Sample records for change multiple functions

  1. Functional Task Test: Data Review

    NASA Technical Reports Server (NTRS)

    Cromwell, Ronita

    2014-01-01

    After space flight there are changes in multiple physiological systems including: Cardiovascular function; Sensorimotor function; and Muscle function. How do changes in these physiological system impact astronaut functional performance?

  2. Warming and top predator loss drive ecosystem multifunctionality.

    PubMed

    Antiqueira, Pablo Augusto P; Petchey, Owen L; Romero, Gustavo Quevedo

    2018-01-01

    Global change affects ecosystem functioning both directly by modifications in physicochemical processes, and indirectly, via changes in biotic metabolism and interactions. Unclear, however, is how multiple anthropogenic drivers affect different components of community structure and the performance of multiple ecosystem functions (ecosystem multifunctionality). We manipulated small natural freshwater ecosystems to investigate how warming and top predator loss affect seven ecosystem functions representing two major dimensions of ecosystem functioning, productivity and metabolism. We investigated their direct and indirect effects on community diversity and standing stock of multitrophic macro and microorganisms. Warming directly increased multifunctional ecosystem productivity and metabolism. In contrast, top predator loss indirectly affected multifunctional ecosystem productivity via changes in the diversity of detritivorous macroinvertebrates, but did not affect ecosystem metabolism. In addition to demonstrating how multiple anthropogenic drivers have different impacts, via different pathways, on ecosystem multifunctionality components, our work should further spur advances in predicting responses of ecosystems to multiple simultaneous environmental changes. © 2017 John Wiley & Sons Ltd/CNRS.

  3. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    PubMed

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  4. Functional connectivity in autosomal dominant and late-onset Alzheimer disease.

    PubMed

    Thomas, Jewell B; Brier, Matthew R; Bateman, Randall J; Snyder, Abraham Z; Benzinger, Tammie L; Xiong, Chengjie; Raichle, Marcus; Holtzman, David M; Sperling, Reisa A; Mayeux, Richard; Ghetti, Bernardino; Ringman, John M; Salloway, Stephen; McDade, Eric; Rossor, Martin N; Ourselin, Sebastien; Schofield, Peter R; Masters, Colin L; Martins, Ralph N; Weiner, Michael W; Thompson, Paul M; Fox, Nick C; Koeppe, Robert A; Jack, Clifford R; Mathis, Chester A; Oliver, Angela; Blazey, Tyler M; Moulder, Krista; Buckles, Virginia; Hornbeck, Russ; Chhatwal, Jasmeer; Schultz, Aaron P; Goate, Alison M; Fagan, Anne M; Cairns, Nigel J; Marcus, Daniel S; Morris, John C; Ances, Beau M

    2014-09-01

    Autosomal dominant Alzheimer disease (ADAD) is caused by rare genetic mutations in 3 specific genes in contrast to late-onset Alzheimer disease (LOAD), which has a more polygenetic risk profile. To assess the similarities and differences in functional connectivity changes owing to ADAD and LOAD. We analyzed functional connectivity in multiple brain resting state networks (RSNs) in a cross-sectional cohort of participants with ADAD (n = 79) and LOAD (n = 444), using resting-state functional connectivity magnetic resonance imaging at multiple international academic sites. For both types of AD, we quantified and compared functional connectivity changes in RSNs as a function of dementia severity measured by the Clinical Dementia Rating Scale. In ADAD, we qualitatively investigated functional connectivity changes with respect to estimated years from onset of symptoms within 5 RSNs. A decrease in functional connectivity with increasing Clinical Dementia Rating scores were similar for both LOAD and ADAD in multiple RSNs. Ordinal logistic regression models constructed in one type of Alzheimer disease accurately predicted clinical dementia rating scores in the other, further demonstrating the similarity of functional connectivity loss in each disease type. Among participants with ADAD, functional connectivity in multiple RSNs appeared qualitatively lower in asymptomatic mutation carriers near their anticipated age of symptom onset compared with asymptomatic mutation noncarriers. Resting-state functional connectivity magnetic resonance imaging changes with progressing AD severity are similar between ADAD and LOAD. Resting-state functional connectivity magnetic resonance imaging may be a useful end point for LOAD and ADAD therapy trials. Moreover, the disease process of ADAD may be an effective model for the LOAD disease process.

  5. Rising tides, cumulative impacts and cascading changes to estuarine ecosystem functions.

    PubMed

    O'Meara, Theresa A; Hillman, Jenny R; Thrush, Simon F

    2017-08-31

    In coastal ecosystems, climate change affects multiple environmental factors, yet most predictive models are based on simple cause-and-effect relationships. Multiple stressor scenarios are difficult to predict because they can create a ripple effect through networked ecosystem functions. Estuarine ecosystem function relies on an interconnected network of physical and biological processes. Estuarine habitats play critical roles in service provision and represent global hotspots for organic matter processing, nutrient cycling and primary production. Within these systems, we predicted functional changes in the impacts of land-based stressors, mediated by changing light climate and sediment permeability. Our in-situ field experiment manipulated sea level, nutrient supply, and mud content. We used these stressors to determine how interacting environmental stressors influence ecosystem function and compared results with data collected along elevation gradients to substitute space for time. We show non-linear, multi-stressor effects deconstruct networks governing ecosystem function. Sea level rise altered nutrient processing and impacted broader estuarine services ameliorating nutrient and sediment pollution. Our experiment demonstrates how the relationships between nutrient processing and biological/physical controls degrade with environmental stress. Our results emphasise the importance of moving beyond simple physically-forced relationships to assess consequences of climate change in the context of ecosystem interactions and multiple stressors.

  6. Color Change for Thermoregulation versus Camouflage in Free-Ranging Lizards.

    PubMed

    Smith, Kathleen R; Cadena, Viviana; Endler, John A; Kearney, Michael R; Porter, Warren P; Stuart-Fox, Devi

    2016-12-01

    Animal coloration has multiple functions including thermoregulation, camouflage, and social signaling, and the requirements of each function may sometimes conflict. Many terrestrial ectotherms accommodate the multiple functions of color through color change. However, the relative importance of these functions and how color-changing species accommodate them when they do conflict are poorly understood because we lack data on color change in the wild. Here, we show that the color of individual radio-tracked bearded dragon lizards, Pogona vitticeps, correlates strongly with background color and less strongly, but significantly, with temperature. We found no evidence that individuals simultaneously optimize camouflage and thermoregulation by choosing light backgrounds when hot or dark backgrounds when cold. In laboratory experiments, lizards showed both UV-visible (300-700 nm) and near-infrared (700-2,100 nm) reflectance changes in response to different background and temperature treatments, consistent with camouflage and thermoregulatory functions, respectively, but with no interaction between the two. Overall, our results suggest that wild bearded dragons change color to improve both thermoregulation and camouflage but predominantly adjust for camouflage, suggesting that compromising camouflage may entail a greater potential immediate survival cost.

  7. Changes in the location of biodiversity-ecosystem function hot spots across the seafloor landscape with increasing sediment nutrient loading.

    PubMed

    Thrush, Simon F; Hewitt, Judi E; Kraan, Casper; Lohrer, A M; Pilditch, Conrad A; Douglas, Emily

    2017-04-12

    Declining biodiversity and loss of ecosystem function threatens the ability of habitats to contribute ecosystem services. However, the form of the relationship between biodiversity and ecosystem function (BEF) and how relationships change with environmental change is poorly understood. This limits our ability to predict the consequences of biodiversity loss on ecosystem function, particularly in real-world marine ecosystems that are species rich, and where multiple ecosystem functions are represented by multiple indicators. We investigated spatial variation in BEF relationships across a 300 000 m 2 intertidal sandflat by nesting experimental manipulations of sediment pore water nitrogen concentration into sites with contrasting macrobenthic community composition. Our results highlight the significance of many different elements of biodiversity associated with environmental characteristics, community structure, functional diversity, ecological traits or particular species (ecosystem engineers) to important functions of coastal marine sediments (benthic oxygen consumption, ammonium pore water concentrations and flux across the sediment-water interface). Using the BEF relationships developed from our experiment, we demonstrate patchiness across a landscape in functional performance and the potential for changes in the location of functional hot and cold spots with increasing nutrient loading that have important implications for mapping and predicating change in functionality and the concomitant delivery of ecosystem services. © 2017 The Author(s).

  8. Functional comparison of microarray data across multiple platforms using the method of percentage of overlapping functions.

    PubMed

    Li, Zhiguang; Kwekel, Joshua C; Chen, Tao

    2012-01-01

    Functional comparison across microarray platforms is used to assess the comparability or similarity of the biological relevance associated with the gene expression data generated by multiple microarray platforms. Comparisons at the functional level are very important considering that the ultimate purpose of microarray technology is to determine the biological meaning behind the gene expression changes under a specific condition, not just to generate a list of genes. Herein, we present a method named percentage of overlapping functions (POF) and illustrate how it is used to perform the functional comparison of microarray data generated across multiple platforms. This method facilitates the determination of functional differences or similarities in microarray data generated from multiple array platforms across all the functions that are presented on these platforms. This method can also be used to compare the functional differences or similarities between experiments, projects, or laboratories.

  9. Functional Changes in Children, Adolescents, and Young Adults with Cerebral Palsy

    ERIC Educational Resources Information Center

    Krakovsky, Gina; Huth, Myra Martz; Lin, Li; Levin, Ron S.

    2007-01-01

    Children with multiple handicaps, including cerebral palsy (CP), often lose or regress in their functional ability through adolescence and young adulthood. The purpose of this study was to examine functional and psychosocial changes in children, adolescents, and young adults with CP. A retrospective chart review and a prospective telephone…

  10. Multiple Stressors and the Functioning of Coral Reefs.

    PubMed

    Harborne, Alastair R; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J

    2017-01-03

    Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.

  11. Multiple Stressors and the Functioning of Coral Reefs

    NASA Astrophysics Data System (ADS)

    Harborne, Alastair R.; Rogers, Alice; Bozec, Yves-Marie; Mumby, Peter J.

    2017-01-01

    Coral reefs provide critical services to coastal communities, and these services rely on ecosystem functions threatened by stressors. By summarizing the threats to the functioning of reefs from fishing, climate change, and decreasing water quality, we highlight that these stressors have multiple, conflicting effects on functionally similar groups of species and their interactions, and that the overall effects are often uncertain because of a lack of data or variability among taxa. The direct effects of stressors on links among functional groups, such as predator-prey interactions, are particularly uncertain. Using qualitative modeling, we demonstrate that this uncertainty of stressor impacts on functional groups (whether they are positive, negative, or neutral) can have significant effects on models of ecosystem stability, and reducing uncertainty is vital for understanding changes to reef functioning. This review also provides guidance for future models of reef functioning, which should include interactions among functional groups and the cumulative effect of stressors.

  12. Visual Analysis of Multiple Baseline across Participants Graphs when Change Is Delayed

    ERIC Educational Resources Information Center

    Lieberman, Rebecca G.; Yoder, Paul J.; Reichow, Brian; Wolery, Mark

    2010-01-01

    A within-subjects group experimental design was used to test whether three manipulated characteristics of multiple baseline across participants (MBL-P) data showing at least a month delayed change in slope affected experts' inference of a functional relation and agreement on this judgment. Thirty-six experts completed a survey composed of 16 MBL-P…

  13. Differential Abundance of Microbial Functional Groups along the Elevation Gradient from the Coast to the Luquillo Mountains

    EPA Science Inventory

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradi...

  14. Re-introducing environmental change drivers in biodiversity-ecosystem functioning research

    PubMed Central

    De Laender, Frederik; Rohr, Jason R.; Ashauer, Roman; Baird, Donald J.; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J.; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J.

    2016-01-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly re-introducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next, we show how this reintroduction improves experimental control over community composition and structure, which helps to obtain mechanistic insight about how multiple aspects of biodiversity relate to function, and how biodiversity and function relate in food-webs. We also highlight challenges for the proposed re-introduction, and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. PMID:27742415

  15. Causes, effects and connectivity changes in MS-related cognitive decline.

    PubMed

    Rimkus, Carolina de Medeiros; Steenwijk, Martijn D; Barkhof, Frederik

    2016-01-01

    Cognitive decline is a frequent but undervalued aspect of multiple sclerosis (MS). Currently, it remains unclear what the strongest determinants of cognitive dysfunction are, with grey matter damage most directly related to cognitive impairment. Multi-parametric studies seem to indicate that individual factors of MS-pathology are highly interdependent causes of grey matter atrophy and permanent brain damage. They are associated with intermediate functional effects (e.g. in functional MRI) representing a balance between disconnection and (mal) adaptive connectivity changes. Therefore, a more comprehensive MRI approach is warranted, aiming to link structural changes with functional brain organization. To better understand the disconnection syndromes and cognitive decline in MS, this paper reviews the associations between MRI metrics and cognitive performance, by discussing the interactions between multiple facets of MS pathology as determinants of brain damage and how they affect network efficiency.

  16. Wetlands as large-scale nature-based solutions: status and future challenges for research and management

    NASA Astrophysics Data System (ADS)

    Thorslund, Josefin; Jarsjö, Jerker; Destouni, Georgia

    2017-04-01

    Wetlands are often considered as nature-based solutions that can provide a multitude of services of great social, economic and environmental value to humankind. The services may include recreation, greenhouse gas sequestration, contaminant retention, coastal protection, groundwater level and soil moisture regulation, flood regulation and biodiversity support. Changes in land-use, water use and climate can all impact wetland functions and occur at scales extending well beyond the local scale of an individual wetland. However, in practical applications, management decisions usually regard and focus on individual wetland sites and local conditions. To understand the potential usefulness and services of wetlands as larger-scale nature-based solutions, e.g. for mitigating negative impacts from large-scale change pressures, one needs to understand the combined function multiple wetlands at the relevant large scales. We here systematically investigate if and to what extent research so far has addressed the large-scale dynamics of landscape systems with multiple wetlands, which are likely to be relevant for understanding impacts of regional to global change. Our investigation regards key changes and impacts of relevance for nature-based solutions, such as large-scale nutrient and pollution retention, flow regulation and coastal protection. Although such large-scale knowledge is still limited, evidence suggests that the aggregated functions and effects of multiple wetlands in the landscape can differ considerably from those observed at individual wetlands. Such scale differences may have important implications for wetland function-effect predictability and management under large-scale change pressures and impacts, such as those of climate change.

  17. Cryptic biodiversity effects: importance of functional redundancy revealed through addition of food web complexity.

    PubMed

    Philpott, Stacy M; Pardee, Gabriella L; Gonthier, David J

    2012-05-01

    Interactions between predators and the degree of functional redundancy among multiple predator species may determine whether herbivores experience increased or decreased predation risk. Specialist parasites can modify predator behavior, yet rarely have cascading effects on multiple predator species and prey been evaluated. We examined influences of specialist phorid parasites (Pseudacteon spp.) on three predatory ant species and herbivores in a coffee agroecosystem. Specifically, we examined whether changes in ant richness affected fruit damage by the coffee berry borer (Hypothenemus hampei) and whether phorids altered multi-predator effects. Each ant species reduced borer damage, and without phorids, increasing predator richness did not further decrease borer damage. However, with phorids, activity of one ant species was reduced, indicating that the presence of multiple ant species was necessary to limit borer damage. In addition, phorid presence revealed synergistic effects of multiple ant species, not observed without the presence of this parasite. Thus, a trait-mediated cascade resulting from a parasite-induced predator behavioral change revealed the importance of functional redundancy, predator diversity, and food web complexity for control of this important pest.

  18. Numerical Function Generators Using LUT Cascades

    DTIC Science & Technology

    2007-06-01

    either algebraically (for example, sinðxÞ) or as a table of input/ output values. The user defines the numerical function by using the syntax of Scilab ...defined function in Scilab or specify it directly. Note that, by changing the parser of our system, any format can be used for the design entry. First...Methods for Multiple-Valued Input Address Generators,” Proc. 36th IEEE Int’l Symp. Multiple-Valued Logic (ISMVL ’06), May 2006. [29] Scilab 3.0, INRIA-ENPC

  19. Response Strength in Extreme Multiple Schedules

    PubMed Central

    McLean, Anthony P; Grace, Randolph C; Nevin, John A

    2012-01-01

    Four pigeons were trained in a series of two-component multiple schedules. Reinforcers were scheduled with random-interval schedules. The ratio of arranged reinforcer rates in the two components was varied over 4 log units, a much wider range than previously studied. When performance appeared stable, prefeeding tests were conducted to assess resistance to change. Contrary to the generalized matching law, logarithms of response ratios in the two components were not a linear function of log reinforcer ratios, implying a failure of parameter invariance. Over a 2 log unit range, the function appeared linear and indicated undermatching, but in conditions with more extreme reinforcer ratios, approximate matching was observed. A model suggested by McLean (1991), originally for local contrast, predicts these changes in sensitivity to reinforcer ratios somewhat better than models by Herrnstein (1970) and by Williams and Wixted (1986). Prefeeding tests of resistance to change were conducted at each reinforcer ratio, and relative resistance to change was also a nonlinear function of log reinforcer ratios, again contrary to conclusions from previous work. Instead, the function suggests that resistance to change in a component may be determined partly by the rate of reinforcement and partly by the ratio of reinforcers to responses. PMID:22287804

  20. Benefits from an autobiographical memory facilitation programme in relapsing-remitting multiple sclerosis patients: a clinical and neuroimaging study.

    PubMed

    Ernst, Alexandra; Sourty, Marion; Roquet, Daniel; Noblet, Vincent; Gounot, Daniel; Blanc, Frédéric; de Seze, Jérôme; Manning, Liliann

    2016-10-09

    While the efficacy of mental visual imagery (MVI) to alleviate autobiographical memory (AM) impairment in multiple sclerosis (MS) patients has been documented, nothing is known about the brain changes sustaining that improvement. To explore this issue, 20 relapsing-remitting MS patients showing AM impairment were randomly assigned to two groups, experimental (n = 10), who underwent the MVI programme, and control (n = 10), who followed a sham verbal programme. Besides the stringent AM assessment, the patients underwent structural and functional MRI sessions, consisting in retrieving personal memories, within a pre-/post-facilitation study design. Only the experimental group showed a significant AM improvement in post-facilitation, accompanied by changes in brain activation (medial and lateral frontal regions), functional connectivity (posterior brain regions), and grey matter volume (parahippocampal gyrus). Minor activations and functional connectivity changes were observed in the control group. The MVI programme improved AM in MS patients leading to functional and structural changes reflecting (1) an increase reliance on brain regions sustaining a self-referential process; (2) a decrease of those reflecting an effortful research process; and (3) better use of neural resources in brain regions sustaining MVI. Functional changes reported in the control group likely reflected ineffective attempts to use the sham strategy in AM.

  1. Reintroducing Environmental Change Drivers in Biodiversity-Ecosystem Functioning Research.

    PubMed

    De Laender, Frederik; Rohr, Jason R; Ashauer, Roman; Baird, Donald J; Berger, Uta; Eisenhauer, Nico; Grimm, Volker; Hommen, Udo; Maltby, Lorraine; Meliàn, Carlos J; Pomati, Francesco; Roessink, Ivo; Radchuk, Viktoriia; Van den Brink, Paul J

    2016-12-01

    For the past 20 years, research on biodiversity and ecosystem functioning (B-EF) has only implicitly considered the underlying role of environmental change. We illustrate that explicitly reintroducing environmental change drivers in B-EF research is needed to predict the functioning of ecosystems facing changes in biodiversity. Next we show how this reintroduction improves experimental control over community composition and structure, which helps to provide mechanistic insight on how multiple aspects of biodiversity relate to function and how biodiversity and function relate in food webs. We also highlight challenges for the proposed reintroduction and suggest analyses and experiments to better understand how random biodiversity changes, as studied by classic approaches in B-EF research, contribute to the shifts in function that follow environmental change. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  2. Physical activity, self-efficacy, and health-related quality of life in persons with multiple sclerosis: analysis of associations between individual-level changes over one year.

    PubMed

    Motl, Robert W; McAuley, Edward; Wynn, Daniel; Sandroff, Brian; Suh, Yoojin

    2013-03-01

    Physical activity and self-efficacy represent behavioral and psychological factors, respectively, that are compromised in persons with multiple sclerosis (MS), but might be modifiable through intervention and result in better health-related quality of life (HRQOL). The present study adopted a panel research design and examined the associations between individual-level changes in physical activity, self-efficacy, and HRQOL over a one-year period in persons with MS. The sample consisted of 269 persons with relapsing-remitting MS who completed the Godin Leisure-Time Questionnaire (GLTEQ), Multiple Sclerosis Self-Efficacy (MSSE) Scale, and Multiple Sclerosis Quality of Life-29 (MSIS-29) Scale on two occasions that were separated by 1 year. The data were analyzed using panel analysis in Mplus 3.0. The initial panel analysis indicated that individual-level change in physical activity was associated with individual-level change in both physical and psychological HRQOL. The subsequent panel analysis indicated that (a) individual-level change in self-efficacy for functioning with MS was associated with individual-level change in physical HRQOL, whereas individual-level change in self-efficacy for control was associated with individual-level change in psychological HRQOL; (b) individual-level change in self-efficacy for functioning with MS, but not self-efficacy for control, mediated the association between individual-level change in physical activity and physical HRQOL; and (c) individual-level change in self-efficacy for controlling MS was the strongest predictor of individual-level change in HRQOL. Physical activity and self-efficacy both might be important targets of subsequent behavioral and self-management interventions for improving the HRQOL of persons with MS, although self-efficacy is seemingly more important than physical activity.

  3. Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production.

    PubMed

    Sorte, Cascade J B; Bracken, Matthew E S

    2015-01-01

    Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically.

  4. Warming and Elevated CO2 Interact to Drive Rapid Shifts in Marine Community Production

    PubMed Central

    Sorte, Cascade J. B.; Bracken, Matthew E. S.

    2015-01-01

    Predicting the outcome of future climate change requires an understanding of how alterations in multiple environmental factors manifest in natural communities and affect ecosystem functioning. We conducted an in situ, fully factorial field manipulation of CO2 and temperature on a rocky shoreline in southeastern Alaska, USA. Warming strongly impacted functioning of tide pool systems within one month, with the rate of net community production (NCP) more than doubling in warmed pools under ambient CO2 levels relative to initial NCP values. However, in pools with added CO2, NCP was unaffected by warming. Productivity responses paralleled changes in the carbon-to-nitrogen ratio of a red alga, the most abundant primary producer species in the system, highlighting the direct link between physiology and ecosystem functioning. These observed changes in algal physiology and community productivity in response to our manipulations indicate the potential for natural systems to shift rapidly in response to changing climatic conditions and for multiple environmental factors to act antagonistically. PMID:26714167

  5. Multiple-stressor impacts on Spartina alterniflora and Distichlis spicata

    EPA Science Inventory

    Salt marshes are subject to an array of environmental changes that have the potential to alter community structure and function. Manipulative experiments often study environmental changes in isolation, although changes may interactively affect plant and ecosystem response. We rep...

  6. Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function

    NASA Astrophysics Data System (ADS)

    Herman, Jay R.

    2010-12-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone Ω, U(Ω/200)-RAF, where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 nm) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  7. Use of an Improved Radiation Amplification Factor to Estimate the Effect of Total Ozone Changes on Action Spectrum Weighted Irradiances and an Instrument Response Function

    NASA Technical Reports Server (NTRS)

    Herman, Jay R.

    2010-01-01

    Multiple scattering radiative transfer results are used to calculate action spectrum weighted irradiances and fractional irradiance changes in terms of a power law in ozone OMEGA, U(OMEGA/200)(sup -RAF), where the new radiation amplification factor (RAF) is just a function of solar zenith angle. Including Rayleigh scattering caused small differences in the estimated 30 year changes in action spectrum-weighted irradiances compared to estimates that neglect multiple scattering. The radiative transfer results are applied to several action spectra and to an instrument response function corresponding to the Solar Light 501 meter. The effect of changing ozone on two plant damage action spectra are shown for plants with high sensitivity to UVB (280-315 run) and those with lower sensitivity, showing that the probability for plant damage for the latter has increased since 1979, especially at middle to high latitudes in the Southern Hemisphere. Similarly, there has been an increase in rates of erythemal skin damage and pre-vitamin D3 production corresponding to measured ozone decreases. An example conversion function is derived to obtain erythemal irradiances and the UV index from measurements with the Solar Light 501 instrument response function. An analytic expressions is given to convert changes in erythemal irradiances to changes in CIE vitamin-D action spectrum weighted irradiances.

  8. Representation of the Physiological Factors Contributing to Postflight Changes in Functional Performance Using Motion Analysis Software

    NASA Technical Reports Server (NTRS)

    Parks, Kelsey

    2010-01-01

    Astronauts experience changes in multiple physiological systems due to exposure to the microgravity conditions of space flight. To understand how changes in physiological function influence functional performance, a testing procedure has been developed that evaluates both astronaut postflight functional performance and related physiological changes. Astronauts complete seven functional and physiological tests. The objective of this project is to use motion tracking and digitizing software to visually display the postflight decrement in the functional performance of the astronauts. The motion analysis software will be used to digitize astronaut data videos into stick figure videos to represent the astronauts as they perform the Functional Tasks Tests. This project will benefit NASA by allowing NASA scientists to present data of their neurological studies without revealing the identities of the astronauts.

  9. Differential abundance of microbial functional groups along the elevation gradient from the coast to the Luquillo Mountains

    Treesearch

    Sharon A. Cantrell; D. Jean Lodge; Carlos A. Cruz; Luis M. García; Jose R. Pérez-Jiménez; Marirosa Molina

    2013-01-01

    Microbial communities respond to multiple abiotic and biotic factors that change along elevation gradients. We compare changes in microbial community composition in soil and review previous research on differential abundance of microbial functional groups along an elevation gradient in eastern Puerto Rico. Previous studies within the Luquillo Mountains showed that...

  10. Functional Task Test: 1. Sensorimotor changes Associated with Postflight Alterations in Astronaut Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.; hide

    2011-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.

  11. Interactive effects of climate change and biodiversity loss on ecosystem functioning.

    PubMed

    Pires, Aliny P F; Srivastava, Diane S; Marino, Nicholas A C; MacDonald, A Andrew M; Figueiredo-Barros, Marcos Paulo; Farjalla, Vinicius F

    2018-05-01

    Climate change and biodiversity loss are expected to simultaneously affect ecosystems, however research on how each driver mediates the effect of the other has been limited in scope. The multiple stressor framework emphasizes non-additive effects, but biodiversity may also buffer the effects of climate change, and climate change may alter which mechanisms underlie biodiversity-function relationships. Here, we performed an experiment using tank bromeliad ecosystems to test the various ways that rainfall changes and litter diversity may jointly determine ecological processes. Litter diversity and rainfall changes interactively affected multiple functions, but how depends on the process measured. High litter diversity buffered the effects of altered rainfall on detritivore communities, evidence of insurance against impacts of climate change. Altered rainfall affected the mechanisms by which litter diversity influenced decomposition, reducing the importance of complementary attributes of species (complementarity effects), and resulting in an increasing dependence on the maintenance of specific species (dominance effects). Finally, altered rainfall conditions prevented litter diversity from fueling methanogenesis, because such changes in rainfall reduced microbial activity by 58%. Together, these results demonstrate that the effects of climate change and biodiversity loss on ecosystems cannot be understood in isolation and interactions between these stressors can be multifaceted. © 2018 by the Ecological Society of America.

  12. Changes in Bird Functional Diversity across Multiple Land Uses: Interpretations of Functional Redundancy Depend on Functional Group Identity

    PubMed Central

    Luck, Gary W.; Carter, Andrew; Smallbone, Lisa

    2013-01-01

    Examinations of the impact of land-use change on functional diversity link changes in ecological community structure driven by land modification with the consequences for ecosystem function. Yet, most studies have been small-scale, experimental analyses and primarily focussed on plants. There is a lack of research on fauna communities and at large-scales across multiple land uses. We assessed changes in the functional diversity of bird communities across 24 land uses aligned along an intensification gradient. We tested the hypothesis that functional diversity is higher in less intensively used landscapes, documented changes in diversity using four diversity metrics, and examined how functional diversity varied with species richness to identify levels of functional redundancy. Functional diversity, measured using a dendogram-based metric, increased from high to low intensity land uses, but observed values did not differ significantly from randomly-generated expected values. Values for functional evenness and functional divergence did not vary consistently with land-use intensification, although higher than expected values were mostly recorded in high intensity land uses. A total of 16 land uses had lower than expected values for functional dispersion and these were mostly low intensity native vegetation sites. Relations between functional diversity and bird species richness yielded strikingly different patterns for the entire bird community vs. particular functional groups. For all birds and insectivores, functional evenness, divergence and dispersion showed a linear decline with increasing species richness suggesting substantial functional redundancy across communities. However, for nectarivores, frugivores and carnivores, there was a significant hump-shaped or non-significant positive linear relationship between these functional measures and species richness indicating less redundancy. Hump-shaped relationships signify that the most functionally diverse communities occur at intermediate levels of species richness. Interpretations of redundancy thus vary for different functional groups and related ecosystem functions (e.g. pollination), and can be substantially different to relationships involving entire ecological communities. PMID:23696844

  13. Graded-threshold parametric response maps: towards a strategy for adaptive dose painting

    NASA Astrophysics Data System (ADS)

    Lausch, A.; Jensen, N.; Chen, J.; Lee, T. Y.; Lock, M.; Wong, E.

    2014-03-01

    Purpose: To modify the single-threshold parametric response map (ST-PRM) method for predicting treatment outcomes in order to facilitate its use for guidance of adaptive dose painting in intensity-modulated radiotherapy. Methods: Multiple graded thresholds were used to extend the ST-PRM method (Nat. Med. 2009;15(5):572-576) such that the full functional change distribution within tumours could be represented with respect to multiple confidence interval estimates for functional changes in similar healthy tissue. The ST-PRM and graded-threshold PRM (GT-PRM) methods were applied to functional imaging scans of 5 patients treated for hepatocellular carcinoma. Pre and post-radiotherapy arterial blood flow maps (ABF) were generated from CT-perfusion scans of each patient. ABF maps were rigidly registered based on aligning tumour centres of mass. ST-PRM and GT-PRM analyses were then performed on overlapping tumour regions within the registered ABF maps. Main findings: The ST-PRMs contained many disconnected clusters of voxels classified as having a significant change in function. While this may be useful to predict treatment response, it may pose challenges for identifying boost volumes or for informing dose-painting by numbers strategies. The GT-PRMs included all of the same information as ST-PRMs but also visualized the full tumour functional change distribution. Heterogeneous clusters in the ST-PRMs often became more connected in the GT-PRMs by voxels with similar functional changes. Conclusions: GT-PRMs provided additional information which helped to visualize relationships between significant functional changes identified by ST-PRMs. This may enhance ST-PRM utility for guiding adaptive dose painting.

  14. Structural disconnection is responsible for increased functional connectivity in multiple sclerosis.

    PubMed

    Patel, Kevin R; Tobyne, Sean; Porter, Daria; Bireley, John Daniel; Smith, Victoria; Klawiter, Eric

    2018-06-01

    Increased synchrony within neuroanatomical networks is often observed in neurophysiologic studies of human brain disease. Most often, this phenomenon is ascribed to a compensatory process in the face of injury, though evidence supporting such accounts is limited. Given the known dependence of resting-state functional connectivity (rsFC) on underlying structural connectivity (SC), we examine an alternative hypothesis: that topographical changes in SC, specifically particular patterns of disconnection, contribute to increased network rsFC. We obtain measures of rsFC using fMRI and SC using probabilistic tractography in 50 healthy and 28 multiple sclerosis subjects. Using a computational model of neuronal dynamics, we simulate BOLD using healthy subject SC to couple regions. We find that altering the model by introducing structural disconnection patterns observed in those multiple sclerosis subjects with high network rsFC generates simulations with high rsFC as well, suggesting that disconnection itself plays a role in producing high network functional connectivity. We then examine SC data in individuals. In multiple sclerosis subjects with high network rsFC, we find a preferential disconnection between the relevant network and wider system. We examine the significance of such network isolation by introducing random disconnection into the model. As observed empirically, simulated network rsFC increases with removal of connections bridging a community with the remainder of the brain. We thus show that structural disconnection known to occur in multiple sclerosis contributes to network rsFC changes in multiple sclerosis and further that community isolation is responsible for elevated network functional connectivity.

  15. Loop-loop interactions govern multiple steps in indole-3-glycerol phosphate synthase catalysis

    PubMed Central

    Zaccardi, Margot J; O'Rourke, Kathleen F; Yezdimer, Eric M; Loggia, Laura J; Woldt, Svenja; Boehr, David D

    2014-01-01

    Substrate binding, product release, and likely chemical catalysis in the tryptophan biosynthetic enzyme indole-3-glycerol phosphate synthase (IGPS) are dependent on the structural dynamics of the β1α1 active-site loop. Statistical coupling analysis and molecular dynamic simulations had previously indicated that covarying residues in the β1α1 and β2α2 loops, corresponding to Arg54 and Asn90, respectively, in the Sulfolobus sulfataricus enzyme (ssIGPS), are likely important for coordinating functional motions of these loops. To test this hypothesis, we characterized site mutants at these positions for changes in catalytic function, protein stability and structural dynamics for the thermophilic ssIGPS enzyme. Although there were only modest changes in the overall steady-state kinetic parameters, solvent viscosity and solvent deuterium kinetic isotope effects indicated that these amino acid substitutions change the identity of the rate-determining step across multiple temperatures. Surprisingly, the N90A substitution had a dramatic effect on the general acid/base catalysis of the dehydration step, as indicated by the loss of the descending limb in the pH rate profile, which we had previously assigned to Lys53 on the β1α1 loop. These changes in enzyme function are accompanied with a quenching of ps-ns and µs-ms timescale motions in the β1α1 loop as measured by nuclear magnetic resonance studies. Altogether, our studies provide structural, dynamic and functional rationales for the coevolution of residues on the β1α1 and β2α2 loops, and highlight the multiple roles that the β1α1 loop plays in IGPS catalysis. Thus, substitution of covarying residues in the active-site β1α1 and β2α2 loops of indole-3-glycerol phosphate synthase results in functional, structural, and dynamic changes, highlighting the multiple roles that the β1α1 loop plays in enzyme catalysis and the importance of regulating the structural dynamics of this loop through noncovalent interactions with nearby structural elements. PMID:24403092

  16. Climate change and functional traits affect population dynamics of a long-lived seabird.

    PubMed

    Jenouvrier, Stéphanie; Desprez, Marine; Fay, Remi; Barbraud, Christophe; Weimerskirch, Henri; Delord, Karine; Caswell, Hal

    2018-07-01

    Recent studies unravelled the effect of climate changes on populations through their impact on functional traits and demographic rates in terrestrial and freshwater ecosystems, but such understanding in marine ecosystems remains incomplete. Here, we evaluate the impact of the combined effects of climate and functional traits on population dynamics of a long-lived migratory seabird breeding in the southern ocean: the black-browed albatross (Thalassarche melanophris, BBA). We address the following prospective question: "Of all the changes in the climate and functional traits, which would produce the biggest impact on the BBA population growth rate?" We develop a structured matrix population model that includes the effect of climate and functional traits on the complete BBA life cycle. A detailed sensitivity analysis is conducted to understand the main pathway by which climate and functional trait changes affect the population growth rate. The population growth rate of BBA is driven by the combined effects of climate over various seasons and multiple functional traits with carry-over effects across seasons on demographic processes. Changes in sea surface temperature (SST) during late winter cause the biggest changes in the population growth rate, through their effect on juvenile survival. Adults appeared to respond to changes in winter climate conditions by adapting their migratory schedule rather than by modifying their at-sea foraging activity. However, the sensitivity of the population growth rate to SST affecting BBA migratory schedule is small. BBA foraging activity during the pre-breeding period has the biggest impact on population growth rate among functional traits. Finally, changes in SST during the breeding season have little effect on the population growth rate. These results highlight the importance of early life histories and carry-over effects of climate and functional traits on demographic rates across multiple seasons in population response to climate change. Robust conclusions about the roles of various phases of the life cycle and functional traits in population response to climate change rely on an understanding of the relationships of traits to demographic rates across the complete life cycle. © 2018 The Authors. Journal of Animal Ecology published by John Wiley & Sons Ltd oxn behalf of British Ecological Society.

  17. Temporal change in fragmentation of continental US forests

    Treesearch

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  18. Synaptic genes are extensively downregulated across multiple brain regions in normal human aging and Alzheimer’s disease

    PubMed Central

    Berchtold, Nicole C.; Coleman, Paul D.; Cribbs, David H.; Rogers, Joseph; Gillen, Daniel L.; Cotman, Carl W.

    2014-01-01

    Synapses are essential for transmitting, processing, and storing information, all of which decline in aging and Alzheimer’s disease (AD). Because synapse loss only partially accounts for the cognitive declines seen in aging and AD, we hypothesized that existing synapses might undergo molecular changes that reduce their functional capacity. Microarrays were used to evaluate expression profiles of 340 synaptic genes in aging (20–99 years) and AD across 4 brain regions from 81 cases. The analysis revealed an unexpectedly large number of significant expression changes in synapse-related genes in aging, with many undergoing progressive downregulation across aging and AD. Functional classification of the genes showing altered expression revealed that multiple aspects of synaptic function are affected, notably synaptic vesicle trafficking and release, neurotransmitter receptors and receptor trafficking, postsynaptic density scaffolding, cell adhesion regulating synaptic stability, and neuromodulatory systems. The widespread declines in synaptic gene expression in normal aging suggests that function of existing synapses might be impaired, and that a common set of synaptic genes are vulnerable to change in aging and AD. PMID:23273601

  19. Multiple sclerosis-related white matter microstructural change alters the BOLD hemodynamic response.

    PubMed

    Hubbard, Nicholas A; Turner, Monroe; Hutchison, Joanna L; Ouyang, Austin; Strain, Jeremy; Oasay, Larry; Sundaram, Saranya; Davis, Scott; Remington, Gina; Brigante, Ryan; Huang, Hao; Hart, John; Frohman, Teresa; Frohman, Elliot; Biswal, Bharat B; Rypma, Bart

    2016-11-01

    Multiple sclerosis (MS) results in inflammatory damage to white matter microstructure. Prior research using blood-oxygen-level dependent (BOLD) imaging indicates MS-related alterations to brain function. What is currently unknown is the extent to which white matter microstructural damage influences BOLD signal in MS. Here we assessed changes in parameters of the BOLD hemodynamic response function (HRF) in patients with relapsing-remitting MS compared to healthy controls. We also used diffusion tensor imaging to assess whether MS-related changes to the BOLD-HRF were affected by changes in white matter microstructural integrity. Our results showed MS-related reductions in BOLD-HRF peak amplitude. These MS-related amplitude decreases were influenced by individual differences in white matter microstructural integrity. Other MS-related factors including altered reaction time, limited spatial extent of BOLD activity, elevated lesion burden, or lesion proximity to regions of interest were not mediators of group differences in BOLD-HRF amplitude. Results are discussed in terms of functional hyperemic mechanisms and implications for analysis of BOLD signal differences. © The Author(s) 2015.

  20. Multimethod Investigation of Interpersonal Functioning in Borderline Personality Disorder

    PubMed Central

    Stepp, Stephanie D.; Hallquist, Michael N.; Morse, Jennifer Q.; Pilkonis, Paul A.

    2011-01-01

    Even though interpersonal functioning is of great clinical importance for patients with borderline personality disorder (BPD), the comparative validity of different assessment methods for interpersonal dysfunction has not yet been tested. This study examined multiple methods of assessing interpersonal functioning, including self- and other-reports, clinical ratings, electronic diaries, and social cognitions in three groups of psychiatric patients (N=138): patients with (1) BPD, (2) another personality disorder, and (3) Axis I psychopathology only. Using dominance analysis, we examined the predictive validity of each method in detecting changes in symptom distress and social functioning six months later. Across multiple methods, the BPD group often reported higher interpersonal dysfunction scores compared to other groups. Predictive validity results demonstrated that self-report and electronic diary ratings were the most important predictors of distress and social functioning. Our findings suggest that self-report scores and electronic diary ratings have high clinical utility, as these methods appear most sensitive to change. PMID:21808661

  1. From hatching to dispatching: the multiple cellular roles of the Hsp70 molecular chaperone machinery.

    PubMed

    Meimaridou, Eirini; Gooljar, Sakina B; Chapple, J Paul

    2009-01-01

    Molecular chaperones are best recognized for their roles in de novo protein folding and the cellular response to stress. However, many molecular chaperones, and in particular the Hsp70 chaperone machinery, have multiple diverse cellular functions. At the molecular level, chaperones are mediators of protein conformational change. To facilitate conformational change of client/substrate proteins, in manifold contexts, chaperone power must be closely regulated and harnessed to specific cellular locales--this is controlled by cochaperones. This review considers specialized functions of the Hsp70 chaperone machinery mediated by its cochaperones. We focus on vesicular trafficking, protein degradation and a potential role in G protein-coupled receptor processing.

  2. Improved sexual and urinary function in women with sacral nerve stimulation.

    PubMed

    Gill, Bradley C; Swartz, Mia A; Firoozi, Farzeen; Rackley, Raymond R; Moore, Courtenay K; Goldman, Howard B; Vasavada, Sandip P

    2011-01-01

      Urinary and sexual function improve following sacral nerve stimulation (SNS) for refractory overactive bladder. No significant associations between these changes have been found. Whether improvements in sexual function are independent of or secondary to improvements in urinary function remains unclear. The aim of this study was to analyze changes in urinary and sexual function in a homogeneous sample of patients undergoing SNS for urge urinary incontinence and subsequently identify associations between the two.   A prospective database was created. Enrollees underwent a full history and physical examination at the first office visit. Multiple-day voiding diaries with validated and investigator-designed questionnaires were administered at baseline and follow-up as standard implantation procedures and to assess changes in urinary and sexual function, respectively. Analyses were completed using data from patients who were sexually active at baseline and follow-up.   Statistically significant improvements in urinary and sexual function occurred according to multiple metrics. Patient global impression scales categorized all patients' urinary conditions as improved, with most being less severe. Validated urinary symptom and quality of life scores improved significantly. After treatment, most patients were incontinent less often with sexual activity and felt less restricted from sexual activity by fear of incontinence. Validated quantification of sexual function demonstrated significant improvements in overall sexual function, arousal, and satisfaction. No significant associations between changes in urinary and sexual function were noted; however, trends appeared to exist between the two.   Improved sexual function was not significantly associated with improved urinary function after SNS despite apparent trends between the two. Larger samples are required to definitively demonstrate this conclusion. © 2011 International Neuromodulation Society.

  3. In Vivo Imaging of Cortical Inflammation and Subpial Pathology in Multiple Sclerosis by Combined PET and MRI

    DTIC Science & Technology

    2015-09-01

    abnormalities in MS associated with changes in cortical myelin and/or iron concentration. The purpose of this project is to evaluate inflammation and...al., 2011). We demonstrated that surface-based mapping of quanti - tative T2* as a function of cortical depth (laminar analysis) from ultra-high...cortical grey matter (NACGM), to better understand their role in determining laminar quanti - tative T2* changes in multiple sclerosis. Materials and

  4. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues

    PubMed Central

    Zhang, Sharon; Ratliff, Eric P.; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W.; Achal, Madhulika; Mauntz, Ruth E.; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A.; Macias, Andrew M.; Daugherty, Daniel; Harris, Greg L.; Edwards, Robert A.; Finley, Kim D.

    2018-01-01

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system. PMID:29642630

  5. Aging and Intermittent Fasting Impact on Transcriptional Regulation and Physiological Responses of Adult Drosophila Neuronal and Muscle Tissues.

    PubMed

    Zhang, Sharon; Ratliff, Eric P; Molina, Brandon; El-Mecharrafie, Nadja; Mastroianni, Jessica; Kotzebue, Roxanne W; Achal, Madhulika; Mauntz, Ruth E; Gonzalez, Arysa; Barekat, Ayeh; Bray, William A; Macias, Andrew M; Daugherty, Daniel; Harris, Greg L; Edwards, Robert A; Finley, Kim D

    2018-04-10

    The progressive decline of the nervous system, including protein aggregate formation, reflects the subtle dysregulation of multiple functional pathways. Our previous work has shown intermittent fasting (IF) enhances longevity, maintains adult behaviors and reduces aggregates, in part, by promoting autophagic function in the aging Drosophila brain. To clarify the impact that IF-treatment has upon aging, we used high throughput RNA-sequencing technology to examine the changing transcriptome in adult Drosophila tissues. Principle component analysis (PCA) and other analyses showed ~1200 age-related transcriptional differences in head and muscle tissues, with few genes having matching expression patterns. Pathway components showing age-dependent expression differences were involved with stress response, metabolic, neural and chromatin remodeling functions. Middle-aged tissues also showed a significant increase in transcriptional drift-variance (TD), which in the CNS included multiple proteolytic pathway components. Overall, IF-treatment had a demonstrably positive impact on aged transcriptomes, partly ameliorating both fold and variance changes. Consistent with these findings, aged IF-treated flies displayed more youthful metabolic, behavioral and basal proteolytic profiles that closely correlated with transcriptional alterations to key components. These results indicate that even modest dietary changes can have therapeutic consequences, slowing the progressive decline of multiple cellular systems, including proteostasis in the aging nervous system.

  6. Addressing the targeting range of the ABILHAND-56 in relapsing-remitting multiple sclerosis: A mixed methods psychometric study.

    PubMed

    Cleanthous, Sophie; Strzok, Sara; Pompilus, Farrah; Cano, Stefan; Marquis, Patrick; Cohan, Stanley; Goldman, Myla D; Kresa-Reahl, Kiren; Petrillo, Jennifer; Castrillo-Viguera, Carmen; Cadavid, Diego; Chen, Shih-Yin

    2018-01-01

    ABILHAND, a manual ability patient-reported outcome instrument originally developed for stroke patients, has been used in multiple sclerosis clinical trials; however, psychometric analyses indicated the measure's limited measurement range and precision in higher-functioning multiple sclerosis patients. The purpose of this study was to identify candidate items to expand the measurement range of the ABILHAND-56, thus improving its ability to detect differences in manual ability in higher-functioning multiple sclerosis patients. A step-wise mixed methods design strategy was used, comprising two waves of patient interviews, a combination of qualitative (concept elicitation and cognitive debriefing) and quantitative (Rasch measurement theory) analytic techniques, and consultation interviews with three clinical neurologists specializing in multiple sclerosis. Original ABILHAND was well understood in this context of use. Eighty-two new manual ability concepts were identified. Draft supplementary items were generated and refined with patient and neurologist input. Rasch measurement theory psychometric analysis indicated supplementary items improved targeting to higher-functioning multiple sclerosis patients and measurement precision. The final pool of Early Multiple Sclerosis Manual Ability items comprises 20 items. The synthesis of qualitative and quantitative methods used in this study improves the ABILHAND content validity to more effectively identify manual ability changes in early multiple sclerosis and potentially help determine treatment effect in higher-functioning patients in clinical trials.

  7. Ventricular Fibrillation Associated With Dynamic Changes in J-Point Elevation in a Patient With Silent Thyroiditis.

    PubMed

    Karashima, Shigehiro; Tsuda, Toyonobu; Wakabayashi, Yusuke; Kometani, Mitsuhiro; Demura, Masashi; Ichise, Taro; Kawashiri, Masa-Aki; Takeda, Yoshiyu; Hayashi, Kenshi; Yoneda, Takashi

    2018-02-01

    A J wave is a common electrocardiographic finding in the general population. Individuals with prominent J waves in multiple electrocardiogram (ECG) leads have a higher risk of lethal arrhythmias than those with low-amplitude J waves. There are few reports about the relationship between thyroid function and J-wave amplitude. We report the case of a 45-year-old man who had unexpected ventricular fibrillation (VF). He had dynamic J-point elevation in multiple ECG leads. Possible early repolarization syndrome was diagnosed. He also had thyrotoxicosis caused by silent thyroiditis, and his J-wave amplitude decreased according to changes in thyroid function because of spontaneous remission of silent thyroiditis. There was a positive correlation between serum triiodothyronine levels and J-wave amplitudes. The findings in case suggested silent thyroiditis may contribute to the occurrence of VF in a patient with dynamic changes in J-point elevation in multiple ECG leads. Thyrotoxicosis is a relatively common endocrine disease; therefore, clinicians should pay attention to J-wave amplitude in the ECG of patients with thyrotoxicosis.

  8. Detecting target changes in multiple object tracking with peripheral vision: More pronounced eccentricity effects for changes in form than in motion.

    PubMed

    Vater, Christian; Kredel, Ralf; Hossner, Ernst-Joachim

    2017-05-01

    In the current study, dual-task performance is examined with multiple-object tracking as a primary task and target-change detection as a secondary task. The to-be-detected target changes in conditions of either change type (form vs. motion; Experiment 1) or change salience (stop vs. slowdown; Experiment 2), with changes occurring at either near (5°-10°) or far (15°-20°) eccentricities (Experiments 1 and 2). The aim of the study was to test whether changes can be detected solely with peripheral vision. By controlling for saccades and computing gaze distances, we could show that participants used peripheral vision to monitor the targets and, additionally, to perceive changes at both near and far eccentricities. Noticeably, gaze behavior was not affected by the actual target change. Detection rates as well as response times generally varied as a function of change condition and eccentricity, with faster detections for motion changes and near changes. However, in contrast to the effects found for motion changes, sharp declines in detection rates and increased response times were observed for form changes as a function of the eccentricities. This result can be ascribed to properties of the visual system, namely to the limited spatial acuity in the periphery and the comparably receptive motion sensitivity of peripheral vision. These findings show that peripheral vision is functional for simultaneous target monitoring and target-change detection as saccadic information suppression can be avoided and covert attention can be optimally distributed to all targets. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Perceptual learning and adult cortical plasticity.

    PubMed

    Gilbert, Charles D; Li, Wu; Piech, Valentin

    2009-06-15

    The visual cortex retains the capacity for experience-dependent changes, or plasticity, of cortical function and cortical circuitry, throughout life. These changes constitute the mechanism of perceptual learning in normal visual experience and in recovery of function after CNS damage. Such plasticity can be seen at multiple stages in the visual pathway, including primary visual cortex. The manifestation of the functional changes associated with perceptual learning involve both long term modification of cortical circuits during the course of learning, and short term dynamics in the functional properties of cortical neurons. These dynamics are subject to top-down influences of attention, expectation and perceptual task. As a consequence, each cortical area is an adaptive processor, altering its function in accordance to immediate perceptual demands.

  10. Predicting functional divergence in protein evolution by site-specific rate shifts

    NASA Technical Reports Server (NTRS)

    Gaucher, Eric A.; Gu, Xun; Miyamoto, Michael M.; Benner, Steven A.

    2002-01-01

    Most modern tools that analyze protein evolution allow individual sites to mutate at constant rates over the history of the protein family. However, Walter Fitch observed in the 1970s that, if a protein changes its function, the mutability of individual sites might also change. This observation is captured in the "non-homogeneous gamma model", which extracts functional information from gene families by examining the different rates at which individual sites evolve. This model has recently been coupled with structural and molecular biology to identify sites that are likely to be involved in changing function within the gene family. Applying this to multiple gene families highlights the widespread divergence of functional behavior among proteins to generate paralogs and orthologs.

  11. Effectiveness of functional electrical stimulation on walking speed, functional walking category, and clinically meaningful changes for people with multiple sclerosis.

    PubMed

    Street, Tamsyn; Taylor, Paul; Swain, Ian

    2015-04-01

    To determine the effectiveness of functional electrical stimulation (FES) on drop foot in patients with multiple sclerosis (MS), using data from standard clinical practice. Case series with a consecutive sample of FES users collected between 2008 and 2013. Specialist FES center at a district general hospital. Patients with MS who have drop foot (N=187) (117 women, 70 men; mean age, 55y [range, 27-80y]; mean duration since diagnosis, 11.7y [range, 1-56y]). A total of 166 patients were still using FES after 20 weeks, with 153 patients completing the follow-up measures. FES of the common peroneal nerve (178 unilateral, 9 bilateral FES users). Clinically meaningful changes (ie, >.05m/s and >0.1m/s) and functional walking category derived from 10-m walking speed. An increase in walking speed was found to be highly significant (P<.001), both initially where a minimum clinically meaningful change was observed (.07m/s) and after 20 weeks with a substantial clinically meaningful change (.11m/s). After 20 weeks, treatment responders displayed a 27% average improvement in their walking speed. No significant training effect was found. Overall functional walking category was maintained or improved in 95% of treatment responders. FES of the dorsiflexors is a well-accepted intervention that enables clinically meaningful changes in walking speed, leading to a preserved or an increased functional walking category. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Sexual dysfunction in multiple sclerosis: A 6-year follow-up study.

    PubMed

    Kisic-Tepavcevic, Darija; Pekmezovic, Tatjana; Trajkovic, Goran; Stojsavljevic, Nebojsa; Dujmovic, Irena; Mesaros, Sarlota; Drulovic, Jelena

    2015-11-15

    Sexual dysfunction (SD) is a common but often overlooked and undertreated symptom in multiple sclerosis (MS). The purpose of our longitudinal study was to explore the changes in the level of sexual functioning in MS cohort after a period of 3 and 6 years of follow-up, as well as to investigate the predictors of changes in SD during the period of observation. The study population comprise a cohort of 93 patients with MS (McDonald's criteria, 2001) who were assessed at three time points during the study (baseline, and at the 3- and 6-year follow-up). The presence and severity of SD was quantified by Szasz sexual functioning scale. Independent predictors of the ordinal-scaled measure of sexual problems were identified using a generalized linear mixed regression models. The number of reported SD symptoms increased markedly for both genders during the whole period of observation. Duration of follow-up, age, level of physical disability, depression and fatigue were identified as independent prognostic factors for deterioration of sexual functioning in patients with MS during the 6-year follow-up. Our study provides insight into dynamics of change in sexual function among patients with MS and predictors of change, over the period of 6 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. An optically detectable CO2 sensor utilizing polyethylenimine and starch functionalized InGaN/GaN multiple quantum wells

    NASA Astrophysics Data System (ADS)

    Chen, Y. C.; Shih, H. Y.; Chen, J. Y.; Tan, W. J.; Chen, Y. F.

    2013-07-01

    An optically detectable gas sensor based on the high surface sensitivity of functionalized polyethylenimine/starch In0.15Ga0.85N/GaN strained semiconductor multiple quantum wells (MQWs) has been developed. Due to the excellent piezoelectricity of the MQWs, the change of surface charges caused by chemical interaction can introduce a strain and induce an internal field. In turn, it tilts the energy levels of the MQWs and modifies the optical properties. Through the measurement of the changes in photoluminescence as well as Raman scattering spectra under different concentrations of carbon dioxide gas, we demonstrate the feasibility and high sensitivity of the sensors derived from our methodology.

  14. Multiple logic functions from extended blockade region in a silicon quantum-dot transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Youngmin; Lee, Sejoon, E-mail: sejoon@dongguk.edu; Im, Hyunsik

    2015-02-14

    We demonstrate multiple logic-functions at room temperature on a unit device of the Si single electron transistor (SET). Owing to the formation of the multi-dot system, the device exhibits the enhanced Coulomb blockade characteristics (e.g., large peak-to-valley current ratio ∼200) that can improve the reliability of the SET-based logic circuits. The SET displays a unique feature useful for the logic applications; namely, the Coulomb oscillation peaks are systematically shifted by changing either of only the gate or the drain voltage. This enables the SET to act as a multi-functional one-transistor logic gate with AND, OR, NAND, and XOR functions.

  15. [Effect of preventive treatment on cognitive performance in patients with multiple sclerosis].

    PubMed

    Shorobura, Maria S

    2018-01-01

    Introduction: cognitive, emotional and psychopathological changes play a significant role in the clinical picture of multiple sclerosis and influence the effectiveness of drug therapy, working capacity, quality of life, and the process of rehabilitation of patients with multiple sclerosis. The aim: investigate the changes in cognitive function in patients with multiple sclerosis, such as information processing speed and working memory of patients before and after treatment with immunomodulating drug. Materials and methods:33 patients examined reliably diagnosed with multiple sclerosis who were treated with preventive examinations and treatment from 2012 to 2016. For all patients with multiple sclerosis had clinical-neurological examination (neurological status using the EDSS scale) and the cognitive status was evaluated using the PASAT auditory test. Patient screening was performed before, during and after the therapy. Statistical analysis of the results was performed in the system Statistica 8.0. We used Student's t-test (t), Mann-Whitney test (Z). Person evaluated the correlation coefficients and Spearman (r, R), Wilcoxon criterion (T), Chi-square (X²). Results: The age of patients with multiple sclerosis affects the growth and EDSS scale score decrease PASAT to treatment. Duration of illness affects the EDSS scale score and performance PASAT. Indicators PASAT not significantly decreased throughout the treatment. Conclusions: glatiramer acetate has a positive effect on cognitive function, information processing speed and working memory patients with multiple sclerosis, which is one of the important components of the therapeutic effect of this drug.

  16. Optimal function explains forest responses to global change

    Treesearch

    Roderick Dewar; Oskar Franklin; Annikki Makela; Ross E. McMurtrie; Harry T. Valentine

    2009-01-01

    Plant responses to global changes in carbon dioxide (CO2), nitrogen, and water availability are critical to future atmospheric CO2 concentrations, hydrology, and hence climate. Our understanding of those responses is incomplete, however. Multiple-resource manipulation experiments and empirical observations have revealed a...

  17. [Eyeball structure changes in high myopic patients and their significance for forensic assessment].

    PubMed

    Liu, Yi-Chang; Xia, Wen-Tao; Zhou, Xing-Tao; Liu, Rui-Jue; Bian, Shi-Zhong; Ying, Chong-Liang; Zhu, Guang-You

    2008-10-01

    There are irreversible eyeball structural changes in high myopic patients. These changes include axial length, corneal radius, anterior chamber depth, fundus degeneration, macula thickness, etc. There is a close relationship between the damage degree of visual function and these changes. The incidence of complications, such as vitreous opacity, posterior vitreous detachment, cataract, glaucoma, posterior staphyloma and retina detachment, is also highly related to the myopia diopter. More and more researches have indicated that the myopia diopter and the level of visual function are affected by multiple factors. It is promising to detect all of these changes by different kinds of methods, and to assess visual function through these changes. By clarifying these changes, it is also useful to distinguish traumatic damage from disease to provide evidence for forensic assessment of eye injuries.

  18. Association between changes on the Negative Symptom Assessment scale (NSA-16) and measures of functional outcome in schizophrenia.

    PubMed

    Velligan, Dawn I; Alphs, Larry; Lancaster, Scott; Morlock, Robert; Mintz, Jim

    2009-09-30

    We examined whether changes in negative symptoms, as measured by scores on the 16-item Negative Symptom Assessment scale (NSA-16), were associated with changes in functional outcome. A group of 125 stable outpatients with schizophrenia were assessed at baseline and at 6 months using the NSA-16, the Brief Psychiatric Rating Scale, and multiple measures of functional outcome. Baseline adjusted regression coefficients indicated moderate correlations between negative symptoms and functional outcomes when baseline values of both variables were controlled. Results were nearly identical when we controlled for positive symptoms. Cross-lag panel correlations and Structural Equation Modeling were used to examine whether changes in negative symptoms drove changes in functional outcomes over time. Results indicated that negative symptoms drove the changes in the Social and Occupational Functioning Scale (SOFAS) rather than the reverse. Measures of Quality of Life and measures of negative symptoms may be assessing overlapping constructs or changes in both may be driven by a third variable. Negative symptoms were unrelated over time to scores on a performance-based measure of functional capacity. This study indicates that the relationship between negative symptom change and the change in functional outcomes is complex, and points to potential issues in selection of assessments.

  19. Shared and Unique Genetic and Environmental Influences on Aging-Related Changes in Multiple Cognitive Abilities

    ERIC Educational Resources Information Center

    Tucker-Drob, Elliot M.; Reynolds, Chandra A.; Finkel, Deborah; Pedersen, Nancy L.

    2014-01-01

    Aging-related declines occur in many different domains of cognitive function during middle and late adulthood. However, whether a global dimension underlies individual differences in changes in different domains of cognition and whether global genetic influences on cognitive changes exist is less clear. We addressed these issues by applying…

  20. Neurofunctional Correlates of Personality Traits in Relapsing-Remitting Multiple Sclerosis: An fMRI Study

    ERIC Educational Resources Information Center

    Gioia, Maria C.; Cerasa, Antonio; Valentino, Paola; Fera, Francesco; Nistico, Rita; Liguori, Maria; Lanza, Pierluigi; Quattrone, Aldo

    2009-01-01

    Extraversion and Neuroticism are two fundamental dimensions of human personality that influence cognitive functioning in healthy subjects. Little is known about personality changes that may occur in patients with multiple sclerosis (MS) nor about, in particular, their neurofunctional basis. The aim of this study is to determine the impact of…

  1. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism.

    PubMed

    Graham, Emily B; Crump, Alex R; Resch, Charles T; Fansler, Sarah; Arntzen, Evan; Kennedy, David W; Fredrickson, Jim K; Stegen, James C

    2016-01-01

    Community assembly processes generate shifts in species abundances that influence ecosystem cycling of carbon and nutrients, yet our understanding of assembly remains largely separate from ecosystem-level functioning. Here, we investigate relationships between assembly and changes in microbial metabolism across space and time in hyporheic microbial communities. We pair sampling of two habitat types (i.e., attached and planktonic) through seasonal and sub-hourly hydrologic fluctuation with null modeling and temporally explicit multivariate statistics. We demonstrate that multiple selective pressures-imposed by sediment and porewater physicochemistry-integrate to generate changes in microbial community composition at distinct timescales among habitat types. These changes in composition are reflective of contrasting associations of Betaproteobacteria and Thaumarchaeota with ecological selection and with seasonal changes in microbial metabolism. We present a conceptual model based on our results in which metabolism increases when oscillating selective pressures oppose temporally stable selective pressures. Our conceptual model is pertinent to both macrobial and microbial systems experiencing multiple selective pressures and presents an avenue for assimilating community assembly processes into predictions of ecosystem-level functioning.

  2. Decoding Reveals Plasticity in V3A as a Result of Motion Perceptual Learning

    PubMed Central

    Shibata, Kazuhisa; Chang, Li-Hung; Kim, Dongho; Náñez, José E.; Kamitani, Yukiyasu; Watanabe, Takeo; Sasaki, Yuka

    2012-01-01

    Visual perceptual learning (VPL) is defined as visual performance improvement after visual experiences. VPL is often highly specific for a visual feature presented during training. Such specificity is observed in behavioral tuning function changes with the highest improvement centered on the trained feature and was originally thought to be evidence for changes in the early visual system associated with VPL. However, results of neurophysiological studies have been highly controversial concerning whether the plasticity underlying VPL occurs within the visual cortex. The controversy may be partially due to the lack of observation of neural tuning function changes in multiple visual areas in association with VPL. Here using human subjects we systematically compared behavioral tuning function changes after global motion detection training with decoded tuning function changes for 8 visual areas using pattern classification analysis on functional magnetic resonance imaging (fMRI) signals. We found that the behavioral tuning function changes were extremely highly correlated to decoded tuning function changes only in V3A, which is known to be highly responsive to global motion with human subjects. We conclude that VPL of a global motion detection task involves plasticity in a specific visual cortical area. PMID:22952849

  3. Structure and functioning of dryland ecosystems in a changing world.

    PubMed

    Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2016-11-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.

  4. Structure and functioning of dryland ecosystems in a changing world

    PubMed Central

    Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel

    2017-01-01

    Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303

  5. Longitudinal Examination of Adaptive Behavior in Autism Spectrum Disorders: Influence of Executive Function

    ERIC Educational Resources Information Center

    Pugliese, Cara E.; Anthony, Laura Gutermuth; Strang, John F.; Dudley, Katerina; Wallace, Gregory L.; Naiman, Daniel Q.; Kenworthy, Lauren

    2016-01-01

    This study characterizes longitudinal change in adaptive behavior in 64 children and adolescents with autism spectrum disorder (ASD) without intellectual disability evaluated on multiple occasions, and examines whether prior estimate of executive function (EF) problems predicts future adaptive behavior scores. Compared to standardized estimates…

  6. Multiple image x-radiography for functional lung imaging

    NASA Astrophysics Data System (ADS)

    Aulakh, G. K.; Mann, A.; Belev, G.; Wiebe, S.; Kuebler, W. M.; Singh, B.; Chapman, D.

    2018-01-01

    Detection and visualization of lung tissue structures is impaired by predominance of air. However, by using synchrotron x-rays, refraction of x-rays at the interface of tissue and air can be utilized to generate contrast which may in turn enable quantification of lung optical properties. We utilized multiple image radiography, a variant of diffraction enhanced imaging, at the Canadian light source to quantify changes in unique x-ray optical properties of lungs, namely attenuation, refraction and ultra small-angle scatter (USAXS or width) contrast ratios as a function of lung orientation in free-breathing or respiratory-gated mice before and after intra-nasal bacterial endotoxin (lipopolysaccharide) instillation. The lung ultra small-angle scatter and attenuation contrast ratios were significantly higher 9 h post lipopolysaccharide instillation compared to saline treatment whereas the refraction contrast decreased in magnitude. In ventilated mice, end-expiratory pressures result in an increase in ultra small-angle scatter contrast ratio when compared to end-inspiratory pressures. There were no detectable changes in lung attenuation or refraction contrast ratio with change in lung pressure alone. In effect, multiple image radiography can be applied towards following optical properties of lung air-tissue barrier over time during pathologies such as acute lung injury.

  7. Abrupt strategy change underlies gradual performance change: Bayesian hierarchical models of component and aggregate strategy use.

    PubMed

    Wynton, Sarah K A; Anglim, Jeromy

    2017-10-01

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  8. Dynamic functional connectivity shapes individual differences in associative learning.

    PubMed

    Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal

    2016-11-01

    Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Effects of Behavioral History on Resistance to Change

    ERIC Educational Resources Information Center

    Doughty, Adam H.; Cirino, Sergio; Mayfield, Kristin H.; da Silva, Stephanie P.; Okouchi, Hiroto; Lattal, Kennon A.

    2005-01-01

    Two experiments examined whether differential resistance to change would occur under identical variable-interval schedules as a function of a differential behavioral history. In Experiment 1, each of 3 pigeons first pecked at different rates under a multiple variable-ratio differential-reinforcement-of-low-rate schedule. In a subsequent condition,…

  10. Visual Search as a Tool for a Quick and Reliable Assessment of Cognitive Functions in Patients with Multiple Sclerosis

    PubMed Central

    Utz, Kathrin S.; Hankeln, Thomas M. A.; Jung, Lena; Lämmer, Alexandra; Waschbisch, Anne; Lee, De-Hyung; Linker, Ralf A.; Schenk, Thomas

    2013-01-01

    Background Despite the high frequency of cognitive impairment in multiple sclerosis, its assessment has not gained entrance into clinical routine yet, due to lack of time-saving and suitable tests for patients with multiple sclerosis. Objective The aim of the study was to compare the paradigm of visual search with neuropsychological standard tests, in order to identify the test that discriminates best between patients with multiple sclerosis and healthy individuals concerning cognitive functions, without being susceptible to practice effects. Methods Patients with relapsing remitting multiple sclerosis (n = 38) and age-and gender-matched healthy individuals (n = 40) were tested with common neuropsychological tests and a computer-based visual search task, whereby a target stimulus has to be detected amongst distracting stimuli on a touch screen. Twenty-eight of the healthy individuals were re-tested in order to determine potential practice effects. Results Mean reaction time reflecting visual attention and movement time indicating motor execution in the visual search task discriminated best between healthy individuals and patients with multiple sclerosis, without practice effects. Conclusions Visual search is a promising instrument for the assessment of cognitive functions and potentially cognitive changes in patients with multiple sclerosis thanks to its good discriminatory power and insusceptibility to practice effects. PMID:24282604

  11. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation

    PubMed Central

    2010-01-01

    Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast. PMID:21108829

  12. Heterogeneity of reward mechanisms.

    PubMed

    Lajtha, A; Sershen, H

    2010-06-01

    The finding that many drugs that have abuse potential and other natural stimuli such as food or sexual activity cause similar chemical changes in the brain, an increase in extracellular dopamine (DA) in the shell of the nucleus accumbens (NAccS), indicated some time ago that the reward mechanism is at least very similar for all stimuli and that the mechanism is relatively simple. The presently available information shows that the mechanisms involved are more complex and have multiple elements. Multiple brain regions, multiple receptors, multiple distinct neurons, multiple transmitters, multiple transporters, circuits, peptides, proteins, metabolism of transmitters, and phosphorylation, all participate in reward mechanisms. The system is variable, is changed during development, is sex-dependent, and is influenced by genetic differences. Not all of the elements participate in the reward of all stimuli. Different set of mechanisms are involved in the reward of different drugs of abuse, yet different mechanisms in the reward of natural stimuli such as food or sexual activity; thus there are different systems that distinguish different stimuli. Separate functions of the reward system such as anticipation, evaluation, consummation and identification; all contain function-specific elements. The level of the stimulus also influences the participation of the elements of the reward system, there are possible reactions to even below threshold stimuli, and excessive stimuli can change reward to aversion involving parts of the system. Learning and memory of past reward is an important integral element of reward and addictive behavior. Many of the reward elements are altered by repeated or chronic stimuli, and chronic exposure to one drug is likely to alter the response to another stimulus. To evaluate and identify the reward stimulus thus requires heterogeneity of the reward components in the brain.

