of failure are highly undesirable. PRAs primarily address the level of risk those projects or programs posed during operations. PRAs are often developed after the design has been completed. Design and operational details used to develop models include approved and accepted design information regarding equipment, components, systems and failure data. This methodology basically validates the risk parameters of the project or system design. For high risk or high dollar projects, using PRA methodologies during the design process provides new opportunities to influence the design early in the project life cycle to identify, eliminate or mitigate potential risks. Identifying risk drivers before the design has been set allows the design engineers to understand the inherent risk of their current design and consider potential risk mitigation changes. This can become an iterative process where the PRA model can be used to determine if the mitigation technique is effective in reducing risk. This can result in more efficient and cost effective design changes. PRA methodology can be used to assess the risk of design alternatives and can demonstrate how major design changes or program modifications impact the overall program or project risk. PRA has been used for the last two decades to validate risk predictions and acceptability. Providing risk information which can positively influence final system and equipment design the PRA tool can also participate in design development, providing a safe and cost effective product.

  2. Trying not to get burned: understanding homeowners' wildfire risk-mitigation behaviors.

    PubMed

    Brenkert-Smith, Hannah; Champ, Patricia A; Flores, Nicholas

    2012-12-01

    Three causes have been identified for the spiraling cost of wildfire suppression in the United States: climate change, fuel accumulation from past wildfire suppression, and development in fire-prone areas. Because little is likely to be performed to halt the effects of climate on wildfire risk, and because fuel-management budgets cannot keep pace with fuel accumulation let alone reverse it, changing the behaviors of existing and potential homeowners in fire-prone areas is the most promising approach to decreasing the cost of suppressing wildfires in the wildland-urban interface and increasing the odds of homes surviving wildfire events. Wildfire education efforts encourage homeowners to manage their property to decrease wildfire risk. Such programs may be more effective with a better understanding of the factors related to homeowners' decisions to undertake wildfire risk-reduction actions. In this study, we measured whether homeowners had implemented 12 wildfire risk-mitigation measures in 2 Colorado Front Range counties. We found that wildfire information received from local volunteer fire departments and county wildfire specialists, as well as talking with neighbors about wildfire, were positively associated with higher levels of mitigation. Firsthand experience in the form of preparing for or undertaking an evacuation was also associated with a higher level of mitigation. Finally, homeowners who perceived higher levels of wildfire risk on their property had undertaken higher levels of wildfire-risk mitigation on their property.

  3. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE PAGES

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...

    2017-01-27

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  4. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  5. Integrated Assessment of Climate Change, Agricultural Land Use, and Regional Carbon Changes

    NASA Astrophysics Data System (ADS)

    MU, J.

    2014-12-01

    Changes in land use have caused a net release of carbon to the atmosphere over the last centuries and decades1. On one hand, agriculture accounts for 52% and 84% of global anthropogenic methane and nitrous oxide emissions, respectively. On the other hand, many agricultural practices can potentially mitigate greenhouse gas (GHG) emissions, the most prominent of which are improved cropland and grazing land management2. From this perspective, land use change that reduces emissions and/or increases carbon sequestration can play an important role in climate change mitigation. As shown in Figure 1, this paper is an integrated study of climate impacts, land uses, and regional carbon changes to examine, link and assess climate impacts on regional carbon changes via impacts on land uses. This study will contribute to previous research in two aspects: impacts of climate change on future land uses under an uncertain future world and projections of regional carbon dynamics due to changes in future land use. Specifically, we will examine how land use change under historical climate change using observed data and then project changes in land use under future climate projections from 14 Global Climate Models (GCMs) for two emission scenarios (i.e., RCP4.5 and RCP8.5). More importantly, we will investigate future land use under uncertainties with changes in agricultural development and social-economic conditions along with a changing climate. By doing this, we then could integrate with existing efforts by USGS land-change scientists developing and parameterizing models capable of projecting changes across a full spectrum of land use and land cover changes and track the consequences on ecosystem carbon to provide better information for land managers and policy makers when informing climate change adaptation and mitigation policies.

  6. Potential Adverse Environmental Impacts of Greenhouse Gas Mitigation Strategies

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The Fourth Assessment Report released by the Intergovernmental Panel on Cli-mate Change (IPCC) in 2007 was unequivocal in its message that warming of the global climate system is now occurring, and found...

  7. Soil water management practices (terraces) helped to mitigate the 2015 drought in Ethiopia.

    PubMed

    Kosmowski, Frédéric

    2018-05-31

    While the benefits of soil water management practices relative to soil erosion have been extensively documented, evidence regarding their effect on yields is inconclusive. Following a strong El-Niño, some regions of Ethiopia experienced major droughts during the 2015/16 agricultural season. Using the propensity scores method on a nationally representative survey in Ethiopia, this study investigates the effect of two widely adopted soil water management practices - terraces and contour bunds - on yields and assesses their potential to mitigate the effects of climate change. It is shown that at the national level, terraced plots have slightly lower yields than non-terraced plots. However, data support the hypothesis that terraced plots acted as a buffer against the 2015 Ethiopian drought, while contour bunds did not. This study provides evidence that terraces have the potential to help farmer deal with current climate risks. These results can inform the design of climate change adaptation policies and improve targeting of soil water management practices in Ethiopia.

  8. Carbon sequestration to mitigate climate change

    USGS Publications Warehouse

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  9. Mitigation implications of an ice-free summer in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    González-Eguino, Mikel; Neumann, Marc B.; Arto, Iñaki; Capellán-Perez, Iñigo; Faria, Sérgio H.

    2017-01-01

    The rapid loss of sea ice in the Arctic is one of the most striking manifestations of climate change. As sea ice melts, more open water is exposed to solar radiation, absorbing heat and generating a sea-ice-albedo feedback that reinforces Arctic warming. Recent studies stress the significance of this feedback mechanism and suggest that ice-free summer conditions in the Arctic Ocean may occur faster than previously expected, even under low-emissions pathways. Here we use an integrated assessment model to explore the implications of a potentially rapid sea-ice-loss process. We consider a scenario leading to a full month free of sea ice in September 2050, followed by three potential trajectories afterward: partial recovery, stabilization, and continued loss of sea ice. We analyze how these scenarios affect the efforts to keep global temperature increase below 2°C. Our results show that sea-ice melting in the Arctic requires more stringent mitigation efforts globally. We find that global CO2 emissions would need to reach zero levels 5-15 years earlier and that the carbon budget would need to be reduced by 20%-51% to offset this additional source of warming. The extra mitigation effort would imply an 18%-59% higher mitigation cost to society. Our results also show that to achieve the 1.5°C target in the presence of ice-free summers negative emissions would be needed. This study highlights the need for a better understanding of how the rapid changes observed in the Arctic may impact our society.

  10. The theory-practice gap of black carbon mitigation technologies in rural China

    NASA Astrophysics Data System (ADS)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  11. Emerging Forms of Climate Protection Governance: Urban Initiatives in the European Union

    NASA Astrophysics Data System (ADS)

    Rosenthal, J. K.; Brunner, E.

    2006-12-01

    Changes in climate patterns are expected to pose increasing challenges for cities in the following decades, with adverse impacts on urban populations currently stressed by poverty, health and economic inequities. Simultaneously, a strong global trend towards urbanization of poverty exists, with increased challenges for local governments to protect and sustain the well-being of growing cities. In the context of these two overarching trends, interdisciplinary research at the city scale is prioritized for understanding the social impacts of climate change and variability and for the evaluation of strategies in the built environment that might serve as adaptive and mitigative responses to climate change. Urban managers, and transnational networks of municipalities and non-state actors, have taken an increasingly active role in climate protection, through research, policies, programs and agreements on adaptation and mitigation strategies. Concerns for urban impacts of climate change include the potential increase in frequency and intensity of damaging extreme weather events, such as heat waves, hurricanes, heavy rainfall or drought, and coastal flooding and erosion, and potentially adverse impacts on infrastructure, energy systems, and public health. Higher average summertime temperatures in temperate zone cities are also associated with environmental and public health liabilities such as decreased air quality and increased peak electrical demand. We review municipal climate protection programs, generally categorized as approaches based on technological innovation (e.g., new materials); changes in behavior and public education (e.g., use of cooling centers); and improvements in urban design (e.g., zoning for mixed land-use; the use of water, vegetation and plazas to reduce the urban heat island effect). Climate protection initiatives in three European cities are assessed within the context of the global collective efforts enacted by the Kyoto Protocol and United Nations Framework Convention on Climate Change. Initiatives in Stockholm, London and Milan provide evidence that local actions are inevitable and of central importance to mitigate and adapt to the adverse impacts of climate change, the urban heat island effect, and extreme weather events.

  12. Beetle-kill to carbon-negative bioenergy in the Rockies: stand, enterprise, and regional-scale perspectives

    NASA Astrophysics Data System (ADS)

    Field, J.; Paustian, K.

    2016-12-01

    The interior mountain West is particularly vulnerable to climate change with potential impacts including drought and wildfire intensification, and wide-scale species disruptions due to shifts in habitable elevation ranges or other effects. One such example is the current outbreak of native mountain pine and spruce beetles across the Rockies, with warmer winters, dryer summers, and a legacy of logging and fire suppression all interacting to result in infestation and unprecedented tree mortality over more than 42 million acres. Current global climate change mitigation commitments imply that shifts to renewable energy must be supplemented with widespread deployment of carbon-negative technologies such as BECCS and biochar. Carefully-designed forest bioenergy and biochar industries can play an important role in meeting these targets, valorizing woody biomass and allowing more acres to be actively managed under existing land management goals while simultaneously displacing fossil energy use and directly sequestering carbon. In this work we assess the negative emissions potential from the deployment of biochar co-producing thermochemical bioenergy technologies in the Rockies using beetle-kill wood as a feedstock, a way of leveraging a climate change driven problem for climate mitigation. We start with a review and classification of bioenergy lifecycle assessment emission source categories, clarifying the differences in mechanism and confidence around emissions sources, offsets, sequestration, and leakage effects. Next we develop methods for modeling ecosystem carbon response to biomass removals at the stand scale, considering potential species shifts and regrowth rates under different harvest systems deployed in different areas. We then apply a lifecycle assessment framework to evaluate the performance of a set of real-world bioenergy technologies at enterprise scale, including biomass logistics and conversion product yields. We end with an exploration of regional-scale mitigation capacity considering wide-scale deployment and potential wildfire feedback effects of harvest, highlighting the relative importance of supply chain, conversion technology, ecological, and epistemological uncertainties in realizing wide-scale negative emissions in this region.

  13. The Guanajuato Communication about the Potential for Implementation of Conservation Practices for Climate Change Mitigation and Adaptation to Achieve Food Security in Mexico During the 21st Century

    USDA-ARS?s Scientific Manuscript database

    The scientific literature reports that climate change will impact weather in North America, with projections for a drier and hotter southeastern United States and northwestern Mexico. The areas of Mexico that are projected to be impacted cover important grain areas of the country. Additionally, seve...

  14. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    NASA Technical Reports Server (NTRS)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM < or = 2.5 microns in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

  15. Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls

    PubMed Central

    Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z.; West, J. Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W. Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-01-01

    Background: Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM2.5), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20–40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration–response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23–34% and 7–17% and avoid 0.6–4.4 and 0.04–0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration–response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution. PMID:22418651

  16. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    USGS Publications Warehouse

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were not investigated.

  17. Policies for accelerating access to clean energy, improving health, advancing development, and mitigating climate change.

    PubMed

    Haines, Andy; Smith, Kirk R; Anderson, Dennis; Epstein, Paul R; McMichael, Anthony J; Roberts, Ian; Wilkinson, Paul; Woodcock, James; Woods, Jeremy

    2007-10-06

    The absence of reliable access to clean energy and the services it provides imposes a large disease burden on low-income populations and impedes prospects for development. Furthermore, current patterns of fossil-fuel use cause substantial ill-health from air pollution and occupational hazards. Impending climate change, mainly driven by energy use, now also threatens health. Policies to promote access to non-polluting and sustainable sources of energy have great potential both to improve public health and to mitigate (prevent) climate disruption. There are several technological options, policy levers, and economic instruments for sectors such as power generation, transport, agriculture, and the built environment. However, barriers to change include vested interests, political inertia, inability to take meaningful action, profound global inequalities, weak technology-transfer mechanisms, and knowledge gaps that must be addressed to transform global markets. The need for policies that prevent dangerous anthropogenic interference with the climate while addressing the energy needs of disadvantaged people is a central challenge of the current era. A comprehensive programme for clean energy should optimise mitigation and, simultaneously, adaption to climate change while maximising co-benefits for health--eg, through improved air, water, and food quality. Intersectoral research and concerted action, both nationally and internationally, will be required.

  18. Social Ties May Play a Critical Role in Mitigating Sleep Difficulties in Disaster-Affected Communities: A Cross-Sectional Study in the Ishinomaki Area, Japan

    PubMed Central

    Matsumoto, Shoko; Yamaoka, Kazue; Inoue, Machiko; Muto, Shinsuke

    2014-01-01

    Study Objectives: We examined the association between social factors and sleep difficulties among the victims remaining at home in the Ishinomaki area after the Great East Japan Earthquake and Tsunami and identified potentially modifiable factors that may mitigate vulnerability to sleep difficulties during future traumatic events or disasters. Design: A cross-sectional household survey was conducted from October 2011 to March 2012 (6-12 mo after the disaster) in the Ishinomaki area, Japan. Univariate and multivariate logistic regression models were used to examine associations between social factors and sleep difficulties. Participants: We obtained data on 4,176 household members who remained in their homes after the earthquake and tsunami. Interventions: N/A. Results: Sleep difficulties were prevalent in 15.0% of the respondents (9.2% male, 20.2% female). Two potentially modifiable factors (lack of pleasure in life and lack of interaction with/visiting neighbors) and three nonmodifiable or hardly modifiable factors (sex, source of income, and number of household members) were associated with sleep difficulties. Nonmodifiable or hardly modifiable consequences caused directly by the disaster (severity of house damage, change in family structure, and change in working status) were not significantly associated with sleep difficulties. Conclusions: Our data suggest that the lack of pleasure in life and relatively strong networks in the neighborhood, which are potentially modifiable, might have stronger associations with sleep difficulties than do nonmodifiable or hardly modifiable consequences of the disaster (e.g., house damage, change in family structure, and change in work status). Citation: Matsumoto S; Yamaoka K; Inoue M; Muto S. Social ties may play a critical role in mitigating sleep difficulties in disaster-affected communities: a cross-sectional study in the Ishinomaki area, Japan. SLEEP 2014;37(1):137-145. PMID:24470703

  19. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    DOE PAGES

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-04-26

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less

  20. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    2016-05-01

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios, climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations—although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Finally, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.

  1. Uncertainty in future agro-climate projections in the United States and benefits of greenhouse gas mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monier, Erwan; Xu, Liyi; Snyder, Richard

    Scientific challenges exist on how to extract information from the wide range of projected impacts simulated by crop models driven by climate ensembles. A stronger focus is required to understand and identify the mechanisms and drivers of projected changes in crop yield. In this study, we investigate the robustness of future projections of five metrics relevant to agriculture stakeholders (accumulated frost days, dry days, growing season length, plant heat stress and start of field operations). We use a large ensemble of climate simulations by the MIT IGSM-CAM integrated assessment model that accounts for the uncertainty associated with different emissions scenarios,more » climate sensitivities, and representations of natural variability. By the end of the century, the US is projected to experience fewer frosts, a longer growing season, more heat stress and an earlier start of field operations-although the magnitude and even the sign of these changes vary greatly by regions. Projected changes in dry days are shown not to be robust. We highlight the important role of natural variability, in particular for changes in dry days (a precipitation-related index) and heat stress (a threshold index). The wide range of our projections compares well the CMIP5 multi-model ensemble, especially for temperature-related indices. This suggests that using a single climate model that accounts for key sources of uncertainty can provide an efficient and complementary framework to the more common approach of multi-model ensembles. We also show that greenhouse gas mitigation has the potential to significantly reduce adverse effects (heat stress, risks of pest and disease) of climate change on agriculture, while also curtailing potentially beneficial impacts (earlier planting, possibility for multiple cropping). A major benefit of climate mitigation is potentially preventing changes in several indices to emerge from the noise of natural variability, even by 2100. This has major implications considering that any significant climate change impacts on crop yield would result in nation-wide changes in the agriculture sector. Lastly, we argue that the analysis of agro-climate indices should more often complement crop model projections, as they can provide valuable information to better understand the drivers of changes in crop yield and production and thus better inform adaptation decisions.« less

  2. Methodology for Examining Potential Technology Breakthroughs for Mitigating CO2 and Application to Centralized Solar Photovoltaics

    EPA Science Inventory

    Aggressive reductions in US greenhouse gas emissions will require radical changes in how society generates and uses energy. Technological breakthroughs will be necessary if we are to make this transition cost effectively. With limited resources, understanding the breakthrough pot...

  3. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  4. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae.

    PubMed

    Gray, Laura K; Clarke, Charles; Wint, G R William; Moran, Jonathan A

    2017-01-01

    Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them.

  5. Strategic Partnerships for Change in an Environmental Justice Community: The ENRRICH Study.

    PubMed

    Spencer-Hwang, Rhonda; Soret, Sam; Valladares, Johanny; Torres, Xochitl; Pasco-Rubio, Marco; Dougherty, Molly; Kim, Wonha; Montgomery, Susanne

    San Bernardino, California, is home to the San Bernardino Railyard (SBR), a major commerce hub with high associated air-pollution, identified as an environmental justice (EJ) issue by local community and air quality agencies. Alarmingly, one elementary school is located only a few hundred yards from SBR. The school, university researchers, and a local community-based organization (CBO) established a partnership to assess potential adverse health impacts in the children and develop interventions and mitigation plans. Study results comparing target school with a demographically matched school verified community concerns finding significantly poorer respiratory health in children attending school near the railyard. Partners are working with local and state collaboratives, the school board, and funding agencies to address the resulting needs of children through education, mitigation, and prevention in an environment where necessary systems changes involving the railyard are elusive. This paper shares lessons learned in moving toward change when addressing an EJ community's health challenges.

  6. Potential effects of climate change on members of the Palaeotropical pitcher plant family Nepenthaceae

    PubMed Central

    Gray, Laura K.; Clarke, Charles; Wint, G. R. William

    2017-01-01

    Anthropogenic climate change is predicted to have profound effects on species distributions over the coming decades. In this paper, we used maximum entropy modelling (Maxent) to estimate the effects of projected changes in climate on extent of climatically-suitable habitat for two Nepenthes pitcher plant species in Borneo. The model results predicted an increase in area of climatically-suitable habitat for the lowland species Nepenthes rafflesiana by 2100; in contrast, the highland species Nepenthes tentaculata was predicted to undergo significant loss of climatically-suitable habitat over the same period. Based on the results of the models, we recommend that research be undertaken into practical mitigation strategies, as approximately two-thirds of Nepenthes are restricted to montane habitats. Highland species with narrow elevational ranges will be at particularly high risk, and investigation into possible mitigation strategies should be focused on them. PMID:28817596

  7. Degraded Land Restoration in Reinstating CH4 Sink

    PubMed Central

    Singh, Jay Shankar; Gupta, Vijai K.

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems. PMID:27379053

  8. Degraded Land Restoration in Reinstating CH4 Sink.

    PubMed

    Singh, Jay Shankar; Gupta, Vijai K

    2016-01-01

    Methane (CH4), a potent greenhouse gas, contributes about one third to the global green house gas emissions. CH4-assimilating microbes (mostly methanotrophs) in upland soils play very crucial role in mitigating the CH4 release into the atmosphere. Agricultural, environmental, and climatic shifts can alter CH4 sink profiles of soils, likely through shifts in CH4-assimilating microbial community structure and function. Landuse change, as forest and grassland ecosystems altered to agro-ecosystems, has already attenuated the soil CH4 sink potential, and are expected to be continued in the future. We hypothesized that variations in CH4 uptake rates in soils under different landuse practices could be an indicative of alterations in the abundance and/or type of methanotrophic communities in such soils. However, only a few studies have addressed to number and methanotrophs diversity and their correlation with the CH4 sink potential in soils of rehabilitated/restored lands. We focus on landuse practices that can potentially mitigate CH4 gas emissions, the most prominent of which are improved cropland, grazing land management, use of bio-fertilizers, and restoration of degraded lands. In this perspective paper, it is proposed that restoration of degraded lands can contribute considerably to improved soil CH4 sink strength by retrieving/conserving abundance and assortment of efficient methanotrophic communities. We believe that this report can assist in identifying future experimental directions to the relationships between landuse changes, methane-assimilating microbial communities and soil CH4 sinks. The exploitation of microbial communities other than methanotrophs can contribute significantly to the global CH4 sink potential and can add value in mitigating the CH4 problems.

  9. Conservation Tillage on the Loess Plateau, China: Food security, Yes; Carbon sequestration, No?

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Hu, Yaxian; Xiao, Liangang; Greenwood, Phil; Bloemertz, Lena

    2015-04-01

    Climate change is expected to affect food security globally and increase the variability in food supply. At the same time, agricultural practices offer a great potential for mitigating and adapting to climate change. In China, food security has increased in the last decades with the number of undernourished people declining from 21% in 1990 to 12% today. However, the limited relative amount of arable land and scarce water supplies will remain a challenge. The Loess Plateau of China, located in the mid-upper reaches of the Yellow River and has an area of some 630000 km2 with a high agricultural potential. However, due to heavy summer rainstorms, steep slopes, low vegetation cover, and highly erodible soils, the Loess Plateau has become one of the most severely eroded areas in the world. Up to 70% of arable land is affected by an annual soil loss of 20-25 ton ha-1, far exceeding the threshold for sustainable use (10 ton ha-1). Rainfed farming systems are dominant on the Loess Plateau, and the farmers in this area have been exposed to a steadily increasing temperature as well as an erratic, but slightly decreasing rainfall since 1970. Therefore, adaptation of the regional agriculture is required to adapt to climate change and may be even engaged in mitigation. This study analyzed the potential contribution of conservation tillage to adaptation and mitigation of climate change on the Loess Plateau. In total, 15 papers published in English were reviewed, comparing two tillage practices, conventional tillage (CT) and conservation tillage typically represented by no-tillage (NT). Soil organic carbon (SOC) stock across soil depths as well yields and the inter-annual variations with regards to and their annual rainfall precipitation were compared for NT and CT. Our results show that: 1) The benefit of NT compared to CT in terms of increasing total SOC stocks diminishes with soil depth, questioning the use of average SOC stocks observed in topsoil to estimate the potential of NT in increasing SOC stocks to reduce net CO2 emissions. 2) In each soil layer, the total SOC stocks also declined over time. Such a decreasing trend suggests that the SOC sink was approaching its maximum capacity. This implies that the overall potential of NT in improving SOC stocks is apt to be over-estimated, if annual increases derived from short-term observation are linearly extrapolated to a long-term estimation. 3) Yields of NT increased evidently by 11.07% compared to CT. In particular, during years with precipitation <500 mm, NT yields are 18% higher than for conventional tillage. Such greater yields reduce the probability of food production falling below minimum thresholds to meet subsistence requirements, thereby increasing resilience to famine. Overall, conservation tillage (no-till) has great potential in stabilizing crop yield and thus ensuring local subsistence requirements on the China Loess Plateau. However, the potential of NT to sequestrate SOC is limited than often reported and has maximum capacity, and thus cannot be linearly extrapolated to estimate its effects on mitigating climate change.

  10. Communicating the Urgency of Climate Change to Local Government Policy Makers

    NASA Astrophysics Data System (ADS)

    Young, A.

    2004-12-01

    What are the challenges and obstacles in conveying scientific research and uncertainties about climate change to local government policy makers? What information do scientists need from local government practitioners to guide research efforts into producing more relevant information for the local government audience? What works and what doesn't in terms of communicating climate change science to non-technical audiences? Based on over a decade of experience working with local governments around the world on greenhouse gas mitigation, ICLEI - Local Governments for Sustainability has developed a unique perspective and valuable insight into effective communication on climate science that motivates policy action. In the United States practical actions necessary to mitigate global climate change occur largely at the local level. As the level of government closest to individual energy consumers, local governments play a large role in determining the energy intensity of communities. How can local governments be persuaded to make greenhouse gas mitigation a policy priority over the long-term? Access to relevant information is critical to achieving that commitment. Information that will persuade local officials to pursue climate protection commitments includes specific impacts of global warming to communities, the costs of adaptation versus mitigation, and the potential benefits of implementing greenhouse gas-reducing initiatives. The manner in which information is conveyed is also critically important. The scientific community is loath to advocate for specific policies, or to make determinate statements on topics for which research is ongoing. These communication hurdles can be overcome if the needs of local policy practitioners can be understood by the scientific community, and research goals can be cooperatively defined.

  11. Assessing the impacts of climate and land use and land cover change on the freshwater availability in the Brahmaputra River basin

    USGS Publications Warehouse

    Pervez, Md Shahriar; Henebry, Geoffrey M.

    2015-01-01

    New hydrological insights for the region: Basin average annual ET was found to be sensitive to changes in CO2 concentration and temperature, while total water yield, streamflow, and groundwater recharge were sensitive to changes in precipitation. The basin hydrological components were predicted to increase with seasonal variability in response to climate and land use change scenarios. Strong increasing trends were predicted for total water yield, streamflow, and groundwater recharge, indicating exacerbation of flooding potential during August–October, but strong decreasing trends were predicted, indicating exacerbation of drought potential during May–July of the 21st century. The model has potential to facilitate strategic decision making through scenario generation integrating climate change adaptation and hazard mitigation policies to ensure optimized allocation of water resources under a variable and changing climate.

  12. Estimating the Health Effects of Greenhouse Gas Mitigation Strategies: Addressing Parametric, Model, and Valuation Challenges

    PubMed Central

    Hess, Jeremy J.; Ebi, Kristie L.; Markandya, Anil; Balbus, John M.; Wilkinson, Paul; Haines, Andy; Chalabi, Zaid

    2014-01-01

    Background: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. Objective: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. Methods: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. Discussion: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. Conclusion: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while simultaneously improving health. Citation: Remais JV, Hess JJ, Ebi KL, Markandya A, Balbus JM, Wilkinson P, Haines A, Chalabi Z. 2014. Estimating the health effects of greenhouse gas mitigation strategies: addressing parametric, model, and valuation challenges. Environ Health Perspect 122:447–455; http://dx.doi.org/10.1289/ehp.1306744 PMID:24583270

  13. Ecological response to global climatic change

    USGS Publications Warehouse

    Malanson, G.P.; Butler, D.R.; Walsh, S. J.; Janelle, Donald G.; Warf, Barney; Hansen, Kathy

    2004-01-01

    Climate change and ecological change go hand in hand. Because we value our ecological environment, any change has the potential to be a problem. Geographers have been drawn to this challenge, and have been successful in addressing it, because the primary ecological response to climate changes in the past — the waxing and waning of the great ice sheets over the past 2 million years – was the changing geographic range of the biota. Plants and animals changed their location. Geographers have been deeply involved in documenting the changing biota of the past, and today we are called upon to help assess the possible responses to ongoing and future climatic change and, thus, their impacts. Assessing the potential responses is important for policy makers to judge the outcomes of action or inaction and also sets the stage for preparation for and mitigation of change.

  14. 76 FR 7614 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Notice of Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-10

    ... of orderly markets by helping to mitigate the potential risks associated with legging stock option... orderly markets by helping to mitigate the potential risks associated with legging stock option orders, e... markets by helping to mitigate potential risks associated with the legging of stock-option orders...

  15. Modeling Fire Emissions across Central and Southern Italy: Implications for Land and Fire Management

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Spano, D.

    2015-12-01

    Fires play a relevant role in the global and regional carbon cycle, representing a remarkable source of CO2 and other greenhouse gases (GHG) that influence atmosphere budgets and climate. In addition, the wildfire increase projected in Southern Europe due to climate change (CC) and concurrent exacerbation of extreme weather conditions could also lead to a significant rise in GHG. Recently, in the context of the Italian National Adaptation Strategy to Climate Change (SNAC), several approaches were identified as valuable tools to adapt and mitigate the impacts of CC on wildfires, in order to reduce landscape susceptibility and to contribute to the efforts of carbon emission mitigation proposed within the Kyoto protocol. Active forest and fuel management (such as prescribed burning, fuel reduction and removal, weed and flammable shrub control, creation of fuel discontinuity) is recognised to be a key element to adapt and mitigate the impacts of CC on wildfires. Despite this, overall there is a lack of studies about the effectiveness of fire emission mitigation strategies. The current work aims to analyse the potential of a combination of fuel management practices in mitigating emissions from forest fires and evaluate valuable and viable options across Central and Southern Italy. These objectives were achieved throughout a retrospective application of an integrated approach combining a fire emission model (FOFEM - First Order Fire Effect Model) with spatially explicit, comprehensive, and accurate fire, vegetation and weather data for the period 2004-2012. Furthermore, a number of silvicultural techniques were combined to develop several fuel management scenarios and then tested to evaluate their potential in mitigating fire emissions.The preliminary results showed the crucial role of appropriate fuel, fire behavior, and weather data to reduce bias in quantifying the source and the composition of fire emissions and to attain reasonable estimations. Also, the current study highlighted that balanced combination of fuel management techniques could not only be a viable mean to reduce fire emissions but at the same time prevent future wildfires and the related threat to human lives and activities.

  16. Conserving intertidal habitats: What is the potential of ecological engineering to mitigate impacts of coastal structures?

    NASA Astrophysics Data System (ADS)

    Perkins, Matthew J.; Ng, Terence P. T.; Dudgeon, David; Bonebrake, Timothy C.; Leung, Kenneth M. Y.

