Sample records for change point model

  1. lidar change detection using building models

    NASA Astrophysics Data System (ADS)

    Kim, Angela M.; Runyon, Scott C.; Jalobeanu, Andre; Esterline, Chelsea H.; Kruse, Fred A.

    2014-06-01

    Terrestrial LiDAR scans of building models collected with a FARO Focus3D and a RIEGL VZ-400 were used to investigate point-to-point and model-to-model LiDAR change detection. LiDAR data were scaled, decimated, and georegistered to mimic real world airborne collects. Two physical building models were used to explore various aspects of the change detection process. The first model was a 1:250-scale representation of the Naval Postgraduate School campus in Monterey, CA, constructed from Lego blocks and scanned in a laboratory setting using both the FARO and RIEGL. The second model at 1:8-scale consisted of large cardboard boxes placed outdoors and scanned from rooftops of adjacent buildings using the RIEGL. A point-to-point change detection scheme was applied directly to the point-cloud datasets. In the model-to-model change detection scheme, changes were detected by comparing Digital Surface Models (DSMs). The use of physical models allowed analysis of effects of changes in scanner and scanning geometry, and performance of the change detection methods on different types of changes, including building collapse or subsistence, construction, and shifts in location. Results indicate that at low false-alarm rates, the point-to-point method slightly outperforms the model-to-model method. The point-to-point method is less sensitive to misregistration errors in the data. Best results are obtained when the baseline and change datasets are collected using the same LiDAR system and collection geometry.

  2. Bayesian change point analysis of abundance trends for pelagic fishes in the upper San Francisco Estuary.

    PubMed

    Thomson, James R; Kimmerer, Wim J; Brown, Larry R; Newman, Ken B; Mac Nally, Ralph; Bennett, William A; Feyrer, Frederick; Fleishman, Erica

    2010-07-01

    We examined trends in abundance of four pelagic fish species (delta smelt, longfin smelt, striped bass, and threadfin shad) in the upper San Francisco Estuary, California, USA, over 40 years using Bayesian change point models. Change point models identify times of abrupt or unusual changes in absolute abundance (step changes) or in rates of change in abundance (trend changes). We coupled Bayesian model selection with linear regression splines to identify biotic or abiotic covariates with the strongest associations with abundances of each species. We then refitted change point models conditional on the selected covariates to explore whether those covariates could explain statistical trends or change points in species abundances. We also fitted a multispecies change point model that identified change points common to all species. All models included hierarchical structures to model data uncertainties, including observation errors and missing covariate values. There were step declines in abundances of all four species in the early 2000s, with a likely common decline in 2002. Abiotic variables, including water clarity, position of the 2 per thousand isohaline (X2), and the volume of freshwater exported from the estuary, explained some variation in species' abundances over the time series, but no selected covariates could explain statistically the post-2000 change points for any species.

  3. Smooth random change point models.

    PubMed

    van den Hout, Ardo; Muniz-Terrera, Graciela; Matthews, Fiona E

    2011-03-15

    Change point models are used to describe processes over time that show a change in direction. An example of such a process is cognitive ability, where a decline a few years before death is sometimes observed. A broken-stick model consists of two linear parts and a breakpoint where the two lines intersect. Alternatively, models can be formulated that imply a smooth change between the two linear parts. Change point models can be extended by adding random effects to account for variability between subjects. A new smooth change point model is introduced and examples are presented that show how change point models can be estimated using functions in R for mixed-effects models. The Bayesian inference using WinBUGS is also discussed. The methods are illustrated using data from a population-based longitudinal study of ageing, the Cambridge City over 75 Cohort Study. The aim is to identify how many years before death individuals experience a change in the rate of decline of their cognitive ability. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Optimal Number and Allocation of Data Collection Points for Linear Spline Growth Curve Modeling: A Search for Efficient Designs

    ERIC Educational Resources Information Center

    Wu, Wei; Jia, Fan; Kinai, Richard; Little, Todd D.

    2017-01-01

    Spline growth modelling is a popular tool to model change processes with distinct phases and change points in longitudinal studies. Focusing on linear spline growth models with two phases and a fixed change point (the transition point from one phase to the other), we detail how to find optimal data collection designs that maximize the efficiency…

  5. Hypothesis testing of a change point during cognitive decline among Alzheimer's disease patients.

    PubMed

    Ji, Ming; Xiong, Chengjie; Grundman, Michael

    2003-10-01

    In this paper, we present a statistical hypothesis test for detecting a change point over the course of cognitive decline among Alzheimer's disease patients. The model under the null hypothesis assumes a constant rate of cognitive decline over time and the model under the alternative hypothesis is a general bilinear model with an unknown change point. When the change point is unknown, however, the null distribution of the test statistics is not analytically tractable and has to be simulated by parametric bootstrap. When the alternative hypothesis that a change point exists is accepted, we propose an estimate of its location based on the Akaike's Information Criterion. We applied our method to a data set from the Neuropsychological Database Initiative by implementing our hypothesis testing method to analyze Mini Mental Status Exam scores based on a random-slope and random-intercept model with a bilinear fixed effect. Our result shows that despite large amount of missing data, accelerated decline did occur for MMSE among AD patients. Our finding supports the clinical belief of the existence of a change point during cognitive decline among AD patients and suggests the use of change point models for the longitudinal modeling of cognitive decline in AD research.

  6. Sample size and classification error for Bayesian change-point models with unlabelled sub-groups and incomplete follow-up.

    PubMed

    White, Simon R; Muniz-Terrera, Graciela; Matthews, Fiona E

    2018-05-01

    Many medical (and ecological) processes involve the change of shape, whereby one trajectory changes into another trajectory at a specific time point. There has been little investigation into the study design needed to investigate these models. We consider the class of fixed effect change-point models with an underlying shape comprised two joined linear segments, also known as broken-stick models. We extend this model to include two sub-groups with different trajectories at the change-point, a change and no change class, and also include a missingness model to account for individuals with incomplete follow-up. Through a simulation study, we consider the relationship of sample size to the estimates of the underlying shape, the existence of a change-point, and the classification-error of sub-group labels. We use a Bayesian framework to account for the missing labels, and the analysis of each simulation is performed using standard Markov chain Monte Carlo techniques. Our simulation study is inspired by cognitive decline as measured by the Mini-Mental State Examination, where our extended model is appropriate due to the commonly observed mixture of individuals within studies who do or do not exhibit accelerated decline. We find that even for studies of modest size ( n = 500, with 50 individuals observed past the change-point) in the fixed effect setting, a change-point can be detected and reliably estimated across a range of observation-errors.

  7. ASYMPTOTICS FOR CHANGE-POINT MODELS UNDER VARYING DEGREES OF MIS-SPECIFICATION

    PubMed Central

    SONG, RUI; BANERJEE, MOULINATH; KOSOROK, MICHAEL R.

    2015-01-01

    Change-point models are widely used by statisticians to model drastic changes in the pattern of observed data. Least squares/maximum likelihood based estimation of change-points leads to curious asymptotic phenomena. When the change–point model is correctly specified, such estimates generally converge at a fast rate (n) and are asymptotically described by minimizers of a jump process. Under complete mis-specification by a smooth curve, i.e. when a change–point model is fitted to data described by a smooth curve, the rate of convergence slows down to n1/3 and the limit distribution changes to that of the minimizer of a continuous Gaussian process. In this paper we provide a bridge between these two extreme scenarios by studying the limit behavior of change–point estimates under varying degrees of model mis-specification by smooth curves, which can be viewed as local alternatives. We find that the limiting regime depends on how quickly the alternatives approach a change–point model. We unravel a family of ‘intermediate’ limits that can transition, at least qualitatively, to the limits in the two extreme scenarios. The theoretical results are illustrated via a set of carefully designed simulations. We also demonstrate how inference for the change-point parameter can be performed in absence of knowledge of the underlying scenario by resorting to subsampling techniques that involve estimation of the convergence rate. PMID:26681814

  8. 3D change detection in staggered voxels model for robotic sensing and navigation

    NASA Astrophysics Data System (ADS)

    Liu, Ruixu; Hampshire, Brandon; Asari, Vijayan K.

    2016-05-01

    3D scene change detection is a challenging problem in robotic sensing and navigation. There are several unpredictable aspects in performing scene change detection. A change detection method which can support various applications in varying environmental conditions is proposed. Point cloud models are acquired from a RGB-D sensor, which provides the required color and depth information. Change detection is performed on robot view point cloud model. A bilateral filter smooths the surface and fills the holes as well as keeps the edge details on depth image. Registration of the point cloud model is implemented by using Random Sample Consensus (RANSAC) algorithm. It uses surface normal as the previous stage for the ground and wall estimate. After preprocessing the data, we create a point voxel model which defines voxel as surface or free space. Then we create a color model which defines each voxel that has a color by the mean of all points' color value in this voxel. The preliminary change detection is detected by XOR subtract on the point voxel model. Next, the eight neighbors for this center voxel are defined. If they are neither all `changed' voxels nor all `no changed' voxels, a histogram of location and hue channel color is estimated. The experimental evaluations performed to evaluate the capability of our algorithm show promising results for novel change detection that indicate all the changing objects with very limited false alarm rate.

  9. Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models

    PubMed Central

    Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.

    2013-01-01

    SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638

  10. An application of change-point recursive models to the relationship between litter size and number of stillborns in pigs.

    PubMed

    Ibáñez-Escriche, N; López de Maturana, E; Noguera, J L; Varona, L

    2010-11-01

    We developed and implemented change-point recursive models and compared them with a linear recursive model and a standard mixed model (SMM), in the scope of the relationship between litter size (LS) and number of stillborns (NSB) in pigs. The proposed approach allows us to estimate the point of change in multiple-segment modeling of a nonlinear relationship between phenotypes. We applied the procedure to a data set provided by a commercial Large White selection nucleus. The data file consisted of LS and NSB records of 4,462 parities. The results of the analysis clearly identified the location of the change points between different structural regression coefficients. The magnitude of these coefficients increased with LS, indicating an increasing incidence of LS on the NSB ratio. However, posterior distributions of correlations were similar across subpopulations (defined by the change points on LS), except for those between residuals. The heritability estimates of NSB did not present differences between recursive models. Nevertheless, these heritabilities were greater than those obtained for SMM (0.05) with a posterior probability of 85%. These results suggest a nonlinear relationship between LS and NSB, which supports the adequacy of a change-point recursive model for its analysis. Furthermore, the results from model comparisons support the use of recursive models. However, the adequacy of the different recursive models depended on the criteria used: the linear recursive model was preferred on account of its smallest deviance value, whereas nonlinear recursive models provided a better fit and predictive ability based on the cross-validation approach.

  11. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  12. A Simulation Study Comparison of Bayesian Estimation with Conventional Methods for Estimating Unknown Change Points

    ERIC Educational Resources Information Center

    Wang, Lijuan; McArdle, John J.

    2008-01-01

    The main purpose of this research is to evaluate the performance of a Bayesian approach for estimating unknown change points using Monte Carlo simulations. The univariate and bivariate unknown change point mixed models were presented and the basic idea of the Bayesian approach for estimating the models was discussed. The performance of Bayesian…

  13. Modeling spatially-varying landscape change points in species occurrence thresholds

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.

    2014-01-01

    Predicting species distributions at scales of regions to continents is often necessary, as large-scale phenomena influence the distributions of spatially structured populations. Land use and land cover are important large-scale drivers of species distributions, and landscapes are known to create species occurrence thresholds, where small changes in a landscape characteristic results in abrupt changes in occurrence. The value of the landscape characteristic at which this change occurs is referred to as a change point. We present a hierarchical Bayesian threshold model (HBTM) that allows for estimating spatially varying parameters, including change points. Our model also allows for modeling estimated parameters in an effort to understand large-scale drivers of variability in land use and land cover on species occurrence thresholds. We use range-wide detection/nondetection data for the eastern brook trout (Salvelinus fontinalis), a stream-dwelling salmonid, to illustrate our HBTM for estimating and modeling spatially varying threshold parameters in species occurrence. We parameterized the model for investigating thresholds in landscape predictor variables that are measured as proportions, and which are therefore restricted to values between 0 and 1. Our HBTM estimated spatially varying thresholds in brook trout occurrence for both the proportion agricultural and urban land uses. There was relatively little spatial variation in change point estimates, although there was spatial variability in the overall shape of the threshold response and associated uncertainty. In addition, regional mean stream water temperature was correlated to the change point parameters for the proportion of urban land use, with the change point value increasing with increasing mean stream water temperature. We present a framework for quantify macrosystem variability in spatially varying threshold model parameters in relation to important large-scale drivers such as land use and land cover. Although the model presented is a logistic HBTM, it can easily be extended to accommodate other statistical distributions for modeling species richness or abundance.

  14. A travel time forecasting model based on change-point detection method

    NASA Astrophysics Data System (ADS)

    LI, Shupeng; GUANG, Xiaoping; QIAN, Yongsheng; ZENG, Junwei

    2017-06-01

    Travel time parameters obtained from road traffic sensors data play an important role in traffic management practice. A travel time forecasting model is proposed for urban road traffic sensors data based on the method of change-point detection in this paper. The first-order differential operation is used for preprocessing over the actual loop data; a change-point detection algorithm is designed to classify the sequence of large number of travel time data items into several patterns; then a travel time forecasting model is established based on autoregressive integrated moving average (ARIMA) model. By computer simulation, different control parameters are chosen for adaptive change point search for travel time series, which is divided into several sections of similar state.Then linear weight function is used to fit travel time sequence and to forecast travel time. The results show that the model has high accuracy in travel time forecasting.

  15. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    PubMed Central

    Yock, Adam D.; Rao, Arvind; Dong, Lei; Beadle, Beth M.; Garden, Adam S.; Kudchadker, Rajat J.; Court, Laurence E.

    2014-01-01

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear, and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design. PMID:25086518

  16. Forecasting longitudinal changes in oropharyngeal tumor morphology throughout the course of head and neck radiation therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, Adam D.; Kudchadker, Rajat J.; Rao, Arvind

    2014-08-15

    Purpose: To create models that forecast longitudinal trends in changing tumor morphology and to evaluate and compare their predictive potential throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe 35 gross tumor volumes (GTVs) throughout the course of intensity-modulated radiation therapy for oropharyngeal tumors. The feature vectors comprised the coordinates of the GTV centroids and a description of GTV shape using either interlandmark distances or a spherical harmonic decomposition of these distances. The change in the morphology feature vector observed at 33 time points throughout the course of treatment was described using static, linear,more » and mean models. Models were adjusted at 0, 1, 2, 3, or 5 different time points (adjustment points) to improve prediction accuracy. The potential of these models to forecast GTV morphology was evaluated using leave-one-out cross-validation, and the accuracy of the models was compared using Wilcoxon signed-rank tests. Results: Adding a single adjustment point to the static model without any adjustment points decreased the median error in forecasting the position of GTV surface landmarks by the largest amount (1.2 mm). Additional adjustment points further decreased the forecast error by about 0.4 mm each. Selection of the linear model decreased the forecast error for both the distance-based and spherical harmonic morphology descriptors (0.2 mm), while the mean model decreased the forecast error for the distance-based descriptor only (0.2 mm). The magnitude and statistical significance of these improvements decreased with each additional adjustment point, and the effect from model selection was not as large as that from adding the initial points. Conclusions: The authors present models that anticipate longitudinal changes in tumor morphology using various models and model adjustment schemes. The accuracy of these models depended on their form, and the utility of these models includes the characterization of patient-specific response with implications for treatment management and research study design.« less

  17. The estimation of branching curves in the presence of subject-specific random effects.

    PubMed

    Elmi, Angelo; Ratcliffe, Sarah J; Guo, Wensheng

    2014-12-20

    Branching curves are a technique for modeling curves that change trajectory at a change (branching) point. Currently, the estimation framework is limited to independent data, and smoothing splines are used for estimation. This article aims to extend the branching curve framework to the longitudinal data setting where the branching point varies by subject. If the branching point is modeled as a random effect, then the longitudinal branching curve framework is a semiparametric nonlinear mixed effects model. Given existing issues with using random effects within a smoothing spline, we express the model as a B-spline based semiparametric nonlinear mixed effects model. Simple, clever smoothness constraints are enforced on the B-splines at the change point. The method is applied to Women's Health data where we model the shape of the labor curve (cervical dilation measured longitudinally) before and after treatment with oxytocin (a labor stimulant). Copyright © 2014 John Wiley & Sons, Ltd.

  18. A Semiparametric Change-Point Regression Model for Longitudinal Observations.

    PubMed

    Xing, Haipeng; Ying, Zhiliang

    2012-12-01

    Many longitudinal studies involve relating an outcome process to a set of possibly time-varying covariates, giving rise to the usual regression models for longitudinal data. When the purpose of the study is to investigate the covariate effects when experimental environment undergoes abrupt changes or to locate the periods with different levels of covariate effects, a simple and easy-to-interpret approach is to introduce change-points in regression coefficients. In this connection, we propose a semiparametric change-point regression model, in which the error process (stochastic component) is nonparametric and the baseline mean function (functional part) is completely unspecified, the observation times are allowed to be subject-specific, and the number, locations and magnitudes of change-points are unknown and need to be estimated. We further develop an estimation procedure which combines the recent advance in semiparametric analysis based on counting process argument and multiple change-points inference, and discuss its large sample properties, including consistency and asymptotic normality, under suitable regularity conditions. Simulation results show that the proposed methods work well under a variety of scenarios. An application to a real data set is also given.

  19. Ecological change points: The strength of density dependence and the loss of history.

    PubMed

    Ponciano, José M; Taper, Mark L; Dennis, Brian

    2018-05-01

    Change points in the dynamics of animal abundances have extensively been recorded in historical time series records. Little attention has been paid to the theoretical dynamic consequences of such change-points. Here we propose a change-point model of stochastic population dynamics. This investigation embodies a shift of attention from the problem of detecting when a change will occur, to another non-trivial puzzle: using ecological theory to understand and predict the post-breakpoint behavior of the population dynamics. The proposed model and the explicit expressions derived here predict and quantify how density dependence modulates the influence of the pre-breakpoint parameters into the post-breakpoint dynamics. Time series transitioning from one stationary distribution to another contain information about where the process was before the change-point, where is it heading and how long it will take to transition, and here this information is explicitly stated. Importantly, our results provide a direct connection of the strength of density dependence with theoretical properties of dynamic systems, such as the concept of resilience. Finally, we illustrate how to harness such information through maximum likelihood estimation for state-space models, and test the model robustness to widely different forms of compensatory dynamics. The model can be used to estimate important quantities in the theory and practice of population recovery. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Modelling The Effect of Changing Point Systems to Teams’ Competition Standing in A Malaysian Soccer Super League

    NASA Astrophysics Data System (ADS)

    Mat Yusof, Muhammad; Khalid, Ruzelan; Hamid, Mohamad Shukri Abdul; Mansor, Rosnalini; Sulaiman, Tajularipin

    2018-05-01

    In a sports league such as in a soccer league, the teams’ competition standing is based on a cumulative point system. Typically, the standard point system is given to every single match for win, draw and lose teams is the 3-1-0 point system. In this paper, we explore the effect of changing point systems to teams’ competition standing by changing the weightage values for win, draw and lose teams. Three types of point systems are explored in our soccer simulation model; firstly the 3-1-0, secondly the 2-1-0 and thirdly the 4-1-0 point system. Based on the teams participating in a Malaysian soccer Super League, our simulation result shows that there are small changes in term of teams’ competition standing when we compared the actual rank and the simulation rank position. However, the 4-1-0 point system recorded the highest Pearson correlation value which is 0.97, followed by the 2-1-0 point system (0.95) and thirdly the 3-1-0 point system (0.94).

  1. Ecosystem approach to fisheries: Exploring environmental and trophic effects on Maximum Sustainable Yield (MSY) reference point estimates

    PubMed Central

    Kumar, Rajeev; Pitcher, Tony J.; Varkey, Divya A.

    2017-01-01

    We present a comprehensive analysis of estimation of fisheries Maximum Sustainable Yield (MSY) reference points using an ecosystem model built for Mille Lacs Lake, the second largest lake within Minnesota, USA. Data from single-species modelling output, extensive annual sampling for species abundances, annual catch-survey, stomach-content analysis for predatory-prey interactions, and expert opinions were brought together within the framework of an Ecopath with Ecosim (EwE) ecosystem model. An increase in the lake water temperature was observed in the last few decades; therefore, we also incorporated a temperature forcing function in the EwE model to capture the influences of changing temperature on the species composition and food web. The EwE model was fitted to abundance and catch time-series for the period 1985 to 2006. Using the ecosystem model, we estimated reference points for most of the fished species in the lake at single-species as well as ecosystem levels with and without considering the influence of temperature change; therefore, our analysis investigated the trophic and temperature effects on the reference points. The paper concludes that reference points such as MSY are not stationary, but change when (1) environmental conditions alter species productivity and (2) fishing on predators alters the compensatory response of their prey. Thus, it is necessary for the management to re-estimate or re-evaluate the reference points when changes in environmental conditions and/or major shifts in species abundance or community structure are observed. PMID:28957387

  2. A statistical model investigating the prevalence of tuberculosis in New York City using counting processes with two change-points

    PubMed Central

    ACHCAR, J. A.; MARTINEZ, E. Z.; RUFFINO-NETTO, A.; PAULINO, C. D.; SOARES, P.

    2008-01-01

    SUMMARY We considered a Bayesian analysis for the prevalence of tuberculosis cases in New York City from 1970 to 2000. This counting dataset presented two change-points during this period. We modelled this counting dataset considering non-homogeneous Poisson processes in the presence of the two-change points. A Bayesian analysis for the data is considered using Markov chain Monte Carlo methods. Simulated Gibbs samples for the parameters of interest were obtained using WinBugs software. PMID:18346287

  3. Estuarine Response to River Flow and Sea-Level Rise under Future Climate Change and Human Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Zhaoqing; Wang, Taiping; Voisin, Nathalie

    Understanding the response of river flow and estuarine hydrodynamics to climate change, land-use/land-cover change (LULC), and sea-level rise is essential to managing water resources and stress on living organisms under these changing conditions. This paper presents a modeling study using a watershed hydrology model and an estuarine hydrodynamic model, in a one-way coupling, to investigate the estuarine hydrodynamic response to sea-level rise and change in river flow due to the effect of future climate and LULC changes in the Snohomish River estuary, Washington, USA. A set of hydrodynamic variables, including salinity intrusion points, average water depth, and salinity of themore » inundated area, were used to quantify the estuarine response to river flow and sea-level rise. Model results suggest that salinity intrusion points in the Snohomish River estuary and the average salinity of the inundated areas are a nonlinear function of river flow, although the average water depth in the inundated area is approximately linear with river flow. Future climate changes will shift salinity intrusion points further upstream under low flow conditions and further downstream under high flow conditions. In contrast, under the future LULC change scenario, the salinity intrusion point will shift downstream under both low and high flow conditions, compared to present conditions. The model results also suggest that the average water depth in the inundated areas increases linearly with sea-level rise but at a slower rate, and the average salinity in the inundated areas increases linearly with sea-level rise; however, the response of salinity intrusion points in the river to sea-level rise is strongly nonlinear.« less

  4. Rigorous Photogrammetric Processing of CHANG'E-1 and CHANG'E-2 Stereo Imagery for Lunar Topographic Mapping

    NASA Astrophysics Data System (ADS)

    Di, K.; Liu, Y.; Liu, B.; Peng, M.

    2012-07-01

    Chang'E-1(CE-1) and Chang'E-2(CE-2) are the two lunar orbiters of China's lunar exploration program. Topographic mapping using CE-1 and CE-2 images is of great importance for scientific research as well as for preparation of landing and surface operation of Chang'E-3 lunar rover. In this research, we developed rigorous sensor models of CE-1 and CE-2 CCD cameras based on push-broom imaging principle with interior and exterior orientation parameters. Based on the rigorous sensor model, the 3D coordinate of a ground point in lunar body-fixed (LBF) coordinate system can be calculated by space intersection from the image coordinates of con-jugate points in stereo images, and the image coordinates can be calculated from 3D coordinates by back-projection. Due to uncer-tainties of the orbit and the camera, the back-projected image points are different from the measured points. In order to reduce these inconsistencies and improve precision, we proposed two methods to refine the rigorous sensor model: 1) refining EOPs by correcting the attitude angle bias, 2) refining the interior orientation model by calibration of the relative position of the two linear CCD arrays. Experimental results show that the mean back-projection residuals of CE-1 images are reduced to better than 1/100 pixel by method 1 and the mean back-projection residuals of CE-2 images are reduced from over 20 pixels to 0.02 pixel by method 2. Consequently, high precision DEM (Digital Elevation Model) and DOM (Digital Ortho Map) are automatically generated.

  5. Detection and localization of change points in temporal networks with the aid of stochastic block models

    NASA Astrophysics Data System (ADS)

    De Ridder, Simon; Vandermarliere, Benjamin; Ryckebusch, Jan

    2016-11-01

    A framework based on generalized hierarchical random graphs (GHRGs) for the detection of change points in the structure of temporal networks has recently been developed by Peel and Clauset (2015 Proc. 29th AAAI Conf. on Artificial Intelligence). We build on this methodology and extend it to also include the versatile stochastic block models (SBMs) as a parametric family for reconstructing the empirical networks. We use five different techniques for change point detection on prototypical temporal networks, including empirical and synthetic ones. We find that none of the considered methods can consistently outperform the others when it comes to detecting and locating the expected change points in empirical temporal networks. With respect to the precision and the recall of the results of the change points, we find that the method based on a degree-corrected SBM has better recall properties than other dedicated methods, especially for sparse networks and smaller sliding time window widths.

  6. Evaluating Change in Behavioral Preferences: Multidimensional Scaling Single-Ideal Point Model

    ERIC Educational Resources Information Center

    Ding, Cody

    2016-01-01

    The purpose of the article is to propose a multidimensional scaling single-ideal point model as a method to evaluate changes in individuals' preferences under the explicit methodological framework of behavioral preference assessment. One example is used to illustrate the approach for a clear idea of what this approach can accomplish.

  7. Relationship between the clinical global impression of severity for schizoaffective disorder scale and established mood scales for mania and depression.

    PubMed

    Turkoz, Ibrahim; Fu, Dong-Jing; Bossie, Cynthia A; Sheehan, John J; Alphs, Larry

    2013-08-15

    This analysis explored the relationship between ratings on HAM-D-17 or YMRS and those on the depressive or manic subscale of CGI-S for schizoaffective disorder (CGI-S-SCA). This post hoc analysis used the database (N=614) from two 6-week, randomized, placebo-controlled studies of paliperidone ER versus placebo in symptomatic subjects with schizoaffective disorder assessed using HAM-D-17, YMRS, and CGI-S-SCA scales. Parametric and nonparametric regression models explored the relationships between ratings on YMRS and HAM-D-17 and on depressive and manic domains of the CGI-S-SCA from baseline to the 6-week end point. A clinically meaningful improvement was defined as a change of 1 point in the CGI-S-SCA score. No adjustment was made for multiplicity. Multiple linear regression models suggested that a 1-point change in the depressive domain of CGI-S-SCA corresponded to an average 3.6-point (SE=0.2) change in HAM-D-17 score. Similarly, a 1-point change in the manic domain of CGI-S-SCA corresponded to an average 5.8-point (SE=0.2) change in YMRS score. Results were confirmed using local and cumulative logistic regression models in addition to equipercentile linking. Lack of subjects scoring over the complete range of possible scores may limit broad application of the analyses. Clinically meaningful score changes in depressive and manic domains of CGI-S-SCA corresponded to approximately 4- and 6-point score changes on HAM-D-17 and YMRS, respectively, in symptomatic subjects with schizoaffective disorder. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Effect of molecular anisotropy on the intensity and degree of polarization of light scattered from model atmospheres

    NASA Technical Reports Server (NTRS)

    Bahethi, O. P.; Fraser, R. S.

    1975-01-01

    Computations of the intensity, flux, degree of polarization, and the positions of neutral points are presented for models of the terrestrial gaseous and hazy atmospheres by incorporating the molecular anisotropy due to air in the Rayleigh scattering optical thickness and phase matrix. Molecular anisotropy causes significant changes in the intensity, flux and the degree of polarization of the scattered light. The positions of neutral points do not change significantly. When the Rayleigh scattering optical thickness is kept constant and the molecular anisotropy factor is included only in the Rayleigh phase matrix, the flux does not change and the intensity and positions of neutron points change by a small amount. The changes in the degree of polarization are still significant.

  9. Bayesian modeling approach for characterizing groundwater arsenic contamination in the Mekong River basin.

    PubMed

    Cha, YoonKyung; Kim, Young Mo; Choi, Jae-Woo; Sthiannopkao, Suthipong; Cho, Kyung Hwa

    2016-01-01

    In the Mekong River basin, groundwater from tube-wells is a major drinking water source. However, arsenic (As) contamination in groundwater resources has become a critical issue in the watershed. In this study, As species such as total As (AsTOT), As(III), and As(V), were monitored across the watershed to investigate their characteristics and inter-relationships with water quality parameters, including pH and redox potential (Eh). The data illustrated a dramatic change in the relationship between AsTOT and Eh over a specific Eh range, suggesting the importance of Eh in predicting AsTOT. Thus, a Bayesian change-point model was developed to predict AsTOT concentrations based on Eh and pH, to determine changes in the AsTOT-Eh relationship. The model captured the Eh change-point (∼-100±15mV), which was compatible with the data. Importantly, the inclusion of this change-point in the model resulted in improved model fit and prediction accuracy; AsTOT concentrations were strongly negatively related to Eh values higher than the change-point. The process underlying this relationship was subsequently posited to be the reductive dissolution of mineral oxides and As release. Overall, AsTOT showed a weak positive relationship with Eh at a lower range, similar to those commonly observed in the Mekong River basin delta. It is expected that these results would serve as a guide for establishing public health strategies in the Mekong River Basin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Adaptive 4d Psi-Based Change Detection

    NASA Astrophysics Data System (ADS)

    Yang, Chia-Hsiang; Soergel, Uwe

    2018-04-01

    In a previous work, we proposed a PSI-based 4D change detection to detect disappearing and emerging PS points (3D) along with their occurrence dates (1D). Such change points are usually caused by anthropic events, e.g., building constructions in cities. This method first divides an entire SAR image stack into several subsets by a set of break dates. The PS points, which are selected based on their temporal coherences before or after a break date, are regarded as change candidates. Change points are then extracted from these candidates according to their change indices, which are modelled from their temporal coherences of divided image subsets. Finally, we check the evolution of the change indices for each change point to detect the break date that this change occurred. The experiment validated both feasibility and applicability of our method. However, two questions still remain. First, selection of temporal coherence threshold associates with a trade-off between quality and quantity of PS points. This selection is also crucial for the amount of change points in a more complex way. Second, heuristic selection of change index thresholds brings vulnerability and causes loss of change points. In this study, we adapt our approach to identify change points based on statistical characteristics of change indices rather than thresholding. The experiment validates this adaptive approach and shows increase of change points compared with the old version. In addition, we also explore and discuss optimal selection of temporal coherence threshold.

  11. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    NASA Astrophysics Data System (ADS)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have degraded water quality due to different driving forces? 2. How will climate change and changes in wastewater discharges affect water quality? For the analysis these scenario aspects are included: 1. climate with changed runoff (affecting diffuse pollution and loading from sealed areas), river discharge (causing dilution or concentration of point source pollution) and water temperature (affecting BOD degradation). 2. Point sources with changed population (affecting domestic pollution), connectivity to treatment plants (influencing domestic and manufacturing pollution as well as input from sealed areas and scattered settlements).

  12. PIV study of the wake of a model wind turbine transitioning between operating set points

    NASA Astrophysics Data System (ADS)

    Houck, Dan; Cowen, Edwin (Todd)

    2016-11-01

    Wind turbines are ideally operated at their most efficient tip speed ratio for a given wind speed. There is increasing interest, however, in operating turbines at other set points to increase the overall power production of a wind farm. Specifically, Goit and Meyers (2015) used LES to examine a wind farm optimized by unsteady operation of its turbines. In this study, the wake of a model wind turbine is measured in a water channel using PIV. We measure the wake response to a change in operational set point of the model turbine, e.g., from low to high tip speed ratio or vice versa, to examine how it might influence a downwind turbine. A modified torque transducer after Kang et al. (2010) is used to calibrate in situ voltage measurements of the model turbine's generator operating across a resistance to the torque on the generator. Changes in operational set point are made by changing the resistance or the flow speed, which change the rotation rate measured by an encoder. Single camera PIV on vertical planes reveals statistics of the wake at various distances downstream as the turbine transitions from one set point to another. From these measurements, we infer how the unsteady operation of a turbine may affect the performance of a downwind turbine as its incoming flow. National Science Foundation and the Atkinson Center for a Sustainable Future.

  13. Multiple Weyl points and the sign change of their topological charges in woodpile photonic crystals

    NASA Astrophysics Data System (ADS)

    Chang, Ming-Li; Xiao, Meng; Chen, Wen-Jie; Chan, C. T.

    2017-03-01

    We show that Weyl points with topological charges 1 and 2 can be found in very simple chiral woodpile photonic crystals and the distribution of the charges can be changed by changing the material parameters without altering space-group symmetry. The underlying physics can be understood through a tight-binding model. Gapless surface states and their backscattering immune properties also are demonstrated in these systems. Obtaining Weyl points in these easily fabricated woodpile photonic crystals will facilitate the realization of Weyl point physics in optical and IR frequencies.

  14. A Doubly Stochastic Change Point Detection Algorithm for Noisy Biological Signals.

    PubMed

    Gold, Nathan; Frasch, Martin G; Herry, Christophe L; Richardson, Bryan S; Wang, Xiaogang

    2017-01-01

    Experimentally and clinically collected time series data are often contaminated with significant confounding noise, creating short, noisy time series. This noise, due to natural variability and measurement error, poses a challenge to conventional change point detection methods. We propose a novel and robust statistical method for change point detection for noisy biological time sequences. Our method is a significant improvement over traditional change point detection methods, which only examine a potential anomaly at a single time point. In contrast, our method considers all suspected anomaly points and considers the joint probability distribution of the number of change points and the elapsed time between two consecutive anomalies. We validate our method with three simulated time series, a widely accepted benchmark data set, two geological time series, a data set of ECG recordings, and a physiological data set of heart rate variability measurements of fetal sheep model of human labor, comparing it to three existing methods. Our method demonstrates significantly improved performance over the existing point-wise detection methods.