  13. Consistent role of Quaternary climate change in shaping current plant functional diversity patterns across European plant orders.

    PubMed

    Ordonez, Alejandro; Svenning, Jens-Christian

    2017-02-23

    Current and historical environmental conditions are known to determine jointly contemporary species distributions and richness patterns. However, whether historical dynamics in species distributions and richness translate to functional diversity patterns remains, for the most part, unknown. The geographic patterns of plant functional space size (richness) and packing (dispersion) for six widely distributed orders of European angiosperms were estimated using atlas distribution data and trait information. Then the relative importance of late-Quaternary glacial-interglacial climate change and contemporary environmental factors (climate, productivity, and topography) as determinants of functional diversity of evaluated orders was assesed. Functional diversity patterns of all evaluated orders exhibited prominent glacial-interglacial climate change imprints, complementing the influence of contemporary environmental conditions. The importance of Quaternary glacial-interglacial climate change factors was comparable to that of contemporary environmental factors across evaluated orders. Therefore, high long-term paleoclimate variability has imposed consistent supplementary constraints on functional diversity of multiple plant groups, a legacy that may permeate to ecosystem functioning and resilience. These findings suggest that strong near-future anthropogenic climate change may elicit long-term functional disequilibria in plant functional diversity.

  14. BEHAVIORAL MOMENTUM AND ACCUMULATION OF MASS IN MULTIPLE SCHEDULES

    PubMed Central

    Craig, Andrew R.; Cunningham, Paul J.; Shahan, Timothy A.

    2015-01-01

    Behavioral momentum theory suggests that the relation between a discriminative-stimulus situation and reinforcers obtained in that context (i.e., the Pavlovian stimulus–reinforcer relation) governs persistence of operant behavior. Within the theory, a mass-like aspect of behavior has been shown to be a power function of predisruption reinforcement rates. Previous investigations of resistance to change in multiple schedules, however, have been restricted to examining response persistence following protracted periods of stability in reinforcer rates within a discriminative situation. Thus, it is unclear how long a stimulus–reinforcer relation must be in effect prior to disruption in order to affect resistance to change. The present experiment examined resistance to change of pigeon’s key pecking following baseline conditions where reinforcer rates that were correlated with discriminative-stimulus situations changed. Across conditions, one multiple-schedule component arranged either relatively higher rates or lower rates of variable-interval food delivery, while the other component arranged the opposite rate. These schedules alternated between multiple-schedule components across blocks of sessions such that reinforcer rates in the components were held constant for 20, 5, 3, 2, or 1 session(s) between alternations. Resistance to extinction was higher in the component that most recently was associated with higher rates of food delivery in all conditions except when schedules alternated daily or every other day. These data suggest that resistance to change in multiple schedules is related to recently experienced reinforcer rates but only when multiple-schedule components are associated with specific reinforcer rates for several sessions. PMID:25787824

  15. Functional linear models to test for differences in prairie wetland hydraulic gradients

    USGS Publications Warehouse

    Greenwood, Mark C.; Sojda, Richard S.; Preston, Todd M.; Swayne, David A.; Yang, Wanhong; Voinov, A.A.; Rizzoli, A.; Filatova, T.

    2010-01-01

    Functional data analysis provides a framework for analyzing multiple time series measured frequently in time, treating each series as a continuous function of time. Functional linear models are used to test for effects on hydraulic gradient functional responses collected from three types of land use in Northeastern Montana at fourteen locations. Penalized regression-splines are used to estimate the underlying continuous functions based on the discretely recorded (over time) gradient measurements. Permutation methods are used to assess the statistical significance of effects. A method for accommodating missing observations in each time series is described. Hydraulic gradients may be an initial and fundamental ecosystem process that responds to climate change. We suggest other potential uses of these methods for detecting evidence of climate change.

  16. Enhancing Treatment Team Process through Mindfulness-Based Mentoring in an Inpatient Psychiatric Hospital

    ERIC Educational Resources Information Center

    Singh, Nirbhay N.; Singh, Subhashni D.; Sabaawi, Mohamed; Myers, Rachel E.; Wahler, Robert G.

    2006-01-01

    The authors investigated changes in treatment team functioning in an adult inpatient psychiatric hospital after the implementation of a mindfulness-based mentoring intervention. Using a multiple baseline across treatment teams design, the authors assessed levels of functioning of three treatment teams using a 50-item rating scale and then…

  17. The effects of moclobemide on autonomic and cognitive functions in healthy volunteers.

    PubMed

    Siepmann, M; Handel, J; Mueck-Weymann, M; Kirch, W

    2004-03-01

    Moclobemide, a reversible and selective inhibitor of the MAO-A isoenzyme, is marketed as an antidepressant that lacks autonomic and cognitive side effects. However, only few and inconclusive quantitative data on the effects of moclobemide on autonomic and cognitive functions have been reported in the literature. Therefore, a double-blind, randomized, placebo-controlled crossover trial was performed. Twelve healthy male volunteers (age 22-29 years) received orally 150 mg moclobemide b.i.d. and placebo for 14 days each. Heart rate variability (HRV) and skin conductance response (SCR) following sudden deep breath were employed as parameters for autonomic function. Quantitative EEG (qEEG) and psychometric tests served as parameters for cognitive function. Measurements were performed before the start of drug administration and repeatedly on the last treatment day. Parameters of HRV and SCR were not changed by multiple dosing with moclobemide (P > 0.05). Neither cognitive functions such as flicker fusion frequency, memory, choice reaction time, and psychomotor performance nor qEEG was significantly influenced, but subjective tiredness was decreased at all time points of measurement after multiple dosing with moclobemide (P < 0.05). In conclusion, moclobemide does not appear to influence autonomic functions or cognitive functions when given subchronically to healthy humans. In contrast, changes in subjective mood hint at a subtle activating effect.

  18. Multiple Resting-State Networks Are Associated With Tremors and Cognitive Features in Essential Tremor.

    PubMed

    Fang, Weidong; Chen, Huiyue; Wang, Hansheng; Zhang, Han; Liu, Mengqi; Puneet, Munankami; Lv, Fajin; Cheng, Oumei; Wang, Xuefeng; Lu, Xiurong; Luo, Tianyou

    2015-12-01

    The heterogeneous clinical features of essential tremor indicate that the dysfunctions of this syndrome are not confined to motor networks, but extend to nonmotor networks. Currently, these neural network dysfunctions in essential tremor remain unclear. In this study, independent component analysis of resting-state functional MRI was used to study these neural network mechanisms. Thirty-five essential tremor patients and 35 matched healthy controls with clinical and neuropsychological tests were included, and eight resting-state networks were identified. After considering the structure and head-motion factors and testing the reliability of the selected resting-state networks, we assessed the functional connectivity changes within or between resting-state networks. Finally, image-behavior correlation analysis was performed. Compared to healthy controls, essential tremor patients displayed increased functional connectivity in the sensorimotor and salience networks and decreased functional connectivity in the cerebellum network. Additionally, increased functional network connectivity was observed between anterior and posterior default mode networks, and a decreased functional network connectivity was noted between the cerebellum network and the sensorimotor and posterior default mode networks. Importantly, the functional connectivity changes within and between these resting-state networks were correlated with the tremor severity and total cognitive scores of essential tremor patients. The findings of this study provide the first evidence that functional connectivity changes within and between multiple resting-state networks are associated with tremors and cognitive features of essential tremor, and this work demonstrates a potential approach for identifying the underlying neural network mechanisms of this syndrome. © 2015 International Parkinson and Movement Disorder Society.

  19. Stock price change rate prediction by utilizing social network activities.

    PubMed

    Deng, Shangkun; Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques.

  20. Stock Price Change Rate Prediction by Utilizing Social Network Activities

    PubMed Central

    Mitsubuchi, Takashi; Sakurai, Akito

    2014-01-01

    Predicting stock price change rates for providing valuable information to investors is a challenging task. Individual participants may express their opinions in social network service (SNS) before or after their transactions in the market; we hypothesize that stock price change rate is better predicted by a function of social network service activities and technical indicators than by a function of just stock market activities. The hypothesis is tested by accuracy of predictions as well as performance of simulated trading because success or failure of prediction is better measured by profits or losses the investors gain or suffer. In this paper, we propose a hybrid model that combines multiple kernel learning (MKL) and genetic algorithm (GA). MKL is adopted to optimize the stock price change rate prediction models that are expressed in a multiple kernel linear function of different types of features extracted from different sources. GA is used to optimize the trading rules used in the simulated trading by fusing the return predictions and values of three well-known overbought and oversold technical indicators. Accumulated return and Sharpe ratio were used to test the goodness of performance of the simulated trading. Experimental results show that our proposed model performed better than other models including ones using state of the art techniques. PMID:24790586

  1. Mechanistic models as a transferable framework for projecting effects of habitat change on production and delivery of ecosystem services

    EPA Science Inventory

    Drawing a link between habitat change and the production and delivery of ecosystem services is a priority in coastal estuarine ecosystems. Mechanistic modeling tools are highly functional for exploring this link because they allow for the synthesis of multiple ecological and beh...

  2. Multichannel optical mapping: investigation of depth information

    NASA Astrophysics Data System (ADS)

    Sase, Ichiro; Eda, Hideo; Seiyama, Akitoshi; Tanabe, Hiroki C.; Takatsuki, Akira; Yanagida, Toshio

    2001-06-01

    Near infrared (NIR) light has become a powerful tool for non-invasive imaging of human brain activity. Many systems have been developed to capture the changes in regional brain blood flow and hemoglobin oxygenation, which occur in the human cortex in response to neural activity. We have developed a multi-channel reflectance imaging system, which can be used as a `mapping device' and also as a `multi-channel spectrophotometer'. In the present study, we visualized changes in the hemodynamics of the human occipital region in multiple ways. (1) Stimulating left and right primary visual cortex independently by showing sector shaped checkerboards sequentially over the contralateral visual field, resulted in corresponding changes in the hemodynamics observed by `mapping' measurement. (2) Simultaneous measurement of functional-MRI and NIR (changes in total hemoglobin) during visual stimulation showed good spatial and temporal correlation with each other. (3) Placing multiple channels densely over the occipital region demonstrated spatial patterns more precisely, and depth information was also acquired by placing each pair of illumination and detection fibers at various distances. These results indicate that optical method can provide data for 3D analysis of human brain functions.

  3. Global change and terrestrial plant community dynamics

    DOE PAGES

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; ...

    2016-02-29

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  4. Global change and terrestrial plant community dynamics

    PubMed Central

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.; Regan, Helen M.

    2016-01-01

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this paper, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on a literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change. PMID:26929338

  5. The pedagogical potential of drawing and writing in a primary science multimodal unit

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Bradbury, Leslie U.

    2016-11-01

    In consideration of the potential of drawing and writing as assessment and learning tools, we explored how early primary students used these modes to communicate their science understandings. The context for this study was a curricular unit that incorporated multiple modes of representation in both the presentation of information and production of student understanding with a focus on the structure and function of carnivorous plants (CPs). Two science teacher educators and two first-grade teachers in the United States co-planned and co-taught a multimodal science unit on CP structure and function that included multiple representations of Venus flytraps (VFTs): physical specimens, photographs, videos, text, and discussions. Pre- and post-assessment student drawings and writings were statistically compared to note significant changes, and pre- and post-assessment writings were qualitatively analysed to note themes in student ideas. Results indicate that students increased their knowledge of VFT structure and function and synthesised information from multiple modes. While students included more structures of the VFT in their drawings, they were better able to describe the functions of structures in their writings. These results suggest the benefits for student learning and assessment of having early primary students represent their science understandings in multiple modes.

  6. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world

    Treesearch

    Eric J. Gustafson

    2013-01-01

    Researchers and natural resource managers need predictions of how multiple global changes (e.g., climate change, rising levels of air pollutants, exotic invasions) will affect landscape composition and ecosystem function. Ecological predictive models used for this purpose are constructed using either a mechanistic (process-based) or a phenomenological (empirical)...

  7. Functional Magnetic Resonance Imaging with Concurrent Urodynamic Testing Identifies Brain Structures Involved in Micturition Cycle in Patients with Multiple Sclerosis.

    PubMed

    Khavari, Rose; Karmonik, Christof; Shy, Michael; Fletcher, Sophie; Boone, Timothy

    2017-02-01

    Neurogenic lower urinary tract dysfunction, which is common in patients with multiple sclerosis, has a significant impact on quality of life. In this study we sought to determine brain activity processes during the micturition cycle in female patients with multiple sclerosis and neurogenic lower urinary tract dysfunction. We report brain activity on functional magnetic resonance imaging and simultaneous urodynamic testing in 23 ambulatory female patients with multiple sclerosis. Individual functional magnetic resonance imaging activation maps at strong desire to void and at initiation of voiding were calculated and averaged at Montreal Neuroimaging Institute. Areas of significant activation were identified in these average maps. Subgroup analysis was performed in patients with elicitable neurogenic detrusor overactivity or detrusor-sphincter dyssynergia. Group analysis of all patients at strong desire to void yielded areas of activation in regions associated with executive function (frontal gyrus), emotional regulation (cingulate gyrus) and motor control (putamen, cerebellum and precuneus). Comparison of the average change in activation between previously reported healthy controls and patients with multiple sclerosis showed predominantly stronger, more focal activation in the former and lower, more diffused activation in the latter. Patients with multiple sclerosis who had demonstrable neurogenic detrusor overactivity and detrusor-sphincter dyssynergia showed a trend toward distinct brain activation at full urge and at initiation of voiding respectively. We successfully studied brain activation during the entire micturition cycle in female patients with neurogenic lower urinary tract dysfunction and multiple sclerosis using a concurrent functional magnetic resonance imaging/urodynamic testing platform. Understanding the central neural processes involved in specific parts of micturition in patients with neurogenic lower urinary tract dysfunction may identify areas of interest for future intervention. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  8. Pharmacokinetic profile of nifedipine GITS in hypertensive patients with chronic renal impairment.

    PubMed

    Schneider, R; Stolero, D; Griffel, L; Kobelt, R; Brendel, E; Iaina, A

    1994-01-01

    25 hypertensive patients with normal or impaired renal function underwent pharmacokinetic and safety studies after single and multiple dose administration of nifedipine GITS (Gastro-Intestinal Therapeutic System) 60mg tablets. Complete pharmacokinetic data were obtained from 23 of these patients. Blood pressure and heart rate changes were compatible with the known properties of the drug. Impaired renal function did not affect the maximum plasma concentrations or bioavailability of nifedipine after single or multiple dose administration of nifedipine GITS, nor was there any evidence of excessive drug accumulation in the presence of renal impairment.

  9. Enhancing multiple disciplinary teamwork.

    PubMed

    Weaver, Terri E

    2008-01-01

    Multiple disciplinary research provides an opportunity to bring together investigators across disciplines to provide new views and develop innovative approaches to important questions. Through this shared experience, novel paradigms are formed, original frameworks are developed, and new language is generated. Integral to the successful construction of effective cross-disciplinary teams is the recognition of antecedent factors that affect the development of the team such as intrapersonal, social, physical environmental, organizational, and institutional influences. Team functioning is enhanced with well-developed behavioral, affective, interpersonal, and intellectual processes. Outcomes of effective multiple disciplinary research teams include novel ideas, integrative models, new training programs, institutional change, and innovative policies that can also influence the degree to which antecedents and processes contribute to team performance. Ongoing evaluation of team functioning and achievement of designated outcomes ensures the continued development of the multiple disciplinary team and confirmation of this approach as important to the advancement of science.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklin, Janet; Serra-Diaz, Josep M.; Syphard, Alexandra D.

    Anthropogenic drivers of global change include rising atmospheric concentrations of carbon dioxide and other greenhouse gasses and resulting changes in the climate, as well as nitrogen deposition, biotic invasions, altered disturbance regimes, and land-use change. Predicting the effects of global change on terrestrial plant communities is crucial because of the ecosystem services vegetation provides, from climate regulation to forest products. In this article, we present a framework for detecting vegetation changes and attributing them to global change drivers that incorporates multiple lines of evidence from spatially extensive monitoring networks, distributed experiments, remotely sensed data, and historical records. Based on amore » literature review, we summarize observed changes and then describe modeling tools that can forecast the impacts of multiple drivers on plant communities in an era of rapid change. Observed responses to changes in temperature, water, nutrients, land use, and disturbance show strong sensitivity of ecosystem productivity and plant population dynamics to water balance and long-lasting effects of disturbance on plant community dynamics. Persistent effects of land-use change and human-altered fire regimes on vegetation can overshadow or interact with climate change impacts. Models forecasting plant community responses to global change incorporate shifting ecological niches, population dynamics, species interactions, spatially explicit disturbance, ecosystem processes, and plant functional responses. Lastly, monitoring, experiments, and models evaluating multiple change drivers are needed to detect and predict vegetation changes in response to 21st century global change.« less

  11. Classification of Farmland Landscape Structure in Multiple Scales

    NASA Astrophysics Data System (ADS)

    Jiang, P.; Cheng, Q.; Li, M.

    2017-12-01

    Farmland is one of the basic terrestrial resources that support the development and survival of human beings and thus plays a crucial role in the national security of every country. Pattern change is the intuitively spatial representation of the scale and quality variation of farmland. Through the characteristic development of spatial shapes as well as through changes in system structures, functions and so on, farmland landscape patterns may indicate the landscape health level. Currently, it is still difficult to perform positioning analyses of landscape pattern changes that reflect the landscape structure variations of farmland with an index model. Depending on a number of spatial properties such as locations and adjacency relations, distance decay, fringe effect, and on the model of patch-corridor-matrix that is applied, this study defines a type system of farmland landscape structure on the national, provincial, and city levels. According to such a definition, the classification model of farmland landscape-structure type at the pixel scale is developed and validated based on mathematical-morphology concepts and on spatial-analysis methods. Then, the laws that govern farmland landscape-pattern change in multiple scales are analyzed from the perspectives of spatial heterogeneity, spatio-temporal evolution, and function transformation. The result shows that the classification model of farmland landscape-structure type can reflect farmland landscape-pattern change and its effects on farmland production function. Moreover, farmland landscape change in different scales displayed significant disparity in zonality, both within specific regions and in urban-rural areas.

  12. Supergenes and their role in evolution.

    PubMed

    Thompson, M J; Jiggins, C D

    2014-07-01

    Adaptation is commonly a multidimensional problem, with changes in multiple traits required to match a complex environment. This is epitomized by balanced polymorphisms in which multiple phenotypes co-exist and are maintained in a population by a balance of selective forces. Consideration of such polymorphisms led to the concept of the supergene, where alternative phenotypes in a balanced polymorphism segregate as if controlled by a single genetic locus, resulting from tight genetic linkage between multiple functional loci. Recently, the molecular basis for several supergenes has been resolved. Thus, major chromosomal inversions have been shown to be associated with polymorphisms in butterflies, ants and birds, offering a mechanism for localised reduction in recombination. In several examples of plant self-incompatibility, the functional role of multiple elements within the supergene architecture has been demonstrated, conclusively showing that balanced polymorphism can be maintained at multiple coadapted and tightly linked elements. Despite recent criticism, we argue that the supergene concept remains relevant and is more testable than ever with modern molecular methods.

  13. Marine biodiversity–ecosystem functions under uncertain environmental futures

    PubMed Central

    Bulling, Mark T.; Hicks, Natalie; Murray, Leigh; Paterson, David M.; Raffaelli, Dave; White, Piran C. L.; Solan, Martin

    2010-01-01

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity–ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH4-N into the water column, but no effect of species richness on the release of PO4-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty. PMID:20513718

  14. The expanding universe of neurotrophic factors: therapeutic potential in aging and age-associated disorders.

    PubMed

    Lanni, C; Stanga, S; Racchi, M; Govoni, S

    2010-01-01

    Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.

  15. Marine biodiversity-ecosystem functions under uncertain environmental futures.

    PubMed

    Bulling, Mark T; Hicks, Natalie; Murray, Leigh; Paterson, David M; Raffaelli, Dave; White, Piran C L; Solan, Martin

    2010-07-12

    Anthropogenic activity is currently leading to dramatic transformations of ecosystems and losses of biodiversity. The recognition that these ecosystems provide services that are essential for human well-being has led to a major interest in the forms of the biodiversity-ecosystem functioning relationship. However, there is a lack of studies examining the impact of climate change on these relationships and it remains unclear how multiple climatic drivers may affect levels of ecosystem functioning. Here, we examine the roles of two important climate change variables, temperature and concentration of atmospheric carbon dioxide, on the relationship between invertebrate species richness and nutrient release in a model benthic estuarine system. We found a positive relationship between invertebrate species richness and the levels of release of NH(4)-N into the water column, but no effect of species richness on the release of PO(4)-P. Higher temperatures and greater concentrations of atmospheric carbon dioxide had a negative impact on nutrient release. Importantly, we found significant interactions between the climate variables, indicating that reliably predicting the effects of future climate change will not be straightforward as multiple drivers are unlikely to have purely additive effects, resulting in increased levels of uncertainty.

  16. Differences between child and adult large-scale functional brain networks for reading tasks.

    PubMed

    Liu, Xin; Gao, Yue; Di, Qiqi; Hu, Jiali; Lu, Chunming; Nan, Yun; Booth, James R; Liu, Li

    2018-02-01

    Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain. © 2017 Wiley Periodicals, Inc.

  17. Neural and behavioural changes in male periadolescent mice after prolonged nicotine-MDMA treatment.

    PubMed

    Adeniyi, Philip A; Ishola, Azeez O; Laoye, Babafemi J; Olatunji, Babawale P; Bankole, Oluwamolakun O; Shallie, Philemon D; Ogundele, Olalekan M

    2016-02-01

    The interaction between MDMA and Nicotine affects multiple brain centres and neurotransmitter systems (serotonin, dopamine and glutamate) involved in motor coordination and cognition. In this study, we have elucidated the effect of prolonged (10 days) MDMA, Nicotine and a combined Nicotine-MDMA treatment on motor-cognitive neural functions. In addition, we have shown the correlation between the observed behavioural change and neural structural changes induced by these treatments in BALB/c mice. We observed that MDMA (2 mg/Kg body weight; subcutaneous) induced a decline in motor function, while Nicotine (2 mg/Kg body weight; subcutaneous) improved motor function in male periadolescent mice. In combined treatment, Nicotine reduced the motor function decline observed in MDMA treatment, thus no significant change in motor function for the combined treatment versus the control. Nicotine or MDMA treatment reduced memory function and altered hippocampal structure. Similarly, a combined Nicotine-MDMA treatment reduced memory function when compared with the control. Ultimately, the metabolic and structural changes in these neural systems were seen to vary for the various forms of treatment. It is noteworthy to mention that a combined treatment increased the rate of lipid peroxidation in brain tissue.

  18. From structure to function, via dynamics

    NASA Astrophysics Data System (ADS)

    Stetter, O.; Soriano, J.; Geisel, T.; Battaglia, D.

    2013-01-01

    Neurons in the brain are wired into a synaptic network that spans multiple scales, from local circuits within cortical columns to fiber tracts interconnecting distant areas. However, brain function require the dynamic control of inter-circuit interactions on time-scales faster than synaptic changes. In particular, strength and direction of causal influences between neural populations (described by the so-called directed functional connectivity) must be reconfigurable even when the underlying structural connectivity is fixed. Such directed functional influences can be quantified resorting to causal analysis of time-series based on tools like Granger Causality or Transfer Entropy. The ability to quickly reorganize inter-areal interactions is a chief requirement for performance in a changing natural environment. But how can manifold functional networks stem "on demand" from an essentially fixed structure? We explore the hypothesis that the self-organization of neuronal synchronous activity underlies the control of brain functional connectivity. Based on simulated and real recordings of critical neuronal cultures in vitro, as well as on mean-field and spiking network models of interacting brain areas, we have found that "function follows dynamics", rather than structure. Different dynamic states of a same structural network, characterized by different synchronization properties, are indeed associated to different functional digraphs (functional multiplicity). We also highlight the crucial role of dynamics in establishing a structure-to-function link, by showing that whenever different structural topologies lead to similar dynamical states, than the associated functional connectivities are also very similar (structural degeneracy).

  19. Methodology to develop crash modification functions for road safety treatments with fully specified and hierarchical models.

    PubMed

    Chen, Yongsheng; Persaud, Bhagwant

    2014-09-01

    Crash modification factors (CMFs) for road safety treatments are developed as multiplicative factors that are used to reflect the expected changes in safety performance associated with changes in highway design and/or the traffic control features. However, current CMFs have methodological drawbacks. For example, variability with application circumstance is not well understood, and, as important, correlation is not addressed when several CMFs are applied multiplicatively. These issues can be addressed by developing safety performance functions (SPFs) with components of crash modification functions (CM-Functions), an approach that includes all CMF related variables, along with others, while capturing quantitative and other effects of factors and accounting for cross-factor correlations. CM-Functions can capture the safety impact of factors through a continuous and quantitative approach, avoiding the problematic categorical analysis that is often used to capture CMF variability. There are two formulations to develop such SPFs with CM-Function components - fully specified models and hierarchical models. Based on sample datasets from two Canadian cities, both approaches are investigated in this paper. While both model formulations yielded promising results and reasonable CM-Functions, the hierarchical model was found to be more suitable in retaining homogeneity of first-level SPFs, while addressing CM-Functions in sub-level modeling. In addition, hierarchical models better capture the correlations between different impact factors. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Association between the Type of Workplace and Lung Function in Copper Miners

    PubMed Central

    Gruszczyński, Leszek; Wojakowska, Anna; Ścieszka, Marek; Turczyn, Barbara; Schmidt, Edward

    2016-01-01

    The aim of the analysis was to retrospectively assess changes in lung function in copper miners depending on the type of workplace. In the groups of 225 operators, 188 welders, and 475 representatives of other jobs, spirometry was performed at the start of employment and subsequently after 10, 20, and 25 years of work. Spirometry Longitudinal Data Analysis software was used to estimate changes in group means for FEV1 and FVC. Multiple linear regression analysis was used to assess an association between workplace and lung function. Lung function assessed on the basis of calculation of longitudinal FEV1 (FVC) decline was similar in all studied groups. However, multiple linear regression model used in cross-sectional analysis revealed an association between workplace and lung function. In the group of welders, FEF75 was lower in comparison to operators and other miners as early as after 10 years of work. Simultaneously, in smoking welders, the FEV1/FVC ratio was lower than in nonsmokers (p < 0,05). The interactions between type of workplace and smoking (p < 0,05) in their effect on FVC, FEV1, PEF, and FEF50 were shown. Among underground working copper miners, the group of smoking welders is especially threatened by impairment of lung ventilatory function. PMID:27274987

  1. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.

    PubMed

    Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S

    2017-06-01

    Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.

  2. Individual Differences in Executive Function and Central Coherence Predict Developmental Changes in Theory of Mind in Autism

    ERIC Educational Resources Information Center

    Pellicano, Elizabeth

    2010-01-01

    There is strong evidence to suggest that individuals with autism show atypicalities in multiple cognitive domains, including theory of mind (ToM), executive function (EF), and central coherence (CC). In this study, the longitudinal relationships among these 3 aspects of cognition in autism were investigated. Thirty-seven cognitively able children…

  3. The Born Digital Graduate: Multiple Representations of and within Digital Humanities PhD Theses

    ERIC Educational Resources Information Center

    Webb, Sharon; Teehan, Aja; Keating, John

    2013-01-01

    This chapter examines the production and utilisation of digital tools to create and present a born-digital theses, and in so doing, considers the changing function of traditional theses. It asks how (relatively) new technologies and methodologies should affect the representation and function of graduate scholarship in the Digital Humanities (DH),…

  4. Drought and increased CO2 alter floral visual and olfactory traits with context-dependent effects on pollinator visitation

    Treesearch

    William R. Glenny; Justin B. Runyon; Laura A. Burkle

    2018-01-01

    Climate change can alter species interactions essential for maintaining biodiversity and ecosystem function, such as pollination. Understanding the interactive effects of multiple abiotic conditions on floral traits and pollinator visitation are important to anticipate the implications of climate change on pollinator services. Floral visual and olfactory traits were...

  5. [Advance of the study on LRRK2 gene in Parkinson's disease].

    PubMed

    Zhang, Yu; Chen, Shengdi

    2008-12-01

    The leucine-rich repeat kinase2 (LRRK2) has been identified to be the gene causing autosomal dominant inherited Parkinson's disease(PD)8. The clinical features of this type of PD are similar to those of idiopathic PD, but the pathological changes are diverse. The mutation types and frequencies of the LRRK2 distribute unevenly in different populations. LRRK2 is a large complex protein with multiple functions and expresses widely in human body. Sequence alignment shows that LRRK2 might be a multiple function kinase for substrate phosphorylation and might also act as a scaffolding protein. Further study on the physiological function and pathogenic mechanism of LRRK2 will help to find out the possible pathogenesis and new treatment for PD.

  6. Contrasting outcomes of species- and community-level analyses of the temporal consistency of functional composition.

    PubMed

    Katabuchi, Masatoshi; Wright, S Joseph; Swenson, Nathan G; Feeley, Kenneth J; Condit, Richard; Hubbell, Stephen P; Davies, Stuart J

    2017-09-01

    Multiple anthropogenic drivers affect every natural community, and there is broad interest in using functional traits to understand and predict the consequences for future biodiversity. There is, however, no consensus regarding the choice of analytical methods. We contrast species- and community-level analyses of change in the functional composition for four traits related to drought tolerance using three decades of repeat censuses of trees in the 50-ha Forest Dynamics Plot on Barro Colorado Island, Panama. Community trait distributions shifted significantly through time, which may indicate a shift toward more drought tolerant species. However, at the species level, changes in abundance were unrelated to trait values. To reconcile these seemingly contrasting results, we evaluated species-specific contributions to the directional shifts observed at the community level. Abundance changes of just one to six of 312 species were responsible for the community-level shifts observed for each trait. Our results demonstrate that directional changes in community-level functional composition can result from idiosyncratic change in a few species rather than widespread community-wide changes associated with functional traits. Future analyses of directional change in natural communities should combine community-, species-, and possibly individual-level analyses to uncover relationships with function that can improve understanding and enable prediction. © 2017 by the Ecological Society of America.

  7. Managing hospitals in turbulent times: do organizational changes improve hospital survival?

    PubMed Central

    Lee, S Y; Alexander, J A

    1999-01-01

    OBJECTIVE: To examine (1) the degree to which organizational changes affected hospital survival; (2) whether core and peripheral organizational changes affected hospital survival differently; and (3) how simultaneous organizational changes affected hospital survival. DATA SOURCES: AHA Hospital Surveys, the Area Resource File, and the AHA Hospital Guides, Part B: Multihospital Systems. STUDY DESIGN: The study employed a longitudinal panel design. We followed changes in all community hospitals in the continental United States from 1981 through 1994. The dependent variable, hospital closure, was examined as a function of multiple changes in a hospital's core and peripheral structures as well as the hospital's organizational and environmental characteristics. Cox regression models were used to test the expectations that core changes increased closure risk while peripheral changes decreased such risk, and that simultaneous core and peripheral changes would lead to higher risk of closure. PRINCIPAL FINDINGS: Results indicated more peripheral than core changes in community hospitals. Overall, findings contradicted our expectations. Change in specialty, a core change, was beneficial for hospitals, because it reduced closure risk. The two most frequent peripheral changes, downsizing and leadership change, were positively associated with closure. Simultaneous organizational changes displayed a similar pattern: multiple core changes reduced closure risk, while multiple peripheral changes increased the risk. These patterns held regardless of the level of uncertainty in hospital environments. CONCLUSIONS: Organizational changes are not all beneficial for hospitals, suggesting that hospital leaders should be both cautious and selective in their efforts to turn their hospitals around. PMID:10536977

  8. Ecological assessment of a southeastern Brazil reservoir

    EPA Science Inventory

    Abstract: Reservoirs are artificial ecosystems with multiple functions having direct and indirect benefits to humans; however, they also cause ecological changes and influence the composition and structure of aquatic biota. Our objectives were to: (1) assess the environmen...

  9. Whole-body cryostimulation (cryotherapy) provides benefits for fatigue and functional status in multiple sclerosis patients. A case-control study.

    PubMed

    Miller, E; Kostka, J; Włodarczyk, T; Dugué, B

    2016-12-01

    To study the effects of whole-body cryostimulation (WBC) on fatigue and functional status in multiple sclerosis (MS) patients with different levels of fatigue. Two groups of 24 MS patients with fatigue were studied. At the beginning of the study, the first group presented a Fatigue Severity Scale (FSS) score between 38 and 42 (low-fatigue (LF) group), and the second group had an FSS score between 48 and 52 (high-fatigue (HF) group). Both groups were matched for age and sex. All patients were exposed to 10.3-min session of WBC (one exposure per day at -110°C or lower). Functional status was assessed before and after the series of WBC exposures using the Rivermead Motor Assessment (RMA), the Multiple Sclerosis Impact Scale (MSIS-29), and the Expanded Disability Status Scale (EDSS). The RMA was estimated in three sections: gross function (RMA1), leg and trunk (RMA2), and arm (RMA3). MSIS-29 consists of two subscales assessing the physical (MSIS-29-PHYS) and psychological (MSIS-29-PSYCH) status. In both groups, the WBC sessions induced a significant improvement in the functional status and in the feeling of fatigue. However, the changes observed in HF patients were significantly greater than those observed in LF patients, especially in the MSIS-29-PHYS, MSIS-29-PSYCH, RMA1, and RMA3. The changes observed in the EDSS, RMA2, and FSS were similar in both groups. WBC appears to be effective in improving functional status and the feeling of fatigue in patients with MS and especially in those who are the most fatigued. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Prospective Study on the Impact of Fear of Falling on Functional Decline among Community Dwelling Elderly Women.

    PubMed

    Choi, Kyungwon; Jeon, Gyeong-Suk; Cho, Sung-Il

    2017-04-27

    Fear of falling (FOF) is expected to have effects on functional decline in the elderly. In this study, we examined over 2 years the effect of change in FOF on functional decline in community dwelling elderly. We conducted a secondary analysis using data from elderly women, 70 years of age and older, who participated in the Korean Longitudinal Study of Aging (KLoSA). Participants were divided into four categories according to change in FOF between the 2010 and 2012 surveys. Multiple logistic regression analysis was conducted regarding the effects of changes in FOF on functional decline after controlling for variables as known risk factors for functional decline. Rates of functional decline were highest in the "consistently having FOF" group, whereas they were lowest in the "consistently no FOF" group in both 2010 and 2012. Characteristics independently associated with functional decline were change in FOF, depressive symptoms, low frequency of meeting friends, and fear-induced activity avoidance. Longer exposure to FOF was associated with an increased risk of functional decline. FOF is an important health problem that deserves attention in its own right. Public health approaches for elderly persons should address early detection, prevention, and intervention programs for FOF.

  11. Interrater Agreement on the Visual Analysis of Individual Tiers and Functional Relations in Multiple Baseline Designs.

    PubMed

    Wolfe, Katie; Seaman, Michael A; Drasgow, Erik

    2016-11-01

    Previous research on visual analysis has reported low levels of interrater agreement. However, many of these studies have methodological limitations (e.g., use of AB designs, undefined judgment task) that may have negatively influenced agreement. Our primary purpose was to evaluate whether agreement would be higher than previously reported if we addressed these weaknesses. Our secondary purposes were to investigate agreement at the tier level (i.e., the AB comparison) and at the functional relation level in multiple baseline designs and to examine the relationship between raters' decisions at each of these levels. We asked experts (N = 52) to make judgments about changes in the dependent variable in individual tiers and about the presence of an overall functional relation in 31 multiple baseline graphs. Our results indicate that interrater agreement was just at or just below minimally adequate levels for both types of decisions and that agreement at the individual tier level often resulted in agreement about the overall functional relation. We report additional findings and discuss implications for practice and future research. © The Author(s) 2016.

  12. Climate change and physical disturbance manipulations result in distinct biological soil crust communities.

    PubMed

    Steven, Blaire; Kuske, Cheryl R; Gallegos-Graves, La Verne; Reed, Sasha C; Belnap, Jayne

    2015-11-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remains poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2°C soil warming, altered summer precipitation [wetting], and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional changes. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in the cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased Cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities, and the communities' functional profiles can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  13. Climate change and physical disturbance manipulations result in distinct biological soil crust communities

    USGS Publications Warehouse

    Steven, Blaire; Kuske, Cheryl R.; Gallegos-Graves, La Verne; Reed, Sasha C.; Belnap, Jayne

    2015-01-01

    Biological soil crusts (biocrusts) colonize plant interspaces in many drylands and are critical to soil nutrient cycling. Multiple climate change and land use factors have been shown to detrimentally impact biocrusts on a macroscopic (i.e., visual) scale. However, the impact of these perturbations on the bacterial components of the biocrusts remain poorly understood. We employed multiple long-term field experiments to assess the impacts of chronic physical (foot trampling) and climatic changes (2 °C soil warming, altered summer precipitation (wetting), and combined warming and wetting) on biocrust bacterial biomass, composition, and metabolic profile. The biocrust bacterial communities adopted distinct states based on the mechanism of disturbance. Chronic trampling decreased biomass and caused small community compositional change. Soil warming had little effect on biocrust biomass or composition, while wetting resulted in an increase in cyanobacterial biomass and altered bacterial composition. Warming combined with wetting dramatically altered bacterial composition and decreased cyanobacteria abundance. Shotgun metagenomic sequencing identified four functional gene categories that differed in relative abundance among the manipulations, suggesting that climate and land use changes affected soil bacterial functional potential. This study illustrates that different types of biocrust disturbance damage biocrusts in macroscopically similar ways, but they differentially impact the resident soil bacterial communities and the community functional profile can differ depending on the disturbance type. Therefore, the nature of the perturbation and the microbial response are important considerations for management and restoration of drylands.

  14. Further studies of crania from ancient northern Africa: an analysis of crania from first dynasty Egyptian tombs, using discriminant functions.

    PubMed

    Keita, S O

    1992-03-01

    An analysis of First Dynasty crania from Abydos was undertaken using multiple discriminant functions. The results demonstrate greater affinity with Upper Nile Valley patterns, but also suggest change from earlier craniometric trends. Gene flow and movement of northern officials to the important southern city may explain the findings.

  15. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    ERIC Educational Resources Information Center

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  16. Biodiversity increases functional and compositional resistance, but decreases resilience in phytoplankton communities.

    PubMed

    Baert, Jan M; De Laender, Frederik; Sabbe, Koen; Janssen, Colin R

    2016-12-01

    There is now ample evidence that biodiversity stabilizes aggregated ecosystem functions, such as primary production, in changing environments. In primary producer systems, this stabilizing effect is found to be driven by higher functional resistance (i.e., reduced changes in functions by environmental changes) rather than through higher functional resilience (i.e., rapid recovery following environmental changes) in more diverse systems. The stability of aggregated ecosystem functions directly depends on changes in species composition and by consequence their functional contributions to ecosystem functions. Still, it remains only theoretically explored how biodiversity can stabilize ecosystem functions by affecting compositional stability. Here, we demonstrate how biodiversity effects on compositional stability drive biodiversity effects on functional stability in diatom communities. In a microcosm experiment, we exposed 39 communities of five different levels of species richness (1, 2, 4, 6, and 8 species) to three concentrations of a chemical stressor (0, 25, and 250 μg/L atrazine) for four weeks, after which all communities were transferred to atrazine-free medium for three more weeks. Biodiversity simultaneously increased, increasing functional and compositional resistance, but decreased functional and compositional resilience. These results confirm the theoretically proposed link between biodiversity effects on functional and compositional stability in primary producer systems, and provide a mechanistic underpinning for observed biodiversity-stability relationships. Finally, we discuss how higher compositional stability can be expected to become increasingly important in stabilizing ecosystem functions under field conditions when multiple environmental stressors fluctuate simultaneously. © 2016 by the Ecological Society of America.

  17. INTERSPIA: a web application for exploring the dynamics of protein-protein interactions among multiple species.

    PubMed

    Kwon, Daehong; Lee, Daehwan; Kim, Juyeon; Lee, Jongin; Sim, Mikang; Kim, Jaebum

    2018-05-09

    Proteins perform biological functions through cascading interactions with each other by forming protein complexes. As a result, interactions among proteins, called protein-protein interactions (PPIs) are not completely free from selection constraint during evolution. Therefore, the identification and analysis of PPI changes during evolution can give us new insight into the evolution of functions. Although many algorithms, databases and websites have been developed to help the study of PPIs, most of them are limited to visualize the structure and features of PPIs in a chosen single species with limited functions in the visualization perspective. This leads to difficulties in the identification of different patterns of PPIs in different species and their functional consequences. To resolve these issues, we developed a web application, called INTER-Species Protein Interaction Analysis (INTERSPIA). Given a set of proteins of user's interest, INTERSPIA first discovers additional proteins that are functionally associated with the input proteins and searches for different patterns of PPIs in multiple species through a server-side pipeline, and second visualizes the dynamics of PPIs in multiple species using an easy-to-use web interface. INTERSPIA is freely available at http://bioinfo.konkuk.ac.kr/INTERSPIA/.

  18. Interaction of multiple networks modulated by the working memory training based on real-time fMRI

    NASA Astrophysics Data System (ADS)

    Shen, Jiahui; Zhang, Gaoyan; Zhu, Chaozhe; Yao, Li; Zhao, Xiaojie

    2015-03-01

    Neuroimaging studies of working memory training have identified the alteration of brain activity as well as the regional interactions within the functional networks such as central executive network (CEN) and default mode network (DMN). However, how the interaction within and between these multiple networks is modulated by the training remains unclear. In this paper, we examined the interaction of three training-induced brain networks during working memory training based on real-time functional magnetic resonance imaging (rtfMRI). Thirty subjects assigned to the experimental and control group respectively participated in two times training separated by seven days. Three networks including silence network (SN), CEN and DMN were identified by the training data with the calculated function connections within each network. Structural equation modeling (SEM) approach was used to construct the directional connectivity patterns. The results showed that the causal influences from the percent signal changes of target ROI to the SN were positively changed in both two groups, as well as the causal influence from the SN to CEN was positively changed in experimental group but negatively changed in control group from the SN to DMN. Further correlation analysis of the changes in each network with the behavioral improvements showed that the changes in SN were stronger positively correlated with the behavioral improvement of letter memory task. These findings indicated that the SN was not only a switch between the target ROI and the other networks in the feedback training but also an essential factor to the behavioral improvement.

  19. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change.

    PubMed

    Solomon-Lane, Tessa K; Crespi, Erica J; Grober, Matthew S

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes.

  20. Stress and serial adult metamorphosis: multiple roles for the stress axis in socially regulated sex change

    PubMed Central

    Solomon-Lane, Tessa K.; Crespi, Erica J.; Grober, Matthew S.

    2013-01-01

    Socially regulated sex change in teleost fishes is a striking example of social status information regulating biological function in the service of reproductive success. The establishment of social dominance in sex changing species is translated into a cascade of changes in behavior, physiology, neuroendocrine function, and morphology that transforms a female into a male, or vice versa. The hypothalamic-pituitary-interrenal axis (HPI, homologous to HP-adrenal axis in mammals and birds) has been hypothesized to play a mechanistic role linking status to sex change. The HPA/I axis responds to environmental stressors by integrating relevant external and internal cues and coordinating biological responses including changes in behavior, energetics, physiology, and morphology (i.e., metamorphosis). Through actions of both corticotropin-releasing factor and glucocorticoids, the HPA/I axis has been implicated in processes central to sex change, including the regulation of agonistic behavior, social status, energetic investment, and life history transitions. In this paper, we review the hypothesized roles of the HPA/I axis in the regulation of sex change and how those hypotheses have been tested to date. We include original data on sex change in the bluebanded goby (Lythyrpnus dalli), a highly social fish capable of bidirectional sex change. We then propose a model for HPA/I involvement in sex change and discuss how these ideas might be tested in the future. Understanding the regulation of sex change has the potential to elucidate evolutionarily conserved mechanisms responsible for translating pertinent information about the environment into coordinated biological changes along multiple body axes. PMID:24265604

  1. Lifestyle and Mental Health

    ERIC Educational Resources Information Center

    Walsh, Roger

    2011-01-01

    Mental health professionals have significantly underestimated the importance of lifestyle factors (a) as contributors to and treatments for multiple psychopathologies, (b) for fostering individual and social well-being, and (c) for preserving and optimizing cognitive function. Consequently, therapeutic lifestyle changes (TLCs) are underutilized…

  2. A Study on the Effects of Multiple Goal Orientation on Learning Motivation and Learning Behaviors

    ERIC Educational Resources Information Center

    Li, Jie-Yi; Shieh, Chich-Jen

    2016-01-01

    In such an era when the value is constantly restructured and information is rapidly changed, education reform should cater for new challenges. The role and function of teachers is encountering a new change. Coping with current information generation, people with high self-efficacy of selecting and mastering large amount of information and higher…

  3. Shape-morphing composites with designed micro-architectures

    NASA Astrophysics Data System (ADS)

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; Wilson, Thomas S.; Spadaccini, Christopher M.; Lewicki, James P.

    2016-06-01

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designed for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. The ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.

  4. Multiple Assembly Rules Drive the Co-occurrence of Orthopteran and Plant Species in Grasslands: Combining Network, Functional and Phylogenetic Approaches

    PubMed Central

    Fournier, Bertrand; Mouly, Arnaud; Gillet, François

    2016-01-01

    Understanding the factors underlying the co-occurrence of multiple species remains a challenge in ecology. Biotic interactions, environmental filtering and neutral processes are among the main mechanisms evoked to explain species co-occurrence. However, they are most often studied separately or even considered as mutually exclusive. This likely hampers a more global understanding of species assembly. Here, we investigate the general hypothesis that the structure of co-occurrence networks results from multiple assembly rules and its potential implications for grassland ecosystems. We surveyed orthopteran and plant communities in 48 permanent grasslands of the French Jura Mountains and gathered functional and phylogenetic data for all species. We constructed a network of plant and orthopteran species co-occurrences and verified whether its structure was modular or nested. We investigated the role of all species in the structure of the network (modularity and nestedness). We also investigated the assembly rules driving the structure of the plant-orthopteran co-occurrence network by using null models on species functional traits, phylogenetic relatedness and environmental conditions. We finally compared our results to abundance-based approaches. We found that the plant-orthopteran co-occurrence network had a modular organization. Community assembly rules differed among modules for plants while interactions with plants best explained the distribution of orthopterans into modules. Few species had a disproportionately high positive contribution to this modular organization and are likely to have a key importance to modulate future changes. The impact of agricultural practices was restricted to some modules (3 out of 5) suggesting that shifts in agricultural practices might not impact the entire plant-orthopteran co-occurrence network. These findings support our hypothesis that multiple assembly rules drive the modular structure of the plant-orthopteran network. This modular structure is likely to play a key role in the response of grassland ecosystems to future changes by limiting the impact of changes in agricultural practices such as intensification to some modules leaving species from other modules poorly impacted. The next step is to understand the importance of this modular structure for the long-term maintenance of grassland ecosystem structure and functions as well as to develop tools to integrate network structure into models to improve their capacity to predict future changes. PMID:27582754

  5. Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis.

    PubMed

    Meijer, Kim A; Eijlers, Anand J C; Geurts, Jeroen J G; Schoonheim, Menno M

    2018-02-01

    Functional connectivity is known to increase as well as decrease throughout the brain in multiple sclerosis (MS), which could represent different stages of the disease. In addition, functional connectivity changes could follow the atrophy pattern observed with disease progression, that is, moving from the deep grey matter towards the cortex. This study investigated when and where connectivity changes develop and explored their clinical and cognitive relevance across different MS stages. A cohort of 121 patients with early relapsing-remitting MS (RRMS), 122 with late RRMS and 53 with secondary progressive MS (SPMS) as well as 96 healthy controls underwent MRI and neuropsychological testing. Functional connectivity changes were investigated for (1) within deep grey matter connectivity, (2) connectivity between the deep grey matter and cortex and (3) within-cortex connectivity. A post hoc regional analysis was performed to identify which regions were driving the connectivity changes. Patients with late RRMS and SPMS showed increased connectivity of the deep grey matter, especially of the putamen and palladium, with other deep grey matter structures and with the cortex. Within-cortex connectivity was decreased, especially for temporal, occipital and frontal regions, but only in SPMS relative to early RRMS. Deep grey matter connectivity alterations were related to cognition and disability, whereas within-cortex connectivity was only related to disability. Increased connectivity of the deep grey matter became apparent in late RRMS and further increased in SPMS. The additive effect of cortical network degeneration, which was only seen in SPMS, may explain the sudden clinical deterioration characteristic to this phase of the disease. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Recursive feature elimination for biomarker discovery in resting-state functional connectivity.

    PubMed

    Ravishankar, Hariharan; Madhavan, Radhika; Mullick, Rakesh; Shetty, Teena; Marinelli, Luca; Joel, Suresh E

    2016-08-01

    Biomarker discovery involves finding correlations between features and clinical symptoms to aid clinical decision. This task is especially difficult in resting state functional magnetic resonance imaging (rs-fMRI) data due to low SNR, high-dimensionality of images, inter-subject and intra-subject variability and small numbers of subjects compared to the number of derived features. Traditional univariate analysis suffers from the problem of multiple comparisons. Here, we adopt an alternative data-driven method for identifying population differences in functional connectivity. We propose a machine-learning approach to down-select functional connectivity features associated with symptom severity in mild traumatic brain injury (mTBI). Using this approach, we identified functional regions with altered connectivity in mTBI. including the executive control, visual and precuneus networks. We compared functional connections at multiple resolutions to determine which scale would be more sensitive to changes related to patient recovery. These modular network-level features can be used as diagnostic tools for predicting disease severity and recovery profiles.

  7. Exploring barriers to remaining physically active: a case report of a person with multiple sclerosis.

    PubMed

    Zalewski, Kathryn

    2007-03-01

    Physical therapy intervention for those with chronic disabling conditions typically follows an episode of care approach: therapists provide services when a decrement in functional performance occurs such that individuals require intervention to return to baseline performance. Attention to the psychosocial supports required for successful transition can be unintentionally minimized when the focus of an episode of care follows a change in physical function. The purpose of this case report is to present and discuss the challenges to successful community reintegration following physical therapy intervention with an emphasis on developing independent exercise habits in management of a person with multiple sclerosis. RW, presented in this case study, is a 52-year-old man diagnosed with progressive multiple sclerosis five years before self-referral to a pro bono physical therapy clinic.

  8. Species richness effects on ecosystem multifunctionality depend on evenness, composition and spatial pattern

    USGS Publications Warehouse

    Maestre, F.T.; Castillo-Monroy, A. P.; Bowker, M.A.; Ochoa-Hueso, R.

    2012-01-01

    1. Recent studies have suggested that the simultaneous maintenance of multiple ecosystem functions (multifunctionality) is positively supported by species richness. However, little is known regarding the relative importance of other community attributes (e.g. spatial pattern, species evenness) as drivers of multifunctionality. 2. We conducted two microcosm experiments using model biological soil crust communities dominated by lichens to: (i) evaluate the joint effects and relative importance of changes in species composition, spatial pattern (clumped and random distribution of lichens), evenness (maximal and low evenness) and richness (from two to eight species) on soil functions related to nutrient cycling (β-glucosidase, urease and acid phosphatase enzymes, in situ N availability, total N, organic C, and N fixation), and (ii) assess how these community attributes affect multifunctionality. 3. Species richness, composition and spatial pattern affected multiple ecosystem functions (e.g. organic C, total N, N availability, β-glucosidase activity), albeit the magnitude and direction of their effects varied with the particular function, experiment and soil depth considered. Changes in species composition had effects on organic C, total N and the activity of β-glucosidase. Significant species richness × evenness and spatial pattern × evenness interactions were found when analysing functions such as organic C, total N and the activity of phosphatase. 4. The probability of sustaining multiple ecosystem functions increased with species richness, but this effect was largely modulated by attributes such as species evenness, composition and spatial pattern. Overall, we found that model communities with high species richness, random spatial pattern and low evenness increased multifunctionality. 5. Synthesis. Our results illustrate how different community attributes have a diverse impact on ecosystem functions related to nutrient cycling, and provide new experimental evidence illustrating the importance of the spatial pattern of organisms on ecosystem functioning. They also indicate that species richness is not the only biotic driver of multifunctionality, and that particular combinations of community attributes may be required to maximize it.

  9. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification

    PubMed Central

    Righolt, Christiaan H.; Zatreanu, Diana A.; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification. PMID:27335676

  10. Quantification of the Spatial Organization of the Nuclear Lamina as a Tool for Cell Classification.

    PubMed

    Righolt, Christiaan H; Zatreanu, Diana A; Raz, Vered

    2013-01-01

    The nuclear lamina is the structural scaffold of the nuclear envelope that plays multiple regulatory roles in chromatin organization and gene expression as well as a structural role in nuclear stability. The lamina proteins, also referred to as lamins, determine nuclear lamina organization and define the nuclear shape and the structural integrity of the cell nucleus. In addition, lamins are connected with both nuclear and cytoplasmic structures forming a dynamic cellular structure whose shape changes upon external and internal signals. When bound to the nuclear lamina, the lamins are mobile, have an impact on the nuclear envelop structure, and may induce changes in their regulatory functions. Changes in the nuclear lamina shape cause changes in cellular functions. A quantitative description of these structural changes could provide an unbiased description of changes in cellular function. In this review, we describe how changes in the nuclear lamina can be measured from three-dimensional images of lamins at the nuclear envelope, and we discuss how structural changes of the nuclear lamina can be used for cell classification.

  11. Effect of age on changes in motor units functional connectivity.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh

    2015-08-01

    With age, there is a change in functional connectivity of motor units in muscle. This leads to reduced muscle strength. This study has investigated the effect of age on the changes in the motor unit recruitment by measuring the mutual information between multiple channels of surface electromyogram (sEMG) of biceps brachii muscle. It is hypothesised that with ageing, there is a reduction in number of motor units, which can lead to an increase in the dependency of remaining motor units. This increase can be observed in the mutual information between the multiple channels of the muscle activity. Two channels of sEMG were recorded during the maximum level of isometric contraction. 28 healthy subjects (Young: age range 20-35years and Old: age range - 60-70years) participated in the experiments. The normalized mutual information (NMI), a measure of dependency factor, was computed for the sEMG recordings. Statistical analysis was performed to test the effect of age on NMI. The results show that the NMI among the older cohort was significantly higher when compared with the young adults.

  12. Detecting opportunities for parallel observations on the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Lucks, Michael

    1992-01-01

    The presence of multiple scientific instruments aboard the Hubble Space Telescope provides opportunities for parallel science, i.e., the simultaneous use of different instruments for different observations. Determining whether candidate observations are suitable for parallel execution depends on numerous criteria (some involving quantitative tradeoffs) that may change frequently. A knowledge based approach is presented for constructing a scoring function to rank candidate pairs of observations for parallel science. In the Parallel Observation Matching System (POMS), spacecraft knowledge and schedulers' preferences are represented using a uniform set of mappings, or knowledge functions. Assessment of parallel science opportunities is achieved via composition of the knowledge functions in a prescribed manner. The knowledge acquisition, and explanation facilities of the system are presented. The methodology is applicable to many other multiple criteria assessment problems.

  13. Examining the Efficacy of the Modified Story Memory Technique (mSMT) in Persons With TBI Using Functional Magnetic Resonance Imaging (fMRI): The TBI-MEM Trial.

    PubMed

    Chiaravalloti, Nancy D; Dobryakova, Ekaterina; Wylie, Glenn R; DeLuca, John

    2015-01-01

    New learning and memory deficits are common following traumatic brain injury (TBI). Yet few studies have examined the efficacy of memory retraining in TBI through the most methodologically vigorous randomized clinical trial. Our previous research has demonstrated that the modified Story Memory Technique (mSMT) significantly improves new learning and memory in multiple sclerosis. The present double-blind, placebo-controlled, randomized clinical trial examined changes in cerebral activation on functional magnetic resonance imaging following mSMT treatment in persons with TBI. Eighteen individuals with TBI were randomly assigned to treatment (n = 9) or placebo (n = 9) groups. Baseline and follow-up functional magnetic resonance imaging was collected during a list-learning task. Significant differences in cerebral activation from before to after treatment were noted in regions belonging to the default mode network and executive control network in the treatment group only. Results are interpreted in light of these networks. Activation differences between the groups likely reflect increased use of strategies taught during treatment. This study demonstrates a significant change in cerebral activation resulting from the mSMT in a TBI sample. Findings are consistent with previous work in multiple sclerosis. Behavioral interventions can show significant changes in the brain, validating clinical utility.

  14. Mitochondria, oligodendrocytes and inflammation in bipolar disorder: evidence from transcriptome studies points to intriguing parallels with multiple sclerosis

    PubMed Central

    Konradi, Christine; Sillivan, Stephanie E.; Clay, Hayley B.

    2011-01-01

    Gene expression studies of bipolar disorder (BPD) have shown changes in transcriptome profiles in multiple brain regions. Here we summarize the most consistent findings in the scientific literature, and compare them to data from schizophrenia (SZ) and major depressive disorder (MDD). The transcriptome profiles of all three disorders overlap, making the existence of a BPD-specific profile unlikely. Three groups of functionally related genes are consistently expressed at altered levels in BPD, SZ and MDD. Genes involved in energy metabolism and mitochondrial function are downregulated, genes involved in immune response and inflammation are upregulated, and genes expressed in oligodendrocytes are downregulated. Experimental paradigms for multiple sclerosis demonstrate a tight link between energy metabolism, inflammation and demyelination. These studies also show variabilities in the extent of oligodendrocyte stress, which can vary from a downregulation of oligodendrocyte genes, such as observed in psychiatric disorders, to cell death and brain lesions seen in multiple sclerosis. We conclude that experimental models of multiple sclerosis could be of interest for the research of BPD, SZ and MDD. PMID:21310238

  15. Attack risk for butterflies changes with eyespot number and size

    PubMed Central

    Ho, Sebastian; Schachat, Sandra R.; Piel, William H.; Monteiro, Antónia

    2016-01-01

    Butterfly eyespots are known to function in predator deflection and predator intimidation, but it is still unclear what factors cause eyespots to serve one function over the other. Both functions have been demonstrated in different species that varied in eyespot size, eyespot number and wing size, leaving the contribution of each of these factors to butterfly survival unclear. Here, we study how each of these factors contributes to eyespot function by using paper butterfly models, where each factor is varied in turn, and exposing these models to predation in the field. We find that the presence of multiple, small eyespots results in high predation, whereas single large eyespots (larger than 6 mm in diameter) results in low predation. These data indicate that single large eyespots intimidate predators, whereas multiple small eyespots produce a conspicuous, but non-intimidating signal to predators. We propose that eyespots may gain an intimidation function by increasing in size. Our measurements of eyespot size in 255 nymphalid butterfly species show that large eyespots are relatively rare and occur predominantly on ventral wing surfaces. By mapping eyespot size on the phylogeny of the family Nymphalidae, we show that these large eyespots, with a potential intimidation function, are dispersed throughout multiple nymphalid lineages, indicating that phylogeny is not a strong predictor of eyespot size. PMID:26909190

  16. Alteration of Multiple Cell Membrane Functions in L-6 Myoblasts by T-2 Toxin: An Important Mechanism of Action.

    DTIC Science & Technology

    1986-06-04

    menbrane functions. All are in a range that would in turn be expected to alter other cell functions. Intracellular LEH was reduced 10 min after T-2... Plasma amino F-id changes in guinea pigs injected with T-2 rnycotoxin. Fed. Proc. 42, 625. 20 1111" ll p J IIIý f%𔃻 11 IC IA 114 WEAVER, G.A., MW1•Z, H.J

  17. Sexual Function Across Aging.

    PubMed

    Clayton, Anita H; Harsh, Veronica

    2016-03-01

    Women experience multiple changes in social and reproductive statuses across the life span which can affect sexual functioning. Various phases of the sexual response cycle may be impacted and can lead to sexual dysfunction. Screening for sexual problems and consideration of contributing factors such as neurobiology, reproductive life events, medical problems, medication use, and depression can help guide appropriate treatment and thereby improve the sexual functioning and quality of life of affected women. Treatment options include psychotropic medications, hormone therapy, and psychotherapy.

  18. Glucocorticoids, stress, and fertility.

    PubMed

    Whirledge, S; Cidlowski, J A

    2010-06-01

    Modifications of the hypothalamo-pituitary-adrenal axis and associated changes in circulating levels of glucocorticoids form a key component of the response of an organism to stressful challenges. Increased levels of glucocorticoids promote gluconeogenesis, mobilization of amino acids, and stimulation of fat breakdown to maintain circulating levels of glucose necessary to mount a stress response. In addition to profound changes in the physiology and function of multiple tissues, stress and elevated glucocorticoids can also inhibit reproduction, a logical effect for the survival of self. Precise levels of glucocorticoids are required for proper gonadal function; where the balance is disrupted, so is fertility. Glucocorticoids affect gonadal function at multiple levels in hypothalamo-pituitary-gonadal axis: 1) the hypothalamus (to decrease the synthesis and release of gonadotropin-releasing hormone [GnRH]); 2) the pituitary gland (to inhibit the synthesis and release of luteinizing hormone [LH] and follicle stimulating hormone [FSH]); 3) the testis/ovary (to modulate steroidogenesis and/or gametogenesis directly). Furthermore, maternal exposure to prenatal stress or exogenous glucocorticoids can lead to permanent modification of hypothalamo-pituitary-adrenal function and stress-related behaviors in offspring. Glucocorticoids are vital to many aspects of normal brain development, but fetal exposure to superabundant glucocorticoids can result in life-long effects on neuroendocrine function. This review focuses on the molecular mechanisms believed to mediate glucocorticoid inhibition of reproductive functions and the anatomical sites at which these effects take place.

  19. Exotic species enhance response diversity to land-use change but modify functional composition.

    PubMed

    Stavert, Jamie R; Pattemore, David E; Gaskett, Anne C; Beggs, Jacqueline R; Bartomeus, Ignasi

    2017-08-16

    Two main mechanisms may buffer ecosystem functions despite biodiversity loss. First, multiple species could share similar ecological roles, thus providing functional redundancy. Second, species may respond differently to environmental change (response diversity). However, ecosystem function would be best protected when functionally redundant species also show response diversity. This linkage has not been studied directly, so we investigated whether native and exotic pollinator species with similar traits (functional redundancy) differed in abundance (response diversity) across an agricultural intensification gradient. Exotic pollinator species contributed most positive responses, which partially stabilized overall abundance of the pollinator community. However, although some functionally redundant species exhibited response diversity, this was not consistent across functional groups and aggregate abundances within each functional group were rarely stabilized. This shows functional redundancy and response diversity do not always operate in concert. Hence, despite exotic species becoming increasingly dominant in human-modified systems, they cannot replace the functional composition of native species. © 2017 The Author(s).

  20. Trajectory of change in pain, depression, and physical functioning after physical activity adoption in fibromyalgia.

    PubMed

    Steiner, Jennifer L; Bigatti, Silvia M; Ang, Dennis C

    2015-07-01

    Fibromyalgia is associated with widespread pain, depression, and declines in physical functioning. The purpose of this study was to examine the trajectory of these symptoms over time related to physical activity adoption and maintenance via motivational interviewing versus education, to increase physical activity. There were no treatment group differences; we divided the sample (n = 184) based on changes in physical activity. Repeated measures analyses demonstrated differential patterns in depression, pain, and physical functioning at 24 and 36 weeks. Findings suggest increased physical activity may serve as a multiple-target intervention that provides moderate to large, long-lasting benefits for individuals with fibromyalgia. © The Author(s) 2013.

  1. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE PAGES

    Enriquez, Erik; Chen, Aiping; Harrell, Zach; ...

    2017-04-18

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  2. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik; Chen, Aiping; Harrell, Zach

    Controlling oxygen content in perovskite oxides with ABO 3 structure is one of most critical steps for tuning their functionality. Notably, there have been tremendous efforts to understand the effect of changes in oxygen content on the properties of perovskite thin films that are not composed of cations with multiple valance states. Here, we study the effect of oxygen vacancies on structural and electrical properties in epitaxial thin films of SrFeO 3-δ (SFO), where SFO is a compound with multiple valance states at the B site. Various annealing treatments are used to produce different oxygen contents in the films, whichmore » has resulted in significant structural changes in the fully strained SFO films. The out-of-plane lattice parameter and tetragonality increase with decreasing oxygen concentration, indicating the crystal structure is closely related to the oxygen content. Importantly, variation of the oxygen content in the films significantly affects the dielectric properties, leakage conduction mechanisms, and the resistive hysteresis of the materials. These results establish the relationship between oxygen content and structural and functional properties for a range of multivalent transition metal oxides.« less

  3. A Phenomenological Inquiry into the Perceptions of Software Professionals on the Asperger's Syndrome/High Functioning Autism Spectrum and the Success of Software Development Projects

    ERIC Educational Resources Information Center

    Kendall, Leslie R.

    2013-01-01

    Individuals who have Asperger's Syndrome/High-Functioning Autism, as a group, are chronically underemployed and underutilized. Many in this group have abilities that are well suited for various roles within the practice of software development. Multiple studies have shown that certain organizational and management changes in the software…

  4. Cytokine effects on the basal ganglia and dopamine function: the subcortical source of inflammatory malaise.

    PubMed

    Felger, Jennifer C; Miller, Andrew H

    2012-08-01

    Data suggest that cytokines released during the inflammatory response target subcortical structures including the basal ganglia as well as dopamine function to acutely induce behavioral changes that support fighting infection and wound healing. However, chronic inflammation and exposure to inflammatory cytokines appears to lead to persisting alterations in the basal ganglia and dopamine function reflected by anhedonia, fatigue, and psychomotor slowing. Moreover, reduced neural responses to hedonic reward, decreased dopamine metabolites in the cerebrospinal fluid and increased presynaptic dopamine uptake and decreased turnover have been described. This multiplicity of changes in the basal ganglia and dopamine function suggest fundamental effects of inflammatory cytokines on dopamine synthesis, packaging, release and/or reuptake, which may sabotage and circumvent the efficacy of current treatment approaches. Thus, examination of the mechanisms by which cytokines alter the basal ganglia and dopamine function will yield novel insights into the treatment of cytokine-induced behavioral changes and inflammatory malaise. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Identifying reprioritization response shift in a stroke caregiver population: a comparison of missing data methods.

    PubMed

    Sajobi, Tolulope T; Lix, Lisa M; Singh, Gurbakhshash; Lowerison, Mark; Engbers, Jordan; Mayo, Nancy E

    2015-03-01

    Response shift (RS) is an important phenomenon that influences the assessment of longitudinal changes in health-related quality of life (HRQOL) studies. Given that RS effects are often small, missing data due to attrition or item non-response can contribute to failure to detect RS effects. Since missing data are often encountered in longitudinal HRQOL data, effective strategies to deal with missing data are important to consider. This study aims to compare different imputation methods on the detection of reprioritization RS in the HRQOL of caregivers of stroke survivors. Data were from a Canadian multi-center longitudinal study of caregivers of stroke survivors over a one-year period. The Stroke Impact Scale physical function score at baseline, with a cutoff of 75, was used to measure patient stroke severity for the reprioritization RS analysis. Mean imputation, likelihood-based expectation-maximization imputation, and multiple imputation methods were compared in test procedures based on changes in relative importance weights to detect RS in SF-36 domains over a 6-month period. Monte Carlo simulation methods were used to compare the statistical powers of relative importance test procedures for detecting RS in incomplete longitudinal data under different missing data mechanisms and imputation methods. Of the 409 caregivers, 15.9 and 31.3 % of them had missing data at baseline and 6 months, respectively. There were no statistically significant changes in relative importance weights on any of the domains when complete-case analysis was adopted. But statistical significant changes were detected on physical functioning and/or vitality domains when mean imputation or EM imputation was adopted. There were also statistically significant changes in relative importance weights for physical functioning, mental health, and vitality domains when multiple imputation method was adopted. Our simulations revealed that relative importance test procedures were least powerful under complete-case analysis method and most powerful when a mean imputation or multiple imputation method was adopted for missing data, regardless of the missing data mechanism and proportion of missing data. Test procedures based on relative importance measures are sensitive to the type and amount of missing data and imputation method. Relative importance test procedures based on mean imputation and multiple imputation are recommended for detecting RS in incomplete data.

  6. Functional and structural cerebral changes in key brain regions after a facilitation programme for episodic future thought in relapsing-remitting multiple sclerosis patients.