    2015-12-01

    Globally, coastlines are under pressure as coastal human population growth and urbanization continues, while climatic change leads to stormier seas and rising tides. These trends create a strong and sustained demand for land reclamation and infrastructure protection in coastal areas, requiring engineered coastal defence structures such as sea walls. Here, we review the nature of ecological impacts of coastal structures on intertidal ecosystems, seek to understand the extent to which ecological engineering can mitigate these impacts, and evaluate the effectiveness of mitigation as a tool to contribute to conservation of intertidal habitats. By so doing, we identify critical knowledge gaps to inform future research. Coastal structures alter important physical, chemical and biological processes of intertidal habitats, and strongly impact community structure, inter-habitat linkages and ecosystem services while also driving habitat loss. Such impacts occur diffusely across localised sites but scale to significant regional and global levels. Recent advances in ecological engineering have focused on developing habitat complexity on coastal structures to increase biodiversity. 'Soft' engineering options maximise habitat complexity through inclusion of natural materials, species and processes, while simultaneously delivering engineering objectives such as coastal protection. Soft options additionally sustain multiple services, providing greater economic benefits for society, and resilience to climatic change. Currently however, a lack of inclusion and economic undervaluation of intertidal ecosystem services may undermine best practice in coastline management. Importantly, reviewed evidence shows mitigation and even restoration do not support intertidal communities or processes equivalent to pre-disturbance conditions. Crucially, an absence of comprehensive empirical baseline biodiversity data, or data comprising additional ecological parameters such as ecosystem functions and services, prohibits quantification of absolute and relative magnitudes of ecological impacts due to coastal structures or effectiveness of mitigation interventions. This knowledge deficit restricts evaluation of the potential of ecological engineering to contribute to conservation policies for intertidal habitats. To improve mitigation design and effectiveness, a greater focus on in-situ research is needed, requiring stronger and timely collaboration between government agencies, construction partners and research scientists.

  17. Characterizing fuels in treated areas.

    Treesearch

    Roger D. Ottmar; Clinton S. Wright

    2002-01-01

    Small-log utilization or thinning operations followed by a fuel treatment such as prescribed fire can be used to change the composition and structure of fuelbeds, thereby mitigating deleterious fire effects and reducing the potential for catastrophic wildfires in some forested landscapes. We are developing a national system, Fuel Characteristic Classification (FCC),...

  18. Emission reduction of 1,3-dichloropropene by soil amendment with biochar

    USDA-ARS?s Scientific Manuscript database

    Soil fumigation is important for growing many fruits and vegetable crops, but fumigant emissions may contaminate the atmosphere. Biochar as soil amendments has the potential of mitigating climate change effects. In addition, its high surface area and porosity enable it to adsorb or retain nutrients,...

  19. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  20. Climate Change Effects on Respiratory Health: Implications for Nursing.

    PubMed

    George, Maureen; Bruzzese, Jean-Marie; Matura, Lea Ann

    2017-11-01

    Greenhouse gases are driving climate change. This article explores the adverse health effects of climate change on a particularly vulnerable population: children and adults with respiratory conditions. This review provides a general overview of the effects of increasing temperatures, extreme weather, desertification, and flooding on asthma, chronic obstructive lung disease, and respiratory infections. We offer suggestions for future research to better understand climate change hazards, policies to support prevention and mitigation efforts targeting climate change, and clinical actions to reduce individual risk. Climate change produces a number of changes to the natural and built environments that may potentially increase respiratory disease prevalence, morbidity, and mortality. Nurses might consider focusing their research efforts on reducing the effects of greenhouse gases and in directing policy to mitigate the harmful effects of climate change. Nurses can also continue to direct educational and clinical actions to reduce risks for all populations, but most importantly, for our most vulnerable groups. While advancements have been made in understanding the impact of climate change on respiratory health, nurses can play an important role in reducing the deleterious effects of climate change. This will require a multipronged approach of research, policy, and clinical action. © 2017 Sigma Theta Tau International.

  1. Social Uptake of Scientific Understanding of Seismic Hazard in Sumatra and Cascadia

    NASA Astrophysics Data System (ADS)

    Shannon, R.; McCloskey, J.; Guyer, C.; McDowell, S.; Steacy, S.

    2007-12-01

    The importance of science within hazard mitigation cannot be underestimated. Robust mitigation polices rely strongly on a sound understanding of the science underlying potential natural disasters and the transference of that knowledge from the scientific community to the general public via governments and policy makers. We aim to investigate how and why the public's knowledge, perceptions, response, adjustments and values towards science have changed throughout two decades of research conducted in areas along and adjacent to the Sumatran and Cascadia subduction zones. We will focus on two countries subject to the same potential hazard, but which encompass starkly contrasting political, economic, social and environmental settings. The transfer of scientific knowledge into the public/ social arena is a complex process, the success of which is reflected in a community's ability to withstand large scale devastating events. Although no one could have foreseen the magnitude of the 2004 Boxing Day tsunami, the social devastation generated underscored the stark absence of mitigation measures in the nations most heavily affected. It furthermore emphasized the need for the design and implementation of disaster preparedness measures. Survey of existing literature has already established timelines for major events and public policy changes in the case study areas. Clear evidence exists of the link between scientific knowledge and its subsequent translation into public policy, particularly in the Cascadia context. The initiation of the National Tsunami Hazard Mitigation Program following the Cape Mendocino earthquake in 1992 embodies this link. Despite a series of environmental disasters with recorded widespread fatalities dating back to the mid 1900s and a heightened impetus for scientific research into tsunami/ earthquake hazard following the 2004 Boxing Day tsunami, the translation of science into the public realm is not widely obvious in the Sumatran context. This research aims to further investigate how the enhanced understanding of earthquake and tsunami hazards is being used to direct hazard mitigation strategies and enables direct comparison with the scientific and public policy developments in Cascadia.

  2. Cities’ Role in Mitigating United States Food System Greenhouse Gas Emissions

    PubMed Central

    2018-01-01

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector’s emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO2e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets. PMID:29717606

  3. Cities' Role in Mitigating United States Food System Greenhouse Gas Emissions.

    PubMed

    Mohareb, Eugene A; Heller, Martin C; Guthrie, Peter M

    2018-05-15

    Current trends of urbanization, population growth, and economic development have made cities a focal point for mitigating global greenhouse gas (GHG) emissions. The substantial contribution of food consumption to climate change necessitates urban action to reduce the carbon intensity of the food system. While food system GHG mitigation strategies often focus on production, we argue that urban influence dominates this sector's emissions and that consumers in cities must be the primary drivers of mitigation. We quantify life cycle GHG emissions of the United States food system through data collected from literature and government sources producing an estimated total of 3800 kg CO 2 e/capita in 2010, with cities directly influencing approximately two-thirds of food sector GHG emissions. We then assess the potential for cities to reduce emissions through selected measures; examples include up-scaling urban agriculture and home delivery of grocery options, which each may achieve emissions reductions on the order of 0.4 and ∼1% of this total, respectively. Meanwhile, changes in waste management practices and reduction of postdistribution food waste by 50% reduce total food sector emissions by 5 and 11%, respectively. Consideration of the scale of benefits achievable through policy goals can enable cities to formulate strategies that will assist in achieving deep long-term GHG emissions targets.

  4. The climate mitigation gap: education and government recommendations miss the most effective individual actions

    NASA Astrophysics Data System (ADS)

    Wynes, Seth; Nicholas, Kimberly A.

    2017-07-01

    Current anthropogenic climate change is the result of greenhouse gas accumulation in the atmosphere, which records the aggregation of billions of individual decisions. Here we consider a broad range of individual lifestyle choices and calculate their potential to reduce greenhouse gas emissions in developed countries, based on 148 scenarios from 39 sources. We recommend four widely applicable high-impact (i.e. low emissions) actions with the potential to contribute to systemic change and substantially reduce annual personal emissions: having one fewer child (an average for developed countries of 58.6 tonnes CO2-equivalent (tCO2e) emission reductions per year), living car-free (2.4 tCO2e saved per year), avoiding airplane travel (1.6 tCO2e saved per roundtrip transatlantic flight) and eating a plant-based diet (0.8 tCO2e saved per year). These actions have much greater potential to reduce emissions than commonly promoted strategies like comprehensive recycling (four times less effective than a plant-based diet) or changing household lightbulbs (eight times less). Though adolescents poised to establish lifelong patterns are an important target group for promoting high-impact actions, we find that ten high school science textbooks from Canada largely fail to mention these actions (they account for 4% of their recommended actions), instead focusing on incremental changes with much smaller potential emissions reductions. Government resources on climate change from the EU, USA, Canada, and Australia also focus recommendations on lower-impact actions. We conclude that there are opportunities to improve existing educational and communication structures to promote the most effective emission-reduction strategies and close this mitigation gap.

  5. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    PubMed

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, São Paulo, México City, and New York City.

    PubMed

    Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L

    2001-06-01

    To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion.

  7. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NASA Astrophysics Data System (ADS)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

  8. Assessing the health benefits of urban air pollution reductions associated with climate change mitigation (2000-2020): Santiago, São Paulo, México City, and New York City.

    PubMed Central

    Cifuentes, L; Borja-Aburto, V H; Gouveia, N; Thurston, G; Davis, D L

    2001-01-01

    To investigate the potential local health benefits of adopting greenhouse gas (GHG) mitigation policies, we develop scenarios of GHG mitigation for México City, México; Santiago, Chile; São Paulo, Brazil; and New York, New York, USA using air pollution health impact factors appropriate to each city. We estimate that the adoption of readily available technologies to lessen fossil fuel emissions over the next two decades in these four cities alone will reduce particulate matter and ozone and avoid approximately 64,000 (95% confidence interval [CI] 18,000-116,000) premature deaths (including infant deaths), 65,000 (95% CI 22,000-108,000) chronic bronchitis cases, and 46 million (95% CI 35-58 million) person-days of work loss or other restricted activity. These findings illustrate that GHG mitigation can provide considerable local air pollution-related public health benefits to countries that choose to abate GHG emissions by reducing fossil fuel combustion. PMID:11427391

  9. On-Farm Mitigation of Transmission of Tuberculosis from White-Tailed Deer to Cattle: Literature Review and Recommendations

    PubMed Central

    Walter, W. David; Anderson, Charles W.; Smith, Rick; Vanderklok, Mike; Averill, James J.; VerCauteren, Kurt C.

    2012-01-01

    The Animal Industry Division of the Michigan Department of Agriculture and Rural Development (MDARD) has been challenged with assisting farmers with modifying farm practices to reduce potential for exposure to Mycobacterium bovis from wildlife to cattle. The MDARD recommendations for on-farm risk mitigation practices were developed from experiences in the US, UK and Ireland and a review of the scientific literature. The objectives of our study were to review the present state of knowledge on M. bovis excretion, transmission, and survival in the environment and the interactions of wildlife and cattle with the intention of determining if the current recommendations by MDARD on farm practices are adequate and to identify additional changes to farm practices that may help to mitigate the risk of transmission. This review will provide agencies with a comprehensive summary of the scientific literature on mitigation of disease transmission between wildlife and cattle and to identify lacunae in published research. PMID:22991687

  10. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies.

    PubMed

    Quam, Vivian G M; Rocklöv, Joacim; Quam, Mikkel B M; Lucas, Rebekah A I

    2017-04-27

    This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1) active transport health co-benefits, and (2) dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA) was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE) outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s) best suit individual communities.

  11. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies

    PubMed Central

    Quam, Vivian G. M.; Rocklöv, Joacim; Quam, Mikkel B. M.; Lucas, Rebekah A. I.

    2017-01-01

    This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1) active transport health co-benefits, and (2) dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA) was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE) outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s) best suit individual communities. PMID:28448460

  12. Consequence of climate mitigation on the risk of hunger.

    PubMed

    Hasegawa, Tomoko; Fujimori, Shinichiro; Shin, Yonghee; Tanaka, Akemi; Takahashi, Kiyoshi; Masui, Toshihiko

    2015-06-16

    Climate change and mitigation measures have three major impacts on food consumption and the risk of hunger: (1) changes in crop yields caused by climate change; (2) competition for land between food crops and energy crops driven by the use of bioenergy; and (3) costs associated with mitigation measures taken to meet an emissions reduction target that keeps the global average temperature increase to 2 °C. In this study, we combined a global computable general equilibrium model and a crop model (M-GAEZ), and we quantified the three impacts on risk of hunger through 2050 based on the uncertainty range associated with 12 climate models and one economic and demographic scenario. The strong mitigation measures aimed at attaining the 2 °C target reduce the negative effects of climate change on yields but have large negative impacts on the risk of hunger due to mitigation costs in the low-income countries. We also found that in a strongly carbon-constrained world, the change in food consumption resulting from mitigation measures depends more strongly on the change in incomes than the change in food prices.

  13. Predicting future US water yield and ecosystem productivity by linking an ecohydrological model to WRF dynamically downscaled climate projections

    Treesearch

    S. Sun; Ge Sun; Erika Cohen Mack; Steve McNulty; Peter Caldwell; K. Duan; Y. Zhang

    2015-01-01

    Quantifying the potential impacts of climate change on water yield and ecosystem productivity (i.e., carbon balances) is essential to developing sound watershed restoration plans, and climate change adaptation and mitigation strategies. This study links an ecohydrological model (Water Supply and Stress Index, WaSSI) with WRF (Weather Research and Forecasting Model)...

  14. Possibilities for near-term bioenergy production and GHG-mitigation through sustainable intensification of agriculture and forestry in Denmark

    NASA Astrophysics Data System (ADS)

    Larsen, Søren; Bentsen, Niclas S.; Dalgaard, Tommy; Jørgensen, Uffe; Olesen, Jørgen E.; Felby, Claus

    2017-11-01

    To mitigate climate change it is necessary to further increase the deployment of renewable energy, including bioenergy. This analysis shows how this can be achieved in Danish agriculture and forestry before 2020. The key is a sustainable intensification and we show through three scenarios how it is possible to increase production while at the same time decreasing environmental impact and with only minor consequences on food and feed production. An additional ~10 Tg biomass can be available in 2020 for the Danish energy sector. By converting the biomass in a biorefinery concept it is possible to supply relevant, domestically produced energy carriers that amounts to ~5%-13% of 2020 Danish energy consumption. This has the potential to reduce the GHG emissions with 13%-21% of 2020 emissions. These results are possible because Danish net primary production and the human appropriation hereof can be increased. We show that biomass for bioenergy has a large near-term potential to supply relevant energy carriers to the society while at the same time achieving significant GHG emission mitigation.

  15. The community resource management area mechanism: a strategy to manage African forest resources for REDD+.

    PubMed

    Asare, Rebecca A; Kyei, Andrew; Mason, John J

    2013-01-01

    Climate change poses a significant threat to Africa, and deforestation rates have increased in recent years. Mitigation initiatives such as REDD+ are widely considered as potentially efficient ways to generate emission reductions (or removals), conserve or sustainably manage forests, and bring benefits to communities, but effective implementation models are lacking. This paper presents the case of Ghana's Community Resource Management Area (CREMA) mechanism, an innovative natural resource governance and landscape-level planning tool that authorizes communities to manage their natural resources for economic and livelihood benefits. This paper argues that while the CREMA was originally developed to facilitate community-based wildlife management and habitat protection, it offers a promising community-based structure and process for managing African forest resources for REDD+. At a theoretical level, it conforms to the ecological, socio-cultural and economic factors that drive resource-users' decision process and practices. And from a practical mitigation standpoint, the CREMA has the potential to help solve many of the key challenges for REDD+ in Africa, including definition of boundaries, smallholder aggregation, free prior and informed consent, ensuring permanence, preventing leakage, clarifying land tenure and carbon rights, as well as enabling equitable benefit-sharing arrangements. Ultimately, CREMA's potential as a forest management and climate change mitigation strategy that generates livelihood benefits for smallholder farmers and forest users will depend upon the willingness of African governments to support the mechanism and give it full legislative backing, and the motivation of communities to adopt the CREMA and integrate democratic decision-making and planning with their traditional values and natural resource management systems.

  16. The community resource management area mechanism: a strategy to manage African forest resources for REDD+

    PubMed Central

    Asare, Rebecca A.; Kyei, Andrew; Mason, John J.

    2013-01-01

    Climate change poses a significant threat to Africa, and deforestation rates have increased in recent years. Mitigation initiatives such as REDD+ are widely considered as potentially efficient ways to generate emission reductions (or removals), conserve or sustainably manage forests, and bring benefits to communities, but effective implementation models are lacking. This paper presents the case of Ghana's Community Resource Management Area (CREMA) mechanism, an innovative natural resource governance and landscape-level planning tool that authorizes communities to manage their natural resources for economic and livelihood benefits. This paper argues that while the CREMA was originally developed to facilitate community-based wildlife management and habitat protection, it offers a promising community-based structure and process for managing African forest resources for REDD+. At a theoretical level, it conforms to the ecological, socio-cultural and economic factors that drive resource-users’ decision process and practices. And from a practical mitigation standpoint, the CREMA has the potential to help solve many of the key challenges for REDD+ in Africa, including definition of boundaries, smallholder aggregation, free prior and informed consent, ensuring permanence, preventing leakage, clarifying land tenure and carbon rights, as well as enabling equitable benefit-sharing arrangements. Ultimately, CREMA's potential as a forest management and climate change mitigation strategy that generates livelihood benefits for smallholder farmers and forest users will depend upon the willingness of African governments to support the mechanism and give it full legislative backing, and the motivation of communities to adopt the CREMA and integrate democratic decision-making and planning with their traditional values and natural resource management systems. PMID:23878338

  17. What did we do and what can we do with our global soil resources?

    NASA Astrophysics Data System (ADS)

    Stoorvogel, Jetse

    2017-04-01

    Our global soil resources increasingly meet the headlines: soil degradation leads to irreversible changes and a loss of the global production potential, soil resources play a key role to reach the sustainable development goals, and soils are seen as a potential solution to some of the climate change mitigation through carbon sequestration. However, global assessments of soil degradation, soil resources, and the potential of soils to provide ecosystem services are not very consistent. This study aims to contribute to the discussion by providing a realistic opportunity space on the options for our soil resources. First, the natural and current soil conditions are estimated using the S-World methodology. S-World has been developed to provide global maps of soil properties at a 30 arc-second resolution for environmental modelling. By running the S-world methodology for current but also for natural land cover, natural and current soil conditions are estimated. This analysis tells us what we did to our global soil resources. Subsequently, the same methodology is used to analyse a range of different scenarios for the future to explore the potential for soil restoration and carbon sequestration. Although the actual management interventions required are not analysed, the analysis does provide the opportunity space and thus what we can do with our soil resources in terms of realistic ranges. The results are interpreted in the context of the Sustainable Development Goals and the recent 4‰-initiative for climate change mitigation.

  18. Quantifying the effect of autonomous adaptation to global river flood projections: application to future flood risk assessments

    NASA Astrophysics Data System (ADS)

    Kinoshita, Youhei; Tanoue, Masahiro; Watanabe, Satoshi; Hirabayashi, Yukiko

    2018-01-01

    This study represents the first attempt to quantify the effects of autonomous adaptation on the projection of global flood hazards and to assess future flood risk by including this effect. A vulnerability scenario, which varies according to the autonomous adaptation effect for conventional disaster mitigation efforts, was developed based on historical vulnerability values derived from flood damage records and a river inundation simulation. Coupled with general circulation model outputs and future socioeconomic scenarios, potential future flood fatalities and economic loss were estimated. By including the effect of autonomous adaptation, our multimodel ensemble estimates projected a 2.0% decrease in potential flood fatalities and an 821% increase in potential economic losses by 2100 under the highest emission scenario together with a large population increase. Vulnerability changes reduced potential flood consequences by 64%-72% in terms of potential fatalities and 28%-42% in terms of potential economic losses by 2100. Although socioeconomic changes made the greatest contribution to the potential increased consequences of future floods, about a half of the increase of potential economic losses was mitigated by autonomous adaptation. There is a clear and positive relationship between the global temperature increase from the pre-industrial level and the estimated mean potential flood economic loss, while there is a negative relationship with potential fatalities due to the autonomous adaptation effect. A bootstrapping analysis suggests a significant increase in potential flood fatalities (+5.7%) without any adaptation if the temperature increases by 1.5 °C-2.0 °C, whereas the increase in potential economic loss (+0.9%) was not significant. Our method enables the effects of autonomous adaptation and additional adaptation efforts on climate-induced hazards to be distinguished, which would be essential for the accurate estimation of the cost of adaptation to climate change.

  19. Ecological Limits to Terrestrial Carbon Dioxide Removal Strategies

    NASA Astrophysics Data System (ADS)

    Smith, L. J.; Torn, M. S.; Jones, A. D.

    2011-12-01

    Carbon dioxide removal from the atmosphere through terrestrial carbon sequestration and bioenergy (biological CDR) is a proposed climate change mitigation strategy. Biological CDR increases the carbon storage capacity of soils and biomass through changes in land cover and use, including reforestation, afforestation, conversion of land to agriculture for biofuels, conversion of degraded land to grassland, and alternative management practices such as conservation tillage. While biological CDR may play a valuable role in future climate change mitigation, many of its proponents fail to account for the full range of biological, biophysical, hydrologic, and economic complexities associated with proposed land use changes. In this analysis, we identify and discuss a set of ecological limits and impacts associated with terrestrial CDR. The capacity of biofuels, soils, and other living biomass to sequester carbon may be constrained by nutrient and water availability, soil dynamics, and local climate effects, all of which can change spatially and temporally in unpredictable ways. Even if CDR is effective at sequestering CO2, its associated land use and land cover changes may negatively impact ecological resources by compromising water quality and availability, degrading soils, reducing biodiversity, displacing agriculture, and altering local climate through albedo and evapotranspiration changes. Measures taken to overcome ecological limitations, such as fertilizer addition and irrigation, may exacerbate these impacts even further. The ecological considerations and quantitative analyses that we present highlight uncertainties introduced by ecological complexity, disagreements between models, perverse economic incentives, and changing environmental factors. We do not reject CDR as a potentially valuable strategy for climate change mitigation; ecosystem protection, restoration, and improved management practices could enhance soil fertility and protect biodiversity while reducing increases in atmospheric CO2. Rather, we emphasize the importance of evaluating the full set of biological, physical, economic, and political realities that accompany land-use changes and manipulations to the carbon cycle. While the immediate goal of biological CDR is to reduce atmospheric CO2 concentrations, its ultimate goal in mitigating climate change is to reduce the threats to ecosystems and society. Sequestering carbon at the cost of ecosystem health would not be a sensible approach.

  20. Vagal stimulation targets select populations of intrinsic cardiac neurons to control neurally induced atrial fibrillation

    PubMed Central

    Salavatian, Siamak; Beaumont, Eric; Longpré, Jean-Philippe; Armour, J. Andrew; Vinet, Alain; Jacquemet, Vincent; Shivkumar, Kalyanam

    2016-01-01

    Mediastinal nerve stimulation (MNS) reproducibly evokes atrial fibrillation (AF) by excessive and heterogeneous activation of intrinsic cardiac (IC) neurons. This study evaluated whether preemptive vagus nerve stimulation (VNS) impacts MNS-induced evoked changes in IC neural network activity to thereby alter susceptibility to AF. IC neuronal activity in the right atrial ganglionated plexus was directly recorded in anesthetized canines (n = 8) using a linear microelectrode array concomitant with right atrial electrical activity in response to: 1) epicardial touch or great vessel occlusion vs. 2) stellate or vagal stimulation. From these stressors, post hoc analysis (based on the Skellam distribution) defined IC neurons so recorded as afferent, efferent, or convergent (afferent and efferent inputs) local circuit neurons (LCN). The capacity of right-sided MNS to modify IC activity in the induction of AF was determined before and after preemptive right (RCV)- vs. left (LCV)-sided VNS (15 Hz, 500 μs; 1.2× bradycardia threshold). Neuronal (n = 89) activity at baseline (0.11 ± 0.29 Hz) increased during MNS-induced AF (0.51 ± 1.30 Hz; P < 0.001). Convergent LCNs were preferentially activated by MNS. Preemptive RCV reduced MNS-induced changes in LCN activity (by 70%) while mitigating MNS-induced AF (by 75%). Preemptive LCV reduced LCN activity by 60% while mitigating AF potential by 40%. IC neuronal synchrony increased during neurally induced AF, a local neural network response mitigated by preemptive VNS. These antiarrhythmic effects persisted post-VNS for, on average, 26 min. In conclusion, VNS preferentially targets convergent LCNs and their interactive coherence to mitigate the potential for neurally induced AF. The antiarrhythmic properties imposed by VNS exhibit memory. PMID:27591222

  1. Ninth Graders and Climate Change: Attitudes towards Consequences, Views on Mitigation, and Predictors of Willingness to Act

    ERIC Educational Resources Information Center

    Hermans, Mikaela; Korhonen, Johan

    2017-01-01

    The aim of this study is to examine Finnish ninth graders' attitudes towards the consequences of climate change, their views on climate change mitigation and the impact of a set of selected predictors on their willingness to act in climate change mitigation. Students (N = 549) from 11 secondary schools participated in the questionnaire-based…

  2. The role of CO2 capture and utilization in mitigating climate change

    NASA Astrophysics Data System (ADS)

    Mac Dowell, Niall; Fennell, Paul S.; Shah, Nilay; Maitland, Geoffrey C.

    2017-04-01

    To offset the cost associated with CO2 capture and storage (CCS), there is growing interest in finding commercially viable end-use opportunities for the captured CO2. In this Perspective, we discuss the potential contribution of carbon capture and utilization (CCU). Owing to the scale and rate of CO2 production compared to that of utilization allowing long-term sequestration, it is highly improbable the chemical conversion of CO2 will account for more than 1% of the mitigation challenge, and even a scaled-up enhanced oil recovery (EOR)-CCS industry will likely only account for 4-8%. Therefore, whilst CO2-EOR may be an important economic incentive for some early CCS projects, CCU may prove to be a costly distraction, financially and politically, from the real task of mitigation.

  3. Scalable and fail-safe deployment of the ATLAS Distributed Data Management system Rucio

    NASA Astrophysics Data System (ADS)

    Lassnig, M.; Vigne, R.; Beermann, T.; Barisits, M.; Garonne, V.; Serfon, C.

    2015-12-01

    This contribution details the deployment of Rucio, the ATLAS Distributed Data Management system. The main complication is that Rucio interacts with a wide variety of external services, and connects globally distributed data centres under different technological and administrative control, at an unprecedented data volume. It is therefore not possible to create a duplicate instance of Rucio for testing or integration. Every software upgrade or configuration change is thus potentially disruptive and requires fail-safe software and automatic error recovery. Rucio uses a three-layer scaling and mitigation strategy based on quasi-realtime monitoring. This strategy mainly employs independent stateless services, automatic failover, and service migration. The technologies used for deployment and mitigation include OpenStack, Puppet, Graphite, HAProxy and Apache. In this contribution, the interplay between these components, their deployment, software mitigation, and the monitoring strategy are discussed.

  4. The future of fishes and fisheries in the changing oceans.

    PubMed

    Cheung, W W L

    2018-03-01

    This paper aims to highlight the risk of climate change on coupled marine human and natural systems and explore possible solutions to reduce such risk. Specifically, it explores some of the key responses of marine fish stocks and fisheries to climate change and their implications for human society. It highlights the importance of mitigating carbon emission and achieving the Paris Agreement in reducing climate risk on marine fish stocks and fisheries. Finally, it discusses potential opportunities for helping fisheries to reduce climate threats, through local adaptation. A research direction in fish biology and ecology is proposed that would help support the development of these potential solutions. © 2018 The Fisheries Society of the British Isles.

  5. Essays on agricultural adaptation to climate change and ethanol market integration in the U.S

    NASA Astrophysics Data System (ADS)

    Aisabokhae, Ruth Ada

    Climate factors like precipitation and temperature, being closely intertwined with agriculture, make a changing climate a big concern for the entire human race and its basic survival. Adaptation to climate is a long-running characteristic of agriculture evidenced by the varying types and forms of agricultural enterprises associated with differing climatic conditions. Nevertheless climate change poses a substantial, additional adaptation challenge for agriculture. Mitigation encompasses efforts to reduce the current and future extent of climate change. Biofuels production, for instance, expands agriculture's role in climate change mitigation. This dissertation encompasses adaptation and mitigation strategies as a response to climate change in the U.S. by examining comprehensively scientific findings on agricultural adaptation to climate change; developing information on the costs and benefits of select adaptations to examine what adaptations are most desirable, for which society can further devote its resources; and studying how ethanol prices are interrelated across, and transmitted within the U.S., and the markets that play an important role in these dynamics. Quantitative analysis using the Forestry and Agricultural Sector Optimization Model (FASOM) shows adaptation to be highly beneficial to agriculture. On-farm varietal and other adaptations contributions outweigh a mix shift northwards significantly, implying progressive technical change and significant returns to adaptation research and investment focused on farm management and varietal adaptations could be quite beneficial over time. Northward shift of corn-acre weighted centroids observed indicates that substantial production potential may shift across regions with the possibility of less production in the South, and more in the North, and thereby, potential redistribution of income. Time series techniques employed to study ethanol price dynamics show that the markets studied are co-integrated and strongly related, with the observable high levels of interaction between all nine cities. Information is transmitted rapidly between these markets. Price seems to be discovered (where shocks originate from) in regions of high demand and perhaps shortages, like Los Angeles and Chicago (metropolitan population centers). The Maximum Likelihood approach following Spiller and Huang's model however shows cities may not belong to the same economic market and the possibility of arbitrage does not exist between all markets.

  6. A terrain-attribute based approach to assessing soil carbon sequestration in the Oregon Coast range mountains

    EPA Science Inventory

    Determining how to best mitigate Global Climate Change through the sequestration of atmospheric CO2 requires developing an understanding of potential ecosystem C sinks and the rates at which C can be sequestered in soils and vegetation under a variety of land uses. The largest g...