  15. Change-point analysis data of neonatal diffusion tensor MRI in preterm and term-born infants.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-06-01

    The data presented in this article are related to the research article entitled "Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI" (Wu et al., 2017) [1]. Brain immaturity at birth poses critical neurological risks in the preterm-born infants. We used a novel change-point model to analyze the critical gestational age at birth (GAB) that could affect postnatal development, based on diffusion tensor MRI (DTI) acquired from 43 preterm and 43 term-born infants in 126 brain regions. In the corresponding research article, we presented change-point analysis of fractional anisotropy (FA) and mean diffusivities (MD) measurements in these infants. In this article, we offered the relative changes of axonal and radial diffusivities (AD and RD) in relation to the change of FA and FA-based change-points, and we also provided the AD- and RD-based change-point results.

  16. Bayesian Inference for Functional Dynamics Exploring in fMRI Data.

    PubMed

    Guo, Xuan; Liu, Bing; Chen, Le; Chen, Guantao; Pan, Yi; Zhang, Jing

    2016-01-01

    This paper aims to review state-of-the-art Bayesian-inference-based methods applied to functional magnetic resonance imaging (fMRI) data. Particularly, we focus on one specific long-standing challenge in the computational modeling of fMRI datasets: how to effectively explore typical functional interactions from fMRI time series and the corresponding boundaries of temporal segments. Bayesian inference is a method of statistical inference which has been shown to be a powerful tool to encode dependence relationships among the variables with uncertainty. Here we provide an introduction to a group of Bayesian-inference-based methods for fMRI data analysis, which were designed to detect magnitude or functional connectivity change points and to infer their functional interaction patterns based on corresponding temporal boundaries. We also provide a comparison of three popular Bayesian models, that is, Bayesian Magnitude Change Point Model (BMCPM), Bayesian Connectivity Change Point Model (BCCPM), and Dynamic Bayesian Variable Partition Model (DBVPM), and give a summary of their applications. We envision that more delicate Bayesian inference models will be emerging and play increasingly important roles in modeling brain functions in the years to come.

  17. El Niño/Southern Oscillation response to global warming

    PubMed Central

    Latif, M.; Keenlyside, N. S.

    2009-01-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming. PMID:19060210

  18. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-08

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.

  19. Novel point estimation from a semiparametric ratio estimator (SPRE): long-term health outcomes from short-term linear data, with application to weight loss in obesity.

    PubMed

    Weissman-Miller, Deborah

    2013-11-02

    Point estimation is particularly important in predicting weight loss in individuals or small groups. In this analysis, a new health response function is based on a model of human response over time to estimate long-term health outcomes from a change point in short-term linear regression. This important estimation capability is addressed for small groups and single-subject designs in pilot studies for clinical trials, medical and therapeutic clinical practice. These estimations are based on a change point given by parameters derived from short-term participant data in ordinary least squares (OLS) regression. The development of the change point in initial OLS data and the point estimations are given in a new semiparametric ratio estimator (SPRE) model. The new response function is taken as a ratio of two-parameter Weibull distributions times a prior outcome value that steps estimated outcomes forward in time, where the shape and scale parameters are estimated at the change point. The Weibull distributions used in this ratio are derived from a Kelvin model in mechanics taken here to represent human beings. A distinct feature of the SPRE model in this article is that initial treatment response for a small group or a single subject is reflected in long-term response to treatment. This model is applied to weight loss in obesity in a secondary analysis of data from a classic weight loss study, which has been selected due to the dramatic increase in obesity in the United States over the past 20 years. A very small relative error of estimated to test data is shown for obesity treatment with the weight loss medication phentermine or placebo for the test dataset. An application of SPRE in clinical medicine or occupational therapy is to estimate long-term weight loss for a single subject or a small group near the beginning of treatment.

  20. Dew point measurement technique utilizing fiber cut reflection

    NASA Astrophysics Data System (ADS)

    Kostritskii, S. M.; Dikevich, A. A.; Korkishko, Yu. N.; Fedorov, V. A.

    2009-05-01

    The fiber optical dew point hygrometer based on change of reflection coefficient for fiber cut has been developed and examined. We proposed and verified the model of condensation detector functioning principle. Experimental frost point measurements on air with different frost points have been performed.

  1. Path Dependence of Regional Climate Change

    NASA Astrophysics Data System (ADS)

    Herrington, Tyler; Zickfeld, Kirsten

    2013-04-01

    Path dependence of the climate response to CO2 forcing has been investigated from a global mean perspective, with evidence suggesting that long-term global mean temperature and precipitation changes are proportional to cumulative CO2 emissions, and independent of emissions pathway. Little research, however, has been done on path dependence of regional climate changes, particularly in areas that could be affected by tipping points. Here, we utilize the UVic Earth System Climate Model version 2.9, an Earth System Model of Intermediate Complexity. It consists of a 3-dimensional ocean general circulation model, coupled with a dynamic-thermodynamic sea ice model, and a thermodynamic energy-moisture balance model of the atmosphere. This is then coupled with a terrestrial carbon cycle model and an ocean carbon-cycle model containing an inorganic carbon and marine ecosystem component. Model coverage is global with a zonal resolution of 3.6 degrees and meridional resolution of 1.8 degrees. The model is forced with idealized emissions scenarios across five cumulative emission groups (1300 GtC, 2300 GtC, 3300 GtC, 4300 GtC, and 5300 GtC) to explore the path dependence of (and the possibility of hysteresis in) regional climate changes. Emission curves include both fossil carbon emissions and emissions from land use changes, and span a variety of peak and decline scenarios with varying emission rates, as well as overshoot and instantaneous pulse scenarios. Tipping points being explored include those responsible for the disappearance of summer Arctic sea-ice, the irreversible melt of the Greenland Ice Sheet, the collapse of the Atlantic Thermohaline Circulation, and the dieback of the Amazonian Rainforest. Preliminary results suggest that global mean climate change after cessation of CO2 emissions is independent of the emissions pathway, only varying with total cumulative emissions, in accordance with results from earlier studies. Forthcoming analysis will investigate path dependence of regional climate change. Some evidence exists to support the idea of hysteresis in the Greenland Ice Sheet, and since tipping points represent non-linear elements of the climate system, we suspect that the other tipping points might also show path dependence.

  2. Detecting P and S-wave of Mt. Rinjani seismic based on a locally stationary autoregressive (LSAR) model

    NASA Astrophysics Data System (ADS)

    Nurhaida, Subanar, Abdurakhman, Abadi, Agus Maman

    2017-08-01

    Seismic data is usually modelled using autoregressive processes. The aim of this paper is to find the arrival times of the seismic waves of Mt. Rinjani in Indonesia. Kitagawa algorithm's is used to detect the seismic P and S-wave. Householder transformation used in the algorithm made it effectively finding the number of change points and parameters of the autoregressive models. The results show that the use of Box-Cox transformation on the variable selection level makes the algorithm works well in detecting the change points. Furthermore, when the basic span of the subinterval is set 200 seconds and the maximum AR order is 20, there are 8 change points which occur at 1601, 2001, 7401, 7601,7801, 8001, 8201 and 9601. Finally, The P and S-wave arrival times are detected at time 1671 and 2045 respectively using a precise detection algorithm.

  3. Change Points in the Population Trends of Aerial-Insectivorous Birds in North America: Synchronized in Time across Species and Regions.

    PubMed

    Smith, Adam C; Hudson, Marie-Anne R; Downes, Constance M; Francis, Charles M

    2015-01-01

    North American populations of aerial insectivorous birds are in steep decline. Aerial insectivores (AI) are a group of bird species that feed almost exclusively on insects in flight, and include swallows, swifts, nightjars, and flycatchers. The causes of the declines are not well understood. Indeed, it is not clear when the declines began, or whether the declines are shared across all species in the group (e.g., caused by changes in flying insect populations) or specific to each species (e.g., caused by changes in species' breeding habitat). A recent study suggested that population trends of aerial insectivores changed for the worse in the 1980s. If there was such a change point in trends of the group, understanding its timing and geographic pattern could help identify potential causes of the decline. We used a hierarchical Bayesian, penalized regression spline, change point model to estimate group-level change points in the trends of 22 species of AI, across 153 geographic strata of North America. We found evidence for group-level change points in 85% of the strata. Change points for flycatchers (FC) were distinct from those for swallows, swifts and nightjars (SSN) across North America, except in the Northeast, where all AI shared the same group-level change points. During the 1980s, there was a negative change point across most of North America, in the trends of SSN. For FC, the group-level change points were more geographically variable, and in many regions there were two: a positive change point followed by a negative change point. This group-level synchrony in AI population trends is likely evidence of a response to a common environmental factor(s) with similar effects on many species across broad spatial extents. The timing and geographic patterns of the change points that we identify here should provide a spring-board for research into the causes behind aerial insectivore declines.

  4. Change Points in the Population Trends of Aerial-Insectivorous Birds in North America: Synchronized in Time across Species and Regions

    PubMed Central

    Smith, Adam C.; Hudson, Marie-Anne R.; Downes, Constance M.; Francis, Charles M.

    2015-01-01

    North American populations of aerial insectivorous birds are in steep decline. Aerial insectivores (AI) are a group of bird species that feed almost exclusively on insects in flight, and include swallows, swifts, nightjars, and flycatchers. The causes of the declines are not well understood. Indeed, it is not clear when the declines began, or whether the declines are shared across all species in the group (e.g., caused by changes in flying insect populations) or specific to each species (e.g., caused by changes in species’ breeding habitat). A recent study suggested that population trends of aerial insectivores changed for the worse in the 1980s. If there was such a change point in trends of the group, understanding its timing and geographic pattern could help identify potential causes of the decline. We used a hierarchical Bayesian, penalized regression spline, change point model to estimate group-level change points in the trends of 22 species of AI, across 153 geographic strata of North America. We found evidence for group-level change points in 85% of the strata. Change points for flycatchers (FC) were distinct from those for swallows, swifts and nightjars (SSN) across North America, except in the Northeast, where all AI shared the same group-level change points. During the 1980s, there was a negative change point across most of North America, in the trends of SSN. For FC, the group-level change points were more geographically variable, and in many regions there were two: a positive change point followed by a negative change point. This group-level synchrony in AI population trends is likely evidence of a response to a common environmental factor(s) with similar effects on many species across broad spatial extents. The timing and geographic patterns of the change points that we identify here should provide a spring-board for research into the causes behind aerial insectivore declines. PMID:26147572

  5. Testing and Interval Estimation in a Change-Point Model Allowing at Most One Change.

    DTIC Science & Technology

    1987-07-01

    we refer to Krishnaiah and Miao (1986), Cs’Orgo and Horvath (1986) for a detailed survey of this subject. The methodology of the present paper is... KRISHNAIAH , P, R., MIAO, B. (1986). Review About Estimates of Change Point, to Appear in Hman dbook o-f 3’a-stis, Vol, 7 [ 6] QUALLS, C-, WATANABE, H

  6. First look at changes in flood hazard in the Inter-Sectoral Impact Model Intercomparison Project ensemble

    PubMed Central

    Dankers, Rutger; Arnell, Nigel W.; Clark, Douglas B.; Falloon, Pete D.; Fekete, Balázs M.; Gosling, Simon N.; Heinke, Jens; Kim, Hyungjun; Masaki, Yoshimitsu; Satoh, Yusuke; Stacke, Tobias; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Climate change due to anthropogenic greenhouse gas emissions is expected to increase the frequency and intensity of precipitation events, which is likely to affect the probability of flooding into the future. In this paper we use river flow simulations from nine global hydrology and land surface models to explore uncertainties in the potential impacts of climate change on flood hazard at global scale. As an indicator of flood hazard we looked at changes in the 30-y return level of 5-d average peak flows under representative concentration pathway RCP8.5 at the end of this century. Not everywhere does climate change result in an increase in flood hazard: decreases in the magnitude and frequency of the 30-y return level of river flow occur at roughly one-third (20–45%) of the global land grid points, particularly in areas where the hydrograph is dominated by the snowmelt flood peak in spring. In most model experiments, however, an increase in flooding frequency was found in more than half of the grid points. The current 30-y flood peak is projected to occur in more than 1 in 5 y across 5–30% of land grid points. The large-scale patterns of change are remarkably consistent among impact models and even the driving climate models, but at local scale and in individual river basins there can be disagreement even on the sign of change, indicating large modeling uncertainty which needs to be taken into account in local adaptation studies. PMID:24344290

  7. Relationship between changes in the upper and lower tropospheric water vapor: A revisit

    NASA Astrophysics Data System (ADS)

    Yang, M.; Sun, D. Z.; Zhang, G. J.

    2017-12-01

    Upper tropospheric water vapor response to enhanced greenhouse gas forcing is as important as the lower tropospheric water vapor response in determining climate sensitivity. Early studies using older versions of climate models have suggested that the upper- and lower-troposphere water vapor changes are more strongly coupled in the climate models than in the observations. Here we reexamine this issue using a state-of-the-art climate model—the NCAR community model CAM5. Specifically, we have calculated the correlations between interannual variations of specific humidity in all levels of the troposphere with that at the surface in CAM5 and in the observations (as represented by the updated ERA-Interim and NCEP reanalysis). It is found that the previously noted biases in how strongly upper tropospheric water vapor and lower troposphere water vapor are linked still exist in CAM5—the change in the tropical averaged upper tropospheric water vapor is more strongly correlated with the change in the surface. However, this bias disappears in the averaged correlation obtained by averaging the point-by-point correlations over the tropics. The spatial pattern of the point-by-point correlations reveals that the better agreement between the model and the observations is related to the opposite model biases in different regions: the correlation is weaker in the model in the western Pacific, but stronger in the central and eastern Pacific. Further analysis of precipitation fields suggests that the weaker (stronger) coupling between tropospheric water vapor and surface moisture over western (central-eastern) Pacific in model is related to weaker (stronger) simulated convective activities in these regions. More specifically, during El Nino, the model has excessive deep convection in the central Pacific, but too littler deep convection in western Pacific. Implications of the results are discussed in the context of climate change as well as in the context of how to improve the model in this regard.

  8. Integrated Change Detection and Classification in Urban Areas Based on Airborne Laser Scanning Point Clouds.

    PubMed

    Tran, Thi Huong Giang; Ressl, Camillo; Pfeifer, Norbert

    2018-02-03

    This paper suggests a new approach for change detection (CD) in 3D point clouds. It combines classification and CD in one step using machine learning. The point cloud data of both epochs are merged for computing features of four types: features describing the point distribution, a feature relating to relative terrain elevation, features specific for the multi-target capability of laser scanning, and features combining the point clouds of both epochs to identify the change. All these features are merged in the points and then training samples are acquired to create the model for supervised classification, which is then applied to the whole study area. The final results reach an overall accuracy of over 90% for both epochs of eight classes: lost tree, new tree, lost building, new building, changed ground, unchanged building, unchanged tree, and unchanged ground.

  9. Change-point detection of induced and natural seismicity

    NASA Astrophysics Data System (ADS)

    Fiedler, B.; Holschneider, M.; Zoeller, G.; Hainzl, S.

    2016-12-01

    Earthquake rates are influenced by tectonic stress buildup, earthquake-induced stress changes, and transient aseismic sources. While the first two sources can be well modeled due to the fact that the source is known, transient aseismic processes are more difficult to detect. However, the detection of the associated changes of the earthquake activity is of great interest, because it might help to identify natural aseismic deformation patterns (such as slow slip events) and the occurrence of induced seismicity related to human activities. We develop a Bayesian approach to detect change-points in seismicity data which are modeled by Poisson processes. By means of a Likelihood-Ratio-Test, we proof the significance of the change of the intensity. The model is also extended to spatiotemporal data to detect the area of the transient changes. The method is firstly tested for synthetic data and then applied to observational data from central US and the Bardarbunga volcano in Iceland.

  10. Evaporation characteristics of ETBE-blended gasoline.

    PubMed

    Okamoto, Katsuhiro; Hiramatsu, Muneyuki; Hino, Tomonori; Otake, Takuma; Okamoto, Takashi; Miyamoto, Hiroki; Honma, Masakatsu; Watanabe, Norimichi

    2015-04-28

    To reduce greenhouse gas emissions, which contribute to global warming, production of gasoline blended with ethyl tert-buthyl ether (ETBE) is increasing annually. The flash point of ETBE is higher than that of gasoline, and blending ETBE into gasoline will change the flash point and the vapor pressure. Therefore, it is expected that the fire hazard caused by ETBE-blended gasoline would differ from that caused by normal gasoline. The aim of this study was to acquire the knowledge required for estimating the fire hazard of ETBE-blended gasoline. Supposing that ETBE-blended gasoline was a two-component mixture of gasoline and ETBE, we developed a prediction model that describes the vapor pressure and flash point of ETBE-blended gasoline in an arbitrary ETBE blending ratio. We chose 8-component hydrocarbon mixture as a model gasoline, and defined the relation between molar mass of gasoline and mass loss fraction. We measured the changes in the vapor pressure and flash point of gasoline by blending ETBE and evaporation, and compared the predicted values with the measured values in order to verify the prediction model. The calculated values of vapor pressures and flash points corresponded well to the measured values. Thus, we confirmed that the change in the evaporation characteristics of ETBE-blended gasoline by evaporation could be predicted by the proposed model. Furthermore, the vapor pressure constants of ETBE-blended gasoline were obtained by the model, and then the distillation curves were developed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. A role for subchondral bone changes in the process of osteoarthritis; a micro-CT study of two canine models.

    PubMed

    Sniekers, Yvonne H; Intema, Femke; Lafeber, Floris P J G; van Osch, Gerjo J V M; van Leeuwen, Johannes P T M; Weinans, Harrie; Mastbergen, Simon C

    2008-02-12

    This study evaluates changes in peri-articular bone in two canine models for osteoarthritis: the groove model and the anterior cruciate ligament transection (ACLT) model. Evaluation was performed at 10 and 20 weeks post-surgery and in addition a 3-weeks time point was studied for the groove model. Cartilage was analysed, and architecture of the subchondral plate and trabecular bone of epiphyses was quantified using micro-CT. At 10 and 20 weeks cartilage histology and biochemistry demonstrated characteristic features of osteoarthritis in both models (very mild changes at 3 weeks). The groove model presented osteophytes only at 20 weeks, whereas the ACLT model showed osteophytes already at 10 weeks. Trabecular bone changes in the groove model were small and not consistent. This contrasts the ACLT model in which bone volume fraction was clearly reduced at 10 and 20 weeks (15-20%). However, changes in metaphyseal bone indicate unloading in the ACLT model, not in the groove model. For both models the subchondral plate thickness was strongly reduced (25-40%) and plate porosity was strongly increased (25-85%) at all time points studied. These findings show differential regulation of subchondral trabecular bone in the groove and ACLT model, with mild changes in the groove model and more severe changes in the ACLT model. In the ACLT model, part of these changes may be explained by unloading of the treated leg. In contrast, subchondral plate thinning and increased porosity were very consistent in both models, independent of loading conditions, indicating that this thinning is an early response in the osteoarthritis process.

  12. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    NASA Astrophysics Data System (ADS)

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  13. Ignoring Individual Differences in Times of Assessment in Growth Curve Modeling

    ERIC Educational Resources Information Center

    Coulombe, Patrick; Selig, James P.; Delaney, Harold D.

    2016-01-01

    Researchers often collect longitudinal data to model change over time in a phenomenon of interest. Inevitably, there will be some variation across individuals in specific time intervals between assessments. In this simulation study of growth curve modeling, we investigate how ignoring individual differences in time points when modeling change over…

  14. Detecting Abrupt Changes in a Piecewise Locally Stationary Time Series

    PubMed Central

    Last, Michael; Shumway, Robert

    2007-01-01

    Non-stationary time series arise in many settings, such as seismology, speech-processing, and finance. In many of these settings we are interested in points where a model of local stationarity is violated. We consider the problem of how to detect these change-points, which we identify by finding sharp changes in the time-varying power spectrum. Several different methods are considered, and we find that the symmetrized Kullback-Leibler information discrimination performs best in simulation studies. We derive asymptotic normality of our test statistic, and consistency of estimated change-point locations. We then demonstrate the technique on the problem of detecting arrival phases in earthquakes. PMID:19190715

  15. Binary Colloidal Alloy Test-3 and 4: Critical Point

    NASA Technical Reports Server (NTRS)

    Weitz, David A.; Lu, Peter J.

    2007-01-01

    Binary Colloidal Alloy Test - 3 and 4: Critical Point (BCAT-3-4-CP) will determine phase separation rates and add needed points to the phase diagram of a model critical fluid system. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  16. Relationships between Participants' International Prostate Symptom Score and BPH Impact Index Changes and Global Ratings of Change in a Trial of Phytotherapy for Men with Lower Urinary Tract Symptoms

    PubMed Central

    Barry, Michael J.; Cantor, Alan; Roehrborn, Claus G.

    2014-01-01

    Purpose To relate changes in AUA Symptom Index (AUASI) scores with bother measures and global ratings of change among men with lower urinary tract symptoms enrolled in a trial of saw palmetto. Materials and Methods To be eligible, men were ≥45 years old, had ajpeak uroflow ≥4 ml/sec, and an AUASI score ≥ 8 and ≤ 24. Participants self-administered the AUASI, IPSS quality of life item (IPSS QoL), BPH Impact Index (BII) and two global change questions at baseline and 24, 48, and 72 weeks. Results Among 357 participants, global ratings of “a little better” were associated with mean decreases in AUASI scores from 2.8 to 4.1 points, across three time points. The analogous range for mean decreases in BII scores was 1.0 to 1.7 points, and for the IPSS QoL item 0.5 to 0.8 points. At 72 weeks, for the first global change question, each change measure could discriminate between participants rating themselves at least a little better versus unchanged or worse 70-72% of the time. A multivariable model increased discrimination to 77%. For the second global change question, each change measure correctly discriminated ratings of at least a little better versus unchanged or worse 69-74% of the time, and a multivariable model increased discrimination to 79%. Conclusions Changes in AUASI scores could discriminate between participants rating themselves at least a little better versus unchanged or worse. Our findings support the practice of powering studies to detect group mean differences in AUASI scores of at least 3 points. PMID:23017510

  17. Use of fault striations and dislocation models to infer tectonic shear stress during the 1995 Hyogo-Ken Nanbu (Kobe) earthquake

    USGS Publications Warehouse

    Spudich, P.; Guatteri, Mariagiovanna; Otsuki, K.; Minagawa, J.

    1998-01-01

    Dislocation models of the 1995 Hyogo-ken Nanbu (Kobe) earthquake derived by Yoshida et al. (1996) show substantial changes in direction of slip with time at specific points on the Nojima and Rokko fault systems, as do striations we observed on exposures of the Nojima fault surface on Awaji Island. Spudich (1992) showed that the initial stress, that is, the shear traction on the fault before the earthquake origin time, can be derived at points on the fault where the slip rake rotates with time if slip velocity and stress change are known at these points. From Yoshida's slip model, we calculated dynamic stress changes on the ruptured fault surfaces. To estimate errors, we compared the slip velocities and dynamic stress changes of several published models of the earthquake. The differences between these models had an exponential distribution, not gaussian. We developed a Bayesian method to estimate the probability density function (PDF) of initial stress from the striations and from Yoshida's slip model. Striations near Toshima and Hirabayashi give initial stresses of about 13 and 7 MPa, respectively. We obtained initial stresses of about 7 to 17 MPa at depths of 2 to 10 km on a subset of points on the Nojima and Rokko fault systems. Our initial stresses and coseismic stress changes agree well with postearthquake stresses measured by hydrofracturing in deep boreholes near Hirabayashi and Ogura on Awaji Island. Our results indicate that the Nojima fault slipped at very low shear stress, and fractional stress drop was complete near the surface and about 32% below depths of 2 km. Our results at depth depend on the accuracy of the rake rotations in Yoshida's model, which are probably correct on the Nojima fault but debatable on the Rokko fault. Our results imply that curved or cross-cutting fault striations can be formed in a single earthquake, contradicting a common assumption of structural geology.

  18. Assessing the response of runoff to climate change and human activities for a typical basin in the Northern Taihang Mountain, China

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Gao, Yanchuan; Wang, Sheng

    2018-04-01

    Climate change and human activities are the two main factors on runoff change. Quantifying the contribution of climate change and human activities on runoff change is important for water resources planning and management. In this study, the variation trend and abrupt change point of hydro-meteorological factors during 1960-2012 were detected by using the Mann-Kendall test and Pettitt change-point statistics. Then the runoff was simulated by SWAT model. The contribution of climate change and human activities on runoff change was calculated based on the SWAT model and the elasticity coefficient method. The results showed that in contrast to the increasing trend for annual temperature, the significant decreasing trends were detected for annual runoff and precipitation, with an abrupt change point in 1982. The simulated results of SWAT had good consistency with observed ones, and the values of R2 and E_{NS} all exceeded 0.75. The two methods used for assessing the contribution of climate change and human activities on runoff reduction yielded consistent results. The contribution of climate change (precipitation reduction and temperature rise) was {˜ }37.5%, while the contribution of human activities (the increase of economic forest and built-up land, hydrologic projects) was {˜ }62.5%.

  19. An information-based approach to change-point analysis with applications to biophysics and cell biology.

    PubMed

    Wiggins, Paul A

    2015-07-21

    This article describes the application of a change-point algorithm to the analysis of stochastic signals in biological systems whose underlying state dynamics consist of transitions between discrete states. Applications of this analysis include molecular-motor stepping, fluorophore bleaching, electrophysiology, particle and cell tracking, detection of copy number variation by sequencing, tethered-particle motion, etc. We present a unified approach to the analysis of processes whose noise can be modeled by Gaussian, Wiener, or Ornstein-Uhlenbeck processes. To fit the model, we exploit explicit, closed-form algebraic expressions for maximum-likelihood estimators of model parameters and estimated information loss of the generalized noise model, which can be computed extremely efficiently. We implement change-point detection using the frequentist information criterion (which, to our knowledge, is a new information criterion). The frequentist information criterion specifies a single, information-based statistical test that is free from ad hoc parameters and requires no prior probability distribution. We demonstrate this information-based approach in the analysis of simulated and experimental tethered-particle-motion data. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  20. Response of non-point source pollutant loads to climate change in the Shitoukoumen reservoir catchment.

    PubMed

    Zhang, Lei; Lu, Wenxi; An, Yonglei; Li, Di; Gong, Lei

    2012-01-01

    The impacts of climate change on streamflow and non-point source pollutant loads in the Shitoukoumen reservoir catchment are predicted by combining a general circulation model (HadCM3) with the Soil and Water Assessment Tool (SWAT) hydrological model. A statistical downscaling model was used to generate future local scenarios of meteorological variables such as temperature and precipitation. Then, the downscaled meteorological variables were used as input to the SWAT hydrological model calibrated and validated with observations, and the corresponding changes of future streamflow and non-point source pollutant loads in Shitoukoumen reservoir catchment were simulated and analyzed. Results show that daily temperature increases in three future periods (2010-2039, 2040-2069, and 2070-2099) relative to a baseline of 1961-1990, and the rate of increase is 0.63°C per decade. Annual precipitation also shows an apparent increase of 11 mm per decade. The calibration and validation results showed that the SWAT model was able to simulate well the streamflow and non-point source pollutant loads, with a coefficient of determination of 0.7 and a Nash-Sutcliffe efficiency of about 0.7 for both the calibration and validation periods. The future climate change has a significant impact on streamflow and non-point source pollutant loads. The annual streamflow shows a fluctuating upward trend from 2010 to 2099, with an increase rate of 1.1 m(3) s(-1) per decade, and a significant upward trend in summer, with an increase rate of 1.32 m(3) s(-1) per decade. The increase in summer contributes the most to the increase of annual load compared with other seasons. The annual NH (4) (+) -N load into Shitoukoumen reservoir shows a significant downward trend with a decrease rate of 40.6 t per decade. The annual TP load shows an insignificant increasing trend, and its change rate is 3.77 t per decade. The results of this analysis provide a scientific basis for effective support of decision makers and strategies of adaptation to climate change.

  1. Inflated Uncertainty in Multimodel-Based Regional Climate Projections.

    PubMed

    Madsen, Marianne Sloth; Langen, Peter L; Boberg, Fredrik; Christensen, Jens Hesselbjerg

    2017-11-28

    Multimodel ensembles are widely analyzed to estimate the range of future regional climate change projections. For an ensemble of climate models, the result is often portrayed by showing maps of the geographical distribution of the multimodel mean results and associated uncertainties represented by model spread at the grid point scale. Here we use a set of CMIP5 models to show that presenting statistics this way results in an overestimation of the projected range leading to physically implausible patterns of change on global but also on regional scales. We point out that similar inconsistencies occur in impact analyses relying on multimodel information extracted using statistics at the regional scale, for example, when a subset of CMIP models is selected to represent regional model spread. Consequently, the risk of unwanted impacts may be overestimated at larger scales as climate change impacts will never be realized as the worst (or best) case everywhere.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Qin, E-mail: zhuqin@fudan.edu.cn; Peng Xizhe, E-mail: xzpeng@fudan.edu.cn

    This study examines the impacts of population size, population structure, and consumption level on carbon emissions in China from 1978 to 2008. To this end, we expanded the stochastic impacts by regression on population, affluence, and technology model and used the ridge regression method, which overcomes the negative influences of multicollinearity among independent variables under acceptable bias. Results reveal that changes in consumption level and population structure were the major impact factors, not changes in population size. Consumption level and carbon emissions were highly correlated. In terms of population structure, urbanization, population age, and household size had distinct effects onmore » carbon emissions. Urbanization increased carbon emissions, while the effect of age acted primarily through the expansion of the labor force and consequent overall economic growth. Shrinking household size increased residential consumption, resulting in higher carbon emissions. Households, rather than individuals, are a more reasonable explanation for the demographic impact on carbon emissions. Potential social policies for low carbon development are also discussed. - Highlights: Black-Right-Pointing-Pointer We examine the impacts of population change on carbon emissions in China. Black-Right-Pointing-Pointer We expand the STIRPAT model by containing population structure factors in the model. Black-Right-Pointing-Pointer The population structure includes age structure, urbanization level, and household size. Black-Right-Pointing-Pointer The ridge regression method is used to estimate the model with multicollinearity. Black-Right-Pointing-Pointer The population structure plays a more important role compared with the population size.« less

  3. Application of change-point problem to the detection of plant patches.

    PubMed

    López, I; Gámez, M; Garay, J; Standovár, T; Varga, Z

    2010-03-01

    In ecology, if the considered area or space is large, the spatial distribution of individuals of a given plant species is never homogeneous; plants form different patches. The homogeneity change in space or in time (in particular, the related change-point problem) is an important research subject in mathematical statistics. In the paper, for a given data system along a straight line, two areas are considered, where the data of each area come from different discrete distributions, with unknown parameters. In the paper a method is presented for the estimation of the distribution change-point between both areas and an estimate is given for the distributions separated by the obtained change-point. The solution of this problem will be based on the maximum likelihood method. Furthermore, based on an adaptation of the well-known bootstrap resampling, a method for the estimation of the so-called change-interval is also given. The latter approach is very general, since it not only applies in the case of the maximum-likelihood estimation of the change-point, but it can be also used starting from any other change-point estimation known in the ecological literature. The proposed model is validated against typical ecological situations, providing at the same time a verification of the applied algorithms.

  4. Students' Understanding of Boiling Points and Intermolecular Forces

    ERIC Educational Resources Information Center

    Schmidt, Hans-Jurgen; Kaufmann, Birgit; Treagust, David F.

    2009-01-01

    In introductory chemistry courses students are presented with the model that matter is composed of particles, and that weak forces of attraction exist between them. This model is used to interpret phenomena such as solubility and melting points, and aids in understanding the changes in states of matter as opposed to chemical reactions. We…

  5. Turning Points: Priorities for Teacher Education in a Democracy

    ERIC Educational Resources Information Center

    Romano, Rosalie M.

    2009-01-01

    Every generation has its moment, some turning point that will mark its place in the historical record. Such points provide the direction of our history and our future. Turning points are, characteristically, times of turmoil based on a fundamental change in models or events--what Thomas Kuhn called a "paradigm shift." In terms of a democratic…

  6. Analytical volcano deformation modelling: A new and fast generalized point-source approach with application to the 2015 Calbuco eruption

    NASA Astrophysics Data System (ADS)

    Nikkhoo, M.; Walter, T. R.; Lundgren, P.; Prats-Iraola, P.

    2015-12-01

    Ground deformation at active volcanoes is one of the key precursors of volcanic unrest, monitored by InSAR and GPS techniques at high spatial and temporal resolution, respectively. Modelling of the observed displacements establishes the link between them and the underlying subsurface processes and volume change. The so-called Mogi model and the rectangular dislocation are two commonly applied analytical solutions that allow for quick interpretations based on the location, depth and volume change of pressurized spherical cavities and planar intrusions, respectively. Geological observations worldwide, however, suggest elongated, tabular or other non-equidimensional geometries for the magma chambers. How can these be modelled? Generalized models such as the Davis's point ellipsoidal cavity or the rectangular dislocation solutions, are geometrically limited and could barely improve the interpretation of data. We develop a new analytical artefact-free solution for a rectangular dislocation, which also possesses full rotational degrees of freedom. We construct a kinematic model in terms of three pairwise-perpendicular rectangular dislocations with a prescribed opening only. This model represents a generalized point source in the far field, and also performs as a finite dislocation model for planar intrusions in the near field. We show that through calculating the Eshelby's shape tensor the far-field displacements and stresses of any arbitrary triaxial ellipsoidal cavity can be reproduced by using this model. Regardless of its aspect ratios, the volume change of this model is simply the sum of the volume change of the individual dislocations. Our model can be integrated in any inversion scheme as simply as the Mogi model, profiting at the same time from the advantages of a generalized point source. After evaluating our model by using a boundary element method code, we apply it to ground displacements of the 2015 Calbuco eruption, Chile, observed by the Sentinel-1 satellite. We infer the parameters of a deflating elongated source located beneath Calbuco, and find significant differences to Mogi type solutions. The results imply that interpretations based on our model may help us better understand source characteristics, and in the case of Calubuco volcano infer a volcano-tectonic coupling mechanism.

  7. An Online 3D Database System for Endangered Architectural and Archaeological Heritage in the South-Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Abate, D.; Avgousti, A.; Faka, M.; Hermon, S.; Bakirtzis, N.; Christofi, P.