    PubMed

    Ernst, Alexandra; Sourty, Marion; Roquet, Daniel; Noblet, Vincent; Gounot, Daniel; Blanc, Frédéric; De Seze, Jérôme; Manning, Liliann

    2016-06-01

    Increasingly studied, episodic future thought (EFT) impairment negatively affects patients' daily life. Along these lines, working with relapsing-remitting multiple sclerosis (RR-MS) patients, we documented the clinical effectiveness of a mental visual imagery (MVI)-based facilitation programme on EFT impairment related to executive function difficulties. We aimed at improving the characterisation of the cognitive and neural underpinnings of RR-MS patients' EFT amelioration, by exploring the structural and functional brain changes following the MVI programme. Seventeen non-depressed RR-MS patients were recruited and randomly assigned in the (i) experimental group (n=10), who followed the MVI programme or in the control group (n=7), who followed a verbal control programme. Using an adapted version of the Autobiographical Interview to assess EFT, after facilitation, significant improvement was observed in the experimental group only. This was accompanied by increased activation in the prefrontal region during the generation of future events and was positively correlated with grey matter volume increase in this same brain area. Increased activations in the parahippocampal and the middle temporal gyri were also observed in the experimental group in post-facilitation. Likewise, functional connectivity changes were observed in the posterior brain regions after facilitation. Only minor cerebral changes were observed in the control group, likely reflecting practice effects. Our study showed that EFT improvement following the MVI programme led to functional and structural changes in brain regions sustaining contextual processing, visual imagery, the integration and maintenance of multimodal information. Taken together, these findings suggest that a cognitive intervention focusing on scene construction can be efficient to alleviate EFT impairment related to executive dysfunction. As such, this study opens the way to the development of tailor-made rehabilitation programmes using the different cognitive mechanisms involved in EFT. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Contrasting olfaction, vision, and audition as predictors of cognitive change and impairment in non-demented older adults.

    PubMed

    MacDonald, Stuart W S; Keller, Connor J C; Brewster, Paul W H; Dixon, Roger A

    2018-05-01

    This study examines the relative utility of a particular class of noninvasive functional biomarkers-sensory functions-for detecting those at risk of cognitive decline and impairment. Three central research objectives were examined including whether (a) olfactory function, vision, and audition exhibited significant longitudinal declines in nondemented older adults; (b) multiwave change for these sensory function indicators predicted risk of mild cognitive impairment (MCI); and (c) change within persons for each sensory measure shared dynamic time-varying associations with within-person change in cognitive functioning. A longitudinal sample (n = 408) from the Victoria Longitudinal Study was assembled. Three cognitive status subgroups were identified: not impaired cognitively, single-assessment MCI, and multiple-assessment MCI. We tested independent predictive associations, contrasting change in sensory function as predictors of cognitive decline and impairment, utilizing both linear mixed models and logistic regression analysis. Olfaction and, to a lesser extent, vision were identified as the most robust predictors of cognitive status and decline; audition showed little predictive influence. These findings underscore the potential utility of deficits in olfactory function, in particular, as an early marker of age- and pathology-related cognitive decline. Functional biomarkers may represent potential candidates for use in the early stages of a multistep screening approach for detecting those at risk of cognitive impairment, as well as for targeted intervention. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  8. A Global Framework for Monitoring Phenological Responses to Climate Change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, Michael A; Hoffman, Forrest M; Hargrove, William Walter

    2005-01-01

    Remote sensing of vegetation phenology is an important method with which to monitor terrestrial responses to climate change, but most approaches include signals from multiple forcings, such as mixed phenological signals from multiple biomes, urbanization, political changes, shifts in agricultural practices, and disturbances. Consequently, it is difficult to extract a clear signal from the usually assumed forcing: climate change. Here, using global 8 km 1982 to 1999 Normalized Difference Vegetation Index (NDVI) data and an eight-element monthly climatology, we identified pixels whose wavelet power spectrum was consistently dominated by annual cycles and then created phenologically and climatically self-similar clusters, whichmore » we term phenoregions. We then ranked and screened each phenoregion as a function of landcover homogeneity and consistency, evidence of human impacts, and political diversity. Remaining phenoregions represented areas with a minimized probability of non-climatic forcings and form elemental units for long-term phenological monitoring.« less

  9. Effect of two lipid-lowering strategies on high-density lipoprotein function and some HDL-related proteins: a randomized clinical trial.

    PubMed

    Lee, Chan Joo; Choi, Seungbum; Cheon, Dong Huey; Kim, Kyeong Yeon; Cheon, Eun Jeong; Ann, Soo-Jin; Noh, Hye-Min; Park, Sungha; Kang, Seok-Min; Choi, Donghoon; Lee, Ji Eun; Lee, Sang-Hak

    2017-02-28

    The influence of lipid-lowering therapy on high-density lipoprotein (HDL) is incompletely understood. We compared the effect of two lipid-lowering strategies on HDL functions and identified some HDL-related proteins. Thirty two patients were initially screened and HDLs of 21 patients were finally analyzed. Patients were randomized to receive atorvastatin 20 mg (n = 11) or atorvastatin 5 mg/ezetimibe 10 mg combination (n = 10) for 8 weeks. The cholesterol efflux capacity and other anti-inflammatory functions were assessed based on HDLs of the participants before and after treatment. Pre-specified HDL proteins of the same HDL samples were measured. The post-treatment increase in cholesterol efflux capacities was similar between the groups (35.6% and 34.6% for mono-therapy and combination, respectively, p = 0.60). Changes in nitric oxide (NO) production, vascular cell adhesion molecule-1 (VCAM-1) expression, and reactive oxygen species (ROS) production were similar between the groups. The baseline cholesterol efflux capacity correlated positively with apolipoprotein (apo)A1 and C3, whereas apoA1 and apoC1 showed inverse associations with VCAM-1 expression. The changes in the cholesterol efflux capacity were positively correlated with multiple HDL proteins, especially apoA2. Two regimens increased the cholesterol efflux capacity of HDL comparably. Multiple HDL proteins, not limited to apoA1, showed a correlation with HDL functions. These results indicate that conventional lipid therapy may have additional effects on HDL functions with changes in HDL proteins. ClinicalTrials.gov, number NCT02942602 .

  10. Proteins with neomorphic moonlighting functions in disease.

    PubMed

    Jeffery, Constance J

    2011-07-01

    One gene can encode multiple protein functions because of RNA splice variants, gene fusions during evolution, promiscuous enzyme activities, and moonlighting protein functions. In addition to these types of multifunctional proteins, in which both functions are considered "normal" functions of a protein, some proteins have been described in which a mutation or conformational change imparts a second function on a protein that is not a "normal" function of the protein. We propose to call these new functions "neomorphic moonlighting functions". The most common examples of neomorphic moonlighting functions are due to conformational changes that impart novel protein-protein interactions resulting in the formation of protein aggregates in Alzheimers, Parkinsons disease, and the systemic amyloidoses. Other changes that can result in a neomorphic moonlighting function include a mutation in SMAD4 that causes the protein to bind to new promoters and thereby alter gene transcription patterns, mutations in two isocitrate dehydrogenase isoforms that impart a new catalytic activity, and mutations in dihydrolipoamide dehydrogenase that activate a hidden protease activity. These neomorphic moonlighting functions were identified because of their connection to disease. In the cases described herein, the new functions cause cancers or severe neurological impairment, although in most cases the mechanism by which the new function leads to disease is unknown. Copyright © 2011 Wiley Periodicals, Inc.

  11. Prospective Study on the Impact of Fear of Falling on Functional Decline among Community Dwelling Elderly Women

    PubMed Central

    Choi, Kyungwon; Jeon, Gyeong-Suk; Cho, Sung-il

    2017-01-01

    Fear of falling (FOF) is expected to have effects on functional decline in the elderly. In this study, we examined over 2 years the effect of change in FOF on functional decline in community dwelling elderly. We conducted a secondary analysis using data from elderly women, 70 years of age and older, who participated in the Korean Longitudinal Study of Aging (KLoSA). Participants were divided into four categories according to change in FOF between the 2010 and 2012 surveys. Multiple logistic regression analysis was conducted regarding the effects of changes in FOF on functional decline after controlling for variables as known risk factors for functional decline. Rates of functional decline were highest in the “consistently having FOF” group, whereas they were lowest in the “consistently no FOF” group in both 2010 and 2012. Characteristics independently associated with functional decline were change in FOF, depressive symptoms, low frequency of meeting friends, and fear-induced activity avoidance. Longer exposure to FOF was associated with an increased risk of functional decline. FOF is an important health problem that deserves attention in its own right. Public health approaches for elderly persons should address early detection, prevention, and intervention programs for FOF. PMID:28448461

  12. Architecture for Multiple Interacting Robot Intelligences

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II (Inventor)

    2008-01-01

    An architecture for robot intelligence enables a robot to learn new behaviors and create new behavior sequences autonomously and interact with a dynamically changing environment. Sensory information is mapped onto a Sensory Ego-Sphere (SES) that rapidly identifies important changes in the environment and functions much like short term memory. Behaviors are stored in a database associative memory (DBAM) that creates an active map from the robot's current state to a goal state and functions much like long term memory. A dream state converts recent activities stored in the SES and creates or modifies behaviors in the DBAM.

  13. Soil ecosystem functioning under climate change: plant species and community effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kardol, Paul; Cregger, Melissa; Campany, Courtney E

    2010-01-01

    Feedbacks of terrestrial ecosystems to climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the microbial communities that feed on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and water availability. Specifically, we collected soils at the plot level (plant community soils), and beneathmore » dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: 1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activities, and soil nematodes. Multiple climate change factors can interact to shape ecosystems, but in this case, those interactions were largely driven by changes in water availability. 2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning and this impact was not obvious when looking at plant community soils. Climate change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. In sum, these results indicate that accurate assessments of climate change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate change-induced shifts in plant community composition will likely modify or counteract the direct impact of climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting how climate change will alter ecosystem functioning.« less

  14. Soil ecosystem functioning under climate change: plant species and community effects.

    PubMed

    Kardol, Paul; Cregger, Melissa A; Campany, Courtney E; Classen, Aimee T

    2010-03-01

    Feedbacks of terrestrial ecosystems to atmospheric and climate change depend on soil ecosystem dynamics. Soil ecosystems can directly and indirectly respond to climate change. For example, warming directly alters microbial communities by increasing their activity. Climate change may also alter plant community composition, thus indirectly altering the soil communities that depend on their inputs. To better understand how climate change may directly and indirectly alter soil ecosystem functioning, we investigated old-field plant community and soil ecosystem responses to single and combined effects of elevated [CO2], warming, and precipitation in Tennessee (USA). Specifically, we collected soils at the plot level (plant community soils) and beneath dominant plant species (plant-specific soils). We used microbial enzyme activities and soil nematodes as indicators for soil ecosystem functioning. Our study resulted in two main findings: (1) Overall, while there were some interactions, water, relative to increases in [CO2] and warming, had the largest impact on plant community composition, soil enzyme activity, and soil nematodes. Multiple climate-change factors can interact to shape ecosystems, but in our study, those interactions were largely driven by changes in water. (2) Indirect effects of climate change, via changes in plant communities, had a significant impact on soil ecosystem functioning, and this impact was not obvious when looking at plant community soils. Climate-change effects on enzyme activities and soil nematode abundance and community structure strongly differed between plant community soils and plant-specific soils, but also within plant-specific soils. These results indicate that accurate assessments of climate-change impacts on soil ecosystem functioning require incorporating the concurrent changes in plant function and plant community composition. Climate-change-induced shifts in plant community composition will likely modify or counteract the direct impact of atmospheric and climate change on soil ecosystem functioning, and hence, these indirect effects should be taken into account when predicting the manner in which global change will alter ecosystem functioning.

  15. Remedying Social Skills Deficits in a Chronic Schizophrenic-Retarded Person.

    ERIC Educational Resources Information Center

    Jackson, Henry J.; Martin, Rose

    1983-01-01

    An adult chronic schizophrenic, residual type, with an additional diagnosis of mild-moderate retardation, received social skills training (SST). Videotaped role-play assessments showed change occurred following SST, while a multiple-baseline design demonstrated functional control over the behaviors. (Author/CL)

  16. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality

    USDA-ARS?s Scientific Manuscript database

    Experimental studies show that local plant species loss decreases ecosystem functioning and services, but it remains unclear how other changes in biodiversity, such as spatial homogenization, alter multiple processes (multifunctionality) in natural ecosystems. We present a global analysis of eight ...

  17. Rehabilitation of cheatgrass-infested rangelands: concepts

    USDA-ARS?s Scientific Manuscript database

    The introduction and subsequent invasion of cheatgrass (Bromus tectorum) onto millions of acres of Intermountain West rangelands has caused astronomical changes to numerous ecosystems and the multiple uses that depend on healthy and functional ecosystems. This is the first part, of a 3-part series ...

  18. A Randomized, Double-Blind Study Assessing Changes in Cognitive Function in Indian School Children Receiving a Combination of Bacopa monnieri and Micronutrient Supplementation vs. Placebo

    PubMed Central

    Mitra-Ganguli, Tora; Kalita, Soumik; Bhushan, Sakshi; Stough, Con; Kean, James; Wang, Nan; Sethi, Vidhu; Khadilkar, Anuradha

    2017-01-01

    Several studies have indicated a chronic cognitive enhancing effect of Bacopa monnieri across different ages and cognitive impairment associated with vitamin and mineral deficiencies in children. Therefore, we investigated the effects of 4-month supplementation with a combination of B. monnieri extract and multiple micronutrients on cognitive functions in Indian school children aged 7–12 years. This was a randomized, double-blind, parallel design, single-center study in which 300 children were randomized to receive a beverage either fortified with B. monnieri and multiple micronutrients (“fortified”) or a non-fortified isocaloric equivalent (“control”) twice-daily for 4 months. Cognitive function was assessed by the Cambridge Neuropsychological Automated Test Battery (CANTAB) administered at baseline, Day 60 and Day 121. The primary endpoint was change in short-term memory (working memory) from baseline in subjects receiving “fortified” vs. “control” beverages after 4 months. Secondary endpoints included sustained attention, episodic memory, and executive function. The “fortified” beverage did not significantly improve short-term memory or any of the secondary outcomes tested relative to the “control” beverage. However, the spatial working memory “strategy” score showed significant improvement on Day 60 (difference between groups in change from baseline: −0.55; p < 0.05), but not on Day 121 due to the active intervention. Study products were well-tolerated. Reasons for these unexpected findings are discussed. PMID:29204115

  19. Protein mislocalization: mechanisms, functions and clinical applications in cancer

    PubMed Central

    Wang, Xiaohong; Li, Shulin

    2014-01-01

    The changes from normal cells to cancer cells are primarily regulated by genome instability, which foster hallmark functions of cancer through multiple mechanisms including protein mislocalization. Mislocalization of these proteins, including oncoproteins, tumor suppressors, and other cancer-related proteins, can interfere with normal cellular function and cooperatively drive tumor development and metastasis. This review describes the cancer-related effects of protein subcellular mislocalization, the related mislocalization mechanisms, and the potential application of this knowledge to cancer diagnosis, prognosis, and therapy. PMID:24709009

  20. Consistent effects of biodiversity loss on multifunctionality across contrasting ecosystems.

    PubMed

    Fanin, Nicolas; Gundale, Michael J; Farrell, Mark; Ciobanu, Marcel; Baldock, Jeff A; Nilsson, Marie-Charlotte; Kardol, Paul; Wardle, David A

    2018-02-01

    Understanding how loss of biodiversity affects ecosystem functioning, and thus the delivery of ecosystem goods and services, has become increasingly necessary in a changing world. Considerable recent attention has focused on predicting how biodiversity loss simultaneously impacts multiple ecosystem functions (that is, ecosystem multifunctionality), but the ways in which these effects vary across ecosystems remain unclear. Here, we report the results of two 19-year plant diversity manipulation experiments, each established across a strong environmental gradient. Although the effects of plant and associated fungal diversity loss on individual functions frequently differed among ecosystems, the consequences of biodiversity loss for multifunctionality were relatively invariant. However, the context-dependency of biodiversity effects also worked in opposing directions for different individual functions, meaning that similar multifunctionality values across contrasting ecosystems could potentially mask important differences in the effects of biodiversity on functioning among ecosystems. Our findings highlight that an understanding of the relative contribution of species or functional groups to individual ecosystem functions among contrasting ecosystems and their interactions (that is, complementarity versus competition) is critical for guiding management efforts aimed at maintaining ecosystem multifunctionality and the delivery of multiple ecosystem services.

  1. Calculating with light using a chip-scale all-optical abacus.

    PubMed

    Feldmann, J; Stegmaier, M; Gruhler, N; Ríos, C; Bhaskaran, H; Wright, C D; Pernice, W H P

    2017-11-02

    Machines that simultaneously process and store multistate data at one and the same location can provide a new class of fast, powerful and efficient general-purpose computers. We demonstrate the central element of an all-optical calculator, a photonic abacus, which provides multistate compute-and-store operation by integrating functional phase-change materials with nanophotonic chips. With picosecond optical pulses we perform the fundamental arithmetic operations of addition, subtraction, multiplication, and division, including a carryover into multiple cells. This basic processing unit is embedded into a scalable phase-change photonic network and addressed optically through a two-pulse random access scheme. Our framework provides first steps towards light-based non-von Neumann arithmetic.

  2. Spaceflight Effects on Neurocognitive Performance: Extent, Longevity and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Kofman, I. S.; Cassady, K.; Yuan, P.; De Dios, Y. E.; Gadd, N.; Riascos, R. F.; Wood, S. J.; hide

    2017-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post spaceflight. Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that are conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. We have collected data on several crewmembers and preliminary findings will be presented. Eventual comparison to results from our parallel bed rest study will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe.

  3. Comparative functional analyses of ultrabithorax reveal multiple steps and paths to diversification of legs in the adaptive radiation of semi-aquatic insects.

    PubMed

    Khila, Abderrahman; Abouheif, Ehab; Rowe, Locke

    2014-08-01

    Invasion of new ecological habitats is often associated with lineage diversification, yet the genetic changes underlying invasions and radiations are poorly understood. Over 200 million years ago, the semi-aquatic insects invaded water surface from a common terrestrial ancestor and diversified to exploit a wide array of niches. Here, we uncover the changes in regulation and function of the gene Ultrabithorax associated with both the invasion of water surface and the subsequent diversification of the group. In the common ancestor of the semi-aquatic insects, a novel deployment of Ubx protein in the mid-legs increased their length, thereby enhancing their role in water surface walking. In derived lineages that specialize in rowing on the open water, additional changes in the timing of Ubx expression further elongated the mid-legs thereby facilitating their function as oars. In addition, Ubx protein function was selectively reversed to shorten specific rear-leg segments, thereby enabling their function as rudders. These changes in Ubx have generated distinct niche-specialized morphologies that account for the remarkable diversification of the semi-aquatic insects. Therefore, changes in the regulation and function of a key developmental gene may facilitate both the morphological change necessary to transition to novel habitats and fuel subsequent morphological diversification. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  4. Forest fragmentation and selective logging have inconsistent effects on multiple animal-mediated ecosystem processes in a tropical forest.

    PubMed

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Naumann, Clas M; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants.

  5. Forest Fragmentation and Selective Logging Have Inconsistent Effects on Multiple Animal-Mediated Ecosystem Processes in a Tropical Forest

    PubMed Central

    Schleuning, Matthias; Farwig, Nina; Peters, Marcell K.; Bergsdorf, Thomas; Bleher, Bärbel; Brandl, Roland; Dalitz, Helmut; Fischer, Georg; Freund, Wolfram; Gikungu, Mary W.; Hagen, Melanie; Garcia, Francisco Hita; Kagezi, Godfrey H.; Kaib, Manfred; Kraemer, Manfred; Lung, Tobias; Schaab, Gertrud; Templin, Mathias; Uster, Dana; Wägele, J. Wolfgang; Böhning-Gaese, Katrin

    2011-01-01

    Forest fragmentation and selective logging are two main drivers of global environmental change and modify biodiversity and environmental conditions in many tropical forests. The consequences of these changes for the functioning of tropical forest ecosystems have rarely been explored in a comprehensive approach. In a Kenyan rainforest, we studied six animal-mediated ecosystem processes and recorded species richness and community composition of all animal taxa involved in these processes. We used linear models and a formal meta-analysis to test whether forest fragmentation and selective logging affected ecosystem processes and biodiversity and used structural equation models to disentangle direct from biodiversity-related indirect effects of human disturbance on multiple ecosystem processes. Fragmentation increased decomposition and reduced antbird predation, while selective logging consistently increased pollination, seed dispersal and army-ant raiding. Fragmentation modified species richness or community composition of five taxa, whereas selective logging did not affect any component of biodiversity. Changes in the abundance of functionally important species were related to lower predation by antbirds and higher decomposition rates in small forest fragments. The positive effects of selective logging on bee pollination, bird seed dispersal and army-ant raiding were direct, i.e. not related to changes in biodiversity, and were probably due to behavioural changes of these highly mobile animal taxa. We conclude that animal-mediated ecosystem processes respond in distinct ways to different types of human disturbance in Kakamega Forest. Our findings suggest that forest fragmentation affects ecosystem processes indirectly by changes in biodiversity, whereas selective logging influences processes directly by modifying local environmental conditions and resource distributions. The positive to neutral effects of selective logging on ecosystem processes show that the functionality of tropical forests can be maintained in moderately disturbed forest fragments. Conservation concepts for tropical forests should thus include not only remaining pristine forests but also functionally viable forest remnants. PMID:22114695

  6. Wavelength dependence and multiple-induced states in photoresponses of copper phthalocyanine-doped gold nanoparticle single-electron device

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Ueda, Rieko; Terui, Toshifumi; Imazu, Keisuke; Tamada, Kaoru; Sakano, Takeshi; Matsuda, Kenji; Ishii, Hisao; Noguchi, Yutaka

    2014-01-01

    We have proposed a gold nanoparticle (GNP)-based single-electron transistor (SET) doped with a dye molecule, where the molecule works as a photoresponsive floating gate. Here, we examined the source-drain current (I_{\\text{SD}}) at a constant drain voltage under light irradiation with various wavelengths ranging from 400 to 700 nm. Current change was enhanced at the wavelengths of 600 and 700 nm, corresponding to the optical absorption band of the doped molecule (copper phthalocyanine: CuPc). Moreover, several peaks appear in the histograms of I_{\\text{SD}} during light irradiation, indicating that multiple discrete states were induced in the device. The results suggest that the current change was initiated by the light absorption of CuPc and multiple CuPc molecules near the GNP working as a floating gate. Molecular doping can activate advanced device functions in GNP-based SETs.

  7. A multi-stimuli responive, self-assembling, boronic acid dipeptide

    DOE PAGES

    Jones, Brad Howard; Martinez, Alina Marissa; Wheeler, Jill S.; ...

    2015-08-11

    Modification of the dipeptide of phenylalanine, FF, with a boronic acid (BA) functionality imparts unique aqueous self-assembly behavior that responds to multiple stimuli. Changes in pH and ionic strength are used to trigger hydrogelation via the formation of nanoribbon networks. Thus, we show for the first time that the binding of polyols to the BA functionality can modulate a peptide between its assembled and disassembled states.

  8. Predicting the cumulative effect of multiple disturbances on seagrass connectivity.

    PubMed

    Grech, Alana; Hanert, Emmanuel; McKenzie, Len; Rasheed, Michael; Thomas, Christopher; Tol, Samantha; Wang, Mingzhu; Waycott, Michelle; Wolter, Jolan; Coles, Rob

    2018-03-15

    The rate of exchange, or connectivity, among populations effects their ability to recover after disturbance events. However, there is limited information on the extent to which populations are connected or how multiple disturbances affect connectivity, especially in coastal and marine ecosystems. We used network analysis and the outputs of a biophysical model to measure potential functional connectivity and predict the impact of multiple disturbances on seagrasses in the central Great Barrier Reef World Heritage Area (GBRWHA), Australia. The seagrass networks were densely connected, indicating that seagrasses are resilient to the random loss of meadows. Our analysis identified discrete meadows that are important sources of seagrass propagules and that serve as stepping stones connecting various different parts of the network. Several of these meadows were close to urban areas or ports and likely to be at risk from coastal development. Deep water meadows were highly connected to coastal meadows and may function as a refuge, but only for non-foundation species. We evaluated changes to the structure and functioning of the seagrass networks when one or more discrete meadows were removed due to multiple disturbance events. The scale of disturbance required to disconnect the seagrass networks into two or more components was on average >245 km, about half the length of the metapopulation. The densely connected seagrass meadows of the central GBRWHA are not limited by the supply of propagules; therefore, management should focus on improving environmental conditions that support natural seagrass recruitment and recovery processes. Our study provides a new framework for assessing the impact of global change on the connectivity and persistence of coastal and marine ecosystems. Without this knowledge, management actions, including coastal restoration, may prove unnecessary and be unsuccessful. © 2018 John Wiley & Sons Ltd.

  9. Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington's disease.

    PubMed

    Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M

    2014-11-01

    Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.

  10. Relationship between Structural and Functional Assessment of the Visual System in Mildly Disabled Relapsing-Remitting Multiple Sclerosis Patients

    PubMed Central

    Huseyinoglu, Nergiz; Ekinci, Metin; Ozben, Serkan; Buyukuysal, Cagatay

    2014-01-01

    Abstract Studies that explored the anterior visual pathway in the patients with multiple sclerosis (MS) have demonstrated contradictory results about the correlation between structural and functional status of optic nerve and retina. We aimed to investigate the functional and structural findings in our cohort of mildly disabled relapsing-remitting MS patients. A total of 134 eyes (80 eyes of the patients with MS and 54 eyes of the control group) were investigated. Eyes of MS patients were divided into two groups—as eyes with history of optic neuritis (ON group) and without history of optic neuritis (NON group). Ophthalmological investigation including visual evoked potentials, standard automated perimetry, and optical coherence tomography were performed for all participants. Retinal and macular thicknesses were significantly decreased in ON and NON groups compared with controls. Also, visual evoked potential latencies and visual field loss were worse in the both MS groups compared with control group. We did not find any correlation between visual evoked potentials and retinal or macular thickness values but visual field parameters were correlated between retinal and macular layer loss in the NON group. According to our results and some previous studies, although both functional and structural changes were detected in patients with MS, functional status markers do not always show parallelism (or synchrony) with structural changes, especially in eyes with history of optic neuritis. PMID:27928266

  11. Use of multiple functional traits of protozoa for bioassessment of marine pollution.

    PubMed

    Zhong, Xiaoxiao; Xu, Guangjian; Xu, Henglong

    2017-06-30

    Ecological parameters based on multiply functional traits have many advantages for monitoring programs by reducing "signal to noise" ratios of observed species data. To identify potential indicators for bioassessment of marine pollution in function space, the functional patterns of protozoan communities and relationships with environmental changes were studied in coastal waters of the Yellow Sea during a 1-year period. The results showed that: (1) the spatial variability in functional trait distributions of the protozoa was significantly associated with changes in environmental variables, especially chemical oxygen demand (COD) and nutrients on spatial scale; (2) the functional traits, especially food resources and feeding type, were significantly correlated with COD and nutrients; and (3) the functional diversity indices were generally related to nutrients or COD. Based on the results, we suggest that the functional traits and diversity indices of protozoan communities may be used as more effective indicators for bioassessment of marine pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Multiple scattering calculation of the middle ultraviolet reaching the ground. [SST effects on ozone layer

    NASA Technical Reports Server (NTRS)

    Shettle, E. P.; Green, A. E. S.

    1974-01-01

    An investigation is conducted regarding the increase in the UV radiation as a function of wavelength due to changes in the amounts of ozone and various other parameters affecting the radiation in the atmosphere. Attention is given to the methods that can be used to solve the problem of the transfer of radiation through an absorbing and scattering atmosphere which includes aerosols. The multiple channel solution reported by Mudgett and Richards' (1971) is extended to vertically inhomogeneous atmospheres.

  13. Multifunctional wall coating combining photocatalysis, self-cleaning and latent heat storage

    NASA Astrophysics Data System (ADS)

    Lucas, S. S.; Barroso de Aguiar, J. L.

    2018-02-01

    Mortars, one of the most common construction materials, have not received any substantial modification for many decades. This has changed in recent years; new compositions are now being developed, with new properties, using nano-additives, fibres and capsules. In this work, surfaces with new and innovative functionalities that promote energy savings and improve air quality have been developed and studied. Incorporation of phase change materials (PCM) and titanium dioxide (TiO2) nanoparticles in construction products is currently under study by different research groups. However, these studies only address their incorporation separately. Adding new additives into the mortar’s matrix can be complex—due to microstructural modifications that will influence both fresh and hardened state properties. Moving from a single additive to multiple additions, as in this study, increases the system’s complexity. Only with a good understanding of the microstructural properties, it is possible to add multiple additives (including nano and microparticles) to mortars, without damaging its final quality. This work demonstrates that a higher additive content is not always a guarantee of better results; lower additions can often provide a better compromise between performance and final mechanical properties. The results presented in this paper confirmed this and show that combining PCM microcapsules and TiO2 nanoparticles open a new path in the development of mortars with multiple functionalities. In this study, a new material with depolluting, self-cleaning and heat storage was created. For the development of new and innovative mortars, a proper balance of multiple additives, supported by the study of microstructural changes, can lead to an optimization of the compositions, ensuring that the mortar’s final properties are not affected.

  14. Developmental process emerges from extended brain-body-behavior networks

    PubMed Central

    Byrge, Lisa; Sporns, Olaf; Smith, Linda B.

    2014-01-01

    Studies of brain connectivity have focused on two modes of networks: structural networks describing neuroanatomy and the intrinsic and evoked dependencies of functional networks at rest and during tasks. Each mode constrains and shapes the other across multiple time scales, and each also shows age-related changes. Here we argue that understanding how brains change across development requires understanding the interplay between behavior and brain networks: changing bodies and activities modify the statistics of inputs to the brain; these changing inputs mold brain networks; these networks, in turn, promote further change in behavior and input. PMID:24862251

  15. Automatic plankton image classification combining multiple view features via multiple kernel learning.

    PubMed

    Zheng, Haiyong; Wang, Ruchen; Yu, Zhibin; Wang, Nan; Gu, Zhaorui; Zheng, Bing

    2017-12-28

    Plankton, including phytoplankton and zooplankton, are the main source of food for organisms in the ocean and form the base of marine food chain. As the fundamental components of marine ecosystems, plankton is very sensitive to environment changes, and the study of plankton abundance and distribution is crucial, in order to understand environment changes and protect marine ecosystems. This study was carried out to develop an extensive applicable plankton classification system with high accuracy for the increasing number of various imaging devices. Literature shows that most plankton image classification systems were limited to only one specific imaging device and a relatively narrow taxonomic scope. The real practical system for automatic plankton classification is even non-existent and this study is partly to fill this gap. Inspired by the analysis of literature and development of technology, we focused on the requirements of practical application and proposed an automatic system for plankton image classification combining multiple view features via multiple kernel learning (MKL). For one thing, in order to describe the biomorphic characteristics of plankton more completely and comprehensively, we combined general features with robust features, especially by adding features like Inner-Distance Shape Context for morphological representation. For another, we divided all the features into different types from multiple views and feed them to multiple classifiers instead of only one by combining different kernel matrices computed from different types of features optimally via multiple kernel learning. Moreover, we also applied feature selection method to choose the optimal feature subsets from redundant features for satisfying different datasets from different imaging devices. We implemented our proposed classification system on three different datasets across more than 20 categories from phytoplankton to zooplankton. The experimental results validated that our system outperforms state-of-the-art plankton image classification systems in terms of accuracy and robustness. This study demonstrated automatic plankton image classification system combining multiple view features using multiple kernel learning. The results indicated that multiple view features combined by NLMKL using three kernel functions (linear, polynomial and Gaussian kernel functions) can describe and use information of features better so that achieve a higher classification accuracy.

  16. Shape-morphing composites with designed micro-architectures

    DOE PAGES

    Rodriguez, Jennifer N.; Zhu, Cheng; Duoss, Eric B.; ...

    2016-06-15

    Shape memory polymers (SMPs) are attractive materials due to their unique mechanical properties, including high deformation capacity and shape recovery. SMPs are easier to process, lightweight, and inexpensive compared to their metallic counterparts, shape memory alloys. However, SMPs are limited to relatively small form factors due to their low recovery stresses. Lightweight, micro-architected composite SMPs may overcome these size limitations and offer the ability to combine functional properties (e.g., electrical conductivity) with shape memory behavior. Fabrication of 3D SMP thermoset structures via traditional manufacturing methods is challenging, especially for designs that are composed of multiple materials within porous microarchitectures designedmore » for specific shape change strategies, e.g. sequential shape recovery. We report thermoset SMP composite inks containing some materials from renewable resources that can be 3D printed into complex, multi-material architectures that exhibit programmable shape changes with temperature and time. Through addition of fiber-based fillers, we demonstrate printing of electrically conductive SMPs where multiple shape states may induce functional changes in a device and that shape changes can be actuated via heating of printed composites. As a result, the ability of SMPs to recover their original shapes will be advantageous for a broad range of applications, including medical, aerospace, and robotic devices.« less

  17. Analysis of multiple cell upset sensitivity in bulk CMOS SRAM after neutron irradiation

    NASA Astrophysics Data System (ADS)

    Pan, Xiaoyu; Guo, Hongxia; Luo, Yinhong; Zhang, Fengqi; Ding, Lili

    2018-03-01

    In our previous studies, we have proved that neutron irradiation can decrease the single event latch-up (SEL) sensitivity of CMOS SRAM. And one of the key contributions to the multiple cell upset (MCU) is the parasitic bipolar amplification, it bring us to study the impact of neutron irradiation on the SRAM’s MCU sensitivity. After the neutron experiment, we test the devices’ function and electrical parameters. Then, we use the heavy ion fluence to examine the changes on the devices’ MCU sensitivity pre- and post-neutron-irradiation. Unfortunately, neutron irradiation makes the MCU phenomenon worse. Finally, we use the electric static discharge (ESD) testing technology to deduce the experimental results and find that the changes on the WPM region take the lead rather than the changes on the parasitic bipolar amplification for the 90 nm process.

  18. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  19. Does whole blood coagulation analysis reflect developmental haemostasis?

    PubMed

    Ravn, Hanne Berg; Andreasen, Jo Bønding; Hvas, Anne-Mette

    2017-04-01

    : Developmental haemostasis has been well documented over the last 3 decades and age-dependent reference ranges have been reported for a number of plasmatic coagulation parameters. With the increasing use of whole blood point-of-care tests like rotational thromboelastometry (ROTEM) and platelet function tests, an evaluation of age-dependent changes is warranted for these tests as well. We obtained blood samples from 149 children, aged 1 day to 5.9 years, and analysed conventional plasmatic coagulation tests, including activated partial prothrombin time, prothrombin time, and fibrinogen (functional). Whole blood samples were analysed using ROTEM to assess overall coagulation capacity and Multiplate analyzer to evaluate platelet aggregation. Age-dependent changes were analysed for all variables. We found age-dependent differences in all conventional coagulation tests (all P values < 0.05), but there was no sign of developmental changes in whole blood coagulation assessment when applying ROTEM, apart from clotting time in the EXTEM assay (P < 0.03). Despite marked differences in mean platelet aggregation between age groups, data did not reach statistical significance. Citrate-anticoagulated blood showed significantly reduced platelet aggregation compared with blood anticoagulated with heparin or hirudin (all P values < 0.003). We confirmed previous developmental changes in conventional plasmatic coagulation test. However, these age-dependent changes were not displayed in whole blood monitoring using ROTEM or Multiplate analyzer. Type of anticoagulant had a significant influence on platelet aggregation across all age groups.

  20. Does power mobility training impact a child's mastery motivation and spectrum of EEG activity? An exploratory project.

    PubMed

    Kenyon, Lisa K; Farris, John P; Aldrich, Naomi J; Rhodes, Samhita

    2017-08-30

    The purposes of this exploratory project were: (1) to evaluate the impact of power mobility training with a child who has multiple, severe impairments and (2) to determine if the child's spectrum of electroencephalography (EEG) activity changed during power mobility training. A single-subject A-B-A-B research design was conducted with a four-week duration for each phase. Two target behaviours were explored: (1) mastery motivation assessed via the dimensions of mastery questionnaire (DMQ) and (2) EEG data collected under various conditions. Power mobility skills were also assessed. The participant was a three-year, two-month-old girl with spastic quadriplegic cerebral palsy, gross motor function classification system level V. Each target behaviour was measured weekly. During intervention phases, power mobility training was provided. Improvements were noted in subscale scores of the DMQ. Short-term and long-term EEG changes were also noted. Improvements were noted in power mobility skills. The participant in this exploratory project demonstrated improvements in power mobility skill and function. EEG data collection procedures and variability in an individual's EEG activity make it difficult to determine if the participant's spectrum of EEG activity actually changed in response to power mobility training. Additional studies are needed to investigate the impact of power mobility training on the spectrum of EEG activity in children who have multiple, severe impairments. Implications for Rehabilitation Power mobility training appeared to be beneficial for a child with multiple, severe impairments though the child may never become an independent, community-based power wheelchair user. Electroencephalography may be a valuable addition to the study of power mobility use in children with multiple, severe impairments. Power mobility training appeared to impact mastery motivation (the internal drive to solve complex problems and master new skills) in a child who has multiple, severe impairments.

  1. Land use intensification alters ecosystem multifunctionality via loss of biodiversity and changes to functional composition.

    PubMed

    Allan, Eric; Manning, Pete; Alt, Fabian; Binkenstein, Julia; Blaser, Stefan; Blüthgen, Nico; Böhm, Stefan; Grassein, Fabrice; Hölzel, Norbert; Klaus, Valentin H; Kleinebecker, Till; Morris, E Kathryn; Oelmann, Yvonne; Prati, Daniel; Renner, Swen C; Rillig, Matthias C; Schaefer, Martin; Schloter, Michael; Schmitt, Barbara; Schöning, Ingo; Schrumpf, Marion; Solly, Emily; Sorkau, Elisabeth; Steckel, Juliane; Steffen-Dewenter, Ingolf; Stempfhuber, Barbara; Tschapka, Marco; Weiner, Christiane N; Weisser, Wolfgang W; Werner, Michael; Westphal, Catrin; Wilcke, Wolfgang; Fischer, Markus

    2015-08-01

    Global change, especially land-use intensification, affects human well-being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real-world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land-use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land-use objectives. We found that indirect land-use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land-use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land-use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast-growing plant species, strongly increased provisioning services in more inherently unproductive grasslands. © 2015 The Authors Ecology Letters published by John Wiley & Sons Ltd and CNRS.

  2. Further education improves cognitive reserve and triggers improvement in selective cognitive functions in older adults: The Tasmanian Healthy Brain Project.

    PubMed

    Thow, Megan E; Summers, Mathew J; Saunders, Nichole L; Summers, Jeffery J; Ritchie, Karen; Vickers, James C

    2018-01-01

    The strong link between early-life education and subsequent reduced risk of dementia suggests that education in later life could enhance cognitive function and may reduce age-related cognitive decline and protect against dementia. Episodic memory, working memory, executive function, and language processing performances were assessed annually over 4 years in 359 healthy older adults who attended university for a minimum of 12 months (intervention) and were compared against 100 healthy adult controls. Multiple group latent growth curve modeling revealed a significant improvement in language processing capacity over time in the intervention group. No changes were detected for episodic memory, working memory, or executive function. These results suggest that complex mental stimulation resulting from late-life further education results in improved crystallized knowledge but no changes to fluid cognitive functions.

  3. Cell-assembly coding in several memory processes.

    PubMed

    Sakurai, Y

    1998-01-01

    The present paper discusses why the cell assembly, i.e., an ensemble population of neurons with flexible functional connections, is a tenable view of the basic code for information processes in the brain. The main properties indicating the reality of cell-assembly coding are neurons overlaps among different assemblies and connection dynamics within and among the assemblies. The former can be detected as multiple functions of individual neurons in processing different kinds of information. Individual neurons appear to be involved in multiple information processes. The latter can be detected as changes of functional synaptic connections in processing different kinds of information. Correlations of activity among some of the recorded neurons appear to change in multiple information processes. Recent experiments have compared several different memory processes (tasks) and detected these two main properties, indicating cell-assembly coding of memory in the working brain. The first experiment compared different types of processing of identical stimuli, i.e., working memory and reference memory of auditory stimuli. The second experiment compared identical processes of different types of stimuli, i.e., discriminations of simple auditory, simple visual, and configural auditory-visual stimuli. The third experiment compared identical processes of different types of stimuli with or without temporal processing of stimuli, i.e., discriminations of elemental auditory, configural auditory-visual, and sequential auditory-visual stimuli. Some possible features of the cell-assembly coding, especially "dual coding" by individual neurons and cell assemblies, are discussed for future experimental approaches. Copyright 1998 Academic Press.

  4. Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles

    PubMed Central

    Srivastava, Kyle H.; Elemans, Coen P.H.

    2015-01-01

    The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859

  5. Changes in markers of liver function in relation to changes in perfluoroalkyl substances - A longitudinal study.

    PubMed

    Salihovic, Samira; Stubleski, Jordan; Kärrman, Anna; Larsson, Anders; Fall, Tove; Lind, Lars; Lind, P Monica

    2018-08-01

    While it is known that perfluoroalkyl substances (PFASs) induce liver toxicity in experimental studies, the evidence of an association in humans is inconsistent. The main aim of the present study was to examine the association of PFAS concentrations and markers of liver function using panel data. We investigated 1002 individuals from Sweden (50% women) at ages 70, 75 and 80 in 2001-2014. Eight PFASs were measured in plasma using isotope dilution ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS). Bilirubin and hepatic enzymes alanine aminotransferase (ALT), alkaline phosphatase (ALP), and γ-glutamyltransferase (GGT) were determined in serum using an immunoassay methodology. Mixed-effects linear regression models were used to examine the relationship between the changes in markers of liver function and changes in PFAS levels. The changes in majority of PFAS concentrations were positively associated with the changes in activity of ALT, ALP, and GGT and inversely associated with the changes in circulating bilirubin after adjustment for gender and the time-updated covariates LDL- and HDL-cholesterol, serum triglycerides, BMI, statin use, smoking, fasting glucose levels and correction for multiple testing. For example, changes in perfluorononanoic acid (PFNA) were associated with the changes liver function markers β BILIRUBIN  = -1.56, 95% confidence interval (CI) -1.93 to -1.19, β ALT  = 0.04, 95% CI 0.03-0.06, and β ALP  = 0.11, 95% CI 0.06-0.15. Our longitudinal assessment established associations between changes in markers of liver function and changes in plasma PFAS concentrations. These findings suggest a relationship between low-dose background PFAS exposure and altered liver function in the general population. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Great Basin Integrated Landscape Monitoring Pilot Summary Report

    USGS Publications Warehouse

    Finn, Sean P.; Kitchell, Kate; Baer, Lori Anne; Bedford, David R.; Brooks, Matthew L.; Flint, Alan L.; Flint, Lorraine E.; Matchett, J.R.; Mathie, Amy; Miller, David M.; Pilliod, David S.; Torregrosa, Alicia; Woodward, Andrea

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot project (GBILM) was one of four regional pilots to implement the U.S. Geological Survey (USGS) Science Thrust on Integrated Landscape Monitoring (ILM) whose goal was to observe, understand, and predict landscape change and its implications on natural resources at multiple spatial and temporal scales and address priority natural resource management and policy issues. The Great Basin is undergoing rapid environmental change stemming from interactions among global climate trends, increasing human populations, expanding and accelerating land and water uses, invasive species, and altered fire regimes. GBLIM tested concepts and developed tools to store and analyze monitoring data, understand change at multiple scales, and forecast landscape change. The GBILM endeavored to develop and test a landscape-level monitoring approach in the Great Basin that integrates USGS disciplines, addresses priority management questions, catalogs and uses existing monitoring data, evaluates change at multiple scales, and contributes to development of regional monitoring strategies. GBILM functioned as an integrative team from 2005 to 2010, producing more than 35 science and data management products that addressed pressing ecosystem drivers and resource management agency needs in the region. This report summarizes the approaches and methods of this interdisciplinary effort, identifies and describes the products generated, and provides lessons learned during the project.

  7. Robust design of configurations and parameters of adaptable products

    NASA Astrophysics Data System (ADS)

    Zhang, Jian; Chen, Yongliang; Xue, Deyi; Gu, Peihua

    2014-03-01

    An adaptable product can satisfy different customer requirements by changing its configuration and parameter values during the operation stage. Design of adaptable products aims at reducing the environment impact through replacement of multiple different products with single adaptable ones. Due to the complex architecture, multiple functional requirements, and changes of product configurations and parameter values in operation, impact of uncertainties to the functional performance measures needs to be considered in design of adaptable products. In this paper, a robust design approach is introduced to identify the optimal design configuration and parameters of an adaptable product whose functional performance measures are the least sensitive to uncertainties. An adaptable product in this paper is modeled by both configurations and parameters. At the configuration level, methods to model different product configuration candidates in design and different product configuration states in operation to satisfy design requirements are introduced. At the parameter level, four types of product/operating parameters and relations among these parameters are discussed. A two-level optimization approach is developed to identify the optimal design configuration and its parameter values of the adaptable product. A case study is implemented to illustrate the effectiveness of the newly developed robust adaptable design method.

  8. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides.

    PubMed

    Sun, Zhi-Hui; Wang, Yang; Lu, Wei-Jia; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-03-23

    Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides . Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3'-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical "GCACGTTT" sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3'-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish.

  9. Extracellular zinc and ATP-gated P2X receptor calcium entry channels: New zinc receptors as physiological sensors and therapeutic targets.

    PubMed

    Schwiebert, Erik M; Liang, Lihua; Cheng, Nai-Lin; Williams, Clintoria Richards; Olteanu, Dragos; Welty, Elisabeth A; Zsembery, Akos

    2005-12-01

    In this review, we focus on two attributes of P2X receptor channel function, one essential and one novel. First, we propose that P2X receptors are extracellular sensors as well as receptors and ion channels. In particular, the large extracellular domain (that comprises 70% of the molecular mass of the receptor channel protein) lends itself to be a cellular sensor. Moreover, its exquisite sensitivity to extracellular pH, ionic strength, and multiple ligands evokes the function of a sensor. Second, we propose that P2X receptors are extracellular zinc receptors as well as receptors for nucleotides. We provide novel data in multiple publications and illustrative data in this invited review to suggest that zinc triggers ATP-independent activation of P2X receptor channel function. In this light, P2X receptors are the cellular site of integration between autocrine and paracrine zinc signaling and autocrine and paracrine purinergic signaling. P2X receptors may sense changes in these ligands as well as in extracellular pH and ionic strength and transduce these sensations via calcium and/or sodium entry and changes in membrane potential.

  10. Quantitative assessment of upper extremities motor function in multiple sclerosis.

    PubMed

    Daunoraviciene, Kristina; Ziziene, Jurgita; Griskevicius, Julius; Pauk, Jolanta; Ovcinikova, Agne; Kizlaitiene, Rasa; Kaubrys, Gintaras

    2018-05-18

    Upper extremity (UE) motor function deficits are commonly noted in multiple sclerosis (MS) patients and assessing it is challenging because of the lack of consensus regarding its definition. Instrumented biomechanical analysis of upper extremity movements can quantify coordination with different spatiotemporal measures and facilitate disability rating in MS patients. To identify objective quantitative parameters for more accurate evaluation of UE disability and relate it to existing clinical scores. Thirty-four MS patients and 24 healthy controls (CG) performed a finger-to-nose test as fast as possible and, in addition, clinical evaluation kinematic parameters of UE were measured by using inertial sensors. Generally, a higher disability score was associated with an increase of several temporal parameters, like slower task performance. The time taken to touch their nose was longer when the task was fulfilled with eyes closed. Time to peak angular velocity significantly changed in MS patients (EDSS > 5.0). The inter-joint coordination significantly decreases in MS patients (EDSS 3.0-5.5). Spatial parameters indicated that maximal ROM changes were in elbow flexion. Our findings have revealed that spatiotemporal parameters are related to the UE motor function and MS disability level. Moreover, they facilitate clinical rating by supporting clinical decisions with quantitative data.

  11. Urban driven phenotypic changes: empirical observations and theoretical implications for eco-evolutionary feedback

    PubMed Central

    Marzluff, John

    2017-01-01

    Emerging evidence that cities drive micro-evolution raises the question of whether rapid urbanization of Earth might impact ecosystems by causing systemic changes in functional traits that regulate urban ecosystems' productivity and stability. Intraspecific trait variation—variation in organisms' morphological, physiological or behavioural characteristics stemming from genetic variability and phenotypic plasticity—has significant implications for ecological functions such as nutrient cycling and primary productivity. While it is well established that changes in ecological conditions can drive evolutionary change in species' traits that, in turn, can alter ecosystem function, an understanding of the reciprocal and simultaneous processes associated with such interactions is only beginning to emerge. In urban settings, the potential for rapid trait change may be exacerbated by multiple selection pressures operating simultaneously. This paper reviews evidence on mechanisms linking urban development patterns to rapid phenotypic changes, and differentiates phenotypic changes for which there is evidence of micro-evolution versus phenotypic changes which may represent plasticity. Studying how humans mediate phenotypic trait changes through urbanization could shed light on fundamental concepts in ecological and evolutionary theory. It can also contribute to our understanding of eco-evolutionary feedback and provide insights for maintaining ecosystem function over the long term. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’. PMID:27920374

  12. Sex Hormones and Healthy Psychological Aging in Women

    PubMed Central

    Navarro-Pardo, Esperanza; Holland, Carol A.; Cano, Antonio

    2018-01-01

    Besides their key role in reproduction, estrogens have effects in several organs in the body, as confirmed by the identification of estrogen receptors (ER) in multiple tissues. Experimental evidence has shown that estrogens have significant impacts on the central nervous system (CNS), and a key question is to what extent the fall in estrogen levels in the blood that occurs with increasing age, particularly around and following the menopause, has an impact on the cognitive function and psychological health of women, specifically regarding mood. This review will consider direct effects of menopausal changes in estrogens on the brain, including cognitive function and mood. Secondary pathways whereby health factors affected by changes in estrogens may interact with CNS functions, such as cardiovascular factors, will be reviewed as well insofar as they also have an impact on cognitive function. Finally, because decline in estrogens may induce changes in the CNS, there is interest in clarifying whether hormone therapy may offer a beneficial balance and the impact of hormone therapy on cognition will also be considered. PMID:29375366

  13. Family Resource Allocation after Firstborns Leave Home: Implications for Secondborns' Academic Functioning.

    PubMed

    Jensen, Alexander C; Whiteman, Shawn D; Bernard, Julia M; McHale, Susan M

    2017-09-01

    This study assessed secondborn adolescents' perceptions of changes in the allocation of family resources following their firstborn siblings' departure from home after high school, and whether perceived changes were related to changes over 1 year in secondborns' academic functioning. Participants were secondborn siblings (mean age = 16.58, SD = 0.91) from 115 families in which the older sibling had left the family home in the previous year. Allocation of resources was measured via coded qualitative interviews. Most (77%) secondborns reported increases in at least one type of family resource (i.e., parental companionship, attention, material goods), and many reported an increase in multiple types of resources in the year following their older sibling's departure. Consistent with resource dilution theory, perceptions of increases in fathers' companionship, fathers' attention, and mothers' companionship were related to improvements over time in secondborns' academic functioning. © 2015 Family Process Institute.

  14. LAND-COVER CHARACTERIZATION AND CHANGE DETECTION USING MULTI-TEMPORAL MODIS NDIV DATA

    EPA Science Inventory

    Land-cover (LC) composition and conversions are important factors that affect ecosystem condition and function. These data are frequently used as a primary data source to generate landscape-based metrics to assess landscape condition at multiple assessment scales. The use of sate...

  15. Revisiting the Dedifferentiation Hypothesis with Longitudinal Multi-Cohort Data

    ERIC Educational Resources Information Center

    de Frias, Cindy M.; Lovden, Martin; Lindenberger, Ulman; Nilsson, Lars-Goran

    2007-01-01

    The present longitudinal multi-cohort study examines whether interindividual variability in cognitive performance and change increases in old age, and whether associations among developments of different cognitive functions increase with adult age. Multivariate multiple-group latent growth modeling was applied to data from narrow cohorts separated…

  16. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Eldridge, David J; Bowker, Matthew A; Ochoa, Victoria; Gozalo, Beatriz; Berdugo, Miguel; Val, James; Singh, Brajesh K

    2016-03-01

    The increase in aridity predicted with climate change will have a negative impact on the multiple functions and services (multifunctionality) provided by dryland ecosystems worldwide. In these ecosystems, soil communities dominated by mosses, lichens and cyanobacteria (biocrusts) play a key role in supporting multifunctionality. However, whether biocrusts can buffer the negative impacts of aridity on important biogeochemical processes controlling carbon (C), nitrogen (N), and phosphorus (P) pools and fluxes remains largely unknown. Here, we conducted an empirical study, using samples from three continents (North America, Europe and Australia), to evaluate how the increase in aridity predicted by climate change will alter the capacity of biocrust-forming mosses to modulate multiple ecosystem processes related to C, N and P cycles. Compared with soil surfaces lacking biocrusts, biocrust-forming mosses enhanced multiple functions related to C, N and P cycling and storage in semiarid and arid, but not in humid and dry-subhumid, environments. Most importantly, we found that the relative positive effects of biocrust-forming mosses on multifunctionality compared with bare soil increased with increasing aridity. These results were mediated by plant cover and the positive effects exerted by biocrust-forming mosses on the abundance of soil bacteria and fungi. Our findings provide strong evidence that the maintenance of biocrusts is crucial to buffer negative effects of climate change on multifunctionality in global drylands. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. In vivo longitudinal MRI and behavioral studies in experimental spinal cord injury.

    PubMed

    Sundberg, Laura M; Herrera, Juan J; Narayana, Ponnada A

    2010-10-01

    Comprehensive in vivo longitudinal studies that include multi-modal magnetic resonance imaging (MRI) and a battery of behavioral assays to assess functional outcome were performed at multiple time points up to 56 days post-traumatic spinal cord injury (SCI) in rodents. The MRI studies included high-resolution structural imaging for lesion volumetry, and diffusion tensor imaging (DTI) for probing the white matter integrity. The behavioral assays included open-field locomotion, grid walking, inclined plane, computerized activity box performance, and von Frey filament tests. Additionally, end-point histology was assessed for correlation with both the MRI and behavioral data. The temporal patterns of the lesions were documented on structural MRI. DTI studies showed significant changes in white matter that is proximal to the injury epicenter and persisted to day 56. White matter in regions up to 1 cm away from the injury epicenter that appeared normal on conventional MRI also exhibited changes that were indicative of tissue damage, suggesting that DTI is a more sensitive measure of the evolving injury. Correlations between DTI and histology after SCI could not be firmly established, suggesting that injury causes complex pathological changes in multiple tissue components that affect the DTI measures. Histological evidence confirmed a significant decrease in myelin and oligodendrocyte presence 56 days post-SCI. Multiple assays to evaluate aspects of functional recovery correlated with histology and DTI measures, suggesting that damage to specific white matter tracts can be assessed and tracked longitudinally after SCI.

  18. Genome multiplication as adaptation to tissue survival: evidence from gene expression in mammalian heart and liver.

    PubMed

    Anatskaya, Olga V; Vinogradov, Alexander E

    2007-01-01

    To elucidate the functional significance of genome multiplication in somatic tissues, we performed a large-scale analysis of ploidy-associated changes in expression of non-tissue-specific (i.e., broadly expressed) genes in the heart and liver of human and mouse (6585 homologous genes were analyzed). These species have inverse patterns of polyploidization in cardiomyocytes and hepatocytes. The between-species comparison of two pairs of homologous tissues with crisscross contrast in ploidy levels allows the removal of the effects of species and tissue specificity on the profile of gene activity. The different tests performed from the standpoint of modular biology revealed a consistent picture of ploidy-associated alteration in a wide range of functional gene groups. The major effects consisted of hypoxia-inducible factor-triggered changes in main cellular processes and signaling pathways, activation of defense against DNA lesions, acceleration of protein turnover and transcription, and the impairment of apoptosis, the immune response, and cytoskeleton maintenance. We also found a severe decline in aerobic respiration and stimulation of sugar and fatty acid metabolism. These metabolic rearrangements create a special type of metabolism that can be considered intermediate between aerobic and anaerobic. The metabolic and physiological changes revealed (reflected in the alteration of gene expression) help explain the unique ability of polyploid tissues to combine proliferation and differentiation, which are separated in diploid tissues. We argue that genome multiplication promotes cell survival and tissue regeneration under stressful conditions.

  19. Contrasting Olfaction, Vision, and Audition as Predictors of Cognitive Change and Impairment in Non-Demented Older Adults

    PubMed Central

    MacDonald, Stuart W.S.; Keller, Connor J.C.; Brewster, Paul W.H.; Dixon, Roger A.

    2017-01-01

    Objective This study examines the relative utility of a particular class of non-invasive functional biomarkers -- sensory functions -- for detecting those at risk of cognitive decline and impairment. Three central research objectives were examined including whether: (1) olfactory function, vision, and audition exhibited significant longitudinal declines in non-demented older adults, (2) multi-wave change for these sensory function indicators predicted risk of mild cognitive impairment, and (3) change within persons for each sensory measure shared dynamic time-varying associations with within-person change in cognitive functioning. Method A longitudinal sample (n=408) from the Victoria Longitudinal Study was assembled. Three cognitive status subgroups were identified: not impaired cognitively (NIC), single assessment mild cognitive impairment (SA-MCI), and multiple assessment mild cognitive impairment (MA-MCI). Results We tested independent predictive associations, contrasting change in sensory function as predictors of cognitive decline and impairment, utilizing both linear mixed models and logistic regression analysis. Olfaction and, to a lesser extent, vision were identified as the most robust predictors of cognitive status and decline; audition showed little predictive influence. Conclusions These findings underscore the potential utility of deficits in olfactory function, in particular, as an early marker of age- and pathology-related cognitive decline. Functional biomarkers may represent potential candidates for use in the early stages of a multi-step screening approach for detecting those at risk of cognitive impairment, as well as for targeted intervention. PMID:29809033

  20. Thermal cloak-concentrator

    NASA Astrophysics Data System (ADS)

    Shen, Xiangying; Li, Ying; Jiang, Chaoran; Ni, Yushan; Huang, Jiping

    2016-07-01

    For macroscopically manipulating heat flow at will, thermal metamaterials have opened a practical way, which possesses a single function, such as either cloaking or concentrating the flow of heat even though environmental temperature varies. By developing a theory of transformation heat transfer for multiple functions, here we introduce the concept of intelligent thermal metamaterials with a dual function, which is in contrast to the existing thermal metamaterials with single functions. By assembling homogeneous isotropic materials and shape-memory alloys, we experimentally fabricate a kind of intelligent thermal metamaterials, which can automatically change from a cloak (or concentrator) to a concentrator (or cloak) when the environmental temperature changes. This work paves an efficient way for a controllable gradient of heat, and also provides guidance both for arbitrarily manipulating the flow of heat and for efficiently designing similar intelligent metamaterials in other fields.

  1. Defining the Physiological Factors that Contribute to Postflight Changes in Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Arzeno, N.; Buxton, R.; Feiveson, A. H.; Kofman, I.; Lawrence, E.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objective of the FTT is to identify the key underlying physiological factors that contribute to performance of functional tests that are representative of critical mission tasks. This study will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on R+0 (Shuttle only), R+1, R+6 and R+30.

  2. Global environmental change effects on ecosystems: the importance of land-use legacies.

    PubMed

    Perring, Michael P; De Frenne, Pieter; Baeten, Lander; Maes, Sybryn L; Depauw, Leen; Blondeel, Haben; Carón, María M; Verheyen, Kris

    2016-04-01

    One of the major challenges in ecology is to predict how multiple global environmental changes will affect future ecosystem patterns (e.g. plant community composition) and processes (e.g. nutrient cycling). Here, we highlight arguments for the necessary inclusion of land-use legacies in this endeavour. Alterations in resources and conditions engendered by previous land use, together with influences on plant community processes such as dispersal, selection, drift and speciation, have steered communities and ecosystem functions onto trajectories of change. These trajectories may be modulated by contemporary environmental changes such as climate warming and nitrogen deposition. We performed a literature review which suggests that these potential interactions have rarely been investigated. This crucial oversight is potentially due to an assumption that knowledge of the contemporary state allows accurate projection into the future. Lessons from other complex dynamic systems, and the recent recognition of the importance of previous conditions in explaining contemporary and future ecosystem properties, demand the testing of this assumption. Vegetation resurvey databases across gradients of land use and environmental change, complemented by rigorous experiments, offer a means to test for interactions between land-use legacies and multiple environmental changes. Implementing these tests in the context of a trait-based framework will allow biologists to synthesize compositional and functional ecosystem responses. This will further our understanding of the importance of land-use legacies in determining future ecosystem properties, and soundly inform conservation and restoration management actions. © 2015 John Wiley & Sons Ltd.

  3. Global and local environmental changes as drivers of Buruli ulcer emergence.

    PubMed

    Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie

    2017-04-26

    Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.

  4. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening.

    PubMed

    Phillips, Glenn A; Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-11-01

    The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient's perspective. To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing-remitting MS (RRMS) participating in a clinical trial. Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. © The Author(s), 2014.

  5. Toward a Dynamically Reconfigurable Computing and Communication System for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Kifle, Muli; Andro, Monty; Tran, Quang K.; Fujikawa, Gene; Chu, Pong P.

    2003-01-01

    Future science missions will require the use of multiple spacecraft with multiple sensor nodes autonomously responding and adapting to a dynamically changing space environment. The acquisition of random scientific events will require rapidly changing network topologies, distributed processing power, and a dynamic resource management strategy. Optimum utilization and configuration of spacecraft communications and navigation resources will be critical in meeting the demand of these stringent mission requirements. There are two important trends to follow with respect to NASA's (National Aeronautics and Space Administration) future scientific missions: the use of multiple satellite systems and the development of an integrated space communications network. Reconfigurable computing and communication systems may enable versatile adaptation of a spacecraft system's resources by dynamic allocation of the processor hardware to perform new operations or to maintain functionality due to malfunctions or hardware faults. Advancements in FPGA (Field Programmable Gate Array) technology make it possible to incorporate major communication and network functionalities in FPGA chips and provide the basis for a dynamically reconfigurable communication system. Advantages of higher computation speeds and accuracy are envisioned with tremendous hardware flexibility to ensure maximum survivability of future science mission spacecraft. This paper discusses the requirements, enabling technologies, and challenges associated with dynamically reconfigurable space communications systems.

  6. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  7. Low-dose AgNPs reduce lung mechanical function and innate immune defense in the absence of cellular toxicity.

    PubMed

    Botelho, Danielle J; Leo, Bey Fen; Massa, Christopher B; Sarkar, Srijata; Tetley, Terry D; Chung, Kian Fan; Chen, Shu; Ryan, Mary P; Porter, Alexandra E; Zhang, Junfeng; Schwander, Stephan K; Gow, Andrew J

    2016-01-01

    Multiple studies have examined the direct cellular toxicity of silver nanoparticles (AgNPs). However, the lung is a complex biological system with multiple cell types and a lipid-rich surface fluid; therefore, organ level responses may not depend on direct cellular toxicity. We hypothesized that interaction with the lung lining is a critical determinant of organ level responses. Here, we have examined the effects of low dose intratracheal instillation of AgNPs (0.05 μg/g body weight) 20 and 110 nm diameter in size, and functionalized with citrate or polyvinylpyrrolidone. Both size and functionalization were significant factors in particle aggregation and lipid interaction in vitro. One day post-intratracheal instillation lung function was assessed, and bronchoalveolar lavage (BAL) and lung tissue collected. There were no signs of overt inflammation. There was no change in surfactant protein-B content in the BAL but there was loss of surfactant protein-D with polyvinylpyrrolidone (PVP)-stabilized particles. Mechanical impedance data demonstrated a significant increase in pulmonary elastance as compared to control, greatest with 110 nm PVP-stabilized particles. Seven days post-instillation of PVP-stabilized particles increased BAL cell counts, and reduced lung function was observed. These changes resolved by 21 days. Hence, AgNP-mediated alterations in the lung lining and mechanical function resolve by 21 days. Larger particles and PVP stabilization produce the largest disruptions. These studies demonstrate that low dose AgNPs elicit deficits in both mechanical and innate immune defense function, suggesting that organ level toxicity should be considered.

  8. Photonic Multitasking Interleaved Si Nanoantenna Phased Array.

    PubMed

    Lin, Dianmin; Holsteen, Aaron L; Maguid, Elhanan; Wetzstein, Gordon; Kik, Pieter G; Hasman, Erez; Brongersma, Mark L

    2016-12-14

    Metasurfaces provide unprecedented control over light propagation by imparting local, space-variant phase changes on an incident electromagnetic wave. They can improve the performance of conventional optical elements and facilitate the creation of optical components with new functionalities and form factors. Here, we build on knowledge from shared aperture phased array antennas and Si-based gradient metasurfaces to realize various multifunctional metasurfaces capable of achieving multiple distinct functions within a single surface region. As a key point, we demonstrate that interleaving multiple optical elements can be accomplished without reducing the aperture of each subelement. Multifunctional optical elements constructed from Si-based gradient metasurface are realized, including axial and lateral multifocus geometric phase metasurface lenses. We further demonstrate multiwavelength color imaging with a high spatial resolution. Finally, optical imaging functionality with simultaneous color separation has been obtained by using multifunctional metasurfaces, which opens up new opportunities for the field of advanced imaging and display.

  9. Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements

    PubMed Central

    Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.

    2015-01-01

    Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229

  10. Real power regulation design for multi-terminal VSC-HVDC systems

    NASA Astrophysics Data System (ADS)

    Li, Guo-Jie; Ruan, Si-Ye; Lie, Tek Tjing

    2013-06-01

    A multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on "dc voltage droop" power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.

  11. Using the concrete-representational-abstract approach to support students with intellectual disability to solve change-making problems.

    PubMed

    Bouck, Emily; Park, Jiyoon; Nickell, Barb

    2017-01-01

    The Concrete-Representational-Abstract (CRA) instructional approach supports students with disabilities in mathematics. Yet, no research explores the use of the CRA approach to teach functional-based mathematics for this population and limited research explores the CRA approach for students who have a disability different from a learning disability, such as an intellectual disability. This study investigated the effects of using the CRA approach to teach middle school students in a self-contained mathematics class focused on functional-based mathematics to solve making change problems. Researchers used a multiple probe across participants design to determine if a functional relation existed between the CRA strategy and students' ability to solve making change problems. The study of consisted of five-to-eight baseline sessions, 9-11 intervention sessions, and two maintenance sessions for each student. Data were collected on percentage of making change problems students solved correctly. The CRA instructional strategy was effective in teaching all four participants to correctly solve the problems; a functional relation between the CRA approach and solving making change with coins problems across all participants was found. The CRA instructional approach can be used to support students with mild intellectual disability or severe learning disabilities in learning functional-based mathematics, such as purchasing skills (i.e., making change). Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Sign changes in sums of the Liouville function

    NASA Astrophysics Data System (ADS)

    Borwein, Peter; Ferguson, Ron; Mossinghoff, Michael J.

    2008-09-01

    The Liouville function λ(n) is the completely multiplicative function whose value is -1 at each prime. We develop some algorithms for computing the sum T(n)Dsum_{kD1}^n λ(k)/k , and use these methods to determine the smallest positive integer n where T(n)<0 . This answers a question originating in some work of Turan, who linked the behavior of T(n) to questions about the Riemann zeta function. We also study the problem of evaluating Polya's sum L(n)Dsum_{kD1}^nλ(k) , and we determine some new local extrema for this function, including some new positive values.

  13. A Fine-Scale Functional Logic to Convergence from Retina to Thalamus.

    PubMed

    Liang, Liang; Fratzl, Alex; Goldey, Glenn; Ramesh, Rohan N; Sugden, Arthur U; Morgan, Josh L; Chen, Chinfei; Andermann, Mark L

    2018-05-31

    Numerous well-defined classes of retinal ganglion cells innervate the thalamus to guide image-forming vision, yet the rules governing their convergence and divergence remain unknown. Using two-photon calcium imaging in awake mouse thalamus, we observed a functional arrangement of retinal ganglion cell axonal boutons in which coarse-scale retinotopic ordering gives way to fine-scale organization based on shared preferences for other visual features. Specifically, at the ∼6 μm scale, clusters of boutons from different axons often showed similar preferences for either one or multiple features, including axis and direction of motion, spatial frequency, and changes in luminance. Conversely, individual axons could "de-multiplex" information channels by participating in multiple, functionally distinct bouton clusters. Finally, ultrastructural analyses demonstrated that retinal axonal boutons in a local cluster often target the same dendritic domain. These data suggest that functionally specific convergence and divergence of retinal axons may impart diverse, robust, and often novel feature selectivity to visual thalamus. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Theoretical Exploration of the Neural Bases of Behavioural Disinhibition, Apathy and Executive Dysfunction in Preclinical Alzheimer's Disease in People with Down's Syndrome: Potential Involvement of Multiple Frontal-Subcortical Neuronal Circuits

    ERIC Educational Resources Information Center

    Ball, S. L.; Holland, A. J.; Watson, P. C.; Huppert, F. A.