  7. The importance of determining carbon sequestration and greenhouse gas mitigation potential in ornamental horticulture

    USDA-ARS?s Scientific Manuscript database

    Over the past three decades, one issue which has received significant attention from the scientific community is climate change and the possible impacts on the global environment. Increased atmospheric carbon dioxide (CO2) concentration, along with other trace gases [i.e., methane (CH4) and nitrous ...

  8. Long-term forest management and climate effects on streamflow

    Treesearch

    Shelby G. Laird; C.R. Ford; S.H. Laseter; J.M. Vose

    2011-01-01

    Long-term watershed studies are a powerful tool for examining interactions among management activities, streamflow, and climatic variability. Understanding these interactions is critical for exploring the potential of forest management to adapt to or mitigate against the effects of climate change. The Coweeta Hydrologic Laboratory, located in North Carolina, USA, is a...

  9. Carbon sequestration potential of grazed pasture depends on prior management history

    USDA-ARS?s Scientific Manuscript database

    Grazed pastures are often assumed to be net sinks for removing carbon dioxide from the atmosphere and thus, are promoted as a management practice that can help mitigate climate change. The ability to serve as a C sink is especially pronounced following a history of tillage and row crop production. I...

  10. Estimation of wildfire size and risk changes due to fuels treatments

    Treesearch

    M. A. Cochrane; C. J. Moran; M. C. Wimberly; A. D. Baer; M. A. Finney; K. L. Beckendorf; J. Eidenshink; Z. Zhu

    2012-01-01

    Human land use practices, altered climates, and shifting forest and fire management policies have increased the frequency of large wildfires several-fold. Mitigation of potential fire behaviour and fire severity have increasingly been attempted through pre-fire alteration of wildland fuels using mechanical treatments and prescribed fires. Despite annual treatment of...

  11. Resilience of diversity-disease risk interactions following wildfire disturbance

    Treesearch

    Devon A. Gaydos; Krishna Pacifici; Ross K. Meentemeyer; David. M. Rizzo

    2017-01-01

    The potential for biodiversity to mitigate risk of infectious diseases in ecological communities – known as the diversity-disease risk hypothesis – is fundamental to understanding links between landscape change and environmental health of forests affected by sudden oak death (SOD). Previous research of the Phytophthora ramorum pathosystem...

  12. Hurricane Impacts on Ecological Services and Economic Values of Coastal Urban Forest: A Case Study of Pensacola, Florida

    EPA Science Inventory

    As urbanized areas continue to grow and green spaces dwindle, the importance of urban forests increases for both ecologically derived health benefits and for their potential to mitigate climate change. This study examined pre- and post- hurricane conditions of Pensacola's urban f...

  13. Changes in High School Vocational Coursetaking in a Larger Perspective. Stats in Brief.

    ERIC Educational Resources Information Center

    Hurst, David; Hudson, Lisa

    The decline in vocational coursetaking from 1982-1998 is relatively small compared to increases in academic coursetaking. The potential trade-off between academic and vocational coursetaking seems to have been mitigated by students taking more courses overall and fewer courses in the general curriculum. Further, the decline in vocational…

  14. Using rice genetic diversity for adaptions to and mitigation of changing environments

    USDA-ARS?s Scientific Manuscript database

    Human activities are contributing to greenhouse gas emissions and predictions are that atmospheric CO2 levels will double by the end of the century. Methane, the second most abundant greenhouse gas, is ~25 times more potent in global warming potential than carbon dioxide, and 7-17% of atmospheric me...

  15. Modeling the Heterogeneous Effects of GHG Mitigation Policies on Global Agriculture and Forestry

    NASA Astrophysics Data System (ADS)

    Golub, A.; Henderson, B.; Hertel, T. W.; Rose, S. K.; Sohngen, B.

    2010-12-01

    Agriculture and forestry are envisioned as potentially key sectors for climate change mitigation policy, yet the depth of analysis of mitigation options and their economic consequences remains remarkably shallow in comparison to that for industrial mitigation. Farming and land use change - much of it induced by agriculture -account for one-third of global greenhouse gas (GHG) emissions. Any serious attempt to curtail these emissions will involve changes in the way farming is conducted, as well as placing limits on agricultural expansion into areas currently under more carbon-intensive land cover. However, agriculture and forestry are extremely heterogeneous, both in the technology and intensity of production, as well as in the GHG emissions intensity of these activities. And these differences, in turn, give rise to significant changes in the distribution of agricultural production, trade and consumption in the wake of mitigation policies. This paper assesses such distributional impacts via a global economic analysis undertaken with a modified version of the GTAP model. The paper builds on a global general equilibrium GTAP-AEZ-GHG model (Golub et al., 2009). This is a unified modeling framework that links the agricultural, forestry, food processing and other sectors through land, and other factor markets and international trade, and incorporates different land-types, land uses and related CO2 and non-CO2 GHG emissions and sequestration. The economic data underlying this work is the global GTAP data base aggregated up to 19 regions and 29 sectors. The model incorporates mitigation cost curves for different regions and sectors based on information from the US-EPA. The forestry component of the model is calibrated to the results of the state of the art partial equilibrium global forestry model of Sohngen and Mendelson (2007). Forest carbon sequestration at both the extensive and intensive margins are modeled separately to better isolate land competition between agriculture and timber products. We analyze regional changes in land use, output, competitiveness, and food consumption under climate change mitigation policy regimes which differ by participation/exclusion of agricultural sectors and non-Annex I countries, as well as policy instruments. While responsible for only a third of global GHG emissions, under the global carbon tax the land using sectors could contribute half of all economically efficient mitigation in the near term, at modest carbon prices. The imposition of a carbon tax in agriculture, however, has adverse effects on food consumption, especially in developing countries. These effects are much smaller if an agricultural producer subsidy is introduced to compensate for carbon tax the producers pay. The global forest carbon sequestration subsidy effectively controls emission leakage when the carbon tax is imposed only in Annex I regions, since the sequestration subsidy bids land away from agriculture in non-Annex I regions. Though the sequestration subsidy yields GHG abatement benefit, the policy may adversely affect food security and agricultural development in developing countries.

  16. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets ofmore » 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.« less

  17. Can migration mitigate the effects of ecosystem change? Patterns of dispersal, energy acquisition and allocation in Great Lakes lake whitefish (Coregonus clupeaformis)

    USGS Publications Warehouse

    Rennie, Michael D.; Ebener, Mark P.; Wagner, Tyler

    2012-01-01

    Migration can be a behavioural response to poor or declining home range habitat quality and can occur when the costs of migration are overcome by the benefi ts of encountering higher-quality resources elsewhere. Despite dramatic ecosystem-level changes in the benthic food web of the Laurentian Great Lakes since the colonization of dreissenid mussels, coincident changes in condition and growth rates among benthivorous lake whitefi sh populations have been variable. We hypothesized that this variation could be in part mitigated by differences in migratory habits among populations, where increased migration distance can result in an increased probability of encountering high-quality habitat (relative to the home range). Results from four Great Lakes populations support this hypothesis; relative growth rates increased regularly with migration distance. The population with the largest average migration distance also had the least reduction in size-at-age during a period of signifi cant ecosystem change and among the highest estimated consumption and activity rates. In comparison, the population with the greatest declines in size-at-age was among the least mobile, demonstrating only moderate rates of consumption and activity. The least mobile population of lake whitefi sh was supported by a remnant Diporeia population and has experienced only moderate temporal growth declines. Our study provides evidence for the potential role of migration in mitigating the effects of ecosystem change on lake whitefi sh populations.

  18. Optimization of carbon mitigation paths in the power sector of Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping

    2017-08-01

    This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.

  19. Impacts of Low-Flow and Stream-Temperature Changes on Endangered Atlantic Salmon - Current Research

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.; Letcher, Benjamin H.

    2008-01-01

    Recent climate studies in New England and the northeastern United States have shown evidence of physical changes over time, including trends toward earlier snowmelt runoff, decreasing river ice, and increasing spring water temperatures. A U.S. Geological Survey (USGS) study funded by the National Global Warming and Wildlife Science Center will be investigating changes in summer low streamflows and stream temperatures and the potential effects of those changes on endangered Atlantic salmon populations. The study also will evaluate management options that would be most likely to mitigate the effects of any changes in streamflow and temperature.

  20. Geography Teachers and Climate Change: Emotions about Consequences, Coping Strategies, and Views on Mitigation

    ERIC Educational Resources Information Center

    Hermans, Mikaela

    2016-01-01

    It has been indicated that teachers' emotions about climate change and their views on mitigation influence their instruction and students' engagement in mitigation actions. The aim of the study is to explore Finnish secondary geography teachers' emotions about the consequences of climate change, their strategies for coping with these emotions, and…

  1. Hydrological Sensitivity of Land Use Scenarios for Climate Mitigation

    NASA Astrophysics Data System (ADS)

    Boegh, E.; Friborg, T.; Hansen, K.; Jensen, R.; Seaby, L. P.

    2014-12-01

    Bringing atmospheric concentration to 550 ppm CO2 or below by 2100 will require large-scale changes to global and national energy systems, and potentially the use of land (IPCC, 2013) The Danish government aims at reducing greenhouse gas emissions (GHG) by 40 % in 1990-2020 and energy consumption to be based on 100 % renewable energy by 2035. By 2050, GHG emissions should be reduced by 80-95 %. Strategies developed to reach these goals require land use change to increase the production of biomass for bioenergy, further use of catch crops, reduced nitrogen inputs in agriculture, reduced soil tillage, afforestation and establishment of permanent grass fields. Currently, solar radiation in the growing season is not fully exploited, and it is expected that biomass production for bioenergy can be supported without reductions in food and fodder production. Impacts of climate change on the hydrological sensitivity of biomass growth and soil carbon storage are however not known. The present study evaluates the hydrological sensitivity of Danish land use options for climate mitigation in terms of crop yields (including straw for bioenergy) and net CO2 exchange for wheat, barley, maize and clover under current and future climate conditions. Hydrological sensitivity was evaluated using the agrohydrological model Daisy. Simulations during current climate conditions were in good agreement with measured dry matter, crop nitrogen content and eddy covariance fluxes of water vapour and CO2. Climate scenarios from the European ENSEMBLES database were downscaled for simulating water, nitrogen and carbon balance for 2071-2100. The biomass potential generally increase, but water stress also increases in strength and extends over a longer period, thereby increasing sensitivity to water availability. The potential of different land use scenarios to maximize vegetation cover and biomass for climate mitigation is further discussed in relation to impacts on the energy- and water balance.

  2. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France

    PubMed Central

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J. J.; Pagé, Christian; De Baets, Sarah; Quine, Timothy A.

    2016-01-01

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO2 emissions will be crucial to prevent further loss of carbon from our soils. PMID:27808169

  3. Future C loss in mid-latitude mineral soils: climate change exceeds land use mitigation potential in France.

    PubMed

    Meersmans, Jeroen; Arrouays, Dominique; Van Rompaey, Anton J J; Pagé, Christian; De Baets, Sarah; Quine, Timothy A

    2016-11-03

    Many studies have highlighted significant interactions between soil C reservoir dynamics and global climate and environmental change. However, in order to estimate the future soil organic carbon sequestration potential and related ecosystem services well, more spatially detailed predictions are needed. The present study made detailed predictions of future spatial evolution (at 250 m resolution) of topsoil SOC driven by climate change and land use change for France up to the year 2100 by taking interactions between climate, land use and soil type into account. We conclude that climate change will have a much bigger influence on future SOC losses in mid-latitude mineral soils than land use change dynamics. Hence, reducing CO 2 emissions will be crucial to prevent further loss of carbon from our soils.

  4. Natural climate solutions

    NASA Astrophysics Data System (ADS)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  5. Natural climate solutions.

    PubMed

    Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-31

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  6. Natural climate solutions

    PubMed Central

    Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-01-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344

  7. Assessing the Effects of Information About Global Population Growth on Risk Perceptions and Support for Mitigation and Prevention Strategies.

    PubMed

    Dawson, Ian G J

    2018-05-16

    The human population is forecast to increase by 3-4 billion people during this century and many scientists have expressed concerns that this could increase the likelihood of certain adverse events (e.g., climate change and resource shortages). Recent research shows that these concerns are mirrored in public risk perceptions and that these perceptions correlate with a willingness to adopt mitigation behaviors (e.g., reduce resource consumption) and preventative actions (e.g., support actions to limit growth). However, little research has assessed the factors that influence risk perceptions of global population growth (GPG). To contribute to this important goal, this article presents three studies that examined how risk perceptions of GPG might be influenced by textual-visual representations (like those in media and Internet articles) of the potential effects of GPG. Study 1 found that a textual narrative that highlighted the potential negative (cf. positive) consequences of GPG led to higher perceived risk and greater willingness to adopt mitigation behaviors, but not to support preventative actions. Notably, the influence of the narratives on perceived risk was largely moderated by the participant's prior knowledge and perceptions of GPG. Contrary to expectations, studies 2 and 3 revealed, respectively, that photographs depicting GPG-related imagery and graphs depicting GPG rates had no significant effect on the perceived risk of GPG or the willingness to embrace mitigation or preventative actions. However, study 3 found that individuals with higher "graph literacy" perceived GPG as a higher risk and were more willing to adopt mitigation behaviors and support preventative actions. © 2018 Society for Risk Analysis.

  8. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    PubMed

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Public health co-benefits of greenhouse gas emissions reduction: A systematic review.

    PubMed

    Gao, Jinghong; Kovats, Sari; Vardoulakis, Sotiris; Wilkinson, Paul; Woodward, Alistair; Li, Jing; Gu, Shaohua; Liu, Xiaobo; Wu, Haixia; Wang, Jun; Song, Xiaoqin; Zhai, Yunkai; Zhao, Jie; Liu, Qiyong

    2018-06-15

    Public health co-benefits from curbing climate change can make greenhouse gas (GHG) mitigation strategies more attractive and increase their implementation. The purpose of this systematic review is to summarize the evidence of these health co-benefits to improve our understanding of the mitigation measures involved, potential mechanisms, and relevant uncertainties. A comprehensive search for peer-reviewed studies published in English was conducted using the primary electronic databases. Reference lists from these articles were reviewed and manual searches were performed to supplement relevant studies. The identified records were screened based on inclusion criteria. We extracted data from the final retrieved papers using a pre-designed data extraction form and a quality assessment was conducted. The studies were heterogeneities, so meta-analysis was not possible and instead evidence was synthesized using narrative summaries. Thirty-six studies were identified. We identified GHG mitigation strategies in five domains - energy generation, transportation, food and agriculture, households, and industry and economy - which usually, although not always, bring co-benefits for public health. These health gains are likely to be multiplied by comprehensive measures that include more than one sectors. GHG mitigation strategies can bring about substantial and possibly cost-effective public health co-benefits. These findings are highly relevant to policy makers and other stakeholders since they point to the compounding value of taking concerted action against climate change and air pollution. Copyright © 2018. Published by Elsevier B.V.

  10. How Green is 'Green' Energy?

    PubMed

    Gibson, Luke; Wilman, Elspeth N; Laurance, William F

    2017-12-01

    Renewable energy is an important piece of the puzzle in meeting growing energy demands and mitigating climate change, but the potentially adverse effects of such technologies are often overlooked. Given that climate and ecology are inextricably linked, assessing the effects of energy technologies requires one to consider their full suite of global environmental concerns. We review here the ecological impacts of three major types of renewable energy - hydro, solar, and wind energy - and highlight some strategies for mitigating their negative effects. All three types can have significant environmental consequences in certain contexts. Wind power has the fewest and most easily mitigated impacts; solar energy is comparably benign if designed and managed carefully. Hydropower clearly has the greatest risks, particularly in certain ecological and geographical settings. More research is needed to assess the environmental impacts of these 'green' energy technologies, given that all are rapidly expanding globally. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Synergies of solar energy across a land-food-energy-water nexus

    NASA Astrophysics Data System (ADS)

    Hoffacker, M. K.; Hernandez, R. R.; Allen, M. F.

    2017-12-01

    Land-cover change from energy development, including solar energy, presents trade-offs for the production of food and the conservation of natural ecosystems. Solar energy plays a critical role in contributing to the alternative energy mix to mitigate climate change and meet policy milestones; however, the extent that solar energy development can mitigate land scarcity, water shortages, and conservation is understudied. Here, we test whether projected electricity needs for the state of California (CA, United States [US]) can be met within land-cover types that can also generate environmental, social and fiscal co-benefits (techno-ecological synergies) including: the built environment, salt-affected land, contaminated land, and water reservoirs (as floatovoltaics). Additionally, we analyze general spatial trends and patterns related to clustering and proximity of techno-ecological opportunities and land-cover types (e.g. contamination sites and cities). In total, the Central Valley, a globally significant agricultural region, encompasses 15% of CA, 8,415 km2 of which was identified as potentially synergistic land for solar energy. These areas comprise a capacity-based energy potential of 17,348 TWh y-1 for photovoltaic (PV) and 1,655 TWh y-1 for concentrating solar power (CSP). Accounting for technology efficiencies, this exceeds California's 2025 projected electricity demands up to 13 and 2 times for PV and CSP, respectively. Further, 60% of contaminated lands are clustered within and up to 10 km of the 10 most populated cities in the Central Valley, where energy is consumed. Our study underscores the potential of strategic renewable energy siting to mitigate environmental trade-offs typically coupled with energy development sprawl in landscapes characterized by complex nexus issues.

  12. Identifying potential synergies and trade-offs for meeting food security and climate change objectives in sub-Saharan Africa

    PubMed Central

    Palm, Cheryl A.; Smukler, Sean M.; Sullivan, Clare C.; Mutuo, Patrick K.; Nyadzi, Gerson I.; Walsh, Markus G.

    2010-01-01

    Potential interactions between food production and climate mitigation are explored for two situations in sub-Saharan Africa, where deforestation and land degradation overlap with hunger and poverty. Three agriculture intensification scenarios for supplying nitrogen to increase crop production (mineral fertilizer, herbaceous legume cover crops—green manures—and agroforestry—legume improved tree fallows) are compared to baseline food production, land requirements to meet basic caloric requirements, and greenhouse gas emissions. At low population densities and high land availability, food security and climate mitigation goals are met with all intensification scenarios, resulting in surplus crop area for reforestation. In contrast, for high population density and small farm sizes, attaining food security and reducing greenhouse gas emissions require mineral fertilizers to make land available for reforestation; green manure or improved tree fallows do not provide sufficient increases in yields to permit reforestation. Tree fallows sequester significant carbon on cropland, but green manures result in net carbon dioxide equivalent emissions because of nitrogen additions. Although these results are encouraging, agricultural intensification in sub-Saharan Africa with mineral fertilizers, green manures, or improved tree fallows will remain low without policies that address access, costs, and lack of incentives. Carbon financing for small-holder agriculture could increase the likelihood of success of Reducing Emissions from Deforestation and Forest Degradation in Developing Countries programs and climate change mitigation but also promote food security in the region. PMID:20453198

  13. The international politics of geoengineering: The feasibility of Plan B for tackling climate change

    PubMed Central

    Corry, Olaf

    2017-01-01

    Geoengineering technologies aim to make large-scale and deliberate interventions in the climate system possible. A typical framing is that researchers are exploring a ‘Plan B’ in case mitigation fails to avert dangerous climate change. Some options are thought to have the potential to alter the politics of climate change dramatically, yet in evaluating whether they might ultimately reduce climate risks, their political and security implications have so far not been given adequate prominence. This article puts forward what it calls the ‘security hazard’ and argues that this could be a crucial factor in determining whether a technology is able, ultimately, to reduce climate risks. Ideas about global governance of geoengineering rely on heroic assumptions about state rationality and a generally pacific international system. Moreover, if in a climate engineered world weather events become something certain states can be made directly responsible for, this may also negatively affect prospects for ‘Plan A’, i.e. an effective global agreement on mitigation. PMID:29386754

  14. Climate Change, Carbon Dioxide, and Pest Biology: Monitor, Mitigate, Manage.

    PubMed

    Ziska, Lewis H; McConnell, Laura L

    2016-01-13

    Rising concentrations of atmospheric carbon dioxide ([CO2]) and subsequent changes in climate, including temperature and precipitation extremes, are very likely to alter pest pressures in both managed and unmanaged plant communities. Such changes in pest pressures can be positive (migration from a region) or negative (new introductions), but are likely to be accompanied by significant economic and environmental consequences. Recent studies indicate the range of invasive weeds such as kudzu and insects such as mountain pine beetle have already expanded to more northern regions as temperatures have risen. To reduce these consequences, a better understanding of the link between CO2/climate and pest biology is needed in the context of existing and new strategies for pest management. This paper provides an overview of the probable biological links and the vulnerabilities of existing pest management (especially chemical control) and provides a preliminary synthesis of research needs that could potentially improve the ability to monitor, mitigate, and manage pest impacts.

  15. Cumulative biological impacts framework for solar energy projects in the California Desert

    USGS Publications Warehouse

    Davis, Frank W.; Kreitler, Jason R.; Soong, Oliver; Stoms, David M.; Dashiell, Stephanie; Hannah, Lee; Wilkinson, Whitney; Dingman, John

    2013-01-01

    This project developed analytical approaches, tools and geospatial data to support conservation planning for renewable energy development in the California deserts. Research focused on geographical analysis to avoid, minimize and mitigate the cumulative biological effects of utility-scale solar energy development. A hierarchical logic model was created to map the compatibility of new solar energy projects with current biological conservation values. The research indicated that the extent of compatible areas is much greater than the estimated land area required to achieve 2040 greenhouse gas reduction goals. Species distribution models were produced for 65 animal and plant species that were of potential conservation significance to the Desert Renewable Energy Conservation Plan process. These models mapped historical and projected future habitat suitability using 270 meter resolution climate grids. The results were integrated into analytical frameworks to locate potential sites for offsetting project impacts and evaluating the cumulative effects of multiple solar energy projects. Examples applying these frameworks in the Western Mojave Desert ecoregion show the potential of these publicly-available tools to assist regional planning efforts. Results also highlight the necessity to explicitly consider projected land use change and climate change when prioritizing areas for conservation and mitigation offsets. Project data, software and model results are all available online.

  16. Climate mitigation scenarios of drained peat soils

    NASA Astrophysics Data System (ADS)

    Kasimir Klemedtsson, Åsa; Coria, Jessica; He, Hongxing; Liu, Xiangping; Nordén, Anna

    2014-05-01

    The national inventory reports (NIR) submitted to the UNFCCC show Sweden - which as many other countries has wetlands where parts have been drained for agriculture and forestry purposes, - to annually emit 12 million tonnes carbon dioxide equivalents, which is more GHG'es than industrial energy use release in Sweden. Similar conditions can be found in other northern countries, having cool and wet conditions, naturally promoting peat accumulation, and where land use management over the last centuries have promoted draining activities. These drained peatland, though covering only 2% of the land area, have emissions corresponding to 20% of the total reported NIR emissions. This substantial emission contribution, however, is hidden within the Land Use Land Use Change and Forestry sector (LULUCF) where the forest Carbon uptake is even larger, which causes the peat soil emissions become invisible. The only drained soil emission accounted in the Swedish Kyoto reporting is the N2O emission from agricultural drained organic soils of the size 0.5 million tonnes CO2e yr-1. This lack of visibility has made incentives for land use change and management neither implemented nor suggested, however with large potential. Rewetting has the potential to decrease soil mineralization, why CO2 and N2O emissions are mitigated. However if the soil becomes very wet CH4 emission will increase together with hampered plant growth. By ecological modeling, using the CoupModel the climate change mitigation potential have been estimated for four different land use scenarios; 1, Drained peat soil with Spruce (business as usual scenario), 2, raised ground water level to 20 cm depth and Willow plantation, 3, raised ground water level to 10 cm depth and Reed Canary Grass, and 4, rewetting to an average water level in the soil surface with recolonizing wetland plants and mosses. We calculate the volume of biomass production per year, peat decomposition, N2O emission together with nitrate and DOC/POC leakage. Based on the modelling results a cost benefit analysis is performed (economics), guiding to the design of environmental policies needed for land use change to come true.

  17. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions.

    PubMed

    Molina, Mario; Zaelke, Durwood; Sarma, K Madhava; Andersen, Stephen O; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-12-08

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of "dangerous anthropogenic interference" (DAI). Scientific and policy literature refers to the need for "early," "urgent," "rapid," and "fast-action" mitigation to help avoid DAI and abrupt climate changes. We define "fast-action" to include regulatory measures that can begin within 2-3 years, be substantially implemented in 5-10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO(2) GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO(2) emissions.

  18. Impacts of Rising Air Temperatures and Emissions Mitigation on Electricity Demand and Supply in the United States. A Multi-Model Comparison

    DOE PAGES

    McFarland, James; Zhou, Yuyu; Clarke, Leon; ...

    2015-06-10

    The electric power sector both affects and is affected by climate change. Numerous studies highlight the potential of the power sector to reduce greenhouse gas emissions. Fewer studies have explored the physical impacts of climate change on the power sector. Our present analysis examines how projected rising temperatures affect the demand for and supply of electricity. We apply a common set of temperature projections to three well-known electric sector models in the United States: the US version of the Global Change Assessment Model (GCAM-USA), the Regional Electricity Deployment System model (ReEDS), and the Integrated Planning Model (IPM®). Incorporating the effectsmore » of rising temperatures from a control scenario without emission mitigation into the models raises electricity demand by 1.6 to 6.5 % in 2050 with similar changes in emissions. Moreover, the increase in system costs in the reference scenario to meet this additional demand is comparable to the change in system costs associated with decreasing power sector emissions by approximately 50 % in 2050. This result underscores the importance of adequately incorporating the effects of long-run temperature change in climate policy analysis.« less

  19. Social ties may play a critical role in mitigating sleep difficulties in disaster-affected communities: a cross-sectional study in the Ishinomaki area, Japan.

    PubMed

    Matsumoto, Shoko; Yamaoka, Kazue; Inoue, Machiko; Muto, Shinsuke

    2014-01-01

    We examined the association between social factors and sleep difficulties among the victims remaining at home in the Ishinomaki area after the Great East Japan Earthquake and Tsunami and identified potentially modifiable factors that may mitigate vulnerability to sleep difficulties during future traumatic events or disasters. A cross-sectional household survey was conducted from October 2011 to March 2012 (6-12 mo after the disaster) in the Ishinomaki area, Japan. Univariate and multivariate logistic regression models were used to examine associations between social factors and sleep difficulties. We obtained data on 4,176 household members who remained in their homes after the earthquake and tsunami. N/A. Sleep difficulties were prevalent in 15.0% of the respondents (9.2% male, 20.2% female). Two potentially modifiable factors (lack of pleasure in life and lack of interaction with/visiting neighbors) and three nonmodifiable or hardly modifiable factors (sex, source of income, and number of household members) were associated with sleep difficulties. Nonmodifiable or hardly modifiable consequences caused directly by the disaster (severity of house damage, change in family structure, and change in working status) were not significantly associated with sleep difficulties. Our data suggest that the lack of pleasure in life and relatively strong networks in the neighborhood, which are potentially modifiable, might have stronger associations with sleep difficulties than do nonmodifiable or hardly modifiable consequences of the disaster (e.g., house damage, change in family structure, and change in work status).

  20. Steel Primer Chamber Assemblies for Dual Initiated Pyrovalves

    NASA Technical Reports Server (NTRS)

    Guemsey, Carl S.; Mizukami, Masashi; Zenz, Zac; Pender, Adam A.

    2009-01-01

    A solution was developed to mitigate the potential risk of ignition failures and burn-through in aluminum primer chamber assemblies on pyrovalves. This was accomplished by changing the assembly material from aluminum to steel, and reconfiguration of flame channels to provide more direct paths from initiators to boosters. With the geometric configuration of the channels changed, energy is more efficiently transferred from the initiators to the boosters. With the alloy change to steel, the initiator flame channels do not erode upon firing, eliminating the possibility of burn-through. Flight qualification tests have been successfully passed.

  1. Role of Biochar in Mitigation of Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehmann, Johannes C.; Amonette, James E.; Roberts, Kelli G.

    2010-09-30

    By virtue of the large fraction of the terrestrial carbon (C) cycle controlled by human activities, agroecosystems are both sources and sinks for greenhouse gases. Their potential role in mitigation of climate change thus depends on a dual strategy of decreasing greenhouse gas emissions while increasing sinks so that the net impact on climate warming is less than at present. Emissions of carbon dioxide, methane and nitrous oxide arise from various agricultural activities, ranging from land clearing to ploughing, fertilization, and animal husbandry. Reductions in these emissions can be achieved by decreasing the heterotrophic conversion of organic C to carbonmore » dioxide, and by better management of agricultural waste streams to minimize release of methane and nitrous oxide. Current sinks include C stored in standing biomass and soil organic matter, and the oxidation of atmospheric methane by soil bacteria. These sinks can be enhanced by increasing net primary productivity, thereby actively withdrawing more carbon dioxide from the atmosphere, and by promoting more oxidation of methane by soils. Judicious biochar management may contribute to both strategies, reductions of emissions by agriculture and active withdrawal of atmospheric carbon dioxide, as part of a comprehensive scheme in agricultural and forestry watersheds. Biochar is a carbon-rich organic material generated by heating biomass in the absence, or under a limited supply, of oxygen. This so-called charring or pyrolysis process has been used to produce charcoal as a source of fuel for millennia. Recently, interest has grown in understanding the potential of this process to improve soil health by adding biochar as an amendment to soil, to manage agricultural and forestry wastes, to generate energy, to decrease net emissions of nitrous oxide and methane, and to store carbon (C). The main incentive of biochar systems for mitigation of climate change is to increase the stability of organic matter or biomass. This stability is achieved by the conversion of fresh organic materials, which mineralize comparatively quickly, into biochar, which mineralizes much more slowly. The difference between the mineralization of uncharred and charred material results in a greater amount of carbon storage in soils and a lower amount of carbon dioxide, the major greenhouse gas, in the atmosphere. The principle of creating and managing biochar systems may address multiple environmental constraints. Biochar may help not only in mitigating climate change, but also fulfill a role in management of agricultural and forestry wastes, enhancement of soil sustainability, and generation of energy. Pyrolysis is a comparatively low-technology intervention. Deployment on a global scale, however, must be done carefully if the full mitigation potential is to be reached. Critical aspects of a successful implementation are that: 1) the biochar is sufficiently stable to reduce greenhouse gases in the atmosphere for an appropriate length of time. 2) the storage of carbon as biochar in soil is not offset by greenhouse gas emissions along the value chain of the system, such as mineralization of soil carbon or emissions of other greenhouse gases (e.g., methane and nitrous oxide). 3) net emission reductions are achieved for the entire life cycle of the system including indirect land use. 4) the biochar product does not cause unwanted side effects in soil. 5) the handling and production of biochar are in compliance with health and safety standards and do not pose hurdles to implementation. and 6) the biochar system is financially viable. This chapter discusses these issues in separate sections, identifies knowledge gaps, and proposes a road map to fully evaluate an environmentally and socially safe exploration of the biochar potential to mitigate climate change if adopted widely around the world.« less

  2. Mexican forest inventory expands continental carbon monitoring

    Treesearch

    Alberto Sandoval Uribe; Sean. P. Healey; Gretchen G. Moisen; Rigoberto Palafox Rivas; Enrique Gonzalez Aguilar; Carmen Lourdes Meneses Tovar; Ernesto S. Diaz Ponce Davalos; Vanessa Silva Mascorro

    2008-01-01

    The terrestrial ecosystems of the North American continent represent a large reservoir of carbon and a potential sink within the global carbon cycle. The recent State of the Carbon Cycle Report [U.S. Climate Change Science Program (CCSP), 2007] identified the critical role these systems may play in mitigating effects of greenhouse gases emitted from fossil fuel...