    2017-10-01

    This study compares performance of aerial image based point clouds (IPCs) and light detection and ranging (LiDAR) based point clouds in detection of thinnings and clear cuts in forests. IPCs are an appealing method to update forest resource data, because of their accuracy in forest height estimation and cost-efficiency of aerial image acquisition. We predicted forest changes over a period of three years by creating difference layers that displayed the difference in height or volume between the initial and subsequent time points. Both IPCs and LiDAR data were used in this process. The IPCs were constructed with the Semi-Global Matching (SGM) algorithm. Difference layers were constructed by calculating differences in fitted height or volume models or in canopy height models (CHMs) from both time points. The LiDAR-derived digital terrain model (DTM) was used to scale heights to above ground level. The study area was classified in logistic regression into the categories ClearCut, Thinning or NoChange with the values from the difference layers. We compared the predicted changes with the true changes verified in the field, and obtained at best a classification accuracy for clear cuts 93.1 % with IPCs and 91.7 % with LiDAR data. However, a classification accuracy for thinnings was only 8.0 % with IPCs. With LiDAR data 41.4 % of thinnings were detected. In conclusion, the LiDAR data proved to be more accurate method to predict the minor changes in forests than IPCs, but both methods are useful in detection of major changes.

  8. Presymptomatic atrophy in autosomal dominant Alzheimer's disease: A serial magnetic resonance imaging study.

    PubMed

    Kinnunen, Kirsi M; Cash, David M; Poole, Teresa; Frost, Chris; Benzinger, Tammie L S; Ahsan, R Laila; Leung, Kelvin K; Cardoso, M Jorge; Modat, Marc; Malone, Ian B; Morris, John C; Bateman, Randall J; Marcus, Daniel S; Goate, Alison; Salloway, Stephen P; Correia, Stephen; Sperling, Reisa A; Chhatwal, Jasmeer P; Mayeux, Richard P; Brickman, Adam M; Martins, Ralph N; Farlow, Martin R; Ghetti, Bernardino; Saykin, Andrew J; Jack, Clifford R; Schofield, Peter R; McDade, Eric; Weiner, Michael W; Ringman, John M; Thompson, Paul M; Masters, Colin L; Rowe, Christopher C; Rossor, Martin N; Ourselin, Sebastien; Fox, Nick C

    2018-01-01

    Identifying at what point atrophy rates first change in Alzheimer's disease is important for informing design of presymptomatic trials. Serial T1-weighted magnetic resonance imaging scans of 94 participants (28 noncarriers, 66 carriers) from the Dominantly Inherited Alzheimer Network were used to measure brain, ventricular, and hippocampal atrophy rates. For each structure, nonlinear mixed-effects models estimated the change-points when atrophy rates deviate from normal and the rates of change before and after this point. Atrophy increased after the change-point, which occurred 1-1.5 years (assuming a single step change in atrophy rate) or 3-8 years (assuming gradual acceleration of atrophy) before expected symptom onset. At expected symptom onset, estimated atrophy rates were at least 3.6 times than those before the change-point. Atrophy rates are pathologically increased up to seven years before "expected onset". During this period, atrophy rates may be useful for inclusion and tracking of disease progression. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Old models explain new observations of butterfly movement at patch edges.

    PubMed

    Crone, Elizabeth E; Schultz, Cheryl B

    2008-07-01

    Understanding movement in heterogeneous environments is central to predicting how landscape changes affect animal populations. Several recent studies point out an intriguing and distinctive looping behavior by butterflies at habitat patch edges and hypothesize that this behavior requires a new framework for analyzing animal movement. We show that this looping behavior could be caused by a longstanding movement model, biased correlated random walk, with bias toward habitat patches. The ability of this longstanding model to explain recent observations reinforces the point that butterflies respond to habitat heterogeneity and do not move randomly through heterogeneous environments. We discuss the implications of different movement models for predicting butterfly responses to landscape change, and our rationale for retaining longstanding movement models, rather than developing new modeling frameworks for looping behavior at patch edges.

  10. Building a LiDAR point cloud simulator: Testing algorithms for high resolution topographic change

    NASA Astrophysics Data System (ADS)

    Carrea, Dario; Abellán, Antonio; Derron, Marc-Henri; Jaboyedoff, Michel

    2014-05-01

    Terrestrial laser technique (TLS) is becoming a common tool in Geosciences, with clear applications ranging from the generation of a high resolution 3D models to the monitoring of unstable slopes and the quantification of morphological changes. Nevertheless, like every measurement techniques, TLS still has some limitations that are not clearly understood and affect the accuracy of the dataset (point cloud). A challenge in LiDAR research is to understand the influence of instrumental parameters on measurement errors during LiDAR acquisition. Indeed, different critical parameters interact with the scans quality at different ranges: the existence of shadow areas, the spatial resolution (point density), and the diameter of the laser beam, the incidence angle and the single point accuracy. The objective of this study is to test the main limitations of different algorithms usually applied on point cloud data treatment, from alignment to monitoring. To this end, we built in MATLAB(c) environment a LiDAR point cloud simulator able to recreate the multiple sources of errors related to instrumental settings that we normally observe in real datasets. In a first step we characterized the error from single laser pulse by modelling the influence of range and incidence angle on single point data accuracy. In a second step, we simulated the scanning part of the system in order to analyze the shifting and angular error effects. Other parameters have been added to the point cloud simulator, such as point spacing, acquisition window, etc., in order to create point clouds of simple and/or complex geometries. We tested the influence of point density and vitiating point of view on the Iterative Closest Point (ICP) alignment and also in some deformation tracking algorithm with same point cloud geometry, in order to determine alignment and deformation detection threshold. We also generated a series of high resolution point clouds in order to model small changes on different environments (erosion, landslide monitoring, etc) and we then tested the use of filtering techniques using 3D moving windows along the space and time, which considerably reduces data scattering due to the benefits of data redundancy. In conclusion, the simulator allowed us to improve our different algorithms and to understand how instrumental error affects final results. And also, improve the methodology of scans acquisition to find the best compromise between point density, positioning and acquisition time with the best accuracy possible to characterize the topographic change.

  11. The Pepsi Challenge: Building a Leader-Driven Organization.

    ERIC Educational Resources Information Center

    Tichy, Noel M.; DeRose, Christopher

    1996-01-01

    PepsiCo's change-leadership model starts with a teachable point of view, showing trainees how to think in different terms, develop a point of view, test it, crystallize the vision, and implement it. The human resources department plays an important role in articulating the point of view. (SK)

  12. Influence of Point Count Length and Repeated Visits on Habitat Model Performance

    Treesearch

    Randy Dettmers; David A. Buehler; John G. Bartlett; Nathan A. Klaus

    1999-01-01

    Point counts are commonly used to monitor bird populations, and a substantial amount of research has investigated how conducting counts for different lengths of time affects the accuracy of these counts and the subsequent ability to monitor changes in population trends. However, little work has been done io assess how changes in count duration affect bird-habitat...

  13. Arctic climate tipping points.

    PubMed

    Lenton, Timothy M

    2012-02-01

    There is widespread concern that anthropogenic global warming will trigger Arctic climate tipping points. The Arctic has a long history of natural, abrupt climate changes, which together with current observations and model projections, can help us to identify which parts of the Arctic climate system might pass future tipping points. Here the climate tipping points are defined, noting that not all of them involve bifurcations leading to irreversible change. Past abrupt climate changes in the Arctic are briefly reviewed. Then, the current behaviour of a range of Arctic systems is summarised. Looking ahead, a range of potential tipping phenomena are described. This leads to a revised and expanded list of potential Arctic climate tipping elements, whose likelihood is assessed, in terms of how much warming will be required to tip them. Finally, the available responses are considered, especially the prospects for avoiding Arctic climate tipping points.

  14. Children with Autism Wearing Action Cameras: Changing Parent/Child Interactions Using Point-of-View Video Modeling

    ERIC Educational Resources Information Center

    Stump, Keenan C.

    2017-01-01

    My dissertation research involves the implementation of a parent-provided point-of-view modeling (POVM) intervention created to improve social interaction between parents and their children with autism spectrum disorder (ASD). A series of studies ultimately lead to my dissertation study. The first manuscript entitled "Autism-Related Insurance…

  15. Mapping the order and pattern of brain structural MRI changes using change-point analysis in premanifest Huntington's disease.

    PubMed

    Wu, Dan; Faria, Andreia V; Younes, Laurent; Mori, Susumu; Brown, Timothy; Johnson, Hans; Paulsen, Jane S; Ross, Christopher A; Miller, Michael I

    2017-10-01

    Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder that progressively affects motor, cognitive, and emotional functions. Structural MRI studies have demonstrated brain atrophy beginning many years prior to clinical onset ("premanifest" period), but the order and pattern of brain structural changes have not been fully characterized. In this study, we investigated brain regional volumes and diffusion tensor imaging (DTI) measurements in premanifest HD, and we aim to determine (1) the extent of MRI changes in a large number of structures across the brain by atlas-based analysis, and (2) the initiation points of structural MRI changes in these brain regions. We adopted a novel multivariate linear regression model to detect the inflection points at which the MRI changes begin (namely, "change-points"), with respect to the CAG-age product (CAP, an indicator of extent of exposure to the effects of CAG repeat expansion). We used approximately 300 T1-weighted and DTI data from premanifest HD and control subjects in the PREDICT-HD study, with atlas-based whole brain segmentation and change-point analysis. The results indicated a distinct topology of structural MRI changes: the change-points of the volumetric measurements suggested a central-to-peripheral pattern of atrophy from the striatum to the deep white matter; and the change points of DTI measurements indicated the earliest changes in mean diffusivity in the deep white matter and posterior white matter. While interpretation needs to be cautious given the cross-sectional nature of the data, these findings suggest a spatial and temporal pattern of spread of structural changes within the HD brain. Hum Brain Mapp 38:5035-5050, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  16. Spatial land-use inventory, modeling, and projection/Denver metropolitan area, with inputs from existing maps, airphotos, and LANDSAT imagery

    NASA Technical Reports Server (NTRS)

    Tom, C.; Miller, L. D.; Christenson, J. W.

    1978-01-01

    A landscape model was constructed with 34 land-use, physiographic, socioeconomic, and transportation maps. A simple Markov land-use trend model was constructed from observed rates of change and nonchange from photointerpreted 1963 and 1970 airphotos. Seven multivariate land-use projection models predicting 1970 spatial land-use changes achieved accuracies from 42 to 57 percent. A final modeling strategy was designed, which combines both Markov trend and multivariate spatial projection processes. Landsat-1 image preprocessing included geometric rectification/resampling, spectral-band, and band/insolation ratioing operations. A new, systematic grid-sampled point training-set approach proved to be useful when tested on the four orginal MSS bands, ten image bands and ratios, and all 48 image and map variables (less land use). Ten variable accuracy was raised over 15 percentage points from 38.4 to 53.9 percent, with the use of the 31 ancillary variables. A land-use classification map was produced with an optimal ten-channel subset of four image bands and six ancillary map variables. Point-by-point verification of 331,776 points against a 1972/1973 U.S. Geological Survey (UGSG) land-use map prepared with airphotos and the same classification scheme showed average first-, second-, and third-order accuracies of 76.3, 58.4, and 33.0 percent, respectively.

  17. Modelling of thermal field and point defect dynamics during silicon single crystal growth using CZ technique

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2018-05-01

    Mathematical modelling is employed to numerically analyse the dynamics of the Czochralski (CZ) silicon single crystal growth. The model is axisymmetric, its thermal part describes heat transfer by conduction and thermal radiation, and allows to predict the time-dependent shape of the crystal-melt interface. Besides the thermal field, the point defect dynamics is modelled using the finite element method. The considered process consists of cone growth and cylindrical phases, including a short period of a reduced crystal pull rate, and a power jump to avoid large diameter changes. The influence of the thermal stresses on the point defects is also investigated.

  18. Analysis of ICESat Data Using Kalman Filter and Kriging to Study Height Changes in East Antarctica

    NASA Technical Reports Server (NTRS)

    Herring, Thomas A.

    2005-01-01

    We analyze ICESat derived heights collected between Feb. 03-Nov. 04 using a kriging/Kalman filtering approach to investigate height changes in East Antarctica. The model's parameters are height change to an a priori static digital height model, seasonal signal expressed as an amplitude Beta and phase Theta, and height-change rate dh/dt for each (100 km)(exp 2) block. From the Kalman filter results, dh/dt has a mean of -0.06 m/yr in the flat interior of East Antarctica. Spatially correlated pointing errors in the current data releases give uncertainties in the range 0.06 m/yr, making height change detection unreliable at this time. Our test shows that when using all available data with pointing knowledge equivalent to that of Laser 2a, height change detection with an accuracy level 0.02 m/yr can be achieved over flat terrains in East Antarctica.

  19. Factors influencing superimposition error of 3D cephalometric landmarks by plane orientation method using 4 reference points: 4 point superimposition error regression model.

    PubMed

    Hwang, Jae Joon; Kim, Kee-Deog; Park, Hyok; Park, Chang Seo; Jeong, Ho-Gul

    2014-01-01

    Superimposition has been used as a method to evaluate the changes of orthodontic or orthopedic treatment in the dental field. With the introduction of cone beam CT (CBCT), evaluating 3 dimensional changes after treatment became possible by superimposition. 4 point plane orientation is one of the simplest ways to achieve superimposition of 3 dimensional images. To find factors influencing superimposition error of cephalometric landmarks by 4 point plane orientation method and to evaluate the reproducibility of cephalometric landmarks for analyzing superimposition error, 20 patients were analyzed who had normal skeletal and occlusal relationship and took CBCT for diagnosis of temporomandibular disorder. The nasion, sella turcica, basion and midpoint between the left and the right most posterior point of the lesser wing of sphenoidal bone were used to define a three-dimensional (3D) anatomical reference co-ordinate system. Another 15 reference cephalometric points were also determined three times in the same image. Reorientation error of each landmark could be explained substantially (23%) by linear regression model, which consists of 3 factors describing position of each landmark towards reference axes and locating error. 4 point plane orientation system may produce an amount of reorientation error that may vary according to the perpendicular distance between the landmark and the x-axis; the reorientation error also increases as the locating error and shift of reference axes viewed from each landmark increases. Therefore, in order to reduce the reorientation error, accuracy of all landmarks including the reference points is important. Construction of the regression model using reference points of greater precision is required for the clinical application of this model.

  20. The moving confluence route technology with WAD scheme for 3D hydrodynamic simulation in high altitude inland waters

    NASA Astrophysics Data System (ADS)

    Wang, Yonggui; Yang, Yinqun; Chen, Xiaolong; Engel, Bernard A.; Zhang, Wanshun

    2018-04-01

    For three-dimensional hydrodynamic simulations in inland waters, the rapid changes with moving boundary and various input conditions should be considered. Some models are developed with moving boundary but the dynamic change of discharges is unresolved or ignored. For better hydrodynamic simulation in inland waters, the widely used 3D model, ECOMSED, has been improved by moving confluence route (MCR) method with a wetting and drying scheme (WAD). The fixed locations of water and pollutants inputs from tributaries, point sources and non-point sources have been changed to dynamic confluence routes as the boundary moving. The improved model was applied in an inland water area, Qingshuihai reservoir, Kunming City, China, for a one-year hydrodynamic simulation. The results were verified by water level, flow velocity and water mass conservation. Detailed water level variation analysis and velocity field comparison at different times showed that the improved model has better performance for simulating the boundary moving phenomenon and moving discharges along with water level changing than the original one. The improved three-dimensional model is available for hydrodynamics simulation in water bodies where water boundary shifts along with change of water level and have various inlets.

  1. A point process approach to identifying and tracking transitions in neural spiking dynamics in the subthalamic nucleus of Parkinson's patients

    NASA Astrophysics Data System (ADS)

    Deng, Xinyi; Eskandar, Emad N.; Eden, Uri T.

    2013-12-01

    Understanding the role of rhythmic dynamics in normal and diseased brain function is an important area of research in neural electrophysiology. Identifying and tracking changes in rhythms associated with spike trains present an additional challenge, because standard approaches for continuous-valued neural recordings—such as local field potential, magnetoencephalography, and electroencephalography data—require assumptions that do not typically hold for point process data. Additionally, subtle changes in the history dependent structure of a spike train have been shown to lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically significant changes to those dynamics, and track the temporal evolution of such changes. We first construct a two-state point process model incorporating spiking history and develop a likelihood ratio test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers to track these changes through time. We illustrate our approach with a simulation study as well as with experimental data recorded in the subthalamic nucleus of Parkinson's patients performing an arm movement task. Our analyses show that during the arm movement task, neurons underwent a complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a spike.

  2. Piecewise multivariate modelling of sequential metabolic profiling data.

    PubMed

    Rantalainen, Mattias; Cloarec, Olivier; Ebbels, Timothy M D; Lundstedt, Torbjörn; Nicholson, Jeremy K; Holmes, Elaine; Trygg, Johan

    2008-02-19

    Modelling the time-related behaviour of biological systems is essential for understanding their dynamic responses to perturbations. In metabolic profiling studies, the sampling rate and number of sampling points are often restricted due to experimental and biological constraints. A supervised multivariate modelling approach with the objective to model the time-related variation in the data for short and sparsely sampled time-series is described. A set of piecewise Orthogonal Projections to Latent Structures (OPLS) models are estimated, describing changes between successive time points. The individual OPLS models are linear, but the piecewise combination of several models accommodates modelling and prediction of changes which are non-linear with respect to the time course. We demonstrate the method on both simulated and metabolic profiling data, illustrating how time related changes are successfully modelled and predicted. The proposed method is effective for modelling and prediction of short and multivariate time series data. A key advantage of the method is model transparency, allowing easy interpretation of time-related variation in the data. The method provides a competitive complement to commonly applied multivariate methods such as OPLS and Principal Component Analysis (PCA) for modelling and analysis of short time-series data.

  3. Building Change Detection from Bi-Temporal Dense-Matching Point Clouds and Aerial Images.

    PubMed

    Pang, Shiyan; Hu, Xiangyun; Cai, Zhongliang; Gong, Jinqi; Zhang, Mi

    2018-03-24

    In this work, a novel building change detection method from bi-temporal dense-matching point clouds and aerial images is proposed to address two major problems, namely, the robust acquisition of the changed objects above ground and the automatic classification of changed objects into buildings or non-buildings. For the acquisition of changed objects above ground, the change detection problem is converted into a binary classification, in which the changed area above ground is regarded as the foreground and the other area as the background. For the gridded points of each period, the graph cuts algorithm is adopted to classify the points into foreground and background, followed by the region-growing algorithm to form candidate changed building objects. A novel structural feature that was extracted from aerial images is constructed to classify the candidate changed building objects into buildings and non-buildings. The changed building objects are further classified as "newly built", "taller", "demolished", and "lower" by combining the classification and the digital surface models of two periods. Finally, three typical areas from a large dataset are used to validate the proposed method. Numerous experiments demonstrate the effectiveness of the proposed algorithm.

  4. Control of finite critical behaviour in a small-scale social system

    NASA Astrophysics Data System (ADS)

    Daniels, Bryan C.; Krakauer, David C.; Flack, Jessica C.

    2017-02-01

    Many adaptive systems sit near a tipping or critical point. For systems near a critical point small changes to component behaviour can induce large-scale changes in aggregate structure and function. Criticality can be adaptive when the environment is changing, but entails reduced robustness through sensitivity. This tradeoff can be resolved when criticality can be tuned. We address the control of finite measures of criticality using data on fight sizes from an animal society model system (Macaca nemestrina, n=48). We find that a heterogeneous, socially organized system, like homogeneous, spatial systems (flocks and schools), sits near a critical point; the contributions individuals make to collective phenomena can be quantified; there is heterogeneity in these contributions; and distance from the critical point (DFC) can be controlled through biologically plausible mechanisms exploiting heterogeneity. We propose two alternative hypotheses for why a system decreases the distance from the critical point.

  5. Assessing the accuracy and repeatability of automated photogrammetrically generated digital surface models from unmanned aerial system imagery

    NASA Astrophysics Data System (ADS)

    Chavis, Christopher

    Using commercial digital cameras in conjunction with Unmanned Aerial Systems (UAS) to generate 3-D Digital Surface Models (DSMs) and orthomosaics is emerging as a cost-effective alternative to Light Detection and Ranging (LiDAR). Powerful software applications such as Pix4D and APS can automate the generation of DSM and orthomosaic products from a handful of inputs. However, the accuracy of these models is relatively untested. The objectives of this study were to generate multiple DSM and orthomosaic pairs of the same area using Pix4D and APS from flights of imagery collected with a lightweight UAS. The accuracy of each individual DSM was assessed in addition to the consistency of the method to model one location over a period of time. Finally, this study determined if the DSMs automatically generated using lightweight UAS and commercial digital cameras could be used for detecting changes in elevation and at what scale. Accuracy was determined by comparing DSMs to a series of reference points collected with survey grade GPS. Other GPS points were also used as control points to georeference the products within Pix4D and APS. The effectiveness of the products for change detection was assessed through image differencing and observance of artificially induced, known elevation changes. The vertical accuracy with the optimal data and model is ≈ 25 cm and the highest consistency over repeat flights is a standard deviation of ≈ 5 cm. Elevation change detection based on such UAS imagery and DSM models should be viable for detecting infrastructure change in urban or suburban environments with little dense canopy vegetation.

  6. Stochastic sensitivity analysis of nitrogen pollution to climate change in a river basin with complex pollution sources.

    PubMed

    Yang, Xiaoying; Tan, Lit; He, Ruimin; Fu, Guangtao; Ye, Jinyin; Liu, Qun; Wang, Guoqing

    2017-12-01

    It is increasingly recognized that climate change could impose both direct and indirect impacts on the quality of the water environment. Previous studies have mostly concentrated on evaluating the impacts of climate change on non-point source pollution in agricultural watersheds. Few studies have assessed the impacts of climate change on the water quality of river basins with complex point and non-point pollution sources. In view of the gap, this paper aims to establish a framework for stochastic assessment of the sensitivity of water quality to future climate change in a river basin with complex pollution sources. A sub-daily soil and water assessment tool (SWAT) model was developed to simulate the discharge, transport, and transformation of nitrogen from multiple point and non-point pollution sources in the upper Huai River basin of China. A weather generator was used to produce 50 years of synthetic daily weather data series for all 25 combinations of precipitation (changes by - 10, 0, 10, 20, and 30%) and temperature change (increases by 0, 1, 2, 3, and 4 °C) scenarios. The generated daily rainfall series was disaggregated into the hourly scale and then used to drive the sub-daily SWAT model to simulate the nitrogen cycle under different climate change scenarios. Our results in the study region have indicated that (1) both total nitrogen (TN) loads and concentrations are insensitive to temperature change; (2) TN loads are highly sensitive to precipitation change, while TN concentrations are moderately sensitive; (3) the impacts of climate change on TN concentrations are more spatiotemporally variable than its impacts on TN loads; and (4) wide distributions of TN loads and TN concentrations under individual climate change scenario illustrate the important role of climatic variability in affecting water quality conditions. In summary, the large variability in SWAT simulation results within and between each climate change scenario highlights the uncertainty of the impacts of climate change and the need to incorporate extreme conditions in managing water environment and developing climate change adaptation and mitigation strategies.

  7. Development and application of a coupled bio-geochmical and hydrological model for point and non-point source river water pollution

    NASA Astrophysics Data System (ADS)

    Pohlert, T.

    2007-12-01

    The aim of this paper is to present recent developments of an integrated water- and N-balance model for the assessment of land use changes on water and N-fluxes for meso-scale river catchments. The semi-distributed water-balance model SWAT was coupled with algorithms of the bio-geochemical model DNDC as well as the model CropSyst. The new model that is further denoted as SWAT-N was tested with leaching data from a long- term lysimeter experiment as well as results from a 5-years sampling campaign that was conducted at the outlet of the meso-scale catchment of the River Dill (Germany). The model efficiency for N-load as well as the spatial representation of N-load along the river channel that was tested with results taken from longitudinal profiles show that the accuracy of the model has improved due to the integration of the aforementioned process-oriented models. After model development and model testing, SWAT-N was then used for the assessment of the EU agricultural policy (CAP reform) on land use change and consequent changes on N-fluxes within the Dill Catchment. giessen.de/geb/volltexte/2007/4531/

  8. Bayesian identification of multiple seismic change points and varying seismic rates caused by induced seismicity

    NASA Astrophysics Data System (ADS)

    Montoya-Noguera, Silvana; Wang, Yu

    2017-04-01

    The Central and Eastern United States (CEUS) has experienced an abnormal increase in seismic activity, which is believed to be related to anthropogenic activities. The U.S. Geological Survey has acknowledged this situation and developed the CEUS 2016 1 year seismic hazard model using the catalog of 2015 by assuming stationary seismicity in that period. However, due to the nonstationary nature of induced seismicity, it is essential to identify change points for accurate probabilistic seismic hazard analysis (PSHA). We present a Bayesian procedure to identify the most probable change points in seismicity and define their respective seismic rates. It uses prior distributions in agreement with conventional PSHA and updates them with recent data to identify seismicity changes. It can determine the change points in a regional scale and may incorporate different types of information in an objective manner. It is first successfully tested with simulated data, and then it is used to evaluate Oklahoma's regional seismicity.

  9. Global and local indicators of spatial association between points and polygons: A study of land use change

    NASA Astrophysics Data System (ADS)

    Guo, Luo; Du, Shihong; Haining, Robert; Zhang, Lianjun

    2013-04-01

    The existing indicators related to spatial association, especially the K function, can measure only the same dimension of vector data, such as points, lines and polygons, respectively. We develop four new indicators that can analyze and model spatial association for the mixture of different dimensions of vector data, such as lines and points, points and polygons, lines and polygons. The four indicators can measure the spatial association between points and polygons from both global and local perspectives. We also apply the presented methods to investigate the association of temples and villages on land-use change at multiple distance scales in the Guoluo Tibetan Autonomous Prefecture in Qinghai Province, PR China. Global indicators show that temples are positively associated with land-use change at large spatial distances (e.g., >6000 m), while the association between villages and land-use change is insignificant at all distance scales. Thus temples, as religious and cultural centers, have a stronger association with land-use change than the places where people live. However, local indicators show that these associations vary significantly in different sub-areas of the study region. Furthermore, the association of temples with land-use change is also dependent on the specific type of land-use change. The case study demonstrates that the presented indicators are powerful tools for analyzing the spatial association between points and polygons.

  10. Model-based minimization algorithm of a supercritical helium loop consumption subject to operational constraints

    NASA Astrophysics Data System (ADS)

    Bonne, F.; Bonnay, P.; Girard, A.; Hoa, C.; Lacroix, B.; Le Coz, Q.; Nicollet, S.; Poncet, J.-M.; Zani, L.

    2017-12-01

    Supercritical helium loops at 4.2 K are the baseline cooling strategy of tokamaks superconducting magnets (JT-60SA, ITER, DEMO, etc.). This loops work with cryogenic circulators that force a supercritical helium flow through the superconducting magnets in order that the temperature stay below the working range all along their length. This paper shows that a supercritical helium loop associated with a saturated liquid helium bath can satisfy temperature constraints in different ways (playing on bath temperature and on the supercritical flow), but that only one is optimal from an energy point of view (every Watt consumed at 4.2 K consumes at least 220 W of electrical power). To find the optimal operational conditions, an algorithm capable of minimizing an objective function (energy consumption at 5 bar, 5 K) subject to constraints has been written. This algorithm works with a supercritical loop model realized with the Simcryogenics [2] library. This article describes the model used and the results of constrained optimization. It will be possible to see that the changes in operating point on the temperature of the magnet (e.g. in case of a change in the plasma configuration) involves large changes on the cryodistribution optimal operating point. Recommendations will be made to ensure that the energetic consumption is kept as low as possible despite the changing operating point. This work is partially supported by EUROfusion Consortium through the Euratom Research and Training Program 20142018 under Grant 633053.

  11. Gravity and gravity gradient changes caused by a point dislocation

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Liang; Li, Hui; Li, Rui-Hao

    1995-02-01

    In this paper we studied gravitational potential, gravity and its gradient changes, which are caused by a point dislocation, and gave the concise mathematical deduction with definite physical implication in dealing with the singular integral at a seismic source. We also analysed the features of the fields of gravity and gravity gradient, gravity-vertical-displacement gradient. The conclusions are: (1) Gravity and gravity gradient changes are very small with the change of vertical position; (2) Gravity change is much greater than the gravity gradient change which is not so distinct; (3) The gravity change due to redistribution of mass accounts for 10 50 percent of the total gravity change caused by dislocation. The signs (positive or negative) of total gravity change and vertical displacement are opposite each other at the same point for strike slip and dip slip; (4) Gravity-vertical-displacement-gradient is not constant; it manifests a variety of patterns for different dislocation models; (5) Gravity-vertical-displacement-gradient is approximately equal to apparent gravity-vertical-displacement-gradient.

  12. Modelling the morphodynamics and co-evolution of coast and estuarine environments

    NASA Astrophysics Data System (ADS)

    Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew

    2017-04-01

    The morphodynamics of coast and estuarine environments are known to be sensitive to environmental change and sea-level rise. However, whilst these systems have received considerable individual research attention, how they interact and co-evolve is relatively understudied. These systems are intrinsically linked and it is therefore advantageous to study them holistically in order to build a more comprehensive understanding of their behaviour and to inform sustainable management over the long term. Complex environments such as these are often studied using numerical modelling techniques. Inherent from the limited research in this area, existing models are currently not capable of simulating dynamic coast-estuarine interactions. A new model is being developed through coupling the one-line Coastline Evolution Model (CEM) with CAESAR-Lisflood (C-L), a hydrodynamic Landscape Evolution Model. It is intended that the eventual model be used to advance the understanding of these systems and how they may evolve over the mid to long term in response to climate change. In the UK, the Holderness Coast, Humber Estuary and Spurn Point system offers a diverse and complex case study for this research. Holderness is one of the fastest eroding coastlines in Europe and research suggests that the large volumes of material removed from its cliffs are responsible for the formation of the Spurn Point feature and for the Holocene infilling of the Humber Estuary. Marine, fluvial and coastal processes are continually reshaping this system and over the next century, it is predicted that climate change could lead to increased erosion along the coast and supply of material to the Humber Estuary and Spurn Point. How this manifests will be hugely influential to the future morphology of these systems and the existence of Spurn Point. Progress to date includes a new version of the CEM that has been prepared for integration into C-L and includes an improved graphical user interface and more complex geomorphological processes. Preliminary results from simulations of the Holderness Coast and Spurn Point support findings of other authors, who suggest that changes to the wave climate influences sediment transport patterns in the nearshore zone. The angle of wave approach to the Holderness shows particular significance compared to the height of waves, with an optimum volume of material transported at 42 degrees. Further applications and results of this new model will be presented and discussed.

  13. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography

    PubMed Central

    Zamunér, Antonio R.; Catai, Aparecida M.; Martins, Luiz E. B.; Sakabe, Daniel I.; Silva, Ester Da

    2013-01-01

    Background The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. Objectives To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output () using two mathematical models and to compare the results to those of the visual method. Method Ten sedentary middle-aged men (53.9±3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between and oxygen uptake (); 2) the linear-linear model, based on fitting the curves to the set of data (Lin-Lin ); 3) a bi-segmental linear regression of Hinkley' s algorithm applied to HR (HMM-HR), (HMM- ), and sEMG data (HMM-RMS). Results There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-Lin , HMM-HR, HMM-CO2, and HMM-RMS. Conclusion The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of , HR responses, and sEMG. PMID:24346296

  14. Identification and agreement of first turn point by mathematical analysis applied to heart rate, carbon dioxide output and electromyography.

    PubMed

    Zamunér, Antonio R; Catai, Aparecida M; Martins, Luiz E B; Sakabe, Daniel I; Da Silva, Ester

    2013-01-01

    The second heart rate (HR) turn point has been extensively studied, however there are few studies determining the first HR turn point. Also, the use of mathematical and statistical models for determining changes in dynamic characteristics of physiological variables during an incremental cardiopulmonary test has been suggested. To determine the first turn point by analysis of HR, surface electromyography (sEMG), and carbon dioxide output (VCO2) using two mathematical models and to compare the results to those of the visual method. Ten sedentary middle-aged men (53.9 ± 3.2 years old) were submitted to cardiopulmonary exercise testing on an electromagnetic cycle ergometer until exhaustion. Ventilatory variables, HR, and sEMG of the vastus lateralis were obtained in real time. Three methods were used to determine the first turn point: 1) visual analysis based on loss of parallelism between VCO2 and oxygen uptake (VO2); 2) the linear-linear model, based on fitting the curves to the set of VCO2 data (Lin-LinVCO2); 3) a bi-segmental linear regression of Hinkley's algorithm applied to HR (HMM-HR), VCO2 (HMM-VCO2), and sEMG data (HMM-RMS). There were no differences between workload, HR, and ventilatory variable values at the first ventilatory turn point as determined by the five studied parameters (p>0.05). The Bland-Altman plot showed an even distribution of the visual analysis method with Lin-LinVCO2, HMM-HR, HMM-VCO2, and HMM-RMS. The proposed mathematical models were effective in determining the first turn point since they detected the linear pattern change and the deflection point of VCO2, HR responses, and sEMG.

  15. Recurrent landsliding of a high bank at Dunaszekcső, Hungary: Geodetic deformation monitoring and finite element modeling

    NASA Astrophysics Data System (ADS)

    Bányai, László; Mentes, Gyula; Újvári, Gábor; Kovács, Miklós; Czap, Zoltán; Gribovszki, Katalin; Papp, Gábor

    2014-04-01

    Five years of geodetic monitoring data at Dunaszekcső, Hungary, are processed to evaluate recurrent landsliding, which is a characteristic geomorphological process affecting the high banks of the Middle Danube valley in Hungary. The integrated geodetic observations provide accurate three dimensional coordinate time series, and these data are used to calculate the kinematic features of point movements and the rigid body behavior of point blocks. Additional datasets include borehole tiltmeter data and hydrological recordings of the Danube and soil water wells. These data, together with two dimensional final element analyses, are utilized to gain a better understanding of the physical, soil mechanical background and stability features of the high bank. Here we indicate that the main trigger of movements is changing groundwater levels, whose effect is an order of magnitude higher than that of river water level changes. Varying displacement rates of the sliding blocks are interpreted as having been caused by basal pore water pressure changes originating from shear zone volume changes, floods of the River Danube through later seepage and rain infiltration. Both data and modeling point to the complex nature of bank sliding at Dunaszekcső. Some features imply that the movements are rotational, some reveal slumping. By contrast, all available observational and modeling data point to the retrogressive development of the high bank at Dunaszekcső. Regarding mitigation, the detailed analysis of three basic parameters (the direction of displacement vectors, tilting, and the acceleration component of the kinematic function) is suggested because these parameters indicate the zone where the largest lateral displacements can be expected and point to the advent of the rapid landsliding phase that affects high banks along the River Danube.