    2010-01-01

    Background: Recent research has suggested a specific impairment in frontal-lobe functioning in the preclinical stages of Alzheimer's disease (AD) in people with Down's syndrome (DS), characterised by prominent changes in personality or behaviour. The aim of the current paper is to explore whether particular kinds of change (namely executive…

  15. Responses of seagrass to anthropogenic and natural disturbances do not equally translate to its consumers.

    PubMed

    Tomas, Fiona; Martínez-Crego, Begoña; Hernán, Gema; Santos, Rui

    2015-11-01

    Coastal communities are under threat from many and often co-occurring local (e.g., pollution, eutrophication) and global stressors (e.g., climate change), yet understanding the interactive and cumulative impacts of multiple stressors in ecosystem function is far from being accomplished. Ecological redundancy may be key for ecosystem resilience, but there are still many gaps in our understanding of interspecific differences within a functional group, particularly regarding response diversity, that is, whether members of a functional group respond equally or differently to anthropogenic stressors. Herbivores are critical in determining plant community structure and the transfer of energy up the food web. Human disturbances may alter the ecological role of herbivory by modifying the defense strategies of plants and thus the feeding patterns and performance of herbivores. We conducted a suite of experiments to examine the independent and interactive effects of anthropogenic (nutrient and CO2 additions) and natural (simulated herbivory) disturbances on a seagrass and its interaction with two common generalist consumers to understand how multiple disturbances can impact both a foundation species and a key ecological function (herbivory) and to assess the potential existence of response diversity to anthropogenic and natural changes in these systems. While all three disturbances modified seagrass defense traits, there were contrasting responses of herbivores to such plant changes. Both CO2 and nutrient additions influenced herbivore feeding behavior, yet while sea urchins preferred nutrient-enriched seagrass tissue (regardless of other experimental treatments), isopods were deterred by these same plant tissues. In contrast, carbon enrichment deterred sea urchins and attracted isopods, while simulated herbivory only influenced isopod feeding choice. These contrasting responses of herbivores to disturbance-induced changes in seagrass help to better understand the ecological functioning of seagrass ecosystems in the face of human disturbances and may have important implications regarding the resilience and conservation of these threatened ecosystems. © 2015 John Wiley & Sons Ltd.

  16. Applying Quality Function Deployment in Industrial Design Curriculum Planning

    ERIC Educational Resources Information Center

    Liu, Shuo-Fang; Lee, Yann-Long; Lin, Yi-Zhi; Tseng, Chien-Feng

    2013-01-01

    Industrial design is a discipline that combines multiple professional fields. Enterprise demands for industrial design competencies also change over time; thus, the curriculum of industrial design education should be compatible with the current demands of the industry. However, scientific approaches have not been previously employed to plan…

  17. Beta-Blockers and the Kidney: Implications for Renal Function and Renin Release.

    ERIC Educational Resources Information Center

    Epstein, Murray; And Others

    1985-01-01

    Reviews and discusses current information on the human renal response as related to beta-blockers (antihypertension agents). Topic areas considered include cardioselectivity, renal hemodynamics, systemic hemodynamics, changes with acute and chronic administration, influence of dose, and others. Implications and an 11-item multiple-choice self-quiz…

  18. Ecological Production Functions Linking Multiple Stressors to Ecosystem Services – A Case Study

    EPA Science Inventory

    The ecosystem services concept is being used to frame environmental protection goals that guide management of the risks of chemicals. Ecosystem services link changes in ecological systems to the benefits received by people. The use of ecosystem services in risk assessments and th...

  19. US EPA'S LANDSCAPE ECOLOGY RESEARCH: ASSESSING TRENDS FOR WETLANDS AND SURFACE WATERS USING REMORE SENSING, GIS, AND FIELD-BASED TECHNIQUES

    EPA Science Inventory

    The US EPA, Environmental Sciences Division-Las Vegas is using a variety of geopspatical and statistical modeling approaches to locate and assess the complex functions of wetland ecosystems. These assessments involve measuring landscape characteristrics and change, at multiple s...

  20. The evolution of jaw protrusion mechanics is tightly coupled to bentho-pelagic divergence in damselfishes (Pomacentridae).

    PubMed

    Cooper, W James; Carter, Casey B; Conith, Andrew J; Rice, Aaron N; Westneat, Mark W

    2017-02-15

    Most species-rich lineages of aquatic organisms have undergone divergence between forms that feed from the substrate (benthic feeding) and forms that feed from the water column (pelagic feeding). Changes in trophic niche are frequently accompanied by changes in skull mechanics, and multiple fish lineages have evolved highly specialized biomechanical configurations that allow them to protrude their upper jaws toward the prey during feeding. Damselfishes (family Pomacentridae) are an example of a species-rich lineage with multiple trophic morphologies and feeding ecologies. We sought to determine whether bentho-pelagic divergence in the damselfishes is tightly coupled to changes in jaw protrusion ability. Using high-speed video recordings and kinematic analysis, we examined feeding performance in 10 species that include three examples of convergence on herbivory, three examples of convergence on omnivory and two examples of convergence on planktivory. We also utilized morphometrics to characterize the feeding morphology of an additional 40 species that represent all 29 damselfish genera. Comparative phylogenetic analyses were then used to examine the evolution of trophic morphology and biomechanical performance. We find that pelagic-feeding damselfishes (planktivores) are strongly differentiated from extensively benthic-feeding species (omnivores and herbivores) by their jaw protrusion ability, upper jaw morphology and the functional integration of upper jaw protrusion with lower jaw abduction. Most aspects of cranial form and function that separate these two ecological groups have evolved in correlation with each other and the evolution of the functional morphology of feeding in damselfishes has involved repeated convergence in form, function and ecology. © 2017. Published by The Company of Biologists Ltd.

  1. Depicting individual responses to physical therapist led chronic pain self-management support with pain science education and exercise in primary health care: multiple case studies.

    PubMed

    Miller, Jordan; MacDermid, Joy C; Richardson, Julie; Walton, David M; Gross, Anita

    2017-01-01

    Previous evidence suggests self-management programs for people with chronic pain improve knowledge and self-efficacy, but result in small to negligible changes in function. The purpose of this multiple case studies design was to describe the unique responses of six participants to a new self-management program aimed at improving function, to detail each component of the program, and to explore potential explanations for the varied trajectories of each of the participants. Six participants who had been experiencing chronic pain for at least 5 years were included. All participants were enrolled 6 weeks of ChrOnic pain self-ManageMent support with pain science EducatioN and exercise (COMMENCE). Participants completed an assessment at baseline, 7 weeks (1-week follow-up), and 18 weeks (12-week follow-up). Each participant had a unique initial presentation and goals. Assessments included: function as measured by the Short Musculoskeletal Function Assessment - Dysfunction Index, how much participants are bothered by functional difficulties, pain intensity, fatigue, pain interference, cognitive and psychological factors associated with pain and disability, pain neurophysiology, self-efficacy, satisfaction, and perceived change. The self-management program was 6-weeks in length, consisting of one individual visit and one group visit per week. The program incorporated three novel elements not commonly included in self-management programs: pain neurophysiology education, individualized exercises determined by the participants' goals, and additional cognitive behavioural approaches. Participants were all satisfied with self-management support received. Change in function was variable ranging from 59% improvement to 17% decline. Two potential explanations for variances in response, attendance and social context, are discussed. Several challenges were identified by participants as barriers to attendance. A primary care self-management intervention including pain education and individualized exercise has potential to improve function for some people with chronic pain, although strategies to improve adherence and reduce barriers to participation may be needed to optimize the impact.

  2. Deadlines in space: Selective effects of coordinate spatial processing in multitasking.

    PubMed

    Todorov, Ivo; Del Missier, Fabio; Konke, Linn Andersson; Mäntylä, Timo

    2015-11-01

    Many everyday activities require coordination and monitoring of multiple deadlines. One way to handle these temporal demands might be to represent future goals and deadlines as a pattern of spatial relations. We examined the hypothesis that spatial ability, in addition to executive functioning, contributes to individual differences in multitasking. In two studies, participants completed a multitasking session in which they monitored four digital clocks running at different rates. In Study 1, we found that individual differences in spatial ability and executive functions were independent predictors of multiple-task performance. In Study 2, we found that individual differences in specific spatial abilities were selectively related to multiple-task performance, as only coordinate spatial processing, but not categorical, predicted multitasking, even beyond executive functioning and numeracy. In both studies, males outperformed females in spatial ability and multitasking and in Study 2 these sex differences generalized to a simulation of everyday multitasking. Menstrual changes moderated the effects on multitasking, in that sex differences in coordinate spatial processing and multitasking were observed between males and females in the luteal phase of the menstrual cycle, but not between males and females at menses. Overall, these findings suggest that multiple-task performance reflects independent contributions of spatial ability and executive functioning. Furthermore, our results support the distinction of categorical versus coordinate spatial processing, and suggest that these two basic relational processes are selectively affected by female sex hormones and differentially effective in transforming and handling temporal patterns as spatial relations in the context of multitasking.

  3. Functions of behavior change interventions when implementing multi-professional teamwork at an emergency department: a comparative case study

    PubMed Central

    2014-01-01

    Background While there is strong support for the benefits of working in multi-professional teams in health care, the implementation of multi-professional teamwork is reported to be complex and challenging. Implementation strategies combining multiple behavior change interventions are recommended, but the understanding of how and why the behavior change interventions influence staff behavior is limited. There is a lack of studies focusing on the functions of different behavior change interventions and the mechanisms driving behavior change. In this study, applied behavior analysis is used to analyze the function and impact of different behavior change interventions when implementing multi-professional teamwork. Methods A comparative case study design was applied. Two sections of an emergency department implemented multi-professional teamwork involving changes in work processes, aimed at increasing inter-professional collaboration. Behavior change interventions and staff behavior change were studied using observations, interviews and document analysis. Using a hybrid thematic analysis, the behavior change interventions were categorized according to the DCOM® model. The functions of the behavior change interventions were then analyzed using applied behavior analysis. Results The two sections used different behavior change interventions, resulting in a large difference in the degree of staff behavior change. The successful section enabled staff performance of teamwork behaviors with a strategy based on ongoing problem-solving and frequent clarification of directions. Managerial feedback initially played an important role in motivating teamwork behaviors. Gradually, as staff started to experience positive outcomes of the intervention, motivation for teamwork behaviors was replaced by positive task-generated feedback. Conclusions The functional perspective of applied behavior analysis offers insight into the behavioral mechanisms that describe how and why behavior change interventions influence staff behavior. The analysis demonstrates how enabling behavior change interventions, managerial feedback and task-related feedback interact in their influence on behavior and have complementary functions during different stages of implementation. PMID:24885212

  4. A Neural Network Model to Learn Multiple Tasks under Dynamic Environments

    NASA Astrophysics Data System (ADS)

    Tsumori, Kenji; Ozawa, Seiichi

    When environments are dynamically changed for agents, the knowledge acquired in an environment might be useless in future. In such dynamic environments, agents should be able to not only acquire new knowledge but also modify old knowledge in learning. However, modifying all knowledge acquired before is not efficient because the knowledge once acquired may be useful again when similar environment reappears and some knowledge can be shared among different environments. To learn efficiently in such environments, we propose a neural network model that consists of the following modules: resource allocating network, long-term & short-term memory, and environment change detector. We evaluate the model under a class of dynamic environments where multiple function approximation tasks are sequentially given. The experimental results demonstrate that the proposed model possesses stable incremental learning, accurate environmental change detection, proper association and recall of old knowledge, and efficient knowledge transfer.

  5. The role of recurrent disturbances for ecosystem multifunctionality.

    PubMed

    Villnäs, Anna; Norkko, Joanna; Hietanen, Susanna; Josefson, Alf B; Lukkari, Kaarina; Norkko, Alf

    2013-10-01

    Ecosystem functioning is threatened by an increasing number of anthropogenic stressors, creating a legacy of disturbance that undermines ecosystem resilience. However, few empirical studies have assessed to what extent an ecosystem can tolerate repeated disturbances and sustain its multiple functions. By inducing increasingly recurring hypoxic disturbances to a sedimentary ecosystem, we show that the majority of individual ecosystem functions experience gradual degradation patterns in response to repetitive pulse disturbances. The degradation in overall ecosystem functioning was, however, evident at an earlier stage than for single ecosystem functions and was induced after a short pulse of hypoxia (i.e., three days), which likely reduced ecosystem resistance to further hypoxic perturbations. The increasing number of repeated pulse disturbances gradually moved the system closer to a press response. In addition to the disturbance regime, the changes in benthic trait composition as well as habitat heterogeneity were important for explaining the variability in overall ecosystem functioning. Our results suggest that disturbance-induced responses across multiple ecosystem functions can serve as a warning signal for losses of the adaptive capacity of an ecosystem, and might at an early stage provide information to managers and policy makers when remediation efforts should be initiated.

  6. A Multimodal, Nonpharmacologic Intervention Improves Mood and Cognitive Function in People with Multiple Sclerosis.

    PubMed

    Lee, Jennifer E; Bisht, Babita; Hall, Michael J; Rubenstein, Linda M; Louison, Rebecca; Klein, Danielle T; Wahls, Terry L

    2017-01-01

    The objective of this study was to examine whether participation in a 12-month multimodal intervention would improve mood and cognitive function in adults with progressive multiple sclerosis (MS). In this one-arm, open-label feasibility trial, participants were prescribed a home-based multimodal intervention, including (1) a modified Paleolithic diet; (2) an exercise program (stretching and strengthening of the trunk and lower limb muscles); (3) neuromuscular electrical stimulation (EStim) of trunk and lower limb muscles; and (4) stress management (meditation and self-massage). Individuals completed measures of mood (Beck Anxiety and Depression Inventories) and cognitive (Cognitive Stability Index, Cognitive Screening Test, Delis-Kaplan Executive Function System) and executive function (Wechsler Adult Intelligence Scale) at baseline and 3, 6, 9, and 12 months after the start of the intervention. Dosage of the multimodal intervention was assessed at 3, 6, 9, and 12 months. The more individuals participated in the intervention activities, the greater improvements they had from baseline to 12 months on self-report measures of anxiety (Beck Anxiety Inventory [BAI]; ps = 0.001 to 0.02), depression (Beck Depression Inventory [BDI]; ps = <0.0001 to 0.09), cognitive function (Cognitive Stability Index [CSI/T], Delis-Kaplan Executive Function System [DKEFS]; ps = 0.001 to 0.06), and executive function (Wechsler Adult Intelligence Scale [WAIS]; ps = <0.0001 to 0.09). Mood and cognitive improvements were more closely related to a higher intake of the modified Paleolithic diet than to exercise and stress management dosage. Anxiety and depression changes were evident after just a few months, whereas changes in cognitive function were generally not observed until later in the intervention period. Mood and cognitive function changes from baseline to 12 months were significantly associated with fatigue improvements (ps = <0.0001 to 0.03). A modified Paleolithic diet, exercise, EStim, and stress management intervention like this one has the potential to improve the mood and cognitive symptoms that can lead to considerable suffering in people with MS, potentially improving quality of life and function for people with progressive MS.

  7. Colour change on different body regions provides thermal and signalling advantages in bearded dragon lizards

    PubMed Central

    Cadena, Viviana; Porter, Warren P.; Kearney, Michael R.

    2016-01-01

    Many terrestrial ectotherms are capable of rapid colour change, yet it is unclear how these animals accommodate the multiple functions of colour, particularly camouflage, communication and thermoregulation, especially when functions require very different colours. Thermal benefits of colour change depend on an animal's absorptance of solar energy in both UV–visible (300–700 nm) and near-infrared (NIR; 700–2600 nm) wavelengths, yet colour research has focused almost exclusively on the former. Here, we show that wild-caught bearded dragon lizards (Pogona vitticeps) exhibit substantial UV–visible and NIR skin reflectance change in response to temperature for dorsal but not ventral (throat and upper chest) body regions. By contrast, lizards showed the greatest temperature-independent colour change on the beard and upper chest during social interactions and as a result of circadian colour change. Biophysical simulations of heat transfer predicted that the maximum temperature-dependent change in dorsal reflectivity could reduce the time taken to reach active body temperature by an average of 22 min per active day, saving 85 h of basking time throughout the activity season. Our results confirm that colour change may serve a thermoregulatory function, and competing thermoregulation and signalling requirements may be met by partitioning colour change to different body regions in different circumstances.

  8. Bone marrow invasion in multiple myeloma and metastatic disease.

    PubMed

    Vilanova, J C; Luna, A

    2016-04-01

    Magnetic resonance imaging (MRI) of the spine is the imaging study of choice for the management of bone marrow disease. MRI sequences enable us to integrate structural and functional information for detecting, staging, and monitoring the response the treatment of multiple myeloma and bone metastases in the spine. Whole-body MRI has been incorporated into different guidelines as the technique of choice for managing multiple myeloma and metastatic bone disease. Normal physiological changes in the yellow and red bone marrow represent a challenge in analyses to differentiate clinically significant findings from those that are not clinically significant. This article describes the findings for normal bone marrow, variants, and invasive processes in multiple myeloma and bone metastases. Copyright © 2015 SERAM. Published by Elsevier España, S.L.U. All rights reserved.

  9. Integrated optics to improve resolution on multiple configuration

    NASA Astrophysics Data System (ADS)

    Liu, Hua; Ding, Quanxin; Guo, Chunjie; Zhou, Liwei

    2015-04-01

    Inspired to in order to reveal the structure to improve imaging resolution, further technical requirement is proposed in some areas of the function and influence on the development of multiple configuration. To breakthrough diffraction limit, smart structures are recommended as the most efficient and economical method, while by used to improve the system performance, especially on signal to noise ratio and resolution. Integrated optics were considered in the selection, with which typical multiple configuration, by use the method of simulation experiment. Methodology can change traditional design concept and to develop the application space. Our calculations using multiple matrix transfer method, also the correlative algorithm and full calculations, show the expected beam shaping through system and, in particular, the experimental results will support our argument, which will be reported in the presentation.

  10. How Do Pain, Fatigue, Depressive, and Cognitive Symptoms Relate to Well-Being and Social and Physical Functioning in the Daily Lives of Individuals With Multiple Sclerosis?

    PubMed

    Kratz, Anna L; Braley, Tiffany J; Foxen-Craft, Emily; Scott, Eric; Murphy, John F; Murphy, Susan L

    2017-11-01

    To examine the relative association between daily change in pain, fatigue, depressed mood, and cognitive function and 4 outcomes-positive affect and well-being, ability to participate in social roles and activities, upper extremity (UE) functioning, and lower extremity (LE) functioning. Data analysis, multilevel mixed modeling. General community. Ambulatory adults (N=102) with multiple sclerosis. Not applicable. Customized short-forms of the Quality of Life in Neurological Disorders positive affect and well-being, UE functioning, and LE functioning item banks and the Patient-Reported Outcomes Measurement Information System ability to participate in social roles and activities item bank adapted for daily use and administered as end-of-day diaries. Above and beyond the effects of demographic and clinical covariates, daily pain was associated with 3 of the 4 outcomes; days of higher than usual pain were related to lower same-day social participation (unstandardized β, B=-1.00; P=.002), UE functioning (B=-1.04; P=.01), and LE functioning (B=-.71; P=.04). Daily fatigue and depressed mood were independently related to daily positive affect and well-being; days of worse fatigue (B=-.54; P=.006) and depressed mood (B=-1.17; P<.0001) were related to lower same-day well-being. The results indicate the role of fluctuations in symptoms in daily functioning and quality of life of individuals with multiple sclerosis. Daily increases in pain intensity are related to social and physical functioning, whereas increases in fatigue and depressed mood are related to lower daily well-being. Findings implicate a person-centered approach to monitoring and treating symptoms. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  11. Microarray RNA expression analysis of cerebral white matter lesions reveals changes in multiple functional pathways.

    PubMed

    Simpson, Julie E; Hosny, Ola; Wharton, Stephen B; Heath, Paul R; Holden, Hazel; Fernando, Malee S; Matthews, Fiona; Forster, Gill; O'Brien, John T; Barber, Robert; Kalaria, Raj N; Brayne, Carol; Shaw, Pamela J; Lewis, Claire E; Ince, Paul G

    2009-02-01

    White matter lesions (WML) in brain aging are linked to dementia and depression. Ischemia contributes to their pathogenesis but other mechanisms may contribute. We used RNA microarray analysis with functional pathway grouping as an unbiased approach to investigate evidence for additional pathogenetic mechanisms. WML were identified by MRI and pathology in brains donated to the Medical Research Council Cognitive Function and Ageing Study Cognitive Function and Aging Study. RNA was extracted to compare WML with nonlesional white matter samples from cases with lesions (WM[L]), and from cases with no lesions (WM[C]) using RNA microarray and pathway analysis. Functional pathways were validated for selected genes by quantitative real-time polymerase chain reaction and immunocytochemistry. We identified 8 major pathways in which multiple genes showed altered RNA transcription (immune regulation, cell cycle, apoptosis, proteolysis, ion transport, cell structure, electron transport, metabolism) among 502 genes that were differentially expressed in WML compared to WM[C]. In WM[L], 409 genes were altered involving the same pathways. Genes selected to validate this microarray data all showed the expected changes in RNA levels and immunohistochemical expression of protein. WML represent areas with a complex molecular phenotype. From this and previous evidence, WML may arise through tissue ischemia but may also reflect the contribution of additional factors like blood-brain barrier dysfunction. Differential expression of genes in WM[L] compared to WM[C] indicate a "field effect" in the seemingly normal surrounding white matter.

  12. Computer-Based Cognitive Training for Executive Functions after Stroke: A Systematic Review

    PubMed Central

    van de Ven, Renate M.; Murre, Jaap M. J.; Veltman, Dick J.; Schmand, Ben A.

    2016-01-01

    Background: Stroke commonly results in cognitive impairments in working memory, attention, and executive function, which may be restored with appropriate training programs. Our aim was to systematically review the evidence for computer-based cognitive training of executive dysfunctions. Methods: Studies were included if they concerned adults who had suffered stroke or other types of acquired brain injury, if the intervention was computer training of executive functions, and if the outcome was related to executive functioning. We searched in MEDLINE, PsycINFO, Web of Science, and The Cochrane Library. Study quality was evaluated based on the CONSORT Statement. Treatment effect was evaluated based on differences compared to pre-treatment and/or to a control group. Results: Twenty studies were included. Two were randomized controlled trials that used an active control group. The other studies included multiple baselines, a passive control group, or were uncontrolled. Improvements were observed in tasks similar to the training (near transfer) and in tasks dissimilar to the training (far transfer). However, these effects were not larger in trained than in active control groups. Two studies evaluated neural effects and found changes in both functional and structural connectivity. Most studies suffered from methodological limitations (e.g., lack of an active control group and no adjustment for multiple testing) hampering differentiation of training effects from spontaneous recovery, retest effects, and placebo effects. Conclusions: The positive findings of most studies, including neural changes, warrant continuation of research in this field, but only if its methodological limitations are addressed. PMID:27148007

  13. A Scalable Approach for Discovering Conserved Active Subnetworks across Species

    PubMed Central

    Verfaillie, Catherine M.; Hu, Wei-Shou; Myers, Chad L.

    2010-01-01

    Overlaying differential changes in gene expression on protein interaction networks has proven to be a useful approach to interpreting the cell's dynamic response to a changing environment. Despite successes in finding active subnetworks in the context of a single species, the idea of overlaying lists of differentially expressed genes on networks has not yet been extended to support the analysis of multiple species' interaction networks. To address this problem, we designed a scalable, cross-species network search algorithm, neXus (Network - cross(X)-species - Search), that discovers conserved, active subnetworks based on parallel differential expression studies in multiple species. Our approach leverages functional linkage networks, which provide more comprehensive coverage of functional relationships than physical interaction networks by combining heterogeneous types of genomic data. We applied our cross-species approach to identify conserved modules that are differentially active in stem cells relative to differentiated cells based on parallel gene expression studies and functional linkage networks from mouse and human. We find hundreds of conserved active subnetworks enriched for stem cell-associated functions such as cell cycle, DNA repair, and chromatin modification processes. Using a variation of this approach, we also find a number of species-specific networks, which likely reflect mechanisms of stem cell function that have diverged between mouse and human. We assess the statistical significance of the subnetworks by comparing them with subnetworks discovered on random permutations of the differential expression data. We also describe several case examples that illustrate the utility of comparative analysis of active subnetworks. PMID:21170309

  14. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    NASA Astrophysics Data System (ADS)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  15. Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs

    PubMed Central

    Oh, Sang-Il; Kang, Hang-Bong

    2017-01-01

    Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point clouds and corresponding RGB frames. The MOFT uses a matching function initialized on large-scale external sequences to determine which candidates in the current frame match with the target object in the previous frame. After conducting tracking on a few frames, the initialized matching function is fine-tuned according to the appearance models of target objects. The fine-tuning process of the matching function is constructed as a structured form with diverse matching function branches. In general multiple object tracking situations, scale variations for a scene occur depending on the distance between the target objects and the sensors. If the target objects in various scales are equally represented with the same strategy, information losses will occur for any representation of the target objects. In this paper, the output map of the convolutional layer obtained from a pre-trained convolutional neural network is used to adaptively represent instances without information loss. In addition, MOFT fuses the tracking results obtained from each modality at the decision level to compensate the tracking failures of each modality using basic belief assignment, rather than fusing modalities by selectively using the features of each modality. Experimental results indicate that the proposed tracker provides state-of-the-art performance considering multiple objects tracking (MOT) and KITTIbenchmarks. PMID:28420194

  16. Randomized controlled pilot study of customized pamphlets to promote physical activity and symptom self-management in women with multiple sclerosis.

    PubMed

    Plow, Matthew; Bethoux, Francois; McDaniel, Corey; McGlynn, Mark; Marcus, Bess

    2014-02-01

    Investigate the feasibility and potential efficacy of a customized print-based intervention to promote physical activity and symptom self-management in women with multiple sclerosis. A randomly allocated two-group repeated measures design, with a delayed-treatment contact group serving as the control. Participants were randomized to receive the intervention immediately (n =14) or receive it at week 12 (n =16). Outcome measures were administered at weeks 1, 12, and 24. Community-based in metropolitan area. Thirty women with multiple sclerosis. Prescribing a home-exercise program and following up with customized pamphlets, which are matched to participants' stage of readiness to change physical activity behavior and physical activity barriers (e.g. encouraging self-management of symptoms). Physical Activity and Disability Survey-revised, Godin Leisure-Time Exercise Questionnaire, SF-12, Symptoms of Multiple Sclerosis Scale, and 6-minute walk test. Intent-to-treat analyses using mixed multivariate analysis of variance (MANOVA) were conducted on (1) physical activity levels and (2) health and function outcomes. The mixed MANOVAs for physical activity levels and health and function outcomes indicated significant improvements in the immediate group compared with the delayed group (i.e. condition by time interaction was significant, Wilks' λ = 0.59, F(2, 27) = 9.31, P = 0.001 and Wilks' λ = 0.70, F(4, 25) = 2.72, P = 0.052, respectively). The intervention had moderate to large effect sizes in improving physical activity levels (d = 0.63 to 0.89), perceptions of physical function (d = 0.63), and 6-minute walk test (d=0.86). This pilot study indicates that a customized print-based intervention shows promise in improving physical activity levels and health and function in women with multiple sclerosis.

  17. Contributions of change in clinical status parameters to Patient Global Impression of Change (PGIC) scores among persons with fibromyalgia treated with milnacipran.

    PubMed

    Geisser, Michael E; Clauw, Daniel J; Strand, Vibeke; Gendreau, R Michael; Palmer, Robert; Williams, David A

    2010-05-01

    Clinical trials on the treatment of pain syndromes have adopted Patient Global Impression of Change (PGIC) as a primary outcome. However, little is known about how change in clinical status influences these ratings. The present study examined relationships between changes in pain, depressed mood, physical functioning, vitality, sleep disturbance, cognitive complaints, and PGIC ratings among 1260 participants with fibromyalgia (FM) who completed one of two trials examining the safety and efficacy of milnacipran. Many of the relationships between change in clinical status and PGIC ratings were stronger among persons who rated themselves as improved (responders) versus those reporting no change or a worsening of their condition (non-responders). Among non-responders, simultaneous regression analysis revealed that greater degrees of depressed mood and pain, and poorer physical function were significantly associated with worse PGIC ratings. Among responders, improvements in pain were significantly associated with better PGIC ratings, along with improvements in vitality, sleep, physical function, and cognitive complaints. These findings underscore the complexity of global ratings in FM patients, and suggest the association between clinical status and PGIC ratings varies as a function of perceived treatment response. Several domains were associated with PGIC ratings, highlighting the need to assess multiple outcomes in clinical trials of treatments for FM. Copyright 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Integration and manufacture of multifunctional planar lightwave circuits

    NASA Astrophysics Data System (ADS)

    Lipscomb, George F.; Ticknor, Anthony J.; Stiller, Marc A.; Chen, Wenjie; Schroeter, Paul

    2001-11-01

    The demands of exponentially growing Internet traffic, coupled with the advent of Dense Wavelength Division Multiplexing (DWDM) fiber optic systems to meet those demands, have triggered a revolution in the telecommunications industry. This dramatic change has been built upon, and has driven, improvements in fiber optic component technology. The next generation of systems for the all optical network will require higher performance components coupled with dramatically lower costs. One approach to achieve significantly lower costs per function is to employ Planar Lightwave Circuits (PLC) to integrate multiple optical functions in a single package. PLCs are optical circuits laid out on a silicon wafer, and are made using tools and techniques developed to extremely high levels by the semi-conductor industry. In this way multiple components can be fabricated and interconnected at once, significantly reducing both the manufacturing and the packaging/assembly costs. Currently, the predominant commercial application of PLC technology is arrayed-waveguide gratings (AWG's) for multiplexing and demultiplexing multiple wavelength channels in a DWDM system. Although this is generally perceived as a single-function device, it can be performing the function of more than 100 discrete fiber-optic components and already represents a considerable degree of integration. Furthermore, programmable functions such as variable-optical attenuators (VOAs) and switches made with compatible PLC technology are now moving into commercial production. In this paper, we present results on the integration of active and passive functions together using PLC technology, e.g. a 40 channel AWG multiplexer with 40 individually controllable VOAs.

  19. Albumin in chronic liver disease: structure, functions and therapeutic implications.

    PubMed

    Spinella, Rosaria; Sawhney, Rohit; Jalan, Rajiv

    2016-01-01

    Human serum albumin is a critical plasma protein produced by the liver with a number of accepted clinical indications in chronic liver disease including management of circulatory and renal dysfunction in patients with ascites. Advanced cirrhosis is characterised by reduced albumin concentration as well as impaired albumin function as a result of specific structural changes and oxidative damage. Traditionally, the biologic and therapeutic role of albumin in liver disease was attributed to its oncotic effects but it is now understood that albumin has a wide range of other important physiologic functions such as immunomodulation, endothelial stabilisation, antioxidant effects and binding multiple drugs, toxins and other molecules. This review discusses the multifunctional properties of albumin and, in particular, the biologic and clinical implications of structural and functional changes of albumin that are associated with cirrhosis. Based on these insights, we explore the current and potential future therapeutic uses of albumin in liver disease.

  20. Relationships Between Changes in Patient-Reported Health Status and Functional Capacity in Outpatients With Heart Failure

    PubMed Central

    Flynn, Kathryn E.; Lin, Li; Moe, Gordon W.; Howlett, Jonathan G.; Fine, Lawrence J.; Spertus, John A.; McConnell, Timothy R.; Piña, Ileana L.; Weinfurt, Kevin P.

    2011-01-01

    Background Heart failure trials use a variety of measures of functional capacity and quality of life. Lack of formal assessments of the relationships between changes in multiple aspects of patient-reported health status and measures of functional capacity over time limit the ability to compare results across studies. Methods Using data from HF-ACTION (N = 2331), we used Pearson correlation coefficients and predicted change scores from linear mixed-effects modeling to demonstrate associations between changes in patient-reported health status measured with the EQ-5D visual analog scale (VAS) and the Kansas City Cardiomyopathy Questionnaire (KCCQ) and changes in peak VO2 and 6-minute walk distance at 3 and 12 months. We examined a 5-point change in KCCQ within individuals to provide a framework for interpreting changes in these measures. Results After adjustment for baseline characteristics, correlations between changes in the VAS and changes in peak VO2 and 6-minute walk distance ranged from 0.13 to 0.28, and correlations between changes in the KCCQ overall and subscale scores and changes in peak VO2 and 6-minute walk distance ranged from 0.18 to 0.34. A 5-point change in KCCQ was associated with a 2.50 ml/kg/min change in peak VO2 (95% confidence interval, 2.21–2.86) and a 112-meter change in 6-minute walk distance (95% confidence interval, 96–134). Conclusions Changes in patient-reported health status are not highly correlated with changes in functional capacity. Our findings generally support the current practice of considering a 5-point change in the KCCQ within individuals to be clinically meaningful. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:22172441

  1. A functional trait perspective on plant invasion

    PubMed Central

    Drenovsky, Rebecca E.; Grewell, Brenda J.; D'Antonio, Carla M.; Funk, Jennifer L.; James, Jeremy J.; Molinari, Nicole; Parker, Ingrid M.; Richards, Christina L.

    2012-01-01

    Background and Aims Global environmental change will affect non-native plant invasions, with profound potential impacts on native plant populations, communities and ecosystems. In this context, we review plant functional traits, particularly those that drive invader abundance (invasiveness) and impacts, as well as the integration of these traits across multiple ecological scales, and as a basis for restoration and management. Scope We review the concepts and terminology surrounding functional traits and how functional traits influence processes at the individual level. We explore how phenotypic plasticity may lead to rapid evolution of novel traits facilitating invasiveness in changing environments and then ‘scale up’ to evaluate the relative importance of demographic traits and their links to invasion rates. We then suggest a functional trait framework for assessing per capita effects and, ultimately, impacts of invasive plants on plant communities and ecosystems. Lastly, we focus on the role of functional trait-based approaches in invasive species management and restoration in the context of rapid, global environmental change. Conclusions To understand how the abundance and impacts of invasive plants will respond to rapid environmental changes it is essential to link trait-based responses of invaders to changes in community and ecosystem properties. To do so requires a comprehensive effort that considers dynamic environmental controls and a targeted approach to understand key functional traits driving both invader abundance and impacts. If we are to predict future invasions, manage those at hand and use restoration technology to mitigate invasive species impacts, future research must focus on functional traits that promote invasiveness and invader impacts under changing conditions, and integrate major factors driving invasions from individual to ecosystem levels. PMID:22589328

  2. The Effects of Spaceflight and a Spaceflight Analog on Neurocognitive Perfonnance: Extent, Longevity, and Neural Bases

    NASA Technical Reports Server (NTRS)

    Seidler, R. D.; Mulavara, A. P.; Koppelmans, V.; Erdeniz, B.; Kofman, I. S.; DeDios, Y. E.; Szecsy, D. L.; Riascos-Castaneda, R. F.; Wood, S. J.; Bloomberg, J. J.

    2014-01-01

    We are conducting ongoing experiments in which we are performing structural and functional magnetic resonance brain imaging to identify the relationships between changes in neurocognitive function and neural structural alterations following a six month International Space Station mission and following 70 days exposure to a spaceflight analog, head down tilt bedrest. Our central hypothesis is that measures of brain structure, function, and network integrity will change from pre to post intervention (spaceflight, bedrest). Moreover, we predict that these changes will correlate with indices of cognitive, sensory, and motor function in a neuroanatomically selective fashion. Our interdisciplinary approach utilizes cutting edge neuroimaging techniques and a broad ranging battery of sensory, motor, and cognitive assessments that will be conducted pre flight, during flight, and post flight to investigate potential neuroplastic and maladaptive brain changes in crewmembers following long-duration spaceflight. Success in this endeavor would 1) result in identification of the underlying neural mechanisms and operational risks of spaceflight-induced changes in behavior, and 2) identify whether a return to normative behavioral function following re-adaptation to Earth's gravitational environment is associated with a restitution of brain structure and function or instead is supported by substitution with compensatory brain processes. With the bedrest study, we will be able to determine the neural and neurocognitive effects of extended duration unloading, reduced sensory inputs, and increased cephalic fluid distribution. This will enable us to parse out the multiple mechanisms contributing to any spaceflight-induced neural structural and behavioral changes that we observe in the flight study. In this presentation I will discuss preliminary results from six participants who have undergone the bed rest protocol. These individuals show decrements in balance and functional mobility, and alterations in brain structure and function, in association with extended bed rest.

  3. Functional Multiple-Set Canonical Correlation Analysis

    ERIC Educational Resources Information Center

    Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.

    2012-01-01

    We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…

  4. Activity-dependent plasticity in spinal cord injury

    PubMed Central

    Lynskey, James V.; Belanger, Adam; Jung, Ranu

    2008-01-01

    The adult mammalian central nervous system (CNS) is capable of considerable plasticity, both in health and disease. After spinal neurotrauma, the degrees and extent of neuroplasticity and recovery depend on multiple factors, including the level and extent of injury, postinjury medical and surgical care, and rehabilitative interventions. Rehabilitation strategies focus less on repairing lost connections and more on influencing CNS plasticity for regaining function. Current evidence indicates that strategies for rehabilitation, including passive exercise, active exercise with some voluntary control, and use of neuroprostheses, can enhance sensorimotor recovery after spinal cord injury (SCI) by promoting adaptive structural and functional plasticity while mitigating maladaptive changes at multiple levels of the neuraxis. In this review, we will discuss CNS plasticity that occurs both spontaneously after SCI and in response to rehabilitative therapies. PMID:18566941

  5. Adaptive behaviour and multiple equilibrium states in a predator-prey model.

    PubMed

    Pimenov, Alexander; Kelly, Thomas C; Korobeinikov, Andrei; O'Callaghan, Michael J A; Rachinskii, Dmitrii

    2015-05-01

    There is evidence that multiple stable equilibrium states are possible in real-life ecological systems. Phenomenological mathematical models which exhibit such properties can be constructed rather straightforwardly. For instance, for a predator-prey system this result can be achieved through the use of non-monotonic functional response for the predator. However, while formal formulation of such a model is not a problem, the biological justification for such functional responses and models is usually inconclusive. In this note, we explore a conjecture that a multitude of equilibrium states can be caused by an adaptation of animal behaviour to changes of environmental conditions. In order to verify this hypothesis, we consider a simple predator-prey model, which is a straightforward extension of the classic Lotka-Volterra predator-prey model. In this model, we made an intuitively transparent assumption that the prey can change a mode of behaviour in response to the pressure of predation, choosing either "safe" of "risky" (or "business as usual") behaviour. In order to avoid a situation where one of the modes gives an absolute advantage, we introduce the concept of the "cost of a policy" into the model. A simple conceptual two-dimensional predator-prey model, which is minimal with this property, and is not relying on odd functional responses, higher dimensionality or behaviour change for the predator, exhibits two stable co-existing equilibrium states with basins of attraction separated by a separatrix of a saddle point. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Exercise-induced changes in mitral regurgitation in patients with prior myocardial infarction and left ventricular dysfunction: relation to mitral deformation and left ventricular function and shape.

    PubMed

    Giga, Vojislav; Ostojic, Miodrag; Vujisic-Tesic, Bosiljka; Djordjevic-Dikic, Ana; Stepanovic, Jelena; Beleslin, Branko; Petrovic, Milan; Nedeljkovic, Milan; Nedeljkovic, Ivana; Milic, Natasa

    2005-09-01

    The aim of this study was to assess the relationship between exercise-induced changes in mitral regurgitation (MR) and echocardiographic characteristics of mitral deformation, global left ventricular (LV) function and shape at rest and after exercise. Forty consecutive patients with ischaemic MR due to prior myocardial infarction (MI), ejection fraction <45% in sinus rhythm underwent exercise-echocardiographic testing. Exercise-induced changes in effective regurgitant orifice (ERO) were compared with baseline and exercise-induced changes in mitral deformation and global LV function and shape. There was significant correlation between exercise-induced changes in ERO and changes in coaptation distance (r=0.80, P<0.0001), tenting area (r=0.79, P<0.0001) and mitral annular diameter (r=0.65, P<0.0001), as well as in end-systolic sphericity index (r=-0.50, P=0.001, respectively), and wall motion score index (r=0.44, P=0.004). In contrast, exercise-induced changes in ERO were not related to the echocardiographic features at rest. By stepwise multiple regression model, the exercise-induced changes in mitral deformation were found to independently correlate with exercise-induced changes in ERO (generalized r(2)=0.80, P<0.0001). Exercise-induced changes in severity of ischaemic MR in patients with LV dysfunction due to prior MI were independently related to changes in mitral deformation.

  7. Assisting people with multiple disabilities actively correct abnormal standing posture with a Nintendo Wii balance board through controlling environmental stimulation.

    PubMed

    Shih, Ching-Hsiang; Shih, Ching-Tien; Chu, Chiung-Ling

    2010-01-01

    The latest researches adopted software technology turning the Nintendo Wii Balance Board into a high performance change of standing posture (CSP) detector, and assessed whether two persons with multiple disabilities would be able to control environmental stimulation using body swing (changing standing posture). This study extends Wii Balance Board functionality for standing posture correction (i.e., actively adjust abnormal standing posture) to assessed whether two persons with multiple disabilities would be able to actively correct their standing posture by controlling their favorite stimulation on/off using a Wii Balance Board with a newly developed standing posture correcting program (SPCP). The study was performed according to an ABAB design, in which A represented baseline and B represented intervention phases. Data showed that both participants significantly increased time duration of maintaining correct standing posture (TDMCSP) to activate the control system to produce environmental stimulation during the intervention phases. Practical and developmental implications of the findings were discussed.

  8. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  9. Multiscale Modelling of Cancer Progression and Treatment Control: The Role of Intracellular Heterogeneities in Chemotherapy Treatment

    NASA Astrophysics Data System (ADS)

    Chaplain, Mark A. J.; Powathil, Gibin G.

    2015-04-01

    Cancer is a complex, multiscale process involving interactions at intracellular, intercellular and tissue scales that are in turn susceptible to microenvironmental changes. Each individual cancer cell within a cancer cell mass is unique, with its own internal cellular pathways and biochemical interactions. These interactions contribute to the functional changes at the cellular and tissue scale, creating a heterogenous cancer cell population. Anticancer drugs are effective in controlling cancer growth by inflicting damage to various target molecules and thereby triggering multiple cellular and intracellular pathways, leading to cell death or cell-cycle arrest. One of the major impediments in the chemotherapy treatment of cancer is drug resistance driven by multiple mechanisms, including multi-drug and cell-cycle mediated resistance to chemotherapy drugs. In this article, we discuss two hybrid multiscale modelling approaches, incorporating multiple interactions involved in the sub-cellular, cellular and microenvironmental levels to study the effects of cell-cycle, phase-specific chemotherapy on the growth and progression of cancer cells.

  10. Stochastic nature of Landsat MSS data

    NASA Technical Reports Server (NTRS)

    Labovitz, M. L.; Masuoka, E. J.

    1987-01-01

    A multiple series generalization of the ARIMA models is used to model Landsat MSS scan lines as sequences of vectors, each vector having four elements (bands). The purpose of this work is to investigate if Landsat scan lines can be described by a general multiple series linear stochastic model and if the coefficients of such a model vary as a function of satellite system and target attributes. To accomplish this objective, an exploratory experimental design was set up incorporating six factors, four representing target attributes - location, cloud cover, row (within location), and column (within location) - and two factors representing system attributes - satellite number and detector bank. Each factor was included in the design at two levels and, with two replicates per treatment, 128 scan lines were analyzed. The results of the analysis suggests that a multiple AR(4) model is an adequate representation across all scan lines. Furthermore, the coefficients of the AR(4) model vary with location, particularly changes in physiography (slope regimes), and with percent cloud cover, but are insensitive to changes in system attributes.

  11. The Effects of Massage Therapy on Multiple Sclerosis Patients' Quality of Life and Leg Function

    PubMed Central

    2014-01-01

    Background. Massage therapy is a noninvasive treatment that many individuals with multiple sclerosis (MS) use to supplement their conventional treatment. Objective. We hypothesize that massage therapy will improve the leg function and overall quality of life (QoL) of MS patients. Design. A two-period (rest, massage) crossover design was used. Twenty-four individuals with MS ranging from 3.0 to 7.0 on the Expanded Disability Status Scale (EDSS) received Swedish massage treatments for four weeks. Exercise capacity and leg function as well as QoL were assessed using the Six-Minute Walk Test (6MWT) and the Hamburg Quality of Life in Multiple Sclerosis (HAQUAMS) instrument, respectively. Assessments were measured before and after a massage period and a rest period where no massages were employed. Results. The results displayed no significant changes in 6MWT distances or HAQUAMS scores. However, the participants perceived improvement in overall health as expressed in written comments. Conclusions. Massage is a safe, noninvasive treatment that may assist MS patients in managing the stress of their symptoms. Future studies with larger sample size and cortisol measures are warranted. PMID:24949078

  12. Innate immune reconstitution with suppression of HIV-1.

    PubMed

    Scully, Eileen P; Lockhart, Ainsley; Garcia-Beltran, Wilfredo; Palmer, Christine D; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M; Chang, J Judy; Bosch, Ronald J; Altfeld, Marcus

    2016-03-17

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4 + T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses.

  13. Innate immune reconstitution with suppression of HIV-1

    PubMed Central

    Scully, Eileen P.; Garcia-Beltran, Wilfredo; Palmer, Christine D.; Musante, Chelsey; Rosenberg, Eric; Allen, Todd M.; Bosch, Ronald J.

    2016-01-01

    Progressive HIV-1 infection leads to both profound immune suppression and pathologic inflammation in the majority of infected individuals. While adaptive immune dysfunction, as evidenced by CD4+ T cell depletion and exhaustion, has been extensively studied, less is known about the functional capacity of innate immune cell populations in the context of HIV-1 infection. Given the broad susceptibility to opportunistic infections and the dysregulated inflammation observed in progressive disease, we hypothesized that there would be significant changes in the innate cellular responses. Using a cohort of patients with multiple samplings before and after antiretroviral therapy (ART) initiation, we demonstrated increased responses to innate immune stimuli following viral suppression, as measured by the production of inflammatory cytokines. Plasma viral load itself had the strongest association with this change in innate functional capacity. We further identified epigenetic modifications in the TNFA promoter locus in monocytes that are associated with viremia, suggesting a molecular mechanism for the observed changes in innate immune function following initiation of ART. These data indicate that suppression of HIV-1 viremia is associated with changes in innate cellular function that may in part determine the restoration of protective immune responses. PMID:27158667

  14. Changes in Production and Nutrient Cycling across a Wetness Gradient within a Floodplain Forest

    Treesearch

    Robin G. Clawson; B. Graeme Lockaby; Bob Rummer

    2001-01-01

    Floodplain forest ecosystems are highly valuable to society because of their potential for water quality improvement and vegetation productivity, among many other functions. Previous studies have indicated that hydrology influences productivity but that the relationship between hydroperiod and productivity is a complex one. Consequently, we compared multiple indexes of...

  15. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    Treesearch

    Trevor F. Keenan; Josh Gray; Mark A. Friedl; Michael Toomey; Gil Bohrer; David Y. Hollinger; J. William Munger; John O’Keefe; Hans Peter Schmid; Ian Sue Wing; Bai Yang; Andrew D. Richardson

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (although the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4...

  16. The Multiple Possibilities of Decency: Family and Society in American History.

    ERIC Educational Resources Information Center

    Schlossman, Steven L.

    This paper focuses on three family-related issues: (1) the extraordinary complexity with which families perform educational and socializing functions and the corresponding danger of using simplistic cause and effect models to explain family behavior; (2) the ability of historical and contemporary American families to adapt to massive changes in…

  17. The porous borders of the protein world.

    PubMed

    Cordes, Matthew H J; Stewart, Katie L

    2012-02-08

    Fold switching may play a role in the evolution of new protein folds and functions. He et al., in this issue of Structure, use protein design to illustrate that the same drastic change in a protein fold can occur via multiple different mutational pathways. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Bioinformatic prediction and in vivo validation of residue-residue interactions in human proteins

    NASA Astrophysics Data System (ADS)

    Jordan, Daniel; Davis, Erica; Katsanis, Nicholas; Sunyaev, Shamil

    2014-03-01

    Identifying residue-residue interactions in protein molecules is important for understanding both protein structure and function in the context of evolutionary dynamics and medical genetics. Such interactions can be difficult to predict using existing empirical or physical potentials, especially when residues are far from each other in sequence space. Using a multiple sequence alignment of 46 diverse vertebrate species we explore the space of allowed sequences for orthologous protein families. Amino acid changes that are known to damage protein function allow us to identify specific changes that are likely to have interacting partners. We fit the parameters of the continuous-time Markov process used in the alignment to conclude that these interactions are primarily pairwise, rather than higher order. Candidates for sites under pairwise epistasis are predicted, which can then be tested by experiment. We report the results of an initial round of in vivo experiments in a zebrafish model that verify the presence of multiple pairwise interactions predicted by our model. These experimentally validated interactions are novel, distant in sequence, and are not readily explained by known biochemical or biophysical features.

  19. The Neuropeptide Tac2 Controls a Distributed Brain State Induced by Chronic Social Isolation Stress.

    PubMed

    Zelikowsky, Moriel; Hui, May; Karigo, Tomomi; Choe, Andrea; Yang, Bin; Blanco, Mario R; Beadle, Keith; Gradinaru, Viviana; Deverman, Benjamin E; Anderson, David J

    2018-05-17

    Chronic social isolation causes severe psychological effects in humans, but their neural bases remain poorly understood. 2 weeks (but not 24 hr) of social isolation stress (SIS) caused multiple behavioral changes in mice and induced brain-wide upregulation of the neuropeptide tachykinin 2 (Tac2)/neurokinin B (NkB). Systemic administration of an Nk3R antagonist prevented virtually all of the behavioral effects of chronic SIS. Conversely, enhancing NkB expression and release phenocopied SIS in group-housed mice, promoting aggression and converting stimulus-locked defensive behaviors to persistent responses. Multiplexed analysis of Tac2/NkB function in multiple brain areas revealed dissociable, region-specific requirements for both the peptide and its receptor in different SIS-induced behavioral changes. Thus, Tac2 coordinates a pleiotropic brain state caused by SIS via a distributed mode of action. These data reveal the profound effects of prolonged social isolation on brain chemistry and function and suggest potential new therapeutic applications for Nk3R antagonists. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Higher biodiversity is required to sustain multiple ecosystem processes across temperature regimes

    PubMed Central

    Perkins, Daniel M; Bailey, R A; Dossena, Matteo; Gamfeldt, Lars; Reiss, Julia; Trimmer, Mark; Woodward, Guy

    2015-01-01

    Biodiversity loss is occurring rapidly worldwide, yet it is uncertain whether few or many species are required to sustain ecosystem functioning in the face of environmental change. The importance of biodiversity might be enhanced when multiple ecosystem processes (termed multifunctionality) and environmental contexts are considered, yet no studies have quantified this explicitly to date. We measured five key processes and their combined multifunctionality at three temperatures (5, 10 and 15 °C) in freshwater aquaria containing different animal assemblages (1–4 benthic macroinvertebrate species). For single processes, biodiversity effects were weak and were best predicted by additive-based models, i.e. polyculture performances represented the sum of their monoculture parts. There were, however, significant effects of biodiversity on multifunctionality at the low and the high (but not the intermediate) temperature. Variation in the contribution of species to processes across temperatures meant that greater biodiversity was required to sustain multifunctionality across different temperatures than was the case for single processes. This suggests that previous studies might have underestimated the importance of biodiversity in sustaining ecosystem functioning in a changing environment. PMID:25131335

  1. Role of hormonal and inflammatory alterations in obesity-related reproductive dysfunction at the level of the hypothalamic-pituitary-ovarian axis.

    PubMed

    Goldsammler, Michelle; Merhi, Zaher; Buyuk, Erkan

    2018-05-09

    Besides being a risk factor for multiple metabolic disorders, obesity could affect female reproduction. While increased adiposity is associated with hormonal changes that could disrupt the function of the hypothalamus and the pituitary, compelling data suggest that obesity-related hormonal and inflammatory changes could directly impact ovarian function. To review the available data related to the mechanisms by which obesity, and its associated hormonal and inflammatory changes, could affect the female reproductive function with a focus on the hypothalamic-pituitary-ovarian (HPO) axis. PubMed database search for publications in English language until October 2017 pertaining to obesity and female reproductive function was performed. The obesity-related changes in hormone levels, in particular leptin, adiponectin, ghrelin, neuropeptide Y and agouti-related protein, are associated with reproductive dysfunction at both the hypothalamic-pituitary and the ovarian levels. The pro-inflammatory molecules advanced glycation end products (AGEs) and monocyte chemotactic protein-1 (MCP-1) are emerging as relatively new players in the pathophysiology of obesity-related ovarian dysfunction. There is an intricate crosstalk between the adipose tissue and the inflammatory system with the HPO axis function. Understanding the mechanisms behind this crosstalk could lead to potential therapies for the common obesity-related reproductive dysfunction.

  2. No evidence for an effect on brain atrophy rate of atorvastatin add-on to interferon β1b therapy in relapsing-remitting multiple sclerosis (the ARIANNA study).

    PubMed

    Lanzillo, Roberta; Quarantelli, Mario; Pozzilli, Carlo; Trojano, Maria; Amato, Maria Pia; Marrosu, Maria G; Francia, Ada; Florio, Ciro; Orefice, Giuseppe; Tedeschi, Gioacchino; Bellantonio, Paolo; Annunziata, Pasquale; Grimaldi, Luigi M; Comerci, Marco; Brunetti, Arturo; Bonavita, Vincenzo; Alfano, Bruno; Marini, Stefano; Brescia Morra, Vincenzo

    2016-08-01

    A previous phase 2 trial has suggested that statins might delay brain atrophy in secondary progressive multiple sclerosis. The objective of this study was to evaluate the effect of atorvastatin add-on therapy on cerebral atrophy in relapsing-remitting multiple sclerosis. This randomised, placebo-controlled study compared atorvastatin 40 mg or placebo add-on therapy to interferon β1b for 24 months. Brain magnetic resonance imaging, multiple sclerosis functional composite score, Rao neuropsychological battery and expanded disability status scale were evaluated over 24 months. A total of 154 patients were randomly assigned, 75 in the atorvastatin and 79 in the placebo arms, with a comparable drop-out rate (overall 23.4%). Brain atrophy over 2 years was not different in the two arms (-0.38% and -0.32% for the atorvastatin and placebo groups, respectively). Relapse rate, expanded disability status scale, multiple sclerosis functional composite score or cognitive changes were not different in the two arms. Patients withdrawing from the study had a higher number of relapses in the previous 2 years (P=0.04) and a greater probability of relapsing within 12 months. Our results suggest that the combination of atorvastatin and interferon β1b is not justified in early relapsing-remitting multiple sclerosis and adds to the body of evidence indicating an absence of significant radiological and clinical benefit of statins in relapsing-remitting multiple sclerosis. © The Author(s), 2015.

  3. Divergent Expression Patterns and Function Implications of Four nanos Genes in a Hermaphroditic Fish, Epinephelus coioides

    PubMed Central

    Sun, Zhi-Hui; Wang, Yang; Lu, Wei-Jia; Li, Zhi; Liu, Xiao-Chun; Li, Shui-Sheng; Zhou, Li; Gui, Jian-Fang

    2017-01-01

    Multiple nanos genes have been characterized in several fishes, but the functional implications of their various expression patterns remain unclear. In this study, we identified and characterized four nanos genes from a hermaphroditic fish orange-spotted grouper, Epinephelus coioides. Ecnanos1a and Ecnanos1b show divergent expression patterns, and the dynamic expression change of Ecnanos1a in pituitaries during sex change is associated with testis differentiation and spermatogenesis. Ecnanos2 and Ecnanos3 might be germline stem cells (GSCs) and primordial germ cells (PGCs)-specific markers, respectively. Significantly, Ecnanos3 3′-untranslated region (UTR) is necessary for PGC specific expression, where a non-canonical “GCACGTTT” sequence is required for miR-430-mediated repression of Ecnanos3 RNA. Furthermore, grouper Dead end (Dnd) can relieve miR-430 repression in PGCs by associating with a 23 bp U-rich region (URR) in Ecnanos3 3′-UTR. The current study revealed the functional association of multiple nanos genes with PGC formation and germ cell development in orange-spotted grouper, and opened up new possibilities for developing biotechnologies through utilizing the associations between Ecnanos3 and PGCs or between Ecnanos2 and GSCs in the hermaphroditic fish. PMID:28333083

  4. Yoga leads to multiple physical improvements after stroke, a pilot study.

    PubMed

    Schmid, Arlene A; Miller, Kristine K; Van Puymbroeck, Marieke; DeBaun-Sprague, Erin

    2014-12-01

    To assess change in physical functioning (pain, range of motion (ROM), strength, and endurance) after 8 weeks of therapeutic-yoga. Planned analyses of data from a randomized pilot study of yoga after stroke. University-based research laboratory. People with chronic stroke (N=47) randomized to therapeutic-yoga (n=37) or wait-list control (n=10). 16 sessions of therapeutic yoga (twice a week/8 weeks). Yoga was delivered in a standardized and progressive format with postures, breathing, and meditation, and relaxation in sitting, standing, and supine. Pain was assessed with the PEG, a 3-item functional measure of the interference of pain. ROM included neck and hip active and passive ROM measurements). Upper and lower extremity strength were assessed with the arm curl test and chair-to-stand test, respectively. Endurance was assessed with the 6-minute walk and modified 2-min step test. After a Bonferroni Correction, pain, neck ROM, hip passive ROM, upper extremity strength, and the 6-min walk scores all significantly improved after 8 weeks of engaging in yoga. No changes occurred in the wait-list control group. A group therapeutic-yoga intervention may improve multiple aspects of physical functioning after stroke. Such an intervention may be complementary to traditional rehabilitation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Genetic Particle Swarm Optimization-Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection.

    PubMed

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-07-30

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm.

  6. Conflicts in maintaining biodiversity at multiple scales.

    PubMed

    Lankau, Richard A

    2011-05-01

    Biodiversity consists of multiple scales, including functional diversity in ecological traits, species diversity and genetic diversity within species, and is declining across the globe, largely in response to human activities. While species extinctions are the most obvious aspect of this, there has also been a more insidious loss of genetic diversity within species. While a vast literature concerns each of these scales of biodiversity, less is known about how different scales affect one another. In particular, genetic and species diversity may influence each other in numerous ways, both positively and negatively. However, we know little about the mechanism behind these patterns. In this issue of Molecular Ecology, Nestmann et al. (2011) experimentally explore the effect of species and functional diversity and composition of grassland plant communities on the genetic structure of one of the component species. Increasing species richness led to greater changes in the genetic composition of the focal populations over 4 years, primarily because of genetic drift in smaller population sizes. However, there were also genetic changes in response to particular plant functional groups, indicating selective differences driven by plant community composition. These results suggest that different levels of biodiversity can trade-off in communities, which may prove a challenge for conservation biologists seeking to preserve all aspects of biodiversity.

  7. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  8. Physiological Factors Contributing to Postflight Changes in Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Feedback, D. L.; Feiverson, A. H.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts, S. H.; Reschke, M. F.; Ryder, J.; Spiering, B. A.; hide

    2009-01-01

    Astronauts experience alterations in multiple physiological systems due to exposure to the microgravity conditions of space flight. These physiological changes include sensorimotor disturbances, cardiovascular deconditioning and loss of muscle mass and strength. These changes might affect the ability of crewmembers to perform critical mission tasks immediately after landing on lunar and Martian surfaces. To date, changes in functional performance have not been systematically studied or correlated with physiological changes. To understand how changes in physiological function impact functional performance an interdisciplinary pre/postflight testing regimen (Functional Task Test, FTT) has been developed that systematically evaluates both astronaut postflight functional performance and related physiological changes. The overall objectives of the FTT are to: Develop a set of functional tasks that represent critical mission tasks for Constellation. Determine the ability to perform these tasks after flight. Identify the key physiological factors that contribute to functional decrements. Use this information to develop targeted countermeasures. The functional test battery was designed to address high priority tasks identified by the Constellation program as critical for mission success. The set of functional tests making up the FTT include the: 1) Seat Egress and Walk Test, 2) Ladder Climb Test, 3) Recovery from Fall/Stand Test, 4) Rock Translation Test, 5) Jump Down Test, 6) Torque Generation Test, and 7) Construction Activity Board Test. Corresponding physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper and lower body muscle strength, power, fatigue, control and neuromuscular drive. Crewmembers will perform both functional and physiological tests before and after short (Shuttle) and long-duration (ISS) space flight. Data will be collected on R+0 (Shuttle only), R+1, R+6 and R+30. Using a multivariate regression model we will identify which physiological systems contribute the most to impaired performance on each functional test. This will allow us to identify the physiological systems that play the largest role in decrement in functional performance. Using this information we can then design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  9. Fire management, managed relocation, and land conservation options for long-lived obligate seeding plants under global changes in climate, urbanization, and fire regime.

    PubMed

    Bonebrake, Timothy C; Syphard, Alexandra D; Franklin, Janet; Anderson, Kurt E; Akçakaya, H Resit; Mizerek, Toni; Winchell, Clark; Regan, Helen M

    2014-08-01

    Most species face multiple anthropogenic disruptions. Few studies have quantified the cumulative influence of multiple threats on species of conservation concern, and far fewer have quantified the potential relative value of multiple conservation interventions in light of these threats. We linked spatial distribution and population viability models to explore conservation interventions under projected climate change, urbanization, and changes in fire regime on a long-lived obligate seeding plant species sensitive to high fire frequencies, a dominant plant functional type in many fire-prone ecosystems, including the biodiversity hotspots of Mediterranean-type ecosystems. First, we investigated the relative risk of population decline for plant populations in landscapes with and without land protection under an existing habitat conservation plan. Second, we modeled the effectiveness of relocating both seedlings and seeds from a large patch with predicted declines in habitat area to 2 unoccupied recipient patches with increasing habitat area under 2 projected climate change scenarios. Finally, we modeled 8 fire return intervals (FRIs) approximating the outcomes of different management strategies that effectively control fire frequency. Invariably, long-lived obligate seeding populations remained viable only when FRIs were maintained at or above a minimum level. Land conservation and seedling relocation efforts lessened the impact of climate change and land-use change on obligate seeding populations to differing degrees depending on the climate change scenario, but neither of these efforts was as generally effective as frequent translocation of seeds. While none of the modeled strategies fully compensated for the effects of land-use and climate change, an integrative approach managing multiple threats may diminish population declines for species in complex landscapes. Conservation plans designed to mitigate the impacts of a single threat are likely to fail if additional threats are ignored. © 2014 Society for Conservation Biology.

  10. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture

    NASA Astrophysics Data System (ADS)

    Sierra, Carlos A.; Trumbore, Susan E.; Davidson, Eric A.; Vicca, Sara; Janssens, I.

    2015-03-01

    The sensitivity of soil organic matter decomposition to global environmental change is a topic of prominent relevance for the global carbon cycle. Decomposition depends on multiple factors that are being altered simultaneously as a result of global environmental change; therefore, it is important to study the sensitivity of the rates of soil organic matter decomposition with respect to multiple and interacting drivers. In this manuscript, we present an analysis of the potential response of decomposition rates to simultaneous changes in temperature and moisture. To address this problem, we first present a theoretical framework to study the sensitivity of soil organic matter decomposition when multiple driving factors change simultaneously. We then apply this framework to models and data at different levels of abstraction: (1) to a mechanistic model that addresses the limitation of enzyme activity by simultaneous effects of temperature and soil water content, the latter controlling substrate supply and oxygen concentration for microbial activity; (2) to different mathematical functions used to represent temperature and moisture effects on decomposition in biogeochemical models. To contrast model predictions at these two levels of organization, we compiled different data sets of observed responses in field and laboratory studies. Then we applied our conceptual framework to: (3) observations of heterotrophic respiration at the ecosystem level; (4) laboratory experiments looking at the response of heterotrophic respiration to independent changes in moisture and temperature; and (5) ecosystem-level experiments manipulating soil temperature and water content simultaneously.

  11. Photoelectron Spectroscopy and Density Functional Theory Studies of Iron Sulfur (FeS)m- (m = 2-8) Cluster Anions: Coexisting Multiple Spin States.

    PubMed

    Yin, Shi; Bernstein, Elliot R

    2017-10-05

    Iron sulfur cluster anions (FeS) m - (m = 2-8) are studied by photoelectron spectroscopy (PES) at 3.492 eV (355 nm) and 4.661 eV (266 nm) photon energies, and by density functional theory (DFT) calculations. The most probable structures and ground state spin multiplicities for (FeS) m - (m = 2-8) clusters are tentatively assigned through a comparison of their theoretical and experiment first vertical detachment energy (VDE) values. Many spin states lie within 0.5 eV of the ground spin state for the larger (FeS) m - (m ≥ 4) clusters. Theoretical VDEs of these low lying spin states are in good agreement with the experimental VDE values. Therefore, multiple spin states of each of these iron sulfur cluster anions probably coexist under the current experimental conditions. Such available multiple spin states must be considered when evaluating the properties and behavior of these iron sulfur clusters in real chemical and biological systems. The experimental first VDEs of (FeS) m - (m = 1-8) clusters are observed to change with the cluster size (number m). The first VDE trends noted can be related to the different properties of the highest singly occupied molecular orbitals (NBO, HSOMOs) of each cluster anion. The changing nature of the NBO/HSOMO of these (FeS) m - (m = 1-8) clusters from a p orbital on S, to a d orbital on Fe, and to an Fe-Fe bonding orbital is probably responsible for the observed increasing trend for their first VDEs with respect to m.

  12. Double dissociation of social functioning in frontotemporal dementia

    PubMed Central

    Rankin, Katherine P.; Kramer, Joel H.; Mychack, Paula; Miller, Bruce L.

    2009-01-01

    Background Efforts to characterize changes in social functioning in frontotemporal dementia (FTD) have failed to elicit clear dissociation between frontal and temporal variants of the disease based on behavioral measures. Methods This study obtained premorbid and current first-degree relative ratings using an established measure of interpersonal functioning, the Interpersonal Adjectives Scales, to measure personality change in 16 patients with frontal variant (FLV) and 13 with temporal variant (TLV) FTD, and in a control group of 16 patients with AD. Results All three groups showed significant change over time in multiple domains, including increased introversion (FG) and submissiveness (HI). However, patients with both FTD subtypes evidenced significantly greater increases in overall interpersonal pathology vector length [VL] than did patients with AD, who remained within the normal range on all scores. Patients with FLV showed a 2 SD increase in submissiveness (HI), but their cold-heartedness (DE) change scores were not significantly different from those of patients with AD. Conversely, the TLV cold-heartedness (DE) score increased 2 SD compared to minimal change for the AD and FLV groups, yet change in submissiveness (HI) did not differentiate between AD and TLV groups. Conclusions The Interpersonal Adjectives Scales differentiated both FTD groups from patients with AD on the basis of both degree and direction of personality change. Also, the two subtypes of FTD showed distinctly different patterns of change in social functioning: patients with temporal variant shifted toward severe interpersonal coldness with mild loss of dominance, whereas patients with frontal variant showed the opposite pattern. PMID:12552042

  13. An intensive virtual reality program improves functional balance and mobility of adolescents with cerebral palsy.

    PubMed

    Brien, Marie; Sveistrup, Heidi

    2011-01-01

    To examine functional balance and mobility in adolescents with cerebral palsy classified at Gross Motor Function Classification System (GMFCS) level I following an intensive short-duration virtual reality (VR) intervention. Single-subject, multiple-baseline design with 4 adolescents. Outcomes included the Community Balance and Mobility Scale (CB&M), the 6-Minute Walk Test (6MWT), the Timed Up and Down Stairs, and the Gross Motor Function Measure Dimension E. Assessments were recorded 3 to 6 times at baseline, 5 times during intervention, and 4 times at follow-up. Daily 90-minute VR intervention was completed for 5 consecutive days. Visual, statistical, and clinical significance analyses were used. Statistically significant improvements were shown in all adolescents on CB&M and 6MWT. True change was recorded in all for the CB&M and in 3 for the 6MWT. Functional balance and mobility in adolescents with cerebral palsy classified at GMFCS level I improve with intense, short duration VR intervention, and changes are maintained at 1-month posttraining.

  14. Factors Associated with Persistent Posttraumatic Stress Disorder Among U.S. Military Service Members and Veterans (Open Access Publisher’s Version)

    DTIC Science & Technology

    2018-02-17

    mental health functioning [8–11]. These changes may affect the person’s psychological, behavioral, and physical health [12–14], decreasing one’s quality...prescribed a medication to treat anxiety, panic, or depression. Functional physical health was assessed using the physical component summary score derived...the 85th percentile, respectively [35]. Multiple physical symptoms were assessed using the 15- items from the Patient Health Questionnaire (PHQ-15

  15. Bioimpedance imaging: an overview of potential clinical applications.

    PubMed

    Bayford, Richard; Tizzard, Andrew

    2012-10-21

    Electrical Impedance Tomography (EIT) is an imaging technique based on multiple bio impedance measurements to produce a map (image) of impedance or changes in impedance across a region. Its origins lay in geophysics where it is still used to today. This review highlights potential clinical applications of EIT. Beginning with a brief overview of the underlying principles behind the modality, it describes the background research leading towards the development of the application of EIT for monitoring pulmonary function, detecting and localising tumours and monitoring brain function.