  3. Grazing lands in Sub-Saharan Africa and their potential role in climate change mitigation: What we do and don’t know

    USDA-ARS?s Scientific Manuscript database

    Grazinglands cover much of sub-Saharan Africa. When well-managed, these lands provide a wide variety of ecosystem services, many of which are positively correlated with increase in soil carbon. Pastoralists and other land managers are currently rewarded primarily for the production of animal product...

  4. Tree planting: not a simple solution

    Treesearch

    Constance I. Millar; William J. Libby

    1991-01-01

    There's no doubt about it. Planting trees has caught the attention of the American public. In his 1990 State of the Union address, President Bush proposed planting a billion Fees annually for the next ten years. Inspired by the potential for trees to reduce greenhouse gases and mitigate global climate change, tree-planting programs such as Treepeople and Global...

  5. UNDERSTANDING AND MANAGING THE HEALTH AND ENVIRONMENTAL RISKS RESULTING FROM GLOBAL ATMOSPHERIC CHANGE FROM RECOGNITION OF POTENTIAL PROBLEMS TO CONCRETE MITIGATIVE ACTIONS

    EPA Science Inventory

    As a consequence of anthropogenic activities, we may double the pre-industrial concentration of atmospheric CO2 by the middle of this century. Anthropogenic activities have already doubled the amount of fixed nitrogen that cycles the globe, substantially increasing the flux of re...

  6. Soil carbon sequestration potential in semi-arid grasslands in the conservation reserve program

    USDA-ARS?s Scientific Manuscript database

    The Conservation Reserve Program (CRP) in the USA plays a major role in carbon (C) sequestration to help mitigate rising CO2 levels and climate change. The Southern High Plains (SHP) region contains N900.000 ha enrolled in CRP, but a regionally specific C sequestration rate has not been studied, and...

  7. Carbon sequestration potential of poplar energy crops in the Midwest, USA

    Treesearch

    R.S. Jr. Zalesny; W.L. Headlee; R.B. Hall; D.R. Coyle

    2010-01-01

    Energy use and climate change mitigation are closely linked via ecological, social, and economic factors, including carbon management. Energy supply is a key 21st century National security issue for the United States; identifying and developing woody feedstocks for transportation fuels and combined heat and power operations are a crucial component of the future...

  8. Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    NASA Astrophysics Data System (ADS)

    Chang, Kelly M.; Hess, Jeremy J.; Balbus, John M.; Buonocore, Jonathan J.; Cleveland, David A.; Grabow, Maggie L.; Neff, Roni; Saari, Rebecca K.; Tessum, Christopher W.; Wilkinson, Paul; Woodward, Alistair; Ebi, Kristie L.

    2017-11-01

    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission ‘Managing the health effects of climate change’ through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake.

  9. Soils as a Solution: The Potential of Rangelands to Contribute to Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Silver, W. L.; Ryals, R.; DeLonge, M. S.; Owen, J. J.

    2015-12-01

    The majority of soil-related climate change research has focused on describing the problem - estimating rates of carbon (C) losses and greenhouse gas (GHG) emissions from natural and managed ecosystems. More research is needed to explore potential solutions to climate change through mitigation and adaptation. Here we report on an integrated set of studies aimed at critically evaluating the biogeochemical potential of rangeland soils to help mitigate climate change, while improving the sustainability and productivity of food production systems. We explored direct effects through enhanced net primary production (NPP) and soil C sequestration, and indirect effects through diversion of high emitting sources to lower emitting organic matter dynamics. We used a combination of long- and short-term field experiments, modeling, laboratory assays, life cycle assessment (LCA), and meta-analyses in consultation with a diverse group of stakeholders from both the private and public sectors. We found that organic matter amendments held particularly strong potential. Compost amendments increased soil C storage by 0.5-1.0 Mg C ha-1 y-1 in surface soils over 5 y, and increased NPP and water holding capacity. We measured 1.0 Mg of new C ha-1 y-1 over 3 y. Long-term amendment of cattle manure increased surface soil C by 19.0±7.3 Mg C ha-1 relative to unmanured fields. However, field and modeling experiments suggested that manure amendments lead to large nitrous oxide emissions that eventually eliminated CO2e benefits, whereas compost amendments continued to benefit climate for decades longer. An LCA identified a broader range of climate impacts. When scaled to an area of 25% of California's rangelands, new C sequestered following compost amendments (21 million Mg CO2e) exceeded emissions from cattle (15 million Mg CO2e); diverting organics from waste streams to amendments led to additional GHG savings. In collaboration with our partners, our research contributed to the development of a protocol for compost amendments, which is being used by stakeholders in C markets and by government agencies in climate action planning. In summary, we hope that our research and related activities will serve as a "call to arms" to the scientific community by highlighting a new and much needed arena for rigorous scientific research.

  10. ARC3.2 Summary for City Leaders Climate Change and Cities: Second Assessment Report of the Urban Climate Change Research Network

    NASA Technical Reports Server (NTRS)

    Rosenzweig, C.; Solecki, W.; Romero-Lankao, P.; Mehrotra, S.; Dhakal, S.; Bowman, T.; Ibrahim, S. Ali

    2015-01-01

    ARC3.2 presents a broad synthesis of the latest scientific research on climate change and cities. Mitigation and adaptation climate actions of 100 cities are documented throughout the 16 chapters, as well as online through the ARC3.2 Case Study Docking Station. Pathways to Urban Transformation, Major Findings, and Key Messages are highlighted here in the ARC3.2 Summary for City Leaders. These sections lay out what cities need to do achieve their potential as leaders of climate change solutions. UCCRN Regional Hubs in Europe, Latin America, Africa, Australia and Asia will share ARC3.2 findings with local city leaders and researchers. The ARC3.2 Summary for City Leaders synthesizes Major Findings and Key Messages on urban climate science, disasters and risks, urban planning and design, mitigation and adaptation, equity and environmental justice, economics and finance, the private sector, urban ecosystems, urban coastal zones, public health, housing and informal settlements, energy, water, transportation, solid waste, and governance. These were based on climate trends and future projections for 100 cities around the world.

  11. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food: Workshop Proceedings.

    PubMed

    Hanlon, Paul; Brorby, Gregory P; Krishan, Mansi

    2016-05-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds. © The Author(s) 2016.

  12. A Risk-Based Strategy for Evaluating Mitigation Options for Process-Formed Compounds in Food

    PubMed Central

    Brorby, Gregory P.; Krishan, Mansi

    2016-01-01

    Processing (eg, cooking, grinding, drying) has changed the composition of food throughout the course of human history; however, awareness of process-formed compounds, and the potential need to mitigate exposure to those compounds, is a relatively recent phenomenon. In May 2015, the North American Branch of the International Life Sciences Institute (ILSI North America) Technical Committee on Food and Chemical Safety held a workshop on the risk-based process for mitigation of process-formed compounds. This workshop aimed to gain alignment from academia, government, and industry on a risk-based process for proactively assessing the need for and benefit of mitigation of process-formed compounds, including criteria to objectively assess the impact of mitigation as well as research needed to support this process. Workshop participants provided real-time feedback on a draft framework in the form of a decision tree developed by the ILSI North America Technical Committee on Food and Chemical Safety to a panel of experts, and they discussed the importance of communicating the value of such a process to the larger scientific community and, ultimately, the public. The outcome of the workshop was a decision tree that can be used by the scientific community and could form the basis of a global approach to assessing the risks associated with mitigation of process-formed compounds. PMID:27102178

  13. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    NASA Astrophysics Data System (ADS)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or dimensions. Much of this new knowledge has come from the analysis and understanding of the Tier 1, Tier 2 and Emergent traits of the transdisciplinarian.

  14. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure – Scoping Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robb, Kevin R.

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  15. Integrating uncertainties for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Rogelj, Joeri; McCollum, David; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-04-01

    The target of keeping global average temperature increase to below 2°C has emerged in the international climate debate more than a decade ago. In response, the scientific community has tried to estimate the costs of reaching such a target through modelling and scenario analysis. Producing such estimates remains a challenge, particularly because of relatively well-known, but ill-quantified uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on one side, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other side, has worked on achieving an increasingly better understanding of the geophysical response of the Earth system to emissions of greenhouse gases (GHG). This geophysical response remains a key uncertainty for the cost of mitigation scenarios but has only been integrated with assessments of other uncertainties in a rudimentary manner, i.e., for equilibrium conditions. To bridge this gap between the two research communities, we generate distributions of the costs associated with limiting transient global temperature increase to below specific temperature limits, taking into account uncertainties in multiple dimensions: geophysical, technological, social and political. In other words, uncertainties resulting from our incomplete knowledge about how the climate system precisely reacts to GHG emissions (geophysical uncertainties), about how society will develop (social uncertainties and choices), which technologies will be available (technological uncertainty and choices), when we choose to start acting globally on climate change (political choices), and how much money we are or are not willing to spend to achieve climate change mitigation. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical, future energy demand, and mitigation technology uncertainties. This information provides central information for policy making, since it helps to understand the relationship between mitigation costs and their potential to reduce the risk of exceeding 2°C, or other temperature limits like 3°C or 1.5°C, under a wide range of scenarios.

  16. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that baseline achieves larger increase of global precipitation in the last decades of 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratios change between the two scenarios. This work warns that mitigation policies, by abating aerosols, may lead to unexpected stronger intensification of hydrological cycle and associated changes that may last for decades after that global warming is effectively mitigated. On the other hand, it is here suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  17. Pollutant Transport and Fate: Relations Between Flow-paths and Downstream Impacts of Human Activities

    NASA Astrophysics Data System (ADS)

    Thorslund, J.; Jarsjo, J.; Destouni, G.

    2017-12-01

    The quality of freshwater resources is increasingly impacted by human activities. Humans also extensively change the structure of landscapes, which may alter natural hydrological processes. To manage and maintain freshwater of good water quality, it is critical to understand how pollutants are released into, transported and transformed within the hydrological system. Some key scientific questions include: What are net downstream impacts of pollutants across different hydroclimatic and human disturbance conditions, and on different scales? What are the functions within and between components of the landscape, such as wetlands, on mitigating pollutant load delivery to downstream recipients? We explore these questions by synthesizing results from several relevant case study examples of intensely human-impacted hydrological systems. These case study sites have been specifically evaluated in terms of net impact of human activities on pollutant input to the aquatic system, as well as flow-path distributions trough wetlands as a potential ecosystem service of pollutant mitigation. Results shows that although individual wetlands have high retention capacity, efficient net retention effects were not always achieved at a larger landscape scale. Evidence suggests that the function of wetlands as mitigation solutions to pollutant loads is largely controlled by large-scale parallel and circular flow-paths, through which multiple wetlands are interconnected in the landscape. To achieve net mitigation effects at large scale, a large fraction of the polluted large-scale flows must be transported through multiple connected wetlands. Although such large-scale flow interactions are critical for assessing water pollution spreading and fate through the landscape, our synthesis shows a frequent lack of knowledge at such scales. We suggest ways forward for addressing the mismatch between the large scales at which key pollutant pressures and water quality changes take place and the relatively scale at which most studies and implementations are currently made. These suggestions can help bridge critical knowledge gaps, as needed for improving water quality predictions and mitigation solutions under human and environmental changes.

  18. Assessment of the potential of urban organic carbon dynamics to off-set urban anthropogenic emissions

    NASA Astrophysics Data System (ADS)

    Gottschalk, P.; Churkina, G.; Wattenbach, M.; Cubasch, U.

    2010-12-01

    The impact of urban systems on current and future global carbon emissions has been a focus of several studies. Many mitigation options in terms of increasing energy efficiency are discussed. However, apart from technical mitigation potential urban systems also have a considerable biogenic potential to mitigate carbon through an optimized management of organic carbon pools of vegetation and soil. Berlin city area comprises almost 50% of areas covered with vegetation or largely covered with vegetation. This potentially offers various areas for carbon mitigation actions. To assess the mitigation potentials our first objective is to estimate how large current vegetation and soil carbon stocks of Berlin are. We use publicly available forest and soil inventories to calculate soil organic carbon of non-pervious areas and forest standing biomass carbon. This research highlights data-gaps and assigns uncertainty ranges to estimated carbon resources. The second objective is to assess the carbon mitigation potential of Berlin’s vegetation and soils using a biogeochemical simulation model. BIOME-BGC simulates carbon-, nitrogen- and water-fluxes of ecosystems mechanistically. First, its applicability for Berlin forests is tested at selected sites. A spatial application gives an estimate of current net carbon fluxes. The application of such a model allows determining the sensitivity of key ecosystem processes (e.g. carbon gains through photosynthesis, carbon losses through decomposition) towards external drivers. This information can then be used to optimise forest management in terms of carbon mitigation. Initial results of Berlin’s current carbon stocks and its spatial distribution and preliminary simulations results will be presented.

  19. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation: The Roles of Trust in Sources of Climate Information, Climate Change Beliefs, and Perceived Risk.

    PubMed

    Arbuckle, J Gordon; Morton, Lois Wright; Hobbs, Jon

    2015-02-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers' trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management).

  20. Climate change impacts on global food security.

    PubMed

    Wheeler, Tim; von Braun, Joachim

    2013-08-02

    Climate change could potentially interrupt progress toward a world without hunger. A robust and coherent global pattern is discernible of the impacts of climate change on crop productivity that could have consequences for food availability. The stability of whole food systems may be at risk under climate change because of short-term variability in supply. However, the potential impact is less clear at regional scales, but it is likely that climate variability and change will exacerbate food insecurity in areas currently vulnerable to hunger and undernutrition. Likewise, it can be anticipated that food access and utilization will be affected indirectly via collateral effects on household and individual incomes, and food utilization could be impaired by loss of access to drinking water and damage to health. The evidence supports the need for considerable investment in adaptation and mitigation actions toward a "climate-smart food system" that is more resilient to climate change influences on food security.

  1. Understanding Farmer Perspectives on Climate Change Adaptation and Mitigation

    PubMed Central

    Morton, Lois Wright; Hobbs, Jon

    2015-01-01

    Agriculture is vulnerable to climate change and a source of greenhouse gases (GHGs). Farmers face pressures to adjust agricultural systems to make them more resilient in the face of increasingly variable weather (adaptation) and reduce GHG production (mitigation). This research examines relationships between Iowa farmers’ trust in environmental or agricultural interest groups as sources of climate information, climate change beliefs, perceived climate risks to agriculture, and support for adaptation and mitigation responses. Results indicate that beliefs varied with trust, and beliefs in turn had a significant direct effect on perceived risks from climate change. Support for adaptation varied with perceived risks, while attitudes toward GHG reduction (mitigation) were associated predominantly with variation in beliefs. Most farmers were supportive of adaptation responses, but few endorsed GHG reduction, suggesting that outreach should focus on interventions that have adaptive and mitigative properties (e.g., reduced tillage, improved fertilizer management). PMID:25983336

  2. Coupling Radar Rainfall Estimation and Hydrological Modelling For Flash-flood Hazard Mitigation

    NASA Astrophysics Data System (ADS)

    Borga, M.; Creutin, J. D.

    Flood risk mitigation is accomplished through managing either or both the hazard and vulnerability. Flood hazard may be reduced through structural measures which alter the frequency of flood levels in the area. The vulnerability of a community to flood loss can be mitigated through changing or regulating land use and through flood warning and effective emergency response. When dealing with flash-flood hazard, it is gener- ally accepted that the most effective way (and in many instances the only affordable in a sustainable perspective) to mitigate the risk is by reducing the vulnerability of the involved communities, in particular by implementing flood warning systems and community self-help programs. However, both the inherent characteristics of the at- mospheric and hydrologic processes involved in flash-flooding and the changing soci- etal needs provide a tremendous challenge to traditional flood forecasting and warning concepts. In fact, the targets of these systems are traditionally localised like urbanised sectors or hydraulic structures. Given the small spatial scale that characterises flash floods and the development of dispersed urbanisation, transportation, green tourism and water sports, human lives and property are exposed to flash flood risk in a scat- tered manner. This must be taken into consideration in flash flood warning strategies and the investigated region should be considered as a whole and every section of the drainage network as a potential target for hydrological warnings. Radar technology offers the potential to provide information describing rain intensities almost contin- uously in time and space. Recent research results indicate that coupling radar infor- mation to distributed hydrologic modelling can provide hydrologic forecasts at all potentially flooded points of a region. Nevertheless, very few flood warning services use radar data more than on a qualitative basis. After a short review of current under- standing in this area, two issues are examined: advantages and caveats of using radar rainfall estimates in operational flash flood forecasting, methodological problems as- sociated to the use of hydrological models for distributed flash flood forecasting with rainfall input estimated from radar.

  3. Compensatory Mitigation Rule Q&A

    EPA Pesticide Factsheets

    What is compensatory mitigation? How is compensatory mitigation accomplished? What does this final rule do? What are the most significant changes required by this rule compared to previous mitigation practices? What are the goals of the final rule?

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios-Torres, Jackeline; Malikopoulos, Andreas A.

    Connected and automated vehicles (CAVs) have the potential to improve safety by reducing and mitigating traffic accidents. They can also provide opportunities to reduce transportation energy consumption and emissions by improving traffic flow. Vehicle communication with traffic structures and traffic lights can allow individual vehicles to optimize their operation and account for unpredictable changes. This paper summarizes the developments and the research trends in coordination with the CAVs that have been reported in the literature to date. In conclusion, remaining challenges and potential future research directions are also discussed.

  5. Vegetation Fires in the Coupled Human-Earth System Under Future Environmental and Policy Perspectives

    NASA Astrophysics Data System (ADS)

    le page, Y.; Morton, D. C.; Hurtt, G. C.

    2013-12-01

    Fires play a major role in terrestrial ecosystems dynamics and the carbon cycle. Potential changes in fire regimes due to climate change, land use change, or human management could have substantial ecological, climatic and socio-economic impacts, and have recently been emphasized as a source of uncertainty for policy-makers and climate mitigation cost estimates. Anticipating these interactions thus entails interdisciplinary models. Here we describe the development of a new fire modeling framework, which features the essential integration of climatic, vegetation and anthropogenic drivers. The model is an attempt to realistically account for ignition, spread and termination processes, on a 12-hour time step and at 1 degree spatial resolution globally. Because the quantitative influence of fire drivers on these processes are often poorly constrained, the framework includes an optimization procedure whereby key parameters (e.g. influence of moisture on fire spread, probability of cloud-to-ground lightning flashes to actually ignite a fire, human ignition frequency as a function of land use density) are determined to maximize the agreement between modeled and observed burned area over the past decade. The model performs surprisingly well across all biomes, and shows good agreement on non-optimized features, such as seasonality and fire size, which suggests some potential for robust projections. We couple the model to an integrated assessment model and explore the consequences of mitigation policies, land use decisions and climate change on future fire regimes with a focus on the Amazon basin. The coupled model future projections show that business-as-usual land use expansion would increase the frequency of escaped fires in the remaining forest, especially when combined with models projecting a drier climate. Inversely, climate mitigation policies as projected in the IPCC RCP4.5 scenario achieve synergistic benefits, with increased forest extent, less fire ignitions, and higher moisture levels.

  6. Sustainable biochar to mitigate global climate change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woolf, Dominic; Amonette, James E.; Street-Perrott, F. A.

    2010-08-10

    Production of biochar (the carbon-rich solid formed by pyrolysis of biomass), in combination with its storage in soils, has been suggested as a means to abate anthropogenic climate change, while simultaneously increasing crop yields. The climate mitigation potential stems primarily from the highly recalcitrant nature of biochar, which slows the rate at which photosynthetically fixed carbon is returned to the atmosphere. Significant uncertainties exist, however, regarding the impact, capacity, and sustainability of biochar for carbon capture and storage when scaled to the global level. Previous estimates, based on simple assumptions, vary widely. Here we show that, subject to strict environmentalmore » and modest economic constraints on biomass procurement and biochar production methods, annual net emissions of CO2, CH4 and N2O could be reduced by 1.1 - 1.9 Pg CO2-C equivalent (CO2-Ce)/yr (7 - 13% of current anthropogenic CO2-Ce emissions; 1Pg = 1 Gt). Over one century, cumulative net emissions of these gases could be reduced by 72-140 Pg CO2-Ce. The lower end of this range uses currently untapped residues and wastes; the upper end requires substantial alteration to global biomass management, but would not endanger food security, habitat or soil conservation. Half the avoided emissions are due to the net C sequestered as biochar, one-quarter to replacement of fossil-fuel energy by pyrolysis energy, and one-quarter to avoided emissions of CH4 and N2O. The total mitigation potential is 18-30% greater than if the same biomass were combusted to produce energy. Despite limited data for the decomposition rate of biochar in soils and the effects of biochar additions on soil greenhouse-gas fluxes, sensitivity within realistic ranges of these parameters is small, resulting in an uncertainty of ±8% (±1 s.d.) in our estimates. Achieving these mitigation results requires, however, that biochar production be performed using only low-emissions technologies and feedstocks obtained sustainably, with minimal carbon debt incurred from land-use change.« less

  7. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-04-01

    To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.

  8. Global and local concerns: what attitudes and beliefs motivate farmers to mitigate and adapt to climate change?

    PubMed

    Haden, Van R; Niles, Meredith T; Lubell, Mark; Perlman, Joshua; Jackson, Louise E

    2012-01-01

    In response to agriculture's vulnerability and contribution to climate change, many governments are developing initiatives that promote the adoption of mitigation and adaptation practices among farmers. Since most climate policies affecting agriculture rely on voluntary efforts by individual farmers, success requires a sound understanding of the factors that motivate farmers to change practices. Recent evidence suggests that past experience with the effects of climate change and the psychological distance associated with people's concern for global and local impacts can influence environmental behavior. Here we surveyed farmers in a representative rural county in California's Central Valley to examine how their intention to adopt mitigation and adaptation practices is influenced by previous climate experiences and their global and local concerns about climate change. Perceived changes in water availability had significant effects on farmers' intention to adopt mitigation and adaptation strategies, which were mediated through global and local concerns respectively. This suggests that mitigation is largely motivated by psychologically distant concerns and beliefs about climate change, while adaptation is driven by psychologically proximate concerns for local impacts. This match between attitudes and behaviors according to the psychological distance at which they are cognitively construed indicates that policy and outreach initiatives may benefit by framing climate impacts and behavioral goals concordantly; either in a global context for mitigation or a local context for adaptation.

  9. The potential of Indonesian mangrove forests for global climate change mitigation

    NASA Astrophysics Data System (ADS)

    Murdiyarso, Daniel; Purbopuspito, Joko; Kauffman, J. Boone; Warren, Matthew W.; Sasmito, Sigit D.; Donato, Daniel C.; Manuri, Solichin; Krisnawati, Haruni; Taberima, Sartji; Kurnianto, Sofyan

    2015-12-01

    Mangroves provide a wide range of ecosystem services, including nutrient cycling, soil formation, wood production, fish spawning grounds, ecotourism and carbon (C) storage. High rates of tree and plant growth, coupled with anaerobic, water-logged soils that slow decomposition, result in large long-term C storage. Given their global significance as large sinks of C, preventing mangrove loss would be an effective climate change adaptation and mitigation strategy. It has been reported that C stocks in the Indo-Pacific region contain on average 1,023 MgC ha-1 (ref. ). Here, we estimate that Indonesian mangrove C stocks are 1,083 +/- 378 MgC ha-1. Scaled up to the country-level mangrove extent of 2.9 Mha (ref. ), Indonesia’s mangroves contained on average 3.14 PgC. In three decades Indonesia has lost 40% of its mangroves, mainly as a result of aquaculture development. This has resulted in annual emissions of 0.07-0.21 Pg CO2e. Annual mangrove deforestation in Indonesia is only 6% of its total forest loss; however, if this were halted, total emissions would be reduced by an amount equal to 10-31% of estimated annual emissions from land-use sectors at present. Conservation of carbon-rich mangroves in the Indonesian archipelago should be a high-priority component of strategies to mitigate climate change.

  10. Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation.

    PubMed

    Farhood, Bagher; Goradel, Nasser Hashemi; Mortezaee, Keywan; Khanlarkhani, Neda; Salehi, Ensieh; Nashtaei, Maryam Shabani; Shabeeb, Dheyauldeen; Musa, Ahmed Eleojo; Fallah, Hengameh; Najafi, Masoud

    2018-06-17

    Nowadays, using ionizing radiation (IR) is necessary for clinical, agricultural, nuclear energy or industrial applications. Accidental exposure to IR after a radiation terror or disaster poses a threat to human. In contrast to the old dogma of radiation toxicity, several experiments during the last two recent decades have revealed that intercellular signaling and communications play a key role in this procedure. Elevated level of cytokines and other intercellular signals increase oxidative damage and inflammatory responses via reduction/oxidation interactions (redox system). Intercellular signals induce production of free radicals and inflammatory mediators by some intermediate enzymes such as cyclooxygenase-2 (COX-2), nitric oxide synthase (NOS), NADPH oxidase, and also via triggering mitochondrial ROS. Furthermore, these signals facilitate cell to cell contact and increasing cell toxicity via cohort effect. Nitric oxide is a free radical with ability to act as an intercellular signal that induce DNA damage and changes in some signaling pathways in irradiated as well as non-irradiated adjacent cells. Targeting of these mediators by some anti-inflammatory agents or via antioxidants such as mitochondrial ROS scavengers opens a window to mitigate radiation toxicity after an accidental exposure. Experiments which have been done so far suggests that some cytokines such as IL-1β, TNF-α, TGF-β, IL-4 and IL-13 are some interesting targets that depend on irradiated organs and may help mitigate radiation toxicity. Moreover, animal experiments in recent years indicated that targeting of toll like receptors (TLRs) may be more useful for radioprotection and mitigation. In this review, we aimed to describe the role of intercellular interactions in oxidative injury, inflammation, cell death and killing effects of IR. Moreover, we described evidence on potential mitigation of radiation injury via targeting of these mediators.

  11. A probabilistic approach to examine the impacts of mitigation policies on future global PM emissions from on-road vehicles

    NASA Astrophysics Data System (ADS)

    Yan, F.; Winijkul, E.; Bond, T. C.; Streets, D. G.

    2012-12-01

    There is deficiency in the determination of emission reduction potential in the future, especially with consideration of uncertainty. Mitigation measures for some economic sectors have been proposed, but few studies provide an evaluation of the amount of PM emission reduction that can be obtained in future years by different emission reduction strategies. We attribute the absence of helpful mitigation strategy analysis to limitations in the technical detail of future emission scenarios, which result in the inability to relate technological or regulatory intervention to emission changes. The purpose of this work is to provide a better understanding of the potential benefits of mitigation policies in addressing global and regional emissions. In this work, we introduce a probabilistic approach to explore the impacts of retrofit and scrappage on global PM emissions from on-road vehicles in the coming decades. This approach includes scenario analysis, sensitivity analysis and Monte Carlo simulations. A dynamic model of vehicle population linked to emission characteristics, SPEW-Trend, is used to estimate future emissions and make policy evaluations. Three basic questions will be answered in this work: (1) what contribution can these two programs make to improve global emissions in the future? (2) in which regions are such programs most and least effective in reducing emissions and what features of the vehicle fleet cause these results? (3) what is the level of confidence in the projected emission reductions, given uncertain parameters in describing the dynamic vehicle fleet?

  12. Life-cycle GHG emissions of electricity from syngas produced by pyrolyzing woody biomass

    Treesearch

    Hongmei Gu; Richard Bergman

    2015-01-01

    Low-value residues from forest restoration activities in the western United States intended to mitigate effects from wildfire, climate change, and pests and disease need a sustainable market to improve the economic viability of treatment. Converting biomass into bioenergy is a potential solution. Life-cycle assessment (LCA) as a sustainable metric tool can assess the...

  13. Scenic Vistas and the Changing Policy Landscape: Visualizing and Testing the Role of Visual Resources in Ecosystem Management

    Treesearch

    Robert G. Ribe; Edward T. Armstrong; Paul H. Gobster

    2002-01-01

    The Northwest Forest Plan applies a shift in policy to national forests in the Pacific Northwest, with implications for other public landscapes. This shift offers potentially strong scenic implications for areas that have historically emphasized clearcutting with little visual impact mitigation. These areas will now emphasize biocentric concerns and harvests formed...