  16. Measurement of change in health status with Rasch models.

    PubMed

    Anselmi, Pasquale; Vidotto, Giulio; Bettinardi, Ornella; Bertolotti, Giorgio

    2015-02-07

    The traditional approach to the measurement of change presents important drawbacks (no information at individual level, ordinal scores, variance of the measurement instrument across time points), which Rasch models overcome. The article aims to illustrate the features of the measurement of change with Rasch models. To illustrate the measurement of change using Rasch models, the quantitative data of a longitudinal study of heart-surgery patients (N = 98) were used. The scale "Perception of Positive Change" was used as an example of measurement instrument. All patients underwent cardiac rehabilitation, individual psychological intervention, and educational intervention. Nineteen patients also attended progressive muscle relaxation group trainings. The scale was administered before and after the interventions. Three Rasch approaches were used. Two separate analyses were run on the data from the two time points to test the invariance of the instrument. An analysis was run on the stacked data from both time points to measure change in a common frame of reference. Results of the latter analysis were compared with those of an analysis that removed the influence of local dependency on patient measures. Statistics t, χ(2) and F were used for comparing the patient and item measures estimated in the Rasch analyses (a-priori α = .05). Infit, Outfit, R and item Strata were used for investigating Rasch model fit, reliability, and validity of the instrument. Data of all 98 patients were included in the analyses. The instrument was reliable, valid, and substantively unidimensional (Infit, Outfit < 2 for all items, R = .84, item Strata range = 3.93-6.07). Changes in the functioning of the instrument occurred across the two time, which prevented the use of the two separate analyses to unambiguously measure change. Local dependency had a negligible effect on patient measures (p ≥ .8674). Thirteen patients improved, whereas 3 worsened. The patients who attended the relaxation group trainings did not report greater improvement than those who did not (p = .1007). Rasch models represent a valid framework for the measurement of change and a useful complement to traditional approaches.

  17. Mapping the critical gestational age at birth that alters brain development in preterm-born infants using multi-modal MRI.

    PubMed

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-04-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model-the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the "critical" GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Visual search and coordination changes in response to video and point-light demonstrations without KR.

    PubMed

    Horn, R R; Williams, A M; Scott, M A; Hodges, N J

    2005-07-01

    The authors examined the observational learning of 24 participants whom they constrained to use the model by removing intrinsic visual knowledge of results (KR). Matched participants assigned to video (VID), point-light (PL), and no-model (CON) groups performed a soccer-chipping task in which vision was occluded at ball contact. Pre- and posttests were interspersed with alternating periods of demonstration and acquisition. The authors assessed delayed retention 2-3 days later. In support of the visual perception perspective, the participants who observed the models showed immediate and enduring changes to more closely imitate the model's relative motion. While observing the demonstration, the PL group participants were more selective in their visual search than were the VID group participants but did not perform more accurately or learn more.

  19. Fetal heart rate deceleration detection using a discrete cosine transform implementation of singular spectrum analysis.

    PubMed

    Warrick, P A; Precup, D; Hamilton, E F; Kearney, R E

    2007-01-01

    To develop a singular-spectrum analysis (SSA) based change-point detection algorithm applicable to fetal heart rate (FHR) monitoring to improve the detection of deceleration events. We present a method for decomposing a signal into near-orthogonal components via the discrete cosine transform (DCT) and apply this in a novel online manner to change-point detection based on SSA. The SSA technique forms models of the underlying signal that can be compared over time; models that are sufficiently different indicate signal change points. To adapt the algorithm to deceleration detection where many successive similar change events can occur, we modify the standard SSA algorithm to hold the reference model constant under such conditions, an approach that we term "base-hold SSA". The algorithm is applied to a database of 15 FHR tracings that have been preprocessed to locate candidate decelerations and is compared to the markings of an expert obstetrician. Of the 528 true and 1285 false decelerations presented to the algorithm, the base-hold approach improved on standard SSA, reducing the number of missed decelerations from 64 to 49 (21.9%) while maintaining the same reduction in false-positives (278). The standard SSA assumption that changes are infrequent does not apply to FHR analysis where decelerations can occur successively and in close proximity; our base-hold SSA modification improves detection of these types of event series.

  20. An Extended Objective Evaluation of the 29-km Eta Model for Weather Support to the United States Space Program

    NASA Technical Reports Server (NTRS)

    Nutter, Paul; Manobianco, John

    1998-01-01

    This report describes the Applied Meteorology Unit's objective verification of the National Centers for Environmental Prediction 29-km eta model during separate warm and cool season periods from May 1996 through January 1998. The verification of surface and upper-air point forecasts was performed at three selected stations important for 45th Weather Squadron, Spaceflight Meteorology Group, and National Weather Service, Melbourne operational weather concerns. The statistical evaluation identified model biases that may result from inadequate parameterization of physical processes. Since model biases are relatively small compared to the random error component, most of the total model error results from day-to-day variability in the forecasts and/or observations. To some extent, these nonsystematic errors reflect the variability in point observations that sample spatial and temporal scales of atmospheric phenomena that cannot be resolved by the model. On average, Meso-Eta point forecasts provide useful guidance for predicting the evolution of the larger scale environment. A more substantial challenge facing model users in real time is the discrimination of nonsystematic errors that tend to inflate the total forecast error. It is important that model users maintain awareness of ongoing model changes. Such changes are likely to modify the basic error characteristics, particularly near the surface.

  1. Construction and Updating of Event Models in Auditory Event Processing

    ERIC Educational Resources Information Center

    Huff, Markus; Maurer, Annika E.; Brich, Irina; Pagenkopf, Anne; Wickelmaier, Florian; Papenmeier, Frank

    2018-01-01

    Humans segment the continuous stream of sensory information into distinct events at points of change. Between 2 events, humans perceive an event boundary. Present theories propose changes in the sensory information to trigger updating processes of the present event model. Increased encoding effort finally leads to a memory benefit at event…

  2. The Evaluation of GPS techniques for UAV-based Photogrammetry in Urban Area

    NASA Astrophysics Data System (ADS)

    Yeh, M. L.; Chou, Y. T.; Yang, L. S.

    2016-06-01

    The efficiency and high mobility of Unmanned Aerial Vehicle (UAV) made them essential to aerial photography assisted survey and mapping. Especially for urban land use and land cover, that they often changes, and need UAVs to obtain new terrain data and the new changes of land use. This study aims to collect image data and three dimensional ground control points in Taichung city area with Unmanned Aerial Vehicle (UAV), general camera and Real-Time Kinematic with positioning accuracy down to centimetre. The study area is an ecological park that has a low topography which support the city as a detention basin. A digital surface model was also built with Agisoft PhotoScan, and there will also be a high resolution orthophotos. There will be two conditions for this study, with or without ground control points and both were discussed and compared for the accuracy level of each of the digital surface models. According to check point deviation estimate, the model without ground control points has an average two-dimension error up to 40 centimeter, altitude error within one meter. The GCP-free RTK-airborne approach produces centimeter-level accuracy with excellent to low risk to the UAS operators. As in the case of the model with ground control points, the accuracy of x, y, z coordinates has gone up 54.62%, 49.07%, and 87.74%, and the accuracy of altitude has improved the most.

  3. Predicting wildfire occurrence distribution with spatial point process models and its uncertainty assessment: a case study in the Lake Tahoe Basin, USA

    Treesearch

    Jian Yang; Peter J. Weisberg; Thomas E. Dilts; E. Louise Loudermilk; Robert M. Scheller; Alison Stanton; Carl Skinner

    2015-01-01

    Strategic fire and fuel management planning benefits from detailed understanding of how wildfire occurrences are distributed spatially under current climate, and from predictive models of future wildfire occurrence given climate change scenarios. In this study, we fitted historical wildfire occurrence data from 1986 to 2009 to a suite of spatial point process (SPP)...

  4. Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.

    2017-04-01

    Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.

  5. Analyzing industrial energy use through ordinary least squares regression models

    NASA Astrophysics Data System (ADS)

    Golden, Allyson Katherine

    Extensive research has been performed using regression analysis and calibrated simulations to create baseline energy consumption models for residential buildings and commercial institutions. However, few attempts have been made to discuss the applicability of these methodologies to establish baseline energy consumption models for industrial manufacturing facilities. In the few studies of industrial facilities, the presented linear change-point and degree-day regression analyses illustrate ideal cases. It follows that there is a need in the established literature to discuss the methodologies and to determine their applicability for establishing baseline energy consumption models of industrial manufacturing facilities. The thesis determines the effectiveness of simple inverse linear statistical regression models when establishing baseline energy consumption models for industrial manufacturing facilities. Ordinary least squares change-point and degree-day regression methods are used to create baseline energy consumption models for nine different case studies of industrial manufacturing facilities located in the southeastern United States. The influence of ambient dry-bulb temperature and production on total facility energy consumption is observed. The energy consumption behavior of industrial manufacturing facilities is only sometimes sufficiently explained by temperature, production, or a combination of the two variables. This thesis also provides methods for generating baseline energy models that are straightforward and accessible to anyone in the industrial manufacturing community. The methods outlined in this thesis may be easily replicated by anyone that possesses basic spreadsheet software and general knowledge of the relationship between energy consumption and weather, production, or other influential variables. With the help of simple inverse linear regression models, industrial manufacturing facilities may better understand their energy consumption and production behavior, and identify opportunities for energy and cost savings. This thesis study also utilizes change-point and degree-day baseline energy models to disaggregate facility annual energy consumption into separate industrial end-user categories. The baseline energy model provides a suitable and economical alternative to sub-metering individual manufacturing equipment. One case study describes the conjoined use of baseline energy models and facility information gathered during a one-day onsite visit to perform an end-point energy analysis of an injection molding facility conducted by the Alabama Industrial Assessment Center. Applying baseline regression model results to the end-point energy analysis allowed the AIAC to better approximate the annual energy consumption of the facility's HVAC system.

  6. Management of reforming of housing-and-communal services

    NASA Astrophysics Data System (ADS)

    Skripnik, Oksana

    2017-10-01

    The international experience of reforming of housing and communal services is considered. The main scientific and methodical approaches of system transformation of the housing sphere are analyzed in the article. The main models of reforming are pointed out, interaction of participants of structural change process from the point of view of their commercial and social importance is characterized, advantages and shortcomings are revealed, model elements of the reform transformations from the point of view of the formation of investment appeal, competitiveness, energy efficiency and social importance of the carried-out actions are allocated.

  7. Comparison of linear, skewed-linear, and proportional hazard models for the analysis of lambing interval in Ripollesa ewes.

    PubMed

    Casellas, J; Bach, R

    2012-06-01

    Lambing interval is a relevant reproductive indicator for sheep populations under continuous mating systems, although there is a shortage of selection programs accounting for this trait in the sheep industry. Both the historical assumption of small genetic background and its unorthodox distribution pattern have limited its implementation as a breeding objective. In this manuscript, statistical performances of 3 alternative parametrizations [i.e., symmetric Gaussian mixed linear (GML) model, skew-Gaussian mixed linear (SGML) model, and piecewise Weibull proportional hazard (PWPH) model] have been compared to elucidate the preferred methodology to handle lambing interval data. More specifically, flock-by-flock analyses were performed on 31,986 lambing interval records (257.3 ± 0.2 d) from 6 purebred Ripollesa flocks. Model performances were compared in terms of deviance information criterion (DIC) and Bayes factor (BF). For all flocks, PWPH models were clearly preferred; they generated a reduction of 1,900 or more DIC units and provided BF estimates larger than 100 (i.e., PWPH models against linear models). These differences were reduced when comparing PWPH models with different number of change points for the baseline hazard function. In 4 flocks, only 2 change points were required to minimize the DIC, whereas 4 and 6 change points were needed for the 2 remaining flocks. These differences demonstrated a remarkable degree of heterogeneity across sheep flocks that must be properly accounted for in genetic evaluation models to avoid statistical biases and suboptimal genetic trends. Within this context, all 6 Ripollesa flocks revealed substantial genetic background for lambing interval with heritabilities ranging between 0.13 and 0.19. This study provides the first evidence of the suitability of PWPH models for lambing interval analysis, clearly discarding previous parametrizations focused on mixed linear models.

  8. Structure Line Detection from LIDAR Point Clouds Using Topological Elevation Analysis

    NASA Astrophysics Data System (ADS)

    Lo, C. Y.; Chen, L. C.

    2012-07-01

    Airborne LIDAR point clouds, which have considerable points on object surfaces, are essential to building modeling. In the last two decades, studies have developed different approaches to identify structure lines using two main approaches, data-driven and modeldriven. These studies have shown that automatic modeling processes depend on certain considerations, such as used thresholds, initial value, designed formulas, and predefined cues. Following the development of laser scanning systems, scanning rates have increased and can provide point clouds with higher point density. Therefore, this study proposes using topological elevation analysis (TEA) to detect structure lines instead of threshold-dependent concepts and predefined constraints. This analysis contains two parts: data pre-processing and structure line detection. To preserve the original elevation information, a pseudo-grid for generating digital surface models is produced during the first part. The highest point in each grid is set as the elevation value, and its original threedimensional position is preserved. In the second part, using TEA, the structure lines are identified based on the topology of local elevation changes in two directions. Because structure lines can contain certain geometric properties, their locations have small relieves in the radial direction and steep elevation changes in the circular direction. Following the proposed approach, TEA can be used to determine 3D line information without selecting thresholds. For validation, the TEA results are compared with those of the region growing approach. The results indicate that the proposed method can produce structure lines using dense point clouds.

  9. A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal

    NASA Astrophysics Data System (ADS)

    Qin, Shunda; Ge, Hongxia; Cheng, Rongjun

    2018-02-01

    In this paper, a new lattice hydrodynamic model is proposed by taking delay feedback and flux change rate effect into account in a single lane. The linear stability condition of the new model is derived by control theory. By using the nonlinear analysis method, the mKDV equation near the critical point is deduced to describe the traffic congestion. Numerical simulations are carried out to demonstrate the advantage of the new model in suppressing traffic jam with the consideration of flux change rate effect in delay feedback model.

  10. A hybrid framework for quantifying the influence of data in hydrological model calibration

    NASA Astrophysics Data System (ADS)

    Wright, David P.; Thyer, Mark; Westra, Seth; McInerney, David

    2018-06-01

    Influence diagnostics aim to identify a small number of influential data points that have a disproportionate impact on the model parameters and/or predictions. The key issues with current influence diagnostic techniques are that the regression-theory approaches do not provide hydrologically relevant influence metrics, while the case-deletion approaches are computationally expensive to calculate. The main objective of this study is to introduce a new two-stage hybrid framework that overcomes these challenges, by delivering hydrologically relevant influence metrics in a computationally efficient manner. Stage one uses computationally efficient regression-theory influence diagnostics to identify the most influential points based on Cook's distance. Stage two then uses case-deletion influence diagnostics to quantify the influence of points using hydrologically relevant metrics. To illustrate the application of the hybrid framework, we conducted three experiments on 11 hydro-climatologically diverse Australian catchments using the GR4J hydrological model. The first experiment investigated how many data points from stage one need to be retained in order to reliably identify those points that have the hightest influence on hydrologically relevant metrics. We found that a choice of 30-50 is suitable for hydrological applications similar to those explored in this study (30 points identified the most influential data 98% of the time and reduced the required recalibrations by 99% for a 10 year calibration period). The second experiment found little evidence of a change in the magnitude of influence with increasing calibration period length from 1, 2, 5 to 10 years. Even for 10 years the impact of influential points can still be high (>30% influence on maximum predicted flows). The third experiment compared the standard least squares (SLS) objective function with the weighted least squares (WLS) objective function on a 10 year calibration period. In two out of three flow metrics there was evidence that SLS, with the assumption of homoscedastic residual error, identified data points with higher influence (largest changes of 40%, 10%, and 44% for the maximum, mean, and low flows, respectively) than WLS, with the assumption of heteroscedastic residual errors (largest changes of 26%, 6%, and 6% for the maximum, mean, and low flows, respectively). The hybrid framework complements existing model diagnostic tools and can be applied to a wide range of hydrological modelling scenarios.

  11. Cardinal and anti-cardinal points, equalities and chromatic dependence.

    PubMed

    Evans, Tanya; Harris, William F

    2017-05-01

    Cardinal points are used for ray tracing through Gaussian systems. Anti-principal and anti-nodal points (which we shall refer to as the anti-cardinal points), along with the six familiar cardinal points, belong to a much larger set of special points. The purpose of this paper is to obtain a set of relationships and resulting equalities among the cardinal and anti-cardinal points and to illustrate them using Pascal's ring. The methodology used relies on Gaussian optics and the transference T. We make use of two equations, obtained via the transference, which give the locations of the six cardinal and four anti-cardinal points with respect to the system. We obtain equalities among the cardinal and anti-cardinal points. We utilise Pascal's ring to illustrate which points depend on frequency and their displacement with change in frequency. Pascal described a memory schema in the shape of a hexagon for remembering equalities among the points and illustrating shifts in these points when an aspect of the system changes. We modify and extend Pascal's ring to include the anti-cardinal points. We make use of Pascal's ring extended to illustrate which points are dependent on the frequency of light and the direction of shift of the equalities with change in frequency. For the reduced eye the principal and nodal points are independent of frequency, but the focal points and the anti-cardinal points depend on frequency. For Le Grand's four-surface model eye all six cardinal and four anti-cardinal points depend on frequency. This has implications for definitions, particularly of chromatic aberrations of the eye, that make use of cardinal points and that themselves depend on frequency. Pascal's ring and Pascal's ring extended are novel memory schema for remembering the equalities among the cardinal and anti-cardinal points. The rings are useful for illustrating changes among the equalities and direction of shift of points when an aspect of a system changes. Care should be taken when defining concepts that rely on cardinal points that depend on frequency. © 2017 The Authors Ophthalmic & Physiological Optics © 2017 The College of Optometrists.

  12. Measuring and modeling high-resolution topographic change at archaeological sites in Grand Canyon National Park, Arizona, U.S.A.

    NASA Astrophysics Data System (ADS)

    Collins, B. D.; Corbett, S. C.; Fairley, H. C.

    2012-04-01

    Erosion of archaeological sites within Grand Canyon National Park (GCNP) Arizona, located in the southwestern United States is a subject of continuing interest to land and resource managers. This is partly fueled by an ongoing debate about whether and to what degree controlled releases from Glen Canyon Dam, located immediately upstream of GCNP, are affecting the physical integrity of archaeological sites. Long-term topographic change due to natural sources is typical in the desert southwest region. However, continuing erosion, which may be related in-part to anthropogenic factors, threatens both the preservation of archaeological sites as well as our ability to study evidence of past human habitation in GCNP that dates back at least 8,000 years before present. To quantitatively identify changes to archaeological sites in this region, and with the broader intention of developing numerical models to predict how and under what circumstances dam-controlled flows influence archaeological sites, we undertook a detailed terrestrial-lidar based monitoring program at thirteen sites between 2006 and 2010. Our studies looked specifically at sites located along the Colorado River that are potentially subject to changes related to dam operations. This could occur, for example, by limited sediment supply to sand bars which in turn contribute aeolian sediment to archaeologic sites. Each site was several hundred to several thousand square meters in size and was surveyed multiple times during the 5-year period. Our monitoring program shows how various data registration and georeferencing techniques result in varying degrees of topographic surface model accuracy. For example, surveys performed between 2006 and 2007 used point cloud registration methods and resulted in estimated change detection thresholds of 8 cm between repeat surveys. In 2010, surveys at the same sites used control point registration methods and resulted in estimated change detection thresholds of 3 cm. Error thresholds were determined using two types of change detection error analyses. The first used the absolute errors inherent in each step of the lidar data collection process (i.e., directly combining laser, survey, and registration errors) and provides a conservative estimate of potential errors. The second used an empirical metric based on the closest point-to-point match between known fixed objects (e.g., large boulders) and results in a more realistic error bound. Our data indicate that some sites changed significantly during the monitored time period. These measurements provide much of the essential data required for developing an in-house, physically-based, numerical sediment transport model that can provide estimates on the likelihood for future archaeological site change in GCNP. Thus far, we are finding that the data provided by typical terrestrial lidar surveys is likely overly-dense for numerical model requirements with respect to computational efficiency. Despite this, we also find that high-resolution data is necessary to perform change detection at the accuracy required for model calibration and to document changes before they have progressed beyond the point when site integrity is compromised. The results of the study will provide land and resource managers with the pertinent information needed to oversee these archaeological resources in the best way possible.

  13. Identification of Intensity Ratio Break Points from Photon Arrival Trajectories in Ratiometric Single Molecule Spectroscopy

    PubMed Central

    Bingemann, Dieter; Allen, Rachel M.

    2012-01-01

    We describe a statistical method to analyze dual-channel photon arrival trajectories from single molecule spectroscopy model-free to identify break points in the intensity ratio. Photons are binned with a short bin size to calculate the logarithm of the intensity ratio for each bin. Stochastic photon counting noise leads to a near-normal distribution of this logarithm and the standard student t-test is used to find statistically significant changes in this quantity. In stochastic simulations we determine the significance threshold for the t-test’s p-value at a given level of confidence. We test the method’s sensitivity and accuracy indicating that the analysis reliably locates break points with significant changes in the intensity ratio with little or no error in realistic trajectories with large numbers of small change points, while still identifying a large fraction of the frequent break points with small intensity changes. Based on these results we present an approach to estimate confidence intervals for the identified break point locations and recommend a bin size to choose for the analysis. The method proves powerful and reliable in the analysis of simulated and actual data of single molecule reorientation in a glassy matrix. PMID:22837704

  14. Acceleration and Performance Modeling Workshop, Washington, DC, 14-17 May 79,

    DTIC Science & Technology

    1979-12-01

    disturbance of the muscular systems, perhaps changes in spindle fiber output, and changes in the perceived weight of the muscle because of the acceleration...at this point either. The output models which are determining performance are essentially tied to muscular systems, through manual control (hand and...feet), and through speech, another muscular output. In normal activities the pilot, who senses changes in the visual system, the acceleration vector

  15. Detection of kinetic change points in piece-wise linear single molecule motion

    NASA Astrophysics Data System (ADS)

    Hill, Flynn R.; van Oijen, Antoine M.; Duderstadt, Karl E.

    2018-03-01

    Single-molecule approaches present a powerful way to obtain detailed kinetic information at the molecular level. However, the identification of small rate changes is often hindered by the considerable noise present in such single-molecule kinetic data. We present a general method to detect such kinetic change points in trajectories of motion of processive single molecules having Gaussian noise, with a minimum number of parameters and without the need of an assumed kinetic model beyond piece-wise linearity of motion. Kinetic change points are detected using a likelihood ratio test in which the probability of no change is compared to the probability of a change occurring, given the experimental noise. A predetermined confidence interval minimizes the occurrence of false detections. Applying the method recursively to all sub-regions of a single molecule trajectory ensures that all kinetic change points are located. The algorithm presented allows rigorous and quantitative determination of kinetic change points in noisy single molecule observations without the need for filtering or binning, which reduce temporal resolution and obscure dynamics. The statistical framework for the approach and implementation details are discussed. The detection power of the algorithm is assessed using simulations with both single kinetic changes and multiple kinetic changes that typically arise in observations of single-molecule DNA-replication reactions. Implementations of the algorithm are provided in ImageJ plugin format written in Java and in the Julia language for numeric computing, with accompanying Jupyter Notebooks to allow reproduction of the analysis presented here.

  16. Radiation Heat Transfer Modeling Improved for Phase-Change, Thermal Energy Storage Systems

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Jacqmin, David A.

    1998-01-01

    Spacecraft solar dynamic power systems typically use high-temperature phase-change materials to efficiently store thermal energy for heat engine operation in orbital eclipse periods. Lithium fluoride salts are particularly well suited for this application because of their high heat of fusion, long-term stability, and appropriate melting point. Considerable attention has been focused on the development of thermal energy storage (TES) canisters that employ either pure lithium fluoride (LiF), with a melting point of 1121 K, or eutectic composition lithium-fluoride/calcium-difluoride (LiF-20CaF2), with a 1040 K melting point, as the phase-change material. Primary goals of TES canister development include maximizing the phase-change material melt fraction, minimizing the canister mass per unit of energy storage, and maximizing the phase-change material thermal charge/discharge rates within the limits posed by the container structure.

  17. Incoherent imaging of radar targets

    NASA Astrophysics Data System (ADS)

    van Ommen, A.; van der Spek, G. A.

    1986-05-01

    Theory suggests that, if a target can be modeled as a rigid constellation of point scatterers, the RCS pattern over a certain aspect change can be used to produce a one-dimensional image. The results for actual measured RCS patterns, however, are not promising. This is illustrated by processing on 4 s of echo data obtained from a Boeing 737 in straight flight, during which its aspect change is 2 deg. The conclusion might be that, for the application considered, aircraft cannot be modeled as a rigid constellation of point scatterers; this is partly due to the treatment of a three-dimensional target as a line target.

  18. Relative sea-level changes and crustal movements in Britain and Ireland since the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Shennan, Ian; Bradley, Sarah L.; Edwards, Robin

    2018-05-01

    The new sea-level database for Britain and Ireland contains >2100 data points from 86 regions and records relative sea-level (RSL) changes over the last 20 ka and across elevations ranging from ∼+40 to -55 m. It reveals radically different patterns of RSL as we move from regions near the centre of the Celtic ice sheet at the last glacial maximum to regions near and beyond the ice limits. Validated sea-level index points and limiting data show good agreement with the broad patterns of RSL change predicted by current glacial isostatic adjustment (GIA) models. The index points show no consistent pattern of synchronous coastal advance and retreat across different regions, ∼100-500 km scale, indicating that within-estuary processes, rather than decimetre- and centennial-scale oscillations in sea level, produce major controls on the temporal pattern of horizontal shifts in coastal sedimentary environments. Comparisons between the database and GIA model predictions for multiple regions provide potentially powerful constraints on various characteristics of global GIA models, including the magnitude of MWP1A, the final deglaciation of the Laurentide ice sheet and the continued melting of Antarctica after 7 ka BP.

  19. Improved water resource management for a highly complex environment using three-dimensional groundwater modelling

    NASA Astrophysics Data System (ADS)

    Moeck, Christian; Affolter, Annette; Radny, Dirk; Dressmann, Horst; Auckenthaler, Adrian; Huggenberger, Peter; Schirmer, Mario

    2018-02-01

    A three-dimensional groundwater model was used to improve water resource management for a study area in north-west Switzerland, where drinking-water production is close to former landfills and industrial areas. To avoid drinking-water contamination, artificial groundwater recharge with surface water is used to create a hydraulic barrier between the contaminated sites and drinking-water extraction wells. The model was used for simulating existing and proposed water management strategies as a tool to ensure the utmost security for drinking water. A systematic evaluation of the flow direction between existing observation points using a developed three-point estimation method for a large number of scenarios was carried out. It is demonstrated that systematically applying the developed methodology helps to identify vulnerable locations which are sensitive to changing boundary conditions such as those arising from changes to artificial groundwater recharge rates. At these locations, additional investigations and protection are required. The presented integrated approach, using the groundwater flow direction between observation points, can be easily transferred to a variety of hydrological settings to systematically evaluate groundwater modelling scenarios.

  20. Understanding the science of climate change: Talking points - Impacts to Prairie Potholes and Grasslands

    Treesearch

    Rachel Loehman

    2009-01-01

    Climate changes in the Prairie Potholes and Grasslands bioregion include increased seasonal, annual, minimum, and maximum temperature and changing precipitation patterns. Because the region is relatively dry with a strong seasonal climate, it is sensitive to climatic changes and vulnerable to changes in climatic regime. For example, model simulations show that regional...

  1. An equilibrium-point model for fast, single-joint movement: I. Emergence of strategy-dependent EMG patterns.

    PubMed

    Latash, M L; Gottlieb, G L

    1991-09-01

    We describe a model for the regulation of fast, single-joint movements, based on the equilibrium-point hypothesis. Limb movement follows constant rate shifts of independently regulated neuromuscular variables. The independently regulated variables are tentatively identified as thresholds of a length sensitive reflex for each of the participating muscles. We use the model to predict EMG patterns associated with changes in the conditions of movement execution, specifically, changes in movement times, velocities, amplitudes, and moments of limb inertia. The approach provides a theoretical neural framework for the dual-strategy hypothesis, which considers certain movements to be results of one of two basic, speed-sensitive or speed-insensitive strategies. This model is advanced as an alternative to pattern-imposing models based on explicit regulation of timing and amplitudes of signals that are explicitly manifest in the EMG patterns.

  2. Estimation of influential points in any data set from coefficient of determination and its leave-one-out cross-validated counterpart.

    PubMed

    Tóth, Gergely; Bodai, Zsolt; Héberger, Károly

    2013-10-01

    Coefficient of determination (R (2)) and its leave-one-out cross-validated analogue (denoted by Q (2) or R cv (2) ) are the most frequantly published values to characterize the predictive performance of models. In this article we use R (2) and Q (2) in a reversed aspect to determine uncommon points, i.e. influential points in any data sets. The term (1 - Q (2))/(1 - R (2)) corresponds to the ratio of predictive residual sum of squares and the residual sum of squares. The ratio correlates to the number of influential points in experimental and random data sets. We propose an (approximate) F test on (1 - Q (2))/(1 - R (2)) term to quickly pre-estimate the presence of influential points in training sets of models. The test is founded upon the routinely calculated Q (2) and R (2) values and warns the model builders to verify the training set, to perform influence analysis or even to change to robust modeling.

  3. Monte Carlo based toy model for fission process

    NASA Astrophysics Data System (ADS)

    Kurniadi, R.; Waris, A.; Viridi, S.

    2014-09-01

    There are many models and calculation techniques to obtain visible image of fission yield process. In particular, fission yield can be calculated by using two calculations approach, namely macroscopic approach and microscopic approach. This work proposes another calculation approach in which the nucleus is treated as a toy model. Hence, the fission process does not represent real fission process in nature completely. The toy model is formed by Gaussian distribution of random number that randomizes distance likesthe distance between particle and central point. The scission process is started by smashing compound nucleus central point into two parts that are left central and right central points. These three points have different Gaussian distribution parameters such as mean (μCN, μL, μR), and standard deviation (σCN, σL, σR). By overlaying of three distributions, the number of particles (NL, NR) that are trapped by central points can be obtained. This process is iterated until (NL, NR) become constant numbers. Smashing process is repeated by changing σL and σR, randomly.

  4. Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data

    ERIC Educational Resources Information Center

    Xu, Shu; Blozis, Shelley A.

    2011-01-01

    Mixed models are used for the analysis of data measured over time to study population-level change and individual differences in change characteristics. Linear and nonlinear functions may be used to describe a longitudinal response, individuals need not be observed at the same time points, and missing data, assumed to be missing at random (MAR),…

  5. Accuracy assessment of building point clouds automatically generated from iphone images

    NASA Astrophysics Data System (ADS)

    Sirmacek, B.; Lindenbergh, R.

    2014-06-01

    Low-cost sensor generated 3D models can be useful for quick 3D urban model updating, yet the quality of the models is questionable. In this article, we evaluate the reliability of an automatic point cloud generation method using multi-view iPhone images or an iPhone video file as an input. We register such automatically generated point cloud on a TLS point cloud of the same object to discuss accuracy, advantages and limitations of the iPhone generated point clouds. For the chosen example showcase, we have classified 1.23% of the iPhone point cloud points as outliers, and calculated the mean of the point to point distances to the TLS point cloud as 0.11 m. Since a TLS point cloud might also include measurement errors and noise, we computed local noise values for the point clouds from both sources. Mean (μ) and standard deviation (σ) of roughness histograms are calculated as (μ1 = 0.44 m., σ1 = 0.071 m.) and (μ2 = 0.025 m., σ2 = 0.037 m.) for the iPhone and TLS point clouds respectively. Our experimental results indicate possible usage of the proposed automatic 3D model generation framework for 3D urban map updating, fusion and detail enhancing, quick and real-time change detection purposes. However, further insights should be obtained first on the circumstances that are needed to guarantee a successful point cloud generation from smartphone images.

  6. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains.

    PubMed

    Pillow, Jonathan W; Ahmadian, Yashar; Paninski, Liam

    2011-01-01

    One of the central problems in systems neuroscience is to understand how neural spike trains convey sensory information. Decoding methods, which provide an explicit means for reading out the information contained in neural spike responses, offer a powerful set of tools for studying the neural coding problem. Here we develop several decoding methods based on point-process neural encoding models, or forward models that predict spike responses to stimuli. These models have concave log-likelihood functions, which allow efficient maximum-likelihood model fitting and stimulus decoding. We present several applications of the encoding model framework to the problem of decoding stimulus information from population spike responses: (1) a tractable algorithm for computing the maximum a posteriori (MAP) estimate of the stimulus, the most probable stimulus to have generated an observed single- or multiple-neuron spike train response, given some prior distribution over the stimulus; (2) a gaussian approximation to the posterior stimulus distribution that can be used to quantify the fidelity with which various stimulus features are encoded; (3) an efficient method for estimating the mutual information between the stimulus and the spike trains emitted by a neural population; and (4) a framework for the detection of change-point times (the time at which the stimulus undergoes a change in mean or variance) by marginalizing over the posterior stimulus distribution. We provide several examples illustrating the performance of these estimators with simulated and real neural data.

  7. Modeling Sea-Level Change using Errors-in-Variables Integrated Gaussian Processes

    NASA Astrophysics Data System (ADS)

    Cahill, Niamh; Parnell, Andrew; Kemp, Andrew; Horton, Benjamin

    2014-05-01

    We perform Bayesian inference on historical and late Holocene (last 2000 years) rates of sea-level change. The data that form the input to our model are tide-gauge measurements and proxy reconstructions from cores of coastal sediment. To accurately estimate rates of sea-level change and reliably compare tide-gauge compilations with proxy reconstructions it is necessary to account for the uncertainties that characterize each dataset. Many previous studies used simple linear regression models (most commonly polynomial regression) resulting in overly precise rate estimates. The model we propose uses an integrated Gaussian process approach, where a Gaussian process prior is placed on the rate of sea-level change and the data itself is modeled as the integral of this rate process. The non-parametric Gaussian process model is known to be well suited to modeling time series data. The advantage of using an integrated Gaussian process is that it allows for the direct estimation of the derivative of a one dimensional curve. The derivative at a particular time point will be representative of the rate of sea level change at that time point. The tide gauge and proxy data are complicated by multiple sources of uncertainty, some of which arise as part of the data collection exercise. Most notably, the proxy reconstructions include temporal uncertainty from dating of the sediment core using techniques such as radiocarbon. As a result of this, the integrated Gaussian process model is set in an errors-in-variables (EIV) framework so as to take account of this temporal uncertainty. The data must be corrected for land-level change known as glacio-isostatic adjustment (GIA) as it is important to isolate the climate-related sea-level signal. The correction for GIA introduces covariance between individual age and sea level observations into the model. The proposed integrated Gaussian process model allows for the estimation of instantaneous rates of sea-level change and accounts for all available sources of uncertainty in tide-gauge and proxy-reconstruction data. Our response variable is sea level after correction for GIA. By embedding the integrated process in an errors-in-variables (EIV) framework, and removing the estimate of GIA, we can quantify rates with better estimates of uncertainty than previously possible. The model provides a flexible fit and enables us to estimate rates of change at any given time point, thus observing how rates have been evolving from the past to present day.