  16. Alternative Conformations of Cytochrome c: Structure, Function, and Detection.

    PubMed

    Hannibal, Luciana; Tomasina, Florencia; Capdevila, Daiana A; Demicheli, Verónica; Tórtora, Verónica; Alvarez-Paggi, Damián; Jemmerson, Ronald; Murgida, Daniel H; Radi, Rafael

    2016-01-26

    Cytochrome c (cyt c) is a cationic hemoprotein of ∼100 amino acid residues that exhibits exceptional functional versatility. While its primary function is electron transfer in the respiratory chain, cyt c is also recognized as a key component of the intrinsic apoptotic pathway, the mitochondrial oxidative protein folding machinery, and presumably as a redox sensor in the cytosol, along with other reported functions. Transition to alternative conformations and gain-of-peroxidase activity are thought to further enable the multiple functions of cyt c and its translocation across cellular compartments. In vitro, direct interactions of cyt c with cardiolipin, post-translational modifications such as tyrosine nitration, phosphorylation, methionine sulfoxidation, mutations, and even fine changes in electrical fields lead to a variety of conformational states that may be of biological relevance. The identification of these alternative conformations and the elucidation of their functions in vivo continue to be a major challenge. Here, we unify the knowledge of the structural flexibility of cyt c that supports functional moonlighting and review biochemical and immunochemical evidence confirming that cyt c undergoes conformational changes during normal and altered cellular homeostasis.

  17. The Functional Task Test (FTT): An Interdisciplinary Testing Protocol to Investigate the Factors Underlying Changes in Astronaut Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Lawrence, E. L.; Arzeno, N. M.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Mulavara, A. P.; Peters, B. T.; Platts. S. H.; hide

    2011-01-01

    Exposure to space flight causes adaptations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. To achieve this goal we developed an interdisciplinary testing protocol (Functional Task Test, FTT) that evaluates both astronaut functional performance and related physiological changes. Functional tests include ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures include assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, orthostatic intolerance, upper- and lower-body muscle strength, power, endurance, control, and neuromuscular drive. Crewmembers perform this integrated test protocol before and after short (Shuttle) and long-duration (ISS) space flight. Data are collected on two sessions before flight, on landing day (Shuttle only) and 1, 6 and 30 days after landing. Preliminary results from both Shuttle and ISS crewmembers indicate decrement in performance of the functional tasks after both short and long-duration space flight. On-going data collection continues to improve the statistical power required to map changes in functional task performance to alterations in physiological systems. The information obtained from this study will be used to design and implement countermeasures that specifically target the physiological systems most responsible for the altered functional performance associated with space flight.

  18. Alterations of parenchymal microstructure, neuronal connectivity and cerebrovascular resistance at adolescence following mild to moderate traumatic brain injury in early development.

    PubMed

    Parent, Maxime; Li, Ying; Santhakumar, Vijayalakshmi; Hyder, Fahmeed; Sanganahalli, Basavaraju G; Kannurpatti, Sridhar

    2018-06-01

    TBI is a leading cause of morbidity in children. To investigate outcome of early developmental TBI during adolescence, a rat model of fluid percussion injury was developed, where previous work reported deficits in sensorimotor behavior and cortical blood flow at adolescence. 1 Based on the non-localized outcome, we hypothesized that multiple neurophysiological components of brain function, namely neuronal connectivity, synapse/axonal microstructural integrity and neurovascular function are altered and magnetic resonance imaging (MRI) methods could be used to determine regional alterations. Adolescent outcomes of developmental TBI were studied 2-months after injury, using functional MRI (fMRI) and Diffusion Tensor Imaging (DTI). fMRI based resting state functional connectivity (RSFC), representing neural connectivity, was significantly altered between sham and TBI. RSFC strength decreased in the cortex, hippocampus and thalamus accompanied by decrease in the spatial extent of their corresponding RSFC networks and inter-hemispheric asymmetry. Cerebrovascular reactivity to arterial CO2 changes diminished after TBI across both hemispheres, with a more pronounced decrease in the ipsilateral hippocampus, thalamus and motor cortex. DTI measures of fractional anisotropy (FA) and apparent diffusion coefficient (ADC), reporting on axonal and microstructural integrity of the brain, indicated similar inter-hemispheric asymmetry, with highest change in the ipsilateral hippocampus and regions adjoining the ipsilateral thalamus, hypothalamus and amygdala. TBI-induced corpus callosal microstructural alterations indicated measurable changes in inter-hemispheric structural connectivity. Hippocampus, thalamus and select cortical regions were most consistently affected in multiple imaging markers. The multi-modal MRI results demonstrate cortical and subcortical alterations in neural connectivity, cerebrovascular resistance and parenchymal microstructure in the adolescent brain, indicating the highly diffuse and persistent nature of the lateral fluid percussion TBI early in development.

  19. Methodological Challenges of Multiple-Component Intervention: Lessons Learned from a Randomized Controlled Trial of Functional Recovery After Hip Fracture

    PubMed Central

    Peterson, Margaret G.E.; Cornell, Charles N.; MacKenzie, C. Ronald; Robbins, Laura; Horton, Roberta; Ganz, Sandy B.; Ruchlin, Hirsch S.; Russo, Pamela Williams; Paget, Stephen A.; Charlson, Mary E.

    2006-01-01

    We conducted a randomized controlled trial to assess the efficacy and safety of a multiple-component intervention designed to improve functional recovery after hip fracture. One hundred seventy-six patients who underwent surgery for a primary unilateral hip fracture were assigned randomly to receive usual care (control arm, n = 86) or a brief motivational videotape, supportive peer counseling, and high-intensity muscle-strength training (intervention arm, n = 90). Between-group differences on the physical functioning, role-physical, and social functioning domains of the SF-36 were assessed postoperatively at 6 months. At the end of the trial, 32 intervention and 27 control patients (34%) completed the 6-month outcome assessment. Although patient compliance with all three components of the intervention was uneven, over 90% of intervention patients were exposed to the motivational videotape. Intervention patients experienced a significant (P = 0.03) improvement in the role-physical domain (mean change, −11 ± 33) compared to control patients (mean change, −37 ± 41). Change in general health (P = 0.2) and mental health (P = 0.1) domain scores was also directionally consistent with the study hypothesis. Although our findings are consistent with previous reports of comprehensive rehabilitation efforts for hip fracture patients, the trial was undermined by high attrition and the possibility of self-selection bias at 6-month follow-up. We discuss the methodological challenges and lessons learned in conducting a randomized controlled trial that sought to implement and assess the impact of a complex intervention in a population that proved difficult to follow up once they had returned to the community. PMID:18751772

  20. POLE and POLD1 screening in 155 patients with multiple polyps and early-onset colorectal cancer

    PubMed Central

    Esteban-Jurado, Clara; Giménez-Zaragoza, David; Muñoz, Jenifer; Franch-Expósito, Sebastià; Álvarez-Barona, Miriam; Ocaña, Teresa; Cuatrecasas, Miriam; Carballal, Sabela; López-Cerón, María; Marti-Solano, Maria; Díaz-Gay, Marcos; van Wezel, Tom; Castells, Antoni; Bujanda, Luis; Balmaña, Judith; Gonzalo, Victoria; Llort, Gemma; Ruiz-Ponte, Clara; Cubiella, Joaquín; Balaguer, Francesc; Aligué, Rosa; Castellví-Bel, Sergi

    2017-01-01

    Germline mutations in POLE and POLD1 have been shown to cause predisposition to colorectal multiple polyposis and a wide range of neoplasms, early-onset colorectal cancer being the most prevalent. In order to find additional mutations affecting the proofreading activity of these polymerases, we sequenced its exonuclease domain in 155 patients with multiple polyps or an early-onset colorectal cancer phenotype without alterations in the known hereditary colorectal cancer genes. Interestingly, none of the previously reported mutations in POLE and POLD1 were found. On the other hand, among the genetic variants detected, only two of them stood out as putative pathogenic in the POLE gene, c.1359 + 46del71 and c.1420G > A (p.Val474Ile). The first variant, detected in two families, was not proven to alter correct RNA splicing. Contrarily, c.1420G > A (p.Val474Ile) was detected in one early-onset colorectal cancer patient and located right next to the exonuclease domain. The pathogenicity of this change was suggested by its rarity and bioinformatics predictions, and it was further indicated by functional assays in Schizosaccharomyces pombe. This is the first study to functionally analyze a POLE genetic variant outside the exonuclease domain and widens the spectrum of genetic changes in this DNA polymerase that could lead to colorectal cancer predisposition. PMID:28423643

  1. Distributed patterns of activity in sensory cortex reflect the precision of multiple items maintained in visual short-term memory.

    PubMed

    Emrich, Stephen M; Riggall, Adam C; Larocque, Joshua J; Postle, Bradley R

    2013-04-10

    Traditionally, load sensitivity of sustained, elevated activity has been taken as an index of storage for a limited number of items in visual short-term memory (VSTM). Recently, studies have demonstrated that the contents of a single item held in VSTM can be decoded from early visual cortex, despite the fact that these areas do not exhibit elevated, sustained activity. It is unknown, however, whether the patterns of neural activity decoded from sensory cortex change as a function of load, as one would expect from a region storing multiple representations. Here, we use multivoxel pattern analysis to examine the neural representations of VSTM in humans across multiple memory loads. In an important extension of previous findings, our results demonstrate that the contents of VSTM can be decoded from areas that exhibit a transient response to visual stimuli, but not from regions that exhibit elevated, sustained load-sensitive delay-period activity. Moreover, the neural information present in these transiently activated areas decreases significantly with increasing load, indicating load sensitivity of the patterns of activity that support VSTM maintenance. Importantly, the decrease in classification performance as a function of load is correlated with within-subject changes in mnemonic resolution. These findings indicate that distributed patterns of neural activity in putatively sensory visual cortex support the representation and precision of information in VSTM.

  2. Responder definition of the Multiple Sclerosis Impact Scale physical impact subscale for patients with physical worsening

    PubMed Central

    Wyrwich, Kathleen W; Guo, Shien; Medori, Rossella; Altincatal, Arman; Wagner, Linda; Elkins, Jacob

    2014-01-01

    Background: The 29-item Multiple Sclerosis Impact Scale (MSIS-29) was developed to examine the impact of multiple sclerosis (MS) on physical and psychological functioning from a patient’s perspective. Objective: To determine the responder definition (RD) of the MSIS-29 physical impact subscale (PHYS) in a group of patients with relapsing–remitting MS (RRMS) participating in a clinical trial. Methods: Data from the SELECT trial comparing daclizumab high-yield process with placebo in patients with RRMS were used. Physical function was evaluated in SELECT using three patient-reported outcomes measures and the Expanded Disability Status Scale (EDSS). Anchor- and distribution-based methods were used to identify an RD for the MSIS-29. Results: Results across the anchor-based approach suggested MSIS-29 PHYS RD values of 6.91 (mean), 7.14 (median) and 7.50 (mode). Distribution-based RD estimates ranged from 6.24 to 10.40. An RD of 7.50 was selected as the most appropriate threshold for physical worsening based on corresponding changes in the EDSS (primary anchor of interest). Conclusion: These findings indicate that a ≥7.50 point worsening on the MSIS-29 PHYS is a reasonable and practical threshold for identifying patients with RRMS who have experienced a clinically significant change in the physical impact of MS. PMID:24740371

  3. Inflammatory Mediators Alter the Astrocyte Transcriptome and Calcium Signaling Elicited by Multiple G-Protein-Coupled Receptors

    PubMed Central

    Hamby, Mary E.; Coppola, Giovanni; Ao, Yan; Geschwind, Daniel H.; Khakh, Baljit S.; Sofroniew, Michael V.

    2012-01-01

    Inflammation features in CNS disorders such as stroke, trauma, neurodegeneration, infection, and autoimmunity in which astrocytes play critical roles. To elucidate how inflammatory mediators alter astrocyte functions, we examined effects of transforming growth factor-β1 (TGF-β1), lipopolysaccharide (LPS), and interferon-gamma (IFNγ), alone and in combination, on purified, mouse primary cortical astrocyte cultures. We used microarrays to conduct whole-genome expression profiling, and measured calcium signaling, which is implicated in mediating dynamic astrocyte functions. Combinatorial exposure to TGF-β1, LPS, and IFNγ significantly modulated astrocyte expression of >6800 gene probes, including >380 synergistic changes not predicted by summing individual treatment effects. Bioinformatic analyses revealed significantly and markedly upregulated molecular networks and pathways associated in particular with immune signaling and regulation of cell injury, death, growth, and proliferation. Highly regulated genes included chemokines, growth factors, enzymes, channels, transporters, and intercellular and intracellular signal transducers. Notably, numerous genes for G-protein-coupled receptors (GPCRs) and G-protein effectors involved in calcium signaling were significantly regulated, mostly down (for example, Cxcr4, Adra2a, Ednra, P2y1, Gnao1, Gng7), but some up (for example, P2y14, P2y6, Ccrl2, Gnb4). We tested selected cases and found that changes in GPCR gene expression were accompanied by significant, parallel changes in astrocyte calcium signaling evoked by corresponding GPCR-specific ligands. These findings identify pronounced changes in the astrocyte transcriptome induced by TGF-β1, LPS, and IFNγ, and show that these inflammatory stimuli upregulate astrocyte molecular networks associated with immune- and injury-related functions and significantly alter astrocyte calcium signaling stimulated by multiple GPCRs. PMID:23077035

  4. Data Transfer for Multiple Sensor Networks Over a Broad Temperature Range

    NASA Technical Reports Server (NTRS)

    Krasowski, Michael

    2013-01-01

    At extreme temperatures, cryogenic and over 300 C, few electronic components are available to support intelligent data transfer over a common, linear combining medium. This innovation allows many sensors to operate on the same wire bus (or on the same airwaves or optical channel: any linearly combining medium), transmitting simultaneously, but individually recoverable at a node in a cooler part of the test area. This innovation has been demonstrated using room-temperature silicon microcircuits as proxy. The microcircuits have analog functionality comparable to componentry designed using silicon carbide. Given a common, linearly combining medium, multiple sending units may transmit information simultaneously. A listening node, using various techniques, can pick out the signal from a single sender, if it has unique qualities, e.g. a voice. The problem being solved is commonly referred to as the cocktail party problem. The human brain uses the cocktail party effect when it is able to recognize and follow a single conversation in a party full of talkers and other noise sources. High-temperature sensors have been used in silicon carbide electronic oscillator circuits. The frequency of the oscillator changes as a function of the changes in the sensed parameter, such as pressure. This change is analogous to changes in the pitch of a person s voice. The output of this oscillator and many others may be superimposed onto a single medium. This medium may be the power lines supplying current to the sensors, a third wire dedicated to data transmission, the airwaves through radio transmission, an optical medium, etc. However, with nothing to distinguish the identities of each source that is, the source separation this system is useless. Using digital electronic functions, unique codes or patterns are created and used to modulate the output of the sensor.

  5. Use of mobile and cordless phones and change in cognitive function: a prospective cohort analysis of Australian primary school children.

    PubMed

    Bhatt, Chhavi Raj; Benke, Geza; Smith, Catherine L; Redmayne, Mary; Dimitriadis, Christina; Dalecki, Anna; Macleod, Skye; Sim, Malcolm R; Croft, Rodney J; Wolfe, Rory; Kaufman, Jordy; Abramson, Michael J

    2017-06-19

    Some previous studies have suggested an association between children's use of mobile phones (MPs)/cordless phones (CPs) and development of cognitive function. We evaluated possible longitudinal associations between the use of MPs and CPs in a cohort of primary school children and effects on their cognitive function. Data on children's socio-demographics, use of MPs and CPs, and cognitive function were collected at baseline (2010-2012) and follow-up (2012-2013). Cognitive outcomes were evaluated with the CogHealth™ test battery and Stroop Color-Word test. The change in the number of MP/CP voice calls weekly from baseline to follow-up was dichotomized: "an increase in calls" or a "decrease/no change in calls". Multiple linear regression analyses, adjusting for confounders and clustering by school, were performed to evaluate the associations between the change in cognitive outcomes and change in MP and CP exposures. Of 412 children, a larger proportion of them used a CP (76% at baseline and follow-up), compared to a MP (31% at baseline and 43% at follow-up). Of 26 comparisons of changes in cognitive outcomes, four demonstrated significant associations. The increase in MP usage was associated with larger reduction in response time for response inhibition, smaller reduction in the number of total errors for spatial problem solving and larger increase in response time for a Stroop interference task. Except for the smaller reduction in detection task accuracy, the increase in CP usage had no effect on the changes in cognitive outcomes. Our study shows that a larger proportion of children used CPs compared to MPs. We found limited evidence that change in the use of MPs or CPs in primary school children was associated with change in cognitive function.

  6. Stretch-dependent changes in surface profiles of the human crystalline lens during accommodation: a finite element study.

    PubMed

    Pour, Hooman Mohammad; Kanapathipillai, Sangarapillai; Zarrabi, Khosrow; Manns, Fabrice; Ho, Arthur

    2015-03-01

    A non-linear isotropic finite element (FE) model of a 29-year-old human crystalline lens was constructed to study the effects of various geometrical parameters on lens accommodation. The model simulates dis-accommodation by stretching of the lens and predicts the change in surface profiles of the lens capsule, cortex and nucleus at select states of stretching/accommodation. Multiple regression analysis (MRA) is used to develop a stretch-dependent mathematical model relating the lens sagittal height to the radial position of the lens surface as a function of dis-accommodative stretch. A load analysis is performed to compare the finite element results to empirical results from lens stretcher studies. Using the predicted geometrical changes, the optical response of the whole eye during accommodation was analysed by ray-tracing. Aspects of lens shape change relative to stretch were evaluated, including change in diameter, central thickness and accommodation. Maximum accommodation achieved was 10.29 D. From the multiple regression analysis, the stretch-dependent mathematical model of the lens shape related lens curvatures as a function of lens ciliary stretch well (maximum mean-square residual error 2.5 × 10(-3 ) μm, p < 0.001). The results are compared with those from in vitro studies. The finite element and ray-tracing predictions are consistent with Ex Vivo Accommodation Simulator (EVAS) studies in terms of load and power change versus change in thickness. The mathematical stretch-dependent model of accommodation presented may have utility in investigating lens behaviour at states other than the relaxed or fully accommodated states. © 2015 The Authors. Clinical and Experimental Optometry © 2015 Optometry Australia.

  7. USArray Receiver Function Imaging of Multiple-Layer Crustal Structure of the Contiguous United States

    NASA Astrophysics Data System (ADS)

    Ma, X.; Lowry, A. R.; Ravat, D.

    2014-12-01

    Thickness andseismic velocity of crustal layers are useful for understanding the history and evolution of continental lithosphere. Lowry and Pérez-Gussinyé (2011) observed that low bulk crustal seismic velocity ratio, Vp/Vs, strongly correlates with high geothermal gradient and active deformation, indicating quartz (to which Vp/Vs is most sensitive) plays a role in these processes. The lower crust (where ductile flow occurs which might explain the relationship) is commonly thought to be quartz-poor. However, layering of the crust may represent changes in either lithology or the phase of quartz. Laboratory strain-stress experiments on quartz indicate that near the a- to b-quartz phase transition, both Vp and Vp/Vs initially drop dramatically but then increase relative to the a-quartz regime because Young's modulus initially decreases by 30% before increasing by a net ~20%. Shear modulus varies only ~3% across the transition. Crustal structure is commonly represented by an upper, mid- and lower layer (e.g., Crust1.0) and conceptualized as primarily reflecting a change to more mafic lithology at greater depth, but estimates of Moho temperature indicate a quartz phase transition should be present in much of the western and central U.S. We have imaged multiple layering of the contiguous U.S. by applying a new cross-correlation and stacking method to USArray receiver functions. Synthetic models of a multiple layer crust indicate 'splitting' of converted-phase arrivals would be expected if a quartz phase transition were responsible. Preliminary imaging using cross-correlation of observed receiver functions with multiple layer synthetics demonstrates a marked improvement in correlation coefficients relative to a single-layer crust. In this presentation we will examine observational evidence for possible a- to b- phase transition layering (indicating quartz at depth) and compare with depths predicted for the quartz phase transition based on Pn-derived Moho temperatures and estimates of magnetic Curie depths.

  8. Potential importance of B cells in aging and aging-associated neurodegenerative diseases.

    PubMed

    Biragyn, Arya; Aliseychik, Maria; Rogaev, Evgeny

    2017-04-01

    Our understanding of B cells as merely antibody producers is slowly changing. Alone or in concert with antibody, they control outcomes of seemingly different diseases such as cancer, rheumatoid arthritis, diabetes, and multiple sclerosis. While their role in activation of effector immune cells is beneficial in cancer but bad in autoimmune diseases, their immunosuppressive and regulatory subsets (Bregs) inhibit autoimmune and anticancer responses. These pathogenic and suppressive functions are not static and appear to be regulated by the nature and strength of inflammation. Although aging increases inflammation and changes the composition and function of B cells, surprisingly, little is known whether the change affects aging-associated neurodegenerative disease, such as Alzheimer's disease (AD). Here, by analyzing B cells in cancer and autoimmune and neuroinflammatory diseases, we elucidate their potential importance in AD and other aging-associated neuroinflammatory diseases.

  9. Deep time ocean hypoxia: The impact on Jurassic marine ecosystems

    NASA Astrophysics Data System (ADS)

    Caswell, B. A.; Frid, C. L. J.

    2016-02-01

    In order to understand how the environment will change over the next 100-1000 years and how this will impact the biosphere we need long-term data from a range of scenarios. This long-term perspective can be achieved by looking at periods of comparable environmental change in Earth history. Two past periods of ocean deoxygenation, 150 and 183 million years ago, are compared: (1) a period of global climate change, analogous to that occurring today, and (2) a period of regional hypoxia associated with changing circulation and nutrient supply. Palaeoecological changes in populations, communities, and seafloor functioning were investigated using data spanning millions of years at high resolution (100s-1000s years). Large shifts in biodiversity, body-size and the population-size of the dominant benthic taxa occurred in response to ocean anoxia. Ecological change spanned multiple trophic levels and suggest that changes in primary productivity impacted macrobenthos and their pelagic predators resulting in biogeographic range shifts. Quantitative analyses of changes in biological traits and core ecosystem functions show changes in nutrient regeneration, food web dynamics, and benthic-pelagic coupling. During ocean deoxygenation Jurassic ecosystems showed functional resilience and redundancy, but ultimately functioning collapsed. Quantification of the relationships between ecological change and various proxies for palaeoenvironmental change show that both hypoxia and primary productivity were important drivers. Environmental thresholds for local ecosystem change are identified. The patterns of Jurassic ecosystem change share many similarities with present-day hypoxic systems. Critically, the recovery from global anoxia was very slow and connectivity, with potential sources of new recruits, was an important contributor to ecosystem recovery. This emphasises the risks of relying on patterns of short-term and small-scale resilience when managing modern marine systems.

  10. Multiple exposures of sevoflurane during pregnancy induces memory impairment in young female offspring mice

    PubMed Central

    Chung, Woosuk; Yoon, Seunghwan

    2017-01-01

    Background Earlier studies have reported conflicting results regarding long-term behavioral consequences after anesthesia during the fetal period. Previous studies also suggest several factors that may explain such conflicting data. Thus, we examined the influence of age and sex on long-term behavioral consequences after multiple sevoflurane exposures during the fetal period. Methods C57BL/6J pregnant mice received oxygen with or without sevoflurane for 2 hours at gestational day (GD) 14-16. Offspring mice were subjected to behavioral assays for general activity (open field test), learning, and memory (fear chamber test) at postnatal day 30–35. Results Multiple sevoflurane exposures at GD 14–16 caused significant changes during the fear chamber test in young female offspring mice. Such changes did not occur in young male offspring mice. However, general activity was not affected in both male and female mice. Conclusions Multiple sevoflurane exposures in the second trimester of pregnancy affects learning and memory only in young female mice. Further studies focusing on diverse cognitive functions in an age-, sex-dependent manner may provide valuable insights regarding anesthesia-induced neurotoxicity. PMID:29225748

  11. Ecologically relevant levels of multiple, common marine stressors suggest antagonistic effects.

    PubMed

    Lange, Rolanda; Marshall, Dustin

    2017-07-24

    Stressors associated with global change will be experienced simultaneously and may act synergistically, so attempts to estimate the capacity of marine systems to cope with global change requires a multi-stressor approach. Because recent evidence suggests that stressor effects can be context-dependent, estimates of how stressors are experienced in ecologically realistic settings will be particularly valuable. To enhance our understanding of the interplay between environmental effects and the impact of multiple stressors from both natural and anthropogenic sources, we conducted a field experiment. We explored the impact of multiple, functionally varied stressors from both natural and anthropogenic sources experienced during early life history in a common sessile marine invertebrate, Bugula neritina. Natural spatial environmental variation induced differences in conspecific densities, allowing us to test for density-driven context-dependence of stressor effects. We indeed found density-dependent effects. Under high conspecific density, individual survival increased, which offset part of the negative effects of experiencing stressors. Experiencing multiple stressors early in life history translated to a decreased survival in the field, albeit the effects were not as drastic as we expected: our results are congruent with antagonistic stressor effects. We speculate that when individual stressors are more subtle, stressor synergies become less common.

  12. Changes in reflectance anisotropy of wheat crop during different phenophases

    NASA Astrophysics Data System (ADS)

    Lunagaria, Manoj M.; Patel, Haridas R.

    2017-04-01

    The canopy structure of wheat changes significantly with growth stages and leads to changes in reflectance anisotropy. Bidirectional reflectance distribution function characterises the reflectance anisotropy of the targets, which can be approximated. Spectrodirectional reflectance measurements on wheat crop were acquired using a field goniometer system. The bidirectional reflectance spectra were acquired at 54 view angles to cover the hemispheric span up to 60° view zenith. The observations were made during early growth stages till maturity of the crop. The anisotropy was not constant for all wavelengths and anisotropic factors clearly revealed spectral dependence, which was more pronounced in near principal plane. In near infrared, wheat canopy expressed less reflectance anisotropy because of higher multiple scattering. The broad hotspot signature was noticeable in reflectance of canopy whenever view and solar angles were close. Distinct changes in bidirectional reflectance distribution function were observed during booting to flowering stages as the canopy achieves more uniformity, height and head emergence. The function clearly reveals bowl shape during heading to early milking growth stages of the crop. Late growth stages show less prominent gap and shadow effects. Anisotropy index revealed that wheat exhibits changes in reflectance anisotropy with phenological development and with spectral bands.

  13. Inferring Resilience to Fragmentation-Induced Changes in Plant Communities in a Semi-Arid Mediterranean Ecosystem

    PubMed Central

    de Frutos, Ángel; Navarro, Teresa; Pueyo, Yolanda; Alados, Concepción L.

    2015-01-01

    Predicting the capacity of ecosystems to absorb impacts from disturbance events (resilience), including land-use intensification and landscape fragmentation, is challenging in the face of global change. Little is known about the impacts of fragmentation on ecosystem functioning from a multi-dimensional perspective (multiple traits). This study used 58 500-m linear transects to quantify changes in the functional composition and resilience of vascular plant communities in response to an increase in landscape fragmentation in 18 natural scrubland fragments embedded within a matrix of abandoned crop fields in Cabo de Gata-Níjar Natural Park, Almería, Spain. Changes in functional community composition were measured using functional diversity indices (functional richness and functional dispersion) that were based on 12 plant traits. Resilience was evaluated using the functional redundancy and response diversity from the perspective of plant dispersal, which is important, particularly, in fragmented landscapes. Scrubland fragmentation was measured using the Integral Index of Connectivity (IIC). The functional richness of the plant communities was higher in the most fragmented scrubland. Conversely, the functional dispersion (i.e., spread) of trait values among species in the functional trait space was lower at the most fragmented sites; consequently, the ecological tolerance of the vegetation to scrubland fragmentation decreased. Classifying the plant species into four functional groups indicated that fragmentation favoured an increase in functional redundancy in the ‘short basal annual forbs and perennial forbs’ group, most of which are species adapted to degraded soils. An assessment based on the traits associated with plant dispersal indicated that the resilience of ‘woody plants’, an important component in the Mediterranean scrubland, and habitat fragmentation were negatively correlated; however, the correlation was positive in the ‘short basal annual forbs and perennial forbs’ and the ‘grasses’ groups. PMID:25790432

  14. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment.

    PubMed

    Gallina, Valentina; Torresan, Silvia; Critto, Andrea; Sperotto, Anna; Glade, Thomas; Marcomini, Antonio

    2016-03-01

    This paper presents a review of existing multi-risk assessment concepts and tools applied by organisations and projects providing the basis for the development of a multi-risk methodology in a climate change perspective. Relevant initiatives were developed for the assessment of multiple natural hazards (e.g. floods, storm surges, droughts) affecting the same area in a defined timeframe (e.g. year, season, decade). Major research efforts were focused on the identification and aggregation of multiple hazard types (e.g. independent, correlated, cascading hazards) by means of quantitative and semi-quantitative approaches. Moreover, several methodologies aim to assess the vulnerability of multiple targets to specific natural hazards by means of vulnerability functions and indicators at the regional and local scale. The overall results of the review show that multi-risk approaches do not consider the effects of climate change and mostly rely on the analysis of static vulnerability (i.e. no time-dependent vulnerabilities, no changes among exposed elements). A relevant challenge is therefore to develop comprehensive formal approaches for the assessment of different climate-induced hazards and risks, including dynamic exposure and vulnerability. This requires the selection and aggregation of suitable hazard and vulnerability metrics to make a synthesis of information about multiple climate impacts, the spatial analysis and ranking of risks, including their visualization and communication to end-users. To face these issues, climate impact assessors should develop cross-sectorial collaborations among different expertise (e.g. modellers, natural scientists, economists) integrating information on climate change scenarios with sectorial climate impact assessment, towards the development of a comprehensive multi-risk assessment process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Cognitive Performance in Older Adults with Stable Heart Failure: Longitudinal Evidence for Stability and Improvement

    PubMed Central

    Alosco, Michael L.; Garcia, Sarah; Spitznagel, Mary Beth; van Dulmen, Manfred; Cohen, Ronald; Sweet, Lawrence H.; Josephson, Richard; Hughes, Joel; Rosneck, Jim; Gunstad, John

    2013-01-01

    Cognitive impairment is prevalent in heart failure (HF), though substantial variability in the pattern of cognitive impairment is found across studies. To clarify the nature of cognitive impairment in HF, we examined longitudinal trajectories across multiple domains of cognition in HF patients using latent growth class modeling. 115 HF patients completed a neuropsychological battery at baseline, 3-months and 12-months. Participants also completed the Beck Depression Inventory-II (BDI-II). Latent class growth analyses revealed a three-class model for attention/executive function, four-class model for memory, and a three-class model for language. The slope for attention/executive function and language remained stable, while improvements were noted in memory performance. Education and BDI-II significantly predicted the intercept for attention/executive function and language abilities. The BDI-II also predicted baseline memory. The current findings suggest that multiple performance-based classes of neuropsychological test performance exist within cognitive domains, though case-controlled prospective studies with extended follow-ups are needed to fully elucidate changes and predictors of cognitive function in HF. PMID:23906182

  16. Functional assessment in mental health: lessons from occupational therapy

    PubMed Central

    Rogers, Joan C.; Holm, Margo B.

    2016-01-01

    Occupational therapists have been conducting functional assessments since World War I, and this accumulated experience has taught us several critical lessons. First, a comprehensive profile of a patient's functioning requires multiple assessment methods. Second, assessment content and measurement constructs must change with the times. Third, technology can enhance and extend functional assessment. Fourth, performance-based assessments of everyday activities can also be used to measure body functions/impairments. However, while deconstructing activities into body functions/impairments is possible, the results do not reflect patients' abilities to integrate the cognitive, motor, sensory and affective functions necessary to complete a complex activity. Finally, the differential complexity of everyday activities that a patient can master or successfully complete can also provide a ruler with which to measure progress. PMID:27489454

  17. Assessing the Impact of Psychotropic Medication Changes on Challenging Behavior of Individuals with Intellectual Disabilities

    PubMed Central

    Valdovinos, Maria G.; Henninger-McMahon, Meara; Schieber, Elizabeth; Beard, Lisa; Conley, Brenna; Haas, Annette

    2016-01-01

    Objective The use of psychotropic medication to address challenging behavior in individuals diagnosed with intellectual disabilities is common practice; however, very few studies have examined how multiple medication use (or combination treatment) impacts the behaviors these medications are prescribed to treat. Method The current study followed eight individuals over a two-year period as they experienced changes in their psychotropic medication regimens. During that time, data from functional analyses and indirect assessments of challenging behavior were collected. Results The results suggest that changes in psychotropic medication regimens can produce changes in functional assessment outcomes, suggesting a need for continued behavioral assessment to better inform medication practices and behavioral treatment. Of the eight participants in the study, five participants’ behaviors varied in rate of responding in FAs across all medication changes. Additionally, three participants’ FAs produced changes in outcomes; however, those changes were not consistent across all medication changes, that is, not every medication change yielded different outcomes from previous assessments. Conclusion This study demonstrates how the outcome of an FA can be used to monitor the effects of psychotropic medication changes, specifically when medications are combined, on challenging behavior in individuals with intellectual and developmental disabilities. PMID:27429750

  18. Soil Polygenesis as a Function of Quaternary Climate, Northern Great Basin, USA

    NASA Technical Reports Server (NTRS)

    Chadwick, O. A.; Nettleton, W. D.; Staidl, G. J.

    1995-01-01

    Polygenetic soils are those that record multiple morphological, mineralogical, and chemical imprints as the geographical pattern of climates shifts spatially and new boundaries are established. Optimal conditions for interpreting paleoclimates from polygenetic soils occur when precipitation and/or temperature changes are great enough to produce new soil properties without obliterating existing properties.

  19. Developmental Changes in Information Central to Artifact Representation: Evidence from "Functional Fluency" Tasks

    ERIC Educational Resources Information Center

    Defeyter, Margaret Anne; Avons, S. E.; German, Tamsin C.

    2007-01-01

    Research suggests that while information about design is a central feature of older children's artifact representations it may be less important in the artifact representations of younger children. Three experiments explore the pattern of responses that 5- and 7-year-old children generate when asked to produce multiple uses for familiar…

  20. Development of a Novel Therapeutic Paradigm Utilizing a Mammary Gland-Targeted, Bin-1 Knockout Mouse Model

    DTIC Science & Technology

    2007-03-01

    Cell. Biol. 23, 4295 (Jun, 2003). Bin1 Ablation in Mammary Gland Delays Tissue Remodeling and Drives Cancer Progression Mee Young Chang, 1...Basu A, et al. Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Oncogene 1999;18:3564–73. 5. Pineda

  1. SLA Negotiation for VO Formation

    NASA Astrophysics Data System (ADS)

    Paurobally, Shamimabi

    Resource management systems are changing from localized resources and services towards virtual organizations (VOs) sharing millions of heterogeneous resources across multiple organizations and domains. The virtual organizations and usage models include a variety of owners and consumers with different usage, access policies, cost models, varying loads, requirements and availability. The stakeholders have private utility functions that must be satisfied and possibly maximized.

  2. Correlated Longitudinal Changes across Linguistic, Achievement, and Psychomotor Domains in Early Childhood: Evidence for a Global Dimension of Development

    ERIC Educational Resources Information Center

    Rhemtulla, Mijke; Tucker-Drob, Elliot M.

    2011-01-01

    An important question within developmental psychology concerns the extent to which the maturational gains that children make across multiple diverse domains of functioning can be attributed to global (domain-general) developmental processes. The present study investigated this question by examining the extent to which individual differences in…

  3. Exercise and multiple sclerosis: physiological, psychological, and quality of life issues.

    PubMed

    Sutherland, G; Andersen, M B

    2001-12-01

    The case for the benefits of physical activity has been well documented in healthy individuals, and the potential for reducing the risk of mental and physical ill health is substantial. Yet, individuals with multiple sclerosis (MS) have long been advised to avoid participation in exercise in order to minimise the risk of exacerbations and symptoms of fatigue. There is, however, increasing interest in how acute and chronic exercise affect physiological and psychological functioning in MS. Much of the research has examined physiological tolerance to exercise and focused on responses in terms of heart rate, blood pressure, cardiorespiratory fitness, muscle function, and symptom stability. Little research has focused on understanding how exercise affects psychosocial functioning and brings about changes in depression, affect, mood, well-being, and quality of life. This paper provides a summary of the research exploring the efficacy of physical activity for people with MS. In addition, the key issues that face clinical practice are examined, and considerations for research are discussed.

  4. Conversion disorder: A systematic review of current terminology.

    PubMed

    Ding, Juen Mei; Kanaan, Richard Antony Alexander

    It has been argued that the label given to unexplained neurological symptoms is an important contributor to their often poor acceptance, and there has been recent debate on proposals to change the name from conversion disorder. There have been multiple studies of layperson and clinician preference and this article aimed to review these. Multiple databases were searched using terms including "conversion disorder" and "terminology", and relative preferences for the terms extracted. Seven articles were found which looked at clinician or layperson preferences for terminology for unexplained neurological symptoms. Most neurologists favoured terms such as "functional" and "psychogenic", while laypeople were comfortable with "functional" but viewed "psychogenic" as more offensive; "non-epileptic/organic" was relatively popular with both groups. "Functional" is a term that is relatively popular with both clinicians and the public. It also meets more of the other criteria proposed for an acceptable label than other popular terms - however the views of neither psychiatrists nor actual patients with the disorder were considered. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. GENESIS 1.1: A hybrid-parallel molecular dynamics simulator with enhanced sampling algorithms on multiple computational platforms.

    PubMed

    Kobayashi, Chigusa; Jung, Jaewoon; Matsunaga, Yasuhiro; Mori, Takaharu; Ando, Tadashi; Tamura, Koichi; Kamiya, Motoshi; Sugita, Yuji

    2017-09-30

    GENeralized-Ensemble SImulation System (GENESIS) is a software package for molecular dynamics (MD) simulation of biological systems. It is designed to extend limitations in system size and accessible time scale by adopting highly parallelized schemes and enhanced conformational sampling algorithms. In this new version, GENESIS 1.1, new functions and advanced algorithms have been added. The all-atom and coarse-grained potential energy functions used in AMBER and GROMACS packages now become available in addition to CHARMM energy functions. The performance of MD simulations has been greatly improved by further optimization, multiple time-step integration, and hybrid (CPU + GPU) computing. The string method and replica-exchange umbrella sampling with flexible collective variable choice are used for finding the minimum free-energy pathway and obtaining free-energy profiles for conformational changes of a macromolecule. These new features increase the usefulness and power of GENESIS for modeling and simulation in biological research. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. [The influence of high-tone power therapy on the functional status of patients with multiple sclerosis].

    PubMed

    Kubsik, Anna; Klimkiewicz, Paulina; Klimkiewicz, Robert; Jankowska, Katarzyna; Jankowska, Agnieszka; Woldańska-Okońska, Marta

    2014-07-01

    Multiple sclerosis is a chronic, inflammatory, demyelinating disease of the central nervous system, which is characterized by diverse symptomatology. Most often affects people at a young age gradually leading to their disability. Looking for new therapies to alleviate neurological deficits caused by the disease. One of the alternative methods of therapy is high - tone power therapy. The article is a comparison of high-tone power therapy and kinesis in improving patients with multiple sclerosis. The aim of this study was to evaluate the effectiveness of high-tone power therapy and exercises in kinesis on the functional status of patients with multiple sclerosis. The study involved 20 patients with multiple sclerosis, both sexes, treated at the Department of Rehabilitation and Physical Medicine in Lodz. Patients were randomly divided into two groups studied. In group high-tone power therapy applied for 60 minutes, while in group II were used exercises for kinesis. Treatment time for both groups of patients was 15 days. To assess the functional status scale was used: Expanded Disability Status Scale of Kurtzke (EDSS), as well as by Barthel ADL Index. Assessment of quality of life were made using MSQOL Questionnaire-54. For the evaluation of gait and balance using Tinetti scale, and pain VAS rated, and Laitinen. Changes in muscle tone was assessed on the basis of the Ashworth scale. Both group I and II improved on scales conducted before and after therapy. In group I, in which the applied high-tone power therapy, reported statistically significant results in 9 out of 10 tested parameters, while in group II, which was used in the exercises in kinesis an improvement in 6 out of 10 tested parameters. Correlating the results of both the test groups in relation to each other did not show statistically significant differences. High-Tone Power Therapy beneficial effect on the functional status of patients with multiple sclerosis. Obtaining results in terms of number of tested parameters allows for the use of this therapy in the comprehensive improvement of patients with multiple sclerosis. Exercises from the scheme kinesis favorable impact on the functional status of patients with MS and are essential in the rehabilitation of these patients. In any group, no adverse effects were observed.

  7. Multiple Equilibria and Endogenous Cycles in a Non-Linear Harrodian Growth Model

    NASA Astrophysics Data System (ADS)

    Commendatore, Pasquale; Michetti, Elisabetta; Pinto, Antonio

    The standard result of Harrod's growth model is that, because investors react more strongly than savers to a change in income, the long run equilibrium of the economy is unstable. We re-interpret the Harrodian instability puzzle as a local instability problem and integrate his model with a nonlinear investment function. Multiple equilibria and different types of complex behaviour emerge. Moreover, even in the presence of locally unstable equilibria, for a large set of initial conditions the time path of the economy is not diverging, providing a solution to the instability puzzle.

  8. Alterations to Functional Analysis Methodology to Clarify the Functions of Low Rate, High Intensity Problem Behavior

    PubMed Central

    Davis, Barbara J; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results. PMID:23326628

  9. Alterations to functional analysis methodology to clarify the functions of low rate, high intensity problem behavior.

    PubMed

    Davis, Barbara J; Kahng, Sungwoo; Schmidt, Jonathan; Bowman, Lynn G; Boelter, Eric W

    2012-01-01

    Current research provides few suggestions for modifications to functional analysis procedures to accommodate low rate, high intensity problem behavior. This study examined the results of the extended duration functional analysis procedures of Kahng, Abt, and Schonbachler (2001) with six children admitted to an inpatient hospital for the treatment of severe problem behavior. Results of initial functional analyses (Iwata, Dorsey, Slifer, Bauman, & Richman, 1982/1994) were inconclusive for all children because of low levels of responding. The altered functional analyses, which changed multiple variables including the duration of the functional analysis (i.e., 6 or 7 hrs), yielded clear behavioral functions for all six participants. These results add additional support for the utility of an altered analysis of low rate, high intensity problem behavior when standard functional analyses do not yield differentiated results.

  10. Adaptive functional change of the contralateral kidney after partial nephrectomy.

    PubMed

    Choi, Se Young; Yoo, Sangjun; You, Dalsan; Jeong, In Gab; Song, Cheryn; Hong, Bumsik; Hong, Jun Hyuk; Ahn, Hanjong; Kim, Choung-Soo

    2017-08-01

    Partial nephrectomy aims to maintain renal function by nephron sparing; however, functional changes in the contralateral kidney remain unknown. We evaluate the functional change in the contralateral kidney using a diethylene triamine penta-acetic acid (DTPA) renal scan and determine factors predicting contralateral kidney function after partial nephrectomy. A total of 699 patients underwent partial nephrectomy, with a DTPA scan before and after surgery to assess the separate function of each kidney. Patients were divided into three groups according to initial contralateral glomerular filtration rate (GFR; group 1 : <30 ml·min -1 ·1.73 m -2 , group 2 : 30-45 ml·min -1 ·1.73 m -2 , and group 3 : ≥45 ml·min -1 ·1.73 m -2 ). Multiple-regression analysis was used to identify the factors associated with increased GFR of the contralateral kidney over a 4-yr postoperative period. Patients in group 1 had a higher mean age and hypertension history, worse American Society of Anesthesiologists score, and larger tumor size than in the other two groups. The ipsilateral GFR changes at 4 yr after partial nephrectomy were -18.9, -3.6, and 3.9% in groups 1 , 2 , and 3 , respectively, whereas the contralateral GFR changes were 10.8, 25.7, and 38.8%. Age [β: -0.105, 95% confidence interval (CI): -0.213; -0.011, P < 0.05] and preoperative contralateral GFR (β: -0.256, 95% CI: -0.332; -0.050, P < 0.01) were significant predictive factors for increased GFR of the contralateral kidney after 4 yr. The contralateral kidney compensated for the functional loss of the ipsilateral kidney. The increase of GFR in contralateral kidney is more prominent in younger patients with decreased contralateral renal function. Copyright © 2017 the American Physiological Society.

  11. Cerebrovascular pattern improved by ozone autohemotherapy: an entropy-based study on multiple sclerosis patients.

    PubMed

    Molinari, Filippo; Rimini, Daniele; Liboni, William; Acharya, U Rajendra; Franzini, Marianno; Pandolfi, Sergio; Ricevuti, Giovanni; Vaiano, Francesco; Valdenassi, Luigi; Simonetti, Vincenzo

    2017-08-01

    Ozone major autohemotherapy is effective in reducing the symptoms of multiple sclerosis (MS) patients, but its effects on brain are still not clear. In this work, we have monitored the changes in the cerebrovascular pattern of MS patients and normal subjects during major ozone autohemotherapy by using near-infrared spectroscopy (NIRS) as functional and vascular technique. NIRS signals are analyzed using a combination of time, time-frequency analysis and nonlinear analysis of intrinsic mode function signals obtained from empirical mode decomposition technique. Our results show that there is an improvement in the cerebrovascular pattern of all subjects indicated by increasing the entropy of the NIRS signals. Hence, we can conclude that the ozone therapy increases the brain metabolism and helps to recover from the lower activity levels which is predominant in MS patients.

  12. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  13. The Control of Single-color and Multiple-color Visual Search by Attentional Templates in Working Memory and in Long-term Memory.

    PubMed

    Grubert, Anna; Carlisle, Nancy B; Eimer, Martin

    2016-12-01

    The question whether target selection in visual search can be effectively controlled by simultaneous attentional templates for multiple features is still under dispute. We investigated whether multiple-color attentional guidance is possible when target colors remain constant and can thus be represented in long-term memory but not when they change frequently and have to be held in working memory. Participants searched for one, two, or three possible target colors that were specified by cue displays at the start of each trial. In constant-color blocks, the same colors remained task-relevant throughout. In variable-color blocks, target colors changed between trials. The contralateral delay activity (CDA) to cue displays increased in amplitude as a function of color memory load in variable-color blocks, which indicates that cued target colors were held in working memory. In constant-color blocks, the CDA was much smaller, suggesting that color representations were primarily stored in long-term memory. N2pc components to targets were measured as a marker of attentional target selection. Target N2pcs were attenuated and delayed during multiple-color search, demonstrating less efficient attentional deployment to color-defined target objects relative to single-color search. Importantly, these costs were the same in constant-color and variable-color blocks. These results demonstrate that attentional guidance by multiple-feature as compared with single-feature templates is less efficient both when target features remain constant and can be represented in long-term memory and when they change across trials and therefore have to be maintained in working memory.

  14. Mediators of Physical Activity on Neurocognitive Function: A Review at Multiple Levels of Analysis.

    PubMed

    Stillman, Chelsea M; Cohen, Jamie; Lehman, Morgan E; Erickson, Kirk I

    2016-01-01

    Physical activity (PA) is known to maintain and improve neurocognitive health. However, there is still a poor understanding of the mechanisms by which PA exerts its effects on the brain and cognition in humans. Many of the most widely discussed mechanisms of PA are molecular and cellular and arise from animal models. While information about basic cellular and molecular mechanisms is an important foundation from which to build our understanding of how PA promotes cognitive health in humans, there are other pathways that could play a role in this relationship. For example, PA-induced changes to cellular and molecular pathways likely initiate changes to macroscopic properties of the brain and/or to behavior that in turn influence cognition. The present review uses a more macroscopic lens to identify potential brain and behavioral/socioemotional mediators of the association between PA and cognitive function. We first summarize what is known regarding cellular and molecular mechanisms, and then devote the remainder of the review to discussing evidence for brain systems and behavioral/socioemotional pathways by which PA influences cognition. It is our hope that discussing mechanisms at multiple levels of analysis will stimulate the field to examine both brain and behavioral mediators. Doing so is important, as it could lead to a more complete characterization of the processes by which PA influences neurocognitive function, as well as a greater variety of targets for modifying neurocognitive function in clinical contexts.

  15. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acidsmore » (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.« less

  16. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence

    PubMed Central

    d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G.; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-01-01

    Abstract Brain plasticity is the basis for systems‐level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25‐minutes of task practice, were performed. Within‐session between‐run change in task‐related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium‐enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between‐run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice‐induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short‐term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery‐oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431–2445, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:26991559

  17. The effect of inflammation and its reduction on brain plasticity in multiple sclerosis: MRI evidence.

    PubMed

    Tomassini, Valentina; d'Ambrosio, Alessandro; Petsas, Nikolaos; Wise, Richard G; Sbardella, Emilia; Allen, Marek; Tona, Francesca; Fanelli, Fulvia; Foster, Catherine; Carnì, Marco; Gallo, Antonio; Pantano, Patrizia; Pozzilli, Carlo

    2016-07-01

    Brain plasticity is the basis for systems-level functional reorganization that promotes recovery in multiple sclerosis (MS). As inflammation interferes with plasticity, its pharmacological modulation may restore plasticity by promoting desired patterns of functional reorganization. Here, we tested the hypothesis that brain plasticity probed by a visuomotor adaptation task is impaired with MS inflammation and that pharmacological reduction of inflammation facilitates its restoration. MS patients were assessed twice before (sessions 1 and 2) and once after (session 3) the beginning of Interferon beta (IFN beta), using behavioural and structural MRI measures. During each session, 2 functional MRI runs of a visuomotor task, separated by 25-minutes of task practice, were performed. Within-session between-run change in task-related functional signal was our imaging marker of plasticity. During session 1, patients were compared with healthy controls. Comparison of patients' sessions 2 and 3 tested the effect of reduced inflammation on our imaging marker of plasticity. The proportion of patients with gadolinium-enhancing lesions reduced significantly during IFN beta. In session 1, patients demonstrated a greater between-run difference in functional MRI activity of secondary visual areas and cerebellum than controls. This abnormally large practice-induced signal change in visual areas, and in functionally connected posterior parietal and motor cortices, was reduced in patients in session 3 compared with 2. Our results suggest that MS inflammation alters short-term plasticity underlying motor practice. Reduction of inflammation with IFN beta is associated with a restoration of this plasticity, suggesting that modulation of inflammation may enhance recovery-oriented strategies that rely on patients' brain plasticity. Hum Brain Mapp 37:2431-2445, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  18. Acute and cumulative effects of carboplatin on renal function.

    PubMed Central

    Sleijfer, D. T.; Smit, E. F.; Meijer, S.; Mulder, N. H.; Postmus, P. E.

    1989-01-01

    Carboplatin, a cisplatinum analogue, has no reported nephrotoxicity in phase I/II studies, assessed by creatinine clearance. We prospectively determined renal function in 10 untreated lung cancer patients with normal baseline renal function, treated with carboplatin 400 mg m-2 day 1 and vincristine 2 mg day 1 and 8 every 4 weeks (max. five cycles) by means of clearance studies with 125I-sodium thalamate and 131I-hippurate to determine GFR and ERPF respectively. Tubular damage was monitored by excretion of tubular enzymes and relative beta 2-microglobulin clearance. During the first course no changes in renal function were seen. After the second course a significant fall in GFR and ERPF started, ultimately leading to a median decrease in GFR of 19.0% (range 6.8-38.7%) and in ERPF of 14% (range 0-38.9%). No increases in the excretion of tubular enzymes or changes in the relative beta 2-microglobulin clearances were seen. We conclude from our data that carboplatin causes considerable loss of renal function. Monitoring renal function in patients treated with multiple courses of carboplatin is warranted. PMID:2679841

  19. Temperature and aridity regulate spatial variability of soil multifunctionality in drylands across the globe.

    PubMed

    Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T

    2018-05-01

    The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.

  20. IMAGING WITH MULTIMODAL ADAPTIVE-OPTICS OPTICAL COHERENCE TOMOGRAPHY IN MULTIPLE EVANESCENT WHITE DOT SYNDROME: THE STRUCTURE AND FUNCTIONAL RELATIONSHIP.

    PubMed

    Labriola, Leanne T; Legarreta, Andrew D; Legarreta, John E; Nadler, Zach; Gallagher, Denise; Hammer, Daniel X; Ferguson, R Daniel; Iftimia, Nicusor; Wollstein, Gadi; Schuman, Joel S

    2016-01-01

    To elucidate the location of pathological changes in multiple evanescent white dot syndrome (MEWDS) with the use of multimodal adaptive optics (AO) imaging. A 5-year observational case study of a 24-year-old female with recurrent MEWDS. Full examination included history, Snellen chart visual acuity, pupil assessment, intraocular pressures, slit lamp evaluation, dilated fundoscopic exam, imaging with Fourier-domain optical coherence tomography (FD-OCT), blue-light fundus autofluorescence (FAF), fundus photography, fluorescein angiography, and adaptive-optics optical coherence tomography. Three distinct acute episodes of MEWDS occurred during the period of follow-up. Fourier-domain optical coherence tomography and adaptive-optics imaging showed disturbance in the photoreceptor outer segments (PR OS) in the posterior pole with each flare. The degree of disturbance at the photoreceptor level corresponded to size and extent of the visual field changes. All findings were transient with delineation of the photoreceptor recovery from the outer edges of the lesion inward. Hyperautofluorescence was seen during acute flares. Increase in choroidal thickness did occur with each active flare but resolved. Although changes in the choroid and RPE can be observed in MEWDS, Fourier-domain optical coherence tomography, and multimodal adaptive optics imaging localized the visually significant changes seen in this disease at the level of the photoreceptors. These transient retinal changes specifically occur at the level of the inner segment ellipsoid and OS/RPE line. En face optical coherence tomography imaging provides a detailed, yet noninvasive method for following the convalescence of MEWDS and provides insight into the structural and functional relationship of this transient inflammatory retinal disease.

  1. Impact on creatinine renal clearance by the interplay of multiple renal transporters: a case study with INCB039110.

    PubMed

    Zhang, Yan; Warren, Mark S; Zhang, Xuexiang; Diamond, Sharon; Williams, Bill; Punwani, Naresh; Huang, Jane; Huang, Yong; Yeleswaram, Swamy

    2015-04-01

    Serum creatinine is commonly used as a marker of renal function, but increases in serum creatinine might not represent changes in glomerular filtration rate (GFR). INCB039110 (2-(3-(4-(7H-pyrrolo[2,3-day]pyrimidin-4-yl)-1H-pyrazol-1-yl)-1-(1-(3-fluoro-2-(trifluoromethyl)isonicotinoyl)piperidin-4-yl)azetidin-3-yl)acetonitrile) is an inhibitor of the Janus kinases (JAKs) with selectivity for JAK1. In a phase 1 study, a modest and reversible increase in serum creatinine was observed after treatment with INCB039110. However, a dedicated renal function study with INCB039110, assessed by iohexol plasma clearance, conducted in healthy volunteers indicated no change in GFR. In vitro studies were therefore conducted to investigate the interaction of INCB039110 with five transporters that are likely involved in the renal clearance of creatinine. Cell systems expressing individual or multiple transporters were used, including a novel quintuple-transporter model OAT2/OCT2/OCT3/MATE1/MATE2-K. INCB039110 potently inhibited OCT2-mediated uptake of creatinine as well as MATE1-/MATE2-K-mediated efflux of creatinine. Given the interactions of INCB039110 with multiple transporters affecting creatinine uptake and efflux, an integrated system expressing all five transporters was sought; in that system, INCB039110 caused a dose-dependent decrease in transcellular transport of creatinine with weaker net inhibition compared with the effects on individual transporters. In summary, a molecular mechanism for the increase in serum creatinine by INCB039110 has been established. These studies also underline the limitations of using serum creatinine as a marker of renal function. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Comparative proteomics analysis of Spodoptera frugiperda cells during Autographa californica multiple nucleopolyhedrovirus infection.

    PubMed

    Yu, Qian; Xiong, Youhua; Gao, Hang; Liu, Jianliang; Chen, Zhiqiang; Wang, Qin; Wen, Dongling

    2015-08-04

    Increasing evidence sugggest that in addition of balculovirus controling insect host, host cells also responds to balculovirus infection. However, compared to existing knowledge on virus gene, host cell responses are relatively poorly understood. In this study, Spodoptera frugiperda (Sf9) cells were infected with Autographa californica multiple nucleopolyhedrovirus (AcMNPV). The protein composition and protein changes of Spodoptera frugiperda (Sf9) cells of different infection stages were analysed by isobaric tag for relative and absolute quantification (iTRAQ) techniques. A total of 4004 Sf9 proteins were identified by iTRAQ and 413 proteins were found as more than 1.5-fold changes in abundance. The 413 proteins were categorised according to GO classification for insects and were categorised into: biological process, molecular function and cellular component. The determination of the protein changes in infected Sf9 cells would help to better understanding of host cell responses and facilitate better design of this virus-host cell interaction in pest insect control and other related fields.

  3. Associations between cerebral amyloid and changes in cognitive function and falls risk in subcortical ischemic vascular cognitive impairment.

    PubMed

    Dao, Elizabeth; Best, John R; Hsiung, Ging-Yuek Robin; Sossi, Vesna; Jacova, Claudia; Tam, Roger; Liu-Ambrose, Teresa

    2017-06-28

    To determine the association between amyloid-beta (Aβ) plaque deposition and changes in global cognition, executive functions, information processing speed, and falls risk over a 12-month period in older adults with a primary clinical diagnosis of subcortical ischemic vascular cognitive impairment (SIVCI). This is a secondary analysis of data acquired from a subset of participants (N = 22) who were enrolled in a randomized controlled trial of aerobic exercise (NCT01027858). The subset of individuals completed an 11 C Pittsburgh compound B (PIB) scan. Cognitive function and falls risk were assessed at baseline, 6-months, and 12-months. Global cognition, executive functions, and information processing speed were measured using: 1) ADAS-Cog; 2) Trail Making Test; 3) Digit Span Test; 4) Stroop Test, and 5) Digit Symbol Substitution Test. Falls risk was measured using the Physiological Profile Assessment. Hierarchical multiple linear regression analyses determined the unique contribution of Aβ on changes in cognitive function and falls risk at 12-months after controlling for experimental group (i.e. aerobic exercise training or usual care control) and baseline performance. To correct for multiple comparisons, we applied the Benjamini-Hochberg procedure to obtain a false discovery rate corrected threshold using alpha = 0.05. Higher PIB retention was significantly associated with greater decrements in set shifting (Trail Making Test, adjusted R 2  = 35.3%, p = 0.002), attention and conflict resolution (Stroop Test, adjusted R 2  = 33.4%, p = 0.01), and information processing speed (Digit Symbol Substitution Test, adjusted R 2  = 24.4%, p = 0.001) over a 12-month period. Additionally, higher PIB retention was significantly associated with increased falls risk (Physiological Profile Assessment, adjusted R 2  = 49.1%, p = 0.04). PIB retention was not significantly associated with change in ADAS-Cog and Verbal Digit Span Test (p > 0.05). Symptoms associated with SIVCI may be amplified by secondary Aβ pathology. ClinicalTrials.gov, NCT01027858 , December 7, 2009.

  4. The Aging Lacrimal Gland: Changes in Structure and Function

    PubMed Central

    Rocha, Eduardo M.; Alves, Monica; Rios, J. David; Dartt, Darlene A.

    2014-01-01

    The afferent nerves of the cornea and conjunctiva, efferent nerves of the lacrimal gland, and the lacrimal gland are a functional unit that works cooperatively to produce the aqueous component of tears. A decrease in the lacrimal gland secretory function can lead to dry eye disease. Because aging is a risk factor for dry eye disease, study of the changes in the function of the lacrimal gland functional unit with age is important for developing treatments to prevent dry eye disease. No one mechanism is known to induce the changes that occur with aging, although multiple different mechanisms have been associated with aging. These fall into two theoretical categories: programmed theories of aging (immunological, genetic, apoptotic, and neuroendocrine) and error theories of aging (protein alteration, somatic mutation, etc). Lacrimal glands undergo structural and functional alteration with increasing age. In mouse models of aging, it has been shown that neural stimulation of protein secretion is an early target of aging, accompanied by an increase in mast cells and lipofuscin accumulation. Hyperglycemia and increased lymphocytic infiltration can contribute to this loss of function at older ages. These findings suggest that an increase in oxidative stress may play a role in the loss of lacrimal gland function with age. For the afferent and efferent neural components of the lacrimal gland functional unit, immune or inflammatory mediated decrease in nerve function could contribute to loss of lacrimal gland secretion with age. More research in this area is critically needed. PMID:18827949

  5. The aging lacrimal gland: changes in structure and function.

    PubMed

    Rocha, Eduardo M; Alves, Monica; Rios, J David; Dartt, Darlene A

    2008-10-01

    The afferent nerves of the cornea and conjunctiva, efferent nerves of the lacrimal gland, and the lacrimal gland are a functional unit that works cooperatively to produce the aqueous component of tears. A decrease in the lacrimal gland secretory function can lead to dry eye disease. Because aging is a risk factor for dry eye disease, study of the changes in the function of the lacrimal gland functional unit with age is important for developing treatments to prevent dry eye disease. No one mechanism is known to induce the changes that occur with aging, although multiple different mechanisms have been associated with aging. These fall into two theoretical categories: programmed theories of aging (immunological, genetic, apoptotic, and neuroendocrine) and error theories of aging (protein alteration, somatic mutation, etc). Lacrimal glands undergo structural and functional alteration with increasing age. In mouse models of aging, it has been shown that neural stimulation of protein secretion is an early target of aging, accompanied by an increase in mast cells and lipofuscin accumulation. Hyperglycemia and increased lymphocytic infiltration can contribute to this loss of function at older ages. These findings suggest that an increase in oxidative stress may play a role in the loss of lacrimal gland function with age. For the afferent and efferent neural components of the lacrimal gland functional unit, immune or inflammatory mediated decrease in nerve function could contribute to loss of lacrimal gland secretion with age. More research in this area is critically needed.

  6. Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences.

    PubMed

    Gunderson, Alex R; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    A major focus of current ecological research is to understand how global change makes species vulnerable to extirpation. To date, mechanistic ecophysiological analyses of global change vulnerability have focused primarily on the direct effects of changing abiotic conditions on whole-organism physiological traits, such as metabolic rate, locomotor performance, cardiac function, and critical thermal limits. However, species do not live in isolation within their physical environments, and direct effects of climate change are likely to be compounded by indirect effects that result from altered interactions with other species, such as competitors and predators. The Society for Integrative and Comparative Biology 2017 Symposium "Indirect Effects of Global Change: From Physiological and Behavioral Mechanisms to Ecological Consequences" was designed to synthesize multiple approaches to investigating the indirect effects of global change by bringing together researchers that study the indirect effects of global change from multiple perspectives across habitat, type of anthropogenic change, and level of biological organization. Our goal in bringing together researchers from different backgrounds was to foster cross-disciplinary insights into the mechanistic bases and higher-order ecological consequences of indirect effects of global change, and to promote collaboration among fields. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  7. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    PubMed

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value < 0.05, Fold change > 1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Neuroplasticity as a function of second language learning: anatomical changes in the human brain.

    PubMed

    Li, Ping; Legault, Jennifer; Litcofsky, Kaitlyn A

    2014-09-01

    The brain has an extraordinary ability to functionally and physically change or reconfigure its structure in response to environmental stimulus, cognitive demand, or behavioral experience. This property, known as neuroplasticity, has been examined extensively in many domains. But how does neuroplasticity occur in the brain as a function of an individual's experience with a second language? It is not until recently that we have gained some understanding of this question by examining the anatomical changes as well as functional neural patterns that are induced by the learning and use of multiple languages. In this article we review emerging evidence regarding how structural neuroplasticity occurs in the brain as a result of one's bilingual experience. Our review aims at identifying the processes and mechanisms that drive experience-dependent anatomical changes, and integrating structural imaging evidence with current knowledge of functional neural plasticity of language and other cognitive skills. The evidence reviewed so far portrays a picture that is highly consistent with structural neuroplasticity observed for other domains: second language experience-induced brain changes, including increased gray matter (GM) density and white matter (WM) integrity, can be found in children, young adults, and the elderly; can occur rapidly with short-term language learning or training; and are sensitive to age, age of acquisition, proficiency or performance level, language-specific characteristics, and individual differences. We conclude with a theoretical perspective on neuroplasticity in language and bilingualism, and point to future directions for research. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. [A study of factors influenced by self-efficacy for exercise among community-dwelling elderly men in urban areas].

    PubMed

    Takai, Itsushi

    2012-01-01

    It is important to promote self-efficacy for exercise for developing exercise habit. The purpose of this study was to investigate factors influenced by self-efficacy for exercise among community-dwelling elderly men in urban areas. The subjects were 69 elderly men (mean age of 74.2±2.0 SD) who had given approval for participation in the study. We examined the following factors: family situation, history of falls, frequency of going out, stage model of a change, self-efficacy for exercise, fall efficacy scale (FES), geriatric depression scale (GDS), subjective health, functional ability and motor function (5 m walking time, chair stand test-5times). Analysis of variance was used to assess a stage model of a change differences in self-efficacy for exercise and other measures. Correlation analysis and multiple regression analysis were performed to determine the relationships between self-efficacy for exercise and other measures. We found that self-efficacy of exercise, FES, GDS (p<0.01) and CST (p<0.05) vary depending on the stage model of change. Self-efficacy for exercise was found to correlate with psychological factors and functional ability (|r|=0.47-0.67). Multiple regression analysis revealed that the independent factors related to self-efficacy for exercise were FES and GDS. FES and GDS were found to be significant and independent predictors of self-efficacy for exercise in community-dwelling elderly men in urban areas. We should consider not only the approach based on behavioral science but also mental support for depression and fear of falling to promote exercise self-efficacy.

  10. Effects of different agricultural management on a stagnic Luvisol in Lower Saxony, Germany - Factors for sustainable soil protection

    NASA Astrophysics Data System (ADS)

    Lorenz, Marco; Brunotte, Joachim; Ortmeier, Berthold

    2017-04-01

    Regarding increasing pressures by global societal and climate change, for example, the assessment of the impact of land use and land management practices on land productivity, land degradation and the related decrease in sustainable food production and the provision of ecosystem services gains increasing interest. Regarding international research on land use and soil threats, main problems in agricultural land use on global scale are erosion by water and wind, soil organic matter loss, salinization, depletion of nutrients, chemical and physical deterioration, including e.g. soil compaction. When coming to soil sciences, basically soil functions are affected negatively by intensive food production and field traffic. Management based negative changes in soil functions and a suboptimal soil structure have multiple negative effects on physical, biological and chemical soil functions, like a poor water balance, air and water permeability, disturbed soil fauna, impeded root penetration etc. and in consequence on the achievable yields. The presentation deals with the multiple effects of different agricultural machinery and technologies and different agricultural soil tillage (e.g. no-till, conservation tillage, ploughing), on various soil properties of a stagnic Luvisol in Lower Saxony, Germany. These are e.g. bulk density, air capacity, saturated water permeability, changes in pore size distribution and water retention curve as well as crop yields. Furthermore results of a long term study of bulk density and total pore size on more then 20 farms in Lower Saxony since the year 1952 will be presented. Finally, key factors and first recommendations for sustainable agricultural soil protection will be derived from the results.

  11. Improved physical fitness correlates with improved cognition in multiple sclerosis.

    PubMed

    Beier, Meghan; Bombardier, Charles H; Hartoonian, Narineh; Motl, Robert W; Kraft, George H

    2014-07-01

    To determine whether there is an association between improvements in objective measures of physical fitness and performance on cognitive tests in people with multiple sclerosis (MS). Post hoc correlational analysis in which people demonstrating physical improvement were compared with those not demonstrating physical improvement. Individuals with MS residing in the community. Adults with clinically confirmed MS (N=88) who participated in a controlled trial of a telephone-based health promotion intervention, chose to work on exercise, and completed the pre- and postintervention assessments. Participants were measured for strength (isokinetic dynamometer), aerobic fitness (bicycle ergometer), and cognition (Paced Auditory Serial Addition Test [PASAT], Trail Making Test [TMT]) at baseline and 12 weeks later. Change in fitness was calculated by subtracting each participant's baseline score from the outcome score, and then transforming the difference to a z score. Individuals with a z score ≥1 on any fitness measure were placed in the physically improved group (n=25). All others were in the physically not improved group (n=57). After controlling for covariates (age, sex, ethnicity, education, disease activity, MS type), there was a significant group-by-time interaction, suggesting that cognitive functioning changed over time based on level of fitness. Participants in the physically improved group demonstrated improved performance on measures of executive functioning after 12 weeks of exercise. The results of this study lend support to the hypothesis that change in fitness is associated with improved executive functioning in people with MS. Copyright © 2014 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Using large-scale Granger causality to study changes in brain network properties in the Clinically Isolated Syndrome (CIS) stage of multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Abidin, Anas Z.; Chockanathan, Udaysankar; DSouza, Adora M.; Inglese, Matilde; Wismüller, Axel

    2017-03-01

    Clinically Isolated Syndrome (CIS) is often considered to be the first neurological episode associated with Multiple sclerosis (MS). At an early stage the inflammatory demyelination occurring in the CNS can manifest as a change in neuronal metabolism, with multiple asymptomatic white matter lesions detected in clinical MRI. Such damage may induce topological changes of brain networks, which can be captured by advanced functional MRI (fMRI) analysis techniques. We test this hypothesis by capturing the effective relationships of 90 brain regions, defined in the Automated Anatomic Labeling (AAL) atlas, using a large-scale Granger Causality (lsGC) framework. The resulting networks are then characterized using graph-theoretic measures that quantify various network topology properties at a global as well as at a local level. We study for differences in these properties in network graphs obtained for 18 subjects (10 male and 8 female, 9 with CIS and 9 healthy controls). Global network properties captured trending differences with modularity and clustering coefficient (p<0.1). Additionally, local network properties, such as local efficiency and the strength of connections, captured statistically significant (p<0.01) differences in some regions of the inferior frontal and parietal lobe. We conclude that multivariate analysis of fMRI time-series can reveal interesting information about changes occurring in the brain in early stages of MS.