  14. A STELLA model to estimate soil CO2 emissions from a short-rotation woody crop

    Treesearch

    Ying Ouyang; Theodor D. Leininger; Jeff Hatten; Prem B. Parajuli

    2012-01-01

    The potential for climatic factors as well as soil–plant–climate interactions to change as a result of rising levels of atmospheric CO2 concentration is an issue of increasing international environmental concern. Agricultural and forest practices and managements may be important contributors to mitigating elevated atmospheric CO2...

  15. A Screening Assessment of the Potential Impacts of Climate Change on Combined Sewer Overflow (Cso) Mitigation in the Great Lakes and New England Regions (External Review Draft)

    EPA Science Inventory

    EPA has released this draft document solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. This document has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency policy ...

  16. Social and cultural influences on management for carbon sequestration on US family forestlands: a literature synthesis

    Treesearch

    A. Paige Fischer; Susan Charnley

    2010-01-01

    Nonindustrial private—or "family"—forests hold great potential for sequestering carbon and have received much attention in discussions about forestry-based climate change mitigation. However, little is known about social and cultural influences on owners' willingness to manage for carbon and respond to policies designed to encourage carbon-oriented...

  17. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices.

    PubMed

    Minamikawa, Kazunori; Fumoto, Tamon; Iizumi, Toshichika; Cha-Un, Nittaya; Pimple, Uday; Nishimori, Motoki; Ishigooka, Yasushi; Kuwagata, Tsuneo

    2016-10-01

    There is concern about positive feedbacks between climate change and methane (CH4) emission from rice paddies. However, appropriate water management may mitigate the problem. We tested this hypothesis at six field sites in central Thailand, where the irrigated area is rapidly increasing. We used DNDC-Rice, a process-based biogeochemistry model adjusted based on rice growth data at each site to simulate CH4 emission from a rice-rice double cropping system from 2001 to 2060. Future climate change scenarios consisting of four representative concentration pathways (RCPs) and seven global climate models were generated by statistical downscaling. We then simulated CH4 emission in three water management practices: continuous flooding (CF), single aeration (SA), and multiple aeration (MA). The adjusted model reproduced the observed rice yield and CH4 emission well at each site. The simulated CH4 emissions in CF from 2051 to 2060 were 5.3 to 7.8%, 9.6 to 16.0%, 7.3 to 18.0%, and 13.6 to 19.0% higher than those from 2001 to 2010 in RCPs 2.6, 4.5, 6.0, and 8.5, respectively, at the six sites. Regionally, SA and MA mitigated CH4 emission by 21.9 to 22.9% and 53.5 to 55.2%, respectively, relative to CF among the four RCPs. These mitigation potentials by SA and MA were comparable to those from 2001 to 2010. Our results indicate that climate change in the next several decades will not attenuate the quantitative effect of water management practices on mitigating CH4 emission from irrigated rice paddies in central Thailand. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Climate change mitigation policies and poverty in developing countries

    NASA Astrophysics Data System (ADS)

    Hussein, Zekarias; Hertel, Thomas; Golub, Alla

    2013-09-01

    Mitigation of the potential impacts of climate change is one of the leading policy concerns of the 21st century. However, there continues to be heated debate about the nature, the content and, most importantly, the impact of the policy actions needed to limit greenhouse gas emissions. One contributing factor is the lack of systematic evidence on the impact of mitigation policy on the welfare of the poor in developing countries. In this letter we consider two alternative policy scenarios, one in which only the Annex I countries take action, and the second in which the first policy is accompanied by a forest carbon sequestration policy in the non-Annex regions. Using an economic climate policy analysis framework, we assess the poverty impacts of the above policy scenarios on seven socio-economic groups in 14 developing countries. We find that the Annex-I-only policy is poverty friendly, since it enhances the competitiveness of non-Annex countries—particularly in agricultural production. However, once forest carbon sequestration incentives in the non-Annex regions are added to the policy package, the overall effect is to raise poverty in the majority of our sample countries. The reason for this outcome is that the dominant impacts of this policy are to raise returns to land, reduce agricultural output and raise food prices. Since poor households rely primarily on their own labor for income, and generally own little land, and since they also spend a large share of their income on food, they are generally hurt on both the earning and the spending fronts. This result is troubling, since forest carbon sequestration—particularly through avoided deforestation—is a promising, low cost option for climate change mitigation.

  19. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  20. The impact of health changes on labor supply: evidence from merged data on individual objective medical diagnosis codes and early retirement behavior.

    PubMed

    Christensen, Bent Jesper; Kallestrup-Lamb, Malene

    2012-06-01

    The justification bias in the estimated impact of health shocks on retirement is mitigated by using objective health measures from a large, register-based longitudinal data set including medical diagnosis codes, along with labor market status, financial, and socio-economic variables. The duration until retirement is modeled using single and competing risk specifications, observed and unobserved heterogeneity, and flexible baseline hazards. Wealth is used as a proxy for elapsed duration to mitigate the potential selection bias stemming from conditioning on initial participation. The competing risk specification distinguishes complete multiperiod routes to retirement, such as unemployment followed by early retirement. A result on comparison of coefficients across all states is offered. The empirical results indicate a strong impact of health changes on retirement and hence a large potential for public policy measures intended to retain older workers longer in the labor force. Disability responds more to health shocks than early retirement, especially to diseases of the circulatory, respiratory, and musculoskeletal systems, as well as mental and behavioral disorders. Some unemployment spells followed by early retirement appear voluntary and spurred by life style diseases. Copyright © 2012 John Wiley & Sons, Ltd.

  1. Scrotal insulation and sperm production in the boar.

    PubMed

    Parrish, John J; Willenburg, Kilby L; Gibbs, Katelynn M; Yagoda, Kylie B; Krautkramer, Megan M; Loether, Teyanna M; Melo, Fabiana C S A

    2017-09-01

    Seasonal infertility is a limiting factor in boar fertility, and is increasingly important as climate changes. Spermatogenesis in the boar produces 256 spermatozoa per type A 1 spermatogonium, but the process is inefficient such that only 10-30% of these potential spermatozoa are actually produced. Heat further impacts spermatogenesis by reducing the number of specific germ cells produced while increasing the fraction of abnormal sperm. Early studies used whole-animal exposure to simulate seasonal exposure to heat under production settings, but this approach is associated with many confounding factors that make assessment of the mechanisms of heat-induced damage to spermatogenesis difficult. Scrotal insulation provides a better model to investigate the mechanisms and potential mitigation strategies of heat-induce damage. For example, scrotal insulation helped identify a link between short-term heat stress and damage to meiotic germ cells. This outcome is likely due to changes in the integrity of the blood-testis barrier, which induce apoptosis, autophagy and DNA damage in the germ cells. Further understanding how heat damages spermatogenesis, and whether or not this can be repaired, are crucial to mitigating heat effects on boars in production settings. © 2017 Wiley Periodicals, Inc.

  2. Impact of operating conditions on the acetylene contamination in the cathode of proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Zhai, Yunfeng; St-Pierre, Jean

    2017-12-01

    Realistically, proton exchange membrane fuel cells (PEMFCs) are operated under varying operating conditions that potentially impact the acetylene contamination reactions. In this paper, the effects of the cell operating conditions on the acetylene contamination in PEMFCs are investigated under different current densities and temperatures with different acetylene concentrations in the cathode. Electrochemical impedance spectroscopy is applied during the constant-current operation to analyze the impacts of the operating conditions on the acetylene electrochemical reactions. The experimental results indicate that higher acetylene concentrations, higher current densities and lower cell temperatures decrease the cell performance more. In particular, cathode poisoning becomes more severe at medium cell current densities. The cell cathode potentials at such current densities are not sufficient to completely oxidize the intermediate or sufficiently low to completely reduce the adsorbed acetylene. Based on these investigations, the possible condition-dependent limitations of the acetylene concentration and cell operating voltage are proposed for insight into the acetylene contamination mitigation stratagem. Regarding the barrier conditions, the acetylene reactions change abruptly, and adjusting the cell operation parameters to change the acetylene adsorbate and intermediate accumulation conditions to induce complete oxidation or reduction conditions may mitigate the severe acetylene contamination effects on PEMFCs.

  3. Burden Sharing with Climate Change Impacts

    NASA Astrophysics Data System (ADS)

    Tavoni, M.; van Vuuren, D.; De Cian, E.; Marangoni, G.; Hof, A.

    2014-12-01

    Efficiency and equity have been at the center of the climate change policy making since the very first international environmental agreements on climate change, though over time how to implement these principles has taken different forms. Studies based on Integrated Assessment Models have also shown that the economic effort of achieving a 2 degree target in a cost-effective way would differ widely across regions (Tavoni et al. 2013) because of diverse economic and energy structure, baseline emissions, energy and carbon intensity. Policy instruments, such as a fully-fledged, global emission trading schemes can be used to pursuing efficiency and equity at the same time but the literature has analyzed the compensations required to redistribute only mitigation costs. However, most of these studies have neglected the potential impacts of climate change. In this paper we use two integrated assessment models -FAIR and WITCH- to explore the 2°C policy space when accounting for climate change impacts. Impacts are represented via two different reduced forms equations, which despite their simplicity allows us exploring the key sensitivities- Our results show that in a 2 degree stabilization scenarios residual damages remain significant (see Figure 1) and that if you would like to compensate those as part of an equal effort scheme - this would lead to a different allocation than focusing on a mitigation based perspective only. The residual damages and adaptation costs are not equally distributed - and while we do not cover the full uncertainty space - with 2 different models and 2 sets of damage curves we are still able to show quite similar results in terms of vulnerable regions and the relative position of the different scenarios. Therefore, accounting for the residual damages and the associated adaptation costs on top of the mitigation burden increases and redistributes the full burden of total climate change.

  4. Current available strategies to mitigate greenhouse gas emissions in livestock systems: an animal welfare perspective.

    PubMed

    Llonch, P; Haskell, M J; Dewhurst, R J; Turner, S P

    2017-02-01

    Livestock production is a major contributor to greenhouse gas (GHG) emissions, so will play a significant role in the mitigation effort. Recent literature highlights different strategies to mitigate GHG emissions in the livestock sector. Animal welfare is a criterion of sustainability and any strategy designed to reduce the carbon footprint of livestock production should consider animal welfare amongst other sustainability metrics. We discuss and tabulate the likely relationships and trade-offs between the GHG mitigation potential of mitigation strategies and their welfare consequences, focusing on ruminant species and on cattle in particular. The major livestock GHG mitigation strategies were classified according to their mitigation approach as reducing total emissions (inhibiting methane production in the rumen), or reducing emissions intensity (Ei; reducing CH4 per output unit without directly targeting methanogenesis). Strategies classified as antimethanogenic included chemical inhibitors, electron acceptors (i.e. nitrates), ionophores (i.e. Monensin) and dietary lipids. Increasing diet digestibility, intensive housing, improving health and welfare, increasing reproductive efficiency and breeding for higher productivity were categorized as strategies that reduce Ei. Strategies that increase productivity are very promising ways to reduce the livestock carbon footprint, though in intensive systems this is likely to be achieved at the cost of welfare. Other strategies can effectively reduce GHG emissions whilst simultaneously improving animal welfare (e.g. feed supplementation or improving health). These win-win strategies should be strongly supported as they address both environmental and ethical sustainability. In order to identify the most cost-effective measures for improving environmental sustainability of livestock production, the consequences of current and future strategies for animal welfare must be scrutinized and contrasted against their effectiveness in mitigating climate change.

  5. Mitigation planning for raptors during mining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Platt, S.W.; Hargis, N.E.

    1990-12-31

    Birds of prey and their eggs, young and nests are protected by state and federal laws and regulations. Surface mining operators may experience conflicts with raptors when expanding into nesting areas or when raptors are attracted into mining areas. State and federal permits are required for disturbance or manipulation of birds of prey. Mitigation planning for raptors begins before mining and continues through mining. As conflict situations changes, so must the mitigation plan. Before each nesting season the mining schedule should be compared to areas of known raptor nesting activity. If overlap occurs, nest protection measures may be needed. Areasmore » of potential conflict should be patrolled regularly to identify the presence of a raptor pair and nest starts. Should a raptor nest be built and eggs laid, a change in the mining schedule or an egg or brood manipulation may resolve the conflict. Bridger Coal Company has successfully mitigated conflicts with 3 raptor species. A ferruginous hawk (Buteo regalis) nest with brood was successfully relocated across a pit. Red-tailed hawk (B. jamaicensis) egg clutches were removed from 2 highwall nests and transported in a portable incubator to a commercial raptor propagator where they were hatched, fed and conspecifically imprinted until achieving self-thermoregulation. All chicks were returned to the mine and successfully placed into foster nests. A metal artificial nest ledge for a prairie falcon (Falco mexicanus) was constructed in a cliff and a traditional nesting ledge rendered inaccessible. The falcon pair successfully nested in the artificial ledge.« less

  6. Climate change and health: impacts, vulnerability, adaptation and mitigation.

    PubMed

    Kjellstrom, Tord; Weaver, Haylee J

    2009-01-01

    Global climate change is progressing and health impacts have been observed in a number of countries, including Australia. The main health impacts will be due to direct heat exposure, extreme weather, air pollution, reduced local food production, food- and vectorborne infectious diseases and mental stress. The issue is one of major public health importance. Adaptation to reduce the effects of climate change involves many different sectors to minimise negative health outcomes. Wide-scale mitigation is also required, in order to reduce the effects of climate change. In addition, future urban design must be modified to mitigate and adapt to the effects of climate change. Strategies for mitigation and adaptation can create co-benefits for both individual and community health, by reducing non-climate-related health hazard exposures and by encouraging health promoting behaviours and lifestyles.

  7. Using Local Stories as a Call to Action on Climate Change Adaptation and Mitigation in Minnesota

    NASA Astrophysics Data System (ADS)

    Phipps, M.

    2015-12-01

    Climate Generation: A Will Steger Legacy and the University of Minnesota's Regional Sustainability Development Partnerships (RSDP) have developed a novel approach to engaging rural Minnesotans on climate change issues. Through the use of personal, local stories about individuals' paths to action to mitigate and or adapt to climate change, Climate Generation and RSDP aim to spur others to action. Minnesota's Changing Climate project includes 12 Climate Convenings throughout rural Minnesota in a range of communities (tourism-based, agrarian, natural resources-based, university towns) to engage local populations in highly local conversations about climate change, its local impacts, and local solutions currently occurring. Climate Generation and RSDP have partnered with Molly Phipps Consulting to evaluate the efficacy of this approach in rural Minnesota. Data include pre and post convening surveys examining participants' current action around climate change, attitudes toward climate change (using questions from Maibach, Roser-Renouf, and Leiserowitz, 2009), and the strength of their social network to support their current and ongoing work toward mitigating and adapting to climate change. Although the Climate Convenings are tailored to each community, all include a resource fair of local organizations already engaging in climate change mitigation and adaptation activities which participants can participate in, a welcome from a trusted local official, a presentation on the science of climate change, sharing of local climate stories, and break-out groups where participants can learn how to get involved in a particular mitigation or adaptation strategy. Preliminary results have been positive: participants feel motivated to work toward mitigating and adapting to climate change, and more local stories have emerged that can be shared in follow-up webinars and on a project website to continue to inspire others to act.

  8. Climate change, conflict and health.

    PubMed

    Bowles, Devin C; Butler, Colin D; Morisetti, Neil

    2015-10-01

    Future climate change is predicted to diminish essential natural resource availability in many regions and perhaps globally. The resulting scarcity of water, food and livelihoods could lead to increasingly desperate populations that challenge governments, enhancing the risk of intra- and interstate conflict. Defence establishments and some political scientists view climate change as a potential threat to peace. While the medical literature increasingly recognises climate change as a fundamental health risk, the dimension of climate change-associated conflict has so far received little attention, despite its profound health implications. Many analysts link climate change with a heightened risk of conflict via causal pathways which involve diminishing or changing resource availability. Plausible consequences include: increased frequency of civil conflict in developing countries; terrorism, asymmetric warfare, state failure; and major regional conflicts. The medical understanding of these threats is inadequate, given the scale of health implications. The medical and public health communities have often been reluctant to interpret conflict as a health issue. However, at times, medical workers have proven powerful and effective peace advocates, most notably with regard to nuclear disarmament. The public is more motivated to mitigate climate change when it is framed as a health issue. Improved medical understanding of the association between climate change and conflict could strengthen mitigation efforts and increase cooperation to cope with the climate change that is now inevitable. © The Royal Society of Medicine.

  9. On the potential of redox potential measurements for the characterization of greenhouse gas emissions - preliminary results

    NASA Astrophysics Data System (ADS)

    Wang, Jihuan; Bogena, Heye; Brüggemann, Nicolas

    2017-04-01

    Soil greenhouse gas (GHG) emissions contribute to global warming. In order to support mitigation measures against global warming it is important to understand the controlling processes of GHG emissions. Previous studies focused mainly on the paddy rice fields or wetlands showed a strong relationship between soil redox potential and GHG emission (e.g. N2O). Recent sensor developments open the possibility for the long-term monitoring of field scale soil redox potential changes. Here, we performed laboratory lysimeter experiments to investigate how changes in the redox potential, induced by changes in the water level, affect GHG emissions from agricultural soil. Under our experimental conditions, we found that N2O emissions followed closely the changes in redox potential. The dynamics of redox potential were induced by changing the water-table depth in a laboratory lysimeter. During saturated conditions we found a clear negative correlation between redox potentials and N2O emission rates N2O. After switching from saturated to unsaturated conditions, N2O emission quickly decreased. In contrast, the emissions of CO2 increased with increasing soil redox potentials. The level of N2O emission also depended on the fertilization level of the soil. We propose that redox potential measurements are a viable method for better understanding of the controlling factors of GHG emission and the development agricultural management practices to reduce such emissions.

  10. Service Center for Climate Change Adaptation in Agriculture - an initiative of the University of West Hungary

    NASA Astrophysics Data System (ADS)

    Matyas, Cs.; Berki, I.; Drüszler, A.; Eredics, A.; Galos, B.; Moricz, N.; Rasztovits, E.

    2012-04-01

    In whole Central Europe agricultural production is highly vulnerable and sensitive to impacts of projected climatic changes. The low-elevation regions of the Carpathian Basin (most of the territory of Hungary), where precipitation is the minimum factor of production, are especially exposed to climatic extremes, especially to droughts. Rainfed agriculture, animal husbandry on nature-close pastures and nature-close forestry are the most sensitive sectors due to limited possibilities to counterbalance moisture supply constraints. These sectors have to be best prepared to frequency increase of extreme events, disasters and economic losses. So far, there is a lack of information about the middle and long term consequences on regional and local level. Therefore the importance of complex, long term management planning and of land use optimation is increasing. The aim of the initiative is to set up a fine-scale, GIS-based, complex, integrated system for the definition of the most important regional and local challenges and tasks of climate change adaptation and mitigation in agriculture, forestry, animal husbandry and also nature protection. The Service Center for Climate Change Adaptation in Agriculture is planned to provide the following services: § Complex, GIS-supported database, which integrates the basic information about present and projected climates, extremes, hydrology and soil conditions; § Evaluation of existing satellite-based and earth-based monitoring systems; § GIS-supported information about the future trends of climate change impacts on the agroecological potential and sensitivity status on regional and local level (e.g. land cover/use and expectable changes, production, water and carbon cycle, biodiversity and other ecosystem services, potential pests and diseases, tolerance limits etc.) in fine-scale horizontal resolution, based first of all on natural produce, including also social and economic consequences; § Complex decision supporting system on regional and local scale for middle- and long term adaptation and mitigation strategies, providing information on optimum technologies and energy balances. Cooperation with already existing Climate Service Centres and national and international collaboration in monitoring and research are important elements of the activity of the Centre. In the future, the Centre is planned to form part of a national information system on climate change adaptation and mitigation, supported by the Ministry of Development. Keywords: climate change impacts, forestry, rainfed agriculture, animal husbandry

  11. Global anthropogenic methane emissions 2005-2030: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Höglund-Isaksson, L.

    2012-10-01

    This paper presents estimates of current and future global anthropogenic methane emissions, their technical mitigation potential and associated costs for the period 2005 to 2030. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic methane for 83 countries/regions, which are aggregated to produce global estimates. Global emissions are estimated at 323 Mt methane in 2005, with an expected increase to 414 Mt methane in 2030. The technical mitigation potential is estimated at 195 Mt methane in 2030, whereof about 80 percent is found attainable at a marginal cost less than 20 Euro t-1 CO2eq when using a social planner cost perspective. With a private investor cost perspective, the corresponding fraction is only 30 percent. Major uncertainty sources in emission estimates are identified and discussed.

  12. U.S. landowner behavior, land use and land cover changes, and climate change mitigation.

    Treesearch

    Ralph J. Alig

    2003-01-01

    Landowner behavior is a major determinant of land use and land cover changes. an important consideration for policy analysts concerned with global change. Study of landowner behavior aids in designing more effective incentives for inducing land use and land cover changes to help mitigate climate change by reducing net greenhouse gas emissions. Afforestation,...

  13. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    NASA Astrophysics Data System (ADS)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more resilient and productive ecosystems, and more carbon-neutral bioenergy. Better scientific understanding of the sink provides more options for policy design, enables mitigation strategies that capture co-benefits, and increases the chances that global mitigation commitments will be met.

  14. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability

    PubMed Central

    Mora, Camilo; Caldwell, Iain R.; Caldwell, Jamie M.; Fisher, Micah R.; Genco, Brandon M.; Running, Steven W.

    2015-01-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under “business as usual” (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world’s terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world’s population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people. PMID:26061091

  15. Suitable Days for Plant Growth Disappear under Projected Climate Change: Potential Human and Biotic Vulnerability.

    PubMed

    Mora, Camilo; Caldwell, Iain R; Caldwell, Jamie M; Fisher, Micah R; Genco, Brandon M; Running, Steven W

    2015-06-01

    Ongoing climate change can alter conditions for plant growth, in turn affecting ecological and social systems. While there have been considerable advances in understanding the physical aspects of climate change, comprehensive analyses integrating climate, biological, and social sciences are less common. Here we use climate projections under alternative mitigation scenarios to show how changes in environmental variables that limit plant growth could impact ecosystems and people. We show that although the global mean number of days above freezing will increase by up to 7% by 2100 under "business as usual" (representative concentration pathway [RCP] 8.5), suitable growing days will actually decrease globally by up to 11% when other climatic variables that limit plant growth are considered (i.e., temperature, water availability, and solar radiation). Areas in Russia, China, and Canada are projected to gain suitable plant growing days, but the rest of the world will experience losses. Notably, tropical areas could lose up to 200 suitable plant growing days per year. These changes will impact most of the world's terrestrial ecosystems, potentially triggering climate feedbacks. Human populations will also be affected, with up to ~2,100 million of the poorest people in the world (~30% of the world's population) highly vulnerable to changes in the supply of plant-related goods and services. These impacts will be spatially variable, indicating regions where adaptations will be necessary. Changes in suitable plant growing days are projected to be less severe under strong and moderate mitigation scenarios (i.e., RCP 2.6 and RCP 4.5), underscoring the importance of reducing emissions to avoid such disproportionate impacts on ecosystems and people.

  16. Aerosols from overseas rival domestic emissions over North America.

    PubMed

    Yu, Hongbin; Remer, Lorraine A; Chin, Mian; Bian, Huisheng; Tan, Qian; Yuan, Tianle; Zhang, Yan

    2012-08-03

    Many types of aerosols have lifetimes long enough for their transcontinental transport, making them potentially important contributors to air quality and climate change in remote locations. We estimate that the mass of aerosols arriving at North American shores from overseas is comparable with the total mass of particulates emitted domestically. Curbing domestic emissions of particulates and precursor gases, therefore, is not sufficient to mitigate aerosol impacts in North America. The imported contribution is dominated by dust leaving Asia, not by combustion-generated particles. Thus, even a reduction of industrial emissions of the emerging economies of Asia could be overwhelmed by an increase of dust emissions due to changes in meteorological conditions and potential desertification.

  17. NASA's Agency-Wide Strategy for Environmental Regulatory Risk Analysis and Communication

    NASA Technical Reports Server (NTRS)

    Scroggins, Sharon

    2008-01-01

    NASA's Agency-wide.resource for identifying and managing risks associated with changing environmental regulations Goals of the RRAC PC: 1) Proactively. detect, analyze and communicate environmental regulatory risks to NASA Programs and facilities; 2) Communicate with regulators and participate in the mitigation of such risks; and 3) Provide centralized support on emerging regulations to NASA HQ Environmental Management Division. When significant regulatory changes are identified, timely communication is essential. Communication of changing requirements to the regulatory stakeholders - NASA Programs and Facilities. Communication of potential issues to management and, when appropriate, back to the regulating agency.

  18. Genomic profiling of host responses to Lassa virus: therapeutic potential from primate to man

    PubMed Central

    Zapata, Juan C; Salvato, Maria S

    2015-01-01

    Lassa virus infection elicits distinctive changes in host gene expression and metabolism. We focus on changes in host gene expression that may be biomarkers that discriminate individual pathogens or may help to provide a prognosis for disease. In addition to assessing mRNA changes, functional studies are also needed to discriminate causes of disease from mechanisms of host resistance. Host responses that drive pathogenesis are likely to be targets for prevention or therapy. Host responses to Lassa or its related arenaviruses have been monitored in cell culture, in animal models of hemorrhagic fever, in Lassa-infected nonhuman primates and, to a limited extent, in infected human beings. Here, we describe results from those studies and discuss potential targets for reducing virus replication and mitigating disease. PMID:25844088

  19. Reducing abrupt climate change risk using the Montreal Protocol and other regulatory actions to complement cuts in CO2 emissions

    PubMed Central

    Molina, Mario; Zaelke, Durwood; Sarma, K. Madhava; Andersen, Stephen O.; Ramanathan, Veerabhadran; Kaniaru, Donald

    2009-01-01

    Current emissions of anthropogenic greenhouse gases (GHGs) have already committed the planet to an increase in average surface temperature by the end of the century that may be above the critical threshold for tipping elements of the climate system into abrupt change with potentially irreversible and unmanageable consequences. This would mean that the climate system is close to entering if not already within the zone of “dangerous anthropogenic interference” (DAI). Scientific and policy literature refers to the need for “early,” “urgent,” “rapid,” and “fast-action” mitigation to help avoid DAI and abrupt climate changes. We define “fast-action” to include regulatory measures that can begin within 2–3 years, be substantially implemented in 5–10 years, and produce a climate response within decades. We discuss strategies for short-lived non-CO2 GHGs and particles, where existing agreements can be used to accomplish mitigation objectives. Policy makers can amend the Montreal Protocol to phase down the production and consumption of hydrofluorocarbons (HFCs) with high global warming potential. Other fast-action strategies can reduce emissions of black carbon particles and precursor gases that lead to ozone formation in the lower atmosphere, and increase biosequestration, including through biochar. These and other fast-action strategies may reduce the risk of abrupt climate change in the next few decades by complementing cuts in CO2 emissions. PMID:19822751

  20. An Analysis of the Climate Change Mitigation Potential through Soil Organic Carbon Sequestration in a Corn Belt Watershed

    NASA Astrophysics Data System (ADS)

    Bhattarai, M. D.; Secchi, S.; Schoof, J. T.

    2015-12-01

    The sequestration of carbon constitutes one of major options in agricultural climate change land-based mitigation. We examined the carbon sequestration potential of alternative agricultural land uses in an intensively farmed Corn Belt watershed. We Used downscaled data from eight atmosphere-ocean general circulation models (AOGCMs) for a simulation period between 2015 and 2099 with three emission pathways reflecting low, medium and high greenhouse gas scenarios. The use of downscaled data, coupled with high resolution land use and soil data, can help policy makers and land managers better understand spatial and temporal impacts of climate change. We consider traditional practices such as no-till corn-soybean rotations and continuous corn and include also switchgrass, a bioenergy crop. Our results show that switching from conventional tillage continuous corn to no-till corn-soybean can sequester the equivalent of 156,000 MtCO2 of soil organic carbon with a sequestration rate of 2.38 MtCO2 ha-1 yr-1 for the simulated period. Our results also indicate that switchgrass can sequester the equivalent of 282,000 MtCO2 of soil organic carbon with a sequestration rate of 4.4 MtCO2 ha-1 yr-1 for the period. Our finding also suggests that while climate change impacts corn and soybean yields, it does not have a significant effect on switchgrass yields possibly due to carbon fertilization effect on switchgrass yields.

  1. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in the effectiveness of debris removal and a corresponding increase in the confidence that these combined measures will lead to the stabilisation of the LEO debris population.

  2. A Dynamic Model for the Evaluation of Aircraft Engine Icing Detection and Control-Based Mitigation Strategies

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Rinehart, Aidan W.; Jones, Scott M.

    2017-01-01

    Aircraft flying in regions of high ice crystal concentrations are susceptible to the buildup of ice within the compression system of their gas turbine engines. This ice buildup can restrict engine airflow and cause an uncommanded loss of thrust, also known as engine rollback, which poses a potential safety hazard. The aviation community is conducting research to understand this phenomena, and to identify avoidance and mitigation strategies to address the concern. To support this research, a dynamic turbofan engine model has been created to enable the development and evaluation of engine icing detection and control-based mitigation strategies. This model captures the dynamic engine response due to high ice water ingestion and the buildup of ice blockage in the engines low pressure compressor. It includes a fuel control system allowing engine closed-loop control effects during engine icing events to be emulated. The model also includes bleed air valve and horsepower extraction actuators that, when modulated, change overall engine operating performance. This system-level model has been developed and compared against test data acquired from an aircraft turbofan engine undergoing engine icing studies in an altitude test facility and also against outputs from the manufacturers customer deck. This paper will describe the model and show results of its dynamic response under open-loop and closed-loop control operating scenarios in the presence of ice blockage buildup compared against engine test cell data. Planned follow-on use of the model for the development and evaluation of icing detection and control-based mitigation strategies will also be discussed. The intent is to combine the model and control mitigation logic with an engine icing risk calculation tool capable of predicting the risk of engine icing based on current operating conditions. Upon detection of an operating region of risk for engine icing events, the control mitigation logic will seek to change the engines operating point to a region of lower risk through the modulation of available control actuators while maintaining the desired engine thrust output. Follow-on work will assess the feasibility and effectiveness of such control-based mitigation strategies.