  8. A stochastic model for stationary dynamics of prices in real estate markets. A case of random intensity for Poisson moments of prices changes

    NASA Astrophysics Data System (ADS)

    Rusakov, Oleg; Laskin, Michael

    2017-06-01

    We consider a stochastic model of changes of prices in real estate markets. We suppose that in a book of prices the changes happen in points of jumps of a Poisson process with a random intensity, i.e. moments of changes sequently follow to a random process of the Cox process type. We calculate cumulative mathematical expectations and variances for the random intensity of this point process. In the case that the process of random intensity is a martingale the cumulative variance has a linear grows. We statistically process a number of observations of real estate prices and accept hypotheses of a linear grows for estimations as well for cumulative average, as for cumulative variance both for input and output prises that are writing in the book of prises.

  9. Using Laser Scanners to Augment the Systematic Error Pointing Model

    NASA Astrophysics Data System (ADS)

    Wernicke, D. R.

    2016-08-01

    The antennas of the Deep Space Network (DSN) rely on precise pointing algorithms to communicate with spacecraft that are billions of miles away. Although the existing systematic error pointing model is effective at reducing blind pointing errors due to static misalignments, several of its terms have a strong dependence on seasonal and even daily thermal variation and are thus not easily modeled. Changes in the thermal state of the structure create a separation from the model and introduce a varying pointing offset. Compensating for this varying offset is possible by augmenting the pointing model with laser scanners. In this approach, laser scanners mounted to the alidade measure structural displacements while a series of transformations generate correction angles. Two sets of experiments were conducted in August 2015 using commercially available laser scanners. When compared with historical monopulse corrections under similar conditions, the computed corrections are within 3 mdeg of the mean. However, although the results show promise, several key challenges relating to the sensitivity of the optical equipment to sunlight render an implementation of this approach impractical. Other measurement devices such as inclinometers may be implementable at a significantly lower cost.

  10. Relationships among participant international prostate symptom score, benign prostatic hyperplasia impact index changes and global ratings of change in a trial of phytotherapy in men with lower urinary tract symptoms.

    PubMed

    Barry, Michael J; Cantor, Alan; Roehrborn, Claus G

    2013-03-01

    We related changes in American Urological Association symptom index scores with bother measures and global ratings of change in men with lower urinary tract symptoms who were enrolled in a saw palmetto trial. To be eligible for study men were 45 years old or older, and had a peak uroflow of 4 ml per second or greater and an American Urological Association symptom index score of 8 to 24. Participants self-administered the American Urological Association symptom index, International Prostate Symptom Score quality of life item, Benign Prostatic Hyperplasia Impact Index and 2 global change questions at baseline, and at 24, 48 and 72 weeks. In 357 participants global ratings of a little better were associated with a mean decrease in American Urological Association symptom index scores from 2.8 to 4.1 points across 3 time points. The analogous range for mean decreases in Benign Prostatic Hyperplasia Impact Index scores was 1.0 to 1.7 points and for the International Prostate Symptom Score quality of life item it was 0.5 to 0.8 points. At 72 weeks for the first global change question each change measure discriminated between participants who rated themselves at least a little better vs unchanged or worse 70% to 72% of the time. A multivariate model increased discrimination to 77%. For the second global change question each change measure correctly discriminated ratings of at least a little better vs unchanged or worse 69% to 74% of the time and a multivariate model increased discrimination to 79%. Changes in American Urological Association symptom index scores could discriminate between participants rating themselves at least a little better vs unchanged or worse. Our findings support the practice of powering studies to detect group mean differences in American Urological Association symptom index scores of at least 3 points. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  11. MO-C-17A-04: Forecasting Longitudinal Changes in Oropharyngeal Tumor Morphology Throughout the Course of Head and Neck Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yock, A; UT Graduate School of Biomedical Sciences, Houston, TX; Rao, A

    2014-06-15

    Purpose: To generate, evaluate, and compare models that predict longitudinal changes in tumor morphology throughout the course of radiation therapy. Methods: Two morphology feature vectors were used to describe the size, shape, and position of 35 oropharyngeal GTVs at each treatment fraction during intensity-modulated radiation therapy. The feature vectors comprised the coordinates of the GTV centroids and one of two shape descriptors. One shape descriptor was based on radial distances between the GTV centroid and 614 GTV surface landmarks. The other was based on a spherical harmonic decomposition of these distances. Feature vectors over the course of therapy were describedmore » using static, linear, and mean models. The error of these models in forecasting GTV morphology was evaluated with leave-one-out cross-validation, and their accuracy was compared using Wilcoxon signed-rank tests. The effect of adjusting model parameters at 1, 2, 3, or 5 time points (adjustment points) was also evaluated. Results: The addition of a single adjustment point to the static model decreased the median error in forecasting the position of GTV surface landmarks by 1.2 mm (p<0.001). Additional adjustment points further decreased forecast error by about 0.4 mm each. The linear model decreased forecast error compared to the static model for feature vectors based on both shape descriptors (0.2 mm), while the mean model did so only for those based on the inter-landmark distances (0.2 mm). The decrease in forecast error due to adding adjustment points was greater than that due to model selection. Both effects diminished with subsequent adjustment points. Conclusion: Models of tumor morphology that include information from prior patients and/or prior treatment fractions are able to predict the tumor surface at each treatment fraction during radiation therapy. The predicted tumor morphology can be compared with patient anatomy or dose distributions, opening the possibility of anticipatory re-planning. American Legion Auxiliary Fellowship; The University of Texas Graduate School of Biomedical Sciences at Houston.« less

  12. The Multigroup Multilevel Categorical Latent Growth Curve Models

    ERIC Educational Resources Information Center

    Hung, Lai-Fa

    2010-01-01

    Longitudinal data describe developmental patterns and enable predictions of individual changes beyond sampled time points. Major methodological issues in longitudinal data include modeling random effects, subject effects, growth curve parameters, and autoregressive residuals. This study embedded the longitudinal model within a multigroup…

  13. Theoretical evaluation of accuracy in position and size of brain activity obtained by near-infrared topography

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Hiroshi; Hayashi, Toshiyuki; Kato, Toshinori; Okada, Eiji

    2004-06-01

    Near-infrared (NIR) topography can obtain a topographical distribution of the activated region in the brain cortex. Near-infrared light is strongly scattered in the head, and the volume of tissue sampled by a source-detector pair on the head surface is broadly distributed in the brain. This scattering effect results in poor resolution and contrast in the topographic image of the brain activity. In this study, a one-dimensional distribution of absorption change in a head model is calculated by mapping and reconstruction methods to evaluate the effect of the image reconstruction algorithm and the interval of measurement points for topographic imaging on the accuracy of the topographic image. The light propagation in the head model is predicted by Monte Carlo simulation to obtain the spatial sensitivity profile for a source-detector pair. The measurement points are one-dimensionally arranged on the surface of the model, and the distance between adjacent measurement points is varied from 4 mm to 28 mm. Small intervals of the measurement points improve the topographic image calculated by both the mapping and reconstruction methods. In the conventional mapping method, the limit of the spatial resolution depends upon the interval of the measurement points and spatial sensitivity profile for source-detector pairs. The reconstruction method has advantages over the mapping method which improve the results of one-dimensional analysis when the interval of measurement points is less than 12 mm. The effect of overlapping of spatial sensitivity profiles indicates that the reconstruction method may be effective to improve the spatial resolution of a two-dimensional reconstruction of topographic image obtained with larger interval of measurement points. Near-infrared topography with the reconstruction method potentially obtains an accurate distribution of absorption change in the brain even if the size of absorption change is less than 10 mm.

  14. An analysis of neural receptive field plasticity by point process adaptive filtering

    PubMed Central

    Brown, Emery N.; Nguyen, David P.; Frank, Loren M.; Wilson, Matthew A.; Solo, Victor

    2001-01-01

    Neural receptive fields are plastic: with experience, neurons in many brain regions change their spiking responses to relevant stimuli. Analysis of receptive field plasticity from experimental measurements is crucial for understanding how neural systems adapt their representations of relevant biological information. Current analysis methods using histogram estimates of spike rate functions in nonoverlapping temporal windows do not track the evolution of receptive field plasticity on a fine time scale. Adaptive signal processing is an established engineering paradigm for estimating time-varying system parameters from experimental measurements. We present an adaptive filter algorithm for tracking neural receptive field plasticity based on point process models of spike train activity. We derive an instantaneous steepest descent algorithm by using as the criterion function the instantaneous log likelihood of a point process spike train model. We apply the point process adaptive filter algorithm in a study of spatial (place) receptive field properties of simulated and actual spike train data from rat CA1 hippocampal neurons. A stability analysis of the algorithm is sketched in the Appendix. The adaptive algorithm can update the place field parameter estimates on a millisecond time scale. It reliably tracked the migration, changes in scale, and changes in maximum firing rate characteristic of hippocampal place fields in a rat running on a linear track. Point process adaptive filtering offers an analytic method for studying the dynamics of neural receptive fields. PMID:11593043

  15. Modeling Pupils' Understanding and Explanations Concerning Changes in Matter

    ERIC Educational Resources Information Center

    Hatzinikita, Vassilia; Koulaidis, Vasilios; Hatzinikitas, Agapitos

    2005-01-01

    The explanations of thirty primary pupils for changes in matter were recorded through individual, semi-structured interviews. The analysis of data pointed to the construction of a system for classifying pupils' explanations of changes in matter. A parallel analysis of data focused on the identification and interpretation of associations between…

  16. Motivation Change in Therapeutic Community Residential Treatment

    ERIC Educational Resources Information Center

    Morgen, Keith; Kressel, David

    2010-01-01

    Latent growth curve analysis was used to assess motivation change across 3 time points for 120 therapeutic community residents. Models included the time-invariant predictor of readiness for treatment, which significantly predicted initial treatment motivation but not the rate of motivation change over time. (Contains 1 figure and 2 tables.)

  17. Do We Know the Actual Magnetopause Position for Typical Solar Wind Conditions?

    NASA Technical Reports Server (NTRS)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Safrankova, J.; Nemecek, Z.; Simunek, J.; Sibeck, D. G.; Toth, G.; Merkin, V. G.; Raeder, J.

    2016-01-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD (magnetohydrodynamics) models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter greater than 1 Earth radius (R (sub E)) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than non axisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global non axisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the non axisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for B (sub z) equals 0 (note: B (sub z) is when the Earth's magnetic field points north versus Sun's magnetic field pointing south). Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  18. A Teachable Moment Uncovered by Video Analysis

    NASA Astrophysics Data System (ADS)

    Gates, Joshua

    2011-05-01

    Early in their study of one-dimensional kinematics, my students build an algebraic model that describes the effects of a rolling ball's (perpendicular) collision with a wall. The goal is for the model to predict the ball's velocity when it returns to a fixed point approximately 50-100 cm from the wall as a function of its velocity as it passes this point initially. They are told to assume that the ball's velocity does not change while it rolls to or from the wall—that the velocity change all happens very quickly and only at the wall. In order to evaluate this assumption following the data collection, I have the students analyze one such collision using video analysis. The results uncover an excellent teachable moment about assumptions and their impact on models and error analysis.

  19. Bayesian semi-parametric analysis of Poisson change-point regression models: application to policy making in Cali, Colombia.

    PubMed

    Park, Taeyoung; Krafty, Robert T; Sánchez, Alvaro I

    2012-07-27

    A Poisson regression model with an offset assumes a constant baseline rate after accounting for measured covariates, which may lead to biased estimates of coefficients in an inhomogeneous Poisson process. To correctly estimate the effect of time-dependent covariates, we propose a Poisson change-point regression model with an offset that allows a time-varying baseline rate. When the nonconstant pattern of a log baseline rate is modeled with a nonparametric step function, the resulting semi-parametric model involves a model component of varying dimension and thus requires a sophisticated varying-dimensional inference to obtain correct estimates of model parameters of fixed dimension. To fit the proposed varying-dimensional model, we devise a state-of-the-art MCMC-type algorithm based on partial collapse. The proposed model and methods are used to investigate an association between daily homicide rates in Cali, Colombia and policies that restrict the hours during which the legal sale of alcoholic beverages is permitted. While simultaneously identifying the latent changes in the baseline homicide rate which correspond to the incidence of sociopolitical events, we explore the effect of policies governing the sale of alcohol on homicide rates and seek a policy that balances the economic and cultural dependencies on alcohol sales to the health of the public.

  20. Using Point-of-View Video Modeling and Forward Chaining to Teach a Functional Self-Help Skill to a Child with Autism

    ERIC Educational Resources Information Center

    Shrestha, Akriti; Anderson, Angelika; Moore, Dennis W.

    2013-01-01

    This study examined the effectiveness of point-of-view video modeling in a forward-chaining procedure to teach a 4-year-old boy with autism to serve himself an afternoon snack. Task analysis was undertaken, and the task was divided into 3 phases with 1 video produced for each phase. A changing criterion design was used to evaluate the effects of…

  1. Social Change and Individual Change--Developmental Science as Guide Post

    ERIC Educational Resources Information Center

    Silbereisen, Rainer K.

    2012-01-01

    From a biopsychosocial perspective on human development, this essay review introduces a model linking social changes at the macro level with individual development at the micro level. German unification and the globalization of economy that followed are taken as a case in point for social changes that have affected the lives of many. It is argued…

  2. rpe v5: an emulator for reduced floating-point precision in large numerical simulations

    NASA Astrophysics Data System (ADS)

    Dawson, Andrew; Düben, Peter D.

    2017-06-01

    This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.

  3. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    PubMed

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  4. a Framework for Voxel-Based Global Scale Modeling of Urban Environments

    NASA Astrophysics Data System (ADS)

    Gehrung, Joachim; Hebel, Marcus; Arens, Michael; Stilla, Uwe

    2016-10-01

    The generation of 3D city models is a very active field of research. Modeling environments as point clouds may be fast, but has disadvantages. These are easily solvable by using volumetric representations, especially when considering selective data acquisition, change detection and fast changing environments. Therefore, this paper proposes a framework for the volumetric modeling and visualization of large scale urban environments. Beside an architecture and the right mix of algorithms for the task, two compression strategies for volumetric models as well as a data quality based approach for the import of range measurements are proposed. The capabilities of the framework are shown on a mobile laser scanning dataset of the Technical University of Munich. Furthermore the loss of the compression techniques is evaluated and their memory consumption is compared to that of raw point clouds. The presented results show that generation, storage and real-time rendering of even large urban models are feasible, even with off-the-shelf hardware.

  5. Sensorimotor synchronization with tempo-changing auditory sequences: Modeling temporal adaptation and anticipation.

    PubMed

    van der Steen, M C Marieke; Jacoby, Nori; Fairhurst, Merle T; Keller, Peter E

    2015-11-11

    The current study investigated the human ability to synchronize movements with event sequences containing continuous tempo changes. This capacity is evident, for example, in ensemble musicians who maintain precise interpersonal coordination while modulating the performance tempo for expressive purposes. Here we tested an ADaptation and Anticipation Model (ADAM) that was developed to account for such behavior by combining error correction processes (adaptation) with a predictive temporal extrapolation process (anticipation). While previous computational models of synchronization incorporate error correction, they do not account for prediction during tempo-changing behavior. The fit between behavioral data and computer simulations based on four versions of ADAM was assessed. These versions included a model with adaptation only, one in which adaptation and anticipation act in combination (error correction is applied on the basis of predicted tempo changes), and two models in which adaptation and anticipation were linked in a joint module that corrects for predicted discrepancies between the outcomes of adaptive and anticipatory processes. The behavioral experiment required participants to tap their finger in time with three auditory pacing sequences containing tempo changes that differed in the rate of change and the number of turning points. Behavioral results indicated that sensorimotor synchronization accuracy and precision, while generally high, decreased with increases in the rate of tempo change and number of turning points. Simulations and model-based parameter estimates showed that adaptation mechanisms alone could not fully explain the observed precision of sensorimotor synchronization. Including anticipation in the model increased the precision of simulated sensorimotor synchronization and improved the fit of model to behavioral data, especially when adaptation and anticipation mechanisms were linked via a joint module based on the notion of joint internal models. Overall results suggest that adaptation and anticipation mechanisms both play an important role during sensorimotor synchronization with tempo-changing sequences. This article is part of a Special Issue entitled SI: Prediction and Attention. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Quantitative structure-activity relationship models that stand the test of time.

    PubMed

    Davis, Andrew M; Wood, David J

    2013-04-01

    The pharmaceutical industry is in a period of intense change. While this has many drivers, attrition through the development process continues to be an important pressure. The emerging definitions of "compound quality" that are based on retrospective analyses of developmental attrition have highlighted a new direction for medicinal chemistry and the paradigm of "quality at the point of design". The time has come for retrospective analyses to catalyze prospective action. Quality at the point of design places pressure on the quality of our predictive models. Empirical QSAR models when built with care provide true predictive control, but their accuracy and precision can be improved. Here we describe AstraZeneca's experience of automation in QSAR model building and validation, and how an informatics system can provide a step-change in predictive power to project design teams, if they choose to use it.

  7. Application of a Mathematical Model to Describe the Effects of Chlorpyrifos on Caenorhabditis elegans Development

    PubMed Central

    Boyd, Windy A.; Smith, Marjolein V.; Kissling, Grace E.; Rice, Julie R.; Snyder, Daniel W.; Portier, Christopher J.; Freedman, Jonathan H.

    2009-01-01

    Background The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing. Methodology/Principal Findings L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0–75 µM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration. Conclusions Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies. PMID:19753116

  8. Void Points, Rosettes, and a Brief History of Planetary Astronomy

    NASA Astrophysics Data System (ADS)

    Kosso, Peter

    2013-12-01

    Almost all models of planetary orbits, from Aristotle through Newton, include void points, empty points in space that have an essential role in defining the orbit. By highlighting the role of these void points, as well as the rosette pattern of the orbit that often results, I bring out different features in the history of planetary astronomy and place a different emphasis on its revolutionary changes, different from those rendered in terms of epicycles or the location of the earth.

  9. The existence of negative absolute temperatures in Axelrod’s social influence model

    NASA Astrophysics Data System (ADS)

    Villegas-Febres, J. C.; Olivares-Rivas, W.

    2008-06-01

    We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.

  10. On analyzing colour constancy approach for improving SURF detector performance

    NASA Astrophysics Data System (ADS)

    Zulkiey, Mohd Asyraf; Zaki, Wan Mimi Diyana Wan; Hussain, Aini; Mustafa, Mohd. Marzuki

    2012-04-01

    Robust key point detector plays a crucial role in obtaining a good tracking feature. The main challenge in outdoor tracking is the illumination change due to various reasons such as weather fluctuation and occlusion. This paper approaches the illumination change problem by transforming the input image through colour constancy algorithm before applying the SURF detector. Masked grey world approach is chosen because of its ability to perform well under local as well as global illumination change. Every image is transformed to imitate the canonical illuminant and Gaussian distribution is used to model the global change. The simulation results show that the average number of detected key points have increased by 69.92%. Moreover, the average of improved performance cases far out weight the degradation case where the former is improved by 215.23%. The approach is suitable for tracking implementation where sudden illumination occurs frequently and robust key point detection is needed.

  11. Rheological and thermal properties of suspensions of microcapsules containing phase change materials.

    PubMed

    Cao, Vinh Duy; Salas-Bringas, Carlos; Schüller, Reidar Barfod; Szczotok, Anna M; Hiorth, Marianne; Carmona, Manuel; Rodriguez, Juan F; Kjøniksen, Anna-Lena

    2018-01-01

    The thermal and rheological properties of suspensions of microencapsulated phase change materials (MPCM) in glycerol were investigated. When the microcapsule concentration is raised, the heat storage capacity of the suspensions becomes higher and a slight decline in the thermal conductivity of the suspensions is observed. The temperature-dependent shear-thinning behaviour of the suspensions was found to be strongly affected by non-encapsulated phase change materials (PCM). Accordingly, the rheological properties of the MPCM suspensions could be described by the Cross model below the PCM melting point while a power law model best described the data above the PCM melting point. The MPCM suspensions are interesting for energy storage and heat transfer applications. However, the non-encapsulated PCM contributes to the agglomeration of the microcapsules, which can lead to higher pumping consumption and clogging of piping systems.

  12. 3D Numerical Investigation of the Role of the Slope in the 'Fill-and-Spill' Process in Submarine Minibasin

    NASA Astrophysics Data System (ADS)

    Bastianon, E.; Viparelli, E.; Cantelli, A.; Imran, J.

    2017-12-01

    Intraslope basins are important geomorphological features present in several continental slopes around the world. They are quasi-circular in shape, and some are connected by submarine canyons. Minibasins constitute excellent locations for the deposition of siliciclastic material transported by turbidity currents and are often targets for hydrocarbon exploration. Sediment deposition in intraslope minibasin is described by the `fill-and-spill' model. When a turbidity current enters an empty minibasin, it reflects on the distal flank creating a bore. A sharp interface separates the clear water above from the turbidity current. In this phase sediments are deposited, and ponded deposits form at a lower elevation relative to the spill point. In phases in which sedimentation exceed subsidence, the thickness of the ponded deposit increases, the space between the minibasin floor and the spill point decreases, and the turbidity currents eventually overspill. The depositional pattern changes with preferential sediment deposition in the proximal part of the minibasin and the formation of a perched apron. The objective of this study is to investigate how the characteristics of the minibasin deposits change with increasing vertical distance between the minibasin inlet and the spill point, i.e. with an increase in slopes of the submarine settings. We applied a three-dimensional numerical model for turbidity currents that solves the Reynolds-averaged Navier-Stokes equations for dilute suspension along with the Exner equation of bed sediment conservation for multiple grain size classes. The model grid is adjusted according to changes in the bed elevation. The model is first validated using 2D and 3D laboratory experiments in which the minibasin entrance and the spill point are at similar elevation. The validation is done with a comparison of measured and simulated deposit geometries, vertical profiles of suspended sediment concentration and spatial distributions of sediment sizes in the deposit. Then, the vertical distance between the minibasin inlet and the spill point is systematically changed to study the effect of slope on sediment grain size distribution and the shape of the deposit.

  13. What do we mean by the word “Shock”?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Runnels, Scott Robert

    From one vantage point, a shock is a continuous but drastic change in state variables that occurs over very small time and length scales. These scales and associated changes in state variables can be measured experimentally. From another vantage point, a shock is a mathematical singularity consisting of instantaneous changes in state variables. This more mathematical view gives rise to analytical solutions to idealized problems. And from a third vantage point, a shock is a structure in a hydrocode prediction. Its width depends on the simulation’s grid resolution and artificial viscosity. These three vantage points can be in conflict whenmore » ideas from the associated fields are combined, and yet combining them is an important goal of an integrated modeling program. This presentation explores an example of how models for real materials in the presence of real shocks react to a hydrocode’s numerical shocks of finite width. The presentation will include an introduction to plasticity for the novice, an historical view of plasticity algorithms, a demonstration of how pursuing the meaning of “shock” has resulted in hydrocode improvements, and will conclude by answering some of the questions that arise from that pursuit. After the technical part of the presentation, a few slides advertising LANL’s Computational Physics Student Summer Workshop will be shown.« less

  14. TREFEX: Trend Estimation and Change Detection in the Response of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Schaffernicht, Erik; Trincavelli, Marco

    2013-01-01

    Many applications of metal oxide gas sensors can benefit from reliable algorithms to detect significant changes in the sensor response. Significant changes indicate a change in the emission modality of a distant gas source and occur due to a sudden change of concentration or exposure to a different compound. As a consequence of turbulent gas transport and the relatively slow response and recovery times of metal oxide sensors, their response in open sampling configuration exhibits strong fluctuations that interfere with the changes of interest. In this paper we introduce TREFEX, a novel change point detection algorithm, especially designed for metal oxide gas sensors in an open sampling system. TREFEX models the response of MOX sensors as a piecewise exponential signal and considers the junctions between consecutive exponentials as change points. We formulate non-linear trend filtering and change point detection as a parameter-free convex optimization problem for single sensors and sensor arrays. We evaluate the performance of the TREFEX algorithm experimentally for different metal oxide sensors and several gas emission profiles. A comparison with the previously proposed GLR method shows a clearly superior performance of the TREFEX algorithm both in detection performance and in estimating the change time. PMID:23736853

  15. Predicting academic performance of medical students: the first three years.

    PubMed

    Höschl, C; Kozený, J

    1997-06-01

    The purpose of this exploratory study was to identify a cluster of variables that would most economically explain variations in the grade point averages of medical students during the first 3 years of study. Data were derived from a study of 92 students admitted to the 3rd Faculty of Medicine in 1992-1993 academic year and who were still in the medical school at the end of the sixth semester (third year). Stepwise regression analysis was used to build models for predicting log-transformed changes in grade point average after six semesters of study-at the end of the first, second, and third years. Predictor variables were chosen from four domains: 1) high school grade point averages in physics, mathematics, and the Czech language over 4 years of study, 2) results of admission tests in biology, chemistry, and physics, 3) admission committee's assessment of the applicant's ability to reproduce a text, motivation to study medicine, and social maturity, and 4) scores on the sentimentality and attachment scales of the Tridimensional Personality Questionnaire. The regression model, which included performance in high school physics, results of the admission test in physics, assessment of the applicant's motivation to study medicine, and attachment scale score, accounted for 32% of the change in grade point average over six semesters of study. The regression models using the first-, second-, and third-year grade point averages as the dependent variables showed slightly decreasing amounts of explained variance toward the end of the third year of study and within domains, changing the structure of predictor variables. The results suggest that variables chosen from the assessment domains of high school performance, written entrance examination, admission interview, and personality traits may be significant predictors of academic success during the first 3 years of medical study.

  16. A new method of real-time detection of changes in periodic data stream

    NASA Astrophysics Data System (ADS)

    Lyu, Chen; Lu, Guoliang; Cheng, Bin; Zheng, Xiangwei

    2017-07-01

    The change point detection in periodic time series is much desirable in many practical usages. We present a novel algorithm for this task, which includes two phases: 1) anomaly measure- on the basis of a typical regression model, we propose a new computation method to measure anomalies in time series which does not require any reference data from other measurement(s); 2) change detection- we introduce a new martingale test for detection which can be operated in an unsupervised and nonparametric way. We have conducted extensive experiments to systematically test our algorithm. The results make us believe that our algorithm can be directly applicable in many real-world change-point-detection applications.

  17. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    NASA Astrophysics Data System (ADS)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in-situ measurements of the nearshore wave climate, using a pressure transducer, offshore wave climate from a directional wavebuoy, and rainfall records from nearby weather stations were collected. Combining beach elevation information from the georeferenced point clouds with a continuous time series of wave climate provides an indication of the variation in wave energy delivered to the cliff face. The rates of retreat were found to agree with the existing rates that are currently used in shoreline management. The additional geotechnical detail afforded by applying the M3C2 method to a hard rock environment provides not only a means of obtaining volumetric changes with confidence, but also a clear illustration of the locations of failure on the cliff face. Monthly cliff scans help to narrow down the timings of failure under energetic wave conditions or periods of heavy rainfall. Volumetric changes and sensitive regions to failure established using this method allows us to capture episodic changes to the cliff face at a high resolution (1 - 2 cm) that are otherwise missed using lower resolution techniques typically used for shoreline management, and to understand in greater detail the geotechnical behaviour of hard rock cliffs and determine rates of erosion with greater accuracy.

  18. Comparison of anchor-based and distributional approaches in estimating important difference in common cold.

    PubMed

    Barrett, Bruce; Brown, Roger; Mundt, Marlon

    2008-02-01

    Evaluative health-related quality-of-life instruments used in clinical trials should be able to detect small but important changes in health status. Several approaches to minimal important difference (MID) and responsiveness have been developed. To compare anchor-based and distributional approaches to important difference and responsiveness for the Wisconsin Upper Respiratory Symptom Survey (WURSS), an illness-specific quality of life outcomes instrument. Participants with community-acquired colds self-reported daily using the WURSS-44. Distribution-based methods calculated standardized effect size (ES) and standard error of measurement (SEM). Anchor-based methods compared daily interval changes to global ratings of change, using: (1) standard MID methods based on correspondence to ratings of "a little better" or "somewhat better," and (2) two-level multivariate regression models. About 150 adults were monitored throughout their colds (1,681 sick days.): 88% were white, 69% were women, and 50% had completed college. The mean age was 35.5 years (SD = 14.7). WURSS scores increased 2.2 points from the first to second day, and then dropped by an average of 8.2 points per day from days 2 to 7. The SEM averaged 9.1 during these 7 days. Standard methods yielded a between day MID of 22 points. Regression models of MID projected 11.3-point daily changes. Dividing these estimates of small-but-important-difference by pooled SDs yielded coefficients of .425 for standard MID, .218 for regression model, .177 for SEM, and .157 for ES. These imply per-group sample sizes of 870 using ES, 616 for SEM, 302 for regression model, and 89 for standard MID, assuming alpha = .05, beta = .20 (80% power), and two-tailed testing. Distribution and anchor-based approaches provide somewhat different estimates of small but important difference, which in turn can have substantial impact on trial design.

  19. Probabilistic change mapping from airborne LiDAR for post-disaster damage assessment

    NASA Astrophysics Data System (ADS)

    Jalobeanu, A.; Runyon, S. C.; Kruse, F. A.

    2013-12-01

    When both pre- and post-event LiDAR point clouds are available, change detection can be performed to identify areas that were most affected by a disaster event, and to obtain a map of quantitative changes in terms of height differences. In the case of earthquakes in built-up areas for instance, first responders can use a LiDAR change map to help prioritize search and recovery efforts. The main challenge consists of producing reliable change maps, robust to collection conditions, free of processing artifacts (due for instance to triangulation or gridding), and taking into account the various sources of uncertainty. Indeed, datasets acquired within a few years interval are often of different point density (sometimes an order of magnitude higher for recent data), different acquisition geometries, and very likely suffer from georeferencing errors and geometric discrepancies. All these differences might not be important for producing maps from each dataset separately, but they are crucial when performing change detection. We have developed a novel technique for the estimation of uncertainty maps from the LiDAR point clouds, using Bayesian inference, treating all variables as random. The main principle is to grid all points on a common grid before attempting any comparison, as working directly with point clouds is cumbersome and time consuming. A non-parametric approach based on local linear regression was implemented, assuming a locally linear model for the surface. This enabled us to derive error bars on gridded elevations, and then elevation differences. In this way, a map of statistically significant changes could be computed - whereas a deterministic approach would not allow testing of the significance of differences between the two datasets. This approach allowed us to take into account not only the observation noise (due to ranging, position and attitude errors) but also the intrinsic roughness of the observed surfaces occurring when scanning vegetation. As only elevation differences above a predefined noise level are accounted for (according to a specified confidence interval related to the allowable false alarm rate) the change detection is robust to all these sources of noise. To first validate the approach, we built small-scale models and scanned them using a terrestrial laser scanner to establish 'ground truth'. Changes were manually applied to the models then new scans were performed and analyzed. Additionally, two airborne datasets of the Monterey Peninsula, California, were processed and analyzed. The first one was acquired during 2010 (with relatively low point density, 1-3 pts/m2), and the second one was acquired during 2012 (with up to 30 pts/m2). To perform the comparison, a new point cloud registration technique was developed and the data were registered to a common 1 m grid. The goal was to correct systematic shifts due to GPS and INS errors, and focus on the actual height differences regardless of the absolute planimetric accuracy of the datasets. Though no major disaster event occurred between the two acquisition dates, sparse changes were detected and interpreted mostly as construction and natural landscape evolution.

  20. Changes in fibroblast mechanostat set point and mechanosensitivity: an adaptive response to mechanical stress in floppy eyelid syndrome.

    PubMed

    Ezra, Daniel G; Ellis, James S; Beaconsfield, Michèle; Collin, Richard; Bailly, Maryse

    2010-08-01

    Floppy eyelid syndrome (FES) is an acquired hyperelasticity disorder affecting the upper eyelid. The tarsal plate becomes hyperelastic with a loss of intrinsic rigidity. As a result, the eyelid is subjected to cyclic mechanical stress. This condition was used as a model to investigate changes in dynamic fibroblast contractility in the context of chronic cyclic mechanical stress. Contractile efficiency was investigated in a free-floating, three-dimensional collagen matrix model. Intrinsic cellular force measurements and responses to changes in gel tension were explored using a tensioning culture force monitor (t-CFM). Gene expression differences between cell lines exhibiting differences in contractile phenotype were explored with a genome level microarray platform and RT-PCR. FES tarsal plate fibroblasts (TFs) showed an increased contractile efficiency compared with the control, and t-CFM measurements confirmed a higher intrinsic cellular force at plateau levels. Cyclic stretch/relaxation experiments determined that TFs in FES maintained a functional tensional homeostasis response but with an altered sensitivity, operating around a higher mechanostat set point. Gene expression array and RT-PCR analysis identified V-CAM1 and PPP1R3C as being upregulated in FES TFs. These changes may represent an adaptive response that allows tensional homeostasis to be maintained at the high levels of tissue stress experienced in FES. Gene expression studies point to a role for V-CAM1 and PPP1R3C in mediating changes in the dynamic range of mechanosensitivity of TFs. This work identifies FES as a useful model for the study of adaptive physiological responses to mechanical stress.

  1. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    NASA Astrophysics Data System (ADS)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  2. Modeling the sustainable development of innovation in transport construction based on the communication approach

    NASA Astrophysics Data System (ADS)

    Revunova, Svetlana; Vlasenko, Vyacheslav; Bukreev, Anatoly

    2017-10-01

    The article proposes the models of innovative activity development, which is driven by the formation of “points of innovation-driven growth”. The models are based on the analysis of the current state and dynamics of innovative development of construction enterprises in the transport sector and take into account a number of essential organizational and economic changes in management. The authors substantiate implementing such development models as an organizational innovation that has a communication genesis. The use of the communication approach to the formation of “points of innovation-driven growth” allowed the authors to apply the mathematical tools of the graph theory in order to activate the innovative activity of the transport industry in the region. As a result, the authors have proposed models that allow constructing an optimal mechanism for the formation of “points of innovation-driven growth”.