  13. Effects on Cognition of Stereotactic Lesional Surgery For the Treatment of Tremor in Multiple Sclerosis

    PubMed Central

    Jahanshahi, Marjan; Pieter, Socorro; Alusi, Sundus H.; Jones, Catherine R. G.; Glickman, Scott; Stein, John; Aziz, Tipu; Bain, Peter G.

    2008-01-01

    Objective: To assess the effect of stereotactic lesional surgery for treatment of tremor in multiple sclerosis on cognition. Methods: Eleven patients (3 males, 8 females) with multiple sclerosis participated in the study. Six subjects comprised the surgical group and five the matched control group. All patients were assessed at baseline and three months using a neuropsychological test battery that included measures of intellectual ability, memory, language, perception and executive function. Results: There were no significant differences between the surgical and control groups and no change from pre to post testing except for a decline in scores on the Mini-Mental State Examination (MMSE), WAIS-R Digit Span and Verbal Fluency in the surgical group. Conclusions: The results indicate that stereotactic lesional surgery does not result in major cognitive impairment in multiple sclerosis. However, the decline in MMSE scores, digit span and verbal fluency require further investigation in a larger sample. PMID:19491469

  14. A Semiparametric Change-Point Regression Model for Longitudinal Observations.

    PubMed

    Xing, Haipeng; Ying, Zhiliang

    2012-12-01

    Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.

  15. Climate-change impacts on understorey bamboo species and giant pandas in China's Qinling Mountains

    NASA Astrophysics Data System (ADS)

    Tuanmu, Mao-Ning; Viña, Andrés; Winkler, Julie A.; Li, Yu; Xu, Weihua; Ouyang, Zhiyun; Liu, Jianguo

    2013-03-01

    Climate change is threatening global ecosystems through its impact on the survival of individual species and their ecological functions. Despite the important role of understorey plants in forest ecosystems, climate impact assessments on understorey plants and their role in supporting wildlife habitat are scarce in the literature. Here we assess climate-change impacts on understorey bamboo species with an emphasis on their ecological function as a food resource for endangered giant pandas (Ailuropoda melanoleuca). An ensemble of bamboo distribution projections associated with multiple climate-change projections and bamboo dispersal scenarios indicates a substantial reduction in the distributional ranges of three dominant bamboo species in the Qinling Mountains, China during the twenty-first century. As these three species comprise almost the entire diet of the panda population in the region, the projected changes in bamboo distribution suggest a potential shortage of food for this population, unless alternative food sources become available. Although the projections were developed under unavoidable simplifying assumptions and uncertainties, they indicate potential challenges for panda conservation and underscore the importance of incorporating interspecific interactions into climate-change impact assessments and associated conservation planning.

  16. Task-Dependent Changes in Cross-Level Coupling between Single Neurons and Oscillatory Activity in Multiscale Networks

    PubMed Central

    Canolty, Ryan T.; Ganguly, Karunesh; Carmena, Jose M.

    2012-01-01

    Understanding the principles governing the dynamic coordination of functional brain networks remains an important unmet goal within neuroscience. How do distributed ensembles of neurons transiently coordinate their activity across a variety of spatial and temporal scales? While a complete mechanistic account of this process remains elusive, evidence suggests that neuronal oscillations may play a key role in this process, with different rhythms influencing both local computation and long-range communication. To investigate this question, we recorded multiple single unit and local field potential (LFP) activity from microelectrode arrays implanted bilaterally in macaque motor areas. Monkeys performed a delayed center-out reach task either manually using their natural arm (Manual Control, MC) or under direct neural control through a brain-machine interface (Brain Control, BC). In accord with prior work, we found that the spiking activity of individual neurons is coupled to multiple aspects of the ongoing motor beta rhythm (10–45 Hz) during both MC and BC, with neurons exhibiting a diversity of coupling preferences. However, here we show that for identified single neurons, this beta-to-rate mapping can change in a reversible and task-dependent way. For example, as beta power increases, a given neuron may increase spiking during MC but decrease spiking during BC, or exhibit a reversible shift in the preferred phase of firing. The within-task stability of coupling, combined with the reversible cross-task changes in coupling, suggest that task-dependent changes in the beta-to-rate mapping play a role in the transient functional reorganization of neural ensembles. We characterize the range of task-dependent changes in the mapping from beta amplitude, phase, and inter-hemispheric phase differences to the spike rates of an ensemble of simultaneously-recorded neurons, and discuss the potential implications that dynamic remapping from oscillatory activity to spike rate and timing may hold for models of computation and communication in distributed functional brain networks. PMID:23284276

  17. A passive exoskeleton can push your life up: application on multiple sclerosis patients.

    PubMed

    Di Russo, Francesco; Berchicci, Marika; Perri, Rinaldo Livio; Ripani, Francesca Romana; Ripani, Maurizio

    2013-01-01

    In the present study, we report the benefits of a passive and fully articulated exoskeleton on multiple sclerosis patients by means of behavioral and electrophysiological measures, paying particular attention to the prefrontal cortex activity. Multiple sclerosis is a neurological condition characterized by lesions of the myelin sheaths that encapsulate the neurons of the brain, spine and optic nerve, and it causes transient or progressive symptoms and impairments in gait and posture. Up to 50% of multiple sclerosis patients require walking aids and 10% are wheelchair-bound 15 years following the initial diagnosis. We tested the ability of a new orthosis, the "Human Body Posturizer", designed to improve the structural and functional symmetry of the body through proprioception, in multiple sclerosis patients. We observed that a single Human Body Posturizer application improved mobility, ambulation and response accuracy, in all of the tested patients. Most importantly, we associated these clinical observations and behavioral effects to changes in brain activity, particularly in the prefrontal cortex.

  18. The messenger matters: Pollinator functional group influences mating system dynamics.

    PubMed

    Weber, Jennifer J

    2017-08-01

    The incredible diversity of plant mating systems has fuelled research in evolutionary biology for over a century. Currently, there is broad concern about the impact of rapidly changing pollinator communities on plant populations. Very few studies, however, examine patterns and mechanisms associated with multiple paternity from cross-pollen loads. Often, foraging pollinators collect a mixed pollen load that may result in the deposition of pollen from different sires to receptive stigmas. Coincident deposition of self- and cross-pollen leads to interesting mating system dynamics and has been investigated in numerous species. But, mixed pollen loads often consist of a diversity of cross-pollen and result in multiple sires of seeds within a fruit. In this issue of Molecular Ecology, Rhodes, Fant, and Skogen () examine how pollinator identity and spatial isolation influence multiple paternity within fruits of a self-incompatible evening primrose. The authors demonstrate that pollen pool diversity varies between two pollinator types, hawkmoths and diurnal solitary bees. Further, progeny from more isolated plants were less likely to have multiple sires regardless of the pollinator type. Moving forward, studies of mating system dynamics should consider the implications of multiple paternity and move beyond the self- and cross-pollination paradigm. Rhodes et al. () demonstrate the importance of understanding the roles that functionally diverse pollinators play in mating system dynamics. © 2017 John Wiley & Sons Ltd.

  19. Functional traits help to explain half-century long shifts in pollinator distributions.

    PubMed

    Aguirre-Gutiérrez, Jesús; Kissling, W Daniel; Carvalheiro, Luísa G; WallisDeVries, Michiel F; Franzén, Markus; Biesmeijer, Jacobus C

    2016-04-15

    Changes in climate and land use can have important impacts on biodiversity. Species respond to such environmental modifications by adapting to new conditions or by shifting their geographic distributions towards more suitable areas. The latter might be constrained by species' functional traits that influence their ability to move, reproduce or establish. Here, we show that functional traits related to dispersal, reproduction, habitat use and diet have influenced how three pollinator groups (bees, butterflies and hoverflies) responded to changes in climate and land-use in the Netherlands since 1950. Across the three pollinator groups, we found pronounced areal range expansions (>53%) and modelled range shifts towards the north (all taxa: 17-22 km), west (bees: 14 km) and east (butterflies: 11 km). The importance of specific functional traits for explaining distributional changes varied among pollinator groups. Larval diet preferences (i.e. carnivorous vs. herbivorous/detritivorous and nitrogen values of host plants, respectively) were important for hoverflies and butterflies, adult body size for hoverflies, and flight period length for all groups. Moreover, interactions among multiple traits were important to explain species' geographic range shifts, suggesting that taxon-specific multi-trait analyses are needed to predict how global change will affect biodiversity and ecosystem services.

  20. Protein function prediction--the power of multiplicity.

    PubMed

    Rentzsch, Robert; Orengo, Christine A

    2009-04-01

    Advances in experimental and computational methods have quietly ushered in a new era in protein function annotation. This 'age of multiplicity' is marked by the notion that only the use of multiple tools, multiple evidence and considering the multiple aspects of function can give us the broad picture that 21st century biology will need to link and alter micro- and macroscopic phenotypes. It might also help us to undo past mistakes by removing errors from our databases and prevent us from producing more. On the downside, multiplicity is often confusing. We therefore systematically review methods and resources for automated protein function prediction, looking at individual (biochemical) and contextual (network) functions, respectively.

  1. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis

    PubMed Central

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform. PMID:23248613

  2. Comprehensive Method for Culturing Embryonic Dorsal Root Ganglion Neurons for Seahorse Extracellular Flux XF24 Analysis.

    PubMed

    Lange, Miranda; Zeng, Yan; Knight, Andrew; Windebank, Anthony; Trushina, Eugenia

    2012-01-01

    Changes in mitochondrial dynamics and function contribute to progression of multiple neurodegenerative diseases including peripheral neuropathies. The Seahorse Extracellular Flux XF24 analyzer provides a comprehensive assessment of the relative state of glycolytic and aerobic metabolism in live cells making this method instrumental in assessing mitochondrial function. One of the most important steps in the analysis of mitochondrial respiration using the Seahorse XF24 analyzer is plating a uniform monolayer of firmly attached cells. However, culturing of primary dorsal root ganglion (DRG) neurons is associated with multiple challenges, including their propensity to form clumps and detach from the culture plate. This could significantly interfere with proper analysis and interpretation of data. We have tested multiple cell culture parameters including coating substrates, culture medium, XF24 microplate plastics, and plating techniques in order to optimize plating conditions. Here we describe a highly reproducible method to obtain neuron-enriched monolayers of securely attached dissociated primary embryonic (E15) rat DRG neurons suitable for analysis with the Seahorse XF24 platform.

  3. Perinatal Medical Variables Predict Executive Function within a Sample of Preschoolers Born Very Low Birth Weight

    PubMed Central

    Duvall, Susanne W.; Erickson, Sarah J.; MacLean, Peggy; Lowe, Jean R.

    2014-01-01

    The goal was to identify perinatal predictors of early executive dysfunction in preschoolers born very low birth weight. Fifty-seven preschoolers completed three executive function tasks (Dimensional Change Card Sort-Separated (inhibition, working memory and cognitive flexibility), Bear Dragon (inhibition and working memory) and Gift Delay Open (inhibition)). Relationships between executive function and perinatal medical severity factors (gestational age, days on ventilation, size for gestational age, maternal steroids and number of surgeries), and chronological age were investigated by multiple linear regression and logistic regression. Different perinatal medical severity factors were predictive of executive function tasks, with gestational age predicting Bear Dragon and Gift Open; and number of surgeries and maternal steroids predicting performance on Dimensional Change Card Sort-Separated. By understanding the relationship between perinatal medical severity factors and preschool executive outcomes, we may be able to identify children at highest risk for future executive dysfunction, thereby focusing targeted early intervention services. PMID:25117418

  4. Changes in functional organization and white matter integrity in the connectome in Parkinson's disease.

    PubMed

    Tinaz, Sule; Lauro, Peter M; Ghosh, Pritha; Lungu, Codrin; Horovitz, Silvina G

    2017-01-01

    Parkinson's disease (PD) leads to dysfunction in multiple cortico-striatal circuits. The neurodegeneration has also been associated with impaired white matter integrity. This structural and functional "disconnection" in PD needs further characterization. We investigated the structural and functional organization of the PD whole brain connectome consisting of 200 nodes using diffusion tensor imaging and resting-state functional MRI, respectively. Data from 20 non-demented PD patients on dopaminergic medication and 20 matched controls were analyzed using graph theory-based methods. We focused on node strength, clustering coefficient, and local efficiency as measures of local network properties; and network modularity as a measure of information flow. PD patients showed reduced white matter connectivity in frontoparietal-striatal nodes compared to controls, but no change in modular organization of the white matter tracts. PD group also showed reduction in functional local network metrics in many nodes distributed across the connectome. There was also decreased functional modularity in the core cognitive networks including the default mode and dorsal attention networks, and sensorimotor network, as well as a lack of modular distinction in the orbitofrontal and basal ganglia nodes in the PD group compared to controls. Our results suggest that despite subtle white matter connectivity changes, the overall structural organization of the PD connectome remains robust at relatively early disease stages. However, there is a breakdown in the functional modular organization of the PD connectome.

  5. Validation of a Quantitative Single-Subject Based Evaluation for Rehabilitation-Induced Improvement Assessment.

    PubMed

    Gandolla, Marta; Molteni, Franco; Ward, Nick S; Guanziroli, Eleonora; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-11-01

    The foreseen outcome of a rehabilitation treatment is a stable improvement on the functional outcomes, which can be longitudinally assessed through multiple measures to help clinicians in functional evaluation. In this study, we propose an automatic comprehensive method of combining multiple measures in order to assess a functional improvement. As test-bed, a functional electrical stimulation based treatment for foot drop correction performed with chronic post-stroke participants is presented. Patients were assessed on five relevant outcome measures before, after intervention, and at a follow-up time-point. A novel algorithm based on variables minimum detectable change is proposed and implemented in a custom-made software, combining the outcome measures to obtain a unique parameter: capacity score. The difference between capacity scores at different timing is three holded to obtain improvement evaluation. Ten clinicians evaluated patients on the Improvement Clinical Global Impression scale. Eleven patients underwent the treatment, and five resulted to achieve a stable functional improvement, as assessed by the proposed algorithm. A statistically significant agreement between intra-clinicians and algorithm-clinicians evaluations was demonstrated. The proposed method evaluates functional improvement on a single-subject yes/no base by merging different measures (e.g., kinematic, muscular) and it is validated against clinical evaluation.

  6. Metabolic Predictors of Change in Vascular Function: Prospective Associations From a Community-Based Cohort.

    PubMed

    Zachariah, Justin P; Rong, Jian; Larson, Martin G; Hamburg, Naomi M; Benjamin, Emelia J; Vasan, Ramachandran S; Mitchell, Gary F

    2018-02-01

    Vascular function varies with age because of physiological and pathological factors. We examined relations of longitudinal change in vascular function with change in metabolic traits. Longitudinal changes in vascular function and metabolic traits were examined in 5779 participants (mean age, 49.8±14.5 years; 54% women) who attended sequential examinations of the Framingham Offspring, Third Generation, and Omni-1 and Omni-2 cohorts. Multivariable regression analysis related changes in vascular measures (dependent variables), including carotid-femoral pulse wave velocity (CFPWV), forward pressure wave amplitude, characteristic impedance, central pulse pressure, and mean arterial pressure (MAP), with change in body mass index, fasting total:high-density lipoprotein cholesterol ratio, serum triglycerides, and blood glucose. Analyses accounted for baseline value of each vascular and metabolic measure, MAP change, and multiple comparisons. On follow-up (mean, 5.9±0.6 years), aortic stiffness (CFPWV, 0.2±1.6 m/s), and pressure pulsatility (forward pressure wave, 1.2±12.4 mm Hg; characteristic impedance, 23±73 dyne×sec/cm 5 ; central pulse pressure, 2.6±14.7 mm Hg; all P <0.0001) increased, whereas MAP fell (-3±10 mm Hg; P <0.0001). Worsening of each metabolic trait was associated with increases in CFPWV and MAP ( P <0.0001 for all associations) and an increase in MAP was associated with an increase in CFPWV. Overall, worsening metabolic traits were associated with worsening aortic stiffness and MAP. Opposite net change in aortic stiffness and MAP suggests that factors other than distending pressure contributed to the observed increase in aortic stiffness. Change in metabolic traits explained a greater proportion of the change in CFPWV and MAP than baseline metabolic values. © 2017 American Heart Association, Inc.

  7. Readiness to change as a moderator of outcome in transdiagnostic treatment

    PubMed Central

    BOSWELL, JAMES F.; SAUER, SHANNON E.; GALLAGHER, MATTHEW W.; DELGADO, NICOLE; BARLOW, DAVID H.

    2012-01-01

    Initial symptom severity is a client characteristic associated with psychotherapy outcome, although this relationship is not well-understood. Readiness to change is a factor that may influence this relationship. This study tested readiness as a moderator of the relationship between initial severity and symptom change. Data were derived from an RCT examining the efficacy of a transdiagnostic CBT treatment. Readiness was assessed with the URICA, and symptom and functioning outcomes were assessed. Multiple regression models indicated that severity was associated with less overall change, yet readiness moderated this relationship. At higher levels of readiness, the effect of initial severity on outcome was essentially reversed; for clients with higher initial readiness, higher levels of severity were associated with greater change. PMID:22607634

  8. Behavior and Symptom Change Among Women Treated with Placebo for Sexual Dysfunction

    PubMed Central

    Bradford, Andrea; Meston, Cindy M.

    2011-01-01

    Introduction In clinical trials of drug treatments for women’s sexual dysfunction, placebo responses have often been substantial. However, little is known about the clinical significance, specificity, predictors, and potential mechanisms of placebo response in sexual dysfunction. Aim We aimed to determine the nature and predictors of sexual function outcomes in women treated with placebo for female sexual arousal disorder (FSAD). Methods We conducted a secondary analysis of data from the placebo arm of a 12-week, multisite, randomized controlled pharmaceutical trial for FSAD (N = 50). We analyzed the magnitude, domain specificity, and clinical significance of sexual function scores at baseline, 4, 8, and 12 weeks (post-treatment). We examined longitudinal change in sexual function outcomes as a function of several baseline variables (e.g., age, symptom-related distress) and in relation to changes in sexual behavior frequency during the trial. Main Outcome Measure Female Sexual Function Index total score. Results The magnitude of change at post-treatment was clinically significant in approximately one-third of placebo recipients. Effect sizes were similar across multiple aspects of sexual function. Symptom improvement was strongly related to the frequency of satisfying sexual encounters during treatment. However, the relationship between sexual encounter frequency and outcome varied significantly between participants. Conclusions A substantial number of women experienced clinically significant improvement in sexual function during treatment with placebo. Changes in sexual behavior during the trial, more so than participant age or symptom severity at baseline, appeared to be an important determinant of outcome. Contextual and procedural aspects of the clinical trial may have influenced outcomes in the absence of an active drug treatment. PMID:20849412

  9. Three-dimensional functional magnetic resonance imaging of human brain on a clinical 1.5-T scanner.

    PubMed Central

    van Gelderen, P; Ramsey, N F; Liu, G; Duyn, J H; Frank, J A; Weinberger, D R; Moonen, C T

    1995-01-01

    Functional magnetic resonance imaging (fMRI) is a tool for mapping brain function that utilizes neuronal activity-induced changes in blood oxygenation. An efficient three-dimensional fMRI method is presented for imaging brain activity on conventional, widely available, 1.5-T scanners, without additional hardware. This approach uses large magnetic susceptibility weighting based on the echo-shifting principle combined with multiple gradient echoes per excitation. Motor stimulation, induced by self-paced finger tapping, reliably produced significant signal increase in the hand region of the contralateral primary motor cortex in every subject tested. Images Fig. 2 Fig. 3 PMID:7624341

  10. Using Evolution to Guide Protein Engineering: The Devil IS in the Details.

    PubMed

    Swint-Kruse, Liskin

    2016-07-12

    For decades, protein engineers have endeavored to reengineer existing proteins for novel applications. Overall, protein folds and gross functions can be readily transferred from one protein to another by transplanting large blocks of sequence (i.e., domain recombination). However, predictably fine-tuning function (e.g., by adjusting ligand affinity, specificity, catalysis, and/or allosteric regulation) remains a challenge. One approach has been to use the sequences of protein families to identify amino acid positions that change during the evolution of functional variation. The rationale is that these nonconserved positions could be mutated to predictably fine-tune function. Evolutionary approaches to protein design have had some success, but the engineered proteins seldom replicate the functional performances of natural proteins. This Biophysical Perspective reviews several complexities that have been revealed by evolutionary and experimental studies of protein function. These include 1) challenges in defining computational and biological thresholds that define important amino acids; 2) the co-occurrence of many different patterns of amino acid changes in evolutionary data; 3) difficulties in mapping the patterns of amino acid changes to discrete functional parameters; 4) the nonconventional mutational outcomes that occur for a particular group of functionally important, nonconserved positions; 5) epistasis (nonadditivity) among multiple mutations; and 6) the fact that a large fraction of a protein's amino acids contribute to its overall function. To overcome these challenges, new goals are identified for future studies. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Genetic Particle Swarm Optimization–Based Feature Selection for Very-High-Resolution Remotely Sensed Imagery Object Change Detection

    PubMed Central

    Chen, Qiang; Chen, Yunhao; Jiang, Weiguo

    2016-01-01

    In the field of multiple features Object-Based Change Detection (OBCD) for very-high-resolution remotely sensed images, image objects have abundant features and feature selection affects the precision and efficiency of OBCD. Through object-based image analysis, this paper proposes a Genetic Particle Swarm Optimization (GPSO)-based feature selection algorithm to solve the optimization problem of feature selection in multiple features OBCD. We select the Ratio of Mean to Variance (RMV) as the fitness function of GPSO, and apply the proposed algorithm to the object-based hybrid multivariate alternative detection model. Two experiment cases on Worldview-2/3 images confirm that GPSO can significantly improve the speed of convergence, and effectively avoid the problem of premature convergence, relative to other feature selection algorithms. According to the accuracy evaluation of OBCD, GPSO is superior at overall accuracy (84.17% and 83.59%) and Kappa coefficient (0.6771 and 0.6314) than other algorithms. Moreover, the sensitivity analysis results show that the proposed algorithm is not easily influenced by the initial parameters, but the number of features to be selected and the size of the particle swarm would affect the algorithm. The comparison experiment results reveal that RMV is more suitable than other functions as the fitness function of GPSO-based feature selection algorithm. PMID:27483285

  12. Effects of Beta-Amyloid on Resting State Functional Connectivity Within and Between Networks Reflect Known Patterns of Regional Vulnerability

    DOE PAGES

    Elman, Jeremy A.; Madison, Cindee M.; Baker, Suzanne L.; ...

    2014-11-07

    In Alzheimer's disease (AD), Beta-amyloid (Aβ) deposition is one of the hallmarks. However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aβ-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aβ deposition as measured by [ 11 C]PIB-PET inmore » 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aβ-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aβ-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.« less

  13. Does hippotherapy effect use of sensory information for balance in people with multiple sclerosis?

    PubMed

    Lindroth, Jodi L; Sullivan, Jessica L; Silkwood-Sherer, Debbie

    2015-01-01

    This case-series study aimed to determine if there were observable changes in sensory processing for postural control in individuals with multiple sclerosis (MS) following physical therapy using hippotherapy (HPOT), or changes in balance and functional gait. This pre-test non-randomized design study, with follow-up assessment at 6 weeks, included two females and one male (age range 37-60 years) with diagnoses of relapse-remitting or progressive MS. The intervention consisted of twelve 40-min physical therapy sessions which included HPOT twice a week for 6 weeks. Sensory organization and balance were assessed by the Sensory Organization Test (SOT) and Berg Balance Scale (BBS). Gait was assessed using the Functional Gait Assessment (FGA). Following the intervention period, all three participants showed improvements in SOT (range 1-8 points), BBS (range 2-6 points), and FGA (average 4 points) scores. These improvements were maintained or continued to improve at follow-up assessment. Two of the three participants no longer over-relied on vision and/or somatosensory information as the primary sensory input for postural control, suggesting improved use of sensory information for balance. The results indicate that HPOT may be a beneficial physical therapy treatment strategy to improve balance, functional gait, and enhance how some individuals with MS process sensory cues for postural control. Randomized clinical trials will be necessary to validate results of this study.

  14. Minimal invasive epicardial lead implantation: optimizing cardiac resynchronization with a new mapping device for epicardial lead placement.

    PubMed

    Maessen, J G; Phelps, B; Dekker, A L A J; Dijkman, B

    2004-05-01

    To optimize resynchronization in biventricular pacing with epicardial leads, mapping to determine the best pacing site, is a prerequisite. A port access surgical mapping technique was developed that allowed multiple pace site selection and reproducible lead evaluation and implantation. Pressure-volume loops analysis was used for real time guidance in targeting epicardial lead placement. Even the smallest changes in lead position revealed significantly different functional results. Optimizing the pacing site with this technique allowed functional improvement up to 40% versus random pace site selection.

  15. Experimental Research Regarding The Motion Capacity Of A Robotic Arm

    NASA Astrophysics Data System (ADS)

    Dumitru, Violeta Cristina

    2015-09-01

    This paper refers to the development of necessary experiments which obtained dynamic parameters (force, displacement) for a modular mechanism with multiple vertebrae. This mechanism performs functions of inspection and intervention in small spaces. Mechanical structure allows functional parameters to achieve precise movements to an imposed target. Will be analyzed the dynamic of the mechanisms using simulation instruments DimamicaRobot.tst under TestPoint programming environment and the elasticity of the tension cables. It will be changes on the mechanism so that spatial movement of the robotic arm is optimal.

  16. Immunomodulatory effects of orally administered cannabinoids in multiple sclerosis.

    PubMed

    Killestein, J; Hoogervorst, E L J; Reif, M; Blauw, B; Smits, M; Uitdehaag, B M J; Nagelkerken, L; Polman, C H

    2003-04-01

    Cannabinoids can modulate the function of immune cells. We here present the first human in vivo study measuring immune function in 16 MS patients treated with oral cannabinoids. A modest increase of TNF-alpha in LPS-stimulated whole blood was found during cannabis plant-extract treatment (p=0.037), with no change in other cytokines. In the subgroup of patients with high adverse event scores, we found an increase in plasma IL-12p40 (p=0.002). The results suggest pro-inflammatory disease-modifying potential of cannabinoids in MS.

  17. Repetition priming influences distinct brain systems: evidence from task-evoked data and resting-state correlations.

    PubMed

    Wig, Gagan S; Buckner, Randy L; Schacter, Daniel L

    2009-05-01

    Behavioral dissociations suggest that a single experience can separately influence multiple processing components. Here we used a repetition priming functional magnetic resonance imaging paradigm that directly contrasted the effects of stimulus and decision changes to identify the underlying brain systems. Direct repetition of stimulus features caused marked reductions in posterior regions of the inferior temporal lobe that were insensitive to whether the decision was held constant or changed between study and test. By contrast, prefrontal cortex showed repetition effects that were sensitive to the exact stimulus-to-decision mapping. Analysis of resting-state functional connectivity revealed that the dissociated repetition effects are embedded within distinct brain systems. Regions that were sensitive to changes in the stimulus correlated with perceptual cortices, whereas the decision changes attenuated activity in regions correlated with middle-temporal regions and a frontoparietal control system. These results thus explain the long-known dissociation between perceptual and conceptual components of priming by revealing how a single experience can separately influence distinct, concurrently active brain systems.

  18. Mapping behavioural evolution onto brain evolution: the strategic roles of conserved organization in individuals and species.

    PubMed

    Finlay, Barbara L; Hinz, Flora; Darlington, Richard B

    2011-07-27

    The pattern of individual variation in brain component structure in pigs, minks and laboratory mice is very similar to variation across species in the same components, at a reduced scale. This conserved pattern of allometric scaling resembles robotic architectures designed to be robust to changes in computing power and task demands, and may reflect the mechanism by which both growing and evolving brains defend basic sensory, motor and homeostatic functions at multiple scales. Conserved scaling rules also have implications for species-specific sensory and social communication systems, motor competencies and cognitive abilities. The role of relative changes in neuron number in the central nervous system in producing species-specific behaviour is thus highly constrained, while changes in the sensory and motor periphery, and in motivational and attentional systems increase in probability as the principal loci producing important changes in functional neuroanatomy between species. By their nature, these loci require renewed attention to development and life history in the initial organization and production of species-specific behavioural abilities.

  19. Development of a Novel Therapeutic Paradigm Utilizing a Mammary Gland-Targeted, Bin-1 Knockout Mouse Model

    DTIC Science & Technology

    2008-03-01

    during Aging, Particularly Lung Cancer Mee Young Chang, 1 Janette Boulden, 1 Jessica B. Katz, 1 Liwei Wang, 3 Thomas J. Meyer, 2 Alejandro Peralta Soler...Bin1 functionally interacts with Myc in cells and inhibits cell proliferation by multiple mechanisms. Oncogene 1999;18:3564–73. 3. Pineda -Lucena A, Ho

  20. Women's Voices on Recovery: A Multi-Method Study of the Complexity of Recovery from Child Sexual Abuse

    ERIC Educational Resources Information Center

    Banyard, Victoria L.; Williams, Linda M.

    2007-01-01

    Objective: The current study was exploratory and used multiple methods to examine patterns of stability and change in resilient functioning across 7 years of early adulthood. Second, qualitative data were used to examine in greater detail survivors' own narratives about correlates of healing. Method: This study was longitudinal and used both…

  1. ϒ(nS) polarizations versus particle multiplicity in pp collisions at √{ s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Fabjan, C.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rad, N.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Brun, H.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Fang, W.; Fasanella, G.; Favart, L.; Goldouzian, R.; Grebenyuk, A.; Karapostoli, G.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Caudron, A.; Ceard, L.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Musich, M.; Nuttens, C.; Perrini, L.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, F. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mora Herrera, C.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Hadjiiska, R.; Iaydjiev, P.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Leggat, D.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Spiezia, A.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Abdelalim, A. A.; Awad, A.; Mahrous, A.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Peltola, T.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Abdulsalam, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Davignon, O.; Filipovic, N.; Granier de Cassagnac, R.; Jo, M.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Pigard, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; van Hove, P.; Gadrat, S.; Beauceron, S.; Bernet, C.; Boudoul, G.; Bouvier, E.; Carrillo Montoya, C. A.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Lagarde, F.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Toriashvili, T.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Mukherjee, S.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Hoehle, F.; Kargoll, B.; Kress, T.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Borras, K.; Burgmeier, A.; Campbell, A.; Contreras-Campana, C.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Roland, B.; Sahin, M. Ö.; Saxena, P.; Schoerner-Sadenius, T.; Seitz, C.; Spannagel, S.; Stefaniuk, N.; Trippkewitz, K. D.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Kovalchuk, N.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Meyer, M.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Scharf, C.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schumann, S.; Schwandt, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Stober, F. M.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Vormwald, B.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; de Boer, W.; Descroix, A.; Dierlamm, A.; Fink, S.; Frensch, F.; Friese, R.; Giffels, M.; Gilbert, A.; Haitz, D.; Hartmann, F.; Heindl, S. M.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Maier, B.; Mildner, H.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Schröder, M.; Sieber, G.; Simonis, H. J.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weber, M.; Weiler, T.; Williamson, S.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Choudhury, S.; Mal, P.; Mandal, K.; Sahoo, D. K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Singh, J. B.; Walia, G.; Kumar, Ashok; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Malhotra, S.; Naimuddin, M.; Nishu, N.; Ranjan, K.; Sharma, R.; Sharma, V.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Majumdar, N.; Modak, A.; Mondal, K.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Jain, Sa.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sur, N.; Sutar, B.; Wickramage, N.; Chauhan, S.; Dube, S.; Kapoor, A.; Kothekar, K.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Colaleo, A.; Creanza, D.; Cristella, L.; de Filippis, N.; de Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Silvestris, L.; Venditti, R.; Abbiendi, G.; Battilana, C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Chhibra, S. S.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Cappello, G.; Chiorboli, M.; Costa, S.; di Mattia, A.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Primavera, F.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Monge, M. R.; Robutti, E.; Tosi, S.; Brianza, L.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Benato, L.; Bisello, D.; Boletti, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Fanzago, F.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Magnani, A.; Montagna, P.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'Imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Monteil, E.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Ravera, F.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Zanetti, A.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Brochero Cifuentes, J. A.; Kim, H.; Kim, T. J.; Song, S.; Cho, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Lim, J.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, H.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Ryu, M. S.; Choi, Y.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Dudenas, V.; Juodagalvis, A.; Vaitkus, J.; Ahmed, I.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Yusli, M. N.; Zolkapli, Z.; Casimiro Linares, E.; Castilla-Valdez, H.; de La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Mejia Guisao, J.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Uribe Estrada, C.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Waqas, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Byszuk, A.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão da Cruz E Silva, C.; di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Hollar, J.; Leonardo, N.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Chadeeva, M.; Chistov, R.; Danilov, M.; Rusinov, V.; Tarkovskii, E.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Baskakov, A.; Belyaev, A.; Boos, E.; Demiyanov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Korotkikh, V.; Lokhtin, I.; Miagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Vardanyan, I.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Cirkovic, P.; Devetak, D.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; de La Cruz, B.; Delgado Peris, A.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro de Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Cabrillo, I. J.; Calderon, A.; Castiñeiras de Saa, J. R.; Curras, E.; de Castro Manzano, P.; Fernandez, M.; Garcia-Ferrero, J.; Gomez, G.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Trevisani, N.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Castello, R.; Cerminara, G.; D'Alfonso, M.; D'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; de Gruttola, M.; de Guio, F.; de Roeck, A.; de Visscher, S.; di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Du Pree, T.; Duggan, D.; Dünser, M.; Dupont, N.; Elliott-Peisert, A.; Franzoni, G.; Fulcher, J.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Peruzzi, M.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Piparo, D.; Racz, A.; Reis, T.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Seidel, M.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Triossi, A.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lecomte, P.; Lustermann, W.; Mangano, B.; Marionneau, M.; Martinez Ruiz Del Arbol, P.; Masciovecchio, M.; Meinhard, M. T.; Meister, D.; Micheli, F.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Quittnat, M.; Rossini, M.; Schönenberger, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Aarrestad, T. K.; Amsler, C.; Caminada, L.; Canelli, M. F.; Chiochia, V.; de Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Rauco, G.; Robmann, P.; Salerno, D.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Jain, Sh.; Khurana, R.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Pozdnyakov, A.; Yu, S. S.; Kumar, Arun; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Damarseckin, S.; Demiroglu, Z. S.; Dozen, C.; Dumanoglu, I.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Tali, B.; Topakli, H.; Zorbilmez, C.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, E. A.; Yetkin, T.; Cakir, A.; Cankocak, K.; Sen, S.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-Storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Belyaev, A.; Brew, C.; Brown, R. M.; Calligaris, L.; Cieri, D.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Casasso, S.; Citron, M.; Colling, D.; Corpe, L.; Dauncey, P.; Davies, G.; de Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Futyan, D.; Hall, G.; Iles, G.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Call, K.; Dittmann, J.; Hatakeyama, K.; Liu, H.; Pastika, N.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Arcaro, D.; Avetisyan, A.; Bose, T.; Gastler, D.; Rankin, D.; Richardson, C.; Rohlf, J.; Sulak, L.; Zou, D.; Alimena, J.; Benelli, G.; Berry, E.; Cutts, D.; Ferapontov, A.; Garabedian, A.; Hakala, J.; Heintz, U.; Jesus, O.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Piperov, S.; Sagir, S.; Syarif, R.; Breedon, R.; Breto, G.; Calderon de La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Funk, G.; Gardner, M.; Ko, W.; Lander, R.; McLean, C.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Florent, A.; Hauser, J.; Ignatenko, M.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Paneva, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Wei, H.; Wimpenny, S.; Yates, B. R.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Derdzinski, M.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; MacNeill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; McColl, N.; Mullin, S. D.; Richman, J.; Stuart, D.; Suarez, I.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Andrews, M. B.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Soffi, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Apollinari, G.; Banerjee, S.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hasegawa, S.; Hirschauer, J.; Hu, Z.; Jayatilaka, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Lammel, S.; Lewis, J.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes de Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Pedro, K.; Prokofyev, O.; Rakness, G.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Stoynev, S.; Strobbe, N.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Wang, M.; Weber, H. A.; Whitbeck, A.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Brinkerhoff, A.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Field, R. D.; Furic, I. K.; Konigsberg, J.; Korytov, A.; Kotov, K.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Rank, D.; Rossin, R.; Shchutska, L.; Snowball, M.; Sperka, D.; Terentyev, N.; Thomas, L.; Wang, J.; Wang, S.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bein, S.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Weinberg, M.; Baarmand, M. M.; Bhopatkar, V.; Colafranceschi, S.; Hohlmann, M.; Kalakhety, H.; Noonan, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Zhang, J.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Snyder, C.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Cocoros, A.; Eminizer, N.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Osherson, M.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; Xin, Y.; You, C.; Baringer, P.; Bean, A.; Bruner, C.; Kenny, R. P., III; Majumder, D.; Malek, M.; McBrayer, W.; Murray, M.; Sanders, S.; Stringer, R.; Wang, Q.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Mohammadi, A.; Saini, L. K.; Skhirtladze, N.; Toda, S.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bi, R.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Demiragli, Z.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Iiyama, Y.; Innocenti, G. M.; Klute, M.; Kovalskyi, D.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Marini, A. C.; McGinn, C.; Mironov, C.; Narayanan, S.; Niu, X.; Paus, C.; Roland, C.; Roland, G.; Salfeld-Nebgen, J.; Stephans, G. S. F.; Sumorok, K.; Tatar, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Benvenuti, A. C.; Dahmes, B.; Evans, A.; Finkel, A.; Gude, A.; Hansen, P.; Kalafut, S.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Lesko, Z.; Mans, J.; Nourbakhsh, S.; Ruckstuhl, N.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bartek, R.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Knowlton, D.; Kravchenko, I.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Harrington, C.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Roozbahani, B.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira de Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Bhattacharya, S.; Hahn, K. A.; Kubik, A.; Low, J. F.; Mucia, N.; Odell, N.; Pollack, B.; Schmitt, M.; Sung, K.; Trovato, M.; Velasco, M.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Planer, M.; Reinsvold, A.; Ruchti, R.; Smith, G.; Taroni, S.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Ji, W.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Stickland, D.; Tully, C.; Zuranski, A.; Malik, S.; Barker, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, A. W.; Jung, K.; Kumar, A.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Han, J.; Hindrichs, O.; Khukhunaishvili, A.; Lo, K. H.; Tan, P.; Verzetti, M.; Chou, J. P.; Contreras-Campana, E.; Ferencek, D.; Gershtein, Y.; Halkiadakis, E.; Heindl, M.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Nash, K.; Saka, H.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; Thapa, K.; Bouhali, O.; Castaneda Hernandez, A.; Celik, A.; Dalchenko, M.; de Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Gilmore, J.; Huang, T.; Kamon, T.; Krutelyov, V.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Rose, A.; Safonov, A.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Ni, H.; Sheldon, P.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Sinthuprasith, T.; Sun, X.; Wang, Y.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Gomber, B.; Grothe, M.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ruggles, T.; Sarangi, T.; Savin, A.; Sharma, A.; Smith, N.; Smith, W. H.; Taylor, D.; Verwilligen, P.; Woods, N.; Cms Collaboration

    2016-10-01

    The polarizations of the ϒ (1 S) , ϒ (2 S) , and ϒ (3 S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at √{ s} = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb-1. The results are extracted from the dimuon decay angular distributions, in two ranges of ϒ (nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval | y | < 1.2. The results do not show significant changes from low- to high-multiplicity pp collisions, although large uncertainties preclude definite statements in the ϒ (2 S) and ϒ (3 S) cases.

  2. Linked 4-Way Multimodal Brain Differences in Schizophrenia in a Large Chinese Han Population.

    PubMed

    Liu, Shengfeng; Wang, Haiying; Song, Ming; Lv, Luxian; Cui, Yue; Liu, Yong; Fan, Lingzhong; Zuo, Nianming; Xu, Kaibin; Du, Yuhui; Yu, Qingbao; Luo, Na; Qi, Shile; Yang, Jian; Xie, Sangma; Li, Jian; Chen, Jun; Chen, Yunchun; Wang, Huaning; Guo, Hua; Wan, Ping; Yang, Yongfeng; Li, Peng; Lu, Lin; Yan, Hao; Yan, Jun; Wang, Huiling; Zhang, Hongxing; Zhang, Dai; Calhoun, Vince D; Jiang, Tianzi; Sui, Jing

    2018-04-20

    Multimodal fusion has been regarded as a promising tool to discover covarying patterns of multiple imaging types impaired in brain diseases, such as schizophrenia (SZ). In this article, we aim to investigate the covarying abnormalities underlying SZ in a large Chinese Han population (307 SZs, 298 healthy controls [HCs]). Four types of magnetic resonance imaging (MRI) features, including regional homogeneity (ReHo) from resting-state functional MRI, gray matter volume (GM) from structural MRI, fractional anisotropy (FA) from diffusion MRI, and functional network connectivity (FNC) resulted from group independent component analysis, were jointly analyzed by a data-driven multivariate fusion method. Results suggest that a widely distributed network disruption appears in SZ patients, with synchronous changes in both functional and structural regions, especially the basal ganglia network, salience network (SAN), and the frontoparietal network. Such a multimodal coalteration was also replicated in another independent Chinese sample (40 SZs, 66 HCs). Our results on auditory verbal hallucination (AVH) also provide evidence for the hypothesis that prefrontal hypoactivation and temporal hyperactivation in SZ may lead to failure of executive control and inhibition, which is relevant to AVH. In addition, impaired working memory performance was found associated with GM reduction and FA decrease in SZ in prefrontal and superior temporal area, in both discovery and replication datasets. In summary, by leveraging multiple imaging and clinical information into one framework to observe brain in multiple views, we can integrate multiple inferences about SZ from large-scale population and offer unique perspectives regarding the missing links between the brain function and structure that may not be achieved by separate unimodal analyses.

  3. Combined training improves walking mobility in persons with significant disability from multiple sclerosis: a pilot study.

    PubMed

    Motl, Robert W; Smith, Douglas C; Elliott, Jeannette; Weikert, Madeline; Dlugonski, Deirdre; Sosnoff, Jacob J

    2012-03-01

    The disabling consequences of multiple sclerosis (MS) emphasize the significance of developing physiologically relevant strategies for rehabilitation of function. This pilot study examined changes in walking function associated with combined exercise training consisting of aerobic, resistance, and balance activities in persons with MS who had recent onset of gait impairment. Thirteen participants with significant disability due to MS (Expanded Disability Status Scale range = 4.0-6.0) completed the Multiple Sclerosis Walking Scale-12, 2 trials of the Timed 25-Foot Walk, the Timed Up & Go, and functional ambulation profile score derived from 4 walking trials on an instrumented walkway (GaitRite) before and after an 8-week training period. The training program was designed by a physical therapist and was performed 3 days per week under the supervision of an exercise specialist. In week 1, the session was 15 minutes in duration (ie, 5 minutes of each mode of exercise), session durations were increased by approximately 5 minutes per week up to a maximum of 60 minutes in week 8 (ie, 20 minutes of each mode of exercise). There were significant improvements in Multiple Sclerosis Walking Scale-12 scores (Mpre = 56.0, Mpost = 46.7, P = 0.03, d = 0.56), Timed 25-Foot Walk (Mpre = 11.7, Mpost = 9.8, P = 0.004, d = 0.90) and Timed Up & Go (Mpre = 16.0, Mpost = 13.0, P = 0.01, d = 0.72) performance, and functional ambulation profile score (Mpre = 72.8, Mpost = 77.6, P = 0.02, d = 0.65). These results suggest that a moderately intense, comprehensive, combined exercise training program represents a rehabilitation strategy that is associated with improved walking mobility in a small sample of persons with MS who have recent onset of gait impairment.

  4. Escape from rich-to-lean transitions: Stimulus change and timeout.

    PubMed

    Retzlaff, Billie J; Parthum, Elizabeth T P; Pitts, Raymond C; Hughes, Christine E

    2017-01-01

    Extended pausing during discriminable transitions from rich-to-lean conditions can be viewed as escape (i.e., rich-to-lean transitions function aversively). In the current experiments, pigeons' key pecking was maintained by a multiple fixed-ratio fixed-ratio schedule of rich or lean reinforcers. Pigeons then were provided with another, explicit, mechanism of escape by changing the stimulus from the transition-specific stimulus used in the multiple schedule to a mixed-schedule stimulus (Experiment 1) or by producing a period of timeout in which the stimulus was turned off and the schedule was suspended (Experiment 2). Overall, escape was under joint control of past and upcoming reinforcer magnitudes, such that responses on the escape key were most likely during rich-to-lean transitions, and second-most likely during lean-to-lean transitions. Even though pigeons pecked the escape key, they paused before doing so, and the latency to begin the fixed ratio (i.e., the pause) remained extended during rich-to-lean transitions. These findings suggest that although the stimulus associated with rich-to-lean transitions functioned aversively, pausing is more than simply escape responding from the stimulus. © 2017 Society for the Experimental Analysis of Behavior.

  5. Global urban signatures of phenotypic change in animal and plant populations

    PubMed Central

    Correa, Cristian; Marzluff, John M.; Hendry, Andrew P.; Palkovacs, Eric P.; Hunt, Victoria M.; Apgar, Travis M.; Zhou, Yuyu

    2017-01-01

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends. PMID:28049817

  6. Global urban signatures of phenotypic change in animal and plant populations.

    PubMed

    Alberti, Marina; Correa, Cristian; Marzluff, John M; Hendry, Andrew P; Palkovacs, Eric P; Gotanda, Kiyoko M; Hunt, Victoria M; Apgar, Travis M; Zhou, Yuyu

    2017-08-22

    Humans challenge the phenotypic, genetic, and cultural makeup of species by affecting the fitness landscapes on which they evolve. Recent studies show that cities might play a major role in contemporary evolution by accelerating phenotypic changes in wildlife, including animals, plants, fungi, and other organisms. Many studies of ecoevolutionary change have focused on anthropogenic drivers, but none of these studies has specifically examined the role that urbanization plays in ecoevolution or explicitly examined its mechanisms. This paper presents evidence on the mechanisms linking urban development patterns to rapid evolutionary changes for species that play important functional roles in communities and ecosystems. Through a metaanalysis of experimental and observational studies reporting more than 1,600 phenotypic changes in species across multiple regions, we ask whether we can discriminate an urban signature of phenotypic change beyond the established natural baselines and other anthropogenic signals. We then assess the relative impact of five types of urban disturbances including habitat modifications, biotic interactions, habitat heterogeneity, novel disturbances, and social interactions. Our study shows a clear urban signal; rates of phenotypic change are greater in urbanizing systems compared with natural and nonurban anthropogenic systems. By explicitly linking urban development to traits that affect ecosystem function, we can map potential ecoevolutionary implications of emerging patterns of urban agglomerations and uncover insights for maintaining key ecosystem functions upon which the sustainability of human well-being depends.

  7. A Walsh Function Module Users' Manual

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2014-01-01

    The solution of partial differential equations (PDEs) with Walsh functions offers new opportunities to simulate many challenging problems in mathematical physics. The approach was developed to better simulate hypersonic flows with shocks on unstructured grids. It is unique in that integrals and derivatives are computed using simple matrix multiplication of series representations of functions without the need for divided differences. The product of any two Walsh functions is another Walsh function - a feature that radically changes an algorithm for solving PDEs. A FORTRAN module for supporting Walsh function simulations is documented. A FORTRAN code is also documented with options for solving time-dependent problems: an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the usage of the Walsh function module including such features as operator overloading, Fast Walsh Transforms in multi-dimensions, and a Fast Walsh reciprocal.

  8. Arabidopsis thaliana gonidialess A/Zuotin related factors (GlsA/ZRF) are essential for maintenance of meristem integrity.

    PubMed

    Guzmán-López, José Alfredo; Abraham-Juárez, María Jazmín; Lozano-Sotomayor, Paulina; de Folter, Stefan; Simpson, June

    2016-05-01

    Observation of a differential expression pattern, including strong expression in meristematic tissue of an Agave tequilana GlsA/ZRF ortholog suggested an important role for this gene during bulbil formation and developmental changes in this species. In order to better understand this role, the two GlsA/ZFR orthologs present in the genome of Arabidopsis thaliana were functionally characterized by analyzing expression patterns, double mutant phenotypes, promoter-GUS fusions and expression of hormone related or meristem marker genes. Patterns of expression for A. thaliana show that GlsA/ZFR genes are strongly expressed in SAMs and RAMs in mature plants and developing embryos and double mutants showed multiple changes in morphology related to both SAM and RAM tissues. Typical double mutants showed stunted growth of aerial and root tissue, formation of multiple ectopic meristems and effects on cotyledons, leaves and flowers. The KNOX genes STM and BP were overexpressed in double mutants whereas CLV3, WUSCHEL and AS1 were repressed and lack of AtGlsA expression was also associated with changes in localization of auxin and cytokinin. These results suggest that GlsA/ZFR is an essential component of the machinery that maintains the integrity of SAM and RAM tissue and underline the potential to identify new genes or gene functions based on observations in non-model plants.

  9. Approaches to modelling hydrology and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  10. Systems responses of rats to aflatoxin B1 exposure revealed with metabonomic changes in multiple biological matrices.

    PubMed

    Zhang, Limin; Ye, Yangfang; An, Yanpeng; Tian, Yuan; Wang, Yulan; Tang, Huiru

    2011-02-04

    Exposure to aflatoxins causes liver fibrosis and hepatocellular carcinoma posing a significant health risk for human populations and livestock. To understand the mammalian systems responses to aflatoxin-B1 (AFB1) exposure, we analyzed the AFB1-induced metabonomic changes in multiple biological matrices (plasma, urine, and liver) of rats using (1)H NMR spectroscopy together with clinical biochemistry and histopathologic assessments. We found that AFB1 exposure caused significant elevation of glucose, amino acids, and choline metabolites (choline, phosphocholine, and glycerophosphocholine) in plasma but reduction of plasma lipids. AFB1 also induced elevation of liver lipids, amino acids (tyrosine, histidine, phenylalanine, leucine, isoleucine, and valine), choline, and nucleic acid metabolites (inosine, adenosine, and uridine) together with reduction of hepatic glycogen and glucose. AFB1 further caused decreases in urinary TCA cycle intermediates (2-oxoglutarate and citrate) and elevation of gut microbiota cometabolites (phenylacetylglycine and hippurate). These indicated that AFB1 exposure caused hepatic steatosis accompanied with widespread metabolic changes including lipid and cell membrane metabolisms, protein biosynthesis, glycolysis, TCA cycle, and gut microbiota functions. This implied that AFB1 exposure probably caused oxidative-stress-mediated impairments of mitochondria functions. These findings provide an overview of biochemical consequences of AFB1 exposure and comprehensive insights into the metabolic aspects of AFB1-induced hepatotoxicity in rats.

  11. Modeling multiple resource limitation in tropical dry forests

    NASA Astrophysics Data System (ADS)

    Medvigy, D.; Xu, X.; Zarakas, C.

    2015-12-01

    Tropical dry forests (TDFs) are characterized by a long dry season when little rain falls. At the same time, many neotropical soils are highly weathered and relatively nutrient poor. Because TDFs are often subject to both water and nutrient constraints, the question of how they will respond to environmental perturbations is both complex and highly interesting. Models, our basic tools for projecting ecosystem responses to global change, can be used to address this question. However, few models have been specifically parameterized for TDFs. Here, we present a new version of the Ecosystem Demography 2 (ED2) model that includes a new parameterization of TDFs. In particular, we focus on the model's framework for representing limitation by multiple resources (carbon, water, nitrogen, and phosphorus). Plant functional types are represented in terms of a dichotomy between "acquisitive" and "conservative" resource acquisition strategies. Depending on their resource acquisition strategy and basic stoichiometry, plants can dynamically adjust their allocation to organs (leaves, stem, roots), symbionts (e.g. N2-fixing bacteria), and mycorrhizal fungi. Several case studies are used to investigate how resource acquisition strategies affect ecosystem responses to environmental perturbations. Results are described in terms of the basic setting (e.g., rich vs. poor soils; longer vs. shorter dry season), and well as the type and magnitude of environmental perturbation (e.g., changes in precipitation or temperature; changes in nitrogen deposition). Implications for ecosystem structure and functioning are discussed.

  12. Risk factors for progressive axonal degeneration of the retinal nerve fibre layer in multiple sclerosis patients.

    PubMed

    Garcia-Martin, Elena; Pueyo, Victoria; Almarcegui, Carmen; Martin, Jesus; Ara, Jose R; Sancho, Eva; Pablo, Luis E; Dolz, Isabel; Fernandez, Javier

    2011-11-01

    To quantify structural and functional degeneration in the retinal nerve fibre layer (RNFL) of patients with multiple sclerosis (MS) over a 2-year time period, and to analyse the effect of prior optic neuritis (ON) as well as the duration and incidence of MS relapses. 166 MS patients and 120 healthy controls underwent assessment of visual acuity and colour vision, visual field examination, optical coherence tomography, scanning laser polarimetry and visual evoked potentials (VEPs). All subjects were re-evaluated after a period of 12 and 24 months. Changes in the optic nerve were detected by structural measurements but not by functional assessments. Changes registered in MS patients were greater than changes in healthy controls (p<0.05). Eyes with previous ON showed a greater reduction of parameters in the baseline evaluation, but RNFL atrophy was not significantly greater in the longitudinal study. Patients with MS relapses showed a greater reduction of RNFL thickness and VEP amplitude compared with non-relapsing cases. Patients with and without treatment showed similar measurement reduction, but the non-treated group had a significantly higher increase in Expanded Disability Status Scale (p=0.029). MS causes progressive axonal loss in the optic nerve, regardless of a history of ON. This ganglion cell atrophy occurs in all eyes but is more marked in MS eyes than in healthy eyes.

  13. Multiple complexes of nitrogen assimilatory enzymes in spinach chloroplasts: possible mechanisms for the regulation of enzyme function.

    PubMed

    Kimata-Ariga, Yoko; Hase, Toshiharu

    2014-01-01

    Assimilation of nitrogen is an essential biological process for plant growth and productivity. Here we show that three chloroplast enzymes involved in nitrogen assimilation, glutamate synthase (GOGAT), nitrite reductase (NiR) and glutamine synthetase (GS), separately assemble into distinct protein complexes in spinach chloroplasts, as analyzed by western blots under blue native electrophoresis (BN-PAGE). GOGAT and NiR were present not only as monomers, but also as novel complexes with a discrete size (730 kDa) and multiple sizes (>120 kDa), respectively, in the stromal fraction of chloroplasts. These complexes showed the same mobility as each monomer on two-dimensional (2D) SDS-PAGE after BN-PAGE. The 730 kDa complex containing GOGAT dissociated into monomers, and multiple complexes of NiR reversibly converted into monomers, in response to the changes in the pH of the stromal solvent. On the other hand, the bands detected by anti-GS antibody were present not only in stroma as a conventional decameric holoenzyme complex of 420 kDa, but also in thylakoids as a novel complex of 560 kDa. The polypeptide in the 560 kDa complex showed slower mobility than that of the 420 kDa complex on the 2D SDS-PAGE, implying the assembly of distinct GS isoforms or a post-translational modification of the same GS protein. The function of these multiple complexes was evaluated by in-gel GS activity under native conditions and by the binding ability of NiR and GOGAT with their physiological electron donor, ferredoxin. The results indicate that these multiplicities in size and localization of the three nitrogen assimilatory enzymes may be involved in the physiological regulation of their enzyme function, in a similar way as recently described cases of carbon assimilatory enzymes.

  14. An indicator of cancer: downregulation of monoamine oxidase-A in multiple organs and species.

    PubMed

    Rybaczyk, Leszek A; Bashaw, Meredith J; Pathak, Dorothy R; Huang, Kun

    2008-03-20

    Identifying consistent changes in cellular function that occur in multiple types of cancer could revolutionize the way cancer is treated. Previous work has produced promising results such as the identification of p53. Recently drugs that affect serotonin reuptake were shown to reduce the risk of colon cancer in man. Here, we analyze an ensemble of cancer datasets focusing on genes involved in the serotonergic pathway. Genechip datasets consisting of cancerous tissue from human, mouse, rat, or zebrafish were extracted from the GEO database. We first compared gene expression between cancerous tissues and normal tissues for each type of cancer and then identified changes that were common to a variety of cancer types. Our analysis found that significant downregulation of MAO-A, the enzyme that metabolizes serotonin, occurred in multiple tissues from humans, rodents, and fish. MAO-A expression was decreased in 95.4% of human cancer patients and 94.2% of animal cancer cases compared to the non-cancerous controls. These are the first findings that identify a single reliable change in so many different cancers. Future studies should investigate links between MAO-A suppression and the development of cancer to determine the extent that MAO-A suppression contributes to increased cancer risk.

  15. Integrating multiple aspects of mitochondrial dynamics in neurons: Age-related differences and dynamic changes in a chronic rotenone model

    PubMed Central

    Arnold, Beth; Cassady, Steven J.; Van Laar, Victor S.; Berman, Sarah B.

    2010-01-01

    Changes in dynamic properties of mitochondria are increasingly implicated in neurodegenerative diseases, particularly Parkinson’s disease (PD). Static changes in mitochondrial morphology, often under acutely toxic conditions, are commonly utilized as indicators of changes in mitochondrial fission and fusion. However, in neurons, mitochondrial fission and fusion occur in a dynamic system of axonal/dendritic transport, biogenesis and degradation, and thus, likely interact and change over time. We sought to explore this using a chronic neuronal model (nonlethal low-concentration rotenone over several weeks), examining distal neurites, which may give insight into the earliest changes occurring in PD. Using this model, in live primary neurons, we directly quantified mitochondrial fission, fusion, and transport over time and integrated multiple aspects of mitochondrial dynamics, including morphology and growth/mitophagy. We found that rates of mitochondrial fission and fusion change as neurons age. In addition, we found that chronic rotenone exposure initially increased the ratio of fusion to fission, but later, this was reversed. Surprisingly, despite changes in rates of fission and fusion, mitochondrial morphology was minimally affected, demonstrating that morphology can be an inaccurate indicator of fission/fusion changes. In addition, we found evidence of subcellular compartmentalization of compensatory changes, as mitochondrial density increased in distal neurites first, which may be important in PD, where pathology may begin distally. We propose that rotenone-induced early changes such as in mitochondrial fusion are compensatory, accompanied later by detrimental fission. As evidence, in a dopaminergic neuronal model, in which chronic rotenone caused loss of neurites before cell death (like PD pathology), inhibiting fission protected against the neurite loss. This suggests that aberrant mitochondrial dynamics may contribute to the earliest neuropathologic mechanisms in PD. These data also emphasize that mitochondrial fission and fusion do not occur in isolation, and highlight the importance of analysis and integration of multiple mitochondrial dynamic functions in neurons. PMID:20850532

  16. CDMetaPOP: An individual-based, eco-evolutionary model for spatially explicit simulation of landscape demogenetics

    USGS Publications Warehouse

    Landguth, Erin L; Bearlin, Andrew; Day, Casey; Dunham, Jason B.

    2016-01-01

    1. Combining landscape demographic and genetics models offers powerful methods for addressing questions for eco-evolutionary applications.2. Using two illustrative examples, we present Cost–Distance Meta-POPulation, a program to simulate changes in neutral and/or selection-driven genotypes through time as a function of individual-based movement, complex spatial population dynamics, and multiple and changing landscape drivers.3. Cost–Distance Meta-POPulation provides a novel tool for questions in landscape genetics by incorporating population viability analysis, while linking directly to conservation applications.

  17. Linking Biological and Cognitive Aging: Toward Improving Characterizations of Developmental Time

    PubMed Central

    DeCarlo, Correne A.; Dixon, Roger A.

    2011-01-01

    Objectives. Chronological age is the most frequently employed predictor in life-span developmental research, despite repeated assertions that it is best conceived as a proxy for true mechanistic changes that influence cognition across time. The present investigation explores the potential that selected functional biomarkers may contribute to the more effective conceptual and operational definitions of developmental time. Methods. We used data from the Victoria Longitudinal Study to explore both static and dynamic biological or physiological markers that arguably influence process-specific mechanisms underlying cognitive changes in late life. Multilevel models were fit to test the dynamic coupling between change in theoretically relevant biomarkers (e.g., grip strength, pulmonary function) and change in select cognitive measures (e.g., executive function, episodic and semantic memory). Results. Results showed that, independent of the passage of developmental time (indexed as years in study), significant time-varying covariation was observed linking corresponding declines for select cognitive outcomes and biological markers. Discussion. Our findings support the interpretation that cognitive decline is not due to chronological aging per se but rather reflects multiple causal factors from a broad range of biological and physical health domains that operate along the age continuum. PMID:21743053

  18. Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex.

    PubMed

    Kura, Sreekanth; Xie, Hongyu; Fu, Buyin; Ayata, Cenk; Boas, David A; Sakadžić, Sava

    2018-06-01

    Resting state functional connectivity (RSFC) allows the study of functional organization in normal and diseased brain by measuring the spontaneous brain activity generated under resting conditions. Intrinsic optical signal imaging (IOSI) based on multiple illumination wavelengths has been used successfully to compute RSFC maps in animal studies. The IOSI setup complexity would be greatly reduced if only a single wavelength can be used to obtain comparable RSFC maps. We used anesthetized mice and performed various comparisons between the RSFC maps based on single wavelength as well as oxy-, deoxy- and total hemoglobin concentration changes. The RSFC maps based on IOSI at a single wavelength selected for sensitivity to the blood volume changes are quantitatively comparable to the RSFC maps based on oxy- and total hemoglobin concentration changes obtained by the more complex IOSI setups. Moreover, RSFC maps do not require CCD cameras with very high frame acquisition rates, since our results demonstrate that they can be computed from the data obtained at frame rates as low as 5 Hz. Our results will have general utility for guiding future RSFC studies based on IOSI and making decisions about the IOSI system designs.

  19. Resonant activation in a colored multiplicative thermal noise driven closed system.

    PubMed

    Ray, Somrita; Mondal, Debasish; Bag, Bidhan Chandra

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  20. Drosophila TRP channels and animal behavior

    PubMed Central

    Fowler, Melissa A.; Montell, Craig

    2012-01-01

    Multiple classes of cell surface receptors and ion channels participate in the detection of changes in environmental stimuli, and thereby influence animal behavior. Among the many classes of ion channels, Transient Receptor Potential (TRP) cation channels are notable in contributing to virtually every sensory modality, and in controlling a daunting array of behaviors. TRP channels appear to be conserved in all metazoan organisms including worms, insects and humans. Flies encode 13 TRPs, most of which are expressed and function in sensory neurons, and impact behaviors ranging from phototaxis to thermotaxis, gravitaxis, the avoidance of noxious tastants and smells and proprioception. Multiple diseases result from defects in TRPs, and flies provide an excellent animal model for dissecting the mechanisms underlying “TRPopathies.” Drosophila TRPs also function in the sensation of botanically derived insect repellents, and related TRPs in insect pests are potential targets for the development of improved repellents to combat insect-borne diseases. PMID:22877650

  1. Machine Learning Classification Combining Multiple Features of A Hyper-Network of fMRI Data in Alzheimer's Disease

    PubMed Central

    Guo, Hao; Zhang, Fan; Chen, Junjie; Xu, Yong; Xiang, Jie

    2017-01-01

    Exploring functional interactions among various brain regions is helpful for understanding the pathological underpinnings of neurological disorders. Brain networks provide an important representation of those functional interactions, and thus are widely applied in the diagnosis and classification of neurodegenerative diseases. Many mental disorders involve a sharp decline in cognitive ability as a major symptom, which can be caused by abnormal connectivity patterns among several brain regions. However, conventional functional connectivity networks are usually constructed based on pairwise correlations among different brain regions. This approach ignores higher-order relationships, and cannot effectively characterize the high-order interactions of many brain regions working together. Recent neuroscience research suggests that higher-order relationships between brain regions are important for brain network analysis. Hyper-networks have been proposed that can effectively represent the interactions among brain regions. However, this method extracts the local properties of brain regions as features, but ignores the global topology information, which affects the evaluation of network topology and reduces the performance of the classifier. This problem can be compensated by a subgraph feature-based method, but it is not sensitive to change in a single brain region. Considering that both of these feature extraction methods result in the loss of information, we propose a novel machine learning classification method that combines multiple features of a hyper-network based on functional magnetic resonance imaging in Alzheimer's disease. The method combines the brain region features and subgraph features, and then uses a multi-kernel SVM for classification. This retains not only the global topological information, but also the sensitivity to change in a single brain region. To certify the proposed method, 28 normal control subjects and 38 Alzheimer's disease patients were selected to participate in an experiment. The proposed method achieved satisfactory classification accuracy, with an average of 91.60%. The abnormal brain regions included the bilateral precuneus, right parahippocampal gyrus\\hippocampus, right posterior cingulate gyrus, and other regions that are known to be important in Alzheimer's disease. Machine learning classification combining multiple features of a hyper-network of functional magnetic resonance imaging data in Alzheimer's disease obtains better classification performance. PMID:29209156

  2. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    PubMed

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Evaluating gambles using dynamics

    NASA Astrophysics Data System (ADS)

    Peters, O.; Gell-Mann, M.

    2016-02-01

    Gambles are random variables that model possible changes in wealth. Classic decision theory transforms money into utility through a utility function and defines the value of a gamble as the expectation value of utility changes. Utility functions aim to capture individual psychological characteristics, but their generality limits predictive power. Expectation value maximizers are defined as rational in economics, but expectation values are only meaningful in the presence of ensembles or in systems with ergodic properties, whereas decision-makers have no access to ensembles, and the variables representing wealth in the usual growth models do not have the relevant ergodic properties. Simultaneously addressing the shortcomings of utility and those of expectations, we propose to evaluate gambles by averaging wealth growth over time. No utility function is needed, but a dynamic must be specified to compute time averages. Linear and logarithmic "utility functions" appear as transformations that generate ergodic observables for purely additive and purely multiplicative dynamics, respectively. We highlight inconsistencies throughout the development of decision theory, whose correction clarifies that our perspective is legitimate. These invalidate a commonly cited argument for bounded utility functions.

  4. Marine benthic ecological functioning over decreasing taxonomic richness

    NASA Astrophysics Data System (ADS)

    Törnroos, Anna; Bonsdorff, Erik; Bremner, Julie; Blomqvist, Mats; Josefson, Alf B.; Garcia, Clement; Warzocha, Jan

    2015-04-01

    Alterations to ecosystem function due to reductions in species richness are predicted to increase as humans continue to affect the marine environment, especially in coastal areas, which serve as the interface between land and sea. The potential functional consequences due to reductions in species diversity have attracted considerable attention recently but little is known about the consequence of such loss in natural communities. We examined how the potential for function is affected by natural reductions in taxon richness using empirical (non-simulated) coastal marine benthic macrofaunal data from the Skagerrak-Baltic Sea region (N. Europe), where taxon richness decreases 25-fold, from 151 to 6 taxa. To estimate functional changes we defined multiple traits (10 traits and 51 categories) on which trait category richness, functional diversity (FD) and number of taxa per trait category were calculated. Our results show that decrease in taxon richness leads to an overall reduction in function but functional richness remains comparatively high even at the lowest level of taxon richness. Although the taxonomic reduction was sharp, up to 96% of total taxon richness, we identified both potential thresholds in functioning and subtler changes where function was maintained along the gradient. The functional changes were not only caused by reductions in taxa per trait category, some categories were maintained or even increased. Primarily, the reduction in species richness altered trait categories related to feeding, living and movement and thus potentially could have an effect on various ecosystem processes. This highlights the importance of recognising ecosystem multifunctionality, especially at low taxonomic richness. We also found that in this system rare species (singletons) did not stand for the functional complexities and changes. Our findings were consistent with theoretical and experimental predictions and suggest that a large proportion of the information about alterations of function is found in measures such as functional diversity and number of taxa per trait category.