  3. Quantifying and Valuing Potential Climate Change Impacts on Coral Reefs in the United States

    NASA Astrophysics Data System (ADS)

    Wobus, C. W.; Lane, D.; Buddemeier, R. W.; Ready, R. C.; Shouse, K. C.; Martinich, J.

    2012-12-01

    Global climate change presents a two-pronged threat to coral reef ecosystems: increasing sea surface temperatures will increase the likelihood of episodic bleaching events, while increasing ocean carbon dioxide concentrations will change the carbonate chemistry that drives coral growth. Because coral reefs have important societal as well as ecological benefits, climate change mitigation policies that ameliorate these impacts may create substantial economic value. We present a model that evaluates both the ecological and the economic impacts of climate change on coral reefs in the United States. We use a coral reef mortality and bleaching model to project future coral reef declines under a range of climate change policy scenarios for south Florida, Puerto Rico and Hawaii. Using a benefits transfer approach, the outputs from the physical model are then used to quantify the economic impacts of these coral reef declines for each of these regions. We find that differing climate change trajectories create substantial changes in projected coral cover and value for Hawaii, but that the ecological and economic benefits of more stringent emissions scenarios are less clear for Florida and Puerto Rico. Overall, our results indicate that the effectiveness of climate change mitigation policies may be region-specific, but that these policies could result in a net increase of nearly $10 billion in economic value from coral reef-related recreational activities alone, over the 21st century.

  4. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    PubMed

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  5. How early can the seeding dates of spring wheat be under current and future climate in Saskatchewan, Canada?

    PubMed

    He, Yong; Wang, Hong; Qian, Budong; McConkey, Brian; DePauw, Ron

    2012-01-01

    Shorter growing season and water stress near wheat maturity are the main factors that presumably limit the yield potential of spring wheat due to late seeding in Saskatchewan, Canada. Advancing seeding dates can be a strategy to help producers mitigate the impact of climate change on spring wheat. It is unknown, however, how early farmers can seed while minimizing the risk of spring frost damage and the soil and machinery constraints. This paper explores early seeding dates of spring wheat on the Canadian Prairies under current and projected future climate. To achieve this, (i) weather records from 1961 to 1990 were gathered at three sites with different soil and climate conditions in Saskatchewan, Canada; (ii) four climate databases that included a baseline (treated as historic weather climate during the period of 1961-1990) and three climate change scenarios (2040-2069) developed by the Canadian global climate model (GCM) with the forcing of three greenhouse gas (GHG) emission scenarios (A2, A1B and B1); (iii) seeding dates of spring wheat (Triticum aestivum L.) under baseline and projected future climate were predicted. Compared with the historical record of seeding dates, the predicted seeding dates were advanced under baseline climate for all sites using our seeding date model. Driven by the predicted temperature increase of the scenarios compared with baseline climate, all climate change scenarios projected significantly earlier seeding dates than those currently used. Compared to the baseline conditions, there is no reduction in grain yield because precipitation increases during sensitive growth stages of wheat, suggesting that there is potential to shift seeding to an earlier date. The average advancement of seeding dates varied among sites and chosen scenarios. The Swift Current (south-west) site has the highest potential for earlier seeding (7 to 11 days) whereas such advancement was small in the Melfort (north-east, 2 to 4 days) region. The extent of projected climate change in Saskatchewan indicates that growers in this region have the potential of earlier seeding. The results obtained in this study may be used for adaptation assessments of seeding dates under possible climate change to mitigate the impact of potential warming.

  6. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    PubMed Central

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  7. Hungry Horse Mitigation; Flathead Lake, 2001-2002 Annual Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Barry

    2003-06-09

    The Confederated Salish and Kootenai Tribes (CSKT) and Montana Fish Wildlife and Parks (MFWP) wrote ''Fisheries Mitigation Plan for Losses Attributable to the Construction and Operation of Hungry Horse Dam'' in March 1991 to define the fisheries losses, mitigation alternatives and recommendations to protect, mitigate and enhance resident fish and aquatic habitat affected by Hungry Horse Dam. On November 12, 1991, the Northwest Power Planning Council (NPPC) approved the mitigation plan with minor modifications, called for a detailed implementation plan, and amended measures 903(h)(1) through (7). A long-term mitigation plan was submitted in August 1992, was approved by the Councilmore » in 1993, and the first contract for this project was signed on November 11, 1993. The problem this project addresses is the loss of habitat, both in quality and quantity, in the interconnected Flathead Lake and River basin resulting from the construction and operation of Hungry Horse Dam. The purpose of the project is to both implement mitigation measures and monitor the biological responses to those measures including those implemented by Project Numbers 9101903 and 9101904. Goals and objectives of the 1994 Fish and Wildlife Program (Section 10.1) addressed by this project are the rebuilding to sustainable levels weak, but recoverable, native populations injured by the hydropower system. The project mitigates the blockage of spawning runs by Hungry Horse Dam by restoring and even creating spawning habitats within direct drainages to Flathead Lake. The project also addresses the altered habitat within Flathead Lake resulting from species shifts and consequent dominance of new species that restricts the potential success of mitigation measures. Specific goals of this project are to create and restore habitat and quantitatively monitor changes in fish populations to verify the efficacy of our mitigation measures. The project consists of three components: monitoring, restoration and research. Monitoring, for example, includes a spring gillnetting series conducted annually in Flathead Lake and builds on an existing data set initiated in 1981. Monitoring of the experimental kokanee reintroduction was a primary activity of this project between 1992 and 1997. Lake trout, whose high densities have precluded successful mitigation of losses of other species in Flathead Lake, have been monitored since 1996 to measure several biological parameters. Results of this work have utility in determining the population status of this key predator in Flathead Lake. The project has also defined the baseline condition of the Flathead Lake fishery in 1992-1993 and has conducted annual lakewide surveys since 1998. The restoration component of the project has addressed several stream channel, riparian, and fish passage problems. The research component of the project began in FY 2000 and measured trophic linkages between M. relicta and other species to assist in predicting the results of potential mitigation strategies. Only Objective 1 in the workplan is funded entirely by Hungry Horse Mitigation funds. Additional funds are drawn from other sources to assist in completion of Objectives 2-6.« less

  8. IPCC Climate Change 2013: Mitigation of Climate Change - Key Findings and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Sokona, Youba

    2014-05-01

    The Working Group III contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Mitigation of Climate Change, examines the results of scientific research about mitigation, with special attention on how knowledge has evolved since the Fourth Assessment Report published in 2007. Throughout, the focus is on the implications of its findings for policy, without being prescriptive about the particular policies that governments and other important participants in the policy process should adopt. The report begins with a framing of important concepts and methods that help to contextualize the findings presented throughout the assessment. The valuation of risks and uncertainties, ethical concepts and the context of sustainable development and equity are among the guiding principles for the assessment of mitigation strategies. The report highlights past trends in stocks and flows of greenhouse gases and the factors that drive emissions at global, regional, and sectoral scales including economic growth, technology or population changes. It provides analyses of the technological, economic and institutional requirements of long-term mitigation scenarios and details on mitigation measures and policies that are applied in different economic sectors and human settlements. It then discusses interactions of mitigation policies and different policy instrument types at national, regional and global governance levels and between economic sectors, The Working Group III report comprises 16 chapters and in assembling this assessment authors were guided by the principles of the IPCC mandate: to be explicit about mitigation options, to be explicit about their costs and about their risks and opportunities vis-à-vis other development priorities, and to be explicit about the underlying criteria, concepts, and methods for evaluating alternative policies.

  9. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    NASA Astrophysics Data System (ADS)

    Ban-Weiss, G. A.; Lee, S. M.; Katzenstein, A. S.; Carreras-Sospedra, M.; Zhang, X.; Farina, S.; Vahmani, P.; Fine, P.; Epstein, S. A.

    2017-12-01

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB) in Southern California. Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to predict potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. Meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  10. Ecosystem Management and Land Conservation Can Substantially Contribute to California's Climate Mitigation Goals

    NASA Astrophysics Data System (ADS)

    Marvin, D.; Cameron, D. R.; Passero, M. C.; Remucal, J. M.

    2017-12-01

    California has been a global leader in climate change policy through its early adoption of ambitious GHG reduction goals, committing to steep reductions through 2030 and beyond. Modeling efforts focused on future greenhouse gas (GHG) emissions from energy and other sectors in California have shown varying capacity to meet the emissions reductions targets established by the state. These efforts have not included potential reductions from changes in ecosystem management, restoration, and conservation. This study simulates the future GHG reduction potential of these land-based activities (e.g., changes to forest management, avoided conversion of grasslands to agriculture) when applied to California lands at three plausible rates of policy implementation relative to current efforts. We then compare the reduction potential of the activities against "business-as-usual" (BAU) emissions projections for the California to highlight the contribution of the biosphere toward reaching the state's GHG 2030 and 2050 reduction targets. By 2030, an Ambitious land-based activity implementation scenario could contribute as much as 146.7 MMTCO2e or 17.4% of the cumulative reductions needed to meet the state's 2030 goal, greater than the individual contributions of four other economic sectors, including those from the Industrial and Agriculture sectors. On an annual basis, the Ambitious scenario could result in reductions as high as 17.93 MMTCO2e yr-1 or 13.4% of the state's 2030 reduction goal. Most reductions come from changes in forest management, such as extending rotation times for harvest and reducing stocking density, thereby promoting accelerated growth. Such changes comprise 59.8% to 67.4% of annual projected emissions reductions in 2050 for the Ambitious and Limited scenarios, respectively. Implementation of a range of land-based emissions reduction activities can materially contribute to one of the most ambitious mitigation targets globally. This study provides a flexible, dynamic framework for estimating the reductions achievable through land conservation, ecological restoration, and changes in management regimes that can account for new data and scientific understanding.

  11. Greenhouse gas emission curves for advanced biofuel supply chains

    NASA Astrophysics Data System (ADS)

    Daioglou, Vassilis; Doelman, Jonathan C.; Stehfest, Elke; Müller, Christoph; Wicke, Birka; Faaij, Andre; van Vuuren, Detlef P.

    2017-12-01

    Most climate change mitigation scenarios that are consistent with the 1.5-2 °C target rely on a large-scale contribution from biomass, including advanced (second-generation) biofuels. However, land-based biofuel production has been associated with substantial land-use change emissions. Previous studies show a wide range of emission factors, often hiding the influence of spatial heterogeneity. Here we introduce a spatially explicit method for assessing the supply of advanced biofuels at different emission factors and present the results as emission curves. Dedicated crops grown on grasslands, savannahs and abandoned agricultural lands could provide 30 EJBiofuel yr-1 with emission factors less than 40 kg of CO2-equivalent (CO2e) emissions per GJBiofuel (for an 85-year time horizon). This increases to 100 EJBiofuel yr-1 for emission factors less than 60 kgCO2e GJBiofuel-1. While these results are uncertain and depend on model assumptions (including time horizon, spatial resolution, technology assumptions and so on), emission curves improve our understanding of the relationship between biofuel supply and its potential contribution to climate change mitigation while accounting for spatial heterogeneity.

  12. Environmental impacts of utility-scale solar energy

    USGS Publications Warehouse

    Hernandez, R.R.; Easter, S.B.; Murphy-Mariscal, M. L.; Maestre, F.T.; Tavassoli, M.; Allen, E.B.; Barrows, C.W.; Belnap, J.; Ochoa-Hueso, R.; Ravi, S.; Allen, M.F.

    2014-01-01

    Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change.

  13. Flicker Detection, Measurement and Means of Mitigation: A Review

    NASA Astrophysics Data System (ADS)

    Virulkar, V. B.; Aware, M. V.

    2014-04-01

    The voltage fluctuations caused by rapid industrial load change have been a major concern for supply utilities, regulatory agencies and customers. This paper gives a general review about how to examine/assess voltage flicker and methods followed in measuring the flickers due to rapid changing loads and means for its mitigation. It discusses the effects on utilities conditions, compensators response time and compensator capacity of flicker mitigation. A comparison between conventional mitigation techniques and the state-of-art mitigation techniques are carried out. It is shown in many cases that the state-of-art solution provides higher performance compared with conventional mitigation techniques. However, the choice of most suitable solution depends on characteristics of the supply at the point of connection, the requirement of the load and economics.

  14. Estimation of potential safety benefits for pedestrian crash avoidance/mitigation systems.

    DOT National Transportation Integrated Search

    2017-04-01

    This report presents and exercises a methodology to estimate the effectiveness and potential safety benefits of production pedestrian crash avoidance/mitigation systems. The analysis focuses on light vehicles moving forward and striking a pedestrian ...

  15. Climate Change and Health: A Position Paper of the American College of Physicians.

    PubMed

    Crowley, Ryan A

    2016-05-03

    Climate change could have a devastating effect on human and environmental health. Potential effects of climate change on human health include higher rates of respiratory and heat-related illness, increased prevalence of vector-borne and waterborne diseases, food and water insecurity, and malnutrition. Persons who are elderly, sick, or poor are especially vulnerable to these potential consequences. Addressing climate change could have substantial benefits to human health. In this position paper, the American College of Physicians (ACP) recommends that physicians and the broader health care community throughout the world engage in environmentally sustainable practices that reduce carbon emissions; support efforts to mitigate and adapt to the effects of climate change; and educate the public, their colleagues, their community, and lawmakers about the health risks posed by climate change. Tackling climate change is an opportunity to dramatically improve human health and avert dire environmental outcomes, and ACP believes that physicians can play a role in achieving this goal.

  16. The role of grasslands in food security and climate change

    PubMed Central

    O'Mara, F. P.

    2012-01-01

    Background Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Scope Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO2 equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Conclusions Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores. PMID:23002270

  17. The role of grasslands in food security and climate change.

    PubMed

    O'Mara, F P

    2012-11-01

    Grasslands are a major part of the global ecosystem, covering 37 % of the earth's terrestrial area. For a variety of reasons, mostly related to overgrazing and the resulting problems of soil erosion and weed encroachment, many of the world's natural grasslands are in poor condition and showing signs of degradation. This review examines their contribution to global food supply and to combating climate change. Grasslands make a significant contribution to food security through providing part of the feed requirements of ruminants used for meat and milk production. Globally, this is more important in food energy terms than pig meat and poultry meat. Grasslands are considered to have the potential to play a key role in greenhouse gas mitigation, particularly in terms of global carbon storage and further carbon sequestration. It is estimated that grazing land management and pasture improvement (e.g. through managing grazing intensity, improved productivity, etc) have a global technical mitigation potential of almost 1·5 Gt CO(2) equivalent in 2030, with additional mitigation possible from restoration of degraded lands. Milk and meat production from grassland systems in temperate regions has similar emissions of carbon dioxide per kilogram of product as mixed farming systems in temperate regions, and, if carbon sinks in grasslands are taken into account, grassland-based production systems can be as efficient as high-input systems from a greenhouse gas perspective. Grasslands are important for global food supply, contributing to ruminant milk and meat production. Extra food will need to come from the world's existing agricultural land base (including grasslands) as the total area of agricultural land has remained static since 1991. Ruminants are efficient converters of grass into humanly edible energy and protein and grassland-based food production can produce food with a comparable carbon footprint as mixed systems. Grasslands are a very important store of carbon, and they are continuing to sequester carbon with considerable potential to increase this further. Grassland adaptation to climate change will be variable, with possible increases or decreases in productivity and increases or decreases in soil carbon stores.

  18. Land use strategies to mitigate climate change in carbon dense temperate forests.

    PubMed

    Law, Beverly E; Hudiburg, Tara W; Berner, Logan T; Kent, Jeffrey J; Buotte, Polly C; Harmon, Mark E

    2018-04-03

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO 2 , disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon's net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011-2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m 3 ⋅y -1 Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. Copyright © 2018 the Author(s). Published by PNAS.

  19. Land use strategies to mitigate climate change in carbon dense temperate forests

    PubMed Central

    Hudiburg, Tara W.; Berner, Logan T.; Kent, Jeffrey J.; Buotte, Polly C.; Harmon, Mark E.

    2018-01-01

    Strategies to mitigate carbon dioxide emissions through forestry activities have been proposed, but ecosystem process-based integration of climate change, enhanced CO2, disturbance from fire, and management actions at regional scales are extremely limited. Here, we examine the relative merits of afforestation, reforestation, management changes, and harvest residue bioenergy use in the Pacific Northwest. This region represents some of the highest carbon density forests in the world, which can store carbon in trees for 800 y or more. Oregon’s net ecosystem carbon balance (NECB) was equivalent to 72% of total emissions in 2011–2015. By 2100, simulations show increased net carbon uptake with little change in wildfires. Reforestation, afforestation, lengthened harvest cycles on private lands, and restricting harvest on public lands increase NECB 56% by 2100, with the latter two actions contributing the most. Resultant cobenefits included water availability and biodiversity, primarily from increased forest area, age, and species diversity. Converting 127,000 ha of irrigated grass crops to native forests could decrease irrigation demand by 233 billion m3⋅y−1. Utilizing harvest residues for bioenergy production instead of leaving them in forests to decompose increased emissions in the short-term (50 y), reducing mitigation effectiveness. Increasing forest carbon on public lands reduced emissions compared with storage in wood products because the residence time is more than twice that of wood products. Hence, temperate forests with high carbon densities and lower vulnerability to mortality have substantial potential for reducing forest sector emissions. Our analysis framework provides a template for assessments in other temperate regions. PMID:29555758

  20. The Implications of Growing Bioenergy Crops on Water Resources, Carbon and Nitrogen Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Song, Y.; Kheshgi, H. S.

    2016-12-01

    What is the potential for the crops Corn, Miscanthus and switchgrass to meet future energy demands in the U.S.A., and would they mitigate climate change by offsetting fossil fuel greenhouse gas (GHG) emissions? The large-scale cultivation of these bioenergy crops itself could also drive climate change through changes in albedo, evapotranspiration (ET), and GHG emissions. Whether these climate effects will mitigate or exacerbate climate change in the short- and long-term is uncertain. This uncertainty stems from our incomplete understanding of the effects of expanded bioenergy crop production on terrestrial water and energy balance, carbon and nitrogen dynamics, and their interactions. This study aims to understand the implications of growing large-scale bioenergy crops on water resources, carbon and nitrogen dynamics in the United States using a data-modeling framework (ISAM) that we developed. Our study indicates that both Miscanthus and Cave-in-Rock switchgrass can attain high and stable yield over parts of the Midwest, however, this high production is attained at the cost of increased soil water loss as compared to current natural vegetation. Alamo switchgrass can attain high and stable yield in the southern US without significant influence on soil water quantity.

  1. Greenhouse gas mitigation potentials in the livestock sector

    NASA Astrophysics Data System (ADS)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  2. Albedo impact on the suitability of biochar systems to mitigate global warming.

    PubMed

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.

  3. Impacts of aerosol pollutant mitigation on lowland rice yields in China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyi; Li, Tao; Yue, Xu; Yang, Xiaoguang

    2017-10-01

    Aerosol pollution in China is significantly altering radiative transfer processes and is thereby potentially affecting rice photosynthesis and yields. However, the response of rice photosynthesis to aerosol-induced radiative perturbations is still not well understood. Here, we employ a process-based modelling approach to simulate changes in incoming radiation (RAD) and the diffuse radiation fraction (DF) with aerosol mitigation in China and their associated impacts on rice yields. Aerosol reduction has the positive effect of increasing RAD and the negative effect of decreasing DF on rice photosynthesis and yields. In rice production areas where the average RAD during the growing season is lower than 250 W m-2, aerosol reduction is beneficial for higher rice yields, whereas in areas with RAD>250 W m-2, aerosol mitigation causes yield declines due to the associated reduction in the DF, which decreases the light use efficiency. As a net effect, rice yields were estimated to significantly increase by 0.8%-2.6% with aerosol concentrations reductions from 20 to 100%, which is lower than the estimates obtained in earlier studies that only considered the effects of RAD. This finding suggests that both RAD and DF are important processes influencing rice yields and should be incorporated into future assessments of agricultural responses to variations in aerosol-induced radiation under climate change.

  4. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies

    PubMed Central

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-01-01

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies. PMID:27657098

  5. The Role of Health Co-Benefits in the Development of Australian Climate Change Mitigation Policies.

    PubMed

    Workman, Annabelle; Blashki, Grant; Karoly, David; Wiseman, John

    2016-09-20

    Reducing domestic carbon dioxide and other associated emissions can lead to short-term, localized health benefits. Quantifying and incorporating these health co-benefits into the development of national climate change mitigation policies may facilitate the adoption of stronger policies. There is, however, a dearth of research exploring the role of health co-benefits on the development of such policies. To address this knowledge gap, research was conducted in Australia involving the analysis of several data sources, including interviews carried out with Australian federal government employees directly involved in the development of mitigation policies. The resulting case study determined that, in Australia, health co-benefits play a minimal role in the development of climate change mitigation policies. Several factors influence the extent to which health co-benefits inform the development of mitigation policies. Understanding these factors may help to increase the political utility of future health co-benefits studies.

  6. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the agriculture, forestry and other land use (AFOLU) sector.

    PubMed

    Bustamante, Mercedes; Robledo-Abad, Carmenza; Harper, Richard; Mbow, Cheikh; Ravindranat, Nijavalli H; Sperling, Frank; Haberl, Helmut; Pinto, Alexandre de Siqueira; Smith, Pete

    2014-10-01

    The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process. © 2014 John Wiley & Sons Ltd.

  7. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is weakly effective in A1B throughout the 21C. Two distinct mechanisms characterize the diverse strengthening of the hydrological cycle in the middle and end- 21C. It is only through a very large perturbation of surface fluxes that A1B achieves a larger increase in global precipitation in the last decades of the 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratio change between the two scenarios. This work warns that mitigation policies that promote aerosol abatement, may lead to an unexpected stronger intensification of the hydrological cycle and associated changes that may last for decades after global warming is effectively mitigated. On the other hand, it is also suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  8. The Effect of Mitigation Policy on Regional Climate Impacts on the U.S. Electric Sector

    NASA Astrophysics Data System (ADS)

    Cohen, S. M.; Sun, Y.; Strzepek, K.; McFarland, J.; Boehlert, B.; Fant, C.

    2017-12-01

    Climate change can influence the U.S. electricity sector in many ways, the nature of which can be shaped by energy and environmental policy choices. Changing temperatures affect electricity demand largely through heating and cooling needs, and temperatures also affect generation and transmission system performance. Altered precipitation patterns affect the regional and seasonal distribution of surface water runoff, which changes hydropower operation and thermal cooling water availability. The extent to which these stimuli influence U.S. power sector operation and planning will depend to some extent on whether or not proactive policies are enacted to mitigate these impacts. Mitigation policies such as CO2 emissions limits or technology restrictions can change the makeup of the electricity system while reducing the extent of climate change itself. We use the National Renewable Energy Laboratory's Regional Energy Deployment System (ReEDS), a U.S. electric sector capacity expansion model, to explore electric sector evolution through 2050 under alternative climate and policy assumptions. The model endogenously represents climate impacts on load, power system performance, cooling water availability, and hydropower, allowing internally consistent system responses to climate change along with projected technology, market, and policy conditions. We compare climate impacts across 5 global circulation models for a 8.5 W/m2 representative concentration pathway (RCP) without a climate mitigation policy and a 4.5 W/m2 RCP with climate mitigation. Climate drivers affect the capacity and generation mix at the national and regional levels, with relative growth of wind, solar, and natural gas-based technologies depending on local electricity system characteristics. These differences affect regional economic impacts, measured here as changes to electricity price and system costs. Mitigation policy reduces the economic and system impacts of climate change largely by moderating temperature-induced load but also by lessening water- and temperature-based performance constraints. Policy impacts are nuanced and region-specific, and this analysis underscores the importance of climate mitigation policy to regional electricity system planning decisions.

  9. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    NASA Astrophysics Data System (ADS)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  10. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.

    2013-01-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are comparedmore » to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.« less

  11. Herbicide mitigation in microcosms simulating stormwater basins subject to polluted water inputs.

    PubMed

    Bois, P; Huguenot, D; Jézéquel, K; Lollier, M; Cornu, J Y; Lebeau, T

    2013-03-01

    Non-point source pollution as a result of wine-growing activity is of high concern. Stormwater basins (SWB) found downstream of vineyard watersheds could show a potential for the mitigation of runoff water containing herbicides. In this study, mitigation of vinery-used herbicides was studied in microcosms with a very similar functioning to that recorded in SWB. Mitigation efficiency of glyphosate, diuron and 3,4-dichloroaniline (3,4-DCA) was investigated by taking into account hydraulic flow rate, mitigation duration, bioaugmentation and plant addition. Mitigation efficiency measured in water ranged from 63.0% for diuron to 84.2% for 3,4-DCA and to 99.8% for glyphosate. Water-storage duration in the SWB and time between water supplies were shown to be the most influential factors on the mitigation efficiency. Six hours water-storage duration allowed an efficient sorption of herbicides and their degradation by indigenous microorganisms in 5 weeks. Neither bioaugmentation nor plant addition had a significant effect on herbicide mitigation. Our results show that this type of SWB are potentially relevant for the mitigation of these herbicides stemming from wine-growing activity, providing a long enough hydraulic retention time. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Climate mitigation and the future of tropical landscapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomson, Allison M.; Calvin, Katherine V.; Chini, Louise Parsons

    2010-11-16

    Land use change to meet 21st Century demands for food, fuel, and fiber will occur in the context of both a changing climate as well as societal efforts to mitigate climate change. This changing natural and human environment will have large consequences for forest resources, terrestrial carbon storage and emissions, and food and energy crop production over the next century. Any climate change mitigation policies enacted will change the environment under which land-use decisions are made and alter global land use change patterns. Here we use the GCAM integrated assessment model to explore how climate mitigation policies that achieve amore » climate stabilization at 4.5 W m-2 radiative forcing in 2100 and value carbon in terrestrial ecosystems interact with future agricultural productivity and food and energy demands to influence land use in the tropics. The regional land use results are downscaled from GCAM regions to produce gridded maps of tropical land use change. We find that tropical forests are preserved only in cases where a climate mitigation policy that values terrestrial carbon is in place, and crop productivity growth continues throughout the century. Crop productivity growth is also necessary to avoid large scale deforestation globally and enable the production of bioenergy crops. The terrestrial carbon pricing assumptions in GCAM are effective at avoiding deforestation even when cropland must expand to meet future food demand.« less

  13. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE PAGES

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    2016-06-06

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  14. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies.

    PubMed

    DeRolph, Christopher R; Schramm, Michael P; Bevelhimer, Mark S

    2016-10-01

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multi-faceted explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, we were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements are functions of a range of factors, from biophysical to socio-political. Project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Predicting environmental mitigation requirements for hydropower projects through the integration of biophysical and socio-political geographies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevelhimer, Mark S.; DeRolph, Christopher R.; Schramm, Michael P.

    Uncertainty about environmental mitigation needs at existing and proposed hydropower projects makes it difficult for stakeholders to minimize environmental impacts. Hydropower developers and operators desire tools to better anticipate mitigation requirements, while natural resource managers and regulators need tools to evaluate different mitigation scenarios and order effective mitigation. Here we sought to examine the feasibility of using a suite of multidisciplinary explanatory variables within a spatially explicit modeling framework to fit predictive models for future environmental mitigation requirements at hydropower projects across the conterminous U.S. Using a database comprised of mitigation requirements from more than 300 hydropower project licenses, wemore » were able to successfully fit models for nearly 50 types of environmental mitigation and to apply the predictive models to a set of more than 500 non-powered dams identified as having hydropower potential. The results demonstrate that mitigation requirements have been a result of a range of factors, from biological and hydrological to political and cultural. Furthermore, project developers can use these models to inform cost projections and design considerations, while regulators can use the models to more quickly identify likely environmental issues and potential solutions, hopefully resulting in more timely and more effective decisions on environmental mitigation.« less

  16. Neural circuits in the brain that are activated when mitigating criminal sentences.

    PubMed

    Yamada, Makiko; Camerer, Colin F; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-03-27

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments.

  17. Community perceptions of carbon sequestration: insights from California

    NASA Astrophysics Data System (ADS)

    Wong-Parodi, Gabrielle; Ray, Isha

    2009-07-01

    Over the last decade, many energy experts have supported carbon sequestration as a viable technological response to climate change. Given the potential importance of sequestration in US energy policy, what might explain the views of communities that may be directly impacted by the siting of this technology? To answer this question, we conducted focus groups in two communities who were potentially pilot project sites for California's DOE-funded West Coast Regional Partnership (WESTCARB). We find that communities want a voice in defining the risks to be mitigated as well as the justice of the procedures by which the technology is implemented. We argue that a community's sense of empowerment is key to understanding its range of carbon sequestration opinions, where 'empowerment' includes the ability to mitigate community-defined risks of the technology. This sense of empowerment protects the community against the downside risk of government or corporate neglect, a risk that is rarely identified in risk assessments but that should be factored into assessment and communication strategies.