  3. Two-terminal conductance fluctuations in the integer quantum Hall regime

    NASA Astrophysics Data System (ADS)

    Ho, Chang-Ming

    1999-09-01

    Motivated by recent experiments on the conductance fluctuations in mesoscopic integer quantum Hall systems, we consider a model in which the Coulomb interactions are incorporated into the picture of edge-state transport through a single saddle point. The occupancies of classical localized states in the two-dimensional electron system change due to the interactions between electrons when the gate voltage on top of the device is varied. The electrostatic potential between the localized states and the saddle point causes fluctuations of the saddle-point potential and thus fluctuations of the transmission probability of edge states. This simple model is studied numerically and compared with the observation.

  4. STRUM: structure-based prediction of protein stability changes upon single-point mutation.

    PubMed

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-10-01

    Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. http://zhanglab.ccmb.med.umich.edu/STRUM/ CONTACT: qiang@suda.edu.cn and zhng@umich.edu Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. STRUM: structure-based prediction of protein stability changes upon single-point mutation

    PubMed Central

    Quan, Lijun; Lv, Qiang; Zhang, Yang

    2016-01-01

    Motivation: Mutations in human genome are mainly through single nucleotide polymorphism, some of which can affect stability and function of proteins, causing human diseases. Several methods have been proposed to predict the effect of mutations on protein stability; but most require features from experimental structure. Given the fast progress in protein structure prediction, this work explores the possibility to improve the mutation-induced stability change prediction using low-resolution structure modeling. Results: We developed a new method (STRUM) for predicting stability change caused by single-point mutations. Starting from wild-type sequences, 3D models are constructed by the iterative threading assembly refinement (I-TASSER) simulations, where physics- and knowledge-based energy functions are derived on the I-TASSER models and used to train STRUM models through gradient boosting regression. STRUM was assessed by 5-fold cross validation on 3421 experimentally determined mutations from 150 proteins. The Pearson correlation coefficient (PCC) between predicted and measured changes of Gibbs free-energy gap, ΔΔG, upon mutation reaches 0.79 with a root-mean-square error 1.2 kcal/mol in the mutation-based cross-validations. The PCC reduces if separating training and test mutations from non-homologous proteins, which reflects inherent correlations in the current mutation sample. Nevertheless, the results significantly outperform other state-of-the-art methods, including those built on experimental protein structures. Detailed analyses show that the most sensitive features in STRUM are the physics-based energy terms on I-TASSER models and the conservation scores from multiple-threading template alignments. However, the ΔΔG prediction accuracy has only a marginal dependence on the accuracy of protein structure models as long as the global fold is correct. These data demonstrate the feasibility to use low-resolution structure modeling for high-accuracy stability change prediction upon point mutations. Availability and Implementation: http://zhanglab.ccmb.med.umich.edu/STRUM/ Contact: qiang@suda.edu.cn and zhng@umich.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27318206

  6. Human-Robot Interaction: Intention Recognition and Mutual Entrainment

    DTIC Science & Technology

    2012-08-18

    A 3D model and its controller proposed by Shih et al. [35] guarantee the input-to-state stability during turning, but the model has point feet and...Music Research, vol. 30, no. 2, pp. 159-171, 2001. [21] Y. Shiu, N. Cho, P.-C. Chang, and C.-C. Kuo , “Robust On-Line Beat Tracking with Kalman...2009. [35] C.-L. Shih , J.W. Grizzle, and C. Chevallereau, “From Stable Walking to Steering of a 3D Bipedal Robot with Passive Point Feet,” Robotica

  7. What's Mine is Yours

    PubMed Central

    Jones, Ashlin; Pope, James; Coberley, Carter; Wells, Aaron

    2017-01-01

    Objective: To evaluate the relationship between partner well-being and outcomes of chronically diseased individuals participating in an employer sponsored well-being improvement program. Methods: Using the Actor Partner Interdependence Model, we evaluated whether prior partner well-being was associated with well-being change among 2025 couples. Logistic regression models were then used to explore how spousal well-being risks relate to development and elimination of risks among program participants. Results: High well-being partners were associated with positive well-being change. Specifically, the partner effect for spouses’ high well-being on disease management participants was a 1.5 point higher well-being in the following time period (P = 0.001) while the partner effect of participants’ high well-being on spouses was nearly 1.1 points (P = 0.010). Conclusions: Well-being within couples is interdependent, and partner well-being is an important predictor of individual well-being change. PMID:28045795

  8. Detection of Local Temperature Change on HTS Cables via Time-Frequency Domain Reflectometry

    NASA Astrophysics Data System (ADS)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Ji, Gyeong Hwan; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2017-07-01

    High temperature superconducting (HTS) cables are drawing attention as transmission and distribution cables in future grid, and related researches on HTS cables have been conducted actively. As HTS cables have come to the demonstration stage, failures of cooling systems inducing quench phenomenon of the HTS cables have become significant. Several diagnosis of the HTS cables have been developed but there are still some limitations of the experimental setup. In this paper, a non-destructive diagnostic technique for the detection of the local temperature change point is proposed. Also, a simulation model of HTS cables with a local temperature change point is suggested to verify the proposed diagnosis. The performance of the diagnosis is checked by comparative analysis between the proposed simulation results and experiment results of a real-world HTS cable. It is expected that the suggested simulation model and diagnosis will contribute to the commercialization of HTS cables in the power grid.

  9. A Complex Network Perspective on Clinical Science

    PubMed Central

    Hofmann, Stefan G.; Curtiss, Joshua; McNally, Richard J.

    2016-01-01

    Contemporary classification systems for mental disorders assume that abnormal behaviors are expressions of latent disease entities. An alternative to the latent disease model is the complex network approach. Instead of assuming that symptoms arise from an underlying disease entity, the complex network approach holds that disorders exist as systems of interrelated elements of a network. This approach also provides a framework for the understanding of therapeutic change. Depending on the structure of the network, change can occur abruptly once the network reaches a critical threshold (the tipping point). Homogeneous and highly connected networks often recover more slowly from local perturbations when the network approaches the tipping point, allowing for the possibility to predict treatment change, relapse, and recovery. In this article we discuss the complex network approach as an alternative to the latent disease model, and we discuss its implications for classification, therapy, relapse, and recovery. PMID:27694457

  10. A Data Snapshot Approach for Making Real-Time Predictions in Basketball.

    PubMed

    Kayhan, Varol Onur; Watkins, Alison

    2018-06-08

    This article proposes a novel approach, called data snapshots, to generate real-time probabilities of winning for National Basketball Association (NBA) teams while games are being played. The approach takes a snapshot from a live game, identifies historical games that have the same snapshot, and uses the outcomes of these games to calculate the winning probabilities of the teams in this game as the game is underway. Using data obtained from 20 seasons worth of NBA games, we build three models and compare their accuracies to a baseline accuracy. In Model 1, each snapshot includes the point difference between the home and away teams at a given second of the game. In Model 2, each snapshot includes the net team strength in addition to the point difference at a given second. In Model 3, each snapshot includes the rate of score change in addition to the point difference at a given second. The results show that all models perform better than the baseline accuracy, with Model 1 being the best model.

  11. 12 CFR Appendix H to Part 1026 - Closed-End Model Forms and Clauses

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... change (frequency). • [Your interest rate cannot increase or decrease more than __ percentage points at... over the term of the loan. How Your Payment Can Change • Your payment can change (frequency) based on... common periods occur with equal frequency, the smaller of such common periods shall be the unit-period...

  12. Projecting Global Decadal Change in Water Supply for Strategic Planning: Window Size Sensitivity in CMIP5 GCMs

    NASA Astrophysics Data System (ADS)

    Luck, M.; Landis, M.; Gassert, F.; Luo, T.; Reig, P.

    2013-12-01

    Climate adaptation and strategic planning by states, corporations, and long-term investors require reliable information on the range of possible climatic changes. However, most decision makers are incapable of planning over the century-scale time horizons for which global climate models (GCMs) are developed. Even the most forward-looking actors rarely consider scenarios more than several decades into the future. The mismatch in model design and practical demands poses a challenge in extracting useful information on the decadal scale from global climate change models. Here, we explore options and limitations in generating decadal water supply change projections, as evaluated for the World Resources Institute's Aqueduct project's estimates of future change in water stress. Our approach uses an ensemble of six CMIP5 GCMs, selected to represent a broad lineage of models that best reproduce the mean and standard deviation of recent streamflow records in 18 large river basins, bias corrected to GLDAS-2.0 runoff. We examine sensitivity of point estimates of climate normal supply and water supply variability (interannual and seasonal) at the years 2020, 2030, and 2040, with a focus on using temporal windows of different lengths (11-, 21-, and 31-years) to generate the point estimates. With the aim of creating practical information for non-expert audiences, we will discuss the persistent question of 'how can we balance uncertainty and usability in designing scientific data products?'

  13. Turbine Engine Research Center (TERC) Data System Enhancement and Test Article Evaluation. Delivery Order 0002: TERC Aeromechanical Characterization

    DTIC Science & Technology

    2005-06-01

    test, the entire turbulence model was changed from standard k- epsilon to Spalart- Allmaras. Using these different tools of turbulence models, a few...this research, leaving only pre-existing finite element models to be used. At some point a NASTRAN model was developed for vibrations analysis but

  14. A Vernacular for Linear Latent Growth Models

    ERIC Educational Resources Information Center

    Hancock, Gregory R.; Choi, Jaehwa

    2006-01-01

    In its most basic form, latent growth modeling (latent curve analysis) allows an assessment of individuals' change in a measured variable X over time. For simple linear models, as with other growth models, parameter estimates associated with the a construct (amount of X at a chosen temporal reference point) and b construct (growth in X per unit…

  15. Global change and terrestrial hydrology - A review

    NASA Technical Reports Server (NTRS)

    Dickinson, Robert E.

    1991-01-01

    This paper reviews the role of terrestrial hydrology in determining the coupling between the surface and atmosphere. Present experience with interactive numerical simulation is discussed and approaches to the inclusion of land hydrology in global climate models ae considered. At present, a wide range of answers as to expected changes in surface hydrology is given by nominally similar models. Studies of the effects of tropical deforestation and global warming illustrate this point.

  16. An improved approach for measuring the impact of multiple CO2 conductances on the apparent photorespiratory CO2 compensation point through slope-intercept regression

    USDA-ARS?s Scientific Manuscript database

    Biochemical models of leaf photosynthesis, which are essential for understanding the impact of photosynthesis to changing environments, depend on accurate parameterizations. The CO2 photocompensation point can be especially difficult to determine accurately but can be measured from the intersection ...

  17. Added Punch with PowerPoint: College Students Combine PowerPoint and Multicultural Music

    ERIC Educational Resources Information Center

    Miller, Brigetta F.

    2004-01-01

    While working with music teachers in training at the university level, the author learned how helpful it can be to model a curriculum that mirrors America's changing demographics. As a Native American who grew up on the Stockbridge-Munsee Indian Reservation, in central Wisconsin, she discovered that Native history and culture were absent from…

  18. Identifying influential data points in hydrological model calibration and their impact on streamflow predictions

    NASA Astrophysics Data System (ADS)

    Wright, David; Thyer, Mark; Westra, Seth

    2015-04-01

    Highly influential data points are those that have a disproportionately large impact on model performance, parameters and predictions. However, in current hydrological modelling practice the relative influence of individual data points on hydrological model calibration is not commonly evaluated. This presentation illustrates and evaluates several influence diagnostics tools that hydrological modellers can use to assess the relative influence of data. The feasibility and importance of including influence detection diagnostics as a standard tool in hydrological model calibration is discussed. Two classes of influence diagnostics are evaluated: (1) computationally demanding numerical "case deletion" diagnostics; and (2) computationally efficient analytical diagnostics, based on Cook's distance. These diagnostics are compared against hydrologically orientated diagnostics that describe changes in the model parameters (measured through the Mahalanobis distance), performance (objective function displacement) and predictions (mean and maximum streamflow). These influence diagnostics are applied to two case studies: a stage/discharge rating curve model, and a conceptual rainfall-runoff model (GR4J). Removing a single data point from the calibration resulted in differences to mean flow predictions of up to 6% for the rating curve model, and differences to mean and maximum flow predictions of up to 10% and 17%, respectively, for the hydrological model. When using the Nash-Sutcliffe efficiency in calibration, the computationally cheaper Cook's distance metrics produce similar results to the case-deletion metrics at a fraction of the computational cost. However, Cooks distance is adapted from linear regression with inherit assumptions on the data and is therefore less flexible than case deletion. Influential point detection diagnostics show great potential to improve current hydrological modelling practices by identifying highly influential data points. The findings of this study establish the feasibility and importance of including influential point detection diagnostics as a standard tool in hydrological model calibration. They provide the hydrologist with important information on whether model calibration is susceptible to a small number of highly influent data points. This enables the hydrologist to make a more informed decision of whether to (1) remove/retain the calibration data; (2) adjust the calibration strategy and/or hydrological model to reduce the susceptibility of model predictions to a small number of influential observations.

  19. An analytical model for the calculation of the change in transmembrane potential produced by an ultrawideband electromagnetic pulse.

    PubMed

    Hart, Francis X; Easterly, Clay E

    2004-05-01

    The electric field pulse shape and change in transmembrane potential produced at various points within a sphere by an intense, ultrawideband pulse are calculated in a four stage, analytical procedure. Spheres of two sizes are used to represent the head of a human and the head of a rat. In the first stage, the pulse is decomposed into its Fourier components. In the second stage, Mie scattering analysis (MSA) is performed for a particular point in the sphere on each of the Fourier components, and the resulting electric field pulse shape is obtained for that point. In the third stage, the long wavelength approximation (LWA) is used to obtain the change in transmembrane potential in a cell at that point. In the final stage, an energy analysis is performed. These calculations are performed at 45 points within each sphere. Large electric fields and transmembrane potential changes on the order of a millivolt are produced within the brain, but on a time scale on the order of nanoseconds. The pulse shape within the brain differs considerably from that of the incident pulse. Comparison of the results for spheres of different sizes indicates that scaling of such pulses across species is complicated. Published 2004 Wiley-Liss, Inc.

  20. Development of a Linear Stirling Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC s non-linear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  1. Development of a Linear Stirling System Model with Varying Heat Inputs

    NASA Technical Reports Server (NTRS)

    Regan, Timothy F.; Lewandowski, Edward J.

    2007-01-01

    The linear model of the Stirling system developed by NASA Glenn Research Center (GRC) has been extended to include a user-specified heat input. Previously developed linear models were limited to the Stirling convertor and electrical load. They represented the thermodynamic cycle with pressure factors that remained constant. The numerical values of the pressure factors were generated by linearizing GRC's nonlinear System Dynamic Model (SDM) of the convertor at a chosen operating point. The pressure factors were fixed for that operating point, thus, the model lost accuracy if a transition to a different operating point were simulated. Although the previous linear model was used in developing controllers that manipulated current, voltage, and piston position, it could not be used in the development of control algorithms that regulated hot-end temperature. This basic model was extended to include the thermal dynamics associated with a hot-end temperature that varies over time in response to external changes as well as to changes in the Stirling cycle. The linear model described herein includes not only dynamics of the piston, displacer, gas, and electrical circuit, but also the transient effects of the heater head thermal inertia. The linear version algebraically couples two separate linear dynamic models, one model of the Stirling convertor and one model of the thermal system, through the pressure factors. The thermal system model includes heat flow of heat transfer fluid, insulation loss, and temperature drops from the heat source to the Stirling convertor expansion space. The linear model was compared to a nonlinear model, and performance was very similar. The resulting linear model can be implemented in a variety of computing environments, and is suitable for analysis with classical and state space controls analysis techniques.

  2. Trends in hydrological extremes in the Senegal and the Niger Rivers

    NASA Astrophysics Data System (ADS)

    Wilcox, C.; Bodian, A.; Vischel, T.; Panthou, G.; Quantin, G.

    2017-12-01

    In recent years, West Africa has witnessed several floods of unprecedented magnitude. Although the evolution of hydrological extremes has been evaluated in the region to some extent, results lack regional coverage, significance levels, uncertainty estimations, model selection criteria, or a combination of the above. In this study, Generalized Extreme Value (GEV) distributions with and without various non-stationary temporal covariates are applied to annual maxima of daily discharge (AMAX) data sets in the Sudano-Guinean part of the Senegal River basin and in the Sahelian part of the Niger River basin. The data ranges from the 1950s to the 2010s. The two models of best fit most often selected (with an alpha=0.05 certainty level) were 1) a double-linear model for the central tendency parameter (μ) with stationary dispersion (σ) and 2) a double-linear model for both parameters. Change points are relatively consistent for the Senegal basin, with stations switching from a decreasing streamflow trend to an increasing streamflow trend in the early 1980s. In the Niger basin the trend in μ was generally positive with an increase in slope after the change point, but the change point location was less consistent. The study clearly demonstrates the significant trends in extreme discharge values in West Africa over the past six decades. Moreover, it proposes a clear methodology for comparing GEV models and selecting the best for use. The return levels generated from the chosen models can be applied to river basin management and hydraulic works sizing. The results provide a first evaluation of non-stationarity in extreme hydrological values in West Africa that is accompanied by significance levels, uncertainties, and non-stationary return level estimations .

  3. Chroma-preserved luma controlling technique using YCbCr color space

    NASA Astrophysics Data System (ADS)

    Lee, Sooyeon; Kwak, Youngshin; Kim, Youn Jin

    2013-02-01

    YCbCr color space composed of luma and chominance components is preferred for its ease of image processing. However the non-orthogonality between YCbCr components induces unwanted perceived chroma change as controlling luma values. In this study, a new method was designed for the unwanted chroma change compensation generated by luma change. For six different YCC_hue angles, data points named `Original data' generated with uniformly distributed luma and Cb, Cr values. Then the weight values were applied to luma values of `Original data' set resulting in `Test data' set followed by `new YCC_chroma' calculation having miminum CIECAM02 ΔC between original and test data for `Test data' set. Finally mathematical model is developed to predict amount of YCC_chroma values to compensate CIECAM02 chroma changes. This model implemented for luma controlling algorithm having constant perceived chroma. The performance was tested numerically using data points and images. After compensation the result is improved 51.69% than that before compensation when CIECAM02 Δ C between `Original data' and `Test data' after compensation is compared. When new model is applied to test images, there is 32.03% improvement.

  4. Modeling transitions in body composition: the approach to steady state for anthropometric measures and physiological functions in the Minnesota human starvation study

    PubMed Central

    Hargrove, James L; Heinz, Grete; Heinz, Otto

    2008-01-01

    Background This study evaluated whether the changes in several anthropometric and functional measures during caloric restriction combined with walking and treadmill exercise would fit a simple model of approach to steady state (a plateau) that can be solved using spreadsheet software (Microsoft Excel®). We hypothesized that transitions in waist girth and several body compartments would fit a simple exponential model that approaches a stable steady-state. Methods The model (an equation) was applied to outcomes reported in the Minnesota starvation experiment using Microsoft Excel's Solver® function to derive rate parameters (k) and projected steady state values. However, data for most end-points were available only at t = 0, 12 and 24 weeks of caloric restriction. Therefore, we derived 2 new equations that enable model solutions to be calculated from 3 equally spaced data points. Results For the group of male subjects in the Minnesota study, body mass declined with a first order rate constant of about 0.079 wk-1. The fractional rate of loss of fat free mass, which includes components that remained almost constant during starvation, was 0.064 wk-1, compared to a rate of loss of fat mass of 0.103 wk-1. The rate of loss of abdominal fat, as exemplified by the change in the waist girth, was 0.213 wk-1. On average, 0.77 kg was lost per cm of waist girth. Other girths showed rates of loss between 0.085 and 0.131 wk-1. Resting energy expenditure (REE) declined at 0.131 wk-1. Changes in heart volume, hand strength, work capacity and N excretion showed rates of loss in the same range. The group of 32 subjects was close to steady state or had already reached steady state for the variables under consideration at the end of semi-starvation. Conclusion When energy intake is changed to new, relatively constant levels, while physical activity is maintained, changes in several anthropometric and physiological measures can be modeled as an exponential approach to steady state using software that is widely available. The 3 point method for parameter estimation provides a criterion for testing whether change in a variable can be usefully modelled with exponential kinetics within the time range for which data are available. PMID:18840293

  5. Accommodating Missing Data in Mixture Models for Classification by Opinion-Changing Behavior.

    ERIC Educational Resources Information Center

    Hill, Jennifer L.

    2001-01-01

    Explored the assumptions implicit in models reflecting three different approaches to missing survey response data using opinion data collected from Swiss citizens at four time points over nearly 2 years. Results suggest that the latently ignorable model has the least restrictive structural assumptions. Discusses the idea of "durable…

  6. Structured Constructs Models Based on Change-Point Analysis

    ERIC Educational Resources Information Center

    Shin, Hyo Jeong; Wilson, Mark; Choi, In-Hee

    2017-01-01

    This study proposes a structured constructs model (SCM) to examine measurement in the context of a multidimensional learning progression (LP). The LP is assumed to have features that go beyond a typical multidimentional IRT model, in that there are hypothesized to be certain cross-dimensional linkages that correspond to requirements between the…

  7. An open-population hierarchical distance sampling model

    USGS Publications Warehouse

    Sollmann, Rachel; Beth Gardner,; Richard B Chandler,; Royle, J. Andrew; T Scott Sillett,

    2015-01-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for direct estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for island scrub-jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying number of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  8. An open-population hierarchical distance sampling model.

    PubMed

    Sollmann, Rahel; Gardner, Beth; Chandler, Richard B; Royle, J Andrew; Sillett, T Scott

    2015-02-01

    Modeling population dynamics while accounting for imperfect detection is essential to monitoring programs. Distance sampling allows estimating population size while accounting for imperfect detection, but existing methods do not allow for estimation of demographic parameters. We develop a model that uses temporal correlation in abundance arising from underlying population dynamics to estimate demographic parameters from repeated distance sampling surveys. Using a simulation study motivated by designing a monitoring program for Island Scrub-Jays (Aphelocoma insularis), we investigated the power of this model to detect population trends. We generated temporally autocorrelated abundance and distance sampling data over six surveys, using population rates of change of 0.95 and 0.90. We fit the data generating Markovian model and a mis-specified model with a log-linear time effect on abundance, and derived post hoc trend estimates from a model estimating abundance for each survey separately. We performed these analyses for varying numbers of survey points. Power to detect population changes was consistently greater under the Markov model than under the alternatives, particularly for reduced numbers of survey points. The model can readily be extended to more complex demographic processes than considered in our simulations. This novel framework can be widely adopted for wildlife population monitoring.

  9. A non-equilibrium neutral model for analysing cultural change.

    PubMed

    Kandler, Anne; Shennan, Stephen

    2013-08-07

    Neutral evolution is a frequently used model to analyse changes in frequencies of cultural variants over time. Variants are chosen to be copied according to their relative frequency and new variants are introduced by a process of random mutation. Here we present a non-equilibrium neutral model which accounts for temporally varying population sizes and mutation rates and makes it possible to analyse the cultural system under consideration at any point in time. This framework gives an indication whether observed changes in the frequency distributions of a set of cultural variants between two time points are consistent with the random copying hypothesis. We find that the likelihood of the existence of the observed assemblage at the end of the considered time period (expressed by the probability of the observed number of cultural variants present in the population during the whole period under neutral evolution) is a powerful indicator of departures from neutrality. Further, we study the effects of frequency-dependent selection on the evolutionary trajectories and present a case study of change in the decoration of pottery in early Neolithic Central Europe. Based on the framework developed we show that neutral evolution is not an adequate description of the observed changes in frequency. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Single point dilution method for the quantitative analysis of antibodies to the gag24 protein of HIV-1.

    PubMed

    Palenzuela, D O; Benítez, J; Rivero, J; Serrano, R; Ganzó, O

    1997-10-13

    In the present work a concept proposed in 1992 by Dopotka and Giesendorf was applied to the quantitative analysis of antibodies to the p24 protein of HIV-1 in infected asymptomatic individuals and AIDS patients. Two approaches were analyzed, a linear model OD = b0 + b1.log(titer) and a nonlinear log(titer) = alpha.OD beta, similar to the Dopotka-Giesendorf's model. The above two proposed models adequately fit the dependence of the optical density values at a single point dilution, and titers achieved by the end point dilution method (EPDM). Nevertheless, the nonlinear model better fits the experimental data, according to residuals analysis. Classical EPDM was compared with the new single point dilution method (SPDM) using both models. The best correlation between titers calculated using both models and titers achieved by EPDM was obtained with the nonlinear model. The correlation coefficients for the nonlinear and linear models were r = 0.85 and r = 0.77, respectively. A new correction factor was introduced into the nonlinear model and this reduced the day-to-day variation of titer values. In general, SPDM saves time, reagents and is more precise and sensitive to changes in antibody levels, and therefore has a higher resolution than EPDM.

  11. Tipping Points in Resource Abundance Drive Irreversible Changes in Community Structure.

    PubMed

    Haney, Seth D; Siepielski, Adam M

    2018-05-01

    Global climate change has made what were seemingly extraordinary environmental conditions, such as prolonged droughts, commonplace. One consequence of extreme environmental change is concomitant changes in resource abundance. How will such extreme resource changes impact biodiversity? We developed a trait-based consumer-resource model to examine how resource abundance affects the potential for adaptive evolution and coexistence among competitors. We found that moderate changes in resource abundance have little effect on trait evolution. However, when resource scarcities were sufficiently extreme, a critical transition-a tipping point-occurred, which caused consumer traits to diverge and restructured the community in a way that outlasted the scarcity. Therefore, even though traits can evolve in response to minor resource fluctuations, large environmental shifts may be necessary for producing long-lasting impacts on community structure. These results may also help to illuminate patterns of stasis frequently observed in nature, despite the considerable evidence demonstrating rapid evolutionary change.

  12. Turning Points in the Lives of Youth of With/Without ADHD: Are They Linked to Changes in Substance Use?

    PubMed

    Jensen, Peter S; Yuki, Kumi; Murray, Desiree; Mitchell, John T; Weisner, Thomas; Hinshaw, Steven; Molina, Brooke; Swanson, James; Arnold, L Eugene; Hechtman, Lily; Wells, Karen

    2017-04-01

    This study examines the behavior beliefs, social supports, and turning points in individuals with/without ADHD related to their substance use/abuse (SU/A) decisions. The coded interviews from 60 participants with/without ADHD were compared for their SU/A decisions and precipitants with these decisions among abstainers, persisters, and desisters. ADHD participants reported fewer social advantages to avoid SU/A than non-ADHD participants. Desisters and persisters reported more social advantages of using drugs than abstainers. Persisters reported both more negative and positive psychological/physiological effects of SU/A. ADHD participants reported fewer positive role models in their lives. Non-ADHD patients reported more positive turning points than ADHD participants, regardless of SU/A status. ADHD individuals face challenges in making healthy decisions about SU/A due to lack of positive role models. Reinforcing accurate behavioral beliefs may be important to change behaviors in individuals with SU/A or to prevent SU/A initiation in ADHD individuals.

  13. Extreme precipitation response to climate perturbations in an atmospheric mesoscale model

    NASA Astrophysics Data System (ADS)

    Attema, Jisk J.; Loriaux, Jessica M.; Lenderink, Geert

    2014-01-01

    Observations of extreme (sub-)hourly precipitation at mid-latitudes show a large dependency on the dew point temperature often close to 14% per degree—2 times the dependency of the specific humidity on dew point temperature which is given by the Clausius-Clapeyron (CC) relation. By simulating a selection of 11 cases over the Netherlands characterized by intense showers, we investigate this behavior in the non-hydrostatic weather prediction model Harmonie at a resolution of 2.5 km. These experiments are repeated using perturbations of the atmospheric profiles of temperature and humidity: (i) using an idealized approach with a 2° warmer (colder) atmosphere assuming constant relative humidity, and (ii) using changes in temperature and humidity derived from a long climate change simulation at 2° global warming. All perturbations have a difference in the local dew point temperature compared to the reference of approximately 2°. Differences are considerable between the cases, with dependencies ranging from almost zero to an increase of 18% per degree rise of the dew point temperature. On average however, we find an increase of extreme precipitation intensity of 11% per degree for the idealized perturbation, and 9% per degree for the climate change perturbation. For the most extreme events these dependencies appear to approach a rate of 11-14% per degree, in closer agreement with the observed relation.

  14. Three-dimensional biometric study of palatine rugae in children with a mixed-model analysis: a 9-year longitudinal study.

    PubMed

    Kim, Hong-Kyun; Moon, Sung-Chul; Lee, Shin-Jae; Park, Young-Seok

    2012-05-01

    The palatine rugae have been suggested as stable reference points for superimposing 3-dimensional virtual models before and after orthodontic treatment. We investigated 3-dimensional changes in the palatine rugae of children over 9 years. Complete dental stone casts were biennially prepared for 56 subjects (42 girls, 14 boys) aged from 6 to 14 years. Using 3-dimensional laser scanning and reconstruction software, virtual casts were constructed. Medial and lateral points of the first anterior 3 rugae were defined as the 3-dimensional landmarks. The length of each ruga and the distance between the end points of the rugae were measured in virtual 3-dimensional space. The measurement changes over time were analyzed by using the mixed-effect method for longitudinal data. There were slight increases in the linear measurements in the rugae areas: the lengths of the rugae and the distances between them during the observation period. However, the amounts of the increments were relatively small when compared with the initial values and individual random variability. Although age affected the linear dimensions significantly, it was not clinically significant; the rugae were relatively stable. The use of the palatine rugae as reference points for superimposing and evaluating changes during orthodontic treatment was thought to be possible with special cautions. Copyright © 2012 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  15. Measuring change for a multidimensional test using a generalized explanatory longitudinal item response model.

    PubMed

    Cho, Sun-Joo; Athay, Michele; Preacher, Kristopher J

    2013-05-01

    Even though many educational and psychological tests are known to be multidimensional, little research has been done to address how to measure individual differences in change within an item response theory framework. In this paper, we suggest a generalized explanatory longitudinal item response model to measure individual differences in change. New longitudinal models for multidimensional tests and existing models for unidimensional tests are presented within this framework and implemented with software developed for generalized linear models. In addition to the measurement of change, the longitudinal models we present can also be used to explain individual differences in change scores for person groups (e.g., learning disabled students versus non-learning disabled students) and to model differences in item difficulties across item groups (e.g., number operation, measurement, and representation item groups in a mathematics test). An empirical example illustrates the use of the various models for measuring individual differences in change when there are person groups and multiple skill domains which lead to multidimensionality at a time point. © 2012 The British Psychological Society.

  16. A Model for Selection of Eyespots on Butterfly Wings.

    PubMed

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in nature. We therefore conclude that changes in the proximal boundary conditions are sufficient to explain the empirically observed distribution of eyespot focus points on the entire wing surface. The model predicts, subject to experimental verification, that the source strength of the activator at the proximal boundary should be lower in wing cells in which focus points form than in those that lack focus points. The model suggests that the number and locations of eyespot foci on the wing disc could be largely controlled by two kinds of gradients along two different directions, that is, the first one is the gradient in spatially varying parameters such as the reaction rate along the anterior-posterior direction on the proximal boundary of the wing cells, and the second one is the gradient in source values of the activator along the veins in the proximal-distal direction of the wing cell.

  17. Integrating a Detailed Agricultural Model in a Global Economic Framework: New methods for assessment of climate mitigation and adaptation opportunities

    NASA Astrophysics Data System (ADS)

    Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.

    2010-12-01

    Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.

  18. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: preliminary experience.

    PubMed

    Haque, Muhammad E; Franklin, Tammy; Bokhary, Ujala; Mathew, Liby; Hack, Bradley K; Chang, Anthony; Puri, Tipu S; Prasad, Pottumarthi V

    2014-04-01

    To evaluate longitudinal changes in renal oxygenation and diffusion measurements in a model of reversible unilateral ureteral obstruction (rUUO) which has been shown to induce chronic renal functional deficits in a strain dependent way. C57BL/6 mice show higher degree of functional deficit compared with BALB/c mice. Because hypoxia and development of fibrosis are associated with chronic kidney diseases and are responsible for progression, we hypothesized that MRI measurements would be able to monitor the longitudinal changes in this model and will show strain dependent differences in response. Here blood oxygenation level dependent (BOLD) and diffusion MRI measurements were performed at three time points over a 30 day period in mice with rUUO. The studies were performed on a 4.7T scanner with the mice anesthetized with isoflurane before UUO, 2 and 28 days postrelease of 6 days of obstruction. We found at the early time point (∼2 days after releasing the obstruction), the relative oxygenation in C57Bl/6 mice were lower compared with BALB/c. Diffusion measurements were lower at this time point and reached statistical significance in BALB/c These methods may prove valuable in better understanding the natural progression of kidney diseases and in evaluating novel interventions to limit progression. Copyright © 2013 Wiley Periodicals, Inc.

  19. Modeling elephant-mediated cascading effects of water point closure.

    PubMed

    Hilbers, Jelle P; Van Langevelde, Frank; Prins, Herbert H T; Grant, C C; Peel, Mike J S; Coughenour, Michael B; De Knegt, Henrik J; Slotow, Rob; Smit, Izak P J; Kiker, Greg A; De Boer, Willem F

    2015-03-01

    Wildlife management to reduce the impact of wildlife on their habitat can be done in several ways, among which removing animals (by either culling or translocation) is most often used. There are, however, alternative ways to control wildlife densities, such as opening or closing water points. The effects of these alternatives are poorly studied. In this paper, we focus on manipulating large herbivores through the closure of water points (WPs). Removal of artificial WPs has been suggested in order to change the distribution of African elephants, which occur in high densities in national parks in Southern Africa and are thought to have a destructive effect on the vegetation. Here, we modeled the long-term effects of different scenarios of WP closure on the spatial distribution of elephants, and consequential effects on the vegetation and other herbivores in Kruger National Park, South Africa. Using a dynamic ecosystem model, SAVANNA, scenarios were evaluated that varied in availability of artificial WPs; levels of natural water; and elephant densities. Our modeling results showed that elephants can indirectly negatively affect the distributions of meso-mixed feeders, meso-browsers, and some meso-grazers under wet conditions. The closure of artificial WPs hardly had any effect during these natural wet conditions. Under dry conditions, the spatial distribution of both elephant bulls and cows changed when the availability of artificial water was severely reduced in the model. These changes in spatial distribution triggered changes in the spatial availability of woody biomass over the simulation period of 80 years, and this led to changes in the rest of the herbivore community, resulting in increased densities of all herbivores, except for giraffe and steenbok, in areas close to rivers. The spatial distributions of elephant bulls and cows showed to be less affected by the closure of WPs than most of the other herbivore species. Our study contributes to ecologically informed decisions in wildlife management. The results from this modeling exercise imply that long-term effects of this intervention strategy should always be investigated at an ecosystem scale.