  5. Changes in expression of genes involved in apoptosis in activated human T-cells in response to modeled microgravity

    NASA Astrophysics Data System (ADS)

    Ward, Nancy E.; Pellis, Neal R.; Risin, Diana; Risin, Semyon A.; Liu, Wenbin

    2006-09-01

    Space flights result in remarkable effects on various physiological systems, including a decline in cellular immune functions. Previous studies have shown that exposure to microgravity, both true and modeled, can cause significant changes in numerous lymphocyte functions. The purpose of this study was to search for microgravity-sensitive genes, and specifically for apoptotic genes influenced by the microgravity environment and other genes related to immune response. The experiments were performed on anti-CD3 and IL-2 activated human T cells. To model microgravity conditions we have utilized the NASA rotating wall vessel bioreactor. Control lymphocytes were cultured in static 1g conditions. To assess gene expression we used DNA microarray chip technology. We had shown that multiple genes (approximately 3-8% of tested genes) respond to microgravity conditions by 1.5 and more fold change in expression. There is a significant variability in the response. However, a certain reproducible pattern in gene response could be identified. Among the genes showing reproducible changes in expression in modeled microgravity, several genes involved in apoptosis as well as in immune response were identified. These are IL-7 receptor, Granzyme B, Beta-3-endonexin, Apo2 ligand and STAT1. Possible functional consequences of these changes are discussed.

  6. Normal rates of cognitive change in successful aging: the freedom house study.

    PubMed

    Royall, Donald R; Palmer, Raymond; Chiodo, Laura K; Polk, Marsha J

    2005-11-01

    We determined the rates of cognitive change associated with twenty individual measures. Participants included 547 noninstitutionalized septuagenarians and octogenarian residents of a comprehensive care retirement community who were studied over three years. Latent growth curves (LGC) of multiple cognitive measures were compared to a LGC model of the rates of change in Activities of Daily Living (ADL) and Instrumental Activities of Daily Living (IADL). All curves were standardized relative to each variable's baseline distribution. Baseline scores were within their expected normal age-specific ranges. Most measures showed significant rates of change over time. There was also significant variability about those rates, suggesting clinical heterogeneity. Many deteriorated over time, as did ADLs and IADLs. However, performance on some measures improved, consistent with learning effects. The rates of change in two measures, the Executive Interview and the Trail Making Test, were closely related to decline in IADLs. These results suggest that age-related cognitive decline is a dynamic longitudinal process affecting multiple cognitive domains. Heterogeneity in the rates of cognitive change may reflect the summed effects of age and comorbid conditions affecting cognition. Some measures may be ill-suited for measuring age-related changes in cognition, either because they are insensitive to change, or hindered by learning effects. Nonverbal measures appear to be particularly well suited for the prediction of age-related functional decline. These observations are relevant to the definition and diagnosis of "dementing" conditions.

  7. Evolutionarily Conserved Linkage between Enzyme Fold, Flexibility, and Catalysis

    PubMed Central

    Ramanathan, Arvind; Agarwal, Pratul K.

    2011-01-01

    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme–substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme–substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design. PMID:22087074

  8. Evolutionarily conserved linkage between enzyme fold, flexibility, and catalysis.

    PubMed

    Ramanathan, Arvind; Agarwal, Pratul K

    2011-11-01

    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function. Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 Å away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme-substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme-substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanathan, Arvind; Agarwal, Pratul K

    Proteins are intrinsically flexible molecules. The role of internal motions in a protein's designated function is widely debated. The role of protein structure in enzyme catalysis is well established, and conservation of structural features provides vital clues to their role in function. Recently, it has been proposed that the protein function may involve multiple conformations: the observed deviations are not random thermodynamic fluctuations; rather, flexibility may be closely linked to protein function, including enzyme catalysis. We hypothesize that the argument of conservation of important structural features can also be extended to identification of protein flexibility in interconnection with enzyme function.more » Three classes of enzymes (prolyl-peptidyl isomerase, oxidoreductase, and nuclease) that catalyze diverse chemical reactions have been examined using detailed computational modeling. For each class, the identification and characterization of the internal protein motions coupled to the chemical step in enzyme mechanisms in multiple species show identical enzyme conformational fluctuations. In addition to the active-site residues, motions of protein surface loop regions (>10 away) are observed to be identical across species, and networks of conserved interactions/residues connect these highly flexible surface regions to the active-site residues that make direct contact with substrates. More interestingly, examination of reaction-coupled motions in non-homologous enzyme systems (with no structural or sequence similarity) that catalyze the same biochemical reaction shows motions that induce remarkably similar changes in the enzyme substrate interactions during catalysis. The results indicate that the reaction-coupled flexibility is a conserved aspect of the enzyme molecular architecture. Protein motions in distal areas of homologous and non-homologous enzyme systems mediate similar changes in the active-site enzyme substrate interactions, thereby impacting the mechanism of catalyzed chemistry. These results have implications for understanding the mechanism of allostery, and for protein engineering and drug design.« less

  10. Many-to-one form-to-function mapping weakens parallel morphological evolution.

    PubMed

    Thompson, Cole J; Ahmed, Newaz I; Veen, Thor; Peichel, Catherine L; Hendry, Andrew P; Bolnick, Daniel I; Stuart, Yoel E

    2017-11-01

    Evolutionary ecologists aim to explain and predict evolutionary change under different selective regimes. Theory suggests that such evolutionary prediction should be more difficult for biomechanical systems in which different trait combinations generate the same functional output: "many-to-one mapping." Many-to-one mapping of phenotype to function enables multiple morphological solutions to meet the same adaptive challenges. Therefore, many-to-one mapping should undermine parallel morphological evolution, and hence evolutionary predictability, even when selection pressures are shared among populations. Studying 16 replicate pairs of lake- and stream-adapted threespine stickleback (Gasterosteus aculeatus), we quantified three parts of the teleost feeding apparatus and used biomechanical models to calculate their expected functional outputs. The three feeding structures differed in their form-to-function relationship from one-to-one (lower jaw lever ratio) to increasingly many-to-one (buccal suction index, opercular 4-bar linkage). We tested for (1) weaker linear correlations between phenotype and calculated function, and (2) less parallel evolution across lake-stream pairs, in the many-to-one systems relative to the one-to-one system. We confirm both predictions, thus supporting the theoretical expectation that increasing many-to-one mapping undermines parallel evolution. Therefore, sole consideration of morphological variation within and among populations might not serve as a proxy for functional variation when multiple adaptive trait combinations exist. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  11. Predicted Arabidopsis Interactome Resource and Gene Set Linkage Analysis: A Transcriptomic Analysis Resource.

    PubMed

    Yao, Heng; Wang, Xiaoxuan; Chen, Pengcheng; Hai, Ling; Jin, Kang; Yao, Lixia; Mao, Chuanzao; Chen, Xin

    2018-05-01

    An advanced functional understanding of omics data is important for elucidating the design logic of physiological processes in plants and effectively controlling desired traits in plants. We present the latest versions of the Predicted Arabidopsis Interactome Resource (PAIR) and of the gene set linkage analysis (GSLA) tool, which enable the interpretation of an observed transcriptomic change (differentially expressed genes [DEGs]) in Arabidopsis ( Arabidopsis thaliana ) with respect to its functional impact for biological processes. PAIR version 5.0 integrates functional association data between genes in multiple forms and infers 335,301 putative functional interactions. GSLA relies on this high-confidence inferred functional association network to expand our perception of the functional impacts of an observed transcriptomic change. GSLA then interprets the biological significance of the observed DEGs using established biological concepts (annotation terms), describing not only the DEGs themselves but also their potential functional impacts. This unique analytical capability can help researchers gain deeper insights into their experimental results and highlight prospective directions for further investigation. We demonstrate the utility of GSLA with two case studies in which GSLA uncovered how molecular events may have caused physiological changes through their collective functional influence on biological processes. Furthermore, we showed that typical annotation-enrichment tools were unable to produce similar insights to PAIR/GSLA. The PAIR version 5.0-inferred interactome and GSLA Web tool both can be accessed at http://public.synergylab.cn/pair/. © 2018 American Society of Plant Biologists. All Rights Reserved.

  12. An industrial perspective of the LANDSAT opportunity

    NASA Technical Reports Server (NTRS)

    Williams, B. F.

    1981-01-01

    The feasibility of enhancing LANDSAT products to provide the greatest usability low cost data possible can be determined through government sponsorship and finance of one or more task forces composed of a critical number of experts in multiple disciplines from many industries and academia. The synergism of multiple minds addressing singular problems without the creation of permanent or perpetual structures must yield output in the form of implementable specifications, even if presented as alternatives. Changes are needed within the spacecraft in order to account for Sun angle changes. The use of pointing accuracy to make geometric corrections (and possible radiometric corrections, is needed more than onboard data reduction and information extraction, which assume a proper knowledge of application and reduce potential utilization. Multilinear arrays need to be investigated and methods for sensor calibration and for determining the effects of atmospheric inversion, as well as the best way to back out the modulation transfer function must be determined.

  13. Real-time strategy game training: emergence of a cognitive flexibility trait.

    PubMed

    Glass, Brian D; Maddox, W Todd; Love, Bradley C

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function.

  14. Public Health and Mental Health Implications of Environmentally Induced Forced Migration.

    PubMed

    Shultz, James M; Rechkemmer, Andreas; Rai, Abha; McManus, Katherine T

    2018-03-28

    ABSTRACTClimate change is increasingly forcing population displacement, better described by the phrase environmentally induced forced migration. Rising global temperatures, rising sea levels, increasing frequency and severity of natural disasters, and progressive depletion of life-sustaining resources are among the drivers that stimulate population mobility. Projections forecast that current trends will rapidly accelerate. This will lead to an estimated 200 million climate migrants by the year 2050 and create dangerous tipping points for public health and security.Among the public health consequences of climate change, environmentally induced forced migration is one of the harshest and most harmful outcomes, always involving a multiplicity of profound resource and social losses and frequently exposing migrants to trauma and violence. Therefore, one particular aspect of forced migration, the effects of population displacement on mental health and psychosocial functioning, deserves dedicated focus. Multiple case examples are provided to elucidate this theme. (Disaster Med Public Health Preparedness. 2018;page 1 of 7).

  15. Real-Time Strategy Game Training: Emergence of a Cognitive Flexibility Trait

    PubMed Central

    Glass, Brian D.; Maddox, W. Todd; Love, Bradley C.

    2013-01-01

    Training in action video games can increase the speed of perceptual processing. However, it is unknown whether video-game training can lead to broad-based changes in higher-level competencies such as cognitive flexibility, a core and neurally distributed component of cognition. To determine whether video gaming can enhance cognitive flexibility and, if so, why these changes occur, the current study compares two versions of a real-time strategy (RTS) game. Using a meta-analytic Bayes factor approach, we found that the gaming condition that emphasized maintenance and rapid switching between multiple information and action sources led to a large increase in cognitive flexibility as measured by a wide array of non-video gaming tasks. Theoretically, the results suggest that the distributed brain networks supporting cognitive flexibility can be tuned by engrossing video game experience that stresses maintenance and rapid manipulation of multiple information sources. Practically, these results suggest avenues for increasing cognitive function. PMID:23950921

  16. Aging and male reproductive function: a mitochondrial perspective.

    PubMed

    Amaral, Sandra; Amaral, Alexandra; Ramalho-Santos, Joao

    2013-01-01

    Researching the effects of aging in the male reproductive system is not trivial. Not only are multiple changes at molecular, cellular and endocrine levels involved, but any findings must be discussed with variable individual characteristics, as well as with lifestyle and environmental factors. Age-related changes in the reproductive system include any aspect of reproductive function, from deregulation of the hypothalamic-pituitary-gonadal axis and of local auto/paracrine interactions, to effects on testicular stem cells, defects in testicular architecture and spermatogenesis, or sperm with decreased functionality. Several theories place mitochondria at the hub of cellular events related to aging, namely regarding the accumulation of oxidative damage to cells and tissues, a process in which these organelles play a prominent role, although alternative theories have also emerged. However, oxidative stress is not the only process involved in mitochondrial-related aging; mitochondrial energy metabolism, changes in mitochondrial DNA or in mitochondrial-dependent testosterone production are also important. Crucially, all these issues are likely interdependent. We will review evidence that suggests that mitochondria constitute a common link between aging and fertility loss.

  17. Longitudinal, transcranial measurement of functional activation in the rat brain by diffuse correlation spectroscopy.

    PubMed

    Blanco, Igor; Zirak, Peyman; Dragojević, Tanja; Castellvi, Clara; Durduran, Turgut; Justicia, Carles

    2017-10-01

    Neural activity is an important biomarker for the presence of neurodegenerative diseases, cerebrovascular alterations, and brain trauma; furthermore, it is a surrogate marker for treatment effects. These pathologies may occur and evolve in a long time-period, thus, noninvasive, transcutaneous techniques are necessary to allow a longitudinal follow-up. In the present work, we have customized noninvasive, transcutaneous, diffuse correlation spectroscopy (DCS) to localize changes in cerebral blood flow (CBF) induced by neural activity. We were able to detect changes in CBF in the somatosensory cortex by using a model of electrical forepaw stimulation in rats. The suitability of DCS measurements for longitudinal monitoring was demonstrated by performing multiple sessions with the same animals at different ages (from 6 to 18 months). In addition, functional DCS has been cross-validated by comparison with functional magnetic resonance imaging (fMRI) in the same animals in a subset of the time-points. The overall results obtained with transcutaneous DCS demonstrates that it can be utilized in longitudinal studies safely and reproducibly to locate changes in CBF induced by neural activity in the small animal brain.

  18. Sleep and executive functions in older adults: A systematic review

    PubMed Central

    Holanda, Francisco Wilson Nogueira; de Almondes, Katie Moraes

    2016-01-01

    ABSTRACT Introduction: A recent increase in studies suggests a role of age-related sleep changes in executive functions (EF). However, this relationship remains unclear and mixed results have emerged. Objective: To investigate how age-related sleep changes may play an important role in the extent to which healthy older adults exhibit decline in EF. Methods: A systematic strategy was employed to identify the available literature on age-related sleep changes and EF. Results: Of the 465 studies identified, 26 were included. Results suggest that multiple sleep parameters differ in the way they benefit or impair EF. Parameters such as greater wake after sleep onset and lower sleep efficiency, in addition to circadian fragmentation of sleep, showed more consistent results and are potentially correlated with worsening in EF measures. However, other results seem inconclusive. Conclusion: These findings were discussed based on the prefrontal circuitry vulnerability model, in which sleep has been identified as a beneficial factor for prefrontal cortex functioning and hence for EF, which relies mostly on this brain area and its related networks. PMID:29213454

  19. Rumination and self-reflection in stress narratives and relations to psychological functioning.

    PubMed

    Marin, Kelly A; Rotondo, Elena K

    2017-01-01

    The longitudinal study aims to expand what is known about the costs and benefits of narrating stressful experiences by exploring changes in rumination within the narrative process and comparing it to changes in self-reflection. Rumination (e.g., brooding, self-criticism, and negative emotions) and self-reflection were measured in stress narratives of 56 college students. There were several goals: (1) examine changes in narrative rumination and narrative self-reflection over 3 days of writing, (2) examine the relations among the changes in narrative rumination variables and narrative self-reflection and (3) examine how changes in narrative rumination and narrative self-reflection relate to multiple measures of psychological functioning. Overall, individuals increased self-reflection over the 3-day writing task. Individuals who increased ruminative brooding across the 3 days of writing showed lower ego identity development (short term and long term) and self-esteem (short term), while increased self-criticism was positively correlated with identity distress (short term). Implications of the different aspects of narrative rumination, specifically in the context of stressful experiences, are discussed.

  20. Evaluating the Functionality of Conceptual Models

    NASA Astrophysics Data System (ADS)

    Mehmood, Kashif; Cherfi, Samira Si-Said

    Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.

  1. Partial Sleep Deprivation Attenuates the Positive Affective System: Effects Across Multiple Measurement Modalities.

    PubMed

    Finan, Patrick H; Quartana, Phillip J; Remeniuk, Bethany; Garland, Eric L; Rhudy, Jamie L; Hand, Matthew; Irwin, Michael R; Smith, Michael T

    2017-01-01

    Ample behavioral and neurobiological evidence links sleep and affective functioning. Recent self-report evidence suggests that the affective problems associated with sleep loss may be stronger for positive versus negative affective state and that those effects may be mediated by changes in electroencepholographically measured slow wave sleep (SWS). In the present study, we extend those preliminary findings using multiple measures of affective functioning. In a within-subject randomized crossover experiment, we tested the effects of one night of sleep continuity disruption via forced awakenings (FA) compared to one night of uninterrupted sleep (US) on three measures of positive and negative affective functioning: self-reported affective state, affective pain modulation, and affect-biased attention. The study was set in an inpatient clinical research suite. Healthy, good sleeping adults (N = 45) were included. Results indicated that a single night of sleep continuity disruption attenuated positive affective state via FA-induced reductions in SWS. Additionally, sleep continuity disruption attenuated the inhibition of pain by positive affect as well as attention bias to positive affective stimuli. Negative affective state, negative affective pain facilitation, nor negative attention bias were altered by sleep continuity disruption. The present findings, observed across multiple measures of affective function, suggest that sleep continuity disruption has a stronger influence on the positive affective system relative to the negative affective affective system. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  2. Effect of analgesia on the changes in respiratory parameters in blunt chest injury with multiple rib fractures.

    PubMed

    Ekpe, Eyo Effiong; Eyo, Catherine

    2017-01-01

    Blunt chest injury with multiple rib fractures can result in such complications as pneumonia, atelectasis, bronchiectasis, empyema thoracis, acute respiratory distress syndrome, and prolonged Intensive Care Unit and hospital stay, with its concomitant mortality. These may be prevented or reduced by good analgesic therapy which is the subject of this study. This was a prospective study of effects of analgesia on changes in pulmonary functions of patients with traumatic multiple rib fractures resulting from blunt chest injury. There were 64 adult patients who were studied with multiple rib fractures caused by blunt chest trauma. Of these patients, 54 (84.4%) were male and 10 (15.6%) were female. Motorcycle (popularly known as "okada") and tricycle (popularly known as keke napep) accidents significantly accounted for the majority of the multiple rib fractures, that is, in 50 (78.1%) of the patients. Before analgesic administration, no patient had a normal respiratory rate, but at 1 h following the administration of analgesic, 21 (32.8%) of patients recorded normal respiratory rates and there was a significant reduction in the number (10.9% vs. 39.1%) of patients with respiratory rates> 30 breaths/min. Before commencement of analgesic, no patient recorded up to 99% of oxygen saturation (SpO2) as measured by pulse oximeter, while 43.8% recorded SpO2of 96%. This improved after 1 h of administration of analgesics to SpO2of 100% in 18.8% of patients and 99% in 31.3% of patients and none recording SpO2of < 97% (P = 0.006). Before analgesia, no patient was able to achieve peak expiratory flow rate (PEFR) value> 100% of predicted while only 9 (14.1%) patients were able to achieve a PEFR value in the range of 91%-100% of predicted value. One hour after analgesia, a total of 6 (9.4%) patients were able to achieve PEFR values> 100% predicted, while 35 (54.7%) patients achieved PEFR values in the range of 91%-100% predicted. Adequate analgesia is capable of reversing the negative effects of chest pain of traumatic multiple rib fractures on pulmonary function parameters through improvement in respiratory mechanics.

  3. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  4. Brain network alterations in the inflammatory soup animal model of migraine.

    PubMed

    Becerra, Lino; Bishop, James; Barmettler, Gabi; Kainz, Vanessa; Burstein, Rami; Borsook, David

    2017-04-01

    Advances in our understanding of the human pain experience have shifted much of the focus of pain research from the periphery to the brain. Current hypotheses suggest that the progression of migraine depends on abnormal functioning of neurons in multiple brain regions. Accordingly, we sought to capture functional brain changes induced by the application of an inflammatory cocktail known as inflammatory soup (IS), to the dura mater across multiple brain networks. Specifically, we aimed to determine whether IS alters additional neural networks indirectly related to the primary nociceptive pathways via the spinal cord to the thalamus and cortex. IS comprises an acidic combination of bradykinin, serotonin, histamine and prostaglandin PGE2 and was introduced to basic pain research as a tool to activate and sensitize peripheral nociceptors when studying pathological pain conditions associated with allodynia and hyperalgesia. Using this model of intracranial pain, we found that dural application of IS in awake, fully conscious, rats enhanced thalamic, hypothalamic, hippocampal and somatosensory cortex responses to mechanical stimulation of the face (compared to sham synthetic interstitial fluid administration). Furthermore, resting state MRI data revealed altered functional connectivity in a number of networks previously identified in clinical chronic pain populations. These included the default mode, sensorimotor, interoceptive (Salience) and autonomic networks. The findings suggest that activation and sensitization of meningeal nociceptors by IS can enhance the extent to which the brain processes nociceptive signaling, define new level of modulation of affective and cognitive responses to pain; set new tone for hypothalamic regulation of autonomic outflow to the cranium; and change cerebellar functions. Copyright © 2017. Published by Elsevier B.V.

  5. Brain network alterations in the inflammatory soup animal model of migraine

    PubMed Central

    Becerra, Lino; Bishop, James; Barmettler, Gabi; Kainz, Vanessa; Burstein, Rami; Borsook, David

    2017-01-01

    Advances in our understanding of the human pain experience have shifted much of the focus of pain research from the periphery to the brain. Current hypotheses suggest that the progression of migraine depends on abnormal functioning of neurons in multiple brain regions. Accordingly, we sought to capture functional brain changes induced by the application of an inflammatory cocktail known as inflammatory soup (IS), to the dura mater across multiple brain networks. Specifically, we aimed to determine whether IS alters additional neural networks indirectly related to the primary nociceptive pathways via the spinal cord to the thalamus and cortex. IS comprises an acidic combination of bradykinin, serotonin, histamine and prostaglandin PGE2 and was introduced to basic pain research as a tool to activate and sensitize peripheral nociceptors when studying pathological pain conditions associated with allodynia and hyperalgesia. Using this model of intracranial pain, we found that dural application of IS in awake, fully conscious, rats enhanced thalamic, hypothalamic, hippocampal and somatosensory cortex responses to mechanical stimulation of the face (compared to sham synthetic interstitial fluid administration). Furthermore, resting state MRI data revealed altered functional connectivity in a number of networks previously identified in clinical chronic pain populations. These included the default mode, sensorimotor, interoceptive (Salience) and autonomic networks. The findings suggest that activation and sensitization of meningeal nociceptors by IS can enhance the extent to which the brain processes nociceptive signaling, define new level of modulation of affective and cognitive responses to pain; set new tone for hypothalamic regulation of autonomic outflow to the cranium; and change cerebellar functions. PMID:28167076

  6. Three-Function Logic Gate Controlled by Analog Voltage

    NASA Technical Reports Server (NTRS)

    Zebulum, Ricardo; Stoica, Adrian

    2006-01-01

    The figure is a schematic diagram of a complementary metal oxide/semiconductor (CMOS) electronic circuit that performs one of three different logic functions, depending on the level of an externally applied control voltage, V(sub sel). Specifically, the circuit acts as A NAND gate at V(sub sel) = 0.0 V, A wire (the output equals one of the inputs) at V(sub sel) = 1.0 V, or An AND gate at V(sub sel) = -1.8 V. [The nominal power-supply potential (VDD) and logic "1" potential of this circuit is 1.8 V.] Like other multifunctional circuits described in several prior NASA Tech Briefs articles, this circuit was synthesized following an automated evolutionary approach that is so named because it is modeled partly after the repetitive trial-and-error process of biological evolution. An evolved circuit can be tested by computational simulation and/or tested in real hardware, and the results of the test can provide guidance for refining the design through further iteration. The evolutionary synthesis of electronic circuits can now be implemented by means of a software package Genetic Algorithms for Circuit Synthesis (GACS) that was developed specifically for this purpose. GACS was used to synthesize the present trifunctional circuit. As in the cases of other multifunctional circuits described in several prior NASA Tech Briefs articles, the multiple functionality of this circuit, the use of a single control voltage to select the function, and the automated evolutionary approach to synthesis all contribute synergistically to a combination of features that are potentially advantageous for the further development of robust, multiple-function logic circuits, including, especially, field-programmable gate arrays (FPGAs). These advantages include the following: This circuit contains only 9 transistors about half the number of transistors that would be needed to obtain equivalent NAND/wire/AND functionality by use of components from a standard digital design library. If multifunctional gates like this circuit were used in the place of the configurable logic blocks of present commercial FPGAs, it would be possible to change the functions of the resulting digital systems within shorter times. For example, by changing a single control voltage, one could change the function of thousands of FPGA cells within nanoseconds. In contrast, typically, the reconfiguration in a conventional FPGA by use of bits downloaded from look-up tables via a digital bus takes microseconds.

  7. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  8. Plant diversity effects on soil food webs are stronger than those of elevated CO2 and N deposition in a long-term grassland experiment

    PubMed Central

    Eisenhauer, Nico; Dobies, Tomasz; Cesarz, Simone; Hobbie, Sarah E.; Meyer, Ross J.; Worm, Kally; Reich, Peter B.

    2013-01-01

    Recent metaanalyses suggest biodiversity loss affects the functioning of ecosystems to a similar extent as other global environmental change agents. However, the abundance and functioning of soil organisms have been hypothesized to be much less responsive to such changes, particularly in plant diversity, than aboveground variables, although tests of this hypothesis are extremely rare. We examined the responses of soil food webs (soil microorganisms, nematodes, microarthropods) to 13-y manipulation of multiple environmental factors that are changing at global scales—specifically plant species richness, atmospheric CO2, and N deposition—in a grassland experiment in Minnesota. Plant diversity was a strong driver of the structure and functioning of soil food webs through several bottom-up (resource control) effects, whereas CO2 and N only had modest effects. We found few interactions between plant diversity and CO2 and N, likely because of weak interactive effects of those factors on resource availability (e.g., root biomass). Plant diversity effects likely were large because high plant diversity promoted the accumulation of soil organic matter in the site’s sandy, organic matter–poor soils. Plant diversity effects were not explained by the presence of certain plant functional groups. Our results underline the prime importance of plant diversity loss cascading to soil food webs (density and diversity of soil organisms) and functions. Because the present results suggest prevailing plant diversity effects and few interactions with other global change drivers, protecting plant diversity may be of high priority to maintain the biodiversity and functioning of soils in a changing world. PMID:23576722

  9. Trajectories of ecosystem service change in restored peatlands

    NASA Astrophysics Data System (ADS)

    Evans, Martin; Shuttleworth, Emma; Pilkington, Mike; Allott, Tim; Walker, Jonathan; Spencer, Tom

    2017-04-01

    Peatlands provide a wide range of ecosystem services but across the world degradation of these systems through a range of human impacts has had a negative effect on the provision of these services. A wide variety of peatland restoration approaches have been developed with the aim of mitigating these impacts. Understanding of trajectories of change in ecosystem structure and function is central to evaluating the efficacy of these restoration methods. This paper considers data on post-restoration trajectories of water table change, vegetation recovery, runoff production and water quality based on extensive data from peatland restoration work in the southern Pennines of the U.K. Data have been compiled from multiple restoration initiatives undertaken across the region, spanning up to 12 years post restoration. The data show variations in the time scale of ecosystem change which are indicative of the process basis of the ecosystem trajectories. Rapid changes in runoff are controlled by physical changes to the peatland surface. These are contrasted with longer term evolution of vegetation and water table behaviour which suggest ongoing recovery as the ecosystem adjusts to the restoration process. In order to assess restoration of ecosystem function, and so of ecosystem services, it is important that the process links between ecosystem structure and function are well understood. Establishing typical restoration trajectories can be of practical use in determining restoration project milestones, and can also provide insight into the nature of these process links.

  10. Neuro-Oscillatory Mechanisms of Intersensory Selective Attention and Task Switching in School-Aged Children, Adolescents and Young Adults

    ERIC Educational Resources Information Center

    Murphy, Jeremy W.; Foxe, John J.; Molholm, Sophie

    2016-01-01

    The ability to attend to one among multiple sources of information is central to everyday functioning. Just as central is the ability to switch attention among competing inputs as the task at hand changes. Such processes develop surprisingly slowly, such that even into adolescence, we remain slower and more error prone at switching among tasks…

  11. A Conceptual Framework for the Assessment of Multiple Functions of Agro-Ecosystems: A Case Study of Tras-os-Montes Olive Groves

    ERIC Educational Resources Information Center

    Fleskens, Luuk; Duarte, Filomena; Eicher, Irmgard

    2009-01-01

    Multifunctionality in agriculture has received a lot of attention the last decade from researchers and policy-makers alike, perhaps most notably evidenced by the important changes made to the EU's Common Agricultural Policy. While the concept has been embraced by environmentalists envisioning positive impulses for decoupling and a range of local…

  12. Coverage induced structural transformations of tetracene on Ag(110)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasugi, Kazushiro; Yokoyama, Takashi, E-mail: tyoko@yokohama-cu.ac.jp

    2016-03-14

    Self-assembly of tetracene on an anisotropic surface of Ag(110) has been investigated using scanning tunneling microscopy and low-energy electron diffraction. We observe multistage structural transformations of the self-assembled tetracene on Ag(110) as a function of molecular coverages, which are accompanied by the changes in molecular orientations. They are analyzed by a balance between multiple molecule-molecule and anisotropic substrate-molecule interactions.

  13. Resilience and stability of a pelagic marine ecosystem

    PubMed Central

    Lindegren, Martin; Checkley, David M.; Ohman, Mark D.; Koslow, J. Anthony; Goericke, Ralf

    2016-01-01

    The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS. PMID:26763697

  14. Circumpolar arctic tundra biomass and productivity dynamics in response to projected climate change and herbivory.

    PubMed

    Yu, Qin; Epstein, Howard; Engstrom, Ryan; Walker, Donald

    2017-09-01

    Satellite remote sensing data have indicated a general 'greening' trend in the arctic tundra biome. However, the observed changes based on remote sensing are the result of multiple environmental drivers, and the effects of individual controls such as warming, herbivory, and other disturbances on changes in vegetation biomass, community structure, and ecosystem function remain unclear. We apply ArcVeg, an arctic tundra vegetation dynamics model, to estimate potential changes in vegetation biomass and net primary production (NPP) at the plant community and functional type levels. ArcVeg is driven by soil nitrogen output from the Terrestrial Ecosystem Model, existing densities of Rangifer populations, and projected summer temperature changes by the NCAR CCSM4.0 general circulation model across the Arctic. We quantified the changes in aboveground biomass and NPP resulting from (i) observed herbivory only; (ii) projected climate change only; and (iii) coupled effects of projected climate change and herbivory. We evaluated model outputs of the absolute and relative differences in biomass and NPP by country, bioclimate subzone, and floristic province. Estimated potential biomass increases resulting from temperature increase only are approximately 5% greater than the biomass modeled due to coupled warming and herbivory. Such potential increases are greater in areas currently occupied by large or dense Rangifer herds such as the Nenets-occupied regions in Russia (27% greater vegetation increase without herbivores). In addition, herbivory modulates shifts in plant community structure caused by warming. Plant functional types such as shrubs and mosses were affected to a greater degree than other functional types by either warming or herbivory or coupled effects of the two. © 2017 John Wiley & Sons Ltd.

  15. Full-Body Gaze Control Mechanisms Elicited During Locomotion: Effects Of VOR Adaptation

    NASA Technical Reports Server (NTRS)

    Mulavara, A. P.; Houser, J.; Peters, B.; Miller, C.; Richards, J.; Marshburn, A.; Brady, R.; Cohen, H.; Bloomberg, J. J.

    2004-01-01

    Control of locomotion requires precise interaction between several sensorimotor subsystems. During locomotion the performer must satisfy two performance criteria: maintain stable forward translation and to stabilize gaze (McDonald, et al., 1997). Precise coordination demands integration of multiple sensorimotor subsystems for fulfilling both criteria. In order to test the general hypothesis that the whole body can serve as an integrated gaze stabilization system, we have previously investigated how the multiple, interdependent full-body sensorimotor subsystems respond to changes in gaze stabilization task constraints during locomotion (Mulavara and Bloomberg, 2003). The results suggest that the full body contributes to gaze stabilization during locomotion, and that its different functional elements respond to changes in visual task constraints. The goal of this study was to determine how the multiple, interdependent, full-body sensorimotor subsystems aiding gaze stabilization during locomotion are functionally coordinated after the vestibulo-ocular reflex (VOR) gain has been altered. We investigated the potential of adaptive remodeling of the full-body gaze control system following exposure to visual-vestibular conflict known to adaptively reduce the VOR. Subjects (n=14) walked (6.4 km/h) on the treadmill before and after they were exposed to 0.5X manifying lenses worn for 30 minutes during self-generated sinusoidal vertical head rotations performed while seated. In this study we measured: temporal parameters of gait, full body sagittal plane segmental kinematics of the head, trunk, thigh, shank and foot, accelerations along the vertical axis at the head and the shank, and the vertical forces acting on the support surface. Results indicate that, following exposure to the 0.5X minifying lenses, there was a significant increase in the duration of stance and stride times, alteration in the amplitude of head movement with respect to space and a significant increase in the amount of knee flexion during the initial stance phase of the gait cycle. This study provides further evidence that the full body contributes to gaze stabilization during locomotion, and that different functional elements are responsive to changes in visual task constraints and are subject to adaptive alteration following exposure to visual-vestibular conflict.

  16. Androgen receptor gene CAG repeat polymorphism independently influences recovery of male sexual function after testosterone replacement therapy in postsurgical hypogonadotropic hypogonadism.

    PubMed

    Tirabassi, Giacomo; Delli Muti, Nicola; Corona, Giovanni; Maggi, Mario; Balercia, Giancarlo

    2014-05-01

    Few and contradictory studies have evaluated the possible influence of androgen receptor (AR) gene CAG repeat polymorphism on male sexual function. In this study we evaluated the role of AR gene CAG repeat polymorphism in the recovery of sexual function after testosterone replacement therapy (TRT) in men affected by postsurgical hypogonadotropic hypogonadism, a condition which is often associated with hypopituitarism and in which the sexual benefits of TRT must be distinguished from those of pituitary-function replacement therapies. Fifteen men affected by postsurgical hypogonadotropic hypogonadism were retrospectively assessed before and after TRT. Main outcome measures included sexual parameters as assessed by the International Index of Erectile Function questionnaire, levels of pituitary dependent hormones (total testosterone, free T3, free T4, cortisol, insulin-like growth factor-1 [IGF-1], prolactin), and results of genetic analysis (AR gene CAG repeat number). Plasma concentrations of free T3, free T4, cortisol, and prolactin did not vary significantly between the two phases, while testosterone and IGF-1 increased significantly after TRT. A significant improvement in all sexual parameters studied was found. The number of CAG triplets was negatively and significantly correlated with changes in all the sexual parameters, while opposite correlations were found between changes in sexual parameters and changes in testosterone levels; no correlation of change in IGF1 with change in sexual parameters was reported. On multiple linear regression analysis, after correction for changes in testosterone, nearly all the associations between the number of CAG triplets and changes in sexual parameters were confirmed. Shorter length AR gene CAG repeat number is associated with the recovery of sexual function after TRT in postsurgical male hypogonadotropic hypogonadism, independently of the effects of concomitant pituitary-replacement therapies. © 2014 International Society for Sexual Medicine.

  17. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.

    PubMed

    Mudgal, Richa; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2017-07-01

    Functional annotation is seldom straightforward with complexities arising due to functional divergence in protein families or functional convergence between non-homologous protein families, leading to mis-annotations. An enzyme may contain multiple domains and not all domains may be involved in a given function, adding to the complexity in function annotation. To address this, we use binding site information from bound cognate ligands and catalytic residues, since it can help in resolving fold-function relationships at a finer level and with higher confidence. A comprehensive database of 2,020 fold-function-binding site relationships has been systematically generated. A network-based approach is employed to capture the complexity in these relationships, from which different types of associations are deciphered, that identify versatile protein folds performing diverse functions, same function associated with multiple folds and one-to-one relationships. Binding site similarity networks integrated with fold, function, and ligand similarity information are generated to understand the depth of these relationships. Apart from the observed continuity in the functional site space, network properties of these revealed versatile families with topologically different or dissimilar binding sites and structural families that perform very similar functions. As a case study, subtle changes in the active site of a set of evolutionarily related superfamilies are studied using these networks. Tracing of such similarities in evolutionarily related proteins provide clues into the transition and evolution of protein functions. Insights from this study will be helpful in accurate and reliable functional annotations of uncharacterized proteins, poly-pharmacology, and designing enzymes with new functional capabilities. Proteins 2017; 85:1319-1335. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Graded hypoxia acts through a network of distributed peripheral oxygen chemoreceptors to produce changes in respiratory behaviour and plasticity.

    PubMed

    Janes, Tara A; Xu, Fenglian; Syed, Naweed I

    2015-07-01

    Respiratory behaviour relies critically upon sensory feedback from peripheral oxygen chemoreceptors. During environmental or systemic hypoxia, chemoreceptor input modulates respiratory central pattern generator activity to produce reflex-based increases in respiration and also shapes respiratory plasticity over longer timescales. The best-studied oxygen chemoreceptors are undoubtedly the mammalian carotid bodies; however, questions remain regarding this complex organ's role in shaping respiration in response to varying oxygen levels. Furthermore, many taxa possess distinct oxygen chemoreceptors located within the lungs, airways and cardiovasculature, but the functional advantage of multiple chemoreceptor sites is unclear. In this study, it is demonstrated that a distributed network of peripheral oxygen chemoreceptors exists in Lymnaea stagnalis and significantly modulates aerial respiration. Specifically, Lymnaea breath frequency and duration represent parameters that are shaped by interactions between hypoxic severity and its time-course. Using a combination of behaviour and electrophysiology approaches, the chemosensory pathways underlying hypoxia-induced changes in breath frequency/duration were explored. The current findings demonstrate that breath frequency is uniquely modulated by the known osphradial ganglion oxygen chemoreceptors during moderate hypoxia, while a newly discovered area of pneumostome oxygen chemoreception serves a similar function specifically during more severe hypoxia. Together, these findings suggest that multiple oxygen chemosensory sites, each with their own sensory and modulatory properties, act synergistically to form a functionally distributed network that dynamically shapes respiration in response to changing systemic or environmental oxygen levels. These distributed networks may represent an evolutionarily conserved strategy vis-à-vis respiratory adaptability and have significant implications for the understanding of fundamental respiratory control systems. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  19. Impact of cataract surgery on vision-related life performances: the usefulness of Real-Life Vision Test for cataract surgery outcomes evaluation

    PubMed Central

    Ni, W; Li, X; Hou, Z; Zhang, H; Qiu, W; Wang, W

    2015-01-01

    Purpose Real-Life Vision Test (RLVT) is a newly developed performance-based measures of functional vision. This present study is designed to determine whether it could be a meaningful assessment for cataract surgery outcomes evaluation. Patients and methods Age-related cataract patients (56) who scheduled for bilateral cataract surgery and 44 age-matched controls were evaluated by four types of measurements: (1) demographic, medical, cognitive and depressive evaluation, and the reaction time testing; (2) clinical measures (visual acuity, contrast sensitivity, stereopsis, and color perception); (3) the 25-item National Eye Institute's Visual Functioning Questionnaire (NEI-VFQ); (4) the RLVT. Spearman's coefficients and multiple regression analysis were conducted to investigate the relationship among RLVT, clinical measures, and self-report assessment of visual function. Results The results of RLVT, clinical measures, and NEI-VFQ total scores were improved significantly after cataract surgery. There were no differences between control subjects and post-surgery patients with respect to NEI-VFQ-25 total scores, self-rating depression scale scores and three tasks of RLVT. Change of RLVT was significantly associated with the change of clinical measures in the cataract group. Multiple regression analysis demonstrated that change of distance, intermediate, and near visual acuity, and binocular contrast sensitivity were significant predictors of improvements of RLVT. Conclusions Cataract surgery could improve real-world visual ability effectively for cataract patients. Our study highlights the potential usefulness of RLVT as an adjunct to the current outcomes evaluation system for cataract surgery. The use of RLVT combined with clinical and self-survey methods may be the comprehensive strategy to manifest the impact of cataract surgery on patients' overall vision-related quality of life. PMID:26272444

  20. Temporal scale dependent interactions between multiple environmental disturbances in microcosm ecosystems.

    PubMed

    Garnier, Aurélie; Pennekamp, Frank; Lemoine, Mélissa; Petchey, Owen L

    2017-12-01

    Global environmental change has negative impacts on ecological systems, impacting the stable provision of functions, goods, and services. Whereas effects of individual environmental changes (e.g. temperature change or change in resource availability) are reasonably well understood, we lack information about if and how multiple changes interact. We examined interactions among four types of environmental disturbance (temperature, nutrient ratio, carbon enrichment, and light) in a fully factorial design using a microbial aquatic ecosystem and observed responses of dissolved oxygen saturation at three temporal scales (resistance, resilience, and return time). We tested whether multiple disturbances combine in a dominant, additive, or interactive fashion, and compared the predictability of dissolved oxygen across scales. Carbon enrichment and shading reduced oxygen concentration in the short term (i.e. resistance); although no other effects or interactions were statistically significant, resistance decreased as the number of disturbances increased. In the medium term, only enrichment accelerated recovery, but none of the other effects (including interactions) were significant. In the long term, enrichment and shading lengthened return times, and we found significant two-way synergistic interactions between disturbances. The best performing model (dominant, additive, or interactive) depended on the temporal scale of response. In the short term (i.e. for resistance), the dominance model predicted resistance of dissolved oxygen best, due to a large effect of carbon enrichment, whereas none of the models could predict the medium term (i.e. resilience). The long-term response was best predicted by models including interactions among disturbances. Our results indicate the importance of accounting for the temporal scale of responses when researching the effects of environmental disturbances on ecosystems. © 2017 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  1. Microbial dormancy improves development and experimental validation of ecosystem model

    DOE PAGES

    Wang, Gangsheng; Jagadamma, Sindhu; Mayes, Melanie; ...

    2014-07-11

    Climate feedbacks from soils can result from environmental change followed by response of plant and microbial communities, and/or associated changes in nutrient cycling. Explicit consideration of microbial life history traits and functions may be necessary to predict climate feedbacks due to changes in the physiology and community composition of microbes and their associated effect on carbon cycling. Here, we enhanced the Microbial-Enzyme-mediated Decomposition (MEND) model by incorporating microbial dormancy and the ability to track multiple isotopes of carbon. We tested two versions of MEND, i.e., MEND with dormancy and MEND without dormancy, against long-term (270 d) lab incubations of fourmore » soils with isotopically-labeled substrates. MEND without dormancy adequately fitted multiple observations (total and 14C respiration, and dissolved organic carbon), but at the cost of significantly underestimating the total microbial biomass. The MEND with dormancy improved estimates of microbial biomass by 20 71% over the MEND without dormancy. We observed large differences for two fitted model parameters, the specific maintenance and growth rates for active microbes, depending on whether dormancy was considered. Together our model extrapolations of the incubation study show that long-term soil incubations with observations in multiple carbon pools are necessary to estimate both decomposition and microbial parameters. These efforts should provide essential support to future field- and global-scale simulations and enable more confident predictions of feedbacks between environmental change and carbon cycling.« less

  2. Localized grey matter damage in early primary progressive multiple sclerosis contributes to disability.

    PubMed

    Khaleeli, Z; Cercignani, M; Audoin, B; Ciccarelli, O; Miller, D H; Thompson, A J

    2007-08-01

    Disability in primary progressive multiple sclerosis (PPMS) has been correlated with damage to the normal appearing brain tissues. Magnetization transfer ratio (MTR) and volume changes indicate that much of this damage occurs in the normal appearing grey matter, but the clinical significance of this remains uncertain. We aimed to localize these changes to distinct grey matter regions, and investigate the clinical impact of the MTR changes. 46 patients with early PPMS and 23 controls underwent MT and high-resolution T1-weighted imaging. Patients were scored on the Expanded Disability Status Scale (EDSS), Multiple Sclerosis Functional Composite and subtests (Nine-Hole Peg Test, Timed Walk Test, Paced Auditory Serial Addition Test [PASAT]). Grey matter volume and MTR were compared between patients and controls, adjusting for age. Mean MTR for significant regions within the motor network and in areas relevant to PASAT performance were correlated with appropriate clinical scores, adjusting for grey matter volume. Patients showed reduced MTR and atrophy in the right pre- and left post-central gyri, right middle frontal gyrus, left insula, and thalamus bilaterally. Reduced MTR without significant atrophy occurred in the left pre-central gyrus, left superior frontal gyri, bilateral superior temporal gyri, right insula and visual cortex. Higher EDSS correlated with lower MTR in the right primary motor cortex (BA 4). In conclusion, localized grey matter damage occurs in early PPMS, and MTR change is more widespread than atrophy. Damage demonstrated by reduced MTR is clinically eloquent.

  3. Functional tradeoffs underpin salinity-driven divergence in microbial community composition.

    PubMed

    Dupont, Chris L; Larsson, John; Yooseph, Shibu; Ininbergs, Karolina; Goll, Johannes; Asplund-Samuelsson, Johannes; McCrow, John P; Celepli, Narin; Allen, Lisa Zeigler; Ekman, Martin; Lucas, Andrew J; Hagström, Åke; Thiagarajan, Mathangi; Brindefalk, Björn; Richter, Alexander R; Andersson, Anders F; Tenney, Aaron; Lundin, Daniel; Tovchigrechko, Andrey; Nylander, Johan A A; Brami, Daniel; Badger, Jonathan H; Allen, Andrew E; Rusch, Douglas B; Hoffman, Jeff; Norrby, Erling; Friedman, Robert; Pinhassi, Jarone; Venter, J Craig; Bergman, Birgitta

    2014-01-01

    Bacterial community composition and functional potential change subtly across gradients in the surface ocean. In contrast, while there are significant phylogenetic divergences between communities from freshwater and marine habitats, the underlying mechanisms to this phylogenetic structuring yet remain unknown. We hypothesized that the functional potential of natural bacterial communities is linked to this striking divide between microbiomes. To test this hypothesis, metagenomic sequencing of microbial communities along a 1,800 km transect in the Baltic Sea area, encompassing a continuous natural salinity gradient from limnic to fully marine conditions, was explored. Multivariate statistical analyses showed that salinity is the main determinant of dramatic changes in microbial community composition, but also of large scale changes in core metabolic functions of bacteria. Strikingly, genetically and metabolically different pathways for key metabolic processes, such as respiration, biosynthesis of quinones and isoprenoids, glycolysis and osmolyte transport, were differentially abundant at high and low salinities. These shifts in functional capacities were observed at multiple taxonomic levels and within dominant bacterial phyla, while bacteria, such as SAR11, were able to adapt to the entire salinity gradient. We propose that the large differences in central metabolism required at high and low salinities dictate the striking divide between freshwater and marine microbiomes, and that the ability to inhabit different salinity regimes evolved early during bacterial phylogenetic differentiation. These findings significantly advance our understanding of microbial distributions and stress the need to incorporate salinity in future climate change models that predict increased levels of precipitation and a reduction in salinity.

  4. Elderly Mexican women's perceptions of exercise and conflicting role responsibilities.

    PubMed

    Gonzalez, B C; Jirovec, M M

    2001-02-01

    The purpose of this pilot study was to explore elderly Mexican women's readiness to exercise, and their multiple roles. Fifty older women were sampled from two separate neighborhoods of low socio-economic status. Readiness to exercise was examined using the Stages of Change - Exercise instrument with six categories: precontemplation nonbelievers, precontemplation believers, contemplation, preparation, action, and maintenance. Time devoted to the following functional roles was explored: wife, household, grandmother, personal care, and recreational. Women fell mainly under the first three stages of change both, precontemplation nonbelievers and believers, and the contemplation stage. The stages of change scale and role commitments were not significantly related. Nevertheless, precontemplators devoted less time in all the roles than the women in the other categories of stage of change.

  5. Exercise Training in Progressive Multiple Sclerosis: A Comparison of Recumbent Stepping and Body Weight-Supported Treadmill Training.

    PubMed

    Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L

    2016-01-01

    Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.

  6. The relationship between spatial configuration and functional connectivity of brain regions

    PubMed Central

    Woolrich, Mark W; Glasser, Matthew F; Robinson, Emma C; Beckmann, Christian F; Van Essen, David C

    2018-01-01

    Brain connectivity is often considered in terms of the communication between functionally distinct brain regions. Many studies have investigated the extent to which patterns of coupling strength between multiple neural populations relates to behaviour. For example, studies have used ‘functional connectivity fingerprints’ to characterise individuals' brain activity. Here, we investigate the extent to which the exact spatial arrangement of cortical regions interacts with measures of brain connectivity. We find that the shape and exact location of brain regions interact strongly with the modelling of brain connectivity, and present evidence that the spatial arrangement of functional regions is strongly predictive of non-imaging measures of behaviour and lifestyle. We believe that, in many cases, cross-subject variations in the spatial configuration of functional brain regions are being interpreted as changes in functional connectivity. Therefore, a better understanding of these effects is important when interpreting the relationship between functional imaging data and cognitive traits. PMID:29451491

  7. Forest restoration, biodiversity and ecosystem functioning.

    PubMed

    Aerts, Raf; Honnay, Olivier

    2011-11-24

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but it also highlights that much remains to be understood, especially regarding the relation between forest functioning on the one side and genetic diversity and above-ground-below-ground species associations on the other. The strong emphasis of the BEF-approach on functional rather than taxonomic diversity may also be the beginning of a paradigm shift in restoration ecology, increasing the tolerance towards allochthonous species.

  8. Y(nS) polarizations versus particle multiplicity in pp collisions at s = 7  TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khachatryan, Vardan

    The polarizations of the Y(1S), Y(2S), and Y(3S) mesons are measured as a function of the charged particle multiplicity in proton-proton collisions at √s = 7 TeV. The measurements are performed with a dimuon data sample collected in 2011 by the CMS experiment, corresponding to an integrated luminosity of 4.9 fb –1. The results are extracted from the dimuon decay angular distributions, in two ranges of Y(nS) transverse momentum (10-15 and 15-35 GeV), and in the rapidity interval |y| < 1.2. Furthermore, the results do not show significant changes from low- to high-multiplicity pp collisions, although large uncertainties preclude definitemore » statements in the Y(2S) and Y(3S) cases.« less

  9. Hypoxia and Mucosal Inflammation

    PubMed Central

    Colgan, Sean P.; Campbell, Eric L.; Kominsky, Douglas J.

    2016-01-01

    Sites of inflammation are defined by significant changes in metabolic activity. Recent studies have suggested that O2 metabolism and hypoxia play a prominent role in inflammation so-called “inflammatory hypoxia,” which results from a combination of recruited inflammatory cells (e.g., neutrophils and monocytes), the local proliferation of multiple cell types, and the activation of multiple O2-consuming enzymes during inflammation. These shifts in energy supply and demand result in localized regions of hypoxia and have revealed the important function off the transcription factor HIF (hypoxia-inducible factor) in the regulation of key target genes that promote inflammatory resolution. Analysis of these pathways has provided multiple opportunities for understanding basic mechanisms of inflammation and has defined new targets for intervention. Here, we review recent work addressing tissue hypoxia and metabolic control of inflammation and immunity. PMID:27193451

  10. [Quality of life after multiple trauma].

    PubMed

    Mörsdorf, P; Becker, S C; Holstein, J H; Burkhardt, M; Pohlemann, T

    2014-03-01

    Multiple trauma is an independent injury pattern which, because of its complexity, is responsible for 25 % of the costs for the treatment of all injured patients. Because of the often long-lasting physical impairment and the high incidence of residual permanent handicaps, it is apparent that multiple trauma can lead to a reduction in patient quality of life. The aim of this study was to give an overview of the known data concerning the change in quality of life for multiple trauma patients. Furthermore, predictors for the reduction of quality of life after multiple trauma will be identified. A MedLine search was performed to identify studies dealing with the outcome after multiple trauma. In addition to functional outcome parameters, the term quality of life has become more important in recent years when it comes to evaluating the outcome following injury. While the mortality after multiple trauma could be significantly reduced over the years, there is no comparable effect on the quality of life. Predictors for a worse quality of life after multiple trauma are female gender, high age, low social status, concomitant head injuries and injury to the lower extremities. The fact that mortality after multiple trauma has decreased but not impairment of the quality of life makes it clear that in addition to the acute medical treatment, a follow-up treatment including not only physiotherapy but also psychotherapy is crucial for multiple trauma patients.

  11. In Psycho-Spiritual Integrative Therapy for Women with Primary Breast Cancer, What Factors Account for the Benefits? Insights from a Multiple Case Analysis.

    PubMed

    Rettger, John; Wall, Kathleen; Corwin, Diana; Davidson, Alexandra N; Lukoff, David; Koopman, Cheryl

    2015-05-12

    This study sought to understand the context in which Psycho-Spiritual Integrative Therapy (PSIT), a group intervention, promotes varying degrees of spiritual growth and quality of life change in breast cancer survivors. A secondary aim was to explore the relationship between spiritual well-being (SWB) and Quality of Life (QL) in PSIT participants. A qualitative, multiple case analysis was undertaken to examine the experiences of two participants with the highest change scores on the Functional Assessment of Chronic Illness Therapy Spiritual Well-Being Scale-Expanded Version (FACIT-Sp-Ex) and two participants with among the lowest change scores on this measure. The participant factors thought to contribute to SWB and QL changes included utilization of metacognitive psychological skills and spiritual/religious frameworks, while PSIT factors included application of PSIT core intervention components, cognitive restructuring, group dynamics, and the role of the facilitator. The nature and extent of participant use of spiritual practices appeared to shape the relationship between SWB and OL. The findings suggest directions for future research to investigate potential moderators and mediators of treatment efficacy of PSIT specifically, as well as other psycho-spiritual interventions for cancer survivors more generally.

  12. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity

    PubMed Central

    Whittington, James C. R.; Bogacz, Rafal

    2017-01-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output. PMID:28333583

  13. An Approximation of the Error Backpropagation Algorithm in a Predictive Coding Network with Local Hebbian Synaptic Plasticity.

    PubMed

    Whittington, James C R; Bogacz, Rafal

    2017-05-01

    To efficiently learn from feedback, cortical networks need to update synaptic weights on multiple levels of cortical hierarchy. An effective and well-known algorithm for computing such changes in synaptic weights is the error backpropagation algorithm. However, in this algorithm, the change in synaptic weights is a complex function of weights and activities of neurons not directly connected with the synapse being modified, whereas the changes in biological synapses are determined only by the activity of presynaptic and postsynaptic neurons. Several models have been proposed that approximate the backpropagation algorithm with local synaptic plasticity, but these models require complex external control over the network or relatively complex plasticity rules. Here we show that a network developed in the predictive coding framework can efficiently perform supervised learning fully autonomously, employing only simple local Hebbian plasticity. Furthermore, for certain parameters, the weight change in the predictive coding model converges to that of the backpropagation algorithm. This suggests that it is possible for cortical networks with simple Hebbian synaptic plasticity to implement efficient learning algorithms in which synapses in areas on multiple levels of hierarchy are modified to minimize the error on the output.

  14. Integrated control and health monitoring capacitive displacement sensor development task. Orbit transfer rocket engine technology program

    NASA Technical Reports Server (NTRS)

    Collamore, Frank N.

    1989-01-01

    The development of a miniature multifunction turbomachinery shaft displacement sensor using state-of-the-art non-contract capacitive sensing technology is described. Axial displacement, radial displacement, and speed are sensed using a single probe within the envelope normally required for a single function. A survey of displacement sensing technology is summarized including inductive, capacitive, optical and ultrasonic techniques. The design and operation of an experimental triple function sensor is described. Test results are included showing calibration tests and simultaneous dynamic testing of multiple functions. Recommendations for design changes are made to improve low temperature performance, reliability, and for design of a flight type signal conditioning unit.

  15. Exploration of Multi-State Conformational Dynamics and Underlying Global Functional Landscape of Maltose Binding Protein

    PubMed Central

    Wang, Yong; Tang, Chun; Wang, Erkang; Wang, Jin

    2012-01-01

    An increasing number of biological machines have been revealed to have more than two macroscopic states. Quantifying the underlying multiple-basin functional landscape is essential for understanding their functions. However, the present models seem to be insufficient to describe such multiple-state systems. To meet this challenge, we have developed a coarse grained triple-basin structure-based model with implicit ligand. Based on our model, the constructed functional landscape is sufficiently sampled by the brute-force molecular dynamics simulation. We explored maltose-binding protein (MBP) which undergoes large-scale domain motion between open, apo-closed (partially closed) and holo-closed (fully closed) states responding to ligand binding. We revealed an underlying mechanism whereby major induced fit and minor population shift pathways co-exist by quantitative flux analysis. We found that the hinge regions play an important role in the functional dynamics as well as that increases in its flexibility promote population shifts. This finding provides a theoretical explanation of the mechanistic discrepancies in PBP protein family. We also found a functional “backtracking” behavior that favors conformational change. We further explored the underlying folding landscape in response to ligand binding. Consistent with earlier experimental findings, the presence of ligand increases the cooperativity and stability of MBP. This work provides the first study to explore the folding dynamics and functional dynamics under the same theoretical framework using our triple-basin functional model. PMID:22532792

  16. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities

    PubMed Central

    Soliveres, Santiago; Smit, Christian; Maestre, Fernando T.

    2015-01-01

    Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant–plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant–plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant–plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant–plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity–ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. PMID:24774563

  17. Moving forward on facilitation research: response to changing environments and effects on the diversity, functioning and evolution of plant communities.

    PubMed

    Soliveres, Santiago; Smit, Christian; Maestre, Fernando T

    2015-02-01

    Once seen as anomalous, facilitative interactions among plants and their importance for community structure and functioning are now widely recognized. The growing body of modelling, descriptive and experimental studies on facilitation covers a wide variety of terrestrial and aquatic systems throughout the globe. However, the lack of a general body of theory linking facilitation among different types of organisms and biomes and their responses to environmental changes prevents further advances in our knowledge regarding the evolutionary and ecological implications of facilitation in plant communities. Moreover, insights gathered from alternative lines of inquiry may substantially improve our understanding of facilitation, but these have been largely neglected thus far. Despite over 15 years of research and debate on this topic, there is no consensus on the degree to which plant-plant interactions change predictably along environmental gradients (i.e. the stress-gradient hypothesis), and this hinders our ability to predict how plant-plant interactions may affect the response of plant communities to ongoing global environmental change. The existing controversies regarding the response of plant-plant interactions across environmental gradients can be reconciled when clearly considering and determining the species-specificity of the response, the functional or individual stress type, and the scale of interest (pairwise interactions or community-level response). Here, we introduce a theoretical framework to do this, supported by multiple lines of empirical evidence. We also discuss current gaps in our knowledge regarding how plant-plant interactions change along environmental gradients. These include the existence of thresholds in the amount of species-specific stress that a benefactor can alleviate, the linearity or non-linearity of the response of pairwise interactions across distance from the ecological optimum of the beneficiary, and the need to explore further how frequent interactions among multiple species are and how they change across different environments. We review the latest advances in these topics and provide new approaches to fill current gaps in our knowledge. We also apply our theoretical framework to advance our knowledge on the evolutionary aspects of plant facilitation, and the relative importance of facilitation, in comparison with other ecological processes, for maintaining ecosystem structure, functioning and dynamics. We build links between these topics and related fields, such as ecological restoration, woody encroachment, invasion ecology, ecological modelling and biodiversity-ecosystem-functioning relationships. By identifying commonalities and insights from alternative lines of research, we further advance our understanding of facilitation and provide testable hypotheses regarding the role of (positive) biotic interactions in the maintenance of biodiversity and the response of ecological communities to ongoing environmental changes. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  18. Stochastic extreme downscaling model for an assessment of changes in rainfall intensity-duration-frequency curves over South Korea using multiple regional climate models

    NASA Astrophysics Data System (ADS)

    So, Byung-Jin; Kim, Jin-Young; Kwon, Hyun-Han; Lima, Carlos H. R.

    2017-10-01

    A conditional copula function based downscaling model in a fully Bayesian framework is developed in this study to evaluate future changes in intensity-duration frequency (IDF) curves in South Korea. The model incorporates a quantile mapping approach for bias correction while integrated Bayesian inference allows accounting for parameter uncertainties. The proposed approach is used to temporally downscale expected changes in daily rainfall, inferred from multiple CORDEX-RCMs based on Representative Concentration Pathways (RCPs) 4.5 and 8.5 scenarios, into sub-daily temporal scales. Among the CORDEX-RCMs, a noticeable increase in rainfall intensity is observed in the HadGem3-RA (9%), RegCM (28%), and SNU_WRF (13%) on average, whereas no noticeable changes are observed in the GRIMs (-2%) for the period 2020-2050. More specifically, a 5-30% increase in rainfall intensity is expected in all of the CORDEX-RCMs for 50-year return values under the RCP 8.5 scenario. Uncertainty in simulated rainfall intensity gradually decreases toward the longer durations, which is largely associated with the enhanced strength of the relationship with the 24-h annual maximum rainfalls (AMRs). A primary advantage of the proposed model is that projected changes in future rainfall intensities are well preserved.

  19. Pleiotropic Roles of Bile Acids in Metabolism

    PubMed Central

    de Aguiar Vallim, Thomas Q.; Tarling, Elizabeth J.; Edwards, Peter A.

    2013-01-01

    Summary Enzymatic oxidation of cholesterol generates numerous distinct bile acids that function both as detergents that facilitate digestion and absorption of dietary lipids, and as hormones that activate four distinct receptors. Activation of these receptors alters gene expression in multiple tissues leading to changes not only in bile acid metabolism, but also in glucose homeostasis, lipid and lipoprotein metabolism, energy expenditure, intestinal motility and bacterial growth, inflammation, liver regeneration and hepato-carcinogenesis. This review covers the roles of specific bile acids, synthetic agonists and their cognate receptors in controlling these diverse functions, as well as their current use in treating human diseases. PMID:23602448

  20. The Benefits of High Intensity Functional Training (HIFT) Fitness Programs for Military Personnel

    PubMed Central

    Haddock, Christopher K.; Poston, Walker S.C.; Heinrich, Katie M.; Jahnke, Sara A.; Jitnarin, Nattinee

    2016-01-01

    High intensity functional training (HIFT) programs are designed to address multiple fitness domains, potentially providing improved physical and mental readiness in a changing operational environment. Programs consistent with HIFT principals such as CrossFit, SEALFIT and the US Marine Corps’ High Intensity Tactical Training (HITT) program are increasingly popular among military personnel. This article reviews the practical, health, body composition, and military fitness implications of HIFT exercise programs. We conclude that, given the unique benefits of HIFT, the military should consider evaluating whether these programs should be the standard for military fitness training. PMID:27849484

  1. Associations between results of post-stroke NDT-Bobath rehabilitation in gait parameters, ADL and hand functions.

    PubMed

    Mikołajewska, Emilia

    2013-01-01

    In patients after a stroke there are variable disorders. These patients often need rehabilitation in more than one area beceause of multiple limitations of the ability to perform everyday activities. The aim of the study was to assess correlations - statistical relationships between observed gait parameters, ADL and hand functions - results of rehabilitation of patients after ischaemic stroke according to the NDTBobath method for adults. The investigated group consisted of 60 patients after ischaemic stroke, who participated in the rehabilitation programme. 10 sessions of the NDT-Bobath therapy were provided in 2 weeks (10 days of the therapy). The calculation of correlations was made based on changes of parameters: Bobath Scale (to assess hand functions), Barthel Index (to assess ADL), gait velocity, cadence and stride lenght. Measurements were performed in every patient twice: on admission (before the therapy) and after last session of the therapy to assess rehabilitation effects. The main statistically relevant corellations observed in the study were as follows: in the whole group of patients: poor and moderate (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index, moderate and severe (negative) correlation between changes of gait parameters and Bobath Scale and Barthel Index in the group of women, correlation between changes in Bobath Scale and Barthel Index in the group of patients with left side of paresis, (negative) correlation between changes of gait parameters and Bobath Scale in group of patients younger than 68 years, moderate, high and very high correlations between changes in gait parameters in groups of women, men, younger than 68 years and older than 68 years. There have been observed statistically significant and favourable changes in the health status of patients, described by gait parameters, changes in hand functions and ADL. Based on the presented correlations there is an assumption that it is hard to achieve simultaneous recovery in all areas: gait parameters, hand functions and ADLs in two weeks of rehabilitation.

  2. Stable carbon isotope fractionation of chlorinated ethenes by a microbial consortium containing multiple dechlorinating genes.

    PubMed

    Liu, Na; Ding, Longzhen; Li, Haijun; Zhang, Pengpeng; Zheng, Jixing; Weng, Chih-Huang

    2018-08-01

    The study aimed to determine the possible contribution of specific growth conditions and community structures to variable carbon enrichment factors (Ɛ- carbon ) values for the degradation of chlorinated ethenes (CEs) by a bacterial consortium with multiple dechlorinating genes. Ɛ- carbon values for trichloroethylene, cis-1,2-dichloroethylene, and vinyl chloride were -7.24% ± 0.59%, -14.6% ± 1.71%, and -21.1% ± 1.14%, respectively, during their degradation by a microbial consortium containing multiple dechlorinating genes including tceA and vcrA. The Ɛ- carbon values of all CEs were not greatly affected by changes in growth conditions and community structures, which directly or indirectly affected reductive dechlorination of CEs by this consortium. Stability analysis provided evidence that the presence of multiple dechlorinating genes within a microbial consortium had little effect on carbon isotope fractionation, as long as the genes have definite, non-overlapping functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. DNA melting profiles from a matrix method.

    PubMed

    Poland, Douglas

    2004-02-05

    In this article we give a new method for the calculation of DNA melting profiles. Based on the matrix formulation of the DNA partition function, the method relies for its efficiency on the fact that the required matrices are very sparse, essentially reducing matrix multiplication to vector multiplication and thus making the computer time required to treat a DNA molecule containing N base pairs proportional to N(2). A key ingredient in the method is the result that multiplication by the inverse matrix can also be reduced to vector multiplication. The task of calculating the melting profile for the entire genome is further reduced by treating regions of the molecule between helix-plateaus, thus breaking the molecule up into independent parts that can each be treated individually. The method is easily modified to incorporate changes in the assignment of statistical weights to the different structural features of DNA. We illustrate the method using the genome of Haemophilus influenzae. Copyright 2003 Wiley Periodicals, Inc.

  4. FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions.

    PubMed

    Terry, Douglas P; Adams, T Eric; Ferrara, Michael S; Miller, L Stephen

    2015-06-01

    Multiple concussions before the age of 18 may be associated with late-life memory deficits. This study examined neural activation associated with verbal encoding and memory retrieval in former athletes ages 40-65 who received at least two concussions (median = 3; range = 2-15) playing high school football and a group of former high school football players with no reported history of concussions matched on age, education, and pre-morbid IQ. Functional magnetic resonance imaging data collected during a modified verbal paired associates paradigm indicated that those with concussive histories had hypoactivation in left hemispheric language regions, including the inferior/middle frontal gyri and angular gyrus compared with controls. However, concussive history was not associated with worse memory functioning on neuropsychological tests or worse behavioral performance during the paradigm, suggesting that multiple early-life concussions may be associated with subtle changes in the verbal encoding system that limits one from accessing higher-order semantic networks, but this difference does not translate into measurable cognitive performance deficits. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Patterns formation in ferrofluids and solid dissolutions using stochastic models with dissipative dynamics

    NASA Astrophysics Data System (ADS)

    Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.

    2016-08-01

    A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.

  6. Voxel-based morphometry findings in Alzheimer's disease: neuropsychiatric symptoms and disability correlations - preliminary results.

    PubMed

    Vasconcelos, Luciano de Gois; Jackowski, Andrea Parolin; Oliveira, Maira Okada de; Flor, Yoná Mayara Ribeiro; Bueno, Orlando Francisco Amodeo; Brucki, Sonia Maria Dozzi

    2011-01-01

    The role of structural brain changes and their correlations with neuropsychiatric symptoms and disability in Alzheimer's disease are still poorly understood. To establish whether structural changes in grey matter volume in patients with mild Alzheimer's disease are associated with neuropsychiatric symptoms and disability Nineteen Alzheimer's disease patients (9 females; total mean age =75.2 y old +4.7; total mean education level =8.5 y +4.9) underwent a magnetic resonance imaging (MRI) examination and voxel-based morphometry analysis. T1-weighted images were spatially normalized and segmented. Grey matter images were smoothed and analyzed using a multiple regression design. The results were corrected for multiple comparisons. The Neuropsychiatric Inventory was used to evaluate the neuropsychiatric symptoms, and the Functional Activities Questionnaire and Disability Assessment for Dementia were used for functional evaluation A significant negative correlation was found between the bilateral middle frontal gyri, left inferior temporal gyrus, right orbitofrontal gyrus, and Neuropsychiatric Inventory scores. A negative correlation was found between bilateral middle temporal gyri, left hippocampus, bilateral fusiform gyri, and the Functional Activities Questionnaire. There was a positive correlation between the right amygdala, bilateral fusiform gyri, right anterior insula, left inferior and middle temporal gyri, right superior temporal gyrus, and Disability Assessment for Dementia scores The results suggest that the neuropsychiatric symptoms observed in Alzheimer's disease patients could be mainly due to frontal structural abnormalities, whereas disability could be associated with reductions in temporal structures.