  18. A primer on potential impacts, management priorities, and future directions for Elodea spp. in high latitude systems: learning from the Alaskan experience

    USGS Publications Warehouse

    Carey, Michael P.; Sethi, Suresh A; Larsen, Sabrina J; Rich, Cecil F

    2016-01-01

    Invasive species introductions in Arctic and Subarctic ecosystems are growing as climate change manifests and human activity increases in high latitudes. The aquatic plants of the genus Elodea are potential invaders to Arctic and Subarctic ecosystems circumpolar and at least one species is already established in Alaska, USA. To illustrate the problems of preventing, eradicating, containing, and mitigating aquatic, invasive plants in Arctic and Subarctic ecosystems, we review the invasion dynamics of Elodea and provide recommendations for research and management efforts in Alaska. Foremost, we conclude the remoteness of Arctic and Subarctic systems such as Alaska is no longer a protective attribute against invasions, as transportation pathways now reach throughout these regions. Rather, high costs of operating in remote Arctic and Subarctic systems hinders detection of infestations and limits eradication or mitigation, emphasizing management priorities of prevention and containment of aquatic plant invaders in Alaska and other Arctic and Subarctic systems.

  19. Pets' Impact on Your Patients' Health: Leveraging Benefits and Mitigating Risk.

    PubMed

    Hodgson, Kate; Barton, Luisa; Darling, Marcia; Antao, Viola; Kim, Florence A; Monavvari, Alan

    2015-01-01

    Over two thirds of Americans live with pets and consider them important members of the family. Pets benefit human health (zooeyia) in 4 ways: as builders of social capital, as agents of harm reduction, as motivators for healthy behavior change, and as potential participants in treatment plans. Conversely, pets can present risks to their owners. They are potential sources of zoonotic disease and injury. Pets can also challenge a family's prioritization of financial and social resources. To activate the benefits of zooeyia and appropriately calibrate and mitigate zoonotic risk, physicians first need to know about the pets in their patients' families. Asking about pets is a simple and feasible approach to assess patients' environmental history and social capital. Asking about pets is a nonthreatening way to build rapport and demonstrates an interest in the whole family, which can improve the physician-patient therapeutic alliance. Physicians can use an interprofessional, collaborative approach with veterinarians to address zoonotic health risks and leverage zooeyia. © Copyright 2015 by the American Board of Family Medicine.

  20. Economics of nuclear power and climate change mitigation policies.

    PubMed

    Bauer, Nico; Brecha, Robert J; Luderer, Gunnar

    2012-10-16

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy.

  1. Economics of nuclear power and climate change mitigation policies

    PubMed Central

    Bauer, Nico; Brecha, Robert J.; Luderer, Gunnar

    2012-01-01

    The events of March 2011 at the nuclear power complex in Fukushima, Japan, raised questions about the safe operation of nuclear power plants, with early retirement of existing nuclear power plants being debated in the policy arena and considered by regulators. Also, the future of building new nuclear power plants is highly uncertain. Should nuclear power policies become more restrictive, one potential option for climate change mitigation will be less available. However, a systematic analysis of nuclear power policies, including early retirement, has been missing in the climate change mitigation literature. We apply an energy economy model framework to derive scenarios and analyze the interactions and tradeoffs between these two policy fields. Our results indicate that early retirement of nuclear power plants leads to discounted cumulative global GDP losses of 0.07% by 2020. If, in addition, new nuclear investments are excluded, total losses will double. The effect of climate policies imposed by an intertemporal carbon budget on incremental costs of policies restricting nuclear power use is small. However, climate policies have much larger impacts than policies restricting the use of nuclear power. The carbon budget leads to cumulative discounted near term reductions of global GDP of 0.64% until 2020. Intertemporal flexibility of the carbon budget approach enables higher near-term emissions as a result of increased power generation from natural gas to fill the emerging gap in electricity supply, while still remaining within the overall carbon budget. Demand reductions and efficiency improvements are the second major response strategy. PMID:23027963

  2. Health Impacts of Climate Change in Vanuatu: An Assessment and Adaptation Action Plan

    PubMed Central

    Spickett, Jeffery T; Katscherian, Dianne; McIver, Lachlan

    2013-01-01

    Climate change is one of the greatest global challenges and Pacific island countries are particularly vulnerable due to, among other factors, their geography, demography and level of economic development. A Health Impact Assessment (HIA) framework was used as a basis for the consideration of the potential health impacts of changes in the climate on the population of Vanuatu, to assess the risks and propose a range of potential adaptive responses appropriate for Vanuatu. The HIA process involved the participation of a broad range of stakeholders including expert sector representatives in the areas of bio-physical, socio-economic, infrastructure, environmental diseases and food, who provided informed comment and input into the understanding of the potential health impacts and development of adaptation strategies. The risk associated with each of these impacts was assessed with the application of a qualitative process that considered both the consequences and the likelihood of each of the potential health impacts occurring. Potential adaptation strategies and actions were developed which could be used to mitigate the identified health impacts and provide responses which could be used by the various sectors in Vanuatu to contribute to future decision making processes associated with the health impacts of climate change. PMID:23618474

  3. Compensatory Mitigation Rule Final Environmental Assessment

    EPA Pesticide Factsheets

    EA performed to determine the costs resulting from implementation of the Compensatory Mitigation Rule and the extent to which the rule changes aggregate mitigation costs borne by permittees and Corps administrative burdens and associated costs.

  4. Combined acoustical and visual performance of noise barriers in mitigating the environmental impact of motorways.

    PubMed

    Jiang, Like; Kang, Jian

    2016-02-01

    This study investigated the overall performance of noise barriers in mitigating environmental impact of motorways, taking into consideration their effects on reducing noise and visual intrusions of moving traffic, but also potentially inducing visual impact themselves. A laboratory experiment was carried out, using computer-visualised video scenes and motorway traffic noise recordings to present experimental scenarios covering two traffic levels, two distances of receiver to road, two types of background landscape, and five barrier conditions including motorway only, motorway with tree belt, motorways with 3 m timber barrier, 5m timber barrier, and 5m transparent barrier. Responses from 30 participants of university students were gathered and perceived barrier performance analysed. The results show that noise barriers were always beneficial in mitigating environmental impact of motorways, or made no significant changes in environmental quality when the impact of motorways was low. Overall, barriers only offered similar mitigation effect as compared to tree belt, but showed some potential to be more advantageous when traffic level went high. 5m timber barrier tended to perform better than the 3m one at the distance of 300 m but not at 100 m possibly due to its negative visual effect when getting closer. The transparent barrier did not perform much differently from the timber barriers but tended to be the least effective in most scenarios. Some low positive correlations were found between aesthetic preference for barriers and environmental impact reduction by the barriers. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Financial Impact of Cancer Drug Wastage and Potential Cost Savings From Mitigation Strategies.

    PubMed

    Leung, Caitlyn Y W; Cheung, Matthew C; Charbonneau, Lauren F; Prica, Anca; Ng, Pamela; Chan, Kelvin K W

    2017-07-01

    Cancer drug wastage occurs when a parenteral drug within a fixed vial is not administered fully to a patient. This study investigated the extent of drug wastage, the financial impact on the hospital budget, and the cost savings associated with current mitigation strategies. We conducted a cross-sectional study in three University of Toronto-affiliated hospitals of various sizes. We recorded the actual amount of drug wasted over a 2-week period while using current mitigation strategies. Single-dose vial cancer drugs with the highest wastage potentials were identified (14 drugs). To calculate the hypothetical drug wastage with no mitigation strategies, we determined how many vials of drugs would be needed to fill a single prescription. The total drug costs over the 2 weeks ranged from $50,257 to $716,983 in the three institutions. With existing mitigation strategies, the actual drug wastage over the 2 weeks ranged from $928 to $5,472, which was approximately 1% to 2% of the total drug costs. In the hypothetical model with no mitigation strategies implemented, the projected drug cost wastage would have been $11,232 to $149,131, which accounted for 16% to 18% of the total drug costs. As a result, the potential annual savings while using current mitigation strategies range from 15% to 17%. The financial impact of drug wastage is substantial. Mitigation strategies lead to substantial cost savings, with the opportunity to reinvest those savings. More research is needed to determine the appropriate methods to minimize risk to patients while using the cost-saving mitigation strategies.

  6. High-volume manufacturing compatible dry development rinse process (DDRP): patterning and defectivity performance for EUVL

    NASA Astrophysics Data System (ADS)

    Sayan, Safak; Vanelderen, Pieter; Hetel, Iulian; Chan, BT; Raghavan, Praveen; Blanco, Victor; Foubert, Philippe; D'urzo, Lucia; De Simone, Danilo; Vandenberghe, Geert

    2017-04-01

    There are many knobs available that change the chemical and physical properties of the photoresists to "break" the RLS (Resolution, Sensitivity, Line edge/width roughness) trade-off, however those are not enough today to realize a material to satisfy all requirements at once for 7nm technology and beyond. DDRP improves the ultimate achievable resolution via pattern collapse mitigation, hence the priority of requirements for the EUV photoresist development may be changed with more focus on Sensitivity and LWR. This may potentially provide a new conceptual approach towards EUV PR development for DDRP applications. We have previously demonstrated pattern collapse (PC) mitigation via DDRP on different EUVL photoresists (including different resist platforms), achieving ultimate resolution and exposure latitude improvements [1,2]. In this contribution, we report patterning and material defect performance of HVM compatible (all aqueous) dry development rinse material. We will also report on process window improvement on 2-dimensional metal structures towards standard cell size reduction with elimination of mask layer(s) using single EUV exposure.

  7. A randomized controlled trial testing an adherence-optimized Vitamin D regimen to mitigate bone change in adolescents being treated for acute lymphoblastic leukemia.

    PubMed

    Orgel, Etan; Mueske, Nicole M; Sposto, Richard; Gilsanz, Vicente; Wren, Tishya A L; Freyer, David R; Butturini, Anna M; Mittelman, Steven D

    2017-10-01

    Adolescents with acute lymphoblastic leukemia (ALL) develop osteopenia early in therapy, potentially exacerbated by high rates of concurrent Vitamin D deficiency. We conducted a randomized clinical trial testing a Vitamin D-based intervention to improve Vitamin D status and reduce bone density decline. Poor adherence to home supplementation necessitated a change to directly observed therapy (DOT) with intermittent, high-dose Vitamin D3 randomized versus standard of care (SOC). Compared to SOC, DOT Vitamin D3 successfully increased trough Vitamin 25(OH)D levels (p = .026) with no residual Vitamin D deficiency, 100% adherence to DOT Vitamin D3, and without associated toxicity. However, neither Vitamin D status nor supplementation impacted bone density. Thus, this adherence-optimized intervention is feasible and effective to correct Vitamin D deficiency in adolescents during ALL therapy. Repletion of Vitamin D and calcium alone did not mitigate osteopenia, however, and new, comprehensive approaches are needed to address treatment-associated osteopenia during ALL therapy.

  8. Edge localized mode characteristics during edge localized mode mitigation by supersonic molecular beam injection in Korea Superconducting Tokamak Advanced Research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, H. Y.; Hong, J. H.; Jang, J. H.

    It has been reported that supersonic molecular beam injection (SMBI) is an effective means of edge localized mode (ELM) mitigation. This paper newly reports the changes in the ELM, plasma profiles, and fluctuation characteristics during ELM mitigation by SMBI in Korea Superconducting Tokamak Advanced Research. During the mitigated ELM phase, the ELM frequency increased by a factor of 2–3 and the ELM size, which was estimated from the D{sub α} amplitude, the fractional changes in the plasma-stored energy and the line-averaged electron density, and divertor heat flux during an ELM burst, decreased by a factor of 0.34–0.43. Reductions in themore » electron and ion temperatures rather than in the electron density were observed during the mitigated ELM phase. In the natural ELM phase, frequency chirping of the plasma fluctuations was observed before the ELM bursts; however, the ELM bursts occurred without changes in the plasma fluctuation frequency in the mitigated ELM phase.« less

  9. Changing Family Habits: A Case Study into Climate Change Mitigation Behavior in Families

    ERIC Educational Resources Information Center

    Leger, Michel T.; Pruneau, Diane

    2012-01-01

    A case-study methodology was used to explore the process of change as experienced by 3 suburban families in an attempt to incorporate climate change mitigation behavior into their day to day life. Cross-case analysis of the findings revealed the emergence of three major conceptual themes associated with behavior adoption: collectively applied…

  10. Impact of socio-demographic factors on the mitigating actions for climate change: a path analysis with mediating effects of attitudinal variables.

    PubMed

    Masud, Muhammad Mehedi; Akhatr, Rulia; Nasrin, Shamima; Adamu, Ibrahim Mohammed

    2017-12-01

    Socio-demographic factors play a significant role in increasing the individual's climate change awareness and in setting a favorable individual attitude towards its mitigation. To better understand how the adversative effects of climate change can be mitigated, this study attempts to investigate the impact of socio-demographic factors on the mitigating actions of the individuals (MAOI) on climate change. Qualitative data were collected from a face-to-face survey of 360 respondents in the Kuala Lumpur region of Malaysia through a close-ended questionnaire. Analysis was conducted on the mediating effects of attitudinal variables through the path model by using the SEM. Findings indicate that the socio-demographic factors such as gender, age, education, income, and ethnicity can greatly influence the individual's awareness, attitude, risk perception, and knowledge of climate change issues. The results drawn from this study also revealed that the attitudinal factors act as a mediating effect between the socio-demographic factors and the MAOI, thereby, indicating that both the socio-demographic factors and the attitudinal factors have significant effects on the MAOI towards climate change. The outcome of this study can help policy makers and other private organizations to decide on the appropriate actions to take in managing climate change effects. These actions which encompass improving basic climate change education and making the public more aware of the local dimensions of climate change are important for harnessing public engagement and support that can also stimulate climate change awareness and promote mitigating actions to n protect the environment from the impact of climate change.

  11. 75 FR 63147 - Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ...] Solicitation of Applications for the Public Works, Economic Adjustment Assistance, and Global Climate Change... Program; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. To enhance the...; and (iii) Global Climate Change Mitigation Incentive Fund (GCCMIF) Program. EDA will publish separate...

  12. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda.

    PubMed

    Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J; Karoly, David J; Wiseman, John

    2018-04-04

    A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda.

  13. The Political Economy of Health Co-Benefits: Embedding Health in the Climate Change Agenda

    PubMed Central

    Workman, Annabelle; Blashki, Grant; Bowen, Kathryn J.; Karoly, David J.; Wiseman, John

    2018-01-01

    A complex, whole-of-economy issue such as climate change demands an interdisciplinary, multi-sectoral response. However, evidence suggests that human health has remained elusive in its influence on the development of ambitious climate change mitigation policies for many national governments, despite a recognition that the combustion of fossil fuels results in pervasive short- and long-term health consequences. We use insights from literature on the political economy of health and climate change, the science–policy interface and power in policy-making, to identify additional barriers to the meaningful incorporation of health co-benefits into climate change mitigation policy development. Specifically, we identify four key interrelated areas where barriers may exist in relation to health co-benefits: discourse, efficiency, vested interests and structural challenges. With these insights in mind, we argue that the current politico-economic paradigm in which climate change is situated and the processes used to develop climate change mitigation policies do not adequately support accounting for health co-benefits. We present approaches for enhancing the role of health co-benefits in the development of climate change mitigation policies to ensure that health is embedded in the broader climate change agenda. PMID:29617317

  14. A spatially explicit representation of conservation agriculture for application in global change studies.

    PubMed

    Prestele, Reinhard; Hirsch, Annette L; Davin, Edouard L; Seneviratne, Sonia I; Verburg, Peter H

    2018-05-10

    Conservation agriculture (CA) is widely promoted as a sustainable agricultural management strategy with the potential to alleviate some of the adverse effects of modern, industrial agriculture such as large-scale soil erosion, nutrient leaching and overexploitation of water resources. Moreover, agricultural land managed under CA is proposed to contribute to climate change mitigation and adaptation through reduced emission of greenhouse gases, increased solar radiation reflection, and the sustainable use of soil and water resources. Due to the lack of official reporting schemes, the amount of agricultural land managed under CA systems is uncertain and spatially explicit information about the distribution of CA required for various modeling studies is missing. Here, we present an approach to downscale present-day national-level estimates of CA to a 5 arcminute regular grid, based on multicriteria analysis. We provide a best estimate of CA distribution and an uncertainty range in the form of a low and high estimate of CA distribution, reflecting the inconsistency in CA definitions. We also design two scenarios of the potential future development of CA combining present-day data and an assessment of the potential for implementation using biophysical and socioeconomic factors. By our estimates, 122-215 Mha or 9%-15% of global arable land is currently managed under CA systems. The lower end of the range represents CA as an integrated system of permanent no-tillage, crop residue management and crop rotations, while the high estimate includes a wider range of areas primarily devoted to temporary no-tillage or reduced tillage operations. Our scenario analysis suggests a future potential of CA in the range of 533-1130 Mha (38%-81% of global arable land). Our estimates can be used in various ecosystem modeling applications and are expected to help identifying more realistic climate mitigation and adaptation potentials of agricultural practices. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  15. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    NASA Astrophysics Data System (ADS)

    Vichi, Marcello; Manzini, Elisa; Fogli, Pier Giuseppe; Alessandri, Andrea; Patara, Lavinia; Scoccimarro, Enrico; Masina, Simona; Navarra, Antonio

    2011-11-01

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric "target" concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the projected concentration pathways of aerosol in the next decades control the evolution of surface ocean biogeochemistry in the second half of this century more than the specific pathways of atmospheric CO2 concentrations.

  16. Implications of Deep Decarbonization for Carbon Cycle Science

    NASA Astrophysics Data System (ADS)

    Jones, A. D.; Williams, J.; Torn, M. S.

    2016-12-01

    The energy-system transformations required to achieve deep decarbonization in the United States, defined as a reduction of greenhouse gas emissions of 80% or more below 1990 levels by 2050, have profound implications for carbon cycle science, particularly with respect to 4 key objectives: understanding and enhancing the terrestrial carbon sink, using bioenergy sustainably, controlling non-CO2 GHGs, and emissions monitoring and verification. (1) As a source of mitigation, the terrestrial carbon sink is pivotal but uncertain, and changes in the expected sink may significantly affect the overall cost of mitigation. Yet the dynamics of the sink under changing climatic conditions, and the potential to protect and enhance the sink through land management, are poorly understood. Policy urgently requires an integrative research program that links basic science knowledge to land management practices. (2) Biomass resources can fill critical energy needs in a deeply decarbonized system, but current understanding of sustainability and lifecycle carbon aspects is limited. Mitigation policy needs better understanding of the sustainable amount, types, and cost of bioenergy feedstocks, their interactions with other land uses, and more efficient and reliable monitoring of embedded carbon. (3) As CO2 emissions from energy decrease under deep decarbonization, the relative share of non-CO2 GHGs grows larger and their mitigation more important. Because the sources tend to be distributed, variable, and uncertain, they have been under-researched. Policy needs a better understanding of mitigation priorities and costs, informed by deeper research in key areas such as fugitive CH4, fertilizer-derived N2O, and industrial F-gases. (4) The M&V challenge under deep decarbonization changes with a steep decrease in the combustion CO2 sources due to widespread electrification, while a greater share of CO2 releases is net-carbon-neutral. Similarly, gas pipelines may carry an increasing share of methane from biogenic or other net carbon-neutral sources. Improved lifecycle analysis will be needed to verify carbon neutrality, while the signal-to-noise challenge for attributing CO2 to fossil or biogenic fuels becomes more challenging.

  17. Dietary changes to mitigate climate change and benefit public health in China.

    PubMed

    Song, Guobao; Li, Mingjing; Fullana-I-Palmer, Pere; Williamson, Duncan; Wang, Yixuan

    2017-01-15

    Dietary change presents an opportunity to meet the dual challenges of non-communicable diseases and the effects of climate change in China. Based on a food survey and reviewed data sets, we linked nutrient composition and carbon footprint data by aggregating 1950 types of foods into 28 groups. Nine dietary scenarios for both men and women were modeled based on the current diet and latest National Program for Food and Nutrition. Linear uncertainty optimization was used to produce diets meeting the Chinese Dietary Reference Intakes for adults aged 18-50years while minimizing carbon footprints. The theoretical optimal diet reduced daily footprints by 46%, but this diet was unrealistic due to limited food diversity. Constrained by acceptability, the optimal diet reduced the daily carbon footprints by 7-28%, from 3495 to 2517-3252g CO 2 e, for men and by 5-26%, from 3075 to 2280-2917g CO 2 e, for women. Dietary changes for adults are capable of benefiting China in terms of the considerable footprint reduction of 53-222Mt.CO 2 eyear -1 , when magnified based on the Chinese population, which is the largest worldwide. Seven of eight scenarios showed that reductions in meat consumption resulted in greater reductions in greenhouse gas emissions. However, dramatic reductions in meat consumption may produce smaller reductions in emissions, as the consumption of other ingredients increases to compensate for the nutrients in meat. A trade-off between poultry and other meats (beef, pork, and lamb) is usually observed, and rice, which is a popular food in China, was the largest contributor to carbon footprint reductions. Our findings suggest that changing diets for climate change mitigation and human health is possible in China, though the per capital mitigation potential is slight lower than that in developed economies of France, Spain, Sweden, and New Zealand. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Forests, carbon and global climate.

    PubMed

    Malhi, Yadvinder; Meir, Patrick; Brown, Sandra

    2002-08-15

    This review places into context the role that forest ecosystems play in the global carbon cycle, and their potential interactions with climate change. We first examine the natural, preindustrial carbon cycle. Every year forest gross photosynthesis cycles approximately one-twelfth of the atmospheric stock of carbon dioxide, accounting for 50% of terrestrial photosynthesis. This cycling has remained almost constant since the end of the last ice age, but since the Industrial Revolution it has undergone substantial disruption as a result of the injection of 480 PgC into the atmosphere through fossil-fuel combustion and land-use change, including forest clearance. In the second part of this paper we review this 'carbon disruption', and its impact on the oceans, atmosphere and biosphere. Tropical deforestation is resulting in a release of 1.7 PgC yr(-1) into the atmosphere. However, there is also strong evidence for a 'sink' for carbon in natural vegetation (carbon absorption), which can be explained partly by the regrowth of forests on abandoned lands, and partly by a global change factor, the most likely cause being 'fertilization' resulting from the increase in atmospheric CO(2). In the 1990s this biosphere sink was estimated to be sequestering 3.2 PgC yr(-1) and is likely to have substantial effects on the dynamics, structure and biodiversity of all forests. Finally, we examine the potential for forest protection and afforestation to mitigate climate change. An extensive global carbon sequestration programme has the potential to make a particularly significant contribution to controlling the rise in CO2 emissions in the next few decades. In the course of the whole century, however, even the maximum amount of carbon that could be sequestered will be dwarfed by the magnitude of (projected) fossil-fuel emissions. Forest carbon sequestration should only be viewed as a component of a mitigation strategy, not as a substitute for the changes in energy supply, use and technology that will be required if atmospheric CO(2) concentrations are to be stabilized.

  19. Implications of climate change mitigation for sustainable development

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Steckel, Jan Christoph

    2016-10-01

    Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.

  20. What land covers are effective in mitigating a heat island in urban building rooftop?

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  1. A synthesis of two decades of research documenting the effects of noise on wildlife.

    PubMed

    Shannon, Graeme; McKenna, Megan F; Angeloni, Lisa M; Crooks, Kevin R; Fristrup, Kurt M; Brown, Emma; Warner, Katy A; Nelson, Misty D; White, Cecilia; Briggs, Jessica; McFarland, Scott; Wittemyer, George

    2016-11-01

    Global increases in environmental noise levels - arising from expansion of human populations, transportation networks, and resource extraction - have catalysed a recent surge of research into the effects of noise on wildlife. Synthesising a coherent understanding of the biological consequences of noise from this literature is challenging. Taxonomic groups vary in auditory capabilities. A wide range of noise sources and exposure levels occur, and many kinds of biological responses have been observed, ranging from individual behaviours to changes in ecological communities. Also, noise is one of several environmental effects generated by human activities, so researchers must contend with potentially confounding explanations for biological responses. Nonetheless, it is clear that noise presents diverse threats to species and ecosystems and salient patterns are emerging to help inform future natural resource-management decisions. We conducted a systematic and standardised review of the scientific literature published from 1990 to 2013 on the effects of anthropogenic noise on wildlife, including both terrestrial and aquatic studies. Research to date has concentrated predominantly on European and North American species that rely on vocal communication, with approximately two-thirds of the data set focussing on songbirds and marine mammals. The majority of studies documented effects from noise, including altered vocal behaviour to mitigate masking, reduced abundance in noisy habitats, changes in vigilance and foraging behaviour, and impacts on individual fitness and the structure of ecological communities. This literature survey shows that terrestrial wildlife responses begin at noise levels of approximately 40 dBA, and 20% of papers documented impacts below 50 dBA. Our analysis highlights the utility of existing scientific information concerning the effects of anthropogenic noise on wildlife for predicting potential outcomes of noise exposure and implementing meaningful mitigation measures. Future research directions that would support more comprehensive predictions regarding the magnitude and severity of noise impacts include: broadening taxonomic and geographical scope, exploring interacting stressors, conducting larger-scale studies, testing mitigation approaches, standardising reporting of acoustic metrics, and assessing the biological response to noise-source removal or mitigation. The broad volume of existing information concerning the effects of anthropogenic noise on wildlife offers a valuable resource to assist scientists, industry, and natural-resource managers in predicting potential outcomes of noise exposure. © 2015 Cambridge Philosophical Society.

  2. Human factors engineering and design validation for the redesigned follitropin alfa pen injection device.

    PubMed

    Mahony, Mary C; Patterson, Patricia; Hayward, Brooke; North, Robert; Green, Dawne

    2015-05-01

    To demonstrate, using human factors engineering (HFE), that a redesigned, pre-filled, ready-to-use, pre-asembled follitropin alfa pen can be used to administer prescribed follitropin alfa doses safely and accurately. A failure modes and effects analysis identified hazards and harms potentially caused by use errors; risk-control measures were implemented to ensure acceptable device use risk management. Participants were women with infertility, their significant others, and fertility nurse (FN) professionals. Preliminary testing included 'Instructions for Use' (IFU) and pre-validation studies. Validation studies used simulated injections in a representative use environment; participants received prior training on pen use. User performance in preliminary testing led to IFU revisions and a change to outer needle cap design to mitigate needle stick potential. In the first validation study (49 users, 343 simulated injections), in the FN group, one observed critical use error resulted in a device design modification and another in an IFU change. A second validation study tested the mitigation strategies; previously reported use errors were not repeated. Through an iterative process involving a series of studies, modifications were made to the pen design and IFU. Simulated-use testing demonstrated that the redesigned pen can be used to administer follitropin alfa effectively and safely.

  3. Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.

    2012-02-01

    In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heatmore » released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70°C. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 °C lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This reduction in capacity was observed to be independent of the amount of charge/discharge cycles except for the composites containing siloxane, which showed less of an impact on hydrogen storage capacity as it was cycled further. While the reason for this is not clear, it may be due to a chemically stabilizing effect of the siloxane on the metal hydride. Flow-through calorimetry was used to characterize the mitigating effectiveness of the different composites relative to the neat (no polymer) material. The composites were found to be initially effective at reducing the amount of heat released during oxidation, and the best performing material was the siloxane-containing composite which reduced the heat release to less than 50% of the value of the neat material. However, upon cycling the composites, all mitigating behavior was lost. The combined results of the flow-through calorimetry, hydrogen capacity, and thermogravimetric analysis tests lead to the proposed conclusion that while the polymer composites have mitigating potential and are physically robust under cycling, they undergo a chemical change upon cycling that makes them ineffective at mitigating heat release upon oxidation of the metal hydride.« less

  4. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Purohit, Pallav; Hoglund-Isaksson, Lena

    2016-04-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.

  5. Impact of thermal time shift on wheat phenology and yield under warming climate in the Huang-Huai-Hai Plain, China

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Qi, Yongqing; Li, Zhiqiang; Wang, Rende; Moiwo, Juana P.; Liu, Fengshan

    2017-03-01

    Given climate change can potentially influence crop phenology and subsequent yield, an investigation of relevant adaptation measures could increase the understanding and mitigation of these responses in the future. In this study, field observations at 10 stations in the Huang-Huai-Hai Plain of China (HHHP) are used in combination with the Agricultural Production Systems Simulator (APSIM)-Wheat model to determine the effect of thermal time shift on the phenology and potential yield of wheat from 1981-2009. Warming climate speeds up winter wheat development and thereby decreases the duration of the wheat growth period. However, APSIM-Wheat model simulation suggests prolongation of the period from flowering to maturity (Gr) of winter wheat by 0.2-0.8 d•10yr-1 as the number of days by which maturity advances, which is less than that by which flowering advances. Based on computed thermal time of the two critical growth phases of wheat, total thermal time from floral initiation to flowering (TT_floral_initiation) increasesd in seven out of the 10 investigated stations. Alternatively, total thermal time from the start of grainfilling to maturity (TT_start_ grain_fill) increased in all investigated stations, except Laiyang. It is thus concluded that thermal time shift during the past three decades (1981-2009) prolongs Gr by 0.2-3.0 d•10yr-1 in the study area. This suggests that an increase in thermal time (TT) of the wheat growth period is critical for mitigating the effect of growth period reduction due to warming climatic condition. Furthermore, climate change reduces potential yield of winter wheat in 80% of the stations by 2.3-58.8 kg•yr-1. However, thermal time shift (TTS) increases potential yield of winter wheat in most of the stations by 3.0-51.0 kg•yr-1. It is concluded that wheat cultivars with longer growth periods and higher thermal requirements could mitigate the negative effects of warming climate on crop production in the study area.

  6. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    NASA Astrophysics Data System (ADS)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and management of the EU territory by field observations of geo-referenced points. In 2009, a topsoil (0-30 cm) module was included to the survey and a subset of around 21,000 sites was sampled in 23 Member States. The second source is a soil survey monitoring pilot campaign carried in Veneto Region last year. The pilot campaign has been organized with the collaboration between JRC, University of Padova and ARPAV Veneto. The scope was to apply the LUCAS methodology to an experimental soil survey of 40 samples. The selection of the points to survey has been done on the basis of the LUCAS project related to Veneto Region, pedo-climatic and management unit conditions and the database on soils belonging to ARPAV Soil Unit, collected ante 2000. Data started to be investigated and permit to show changes in SOC content in a decade for different land use/cover and climatic areas. Through the bulk density data collected and the data already available from ARPAV library, it's possible to evaluate the Carbon stocks of Veneto region. Possible changes in Carbon can be related to land use changes and different strategies of management practices adopted over time.