  20. Simulation of mechano-electrical transduction in the cochlea considering basilar membrane vibration and the ionic current of the inner hair cells

    NASA Astrophysics Data System (ADS)

    Lee, Sinyoung; Koike, Takuji

    2018-05-01

    The inner hair cells (IHCs) in the cochlea transduce mechanical vibration of the basilar membrane (BM), caused by sound pressure, to electrical signals that are transported along the acoustic nerve to the brain. The mechanical vibration of the BM and the ionic behaviors of the IHCs have been investigated. However, consideration of the ionic behavior of the IHCs related to mechanical vibration is necessary to investigate the mechano-electrical transduction of the cochlea. In this study, a finite-element model of the BM, which takes into account the non-linear activities of the outer hair cells (OHCs), and an ionic current model of IHC were combined. The amplitudes and phases of the vibration at several points on the BM were obtained from the finite-element model by applying sound pressure. These values were fed into the ionic current model, and changes in membrane potential and calcium ion concentration of the IHCs were calculated. The membrane potential of the IHC at the maximum amplitude point (CF point) was higher than that at the non-CF points. The calcium ion concentration at the CF point was also higher than that at the non-CF points. These results suggest that the cochlea achieves its good frequency discrimination ability through mechano-electrical transduction.

  1. Comparison of the filtering models for airborne LiDAR data by three classifiers with exploration on model transfer

    NASA Astrophysics Data System (ADS)

    Ma, Hongchao; Cai, Zhan; Zhang, Liang

    2018-01-01

    This paper discusses airborne light detection and ranging (LiDAR) point cloud filtering (a binary classification problem) from the machine learning point of view. We compared three supervised classifiers for point cloud filtering, namely, Adaptive Boosting, support vector machine, and random forest (RF). Nineteen features were generated from raw LiDAR point cloud based on height and other geometric information within a given neighborhood. The test datasets issued by the International Society for Photogrammetry and Remote Sensing (ISPRS) were used to evaluate the performance of the three filtering algorithms; RF showed the best results with an average total error of 5.50%. The paper also makes tentative exploration in the application of transfer learning theory to point cloud filtering, which has not been introduced into the LiDAR field to the authors' knowledge. We performed filtering of three datasets from real projects carried out in China with RF models constructed by learning from the 15 ISPRS datasets and then transferred with little to no change of the parameters. Reliable results were achieved, especially in rural area (overall accuracy achieved 95.64%), indicating the feasibility of model transfer in the context of point cloud filtering for both easy automation and acceptable accuracy.

  2. A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement.

    PubMed

    Kranstauber, Bart; Kays, Roland; Lapoint, Scott D; Wikelski, Martin; Safi, Kamran

    2012-07-01

    1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animal's movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks. © 2012 The Authors. Journal of Animal Ecology © 2012 British Ecological Society.

  3. Status of Ongoing Work in Software TRAs/TRLs

    DTIC Science & Technology

    2010-04-29

    to changes/updates being driven by corporate market dynamics • Changes not under control or under the influence of the PMO! • On programs with long...observed and reported esearc articles, peer- reviewed white papers, point papers, early conceptual models n a ca em c , experimental as c researc

  4. Indirect Effects of Environmental Change in Resource Competition Models.

    PubMed

    Kleinhesselink, Andrew R; Adler, Peter B

    2015-12-01

    Anthropogenic environmental change can affect species directly by altering physiological rates or indirectly by changing competitive outcomes. The unknown strength of competition-mediated indirect effects makes it difficult to predict species abundances in the face of ongoing environmental change. Theory developed with phenomenological competition models shows that indirect effects are weak when coexistence is strongly stabilized, but these models lack a mechanistic link between environmental change and species performance. To extend existing theory, we examined the relationship between coexistence and indirect effects in mechanistic resource competition models. We defined environmental change as a change in resource supply points and quantified the resulting competition-mediated indirect effects on species abundances. We found that the magnitude of indirect effects increases in proportion to niche overlap. However, indirect effects also depend on differences in how competitors respond to the change in resource supply, an insight hidden in nonmechanistic models. Our analysis demonstrates the value of using niche overlap to predict the strength of indirect effects and clarifies the types of indirect effects that global change can have on competing species.

  5. On the limitations of General Circulation Climate Models

    NASA Technical Reports Server (NTRS)

    Stone, Peter H.; Risbey, James S.

    1990-01-01

    General Circulation Models (GCMs) by definition calculate large-scale dynamical and thermodynamical processes and their associated feedbacks from first principles. This aspect of GCMs is widely believed to give them an advantage in simulating global scale climate changes as compared to simpler models which do not calculate the large-scale processes from first principles. However, it is pointed out that the meridional transports of heat simulated GCMs used in climate change experiments differ from observational analyses and from other GCMs by as much as a factor of two. It is also demonstrated that GCM simulations of the large scale transports of heat are sensitive to the (uncertain) subgrid scale parameterizations. This leads to the question whether current GCMs are in fact superior to simpler models for simulating temperature changes associated with global scale climate change.

  6. The Nature of Scientific Revolutions from the Vantage Point of Chaos Theory: Toward a Formal Model of Scientific Change

    ERIC Educational Resources Information Center

    Perla, Rocco J.; Carifio, James

    2005-01-01

    In sharp contrast to the early positivist view of the nature of science and scientific knowledge, Kuhn argues that the scientific enterprise involves states of continuous, gradual development punctuated by comparatively rare instances of turmoil and change, which ultimately brings about a new stability and a qualitatively changed knowledge base.…

  7. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  8. Using the Change Manager Model for the Hippocampal System to Predict Connectivity and Neurophysiological Parameters in the Perirhinal Cortex

    PubMed Central

    Coward, L. Andrew; Gedeon, Tamas D.

    2016-01-01

    Theoretical arguments demonstrate that practical considerations, including the needs to limit physiological resources and to learn without interference with prior learning, severely constrain the anatomical architecture of the brain. These arguments identify the hippocampal system as the change manager for the cortex, with the role of selecting the most appropriate locations for cortical receptive field changes at each point in time and driving those changes. This role results in the hippocampal system recording the identities of groups of cortical receptive fields that changed at the same time. These types of records can also be used to reactivate the receptive fields active during individual unique past events, providing mechanisms for episodic memory retrieval. Our theoretical arguments identify the perirhinal cortex as one important focal point both for driving changes and for recording and retrieving episodic memories. The retrieval of episodic memories must not drive unnecessary receptive field changes, and this consideration places strong constraints on neuron properties and connectivity within and between the perirhinal cortex and regular cortex. Hence the model predicts a number of such properties and connectivity. Experimental test of these falsifiable predictions would clarify how change is managed in the cortex and how episodic memories are retrieved. PMID:26819594

  9. Turbulent acidic jets and plumes injected into an alkaline environment

    NASA Astrophysics Data System (ADS)

    Ulpre, Hendrik

    2012-11-01

    The characteristics of a strong acidic turbulent jet or plume injected into an alkaline environment comprising of a weak/strong base are examined theoretically and experimentally. A chemistry model is developed to understand how the pH of a fluid parcel of monoprotic acid changes as it is diluted and reacts with the ambient fluid. A standard fluid model, based on a top-hat model for acid concentration and velocity is used to express how the dilution of acid varies with distance from the point of discharge. These models are applied to estimate the point of neutralisation and the travel time with distance within the jet/plume. An experimental study was undertaken to test the theoretical results. These experiments involved injecting jets or vertical plumes of dilute nitric acid into a large tank containing a variety of base salts dissolved in water. The injected fluid contained litmus indicator dye which showed a change in colour from red to blue close to the point of neutralisation. In order to obtain a range of neutralisation distances, additional basic salts were added to the water to increase its pH buffering capacity. The results are applied to discuss the environmental implications of an acidic jet/plume injected into the sea off the South East coast of Great Britain.

  10. Modeling and analysis of the effect of training on V O2 kinetics and anaerobic capacity.

    PubMed

    Stirling, J R; Zakynthinaki, M S; Billat, V

    2008-07-01

    In this paper, we present an application of a number of tools and concepts for modeling and analyzing raw, unaveraged, and unedited breath-by-breath oxygen uptake data. A method for calculating anaerobic capacity is used together with a model, in the form of a set of coupled nonlinear ordinary differential equations to make predictions of the VO(2) kinetics, the time to achieve a percentage of a certain constant oxygen demand, and the time limit to exhaustion at intensities other than those in which we have data. Speeded oxygen kinetics and increased time limit to exhaustion are also investigated using the eigenvalues of the fixed points of our model. We also use a way of analyzing the oxygen uptake kinetics using a plot of V O(2)(t) vs V O(2)(t) which allows one to observe both the fixed point solutions and also the presence of speeded oxygen kinetics following training. A method of plotting the eigenvalue versus oxygen demand is also used which allows one to observe where the maximum amplitude of the so-called slow component will be and also how training has changed the oxygen uptake kinetics by changing the strength of the attracting fixed point for a particular demand.

  11. [Measurement of the evaluative capacity of the CVP-35 questionnaire for perceiving the quality of professional life].

    PubMed

    Martín Fernández, Jesús; Gómez Gascón, Tomás; Martínez García-Olalla, Carlos; del Cura González, María Isabel; Cabezas Peña, María Carmen; García Sánchez, Salvador

    2008-07-01

    To establish the CVP-35 evaluative properties to measure the professional quality of life (PQL). Prospective, observational study. A primary care area in the Community of Madrid, Spain. A total of 149 sanitary workers with some burnout sign measured by Maslach Burnout Inventory (MBI) participated. They fulfilled MBI, Goldberg Health Questionnaire (GHQ-28), and CVP-35 questionnaires at the beginning and after a year of follow-up, in which 73 subjects took part in activities for coping stress. It was assessed the change of PQL and their domains managerial support (PQL-MS), work load (PQL-WL), intrinsic motivation (PQL-IM) for the subjects with variations at the MBI, or GHQ-28 punctuation greater than 0.5 SD of the initial distribution. Variations in CVP-35 and their domains correlate weakly with changes in MBI and GHQ-28 (r<0.500), but they are congruent with the conceptual model. In the individuals with significant variations in the GHQ-28, they appreciate an average change in PQL and their domains between 0.18 and 0.55 points (absolute value). In those with significant variations in the MBI domains, PQL presented average absolute variations between 0.23 and 0.45 points, PQL-MS between 0.30 and 0.67, PQL-WL between 0.01 and 0.55 and PQL-IM between 0.22 and 0.83 points. CVP-35 is a sensitive-to-change instrument under population point of view. Changes in PQL perception or in any of their domains of 0.5 points could be pointed as relevant.

  12. Enhanced sediment loading facilitates point bar growth and accelerates bank erosion along a modelled meander bend on the Sacramento River, USA

    NASA Astrophysics Data System (ADS)

    Ahmed, J.; Constantine, J. A.; Hales, T. C.

    2017-12-01

    Meandering channels provide a conduit through which sediment and water is routed from the uplands to the sea. Alluvial material is periodically stored and transported through the channel network as permitted by the prevailing hydrologic conditions. The lowlands are typically characterised by accumulations of sediment attached to the inner banks of meander bends (point bars). These bedforms have been identified as important for facilitating a link between in-stream sediment supplies and channel dynamism. A 2D curvilinear hydrodynamic model (MIKE 21C) was used to perform a number of experiments in which the sediment load was adjusted to investigate how changes in alluvial material fluxes affect the development of point bars and the resultant patterns of bank erosion. A doubling of the sediment load caused a longitudinal increase in the bar in the upstream direction and caused a coeval doubling of the transverse channel slope at the meander apex. The upstream growth of the point bar was accompanied by an increase in length over which lateral migration took place at the outer bank. The magnitude of outer bank erosion was 9-times greater for the high-sediment simulation. These results suggest that enhanced sediment loads (potentially the result of changes in land use or climate) can trigger greater rates of bank erosion and channel change through the sequestration of alluvial material on point bars, which encourage high-velocity fluid deflection towards the outer bank of the meander. This controls riparian habitat development and exchanges of sediment and nutrients across the channel-floodplain interface.

  13. Critical Point in Self-Organized Tissue Growth

    NASA Astrophysics Data System (ADS)

    Aguilar-Hidalgo, Daniel; Werner, Steffen; Wartlick, Ortrud; González-Gaitán, Marcos; Friedrich, Benjamin M.; Jülicher, Frank

    2018-05-01

    We present a theory of pattern formation in growing domains inspired by biological examples of tissue development. Gradients of signaling molecules regulate growth, while growth changes these graded chemical patterns by dilution and advection. We identify a critical point of this feedback dynamics, which is characterized by spatially homogeneous growth and proportional scaling of patterns with tissue length. We apply this theory to the biological model system of the developing wing of the fruit fly Drosophila melanogaster and quantitatively identify signatures of the critical point.

  14. Modelling the association of dengue fever cases with temperature and relative humidity in Jeddah, Saudi Arabia-A generalised linear model with break-point analysis.

    PubMed

    Alkhaldy, Ibrahim

    2017-04-01

    The aim of this study was to examine the role of environmental factors in the temporal distribution of dengue fever in Jeddah, Saudi Arabia. The relationship between dengue fever cases and climatic factors such as relative humidity and temperature was investigated during 2006-2009 to determine whether there is any relationship between dengue fever cases and climatic parameters in Jeddah City, Saudi Arabia. A generalised linear model (GLM) with a break-point was used to determine how different levels of temperature and relative humidity affected the distribution of the number of cases of dengue fever. Break-point analysis was performed to modelled the effect before and after a break-point (change point) in the explanatory parameters under various scenarios. Akaike information criterion (AIC) and cross validation (CV) were used to assess the performance of the models. The results showed that maximum temperature and mean relative humidity are most probably the better predictors of the number of dengue fever cases in Jeddah. In this study three scenarios were modelled: no time lag, 1-week lag and 2-weeks lag. Among these scenarios, the 1-week lag model using mean relative humidity as an explanatory variable showed better performance. This study showed a clear relationship between the meteorological variables and the number of dengue fever cases in Jeddah. The results also demonstrated that meteorological variables can be successfully used to estimate the number of dengue fever cases for a given period of time. Break-point analysis provides further insight into the association between meteorological parameters and dengue fever cases by dividing the meteorological parameters into certain break-points. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Additional adjoint Monte Carlo studies of the shielding of concrete structures against initial gamma radiation. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beer, M.; Cohen, M.O.

    1975-02-01

    The adjoint Monte Carlo method previously developed by MAGI has been applied to the calculation of initial radiation dose due to air secondary gamma rays and fission product gamma rays at detector points within buildings for a wide variety of problems. These provide an in-depth survey of structure shielding effects as well as many new benchmark problems for matching by simplified models. Specifically, elevated ring source results were obtained in the following areas: doses at on-and off-centerline detectors in four concrete blockhouse structures; doses at detector positions along the centerline of a high-rise structure without walls; dose mapping at basementmore » detector positions in the high-rise structure; doses at detector points within a complex concrete structure containing exterior windows and walls and interior partitions; modeling of the complex structure by replacing interior partitions by additional material at exterior walls; effects of elevation angle changes; effects on the dose of changes in fission product ambient spectra; and modeling of mutual shielding due to external structures. In addition, point source results yielding dose extremes about the ring source average were obtained. (auth)« less

  16. Precise mapping of annual river bed changes based on airborne laser bathymetry

    NASA Astrophysics Data System (ADS)

    Mandlburger, Gottfried; Wieser, Martin; Pfeifer, Norbert; Pfennigbauer, Martin; Steinbacher, Frank; Aufleger, Markus

    2014-05-01

    Airborne Laser Bathymtery (ALB) is a method for capturing relatively shallow water bodies from the air using a pulsed green laser (wavelength=532nm). While this technique was first used for mapping coastal waters only, recent progress in sensor technology has opened the field to apply ALB to running inland waters. Especially for alpine rivers the precise mapping of the channel topography is a challenging task as the flow velocities are often high and the area is difficult and/or dangerous to access by boat or by feet. Traditional mapping techniques like tachymetry or echo sounding fail in such situations while ALB provides, both, high spot position accuracy in the cm range and high spatial resolution in the dm range. Furthermore, state-of-the-art ALB systems allow simultaneous mapping of the river bed and the riparian area and, therefore, represent a comprehensive and efficient technology for mapping the entire floodplain area. The maximum penetration depth depends on, both, water turbidity and bottom reflectivity. Consequently, ALB provides the highest accuracy and resolution over bright gravel rivers with relatively clear water. We demonstrate the capability of ALB for precise mapping of river bed changes based on three flight campaigns in April, May and October 2013 at the River Pielach (Lower Austria) carried out with Riegl's VQ-820-G topo-bathymetric laser scanner. Operated at a flight height of 600m above ground with a pulse repetition rate of 510kHz (effective measurement rate 200kHz) this yielded a mean point spacing within the river bed of 20cm (i.e. point density: 25 points/m2). The positioning accuracy of the river bed points is approx. 2-5cm and depends on the overall ranging precision (20mm), the quality of the water surface model (derived from the ALB point cloud), and the signal intensity (decreasing with water depth). All in all, the obtained point cloud allowed the derivation of a dense grid model of the channel topography (0.25m cell size) for all three epochs constituting an excellent basis for, both, the visual and quantitative estimation of the changes over the year. It turned out that even between the April and May flight remarkable differences could be detected although there was no major precipitation event in-between and the flow conditions were entirely below mean flow. In contrast to the moderate changes between April and May, the flood event in June 2013 (HQ1) resulted in a radical change of the river bed topography documented by the October flight. Since the study site (Neubacher Au) is a Natura2000 conservation area, space for a meandering flow is allowed. Entire gravel bars have been removed and new bars were deposited down-stream. Furthermore, the river axis was locally shifted by more than 1m during the flood event. The results demonstrate the high potential of laser bathymetry for precise mapping of river bed changes. This opens new perspectives for the validation of sediment transport models models and a much better understanding of the river morphology (e.g. formation and changes of sand and gravel banks). The traditional approach in sediment transport modelling based on a limited number of cross sections can be completed respectively replaced by a more comprehensive and more reliable concept on the basis of spatial distributed river bed data. Valuable calibration data in a new quality will be available.

  17. CAEDS--Computer-Aided Engineering and Architectural Design System.

    DTIC Science & Technology

    1982-08-01

    elements " Annotation " Points " Lines " Polygons " Polyhedron " Group of elements Modification of above (changes or deletions) Line-weighting, cross...Research Laboratory, Champaign, IL, CERL-TR-E-153, June 1979. (4) "ARCH:MODEL, Version 1-2, Geometric Modeling Relational Database Sys- tem

  18. The effects of changes in physical fitness on academic performance among New York City youth.

    PubMed

    Bezold, Carla P; Konty, Kevin J; Day, Sophia E; Berger, Magdalena; Harr, Lindsey; Larkin, Michael; Napier, Melanie D; Nonas, Cathy; Saha, Subir; Harris, Tiffany G; Stark, James H

    2014-12-01

    To evaluate whether a change in fitness is associated with academic outcomes in New York City (NYC) middle-school students using longitudinal data and to evaluate whether this relationship is modified by student household poverty. This was a longitudinal study of 83,111 New York City middle-school students enrolled between 2006-2007 and 2011-2012. Fitness was measured as a composite percentile based on three fitness tests and categorized based on change from the previous year. The effect of the fitness change level on academic outcomes, measured as a composite percentile based on state standardized mathematics and English Language Arts test scores, was estimated using a multilevel growth model. Models were stratified by sex, and additional models were tested stratified by student household poverty. For both girls and boys, a substantial increase in fitness from the previous year resulted in a greater improvement in academic ranking than was seen in the reference group (girls: .36 greater percentile point improvement, 95% confidence interval: .09-.63; boys: .38 greater percentile point improvement, 95% confidence interval: .09-.66). A substantial decrease in fitness was associated with a decrease in academics in both boys and girls. Effects of fitness on academics were stronger in high-poverty boys and girls than in low-poverty boys and girls. Academic rankings improved for boys and girls who increased their fitness level by >20 percentile points compared to other students. Opportunities for increased physical fitness may be important to support academic performance. Copyright © 2014 Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.

  19. Multilevel principal component analysis (mPCA) in shape analysis: A feasibility study in medical and dental imaging.

    PubMed

    Farnell, D J J; Popat, H; Richmond, S

    2016-06-01

    Methods used in image processing should reflect any multilevel structures inherent in the image dataset or they run the risk of functioning inadequately. We wish to test the feasibility of multilevel principal components analysis (PCA) to build active shape models (ASMs) for cases relevant to medical and dental imaging. Multilevel PCA was used to carry out model fitting to sets of landmark points and it was compared to the results of "standard" (single-level) PCA. Proof of principle was tested by applying mPCA to model basic peri-oral expressions (happy, neutral, sad) approximated to the junction between the mouth/lips. Monte Carlo simulations were used to create this data which allowed exploration of practical implementation issues such as the number of landmark points, number of images, and number of groups (i.e., "expressions" for this example). To further test the robustness of the method, mPCA was subsequently applied to a dental imaging dataset utilising landmark points (placed by different clinicians) along the boundary of mandibular cortical bone in panoramic radiographs of the face. Changes of expression that varied between groups were modelled correctly at one level of the model and changes in lip width that varied within groups at another for the Monte Carlo dataset. Extreme cases in the test dataset were modelled adequately by mPCA but not by standard PCA. Similarly, variations in the shape of the cortical bone were modelled by one level of mPCA and variations between the experts at another for the panoramic radiographs dataset. Results for mPCA were found to be comparable to those of standard PCA for point-to-point errors via miss-one-out testing for this dataset. These errors reduce with increasing number of eigenvectors/values retained, as expected. We have shown that mPCA can be used in shape models for dental and medical image processing. mPCA was found to provide more control and flexibility when compared to standard "single-level" PCA. Specifically, mPCA is preferable to "standard" PCA when multiple levels occur naturally in the dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. A robust interrupted time series model for analyzing complex health care intervention data.

    PubMed

    Cruz, Maricela; Bender, Miriam; Ombao, Hernando

    2017-12-20

    Current health policy calls for greater use of evidence-based care delivery services to improve patient quality and safety outcomes. Care delivery is complex, with interacting and interdependent components that challenge traditional statistical analytic techniques, in particular, when modeling a time series of outcomes data that might be "interrupted" by a change in a particular method of health care delivery. Interrupted time series (ITS) is a robust quasi-experimental design with the ability to infer the effectiveness of an intervention that accounts for data dependency. Current standardized methods for analyzing ITS data do not model changes in variation and correlation following the intervention. This is a key limitation since it is plausible for data variability and dependency to change because of the intervention. Moreover, present methodology either assumes a prespecified interruption time point with an instantaneous effect or removes data for which the effect of intervention is not fully realized. In this paper, we describe and develop a novel robust interrupted time series (robust-ITS) model that overcomes these omissions and limitations. The robust-ITS model formally performs inference on (1) identifying the change point; (2) differences in preintervention and postintervention correlation; (3) differences in the outcome variance preintervention and postintervention; and (4) differences in the mean preintervention and postintervention. We illustrate the proposed method by analyzing patient satisfaction data from a hospital that implemented and evaluated a new nursing care delivery model as the intervention of interest. The robust-ITS model is implemented in an R Shiny toolbox, which is freely available to the community. Copyright © 2017 John Wiley & Sons, Ltd.

  1. [Birth rates evolution in Spain. Birth trends in Spain from 1941 to 2010].

    PubMed

    Andrés de Llano, J M; Alberola López, S; Garmendia Leiza, J R; Quiñones Rubio, C; Cancho Candela, R; Ramalle-Gómara, E

    2015-01-01

    The aim of this study was to analyse trends of births in Spain and its Autonomous Communities (CCAA) over a 70 year period (1941-2010). The crude birth rates per 1,000 inhabitants/year were calculated by CCAA using Joinpoint regression models. Change points in trend and annual percentage of change (APC) were identified. The distribution of 38,160,305 births between 1941 and 2010 shows important changes in trends both nationally and among the CCAA. There is a general pattern for the whole country, with 5 turning points being identified with changes in trend and annual percentage change (APC). Differences are also found among regions. The analysis of trends in birth rates and the annual rates of change should enable public health authorities to properly plan pediatric care resources in our country. Copyright © 2014 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  2. An innovative use of instant messaging technology to support a library's single-service point.

    PubMed

    Horne, Andrea S; Ragon, Bart; Wilson, Daniel T

    2012-01-01

    A library service model that provides reference and instructional services by summoning reference librarians from a single service point is described. The system utilizes Libraryh3lp, an open-source, multioperator instant messaging system. The selection and refinement of this solution and technical challenges encountered are explored, as is the design of public services around this technology, usage of the system, and best practices. This service model, while a major cultural and procedural change at first, is now a routine aspect of customer service for this library.

  3. Taper models for commercial tree species in the northeastern United States

    Treesearch

    James A. Westfall; Charles T. Scott

    2010-01-01

    A new taper model was developed based on the switching taper model of Valentine and Gregoire; the most substantial changes were reformulation to incorporate estimated join points and modification of a switching function. Random-effects parameters were included that account for within-tree correlations and allow for customized calibration to each individual tree. The...

  4. Effects on readiness to change of an educational intervention on depressive disorders for general physicians in primary care based on a modified Prochaska model--a randomized controlled study.

    PubMed

    Shirazi, M; Zeinaloo, A A; Parikh, S V; Sadeghi, M; Taghva, A; Arbabi, M; Kashani, A Sabouri; Alaeddini, F; Lonka, K; Wahlström, R

    2008-04-01

    The Prochaska model of readiness to change has been proposed to be used in educational interventions to improve medical care. To evaluate the impact on readiness to change of an educational intervention on management of depressive disorders based on a modified version of the Prochaska model in comparison with a standard programme of continuing medical education (CME). This is a randomized controlled trial within primary care practices in southern Tehran, Iran. The participants included 192 general physicians working in primary care (GPs) were recruited after random selection and randomized to intervention (96) and control (96). Intervention consisted of interactive, learner-centred educational methods in large and small group settings depending on the GPs' stages of readiness to change. Change in stage of readiness to change measured by the modified version of the Prochaska questionnaire was the The final number of participants was 78 (81%) in the intervention arm and 81 (84%) in the control arm. Significantly (P < 0.01), more GPs (57/96 = 59% versus 12/96 = 12%) in the intervention group changed to higher stages of readiness to change. The intervention effect was 46% points (P < 0.001) and 50% points (P < 0.001) in the large and small group setting, respectively. Educational formats that suit different stages of learning can support primary care doctors to reach higher stages of behavioural change in the topic of depressive disorders. Our findings have practical implications for conducting CME programmes in Iran and are possibly also applicable in other parts of the world.

  5. Study on the fixed point in crustal deformation before strong earthquake

    NASA Astrophysics Data System (ADS)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.

  6. Earth elevation map production and high resolution sensing camera imaging analysis

    NASA Astrophysics Data System (ADS)

    Yang, Xiubin; Jin, Guang; Jiang, Li; Dai, Lu; Xu, Kai

    2010-11-01

    The Earth's digital elevation which impacts space camera imaging has prepared and imaging has analysed. Based on matching error that TDI CCD integral series request of the speed of image motion, statistical experimental methods-Monte Carlo method is used to calculate the distribution histogram of Earth's elevation in image motion compensated model which includes satellite attitude changes, orbital angular rate changes, latitude, longitude and the orbital inclination changes. And then, elevation information of the earth's surface from SRTM is read. Earth elevation map which produced for aerospace electronic cameras is compressed and spliced. It can get elevation data from flash according to the shooting point of latitude and longitude. If elevation data between two data, the ways of searching data uses linear interpolation. Linear interpolation can better meet the rugged mountains and hills changing requests. At last, the deviant framework and camera controller are used to test the character of deviant angle errors, TDI CCD camera simulation system with the material point corresponding to imaging point model is used to analyze the imaging's MTF and mutual correlation similarity measure, simulation system use adding cumulation which TDI CCD imaging exceeded the corresponding pixel horizontal and vertical offset to simulate camera imaging when stability of satellite attitude changes. This process is practicality. It can effectively control the camera memory space, and meet a very good precision TDI CCD camera in the request matches the speed of image motion and imaging.

  7. Conventional wallboard with latent heat storage for passive solar applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kedl, R.J.

    1990-01-01

    Conventional wallboard impregnated with octadecane paraffin (Melting Point -- 73.5{degree}F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35{percent} by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreementmore » between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good. 4 refs., 8 figs.« less

  8. Conventional wallboard with latent heat storage for passive solar applications

    NASA Astrophysics Data System (ADS)

    Kedl, R. J.

    Conventional wallboard impregnated with octadecane paraffin (melting point -- 73.5 F) is being developed as a building material with latent heat storage for passive solar applications. Impregnation was accomplished simply by soaking the wallboard in molten paraffin. Concentrations of paraffin in the combined product as high as 35 percent by weight were achieved. In support of this concept, a computer model was developed to describe thermal transport and storage by a phase change material (PCM) dispersed in a porous media. The computer model was confirmed by comparison with known analytical solutions where the PCM melts at a specific melting point. However, agreement between the model and an experimentally produced thermal transient involving impregnated wallboard was only good after the model was modified to allow the paraffin to melt over a temperature range. This was accomplished by replacing the heat of fusion with a triangular heat capacity relationship that mimics the triangular melt curve found through differential scanning calorimetry. When this change was made, agreement between the model and the experimental transient was very good.

  9. Smallest detectable change and test-retest reliability of a self-reported outcome measure: Results of the Center for Epidemiologic Studies Depression Scale, General Self-Efficacy Scale, and 12-item General Health Questionnaire.

    PubMed

    Ohno, Shotaro; Takahashi, Kana; Inoue, Aimi; Takada, Koki; Ishihara, Yoshiaki; Tanigawa, Masaru; Hirao, Kazuki

    2017-12-01

    This study aims to examine the smallest detectable change (SDC) and test-retest reliability of the Center for Epidemiologic Studies Depression Scale (CES-D), General Self-Efficacy Scale (GSES), and 12-item General Health Questionnaire (GHQ-12). We tested 154 young adults at baseline and 2 weeks later. We calculated the intra-class correlation coefficients (ICCs) for test-retest reliability with a two-way random effects model for agreement. We then calculated the standard error of measurement (SEM) for agreement using the ICC formula. The SEM for agreement was used to calculate SDC values at the individual level (SDC ind ) and group level (SDC group ). The study participants included 137 young adults. The ICCs for all self-reported outcome measurement scales exceeded 0.70. The SEM of CES-D was 3.64, leading to an SDC ind of 10.10 points and SDC group of 0.86 points. The SEM of GSES was 1.56, leading to an SDC ind of 4.33 points and SDC group of 0.37 points. The SEM of GHQ-12 with bimodal scoring was 1.47, leading to an SDC ind of 4.06 points and SDC group of 0.35 points. The SEM of GHQ-12 with Likert scoring was 2.44, leading to an SDC ind of 6.76 points and SDC group of 0.58 points. To confirm that the change was not a result of measurement error, a score of self-reported outcome measurement scales would need to change by an amount greater than these SDC values. This has important implications for clinicians and epidemiologists when assessing outcomes. © 2017 John Wiley & Sons, Ltd.

  10. Hole-ness of point clouds

    NASA Astrophysics Data System (ADS)

    Gronz, Oliver; Seeger, Manuel; Klaes, Björn; Casper, Markus C.; Ries, Johannes B.

    2015-04-01

    Accurate and dense 3D models of soil surfaces can be used in various ways: They can be used as initial shapes for erosion models. They can be used as benchmark shapes for erosion model outputs. They can be used to derive metrics, such as random roughness... One easy and low-cost method to produce these models is structure from motion (SfM). Using this method, two questions arise: Does the soil moisture, which changes the colour, albedo and reflectivity of the soil, influence the model quality? How can the model quality be evaluated? To answer these questions, a suitable data set has been produced: soil has been placed on a tray and areas with different roughness structures have been formed. For different moisture states - dry, medium, saturated - and two different lighting conditions - direct and indirect - sets of high-resolution images at the same camera positions have been taken. From the six image sets, 3D point clouds have been produced using VisualSfM. The visual inspection of the 3D models showed that all models have different areas, where holes of different sizes occur. But it is obviously a subjective task to determine the model's quality by visual inspection. One typical approach to evaluate model quality objectively is to estimate the point density on a regular, two-dimensional grid: the number of 3D points in each grid cell projected on a plane is calculated. This works well for surfaces that do not show vertical structures. Along vertical structures, many points will be projected on the same grid cell and thus the point density rather depends on the shape of the surface but less on the quality of the model. Another approach has been applied by using the points resulting from Poisson Surface Reconstructions. One of this algorithm's properties is the filling of holes: new points are interpolated inside the holes. Using the original 3D point cloud and the interpolated Poisson point set, two analyses have been performed: For all Poisson points, the distance to the closest original point cloud member has been calculated. For the resulting set of distances, histograms have been produced that show the distribution of point distances. As the Poisson points also make up a connected mesh, the size and distribution of single holes can also be estimated by labeling Poisson points that belong to the same hole: each hole gets a specific number. Afterwards, the area of the mesh formed by each set of Poisson hole points can be calculated. The result is a set of distinctive holes and their sizes. The two approaches showed that the hole-ness of the point cloud depends on the soil moisture respectively the reflectivity: the distance distribution of the model of the saturated soil shows the smallest number of large distances. The histogram of the medium state shows more large distances and the dry model shows the largest distances. Models resulting from indirect lighting are better than the models resulting from direct light for all moisture states.

  11. Environmental tipping points significantly affect the cost-benefit assessment of climate policies.

    PubMed

    Cai, Yongyang; Judd, Kenneth L; Lenton, Timothy M; Lontzek, Thomas S; Narita, Daiju

    2015-04-14

    Most current cost-benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost-benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost-benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost-benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change.

  12. Environmental tipping points significantly affect the cost−benefit assessment of climate policies

    PubMed Central

    Cai, Yongyang; Judd, Kenneth L.; Lenton, Timothy M.; Lontzek, Thomas S.; Narita, Daiju

    2015-01-01

    Most current cost−benefit analyses of climate change policies suggest an optimal global climate policy that is significantly less stringent than the level required to meet the internationally agreed 2 °C target. This is partly because the sum of estimated economic damage of climate change across various sectors, such as energy use and changes in agricultural production, results in only a small economic loss or even a small economic gain in the gross world product under predicted levels of climate change. However, those cost−benefit analyses rarely take account of environmental tipping points leading to abrupt and irreversible impacts on market and nonmarket goods and services, including those provided by the climate and by ecosystems. Here we show that including environmental tipping point impacts in a stochastic dynamic integrated assessment model profoundly alters cost−benefit assessment of global climate policy. The risk of a tipping point, even if it only has nonmarket impacts, could substantially increase the present optimal carbon tax. For example, a risk of only 5% loss in nonmarket goods that occurs with a 5% annual probability at 4 °C increase of the global surface temperature causes an immediate two-thirds increase in optimal carbon tax. If the tipping point also has a 5% impact on market goods, the optimal carbon tax increases by more than a factor of 3. Hence existing cost−benefit assessments of global climate policy may be significantly underestimating the needs for controlling climate change. PMID:25825719

  13. Low-speed wind tunnel performance of high-speed counterrotation propellers at angle-of-attack

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.; Gazzaniga, John A.