  7. Functional diversity response to hardwood forest management varies across taxa and spatial scales.

    PubMed

    Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A

    2017-06-01

    Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while functional diversity metrics did not differ between harvested and unharvested patches and managed landscapes. The species and functional richness of breeding bird assemblages increased in response to harvesting with more persistent effects in uneven- than in even-aged managed landscapes. For moth and bird assemblages, species turnover was driven by species with more extreme trait combinations. Our study highlights the variability of multi-taxon functional diversity in response to forest management across multiple spatial scales. © 2017 by the Ecological Society of America.

  8. Iodine-based contrast media, multiple myeloma and monoclonal gammopathies: literature review and ESUR Contrast Media Safety Committee guidelines.

    PubMed

    Stacul, Fulvio; Bertolotto, Michele; Thomsen, Henrik S; Pozzato, Gabriele; Ugolini, Donatella; Bellin, Marie-France; Bongartz, Georg; Clement, Olivier; Heinz-Peer, Gertraud; van der Molen, Aart; Reimer, Peter; Webb, Judith A W

    2018-02-01

    Many radiologists and clinicians still consider multiple myeloma (MM) and monoclonal gammopathies (MG) a contraindication for using iodine-based contrast media. The ESUR Contrast Media Safety Committee performed a systematic review of the incidence of post-contrast acute kidney injury (PC-AKI) in these patients. A systematic search in Medline and Scopus databases was performed for renal function deterioration studies in patients with MM or MG following administration of iodine-based contrast media. Data collection and analysis were performed according to the PRISMA statement 2009. Eligibility criteria and methods of analysis were specified in advance. Cohort and case-control studies reporting changes in renal function were included. Thirteen studies were selected that reported 824 iodine-based contrast medium administrations in 642 patients with MM or MG, in which 12 unconfounded cases of PC-AKI were found (1.6 %). The majority of patients had intravenous urography with high osmolality ionic contrast media after preparatory dehydration and purgation. MM and MG alone are not risk factors for PC-AKI. However, the risk of PC-AKI may become significant in dehydrated patients with impaired renal function. Hypercalcaemia may increase the risk of kidney damage, and should be corrected before contrast medium administration. Assessment for Bence-Jones proteinuria is not necessary. • Monoclonal gammopathies including multiple myeloma are a large spectrum of disorders. • In monoclonal gammopathy with normal renal function, PC-AKI risk is not increased. • Renal function is often reduced in myeloma, increasing the risk of PC-AKI. • Correction of hypercalcaemia is necessary in myeloma before iodine-based contrast medium administration. • Bence-Jones proteinuria assessment in myeloma is unnecessary before iodine-based contrast medium administration.

  9. Multiple Functional Domains of Enterococcus faecalis Aggregation Substance Asc10 Contribute to Endocarditis Virulence ▿ †

    PubMed Central

    Chuang, Olivia N.; Schlievert, Patrick M.; Wells, Carol L.; Manias, Dawn A.; Tripp, Timothy J.; Dunny, Gary M.

    2009-01-01

    Aggregation substance proteins encoded by sex pheromone plasmids increase the virulence of Enterococcus faecalis in experimental pathogenesis models, including infectious endocarditis models. These large surface proteins may contain multiple functional domains involved in various interactions with other bacterial cells and with the mammalian host. Aggregation substance Asc10, encoded by plasmid pCF10, is induced during growth in the mammalian bloodstream, and pCF10 carriage gives E. faecalis a significant selective advantage in this environment. We employed a rabbit model to investigate the role of various functional domains of Asc10 in endocarditis. The data suggested that the bacterial load of the infected tissue was the best indicator of virulence. Isogenic strains carrying either no plasmid, wild-type pCF10, a pCF10 derivative with an in-frame deletion of the prgB gene encoding Asc10, or pCF10 derivatives expressing other alleles of prgB were examined in this model. Previously identified aggregation domains contributed to the virulence associated with the wild-type protein, and a strain expressing an Asc10 derivative in which glycine residues in two RGD motifs were changed to alanine residues showed the greatest reduction in virulence. Remarkably, this strain and the strain carrying the pCF10 derivative with the in-frame deletion of prgB were both significantly less virulent than an isogenic plasmid-free strain. The data demonstrate that multiple functional domains are important in Asc10-mediated interactions with the host during the course of experimental endocarditis and that in the absence of a functional prgB gene, pCF10 carriage is actually disadvantageous in vivo. PMID:18955479

  10. Loss of laminin alpha 1 results in multiple structural defects and divergent effects on adhesion during vertebrate optic cup morphogenesis

    PubMed Central

    Bryan, Chase D.; Chien, Chi-Bin; Kwan, Kristen M.

    2016-01-01

    The vertebrate eye forms via a complex set of morphogenetic events. The optic vesicle evaginates and undergoes transformative shape changes to form the optic cup, in which neural retina and retinal pigmented epithelium enwrap the lens. It has long been known that a complex, glycoprotein-rich extracellular matrix layer surrounds the developing optic cup throughout the process, yet the functions of the matrix and its specific molecular components have remained unclear. Previous work established a role for laminin extracellular matrix in particular steps of eye development, including optic vesicle evagination, lens differentiation, and retinal ganglion cell polarization, yet it is unknown what role laminin might play in the early process of optic cup formation subsequent to the initial step of optic vesicle evagination. Here, we use the zebrafish lama1 mutant (lama1UW1) to determine the function of laminin during optic cup morphogenesis. Using live imaging, we find, surprisingly, that loss of laminin leads to divergent effects on focal adhesion assembly in a spatiotemporally-specific manner, and that laminin is required for multiple steps of optic cup morphogenesis, including optic stalk constriction, invagination, and formation of a spherical lens. Laminin is not required for single cell behaviors and changes in cell shape. Rather, in lama1UW1 mutants, loss of epithelial polarity and altered adhesion lead to defective tissue architecture and formation of a disorganized retina. These results demonstrate that the laminin extracellular matrix plays multiple critical roles regulating adhesion and polarity to establish and maintain tissue structure during optic cup morphogenesis. PMID:27339294

  11. Neuropsychological changes following deep brain stimulation surgery for Parkinson's disease: comparisons of treatment at pallidal and subthalamic targets versus best medical therapy.

    PubMed

    Rothlind, Johannes C; York, Michele K; Carlson, Kim; Luo, Ping; Marks, William J; Weaver, Frances M; Stern, Matthew; Follett, Kenneth; Reda, Domenic

    2015-06-01

    Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but questions remain regarding neuropsychological decrements sometimes associated with this treatment, including rates of statistically and clinically meaningful change, and whether there are differences in outcome related to surgical target. Neuropsychological functioning was assessed in patients with Parkinson's disease (PD) at baseline and after 6 months in a prospective, randomised, controlled study comparing best medical therapy (BMT, n=116) and bilateral deep brain stimulation (DBS, n=164) at either the subthalamic nucleus (STN, n=84) or globus pallidus interna (GPi, n=80), using standardised neuropsychological tests. Measures of functional outcomes were also administered. Comparison of the two DBS targets revealed few significant group differences. STN DBS was associated with greater mean reductions on some measures of processing speed, only one of which was statistically significant in comparison with stimulation of GPi. GPi DBS was associated with lower mean performance on one measure of learning and memory that requires mental control and cognitive flexibility. Compared to the group receiving BMT, the combined DBS group had significantly greater mean reductions at 6-month follow-up in performance on multiple measures of processing speed and working memory. After calculating thresholds for statistically reliable change from data obtained from the BMT group, the combined DBS group also displayed higher rates of decline in neuropsychological test performance. Among study completers, 18 (11%) study participants receiving DBS displayed reliable decline by multiple indicators in two or more cognitive domains, a significantly higher rate than in the BMT group (3%). This multi-domain cognitive decline was associated with less beneficial change in subjective ratings of everyday functioning and quality of life (QOL). The multi-domain cognitive decline group continued to function at a lower level at 24-month follow-up. In those with PD, the likelihood of significant decline in neuropsychological functioning increases with DBS, affecting a small minority of patients who also appear to respond less optimally to DBS by other indicators of QOL. NCT00056563 and NCT01076452. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Long-lasting behavioral effects in neonatal mice with multiple exposures to ketamine-xylazine anesthesia

    PubMed Central

    Huang, Lianyan; Hayes, Scott; Yang, Guang

    2016-01-01

    Anesthetic agents are often administered in the neonatal period, a time of rapid brain development and synaptogenesis. Mounting evidence suggests that anesthetics can disrupt neurocognitive development, particularly in cases of multiple or prolonged anesthetic exposure. Previous studies have shown that administering multiple doses of ketamine-xylazine (KX) anesthesia to neonatal mice can induce long-term changes to synaptic plasticity in the cortex, but the effect on neurocognitive function remains unclear. In this study, we exposed neonatal mice to single dose and multiple doses of KX anesthesia in the neonatal period (postnatal days 7, 9, 11), and conducted a series of behavioral tests in young adulthood (1 month of age). Mice receiving multiple doses of KX anesthesia showed deficits in novel object recognition, sociability, preference for social novelty and contextual fear response, but no effect on auditory-cued fear response. Single dose of KX anesthesia had no effect on these behaviors except for contextual fear response. We also observed that multiple exposures to KX anesthesia were associated with decreased CaMKII phosphorylation, which is known to play a role in synapse development and long-term potentiation, likely contributing to learning impairment. PMID:27622724

  13. Relationship of Systemic Cytokine Concentrations to Cognitive Function over Two Years in Women with Early Stage Breast Cancer

    PubMed Central

    Lyon, Debra E.; Cohen, Ronald; Chen, Huaihou; Kelly, Debra L.; McCain, Nancy L.; Starkweather, Angela; Sturgill, Jamie; Jackson-Cook, Colleen K.

    2016-01-01

    Cancer and its treatment are frequently associated with cancer-related cognitive impairment (CRCI). While CRCI has been linked to chemotherapy, there is increasing evidence that the condition may start prior to treatment and for some, remain unresolved after active treatment and into survivorship. Although the pathophysiology of the condition is complex, alterations in systemic cytokines, signaling molecules activated in response to infection or injury that trigger inflammation, are a possible mechanism linked to cognitive dysfunction in breast cancer and other conditions. Given the conflicting results in the literature, the lack of focus on domain-specific cognitive testing, and the need for a longer time period given the multiple modalities of standard treatments for early-stage breast cancer, this longitudinal study was conducted to address these gaps. Methods We assessed 75 women with early-stage breast cancer at five points over two years, starting prior to the initial chemotherapy through 24 months after chemotherapy initiation. Measures included a validated computerized evaluation of domain-specific cognitive functioning and a 17-plex panel of plasma cytokines. Linear mixed-effects models were applied to test the relationships of clinical variables and cytokine concentrations to each cognitive domain. Results: Levels and patterns of cytokine concentrations varied over time: six of the 17 cytokines (IL-6, IL-12, IL-17, G-CSF, MIPS-1β, and MCP-1) had the most variability. Some cytokine levels (e.g., IL-6) increased during chemotherapy but then decreased subsequently, while others (e.g., IL-17) consistently declined from baseline over time. There were multiple relationships among cytokines and cognition, which varied over time. At baseline, elevated concentrations of G-CSF and reduced concentrations of IL-17 were associated with faster psychomotor speed. At the second time-point (prior to the mid-chemotherapy), multiple cytokines had significant associations with psychomotor speed, complex attention, executive function, verbal memory, cognitive flexibility, composite memory and visual memory. Six months after chemotherapy initiation and at the one-year point, there were multiple, significant relationships among cytokines and multiple cognitive. At two years, fewer significant relationships were noted; however, lower concentrations of IL-7, a hematopoietic cytokine, were associated with better psychomotor speed, complex attention, and memory (composite, verbal and visual). MCP-1 was inversely associated with psychomotor speed and complex attention and higher levels of MIP-1β were related to better complex attention. Conclusion Levels and patterns of cytokines changed over time and demonstrated associations with domain-specific cognitive functioning that varied over time. The observed associations between cytokines and cognitive performance provides evidence that not only prototypical cytokines (i.e. IL-6, TNF-α, and IL1-β) but also cytokines from multiple classes may contribute to the inflammatory environment that is associated with cognitive dysfunction. Future studies to better delineate the cytokine changes, both individually and in networks, are needed to precisely assess a mechanistic link between cytokines and cognitive function in women receiving treatments for breast cancer. PMID:27890459

  14. Modelling marine community responses to climate-driven species redistribution to guide monitoring and adaptive ecosystem-based management.

    PubMed

    Marzloff, Martin Pierre; Melbourne-Thomas, Jessica; Hamon, Katell G; Hoshino, Eriko; Jennings, Sarah; van Putten, Ingrid E; Pecl, Gretta T

    2016-07-01

    As a consequence of global climate-driven changes, marine ecosystems are experiencing polewards redistributions of species - or range shifts - across taxa and throughout latitudes worldwide. Research on these range shifts largely focuses on understanding and predicting changes in the distribution of individual species. The ecological effects of marine range shifts on ecosystem structure and functioning, as well as human coastal communities, can be large, yet remain difficult to anticipate and manage. Here, we use qualitative modelling of system feedback to understand the cumulative impacts of multiple species shifts in south-eastern Australia, a global hotspot for ocean warming. We identify range-shifting species that can induce trophic cascades and affect ecosystem dynamics and productivity, and evaluate the potential effectiveness of alternative management interventions to mitigate these impacts. Our results suggest that the negative ecological impacts of multiple simultaneous range shifts generally add up. Thus, implementing whole-of-ecosystem management strategies and regular monitoring of range-shifting species of ecological concern are necessary to effectively intervene against undesirable consequences of marine range shifts at the regional scale. Our study illustrates how modelling system feedback with only limited qualitative information about ecosystem structure and range-shifting species can predict ecological consequences of multiple co-occurring range shifts, guide ecosystem-based adaptation to climate change and help prioritise future research and monitoring. © 2016 John Wiley & Sons Ltd.

  15. Lung function in type 2 diabetes: the Normative Aging Study.

    PubMed

    Litonjua, Augusto A; Lazarus, Ross; Sparrow, David; Demolles, Debbie; Weiss, Scott T

    2005-12-01

    Cross-sectional studies have noted that subjects with diabetes have lower lung function than non-diabetic subjects. We conducted this analysis to determine whether diabetic subjects have different rates of lung function change compared with non-diabetic subjects. We conducted a nested case-control analysis in 352 men who developed diabetes and 352 non-diabetic subjects in a longitudinal observational study of aging in men. We assessed lung function among cases and controls at three time points: Time0, prior to meeting the definition of diabetes; Time1, the point when the definition of diabetes was met; and Time2, the most recent follow-up exam. Cases had lower forced expiratory volume in 1s (FEV1) and forced vital capacity (FVC) at all time points, even with adjustment for age, height, weight, and smoking. In multiple linear regression models adjusting for relevant covariates, there were no differences in rates of FEV1 or FVC change over time between cases and controls. Men who are predisposed to develop diabetes have decreased lung function many years prior to the diagnosis, compared with men who do not develop diabetes. This decrement in lung function remains after the development of diabetes. We postulate that mechanisms involved in the insulin resistant state contribute to the diminished lung function observed in our subjects.

  16. Inter-subject synchrony as an index of functional specialization in early childhood.

    PubMed

    Moraczewski, Dustin; Chen, Gang; Redcay, Elizabeth

    2018-02-02

    Early childhood is a time of significant change within multiple cognitive domains including social cognition, memory, executive function, and language; however, the corresponding neural changes remain poorly understood. This is likely due to the difficulty in acquiring artifact-free functional MRI data during complex task-based or unconstrained resting-state experiments in young children. In addition, task-based and resting state experiments may not capture dynamic real-world processing. Here we overcome both of these challenges through use of naturalistic viewing (i.e., passively watching a movie in the scanner) combined with inter-subject neural synchrony to examine functional specialization within 4- and 6-year old children. Using a novel and stringent crossed random effect statistical analysis, we find that children show more variable patterns of activation compared to adults, particularly within regions of the default mode network (DMN). In addition, we found partial evidence that child-to-adult synchrony increased as a function of age within a DMN region: the temporoparietal junction. Our results suggest age-related differences in functional brain organization within a cross-sectional sample during an ecologically valid context and demonstrate that neural synchrony during naturalistic viewing fMRI can be used to examine functional specialization during early childhood - a time when neural and cognitive systems are in flux.

  17. EPIDEMIOLOGY OF AGE-DEPENDENCE IN SLEEP DISORDERED BREATHING (SDB) IN OLD AGE: THE BAY AREA SLEEP COHORT (BASC).

    PubMed

    Bliwise, Donald L

    2009-03-01

    Sleep Disordered Breathing (SDB) is highly prevalent in elderly populations and is thought to reflect, at least in part, age-dependence. Several studies suggest that SDB in elderly populations may hold different functional outcomes relative to SDB in middle-aged populations. Risk factors for SDB specific for the elderly remain uncertain. In this report, we examined changes in SDB, body weight and pulmonary function in 103 individuals over an average interval of 7 years to determine whether changes in these measures covaried. In-lab polysomnography was performed on members of an elderly cohort (Bay Area Sleep Cohort) on two separate occasions (Time 1, Time 2) with multiple nights of measurement typically made on each occasion. Results indicated that: a) SDB progressed over time in both men and women; b) changes in body weight were unrelated to the progression in SDB; c) relative declines in lung volumes (Forced Vital Capacity, Forced Expiratory Volume in 1.0 second) were associated with relative increases in SDB, with the effects slightly stronger in men. These data suggest that age-dependence in one commonly ascribed aging biomarker (lung function) were coupled to increments in SDB. Maintenance of healthy lung function into old age may confer some protective benefits in the development of age-dependent SDB.

  18. Identifying multiple coral reef regimes and their drivers across the Hawaiian archipelago

    PubMed Central

    Jouffray, Jean-Baptiste; Nyström, Magnus; Norström, Albert V.; Williams, Ivor D.; Wedding, Lisa M.; Kittinger, John N.; Williams, Gareth J.

    2015-01-01

    Loss of coral reef resilience can lead to dramatic changes in benthic structure, often called regime shifts, which significantly alter ecosystem processes and functioning. In the face of global change and increasing direct human impacts, there is an urgent need to anticipate and prevent undesirable regime shifts and, conversely, to reverse shifts in already degraded reef systems. Such challenges require a better understanding of the human and natural drivers that support or undermine different reef regimes. The Hawaiian archipelago extends across a wide gradient of natural and anthropogenic conditions and provides us a unique opportunity to investigate the relationships between multiple reef regimes, their dynamics and potential drivers. We applied a combination of exploratory ordination methods and inferential statistics to one of the most comprehensive coral reef datasets available in order to detect, visualize and define potential multiple ecosystem regimes. This study demonstrates the existence of three distinct reef regimes dominated by hard corals, turf algae or macroalgae. Results from boosted regression trees show nonlinear patterns among predictors that help to explain the occurrence of these regimes, and highlight herbivore biomass as the key driver in addition to effluent, latitude and depth.

  19. Success factors for strategic change initiatives: a qualitative study of healthcare administrators' perspectives.

    PubMed

    Kash, Bita Arbab; Spaulding, Aaron; Johnson, Christopher E; Gamm, Larry

    2014-01-01

    Success factors related to the implementation of change initiatives are well documented and discussed in the management literature, but they are seldom studied in healthcare organizations engaged in multiple strategic change initiatives. The purpose of this study was to identify key success factors related to implementation of change initiatives based on rich qualitative data gathered from health leader interviews at two large health systems implementing multiple change initiatives. In-depth personal interviews with 61 healthcare leaders in the two large systems were conducted and inductive qualitative analysis was employed to identify success factors associated with 13 change initiatives. Results from this analysis were compared to success factors identified in the literature, and generalizations were drawn that add significantly to the management literature, especially to that in the healthcare sector. Ten specific success factors were identified for the implementation of change initiatives. The top three success factors were (1) culture and values, (2) business processes, and (3) people and engagement. Two of the identified success factors are unique to the healthcare sector and not found in the literature on change models: service quality and client satisfaction (ranked fourth of 10) and access to information (ranked ninth). Results demonstrate the importance of human resource functions, alignment of culture and values with change, and business processes that facilitate effective communication and access to information to achieve many change initiatives. The responses also suggest opportunities for leaders of healthcare organizations to more formally recognize the degree to which various change initiatives are dependent on one another.

  20. Experimental confirmation of multiple community states in a marine ecosystem.

    PubMed

    Petraitis, Peter S; Methratta, Elizabeth T; Rhile, Erika C; Vidargas, Nicholas A; Dudgeon, Steve R

    2009-08-01

    Small changes in environmental conditions can unexpectedly tip an ecosystem from one community type to another, and these often irreversible shifts have been observed in semi-arid grasslands, freshwater lakes and ponds, coral reefs, and kelp forests. A commonly accepted explanation is that these ecosystems contain multiple stable points, but experimental tests confirming multiple stable states have proven elusive. Here we present a novel approach and show that mussel beds and rockweed stands are multiple stable states on intertidal shores in the Gulf of Maine, USA. Using broad-scale observational data and long-term data from experimental clearings, we show that the removal of rockweed by winter ice scour can tip persistent rockweed stands to mussel beds. The observational data were analyzed with Anderson's discriminant analysis of principal coordinates, which provided an objective function to separate mussel beds from rockweed stands. The function was then applied to 55 experimental plots, which had been established in rockweed stands in 1996. Based on 2005 data, all uncleared controls and all but one of the small clearings were classified as rockweed stands; 37% of the large clearings were classified as mussel beds. Our results address the establishment of mussels versus rockweeds and complement rather than refute the current paradigm that mussel beds and rockweed stands, once established, are maintained by site-specific differences in strong consumer control.

  1. Functional MR imaging or Wada test: which is the better predictor of individual postoperative memory outcome?

    PubMed

    Dupont, Sophie; Duron, Emmanuelle; Samson, Séverine; Denos, Marisa; Volle, Emmanuelle; Delmaire, Christine; Navarro, Vincent; Chiras, Jacques; Lehéricy, Stéphane; Samson, Yves; Baulac, Michel

    2010-04-01

    To retrospectively determine whether blood oxygen level-dependent functional magnetic resonance (MR) imaging can aid prediction of postoperative memory changes in epileptic patients after temporal lobe surgery. This study was approved by the local ethics committee, and informed consent was obtained from all patients. Data were analyzed from 25 patients (12 women, 13 men; age range, 19-52 years) with refractory epilepsy in whom temporal lobe surgery was performed after they underwent preoperative functional MR imaging, the Wada test, and neuropsychological testing. The functional MR imaging protocol included three different memory tasks (24-hour delayed recognition, encoding, and immediate recognition). Individual activations were measured in medial temporal lobe (MTL) regions of both hemispheres. The prognostic accuracy of functional MR imaging for prediction of postoperative memory changes was compared with the accuracy of the Wada test and preoperative neuropsychological testing by using a backward multiple regression analysis. An equation that was based on left functional MR imaging MTL activation during delayed recognition, side of the epileptic focus, and preoperative global verbal memory score was used to correctly predict worsening of verbal memory in 90% of patients. The right functional MR imaging MTL activation did not substantially correlate with the nonverbal memory outcome, which was only predicted by using the preoperative nonverbal global score. Wada test data were not good predictors of changes in either verbal or nonverbal memory. Findings suggest that functional MR imaging activation during a delayed-recognition task is a better predictor of individual postoperative verbal memory outcome than is the Wada test. RSNA, 2010

  2. Family mechanisms of structural ecosystems therapy for HIV-seropositive women in drug recovery.

    PubMed

    Mitrani, Victoria B; McCabe, Brian E; Burns, Myron J; Feaster, Daniel J

    2012-09-01

    Examined the effects of Structural Ecosystems Therapy (SET), a family intervention for women living with HIV or AIDS, compared to a psycho-educational health group (HG) intervention, and reciprocal relationships between women and family members. Women (n = 126) and their family members (n = 269) were randomized to one of two conditions and assessed every 4 months for 12 months. Family functioning, drug use, and psychological distress was reported by multiple family members. Multilevel growth curve modeling showed a different family functioning trajectory between SET and HG, B = -0.05, SE = 0.02, p < .01. There was no intervention effect on the trajectory of family-level drug abstinence or psychological distress, but there was a significant difference in the trajectory of psychological distress after controlling for change in family functioning, B = -0.28, SE = 0.13, p < .05. There was an indirect effect from treatment through change in family functioning to change in psychological distress, B = 0.29, SE = 0.12, p < .05. With respect to reciprocal effects, family drug abstinence significantly predicted women's abstinence 4 months later, B = 0.22, SE = 0.06, p < .001. Findings demonstrated the interdependence of family members and the impact of family in relapse prevention and partially supported SET's potential for maintaining family functioning and well-being for women living with HIV or AIDS in drug recovery. PsycINFO Database Record (c) 2012 APA, all rights reserved.

  3. Autoreactive T effector memory differentiation mirrors β-cell function in type 1 diabetes.

    PubMed

    Yeo, Lorraine; Woodwyk, Alyssa; Sood, Sanjana; Lorenc, Anna; Eichmann, Martin; Pujol-Autonell, Irma; Melchiotti, Rossella; Skowera, Ania; Fidanis, Efthymios; Dolton, Garry M; Tungatt, Katie; Sewell, Andrew K; Heck, Susanne; Saxena, Alka; Beam, Craig A; Peakman, Mark

    2018-05-31

    In type 1 diabetes, cytotoxic CD8 T cells with specificity for β-cell autoantigens are found in the pancreatic islets where they are implicated in the destruction of insulin-secreting β cells. In contrast, the disease relevance of β-cell-reactive CD8 T cells that are detectable in the circulation, and their relationship to β-cell function, are not known. Here, we tracked multiple, circulating β-cell-reactive CD8 T cell subsets and measured β-cell function longitudinally for two years, starting immediately after diagnosis of type 1 diabetes. We found that change in β-cell-specific effector memory CD8 T cells expressing CD57 was positively correlated with C-peptide change in subjects below 12 years of age. Autoreactive CD57+ effector memory CD8 T cells bore the signature of enhanced effector function (higher expression of granzyme B, killer specific protein 37 and CD16, and reduced expression of CD28) compared with their CD57-negative counterparts, and network association modelling indicated that the dynamics of β-cell-reactive CD57+ effector memory CD8 T cell subsets were strongly linked. Thus, coordinated changes in circulating β-cell-specific CD8 T cells within the CD57+ effector memory subset calibrate to functional insulin reserve in type 1 diabetes, providing a tool for immune monitoring and a mechanism-based target for immunotherapy.

  4. Family Mechanisms of Structural Ecosystems Therapy for HIV-Seropositive Women in Drug Recovery

    PubMed Central

    Mitrani, Victoria B.; McCabe, Brian E.; Burns, Myron J.; Feaster, Daniel J.

    2013-01-01

    Objective Examined the effects of Structural Ecosystems Therapy (SET), a family intervention for women living with HIV or AIDS, compared to a psycho-educational health group (HG) intervention, and reciprocal relationships between women and family members. Method Women (n = 126) and their family members (n = 269) were randomized to one of two conditions and assessed every 4 months for 12 months. Family functioning, drug use, and psychological distress was reported by multiple family members. Results Multilevel growth curve modeling showed a different family functioning trajectory between SET and HG, B = −0.05, SE = 0.02, p < .01. There was no intervention effect on the trajectory of family-level drug abstinence or psychological distress, but there was a significant difference in the trajectory of psychological distress after controlling for change in family functioning, B = −0.28, SE = 0.13, p < .05. There was an indirect effect from treatment through change in family functioning to change in psychological distress, B = 0.29, SE = 0.12, p < .05. With respect to reciprocal effects, family drug abstinence significantly predicted women’s abstinence 4 months later, B = 0.22, SE = 0.06, p < .001. Conclusion Findings demonstrated the interdependence of family members and the impact of family in relapse prevention and partially supported SET’s potential for maintaining family functioning and well-being for women living with HIV or AIDS in drug recovery. PMID:22708519

  5. Effects of Applied Potential and Water Intercalation on the Surface Chemistry of Ti 2C and Mo 2C MXenes

    DOE PAGES

    Fredrickson, Kurt D.; Anasori, Babak; Seh, Zhi Wei; ...

    2016-12-09

    Here, two-dimensional transition metal carbides and nitrides, also known as MXenes, represent an attractive class of materials for a multitude of electrochemical and other applications. While single sheets of MXenes have been widely studied theoretically, there have been much fewer studies on layered bulk MXenes, which are more representative of multi- or few-layer MXenes used in actual applications. Herein, we investigate the structural and electronic effects of water intercalation, multiple functional groups and applied potential on layered bulk Ti 2C and Mo 2C MXenes using density functional theory. The out-of plane lattice parameter, c, was found to vary significantly withmore » the functional group, and is greatly increased upon intercalation of water. Experimental results confirm the change in lattice constant due to addition or removal of intercalated water. Under zero applied potential, both Ti 2C and Mo 2C were found to be functionalized by one monolayer of O; bare MXenes were never found to be stable, regardless of the applied potential. Applying a potential changed the adsorbate coverage, changing the systems from O covered to H covered at negative potentials and, in some cases, giving rise to a metal–insulator transition. Understanding of the effects of surface functionalization and water intercalation of MXenes provides a better insight of their use for catalytic and electronic applications.« less

  6. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.

  7. OHMS**: Phytoplasmas dictate changes in sieve-element ultrastructure to accommodate their requirements for nutrition, multiplication and translocation.

    PubMed

    Musetti, Rita; Pagliari, Laura; Buxa, Stefanie V; Degola, Francesca; De Marco, Federica; Loschi, Alberto; Kogel, Karl-Heinz; van Bel, Aart J E

    2016-01-01

    Phytoplasmas are among the most recently discovered plant pathogenic microorganisms so, many traits of the interactions with host plants and insect vectors are still unclear and need to be investigated. At now, it is impossible to determine the precise sequences leading to the onset of the relationship with the plant host cell. It is still unclear how phytoplasmas, located in the phloem sieve elements, exploit host cell to draw nutrition for their metabolism, growth and multiplication. In this work, basing on microscopical observations, we give insight about the structural interactions established by phytoplasmas and the sieve element plasma membrane, cytoskeleton, sieve endoplasmic reticulum, speculating about a possible functional role.

  8. Estradiol Membrane-Initiated Signaling in the Brain Mediates Reproduction.

    PubMed

    Micevych, Paul E; Mermelstein, Paul G; Sinchak, Kevin

    2017-11-01

    Over the past few years our understanding of estrogen signaling in the brain has expanded rapidly. Estrogens are synthesized in the periphery and in the brain, acting on multiple receptors to regulate gene transcription, neural function, and behavior. Various estrogen-sensitive signaling pathways often operate in concert within the same cell, increasing the complexity of the system. In females, estrogen concentrations fluctuate over the estrous/menstrual cycle, dynamically modulating estrogen receptor (ER) expression, activity, and trafficking. These dynamic changes influence multiple behaviors but are particularly important for reproduction. Using the female rodent model, we review our current understanding of estradiol signaling in the regulation of sexual receptivity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A naked eye refractive index sensor with a visible multiple peak metamaterial absorber.

    PubMed

    Ma, Heli; Song, Kun; Zhou, Liang; Zhao, Xiaopeng

    2015-03-26

    We report a naked eye refractive index sensor with a visible metamaterial absorber. The visible metamaterial absorber consisting of a silver dendritic/dielectric/metal structure shows multiple absorption peaks. By incorporating a gain material (rhodamine B) into the dielectric layer, the maximal magnitude of the absorption peak can be improved by about 30%. As the metamaterial absorber is sensitive to the refractive index of glucose solutions, it can function as a sensor that quickly responds to variations of the refractive index of the liquid. Meanwhile, since the response is presented via color changes, it can be clearly observed by the naked eyes. Further experiments have confirmed that the sensor can be used repeatedly.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elman, Jeremy A.; Madison, Cindee M.; Baker, Suzanne L.

    In Alzheimer's disease (AD), Beta-amyloid (Aβ) deposition is one of the hallmarks. However, it is also present in some cognitively normal elderly adults and may represent a preclinical disease state. While AD patients exhibit disrupted functional connectivity (FC) both within and between resting-state networks, studies of preclinical cases have focused primarily on the default mode network (DMN). The extent to which Aβ-related effects occur outside of the DMN and between networks remains unclear. In the present study, we examine how within- and between-network FC are related to both global and regional Aβ deposition as measured by [ 11 C]PIB-PET inmore » 92 cognitively normal older people. We found that within-network FC changes occurred in multiple networks, including the DMN. Changes of between-network FC were also apparent, suggesting that regions maintaining connections to multiple networks may be particularly susceptible to Aβ-induced alterations. Cortical regions showing altered FC clustered in parietal and temporal cortex, areas known to be susceptible to AD pathology. These results likely represent a mix of local network disruption, compensatory reorganization, and impaired control network function. They indicate the presence of Aβ-related dysfunction of neural systems in cognitively normal people well before these areas become hypometabolic with the onset of cognitive decline.« less

  11. Gait and balance deterioration over a 12-month period in multiple sclerosis patients with EDSS scores ≤ 3.0.

    PubMed

    Galea, Mary P; Cofré Lizama, L Eduardo; Butzkueven, Helmut; Kilpatrick, Trevor J

    2017-01-01

    It is not currently known whether gait and balance measures are responsive to deterioration of motor function in multiple sclerosis (MS) patients with low EDSS scores (≤3.0). The aim of this study was to quantify MS-related gait and balance deterioration over a 12-month period. Thirty-eight participants with MS (33 female, mean age: 41.1 ± 8.3 years), mean time since diagnosis 2.2 ± 4.1 years, EDSS score ≤3.0 and without clinical evidence of gait deterioration, were recruited. Participants performed walking trials and Functional and Lateral Reach Tests. Kinematics of the ankle and knee, and electromyography of the tibialis anterior and medial gastrocnemius muscles were also measured. Three participants reported relapses with worsening EDSS scores and 4 non-relapsing participants had worse EDSS scores at 12 months. There were significant decreases in mean gait speed, stride length and balance scores, and a significant increase in double support. Marked changes in ankle kinematics, with decreased medial gastrocnemius activity were observed. Gait and balance performance of non-disabled RRMS participants may progressively decline, even in the absence of both acute clinical relapse and change in clinical status measured by the EDSS.

  12. Effect of processor temperature on film dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Shiv P.; Das, Indra J., E-mail: idas@iupui.edu

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. Anmore » automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.« less

  13. Developmental emergence of different forms of neuromodulation in Aplysia sensory neurons.

    PubMed

    Marcus, E A; Carew, T J

    1998-04-14

    The capacity for neuromodulation and biophysical plasticity is a defining feature of most mature neuronal cell types. In several cases, modulation at the level of the individual neuron has been causally linked to changes in the functional output of a neuronal circuit and subsequent adaptive changes in the organism's behavioral responses. Understanding how such capacity for neuromodulation develops therefore may provide insights into the mechanisms both of neuronal development and learning and memory. We have examined the development of multiple forms of neuromodulation triggered by a common neurotransmitter, serotonin, in the pleural sensory neurons of Aplysia californica. We have found that multiple signaling cascades within a single neuron develop sequentially, with some being expressed only very late in development. In addition, our data suggest a model in which, within a single neuromodulatory pathway, the elements of the signaling cascade are developmentally expressed in a "retrograde" manner with the ionic channel that is modulated appearing early in development, functional elements in the second messenger cascade appearing later, and finally, coupling of the second messenger cascade to the serotonin receptor appearing quite late. These studies provide the characterization of the development of neuromodulation at the level of an identified cell type and offer insights into the potential roles of neuromodulatory processes in development and adult plasticity.

  14. Microglia in the developing brain: a potential target with lifetime effects

    PubMed Central

    Harry, G. Jean; Kraft, Andrew D.

    2012-01-01

    Microglia are a heterogeneous group of monocyte-derived cells serving multiple roles within the brain, many of which are associated with immune and macrophage like properties. These cells are known to serve a critical role during brain injury and to maintain homeostasis; yet, their defined roles during development have yet to be elucidated. Microglial actions appear to influence events associated with neuronal proliferation and differentiation during development, as well as, contribute to processes associated with the removal of dying neurons or cellular debris and management of synaptic connections. These long-lived cells display changes during injury and with aging that are critical to the maintenance of the neuronal environment over the lifespan of the organism. These processes may be altered by changes in the colonization of the brain or by inflammatory events during development. This review addresses the role of microglia during brain development, both structurally and functionally, as well as the inherent vulnerability of the developing nervous system. A framework is presented considering microglia as a critical nervous system-specific cell that can influence multiple aspects of brain development (e.g., vascularization, synaptogenesis, and myelination) and have a long term impact on the functional vulnerability of the nervous system to a subsequent insult, whether environmental, physical, age-related, or disease-related. PMID:22322212

  15. An ambulatory recording system for the assessment of autonomic changes across multiple days

    NASA Astrophysics Data System (ADS)

    Sollers, John J., III; Yonezawa, Yoshiharu; Silver, Rebecca A.; Merritt, Marcellus M.; Thayer, Julian F.

    2005-05-01

    Recent evidence indicates that poor autonomic regulation, indexed by decreased heart period variability (HPV), is associated with decreased working memory. HPV analyses are computed on the interbeat interval time series derived from the electrocardiogram (EKG). Unfortunately, the duration of the data collection and the issue of the size of ambulatory monitors with sufficient storage capacity for multi-day records is somewhat problematic. In the present paper we describe a system that allows for the collection of large amounts of high quality data using a small data collection device. The recording system consists of a miniature, single-module electrocardiogram-recording device. This module consists of an integrated three-electrode device that is attached to the chest of the subject. A low power 8-bit micro-controller detects the R-spike and stores the time between R-spikes in milliseconds on a 512 KB EEPROM. This system can record continuously for over four days. This system will allow the recording of cardio-dynamics in the field and provide highly reliable data across multiple days. The use of this device to assess physiological function in military operations would allow researchers to examine longer data records across several contexts and to understand the role of changes in autonomic function as they relate to performance.

  16. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  17. Brain-Wide Analysis of Functional Connectivity in First-Episode and Chronic Stages of Schizophrenia.

    PubMed

    Li, Tao; Wang, Qiang; Zhang, Jie; Rolls, Edmund T; Yang, Wei; Palaniyappan, Lena; Zhang, Lu; Cheng, Wei; Yao, Ye; Liu, Zhaowen; Gong, Xiaohong; Luo, Qiang; Tang, Yanqing; Crow, Timothy J; Broome, Matthew R; Xu, Ke; Li, Chunbo; Wang, Jijun; Liu, Zhening; Lu, Guangming; Wang, Fei; Feng, Jianfeng

    2017-03-01

    Published reports of functional abnormalities in schizophrenia remain divergent due to lack of staging point-of-view and whole-brain analysis. To identify key functional-connectivity differences of first-episode (FE) and chronic patients from controls using resting-state functional MRI, and determine changes that are specifically associated with disease onset, a clinical staging model is adopted. We analyze functional-connectivity differences in prodromal, FE (mostly drug naïve), and chronic patients from their matched controls from 6 independent datasets involving a total of 789 participants (343 patients). Brain-wide functional-connectivity analysis was performed in different datasets and the results from the datasets of the same stage were then integrated by meta-analysis, with Bonferroni correction for multiple comparisons. Prodromal patients differed from controls in their pattern of functional-connectivity involving the inferior frontal gyri (Broca's area). In FE patients, 90% of the functional-connectivity changes involved the frontal lobes, mostly the inferior frontal gyrus including Broca's area, and these changes were correlated with delusions/blunted affect. For chronic patients, functional-connectivity differences extended to wider areas of the brain, including reduced thalamo-frontal connectivity, and increased thalamo-temporal and thalamo-sensorimoter connectivity that were correlated with the positive, negative, and general symptoms, respectively. Thalamic changes became prominent at the chronic stage. These results provide evidence for distinct patterns of functional-dysconnectivity across FE and chronic stages of schizophrenia. Importantly, abnormalities in the frontal language networks appear early, at the time of disease onset. The identification of stage-specific pathological processes may help to understand the disease course of schizophrenia and identify neurobiological markers crucial for early diagnosis. © The Author 2016. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  18. Spatial and temporal aspects of chromatic adaptation and their functional significance for colour constancy.

    PubMed

    Werner, Annette

    2014-11-01

    Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Intrinsic optical signal imaging of the blood volume changes is sufficient for mapping the resting state functional connectivity in the rodent cortex

    NASA Astrophysics Data System (ADS)

    Kura, Sreekanth; Xie, Hongyu; Fu, Buyin; Ayata, Cenk; Boas, David A.; Sakadžić, Sava

    2018-06-01

    Objective. Resting state functional connectivity (RSFC) allows the study of functional organization in normal and diseased brain by measuring the spontaneous brain activity generated under resting conditions. Intrinsic optical signal imaging (IOSI) based on multiple illumination wavelengths has been used successfully to compute RSFC maps in animal studies. The IOSI setup complexity would be greatly reduced if only a single wavelength can be used to obtain comparable RSFC maps. Approach. We used anesthetized mice and performed various comparisons between the RSFC maps based on single wavelength as well as oxy-, deoxy- and total hemoglobin concentration changes. Main results. The RSFC maps based on IOSI at a single wavelength selected for sensitivity to the blood volume changes are quantitatively comparable to the RSFC maps based on oxy- and total hemoglobin concentration changes obtained by the more complex IOSI setups. Moreover, RSFC maps do not require CCD cameras with very high frame acquisition rates, since our results demonstrate that they can be computed from the data obtained at frame rates as low as 5 Hz. Significance. Our results will have general utility for guiding future RSFC studies based on IOSI and making decisions about the IOSI system designs.

  20. Whole-Genome Duplication and the Functional Diversification of Teleost Fish Hemoglobins

    PubMed Central

    Opazo, Juan C.; Butts, G. Tyler; Nery, Mariana F.; Storz, Jay F.; Hoffmann, Federico G.

    2013-01-01

    Subsequent to the two rounds of whole-genome duplication that occurred in the common ancestor of vertebrates, a third genome duplication occurred in the stem lineage of teleost fishes. This teleost-specific genome duplication (TGD) is thought to have provided genetic raw materials for the physiological, morphological, and behavioral diversification of this highly speciose group. The extreme physiological versatility of teleost fish is manifest in their diversity of blood–gas transport traits, which reflects the myriad solutions that have evolved to maintain tissue O2 delivery in the face of changing metabolic demands and environmental O2 availability during different ontogenetic stages. During the course of development, regulatory changes in blood–O2 transport are mediated by the expression of multiple, functionally distinct hemoglobin (Hb) isoforms that meet the particular O2-transport challenges encountered by the developing embryo or fetus (in viviparous or oviparous species) and in free-swimming larvae and adults. The main objective of the present study was to assess the relative contributions of whole-genome duplication, large-scale segmental duplication, and small-scale gene duplication in producing the extraordinary functional diversity of teleost Hbs. To accomplish this, we integrated phylogenetic reconstructions with analyses of conserved synteny to characterize the genomic organization and evolutionary history of the globin gene clusters of teleosts. These results were then integrated with available experimental data on functional properties and developmental patterns of stage-specific gene expression. Our results indicate that multiple α- and β-globin genes were present in the common ancestor of gars (order Lepisoteiformes) and teleosts. The comparative genomic analysis revealed that teleosts possess a dual set of TGD-derived globin gene clusters, each of which has undergone lineage-specific changes in gene content via repeated duplication and deletion events. Phylogenetic reconstructions revealed that paralogous genes convergently evolved similar functional properties in different teleost lineages. Consistent with other recent studies of globin gene family evolution in vertebrates, our results revealed evidence for repeated evolutionary transitions in the developmental regulation of Hb synthesis. PMID:22949522

  1. Evaluating the Theoretical Content of Online Physical Activity Information for People with Multiple Sclerosis

    PubMed Central

    Baillie, Colin P.T.; Galaviz, Karla; Jarvis, Jocelyn W.; Latimer-Cheung, Amy E.

    2015-01-01

    Background: Physical activity can aid people with multiple sclerosis (MS) in managing symptoms and maintaining functional abilities. The Internet is a preferred source of physical activity information for people with MS and, therefore, a method for the dissemination of behavior change techniques. The purpose of this study was to examine the coverage and quality of physical activity behavior change techniques delivered on the Internet for adults with MS using Abraham and Michie's taxonomy of behavior change techniques. Methods: Using the taxonomy, 20 websites were coded for quality (ie, accuracy of information) and coverage (ie, completeness of information) of theoretical behavior change techniques. Results: Results indicated that most websites covered a mean of 8.05 (SD 3.86, range 3–16) techniques out of a possible 20. Only one of the techniques, provide information on behavior–health link and consequences, was delivered on all websites. The websites demonstrated low mean coverage and quality across all behavior change techniques, with means of 0.64 (SD 0.67) and 0.62 (SD 0.37) on a scale of 0 to 2, respectively. However, coverage and quality improved when websites were examined solely for the techniques that they covered, as opposed to all 20 techniques. Conclusions: This study, which examined quality and coverage of physical activity behavior change techniques described online for people with MS, illustrated that the dissemination of these techniques requires improvement. PMID:25892979

  2. Effect of the sequence data deluge on the performance of methods for detecting protein functional residues.

    PubMed

    Garrido-Martín, Diego; Pazos, Florencio

    2018-02-27

    The exponential accumulation of new sequences in public databases is expected to improve the performance of all the approaches for predicting protein structural and functional features. Nevertheless, this was never assessed or quantified for some widely used methodologies, such as those aimed at detecting functional sites and functional subfamilies in protein multiple sequence alignments. Using raw protein sequences as only input, these approaches can detect fully conserved positions, as well as those with a family-dependent conservation pattern. Both types of residues are routinely used as predictors of functional sites and, consequently, understanding how the sequence content of the databases affects them is relevant and timely. In this work we evaluate how the growth and change with time in the content of sequence databases affect five sequence-based approaches for detecting functional sites and subfamilies. We do that by recreating historical versions of the multiple sequence alignments that would have been obtained in the past based on the database contents at different time points, covering a period of 20 years. Applying the methods to these historical alignments allows quantifying the temporal variation in their performance. Our results show that the number of families to which these methods can be applied sharply increases with time, while their ability to detect potentially functional residues remains almost constant. These results are informative for the methods' developers and final users, and may have implications in the design of new sequencing initiatives.

  3. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders.

    PubMed

    O'Donnell, Cian; Gonçalves, J Tiago; Portera-Cailliau, Carlos; Sejnowski, Terrence J

    2017-10-11

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca 2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits.

  4. Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders

    PubMed Central

    Gonçalves, J Tiago; Portera-Cailliau, Carlos

    2017-01-01

    A leading theory holds that neurodevelopmental brain disorders arise from imbalances in excitatory and inhibitory (E/I) brain circuitry. However, it is unclear whether this one-dimensional model is rich enough to capture the multiple neural circuit alterations underlying brain disorders. Here, we combined computational simulations with analysis of in vivo two-photon Ca2+ imaging data from somatosensory cortex of Fmr1 knock-out (KO) mice, a model of Fragile-X Syndrome, to test the E/I imbalance theory. We found that: (1) The E/I imbalance model cannot account for joint alterations in the observed neural firing rates and correlations; (2) Neural circuit function is vastly more sensitive to changes in some cellular components over others; (3) The direction of circuit alterations in Fmr1 KO mice changes across development. These findings suggest that the basic E/I imbalance model should be updated to higher dimensional models that can better capture the multidimensional computational functions of neural circuits. PMID:29019321

  5. Profiling Synaptic Proteins Identifies Regulators of Insulin Secretion and Lifespan

    PubMed Central

    Kaplan, Joshua M.

    2008-01-01

    Cells are organized into distinct compartments to perform specific tasks with spatial precision. In neurons, presynaptic specializations are biochemically complex subcellular structures dedicated to neurotransmitter secretion. Activity-dependent changes in the abundance of presynaptic proteins are thought to endow synapses with different functional states; however, relatively little is known about the rules that govern changes in the composition of presynaptic terminals. We describe a genetic strategy to systematically analyze protein localization at Caenorhabditis elegans presynaptic specializations. Nine presynaptic proteins were GFP-tagged, allowing visualization of multiple presynaptic structures. Changes in the distribution and abundance of these proteins were quantified in 25 mutants that alter different aspects of neurotransmission. Global analysis of these data identified novel relationships between particular presynaptic components and provides a new method to compare gene functions by identifying shared protein localization phenotypes. Using this strategy, we identified several genes that regulate secretion of insulin-like growth factors (IGFs) and influence lifespan in a manner dependent on insulin/IGF signaling. PMID:19043554

  6. Phenotypic and functional analyses show stem cell-derived hepatocyte-like cells better mimic fetal rather than adult hepatocytes

    PubMed Central

    Baxter, Melissa; Withey, Sarah; Harrison, Sean; Segeritz, Charis-Patricia; Zhang, Fang; Atkinson-Dell, Rebecca; Rowe, Cliff; Gerrard, Dave T.; Sison-Young, Rowena; Jenkins, Roz; Henry, Joanne; Berry, Andrew A.; Mohamet, Lisa; Best, Marie; Fenwick, Stephen W.; Malik, Hassan; Kitteringham, Neil R.; Goldring, Chris E.; Piper Hanley, Karen; Vallier, Ludovic; Hanley, Neil A.

    2015-01-01

    Background & Aims Hepatocyte-like cells (HLCs), differentiated from pluripotent stem cells by the use of soluble factors, can model human liver function and toxicity. However, at present HLC maturity and whether any deficit represents a true fetal state or aberrant differentiation is unclear and compounded by comparison to potentially deteriorated adult hepatocytes. Therefore, we generated HLCs from multiple lineages, using two different protocols, for direct comparison with fresh fetal and adult hepatocytes. Methods Protocols were developed for robust differentiation. Multiple transcript, protein and functional analyses compared HLCs to fresh human fetal and adult hepatocytes. Results HLCs were comparable to those of other laboratories by multiple parameters. Transcriptional changes during differentiation mimicked human embryogenesis and showed more similarity to pericentral than periportal hepatocytes. Unbiased proteomics demonstrated greater proximity to liver than 30 other human organs or tissues. However, by comparison to fresh material, HLC maturity was proven by transcript, protein and function to be fetal-like and short of the adult phenotype. The expression of 81% phase 1 enzymes in HLCs was significantly upregulated and half were statistically not different from fetal hepatocytes. HLCs secreted albumin and metabolized testosterone (CYP3A) and dextrorphan (CYP2D6) like fetal hepatocytes. In seven bespoke tests, devised by principal components analysis to distinguish fetal from adult hepatocytes, HLCs from two different source laboratories consistently demonstrated fetal characteristics. Conclusions HLCs from different sources are broadly comparable with unbiased proteomic evidence for faithful differentiation down the liver lineage. This current phenotype mimics human fetal rather than adult hepatocytes. PMID:25457200

  7. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7.

    PubMed

    Gullett, Jessica M; Bible, Amber; Alexandre, Gladys

    2017-07-01

    Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense , Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions. Copyright © 2017 American Society for Microbiology.

  8. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7

    PubMed Central

    Gullett, Jessica M.

    2017-01-01

    ABSTRACT Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions. PMID:28416707

  9. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies

    PubMed Central

    Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid

    2000-01-01

    A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266

  10. Higher Intelligence Is Associated with Less Task-Related Brain Network Reconfiguration

    PubMed Central

    Cole, Michael W.

    2016-01-01

    The human brain is able to exceed modern computers on multiple computational demands (e.g., language, planning) using a small fraction of the energy. The mystery of how the brain can be so efficient is compounded by recent evidence that all brain regions are constantly active as they interact in so-called resting-state networks (RSNs). To investigate the brain's ability to process complex cognitive demands efficiently, we compared functional connectivity (FC) during rest and multiple highly distinct tasks. We found previously that RSNs are present during a wide variety of tasks and that tasks only minimally modify FC patterns throughout the brain. Here, we tested the hypothesis that, although subtle, these task-evoked FC updates from rest nonetheless contribute strongly to behavioral performance. One might expect that larger changes in FC reflect optimization of networks for the task at hand, improving behavioral performance. Alternatively, smaller changes in FC could reflect optimization for efficient (i.e., small) network updates, reducing processing demands to improve behavioral performance. We found across three task domains that high-performing individuals exhibited more efficient brain connectivity updates in the form of smaller changes in functional network architecture between rest and task. These smaller changes suggest that individuals with an optimized intrinsic network configuration for domain-general task performance experience more efficient network updates generally. Confirming this, network update efficiency correlated with general intelligence. The brain's reconfiguration efficiency therefore appears to be a key feature contributing to both its network dynamics and general cognitive ability. SIGNIFICANCE STATEMENT The brain's network configuration varies based on current task demands. For example, functional brain connections are organized in one way when one is resting quietly but in another way if one is asked to make a decision. We found that the efficiency of these updates in brain network organization is positively related to general intelligence, the ability to perform a wide variety of cognitively challenging tasks well. Specifically, we found that brain network configuration at rest was already closer to a wide variety of task configurations in intelligent individuals. This suggests that the ability to modify network connectivity efficiently when task demands change is a hallmark of high intelligence. PMID:27535904

  11. Multi-scale functional mapping of tidal marsh vegetation for restoration monitoring

    NASA Astrophysics Data System (ADS)

    Tuxen Bettman, Karin

    2007-12-01

    Nearly half of the world's natural wetlands have been destroyed or degraded, and in recent years, there have been significant endeavors to restore wetland habitat throughout the world. Detailed mapping of restoring wetlands can offer valuable information about changes in vegetation and geomorphology, which can inform the restoration process and ultimately help to improve chances of restoration success. I studied six tidal marshes in the San Francisco Estuary, CA, US, between 2003 and 2004 in order to develop techniques for mapping tidal marshes at multiple scales by incorporating specific restoration objectives for improved longer term monitoring. I explored a "pixel-based" remote sensing image analysis method for mapping vegetation in restored and natural tidal marshes, describing the benefits and limitations of this type of approach (Chapter 2). I also performed a multi-scale analysis of vegetation pattern metrics for a recently restored tidal marsh in order to target the metrics that are consistent across scales and will be robust measures of marsh vegetation change (Chapter 3). Finally, I performed an "object-based" image analysis using the same remotely sensed imagery, which maps vegetation type and specific wetland functions at multiple scales (Chapter 4). The combined results of my work highlight important trends and management implications for monitoring wetland restoration using remote sensing, and will better enable restoration ecologists to use remote sensing for tidal marsh monitoring. Several findings important for tidal marsh restoration monitoring were made. Overall results showed that pixel-based methods are effective at quantifying landscape changes in composition and diversity in recently restored marshes, but are limited in their use for quantifying smaller, more fine-scale changes. While pattern metrics can highlight small but important changes in vegetation composition and configuration across years, scientists should exercise caution when using metrics in their studies or to validate restoration management decisions, and multi-scale analyses should be performed before metrics are used in restoration science for important management decisions. Lastly, restoration objectives, ecosystem function, and scale can each be integrated into monitoring techniques using remote sensing for improved restoration monitoring.

  12. A Reduction in Delay Discounting by Using Episodic Future Imagination and the Association with Episodic Memory Capacity

    PubMed Central

    Hu, Xiaochen; Kleinschmidt, Helena; Martin, Jason A.; Han, Ying; Thelen, Manuela; Meiberth, Dix; Jessen, Frank; Weber, Bernd

    2017-01-01

    Delay discounting (DD) refers to the phenomenon that individuals discount future consequences. Previous studies showed that future imagination reduces DD, which was mediated by functional connectivity between medial prefrontal valuation areas and a key region for episodic memory (hippocampus). Future imagination involves an initial period of construction and a later period of elaboration, with the more elaborative latter period recruiting more cortical regions. This study examined whether elaborative future imagination modulated DD, and if so, what are the underlying neural substrates. It was assumed that cortical areas contribute to the modulation effect during the later period of imagination. Since future imagination is supported by episodic memory capacity, we additionally hypothesize that the neural network underlying the modulation effect is related to individual episodic memory capacity. Twenty-two subjects received an extensive interview on personal future events, followed by an fMRI DD experiment with and without the need to perform elaborative future imagination simultaneously. Subjects' episodic memory capacity was also assessed. Behavioral results replicate previous findings of a reduced discount rate in the DD plus imagination condition compared to the DD only condition. The behavioral effect positively correlated with: (i) subjective value signal changes in midline brain structures during the initial imagination period; and (ii) signal changes in left prefrontoparietal areas during the later imagination period. Generalized psychophysiological interaction (gPPI) analyses reveal positive correlations between the behavioral effect and functional connectivity among the following areas: right anterior cingulate cortex (ACC) and left hippocampus; left inferior parietal cortex (IPC) and left hippocampus; and left IPC and bilateral occipital cortices. These changes in functional connectivity are also associated with episodic memory capacity. A hierarchical multiple regression indicates that the model with both the valuation related signal changes in the right ACC and the imagination related signal changes in the left IPC best predicts the reduction in DD. This study illustrates interactions between the left hippocampus and multiple cortical regions underlying the modulation effect of elaborative episodic future imagination, demonstrating, for the first time, empirical support for a relation to individual episodic memory capacity. PMID:28105009

  13. A Reduction in Delay Discounting by Using Episodic Future Imagination and the Association with Episodic Memory Capacity.

    PubMed

    Hu, Xiaochen; Kleinschmidt, Helena; Martin, Jason A; Han, Ying; Thelen, Manuela; Meiberth, Dix; Jessen, Frank; Weber, Bernd

    2016-01-01

    Delay discounting (DD) refers to the phenomenon that individuals discount future consequences. Previous studies showed that future imagination reduces DD, which was mediated by functional connectivity between medial prefrontal valuation areas and a key region for episodic memory (hippocampus). Future imagination involves an initial period of construction and a later period of elaboration, with the more elaborative latter period recruiting more cortical regions. This study examined whether elaborative future imagination modulated DD, and if so, what are the underlying neural substrates. It was assumed that cortical areas contribute to the modulation effect during the later period of imagination. Since future imagination is supported by episodic memory capacity, we additionally hypothesize that the neural network underlying the modulation effect is related to individual episodic memory capacity. Twenty-two subjects received an extensive interview on personal future events, followed by an fMRI DD experiment with and without the need to perform elaborative future imagination simultaneously. Subjects' episodic memory capacity was also assessed. Behavioral results replicate previous findings of a reduced discount rate in the DD plus imagination condition compared to the DD only condition. The behavioral effect positively correlated with: (i) subjective value signal changes in midline brain structures during the initial imagination period; and (ii) signal changes in left prefrontoparietal areas during the later imagination period. Generalized psychophysiological interaction (gPPI) analyses reveal positive correlations between the behavioral effect and functional connectivity among the following areas: right anterior cingulate cortex (ACC) and left hippocampus; left inferior parietal cortex (IPC) and left hippocampus; and left IPC and bilateral occipital cortices. These changes in functional connectivity are also associated with episodic memory capacity. A hierarchical multiple regression indicates that the model with both the valuation related signal changes in the right ACC and the imagination related signal changes in the left IPC best predicts the reduction in DD. This study illustrates interactions between the left hippocampus and multiple cortical regions underlying the modulation effect of elaborative episodic future imagination, demonstrating, for the first time, empirical support for a relation to individual episodic memory capacity.

  14. Characterizing Sexual Behavior in Frontotemporal Dementia.

    PubMed

    Ahmed, Rebekah M; Kaizik, Cassandra; Irish, Muireann; Mioshi, Eneida; Dermody, Nadene; Kiernan, Matthew C; Piguet, Olivier; Hodges, John R

    2015-01-01

    Frontotemporal dementia (FTD) is characterized by a number of prominent behavioral changes. While FTD has been associated with the presence of aberrant or unusual sexual behaviors in a proportion of patients, few studies have formally investigated changes in sexual function in this disease. We aimed to systematically quantify changes in sexual behavior, including current symptoms and changes from prior diagnoses, in behavioral-variant (bvFTD) and semantic dementia (SD), compared to Alzheimer's disease (AD). Carers of 49 dementia patients (21 bvFTD, 11 SD, 17 AD) were interviewed using the Sexual Behavior and Intimacy Questionnaire (SIQ), a survey designed to assess changes in sexual function across multiple domains including initiating, level of affection, and aberrant or unusual sexual behavior. BvFTD patients show prominent hyposexual behavior including decreased affection, initiation, and response to advances by partners, and decreased frequency of sexual relations, compared to AD and to SD patients. The greatest changes in sexual behavior compared to pre-diagnoses were found in the bvFTD group with a 90-100% decrease in initiation, response, and frequency of sexual relations. Notably, aberrant or unusual sexual behavior was reported in a minority of bvFTD and SD patients and occurred in patients who also showed hyposexual behavior toward their partner. Overall loss of affection, reduced initiation of sexual activity, and responsiveness is an overwhelming feature of bvFTD. In contrast, aberrant or unusual sexual behavior is observed in the minority of bvFTD patients. The underlying pathophysiology of these changes likely reflects structural and functional changes in frontoinsular and limbic regions including the hypothalamus.

  15. Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time.

    PubMed

    Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S

    2008-07-01

    Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.

  16. Preventing medical errors by designing benign failures.

    PubMed

    Grout, John R

    2003-07-01

    One way to successfully reduce medical errors is to design health care systems that are more resistant to the tendencies of human beings to err. One interdisciplinary approach entails creating design changes, mitigating human errors, and making human error irrelevant to outcomes. This approach is intended to facilitate the creation of benign failures, which have been called mistake-proofing devices and forcing functions elsewhere. USING FAULT TREES TO DESIGN FORCING FUNCTIONS: A fault tree is a graphical tool used to understand the relationships that either directly cause or contribute to the cause of a particular failure. A careful analysis of a fault tree enables the analyst to anticipate how the process will behave after the change. EXAMPLE OF AN APPLICATION: A scenario in which a patient is scalded while bathing can serve as an example of how multiple fault trees can be used to design forcing functions. The first fault tree shows the undesirable event--patient scalded while bathing. The second fault tree has a benign event--no water. Adding a scald valve changes the outcome from the undesirable event ("patient scalded while bathing") to the benign event ("no water") Analysis of fault trees does not ensure or guarantee that changes necessary to eliminate error actually occur. Most mistake-proofing is used to prevent simple errors and to create well-defended processes, but complex errors can also result. The utilization of mistake-proofing or forcing functions can be thought of as changing the logic of a process. Errors that formerly caused undesirable failures can be converted into the causes of benign failures. The use of fault trees can provide a variety of insights into the design of forcing functions that will improve patient safety.

  17. Large‐scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions

    PubMed Central

    Saiki, Akiko; Fujiwara‐Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu

    2016-01-01

    Key points There have been few systematic population‐wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions.In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single‐unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task.The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony.Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions.The strength of spike synchrony between two neurons was statistically independent of the spike rate‐based preferences of the pair for behavioural functions. Abstract Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population‐wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular‐spiking (putatively excitatory) and fast‐spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single‐unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external‐trigger trials) or spontaneously without any cue (internal‐trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular‐spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population‐wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate‐based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large‐scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. PMID:27488936

  18. Large-scale analysis reveals populational contributions of cortical spike rate and synchrony to behavioural functions.

    PubMed

    Kimura, Rie; Saiki, Akiko; Fujiwara-Tsukamoto, Yoko; Sakai, Yutaka; Isomura, Yoshikazu

    2017-01-01

    There have been few systematic population-wide analyses of relationships between spike synchrony within a period of several milliseconds and behavioural functions. In this study, we obtained a large amount of spike data from > 23,000 neuron pairs by multiple single-unit recording from deep layer neurons in motor cortical areas in rats performing a forelimb movement task. The temporal changes of spike synchrony in the whole neuron pairs were statistically independent of behavioural changes during the task performance, although some neuron pairs exhibited correlated changes in spike synchrony. Mutual information analyses revealed that spike synchrony made a smaller contribution than spike rate to behavioural functions. The strength of spike synchrony between two neurons was statistically independent of the spike rate-based preferences of the pair for behavioural functions. Spike synchrony within a period of several milliseconds in presynaptic neurons enables effective integration of functional information in the postsynaptic neuron. However, few studies have systematically analysed the population-wide relationships between spike synchrony and behavioural functions. Here we obtained a sufficiently large amount of spike data among regular-spiking (putatively excitatory) and fast-spiking (putatively inhibitory) neuron subtypes (> 23,000 pairs) by multiple single-unit recording from deep layers in motor cortical areas (caudal forelimb area, rostral forelimb area) in rats performing a forelimb movement task. After holding a lever, rats pulled the lever either in response to a cue tone (external-trigger trials) or spontaneously without any cue (internal-trigger trials). Many neurons exhibited functional spike activity in association with forelimb movements, and the preference of regular-spiking neurons in the rostral forelimb area was more biased toward externally triggered movement than that in the caudal forelimb area. We found that a population of neuron pairs with spike synchrony does exist, and that some neuron pairs exhibit a dependence on movement phase during task performance. However, the population-wide analysis revealed that spike synchrony was statistically independent of the movement phase and the spike rate-based preferences of the pair for behavioural functions, whereas spike rates were clearly dependent on the movement phase. In fact, mutual information analyses revealed that the contribution of spike synchrony to the behavioural functions was small relative to the contribution of spike rate. Our large-scale analysis revealed that cortical spike rate, rather than spike synchrony, contributes to population coding for movement. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  19. Standing Up for Learning: A Pilot Investigation on the Neurocognitive Benefits of Stand-Biased School Desks

    PubMed Central

    Mehta, Ranjana K.; Shortz, Ashley E.; Benden, Mark E.

    2015-01-01

    Standing desks have proven to be effective and viable solutions to combat sedentary behavior among children during the school day in studies around the world. However, little is known regarding the potential of such interventions on cognitive outcomes in children over time. The purpose of this pilot study was to determine the neurocognitive benefits, i.e., improvements in executive functioning and working memory, of stand-biased desks and explore any associated changes in frontal brain function. 34 freshman high school students were recruited for neurocognitive testing at two time points during the school year: (1) in the fall semester and (2) in the spring semester (after 27.57 (1.63) weeks of continued exposure). Executive function and working memory was evaluated using a computerized neurocognitive test battery, and brain activation patterns of the prefrontal cortex were obtained using functional near infrared spectroscopy. Continued utilization of the stand-biased desks was associated with significant improvements in executive function and working memory capabilities. Changes in corresponding brain activation patterns were also observed. These findings provide the first preliminary evidence on the neurocognitive benefits of standing desks, which to date have focused largely on energy expenditure. Findings obtained here can drive future research with larger samples and multiple schools, with comparison groups that may in turn implicate the importance of stand-biased desks, as simple environmental changes in classrooms, on enhancing children’s cognitive functioning that drive their cognitive development and impact educational outcomes. PMID:26703700

  20. Effect of canagliflozin on left ventricular diastolic function in patients with type 2 diabetes.

    PubMed

    Matsutani, Daisuke; Sakamoto, Masaya; Kayama, Yosuke; Takeda, Norihiko; Horiuchi, Ryuzo; Utsunomiya, Kazunori

    2018-05-22

    Type 2 diabetes mellitus (T2DM) greatly increases the risks of cardiovascular disease and heart failure. In particular, left ventricular diastolic dysfunction that develops from the early stages of T2DM is an important factor in the onset and exacerbation of heart failure. The effect of sodium-glucose cotransporter 2 inhibitors on left ventricular diastolic function has not been elucidated. We have performed the first prospective study on the effects of canagliflozin on left ventricular diastolic function in T2DM. This study was performed to evaluate the effects of additional treatment with canagliflozin for 3 months on left ventricular diastolic function in patients with T2DM. A total of 38 patients with T2DM were consecutively recruited for this study. Left ventricular diastolic function was assessed by echocardiography. The primary study outcome was a change in the septal E/e' as a parameter of left ventricular diastolic function. A total of 37 patients (25 males and 12 females) were included in the analysis. Mean age of participants was 64.2 ± 8.1 years (mean ± SD), mean duration of diabetes was 13.5 ± 8.1 years, and mean HbA1c was 7.9 ± 0.7%. Of the participants, 86.5% had hypertension, 100% had dyslipidemia, and 32.4% had cardiovascular disease. Canagliflozin significantly improved left ventricular diastolic function (septal E/e' ratio 13.7 ± 3.5-12.1 ± 2.8, p = 0.001). Furthermore, among the various parameters that changed through the administration of canagliflozin, only changes in hemoglobin significantly correlated with changes in the septal E/e' ratio (p = 0.002). In multiple regression analysis, changes in hemoglobin were also revealed to be an independent predictive factor for changes in the septal E/e' ratio. This study showed for the first time that canagliflozin could improve left ventricular diastolic function within 3 months in patients with T2DM. The benefit was especially apparent in patients with substantially improved hemoglobin values. Trial registration UMIN Clinical Trials Registry UMIN000028141.

Top