  7. Trade-offs for food production, nature conservation and climate limit the terrestrial carbon dioxide removal potential.

    PubMed

    Boysen, Lena R; Lucht, Wolfgang; Gerten, Dieter

    2017-10-01

    Large-scale biomass plantations (BPs) are a common factor in climate mitigation scenarios as they promise double benefits: extracting carbon from the atmosphere and providing a renewable energy source. However, their terrestrial carbon dioxide removal (tCDR) potentials depend on important factors such as land availability, efficiency of capturing biomass-derived carbon and the timing of operation. Land availability is restricted by the demands of future food production depending on yield increases and population growth, by requirements for nature conservation and, with respect to climate mitigation, avoiding unfavourable albedo changes. We integrate these factors in one spatially explicit biogeochemical simulation framework to explore the tCDR opportunity space on land available after these constraints are taken into account, starting either in 2020 or 2050, and lasting until 2100. We find that assumed future needs for nature protection and food production strongly limit tCDR potentials. BPs on abandoned crop and pasture areas (~1,300 Mha in scenarios of either 8.0 billion people and yield gap reductions of 25% until 2020 or 9.5 billion people and yield gap reductions of 50% until 2050) could, theoretically, sequester ~100 GtC in land carbon stocks and biomass harvest by 2100. However, this potential would be ~80% lower if only cropland was available or ~50% lower if albedo decreases were considered as a factor restricting land availability. Converting instead natural forest, shrubland or grassland into BPs could result in much larger tCDR potentials ̶ but at high environmental costs (e.g. biodiversity loss). The most promising avenue for effective tCDR seems to be improvement of efficient carbon utilization pathways, changes in dietary trends or the restoration of marginal lands for the implementation of tCDR. © 2017 John Wiley & Sons Ltd.

  8. Bio-Energy Retains Its Mitigation Potential Under Elevated CO2

    PubMed Central

    Bellassen, Valentin; Njakou Djomo, Sylvestre; Lukac, Martin; Calfapietra, Carlo; Janssens, Ivan A.; Hoosbeek, Marcel R.; Viovy, Nicolas; Churkina, Galina; Scarascia-Mugnozza, Giuseppe; Ceulemans, Reinhart

    2010-01-01

    Background If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. Methodology/Main Findings We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. Conclusions/Significance Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink. PMID:20657833

  9. Climate change mitigation effect of harvested wood products in regions of Japan.

    PubMed

    Kayo, Chihiro; Tsunetsugu, Yuko; Tonosaki, Mario

    2015-12-01

    Harvested wood products (HWPs) mitigate climate change through carbon storage, material substitution, and energy substitution. We construct a model to assess the overall climate change mitigation effect (comprising the carbon storage, material substitution, and energy substitution effects) resulting from HWPs in regions of Japan. The model allows for projections to 2050 based on future scenarios relating to the domestic forestry industry, HWP use, and energy use. Using the production approach, a nationwide maximum figure of 2.9 MtC year -1 for the HWP carbon storage effect is determined for 2030. The maximum nationwide material substitution effect is 2.9 MtC year -1 in 2050. For the energy substitution effect, a nationwide maximum projection of 4.3 MtC year -1 in 2050 is established, with at least 50 % of this figure derived from east and west Japan, where a large volume of logging residue is generated. For the overall climate change mitigation effect, a nationwide maximum projection of 8.4 MtC year -1 in 2050 is established, equivalent to 2.4 % of Japan's current carbon dioxide emissions. When domestic roundwood production and HWP usage is promoted, an overall climate change mitigation effect is consistently expected to be attributable to HWPs until 2050. A significant factor in obtaining the material substitution effect will be substituting non-wooden buildings with wooden ones. The policy of promoting the use of logging residue will have a significant impact on the energy substitution effect. An important future study is an integrated investigation of the climate change mitigation effect for both HWPs and forests.

  10. Farm Simulation: a tool for evaluating the mitigation of greenhouse gas emissions and the adaptation of dairy production to climate change

    USDA-ARS?s Scientific Manuscript database

    Farms both produce greenhouse gas emissions that drive human-induced climate change and are impacted by that climate change. Whole farm and global climate models provide useful tools for studying the benefits and costs of greenhouse gas mitigation and the adaptation of farms to changing climate. The...

  11. Hand in hand: public endorsement of climate change mitigation and adaptation.

    PubMed

    Brügger, Adrian; Morton, Thomas A; Dessai, Suraje

    2015-01-01

    This research investigated how an individual's endorsements of mitigation and adaptation relate to each other, and how well each of these can be accounted for by relevant social psychological factors. Based on survey data from two European convenience samples (N = 616 / 309) we found that public endorsements of mitigation and adaptation are strongly associated: Someone who is willing to reduce greenhouse gas emissions (mitigation) is also willing to prepare for climate change impacts (adaptation). Moreover, people endorsed the two response strategies for similar reasons: People who believe that climate change is real and dangerous, who have positive attitudes about protecting the environment and the climate, and who perceive climate change as a risk, are willing to respond to climate change. Furthermore, distinguishing between (spatially) proximal and distant risk perceptions suggested that the idea of portraying climate change as a proximal (i.e., local) threat might indeed be effective in promoting personal actions. However, to gain endorsement of broader societal initiatives such as policy support, it seems advisable to turn to the distant risks of climate change. The notion that "localising" climate change might not be the panacea for engaging people in this domain is discussed in regard to previous theory and research.

  12. Modeling the Potential Impacts of Climate Change on Pacific Salmon Culture Programs: An Example at Winthrop National Fish Hatchery

    NASA Astrophysics Data System (ADS)

    Hanson, Kyle C.; Peterson, Douglas P.

    2014-09-01

    Hatcheries have long been used in an attempt to mitigate for declines in wild stocks of Pacific salmon ( Oncorhynchus spp.), though the conservation benefit of hatcheries is a topic of ongoing debate. Irrespective of conservation benefits, a fundamental question is whether hatcheries will be able to function as they have in the past given anticipated future climate conditions. To begin to answer this question, we developed a deterministic modeling framework to evaluate how climate change may affect hatcheries that rear Pacific salmon. The framework considers the physiological tolerances for each species, incorporates a temperature-driven growth model, and uses two metrics commonly monitored by hatchery managers to determine the impacts of changes in water temperature and availability on hatchery rearing conditions. As a case study, we applied the model to the US Fish and Wildlife Service's Winthrop National Fish Hatchery. We projected that hatchery environmental conditions remained within the general physiological tolerances for Chinook salmon in the 2040s (assuming A1B greenhouse gas emissions scenario), but that warmer water temperatures in summer accelerated juvenile salmon growth. Increased growth during summer coincided with periods when water availability should also be lower, thus increasing the likelihood of physiological stress in juvenile salmon. The identification of these climate sensitivities led to a consideration of potential mitigation strategies such as chilling water, altering rations, or modifying rearing cycles. The framework can be refined with new information, but in its present form, it provides a consistent, repeatable method to assess the vulnerability of hatcheries to predicted climate change.

  13. The Role of Science in Advising the Decision Making Process: A Pathway for Building Effective Climate Change Mitigation Policies in Mexico at the Local Level.

    PubMed

    Barraza, Roberto; Velazquez-Angulo, Gilberto; Flores-Tavizón, Edith; Romero-González, Jaime; Huertas-Cardozo, José Ignacio

    2016-04-27

    This study examines a pathway for building urban climate change mitigation policies by presenting a multi-dimensional and transdisciplinary approach in which technical, economic, environmental, social, and political dimensions interact. Now, more than ever, the gap between science and policymaking needs to be bridged; this will enable judicious choices to be made in regarding energy and climate change mitigation strategies, leading to positive social impacts, in particular for the populations at-risk at the local level. Through a case study in Juarez, Chihuahua, Mexico, we propose a multidimensional and transdisciplinary approach with the role of scientist as policy advisers to improve the role of science in decision-making on mitigation policies at the local level in Mexico.

  14. Designing advanced biochar products for maximizing greenhouse gas mitigation potential

    USDA-ARS?s Scientific Manuscript database

    Greenhouse gas (GHG) emissions from agricultural operations continue to increase. Carbon enriched char materials like biochar have been described as a mitigation strategy. Utilization of biochar material as a soil amendment has been demonstrated to provide potentially further soil GHG suppression du...

  15. Transportation Energy Security and Climate Change Mitigation Act of 2007

    DOT National Transportation Integrated Search

    2008-09-29

    The Committee on Transportation and Infrastructure, to whom was referred the bill (H.R. 2701) to strengthen our Nations energy security and mitigate the effects of climate change by promoting energy efficient transportation and public buildings, c...

  16. Maximizing mitigation benefits-making a difference with strategic inter-resource agency planning : year two technical report.

    DOT National Transportation Integrated Search

    2014-11-01

    The objective of this research project is to assess current mitigation policies and practices in comparison to : resource agency objectives and to identify mitigation strategies and priorities that provide greater cost-benefit potential and implement...

  17. Maximizing mitigation benefits-making a difference with strategic inter-resource agency planning : year one technical report.

    DOT National Transportation Integrated Search

    2014-04-01

    The objective of this research project is to assess current mitigation policies and practices in comparison to : resource agency objectives, and identify mitigation strategies and priorities that provide greater cost-benefit : potential and implement...

  18. Climate-Change Science and Policy: What Do We Know? What Should We Do

    DTIC Science & Technology

    2010-09-06

    These briefing charts discuss climate change science and policy including: the essence of the challenge, five myths and their refutations, climate ... change risks and impact going forward, available options, how much mitigation, how soon?, mitigation supply curve and its implications, and the Obama Administration’s strategy.

  19. Empirically Estimating the Potential for Farm-Level Adaptation to Climate Change in Western European Agriculture

    NASA Astrophysics Data System (ADS)

    Moore, F. C.; Lobell, D. B.

    2013-12-01

    Agriculture is one of the economic sectors most exposed to climate change and estimating the sensitivity of food production to these changes is critical for determining the severity of climate change impacts and for informing both adaptation and mitigation policy. While climate change might have adverse effects in many areas, it has long been recognized that farmers have a suite of adaptation options at their disposal including, inter alia, changing planting date, varieties, crops, or the mix and quantity of inputs applied. These adaptations may significantly reduce the adverse impacts of climate change but the potential effectiveness of these options and the speed with which farmers will adopt them remain uncertain. We estimate the sensitivity of crop yields and farm profits in western Europe to climate change with and without the adoption of on-farm adaptations. We use cross-sectional variation across farms to define the long-run response function that includes adaptation and inter-annual variation within farms to define the short-run response function without adaptation. The difference between these can be interpreted as the potential for adaptation. We find that future warming will have a large adverse impact on wheat and barley yields and that adaptation will only be able to mitigate a small fraction of this. Maize, oilseed and sugarbeet yields are more modestly affected and adaptation is more effective for these crops. Farm profits could increase slightly under moderate amounts of warming if adaptations are adopted but will decline in the absence of adaptation. A decomposition of variance gives the relative importance of different sources of uncertainty in projections of climate change impacts. We find that in most cases uncertainty over future adaptation pathways (whether farmers will or will not adopt beneficial adaptations) is the most important source of uncertainty in projecting the effect of temperature changes on crop yields and farm profits. This source of uncertainty dominates both uncertainty over temperature projections (climate uncertainty) and uncertainty over how sensitive crops or profits are to changes in temperature (response uncertainty). Therefore, constraining how quickly farmers are likely to adapt will be essential for improving our understanding of how climate change will affect food production over the next few decades.

  20. Limited influence of climate change mitigation on short-term glacier mass loss

    NASA Astrophysics Data System (ADS)

    Marzeion, Ben; Kaser, Georg; Maussion, Fabien; Champollion, Nicolas

    2018-04-01

    Glacier mass loss is a key contributor to sea-level change1,2, slope instability in high-mountain regions3,4 and the changing seasonality and volume of river flow5-7. Understanding the causes, mechanisms and time scales of glacier change is therefore paramount to identifying successful strategies for mitigation and adaptation. Here, we use temperature and precipitation fields from the Coupled Model Intercomparison Project Phase 5 output to force a glacier evolution model, quantifying mass responses to future climatic change. We find that contemporary glacier mass is in disequilibrium with the current climate, and 36 ± 8% mass loss is already committed in response to past greenhouse gas emissions. Consequently, mitigating future emissions will have only very limited influence on glacier mass change in the twenty-first century. No significant differences between 1.5 and 2 K warming scenarios are detectable in the sea-level contribution of glaciers accumulated within the twenty-first century. In the long-term, however, mitigation will exert strong control, suggesting that ambitious measures are necessary for the long-term preservation of glaciers.

  1. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    NASA Astrophysics Data System (ADS)

    Epstein, Scott A.; Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.; Ban-Weiss, George

    2017-08-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  2. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California

    PubMed Central

    Lee, Sang-Mi; Katzenstein, Aaron S.; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C.; Vahmani, Pouya; Fine, Philip M.

    2017-01-01

    The installation of roofing materials with increased solar reflectance (i.e., “cool roofs”) can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California’s Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies. PMID:28784778

  3. Air-quality implications of widespread adoption of cool roofs on ozone and particulate matter in southern California.

    PubMed

    Epstein, Scott A; Lee, Sang-Mi; Katzenstein, Aaron S; Carreras-Sospedra, Marc; Zhang, Xinqiu; Farina, Salvatore C; Vahmani, Pouya; Fine, Philip M; Ban-Weiss, George

    2017-08-22

    The installation of roofing materials with increased solar reflectance (i.e., "cool roofs") can mitigate the urban heat island effect and reduce energy use. In addition, meteorological changes, along with the possibility of enhanced UV reflection from these surfaces, can have complex impacts on ozone and PM 2.5 concentrations. We aim to evaluate the air-quality impacts of widespread cool-roof installations prescribed by California's Title 24 building energy efficiency standards within the heavily populated and polluted South Coast Air Basin (SoCAB). Development of a comprehensive rooftop area database and evaluation of spectral reflectance measurements of roofing materials allows us to project potential future changes in solar and UV reflectance for simulations using the Weather Research Forecast and Community Multiscale Air Quality (CMAQ) models. 2012 meteorological simulations indicate a decrease in daily maximum temperatures, daily maximum boundary layer heights, and ventilation coefficients throughout the SoCAB upon widespread installation of cool roofs. CMAQ simulations show significant increases in PM 2.5 concentrations and policy-relevant design values. Changes in 8-h ozone concentrations depend on the potential change in UV reflectance, ranging from a decrease in population-weighted concentrations when UV reflectance remains unchanged to an increase when changes in UV reflectance are at an upper bound. However, 8-h policy-relevant ozone design values increase in all cases. Although the other benefits of cool roofs could outweigh small air-quality penalties, UV reflectance standards for cool roofing materials could mitigate these negative consequences. Results of this study motivate the careful consideration of future rooftop and pavement solar reflectance modification policies.

  4. Life cycle assessment of biochar systems: estimating the energetic, economic, and climate change potential.

    PubMed

    Roberts, Kelli G; Gloy, Brent A; Joseph, Stephen; Scott, Norman R; Lehmann, Johannes

    2010-01-15

    Biomass pyrolysis with biochar returned to soil is a possible strategy for climate change mitigation and reducing fossil fuel consumption. Pyrolysis with biochar applied to soils results in four coproducts: long-term carbon (C) sequestration from stable C in the biochar, renewable energy generation, biochar as a soil amendment, and biomass waste management. Life cycle assessment was used to estimate the energy and climate change impacts and the economics of biochar systems. The feedstocks analyzed represent agricultural residues (corn stover), yard waste, and switchgrass energy crops. The net energy of the system is greatest with switchgrass (4899 MJ t(-1) dry feedstock). The net greenhouse gas (GHG) emissions for both stover and yard waste are negative, at -864 and -885 kg CO(2) equivalent (CO(2)e) emissions reductions per tonne dry feedstock, respectively. Of these total reductions, 62-66% are realized from C sequestration in the biochar. The switchgrass biochar-pyrolysis system can be a net GHG emitter (+36 kg CO(2)e t(-1) dry feedstock), depending on the accounting method for indirect land-use change impacts. The economic viability of the pyrolysis-biochar system is largely dependent on the costs of feedstock production, pyrolysis, and the value of C offsets. Biomass sources that have a need for waste management such as yard waste have the highest potential for economic profitability (+$69 t(-1) dry feedstock when CO(2)e emission reductions are valued at $80 t(-1) CO(2)e). The transportation distance for feedstock creates a significant hurdle to the economic profitability of biochar-pyrolysis systems. Biochar may at present only deliver climate change mitigation benefits and be financially viable as a distributed system using waste biomass.

  5. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    NASA Astrophysics Data System (ADS)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-01

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG) emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model - Storm Water Management Model - was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020-2040 compared to the volume in 1971-2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. This study highlights the importance of accounting for local adaptation when coping with future urban floods.

  6. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE PAGES

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    2018-01-15

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  7. Impacts of future climate change on urban flood volumes in Hohhot in northern China: benefits of climate change mitigation and adaptations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Qianqian; Leng, Guoyong; Huang, Maoyi

    As China becomes increasingly urbanised, flooding has become a regular occurrence in its major cities. Assessing the effects of future climate change on urban flood volumes is crucial to informing better management of such disasters given the severity of the devastating impacts of flooding (e.g. the 2016 flooding events across China). Although recent studies have investigated the impacts of future climate change on urban flooding, the effects of both climate change mitigation and adaptation have rarely been accounted for together in a consistent framework. In this study, we assess the benefits of mitigating climate change by reducing greenhouse gas (GHG)more » emissions and locally adapting to climate change by modifying drainage systems to reduce urban flooding under various climate change scenarios through a case study conducted in northern China. The urban drainage model – Storm Water Management Model – was used to simulate urban flood volumes using current and two adapted drainage systems (i.e. pipe enlargement and low-impact development, LID), driven by bias-corrected meteorological forcing from five general circulation models in the Coupled Model Intercomparison Project Phase 5 archive. Results indicate that urban flood volume is projected to increase by 52 % over 2020–2040 compared to the volume in 1971–2000 under the business-as-usual scenario (i.e. Representative Concentration Pathway (RCP) 8.5). The magnitudes of urban flood volumes are found to increase nonlinearly with changes in precipitation intensity. On average, the projected flood volume under RCP 2.6 is 13 % less than that under RCP 8.5, demonstrating the benefits of global-scale climate change mitigation efforts in reducing local urban flood volumes. Comparison of reduced flood volumes between climate change mitigation and local adaptation (by improving drainage systems) scenarios suggests that local adaptation is more effective than climate change mitigation in reducing future flood volumes. This has broad implications for the research community relative to drainage system design and modelling in a changing environment. Furthermore, this study highlights the importance of accounting for local adaptation when coping with future urban floods.« less

  8. Climate-smart soils

    NASA Astrophysics Data System (ADS)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  9. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last decades of 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratios change between the two scenarios. This work warns that mitigation policies, by abating aerosols, may lead to unexpected stronger intensification of hydrological cycle and associated changes that may last for decades after that global warming is effectively mitigated. On the other hand, it is here suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  10. Future Arctic climate changes: Adaptation and mitigation time scales

    NASA Astrophysics Data System (ADS)

    Overland, James E.; Wang, Muyin; Walsh, John E.; Stroeve, Julienne C.

    2014-02-01

    The climate in the Arctic is changing faster than in midlatitudes. This is shown by increased temperatures, loss of summer sea ice, earlier snow melt, impacts on ecosystems, and increased economic access. Arctic sea ice volume has decreased by 75% since the 1980s. Long-lasting global anthropogenic forcing from carbon dioxide has increased over the previous decades and is anticipated to increase over the next decades. Temperature increases in response to greenhouse gases are amplified in the Arctic through feedback processes associated with shifts in albedo, ocean and land heat storage, and near-surface longwave radiation fluxes. Thus, for the next few decades out to 2040, continuing environmental changes in the Arctic are very likely, and the appropriate response is to plan for adaptation to these changes. For example, it is very likely that the Arctic Ocean will become seasonally nearly sea ice free before 2050 and possibly within a decade or two, which in turn will further increase Arctic temperatures, economic access, and ecological shifts. Mitigation becomes an important option to reduce potential Arctic impacts in the second half of the 21st century. Using the most recent set of climate model projections (CMIP5), multimodel mean temperature projections show an Arctic-wide end of century increase of +13°C in late fall and +5°C in late spring for a business-as-usual emission scenario (RCP8.5) in contrast to +7°C in late fall and +3°C in late spring if civilization follows a mitigation scenario (RCP4.5). Such temperature increases demonstrate the heightened sensitivity of the Arctic to greenhouse gas forcing.

  11. Mitigation potential of soil carbon management overestimated by neglecting N2O emissions

    NASA Astrophysics Data System (ADS)

    Lugato, Emanuele; Leip, Adrian; Jones, Arwyn

    2018-03-01

    International initiatives such as the `4 per 1000' are promoting enhanced carbon (C) sequestration in agricultural soils as a way to mitigate greenhouse gas emissions1. However, changes in soil organic C turnover feed back into the nitrogen (N) cycle2, meaning that variation in soil nitrous oxide (N2O) emissions may offset or enhance C sequestration actions3. Here we use a biogeochemistry model on approximately 8,000 soil sampling locations in the European Union4 to quantify the net CO2 equivalent (CO2e) fluxes associated with representative C-mitigating agricultural practices. Practices based on integrated crop residue retention and lower soil disturbance are found to not increase N2O emissions as long as C accumulation continues (until around 2040), thereafter leading to a moderate C sequestration offset mostly below 47% by 2100. The introduction of N-fixing cover crops allowed higher C accumulation over the initial 20 years, but this gain was progressively offset by higher N2O emissions over time. By 2060, around half of the sites became a net source of greenhouse gases. We conclude that significant CO2 mitigation can be achieved in the initial 20-30 years of any C management scheme, but after that N inputs should be controlled through appropriate management.

  12. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  13. GREENHOUSE GAS MITIGATION POTENTIAL IN U.S. FORESTRY AND AGRICULTURE

    EPA Science Inventory

    This report describes the FASOM-GHG model (Forestry and Agriculture Sector Optimization Model with Greenhouse Gases), the GHG mitigation scenarios for U.S. forestry and agriculture run through the FASOM-GHG model, and the results and insights that are generated. GHG mitigation po...

  14. Coastal Vulnerability Due to Sea-level Rise Hazard in the Bangladesh Delta

    NASA Astrophysics Data System (ADS)

    Shum, Ck; Ballu, Valérie; Calmant, Stéphane; Duan, Jianbin; Guo, Junyi; Hossain, Fasial; Jenkins, Craig; Haque Khan, Zahirul; Kim, Jinwoo; Kuhn, Michael; Kusche, Jürgen; Papa, Fabrice; Tseng, Kuohsin; Wan, Junkun

    2014-05-01

    Approximately half of the world's population or 3.2 billion people lives within 200 km of coastlines and many of them in the world's deltaic plains. Sea-level rise, widely recognized as one of consequences resulting from anthropogenic climate change, has induced substantial coastal vulnerability globally and in particular, in the deltaic regions, such as coastal Bangladesh, and Yangtze Delta. Bangladesh, a low-lying, one of the most densely populated countries in the world located at the Bay of Bengal, is prone to transboundary monsoonal flooding, potentially aggravated by more frequent and intensified cyclones resulting from anthropogenic climate change. Sea-level rise, along with tectonic, sediment load and groundwater extraction induced land uplift/subsidence, have exacerbated Bangladesh's coastal vulnerability. Here we describe the physical science component of the integrated approach based on both physical and social sciences to address the adaption and potential mitigation of coastal Bangladesh vulnerability. The objective is to quantify the estimates of spatial varying sea-level trend separating the vertical motion of the coastal regions using geodetic and remote-sensing measurements (tide gauges, 1950-current; satellite altimetry, 1992-present, GRACE, 2003-present, Landsat/MODIS), reconstructed sea-level trends (1950-current), and GPS and InSAR observed land subsidence. Our goal is to conduct physically based robust projection of relative sea-level change at the end of the 21st century for the Bangladesh Delta to enable quantitative measures of social science based adaption and possible mitigation.

  15. Enhanced-efficiency nitrogen fertilizers: potential role in nitrous oxide emission mitigation

    USDA-ARS?s Scientific Manuscript database

    Enhanced-efficiency N fertilizers (EENF) have potential for mitigating N2O emissions from N fertilized cropping systems. A synopsis of EENF characteristics is presented. Stabilized EENFs contain nitrification and/or urease inhibitors. Slow-release EENFs contain N components that are slowly releas...

  16. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  17. Neural circuits in the brain that are activated when mitigating criminal sentences

    PubMed Central

    Yamada, Makiko; Camerer, Colin F.; Fujie, Saori; Kato, Motoichiro; Matsuda, Tetsuya; Takano, Harumasa; Ito, Hiroshi; Suhara, Tetsuya; Takahashi, Hidehiko

    2012-01-01

    In sentencing guilty defendants, jurors and judges weigh 'mitigating circumstances', which create sympathy for a defendant. Here we use functional magnetic resonance imaging to measure neural activity in ordinary citizens who are potential jurors, as they decide on mitigation of punishment for murder. We found that sympathy activated regions associated with mentalising and moral conflict (dorsomedial prefrontal cortex, precuneus and temporo-parietal junction). Sentencing also activated precuneus and anterior cingulate cortex, suggesting that mitigation is based on negative affective responses to murder, sympathy for mitigating circumstances and cognitive control to choose numerical punishments. Individual differences on the inclination to mitigate, the sentence reduction per unit of judged sympathy, correlated with activity in the right middle insula, an area known to represent interoception of visceral states. These results could help the legal system understand how potential jurors actually decide, and contribute to growing knowledge about whether emotion and cognition are integrated sensibly in difficult judgments. PMID:22453832

  18. Mitigation and Adaptation within a Climate Policy Portfolio

    EPA Science Inventory

    An effective policy response to climate change will include, among other things, investments in lowering greenhouse gas emissions (mitigation), as well as short-term temporary (flow) and long-lived capital-intensive (stock) adaptation to climate change. A critical near-term ques...

  19. Impact of Real-world Factors Influencing Investment Decisions on the Costs and Distribution of Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    Edmonds, J.; Iyer, G.; McJeon, H. C.; Leon, C.; Hultman, N.

    2015-12-01

    Strategies to mitigate dangerous anthropogenic climate change require a dramatic transformation of the energy system to reduce greenhouse gas emissions, that in turn requires large-scale investments. Investment decisions depend not only on investment capital availability but also on investment risks. A number of factors such as national policy environments, quality of public and private institutions, sector, firm and technology specific characteristics can affect investors' assessments of risks, leading to a wide variation in the business climate for investment. Such heterogeneity in investment risks can have important implications, as investors usually respond to risks by requiring higher returns for riskier projects; delaying or forgoing the investments; or preferring to invest in existing, familiar projects. We study the impact of variation in investment risks on regional patterns of emissions mitigation, the cost of emissions mitigation and patterns of technology deployment. We modify an integrated assessment model, widely used in global climate policy analyses (the Global Change Assessment Model) and incorporate decisions on investments based on risks along two dimensions. Along the first dimension, we vary perceived risks associated with particular technologies. To do so, we assign a higher cost of capital for investment in low-carbon technologies as these involve intrinsically higher levels of regulatory and market risk. The second dimension uses a proxy to vary investment risks across regions, based on an institutional quality metric published by the World Economic Forum. Explicit representation of investment risks has two major effects. First, it raises the cost of emissions mitigation relative to a world with uniform investment risks. Second, it shifts the pattern of emissions mitigation, with industrialized countries mitigating more, and developing countries mitigating less. Our results suggest that institutional reforms aimed at lowering investment risks could be an important element in lowering the cost of climate change mitigation solutions.

  20. Agriculture in the climate change negotiations; ensuring that food production is not threatened.

    PubMed

    Muldowney, J; Mounsey, J; Kinsella, L

    2013-06-01

    With the human population predicted to reach nine billion by 2050, demand for food is predicted to more than double over this time period, a trend which will lead to increased greenhouse gas (GHG) emissions from agriculture. Furthermore, expansion in food production is predicted to occur primarily in the developing world, where adaptation to climate change may be more difficult and opportunities to mitigate emissions limited. In the establishment of the United Nations Framework Convention on Climate Change (UNFCCC), 'ensuring that food production is not threatened' is explicitly mentioned in the objective of the Convention. However, the focus of negotiations under the Convention has largely been on reducing GHG emissions from energy, and industrial activities and realizing the potential of forestry as a carbon sink. There has been little attention by the UNFCCC to address the challenges and opportunities for the agriculture sector. Since 2006, concerted efforts have been made to raise the prominence of agriculture within the negotiations. The most recent The Intergovernmental Panel on Climate Change report and 'The Emissions Gap Report' by the UNEP highlighted the significant mitigation potential of agriculture, which can help contribute towards keeping global temperature rises below the 2°C limit agreed in Cancun. Agriculture has to be a part of the solution to address climate change, but this will also require a focus on how agriculture systems can adapt to climate change in order to continue to increase food output. However, to effectively realize this potential, systematic and dedicated discussion and decisions within the UNFCCC are needed. UNFCCC discussions on a specific agriculture agenda item started in 2012, but are currently inconclusive. However, Parties are generally in agreement on the importance of agriculture in contributing to food security and employment as well as the need to improve understanding of agriculture and how it can contribute to realizing climate objectives. Discussions on agriculture are continuing with a view to finding an acceptable approach to address the climate change related challenges faced by agriculture worldwide and to ensure that 'food production is not threatened'.

Top