    1989-01-01

    The low-speed aerodynamic performance characteristics of two advanced counterrotation pusher-propeller configurations with cruise design Mach numbers of 0.72 were investigated in the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel. The tests were conducted at Mach number 0.20, which is representative of the aircraft take-off/landing flight regime. The investigation determined the effect of nonuniform inflow on the propeller performance characteristics for several blade angle settings and a range of rotational speeds. The inflow was varied by yawing the propeller model to angle-of-attack by as much as plus or minus 16 degrees and by installing on the counterrotation propeller test rig near the propeller rotors a model simulator of an aircraft engine support pylon and fuselage. The results of the investigation indicated that the low-speed performance of the counterrotation propeller configurations near the take-off target operating points were reasonable and were fairly insensitive to changes in model angle-of-attack without the aircraft pylon/fuselage simulators installed on the propeller test rig. When the aircraft pylon/fuselage simulators were installed, small changes in propeller performance were seen at zero angle-of-attack, but fairly large changes in total power coefficient and very large changes of aft-to-forward-rotor torque ratio were produced when the propeller model was taken to angle-of-attack. The propeller net efficiency, though, was fairly insensitive to any changes in the propeller flowfield conditions near the take-off target operating points.

  14. Multilevel spatiotemporal change-point models for evaluating the effect of an alcohol outlet control policy on changes in neighborhood assaultive violence rates.

    PubMed

    Xu, Yanjun; Yu, Qingzhao; Scribner, Richard; Theall, Katherine; Scribner, Scott; Simonsen, Neal

    2012-06-01

    Many previous studies have suggested a link between alcohol outlets and assaultive violence rates. In 1997 the City of New Orleans adopted a series of policies, e.g., increased license fee, additional enforcement staff, and expanded powers for the alcohol license board. The policies were specifically enacted to address the proliferation of problem alcohol outlets believed to be the source of a variety of social problems including assaultive violence. In this research, we evaluate the impact of a city level policy in New Orleans to address the problem alcohol outlets and their influence on assaultive violence. The spatial association between rates of assaultive violence at the census tract level (n=170) over a ten year period raises a challenge in statistical analysis. To meet this challenge we developed a hierarchical change-point model that controls for important covariates of assaultive violence and accounts for unexplained spatial and temporal variability. While our model is somewhat complex, its hierarchical Bayesian analysis is accessible via the WinBUGS software program. Keeping other effects fixed, the implementation of the new city level policy was associated with a decrease in the positive association between census tract level rates of assaultive violence and alcohol outlet density. Comparing several candidate change-point models using the DIC criterion, the positive association began decreasing the year of the policy implementation. The magnitude of the association continued to decrease for roughly two years and then stabilized. We also created maps of the fitted assaultive violence rates in New Orleans, as well as spatial residual maps which, together with Moran's I's, suggest that the spatial variation of the data is well accounted for by our model. We reach the conclusion that the implementation of the policy is associated with a significant decrease in the positive relationship between assaultive violence and the off-sale alcohol outlet density. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Capacity Estimation Model for Signalized Intersections under the Impact of Access Point

    PubMed Central

    Zhao, Jing; Li, Peng; Zhou, Xizhao

    2016-01-01

    Highway Capacity Manual 2010 provides various factors to adjust the base saturation flow rate for the capacity analysis of signalized intersections. No factors, however, is considered for the potential change of signalized intersections capacity caused by the access point closeing to the signalized intersection. This paper presented a theoretical model to estimate the lane group capacity at signalized intersections with the consideration of the effects of access points. Two scenarios of access point locations, upstream or downstream of the signalized intersection, and impacts of six types of access traffic flow are taken into account. The proposed capacity model was validated based on VISSIM simulation. Results of extensive numerical analysis reveal the substantial impact of access point on the capacity, which has an inverse correlation with both the number of major street lanes and the distance between the intersection and access point. Moreover, among the six types of access traffic flows, the access traffic flow 1 (right-turning traffic from major street), flow 4 (left-turning traffic from access point), and flow 5 (left-turning traffic from major street) cause a more significant effect on lane group capacity than others. Some guidance on the mitigation of the negative effect is provided for practitioners. PMID:26726998

  16. Landscape Response to the 1980 Eruption of Mount St. Helens: Using Historical Aerial Photography to Measure Surface Change

    NASA Astrophysics Data System (ADS)

    Sweeney, K.; Major, J. J.

    2016-12-01

    Advances in structure-from-motion (SfM) photogrammetry and point cloud comparison have fueled a proliferation of studies using modern imagery to monitor geomorphic change. These techniques also have obvious applications for reconstructing historical landscapes from vertical aerial imagery, but known challenges include insufficient photo overlap, systematic "doming" induced by photo-spacing regularity, missing metadata, and lack of ground control. Aerial imagery of landscape change in the North Fork Toutle River (NFTR) following the 1980 eruption of Mount St. Helens is a prime dataset to refine methodologies. In particular, (1) 14-μm film scans are available for 1:9600 images at 4-month intervals from 1980 - 1986, (2) the large magnitude of landscape change swamps systematic error and noise, and (3) stable areas (primary deposit features, roads, etc.) provide targets for both ground control and matching to modern lidar. Using AgiSoft PhotoScan, we create digital surface models from the NFTR imagery and examine how common steps in SfM workflows affect results. Tests of scan quality show high-resolution, professional film scans are superior to office scans of paper prints, reducing spurious points related to scan infidelity and image damage. We confirm earlier findings that cropping and rotating images improves point matching and the final surface model produced by the SfM algorithm. We demonstrate how the iterative closest point algorithm, implemented in CloudCompare and using modern lidar as a reference dataset, can serve as an adequate substitute for absolute ground control. Elevation difference maps derived from our surface models of Mount St. Helens show patterns consistent with field observations, including channel avulsion and migration, though systematic errors remain. We suggest that subtracting an empirical function fit to the long-wavelength topographic signal may be one avenue for correcting systematic error in similar datasets.

  17. Deformation analysis of a sinkhole in Thuringia using multi-temporal multi-view stereo 3D reconstruction data

    NASA Astrophysics Data System (ADS)

    Petschko, Helene; Goetz, Jason; Schmidt, Sven

    2017-04-01

    Sinkholes are a serious threat on life, personal property and infrastructure in large parts of Thuringia. Over 9000 sinkholes have been documented by the Geological Survey of Thuringia, which are caused by collapsing hollows which formed due to solution processes within the local bedrock material. However, little is known about surface processes and their dynamics at the flanks of the sinkhole once the sinkhole has shaped. These processes are of high interest as they might lead to dangerous situations at or within the vicinity of the sinkhole. Our objective was the analysis of these deformations over time in 3D by applying terrestrial photogrammetry with a simple DSLR camera. Within this study, we performed an analysis of deformations within a sinkhole close to Bad Frankenhausen (Thuringia) using terrestrial photogrammetry and multi-view stereo 3D reconstruction to obtain a 3D point cloud describing the morphology of the sinkhole. This was performed for multiple data collection campaigns over a 6-month period. The photos of the sinkhole were taken with a Nikon D3000 SLR Camera. For the comparison of the point clouds the Multiscale Model to Model Comparison (M3C2) plugin of the software CloudCompare was used. It allows to apply advanced methods of point cloud difference calculation which considers the co-registration error between two point clouds for assessing the significance of the calculated difference (given in meters). Three Styrofoam cuboids of known dimensions (16 cm wide/29 cm high/11.5 cm deep) were placed within the sinkhole to test the accuracy of the point cloud difference calculation. The multi-view stereo 3D reconstruction was performed with Agisoft Photoscan. Preliminary analysis indicates that about 26% of the sinkhole showed changes exceeding the co-registration error of the point clouds. The areas of change can mainly be detected on the flanks of the sinkhole and on an earth pillar that formed in the center of the sinkhole. These changes describe toppling (positive change of a few centimeters at the earth pillar) and a few erosion processes along the flanks (negative change of a few centimeters) compared to the first date of data acquisition. Additionally, the Styrofoam cuboids have successfully been detected with an observed depth change of 10 cm. However, the limitations of this approach related to the co-registration of the point clouds and data acquisition (windy conditions) have to be analyzed in more detail.

  18. Assessing the effects of rural livelihood transition on non-point source pollution: a coupled ABM-IECM model.

    PubMed

    Yuan, Chengcheng; Liu, Liming; Ye, Jinwei; Ren, Guoping; Zhuo, Dong; Qi, Xiaoxing

    2017-05-01

    Water pollution caused by anthropogenic activities and driven by changes in rural livelihood strategies in an agricultural system has received increasing attention in recent decades. To simulate the effects of rural household livelihood transition on non-point source (NPS) pollution, a model combining an agent-based model (ABM) and an improved export coefficient model (IECM) was developed. The ABM was adopted to simulate the dynamic process of household livelihood transition, and the IECM was employed to estimate the effects of household livelihood transition on NPS pollution. The coupled model was tested in a small catchment in the Dongting Lake region, China. The simulated results reveal that the transition of household livelihood strategies occurred with the changes in the prices of rice, pig, and labor. Thus, the cropping system, land-use intensity, resident population, and number of pigs changed in the small catchment from 2000 to 2014. As a result of these changes, the total nitrogen load discharged into the river initially increased from 6841.0 kg in 2000 to 8446.3 kg in 2004 and then decreased to 6063.9 kg in 2014. Results also suggest that rural living, livestock, paddy field, and precipitation alternately became the main causes of NPS pollution in the small catchment, and the midstream region of the small catchment was the primary area for NPS pollution from 2000 to 2014. Despite some limitations, the coupled model provides an innovative way to simulate the effects of rural household livelihood transition on NPS pollution with the change of socioeconomic factors, and thereby identify the key factors influencing water pollution to provide valuable suggestions on how agricultural environmental risks can be reduced through the regulation of the behaviors of farming households in the future.

  19. Presenting a model for dynamic facial expression changes in detecting drivers' drowsiness.

    PubMed

    Karchani, Mohsen; Mazloumi, Adel; Saraji, Gebraeil Nasl; Gharagozlou, Faramarz; Nahvi, Ali; Haghighi, Khosro Sadeghniiat; Abadi, Bahador Makki; Foroshani, Abbas Rahimi

    2015-01-01

    Drowsiness while driving is a major cause of accidents. A driver fatigue detection system that is designed to sound an alarm, when appropriate, can prevent many accidents that sometime leads to the loss of life and property. In this paper, we classify drowsiness detection sensors and their strong and weak points. A compound model is proposed that uses image processing techniques to study the dynamic changes of the face to recognize drowsiness during driving.

  20. Morphing of spatial objects in real time with interpolation by functions of radial and orthogonal basis

    NASA Astrophysics Data System (ADS)

    Kosnikov, Yu N.; Kuzmin, A. V.; Ho, Hoang Thai

    2018-05-01

    The article is devoted to visualization of spatial objects’ morphing described by the set of unordered reference points. A two-stage model construction is proposed to change object’s form in real time. The first (preliminary) stage is interpolation of the object’s surface by radial basis functions. Initial reference points are replaced by new spatially ordered ones. Reference points’ coordinates change patterns during the process of morphing are assigned. The second (real time) stage is surface reconstruction by blending functions of orthogonal basis. Finite differences formulas are applied to increase the productivity of calculations.

  1. Systemic change increases forecast uncertainty of land use change models

    NASA Astrophysics Data System (ADS)

    Verstegen, J. A.; Karssenberg, D.; van der Hilst, F.; Faaij, A.

    2013-12-01

    Cellular Automaton (CA) models of land use change are based on the assumption that the relationship between land use change and its explanatory processes is stationary. This means that model structure and parameterization are usually kept constant over time, ignoring potential systemic changes in this relationship resulting from societal changes, thereby overlooking a source of uncertainty. Evaluation of the stationarity of the relationship between land use and a set of spatial attributes has been done by others (e.g., Bakker and Veldkamp, 2012). These studies, however, use logistic regression, separate from the land use change model. Therefore, they do not gain information on how to implement the spatial attributes into the model. In addition, they often compare observations for only two points in time and do not check whether the change is statistically significant. To overcome these restrictions, we assimilate a time series of observations of real land use into a land use change CA (Verstegen et al., 2012), using a Bayesian data assimilation technique, the particle filter. The particle filter was used to update the prior knowledge about the parameterization and model structure, i.e. the selection and relative importance of the drivers of location of land use change. In a case study of sugar cane expansion in Brazil, optimal model structure and parameterization were determined for each point in time for which observations were available (all years from 2004 to 2012). A systemic change, i.e. a statistically significant deviation in model structure, was detected for the period 2006 to 2008. In this period the influence on the location of sugar cane expansion of the driver sugar cane in the neighborhood doubled, while the influence of slope and potential yield decreased by 75% and 25% respectively. Allowing these systemic changes to occur in our CA in the future (up to 2022) resulted in an increase in model forecast uncertainty by a factor two compared to the assumption of a stationary system. This means that the assumption of a constant model structure is not adequate and largely underestimates uncertainty in the forecast. Non-stationarity in land use change projections is challenging to model, because it is difficult to determine when the system will change and how. We believe that, in sight of these findings, land use change modelers should be more aware, and communicate more clearly, that what they try to project is at the limits, and perhaps beyond the limits, of what is still projectable. References Bakker, M., Veldkamp, A., 2012. Changing relationships between land use and environmental characteristics and their consequences for spatially explicit land-use change prediction. Journal of Land Use Science 7, 407-424. Verstegen, J.A., Karssenberg, D., van der Hilst, F., Faaij, A.P.C., 2012. Spatio-Temporal Uncertainty in Spatial Decision Support Systems: a Case Study of Changing Land Availability for Bioenergy Crops in Mozambique. Computers , Environment and Urban Systems 36, 30-42.

  2. Prognostic Effect of Changes in Physical Function Over Prior Year on Subsequent Mortality and Long-Term Nursing Home Admission.

    PubMed

    Gill, Thomas M; Han, Ling; Gahbauer, Evelyne A; Leo-Summers, Linda; Allore, Heather G

    2018-05-02

    To evaluate the prognostic effect of changes in physical function at different intervals over the prior year on subsequent outcomes after accounting for present function. Prospective longitudinal study. Greater New Haven, Connecticut, from March 1998 to January 2006. Community-living persons aged 71 and older who completed an 18-month comprehensive assessment (N=658). Disability in 13 activities of daily living, instrumental activities of daily living, and mobility activities was assessed at the 18-month comprehensive assessment and at 12, 6, and 3 months before 18 months. Time to death and long-term nursing home admission, defined as 3 months and longer, were ascertained for up to 5 years after 18 months. In the bivariate models, disability at 18 months and change in disability between 18 months and each of the 3 prior time-points (12, 6, 3 months) were significantly associated with time to death. The risk of death, for example, increased by 24% for each 1-point increase in 18-month disability score (on a scale from 0 to 13) and by 22% for each 1-point change in disability score between 18 months and prior 12 months (on a scale from -13 to 13). In a set of multivariable models with and without covariates, the associations were maintained for 18-month disability but not for change in disability between 18 months and each of the 3 prior time-points. The results were comparable for time to long-term nursing home admission except that 2 of the associations were not statistically significant. When evaluating risk of adverse outcomes, such as death and long-term nursing home admission, an assessment of change in physical function at different intervals over the prior year, although a strong bivariate predictor, did not provide useful prognostic information beyond that available from current level of function. © 2018, Copyright the Authors Journal compilation © 2018, The American Geriatrics Society.

  3. Multi-decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models

    NASA Astrophysics Data System (ADS)

    Zhu, X.

    2017-12-01

    Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.

  4. Regional climate change predictions from the Goddard Institute for Space Studies high resolution GCM

    NASA Technical Reports Server (NTRS)

    Crane, Robert G.; Hewitson, Bruce

    1990-01-01

    Model simulations of global climate change are seen as an essential component of any program aimed at understanding human impact on the global environment. A major weakness of current general circulation models (GCMs), however, is their inability to predict reliably the regional consequences of a global scale change, and it is these regional scale predictions that are necessary for studies of human/environmental response. This research is directed toward the development of a methodology for the validation of the synoptic scale climatology of GCMs. This is developed with regard to the Goddard Institute for Space Studies (GISS) GCM Model 2, with the specific objective of using the synoptic circulation form a doubles CO2 simulation to estimate regional climate change over North America, south of Hudson Bay. This progress report is specifically concerned with validating the synoptic climatology of the GISS GCM, and developing the transfer function to derive grid-point temperatures from the synoptic circulation. Principal Components Analysis is used to characterize the primary modes of the spatial and temporal variability in the observed and simulated climate, and the model validation is based on correlations between component loadings, and power spectral analysis of the component scores. The results show that the high resolution GISS model does an excellent job of simulating the synoptic circulation over the U.S., and that grid-point temperatures can be predicted with reasonable accuracy from the circulation patterns.

  5. Cosmological model-independent test of ΛCDM with two-point diagnostic by the observational Hubble parameter data

    NASA Astrophysics Data System (ADS)

    Cao, Shu-Lei; Duan, Xiao-Wei; Meng, Xiao-Lei; Zhang, Tong-Jie

    2018-04-01

    Aiming at exploring the nature of dark energy (DE), we use forty-three observational Hubble parameter data (OHD) in the redshift range 0 < z ≤slant 2.36 to make a cosmological model-independent test of the ΛCDM model with two-point Omh^2(z2;z1) diagnostic. In ΛCDM model, with equation of state (EoS) w=-1, two-point diagnostic relation Omh^2 ≡ Ωmh^2 is tenable, where Ωm is the present matter density parameter, and h is the Hubble parameter divided by 100 {km s^{-1 Mpc^{-1}}}. We utilize two methods: the weighted mean and median statistics to bin the OHD to increase the signal-to-noise ratio of the measurements. The binning methods turn out to be promising and considered to be robust. By applying the two-point diagnostic to the binned data, we find that although the best-fit values of Omh^2 fluctuate as the continuous redshift intervals change, on average, they are continuous with being constant within 1 σ confidence interval. Therefore, we conclude that the ΛCDM model cannot be ruled out.

  6. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  7. Modeling solubility of CO2/hydrocarbon gas in ionic liquid ([emim][FAP]) using Aspen Plus simulations.

    PubMed

    Bagchi, Bishwadeep; Sati, Sushmita; Shilapuram, Vidyasagar

    2017-08-01

    The Peng-Robinson equation of state with quadratic van der Waals (vdW) mixing rule model was chosen to perform the thermodynamic calculations in Flash3 column of Aspen Plus to predict the solubility of CO 2 or any one of the hydrocarbons (HCs) among methane, ethane, propane, and butane in an ionic liquid 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]). Bubble point pressure, solubility, bubble point temperature, fugacity, and partial molar volume at infinite dilution were obtained from the simulations, and enthalpy of absorption, Gibbs free energy of solvation, and entropy change of absorption were estimated by thermodynamic relations. Results show that carbon chain length has a significant effect on the bubble point pressure. Methane has the highest bubble point pressure among all the considered HCs and CO 2 . The bubble point pressure and fugacity variation with temperature is different for CO 2 as compared to HCs for mole fractions above 0.2. Two different profiles are noticed for enthalpy of absorption when plotted as a function of mole fraction of gas soluble in IL. Partial molar volume of CO 2 decreases with increase in temperature in [emim][FAP], while it is increased for HCs. Bubble point temperature decreases with increase in the mole fraction of the solute. Entropy of solvation increases with temperature till a particular value followed by a decrease with further increase in temperature. Gibbs free energy change of solvation showed that the process of solubility was spontaneous.

  8. A new in vivo animal model to create intervertebral disc degeneration characterized by MRI, radiography, CT/discogram, biochemistry, and histology.

    PubMed

    Zhou, HaoWei; Hou, ShuXun; Shang, WeiLin; Wu, WenWen; Cheng, Yao; Mei, Fang; Peng, BaoGan

    2007-04-15

    A new in vivo sheep model was developed that produced disc degeneration through the injection of 5-bromodeoxyuridine (BrdU) into the intervertebral disc. This process was studied using magnetic resonance imaging (MRI), radiography, CT/discogram, histology, and biochemistry. To develop a sheep model of intervertebral disc degeneration that more faithfully mimics the pathologic hallmarks of human intervertebral disc degeneration. Recent studies have shown age-related alterations in proteoglycan structure and organization in human intervertebral discs. An animal model that involves the use of age-related changes in disc cells can be beneficial over other more invasive degenerative models that involves directly damaging the matrix of disc tissue. Twelve sheep were injected with BrdU or vehicle (phosphate-buffered saline) into the central region of separate lumbar discs. Intact discs were used as controls. At the 2-, 6-, 10-, and 14-week time points, discs underwent MRI, radiography, histology, and biochemical analyses. A CT/discogram study was performed at the 14-week time point. MRI demonstrated a progressive loss of T2-weighted signal intensity at BrdU-injected discs over the 14-week study period. Radiograph findings included osteophyte and disc space narrowing formed by 10 weeks post-BrdU treatment. CT discography demonstrated internal disc disruption in several BrdU-treated discs at the 14-week time point. Histology showed a progressive loss of the normal architecture and cell density of discs from the 2-week time point to the 14-week time point. A progressive loss of cell proliferation capacity, water content, and proteoglycans was also documented. BrdU injection into the central region of sheep discs resulted in degeneration of intervertebral discs. This progressive, degenerative process was confirmed using MRI, histology, and by observing changes in biochemistry. Degeneration occurred in a manner that was similar to that observed in human disc degeneration.

  9. New from the Old - Measuring Coastal Cliff Change with Historical Oblique Aerial Photos

    NASA Astrophysics Data System (ADS)

    Warrick, J. A.; Ritchie, A.

    2016-12-01

    Oblique aerial photographs are commonly collected to document coastal landscapes. Here we show that these historical photographs can be used to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques if adequate photo-to-photo overlaps exist. Focusing on the 60-m high cliffs of Fort Funston, California, photographs from the California Coastal Records Project were combined with ground control points to develop topographic point clouds of the study area for five years between 2002 and 2010. Uncertainties in the results were assessed by comparing SfM-derived point clouds with airborne lidar data, and the differences between these data were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points the root mean squared error between the SfM and lidar data was less than 0.3 m (minimum = 0.18 m) and the mean systematic error was consistently less than 0.10 m. Because of the oblique orientation of the imagery, the SfM-derived point clouds provided coverage on vertical to overhanging portions of the cliff, and point densities from the SfM techniques averaged between 17 and 161 points/m2 on the cliff face. The time-series of topographic point clouds revealed many topographic changes, including landslides, rockfalls and the erosion of landslide talus along the Fort Funston beach. Thus, we concluded that historical oblique photographs, such as those generated by the California Coastal Records Project, can provide useful tools for mapping coastal topography and measuring coastal change.

  10. Detecting a Change in School Performance: A Bayesian Analysis for a Multilevel Join Point Problem. CSE Technical Report 542.

    ERIC Educational Resources Information Center

    Thum, Yeow Meng; Bhattacharya, Suman Kumar

    To better describe individual behavior within a system, this paper uses a sample of longitudinal test scores from a large urban school system to consider hierarchical Bayes estimation of a multilevel linear regression model in which each individual regression slope of test score on time switches at some unknown point in time, "kj."…

  11. Euler Strut: A Mechanical Analogy for Dynamics in the Vicinity of a Critical Point

    ERIC Educational Resources Information Center

    Bobnar, Jaka; Susman, Katarina; Parsegian, V. Adrian; Rand, Peter R.; Cepic, Mojca; Podgornik, Rudolf

    2011-01-01

    An anchored elastic filament (Euler strut) under an external point load applied to its free end is a simple model for a second-order phase transition. In the static case, a load greater than the critical load causes a Euler buckling instability, leading to a change in the filament's shape. The analysis of filament dynamics with an external point…

  12. [Neuropsychological changes in schizophrenia and its modification].

    PubMed

    Penadés, R; Boget, T; Salamero, M; Catarineu, S; Bernardo, M

    2000-12-01

    The main experimental works about neuropsychological impairments of schizophrenia are reviewed. The underlying mechanisms of the cognitive deficits are set in a framework of the limited capacity model. In second point, the current status of the modificability of the cognitive deficits and the clinical and psychosocial consequences of this deficits are presented. At least, neuropsychological rehabilitation programs are reviewed from a clinical point of view.

  13. Integrating Wind Profiling Radars and Radiosonde Observations with Model Point Data to Develop a Decision Support Tool to Assess Upper-Level Winds for Space Launch

    NASA Technical Reports Server (NTRS)

    Bauman, William H., III; Flinn, Clay

    2013-01-01

    On the day of launch, the 45th Weather Squadron (45 WS) Launch Weather Officers (LWOs) monitor the upper-level winds for their launch customers. During launch operations, the payload/launch team sometimes asks the LWOs if they expect the upper-level winds to change during the countdown. The LWOs used numerical weather prediction model point forecasts to provide the information, but did not have the capability to quickly retrieve or adequately display the upper-level observations and compare them directly in the same display to the model point forecasts to help them determine which model performed the best. The LWOs requested the Applied Meteorology Unit (AMU) develop a graphical user interface (GUI) that will plot upper-level wind speed and direction observations from the Cape Canaveral Air Force Station (CCAFS) Automated Meteorological Profiling System (AMPS) rawinsondes with point forecast wind profiles from the National Centers for Environmental Prediction (NCEP) North American Mesoscale (NAM), Rapid Refresh (RAP) and Global Forecast System (GFS) models to assess the performance of these models. The AMU suggested adding observations from the NASA 50 MHz wind profiler and one of the US Air Force 915 MHz wind profilers, both located near the Kennedy Space Center (KSC) Shuttle Landing Facility, to supplement the AMPS observations with more frequent upper-level profiles. Figure 1 shows a map of KSC/CCAFS with the locations of the observation sites and the model point forecasts.

  14. Onset of a Declining Trend in Fatal Motor Vehicle Crashes Involving Drunk-driving in Japan

    PubMed Central

    Nakahara, Shinji; Katanoda, Kota; Ichikawa, Masao

    2013-01-01

    Background In Japan, introduction of severe drunk-driving penalties and a lower blood alcohol concentration (BAC) limit in June 2002 was followed by a substantial reduction in fatal alcohol-related crashes. However, previous research suggests that this reduction started before the legal amendments. The causes of the decrease have not been studied in detail. Methods Monthly police data on fatal road traffic crashes from January 1995 to August 2006 were analyzed using a joinpoint regression model to identify change-points in the trends of the proportion of drunk-driving among drivers primarily responsible for fatal crashes. We analyzed the data by BAC level (≥0.5 or <0.5 mg/ml), then conducted analyses stratified by vehicle type (car or motorcycle) and age group (<45 or ≥45 years) only for the proportion of those with a BAC of 0.5 mg/ml or higher. Results Among all drivers, the proportion of those with a BAC of 0.5 mg/ml or higher and those with a BAC greater than 0 but less than 0.5 mg/ml showed a change-point from increase to decrease in February 2000 and in May 2002, respectively. The proportion of those with a BAC of 0.5 mg/ml or higher showed a change-point from increase to decrease in October 1999 among car drivers and in April 2000 among drivers younger than 45 years. There was no change-point among motorcyclists. A change-point from no trend to a decrease in January 2002 was observed among those 45 years or older. Conclusions The change-point identified around the end of 1999 to the start of 2000 suggests that a high-profile fatal crash in November 1999, which drew media attention and provoked public debate, triggered subsequent changes in drunk-driving behavior. PMID:23604061

  15. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Wenyang; Cheung, Yam; Sawant, Amit

    2016-05-15

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparsemore » regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.« less

  16. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system.

    PubMed

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-05-01

    To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications.

  17. A robust real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system

    PubMed Central

    Liu, Wenyang; Cheung, Yam; Sawant, Amit; Ruan, Dan

    2016-01-01

    Purpose: To develop a robust and real-time surface reconstruction method on point clouds captured from a 3D surface photogrammetry system. Methods: The authors have developed a robust and fast surface reconstruction method on point clouds acquired by the photogrammetry system, without explicitly solving the partial differential equation required by a typical variational approach. Taking advantage of the overcomplete nature of the acquired point clouds, their method solves and propagates a sparse linear relationship from the point cloud manifold to the surface manifold, assuming both manifolds share similar local geometry. With relatively consistent point cloud acquisitions, the authors propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, assuming that the point correspondences built by the iterative closest point (ICP) is reasonably accurate and have residual errors following a Gaussian distribution. To accommodate changing noise levels and/or presence of inconsistent occlusions during the acquisition, the authors further propose a modified sparse regression (MSR) model to model the potentially large and sparse error built by ICP with a Laplacian prior. The authors evaluated the proposed method on both clinical point clouds acquired under consistent acquisition conditions and on point clouds with inconsistent occlusions. The authors quantitatively evaluated the reconstruction performance with respect to root-mean-squared-error, by comparing its reconstruction results against that from the variational method. Results: On clinical point clouds, both the SR and MSR models have achieved sub-millimeter reconstruction accuracy and reduced the reconstruction time by two orders of magnitude to a subsecond reconstruction time. On point clouds with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent and robust performance despite the introduced occlusions. Conclusions: The authors have developed a fast and robust surface reconstruction method on point clouds captured from a 3D surface photogrammetry system, with demonstrated sub-millimeter reconstruction accuracy and subsecond reconstruction time. It is suitable for real-time motion tracking in radiotherapy, with clear surface structures for better quantifications. PMID:27147347

  18. 3D Surface Reconstruction and Volume Calculation of Rills

    NASA Astrophysics Data System (ADS)

    Brings, Christine; Gronz, Oliver; Becker, Kerstin; Wirtz, Stefan; Seeger, Manuel; Ries, Johannes B.

    2015-04-01

    We use the low-cost, user-friendly photogrammetric Structure from Motion (SfM) technique, which is implemented in the Software VisualSfM, for 3D surface reconstruction and volume calculation of an 18 meter long rill in Luxembourg. The images were taken with a Canon HD video camera 1) before a natural rainfall event, 2) after a natural rainfall event and before a rill experiment and 3) after a rill experiment. Recording with a video camera results compared to a photo camera not only a huge time advantage, the method also guarantees more than adequately overlapping sharp images. For each model, approximately 8 minutes of video were taken. As SfM needs single images, we automatically selected the sharpest image from 15 frame intervals. The sharpness was estimated using a derivative-based metric. Then, VisualSfM detects feature points in each image, searches matching feature points in all image pairs, recovers the camera positions and finally by triangulation of camera positions and feature points the software reconstructs a point cloud of the rill surface. From the point cloud, 3D surface models (meshes) are created and via difference calculations of the pre and post models a visualization of the changes (erosion and accumulation areas) and quantification of erosion volumes are possible. The calculated volumes are presented in spatial units of the models and so real values must be converted via references. The outputs are three models at three different points in time. The results show that especially using images taken from suboptimal videos (bad lighting conditions, low contrast of the surface, too much in-motion unsharpness), the sharpness algorithm leads to much more matching features. Hence the point densities of the 3D models are increased and thereby clarify the calculations.

  19. Rate and State Friction Relation for Nanoscale Contacts: Thermally Activated Prandtl-Tomlinson Model with Chemical Aging

    NASA Astrophysics Data System (ADS)

    Tian, Kaiwen; Goldsby, David L.; Carpick, Robert W.

    2018-05-01

    Rate and state friction (RSF) laws are widely used empirical relationships that describe macroscale to microscale frictional behavior. They entail a linear combination of the direct effect (the increase of friction with sliding velocity due to the reduced influence of thermal excitations) and the evolution effect (the change in friction with changes in contact "state," such as the real contact area or the degree of interfacial chemical bonds). Recent atomic force microscope (AFM) experiments and simulations found that nanoscale single-asperity amorphous silica-silica contacts exhibit logarithmic aging (increasing friction with time) over several decades of contact time, due to the formation of interfacial chemical bonds. Here we establish a physically based RSF relation for such contacts by combining the thermally activated Prandtl-Tomlinson (PTT) model with an evolution effect based on the physics of chemical aging. This thermally activated Prandtl-Tomlinson model with chemical aging (PTTCA), like the PTT model, uses the loading point velocity for describing the direct effect, not the tip velocity (as in conventional RSF laws). Also, in the PTTCA model, the combination of the evolution and direct effects may be nonlinear. We present AFM data consistent with the PTTCA model whereby in aging tests, for a given hold time, static friction increases with the logarithm of the loading point velocity. Kinetic friction also increases with the logarithm of the loading point velocity at sufficiently high velocities, but at a different increasing rate. The discrepancy between the rates of increase of static and kinetic friction with velocity arises from the fact that appreciable aging during static contact changes the energy landscape. Our approach extends the PTT model, originally used for crystalline substrates, to amorphous materials. It also establishes how conventional RSF laws can be modified for nanoscale single-asperity contacts to provide a physically based friction relation for nanoscale contacts that exhibit chemical bond-induced aging, as well as other aging mechanisms with similar physical characteristics.

  20. Integrated Assessment and the Relation Between Land-Use Change and Climate Change

    DOE R&D Accomplishments Database

    Dale, V. H.

    1994-10-07

    Integrated assessment is an approach that is useful in evaluating the consequences of global climate change. Understanding the consequences requires knowledge of the relationship between land-use change and climate change. Methodologies for assessing the contribution of land-use change to atmospheric CO{sub 2} concentrations are considered with reference to a particular case study area: south and southeast Asia. The use of models to evaluate the consequences of climate change on forests must also consider an assessment approach. Each of these points is discussed in the following four sections.

  1. Evaluating time dynamics of topographic threshold relations for gully initiation

    NASA Astrophysics Data System (ADS)

    Hayas, Antonio; Vanwalleghem, Tom; Poesen, Jean

    2016-04-01

    Gully erosion is one of the most important soil degradation processes at global scale. However, modelling of gully erosion is still difficult. Despite advances in the modelling of gully headcut rates and incision rates, it remains difficult to predict the location of gully initiation points and trajectories. In different studies it has been demonstrated that a good method of predicting gully initiation is by using a slope (S) - area (A) threshold. Such an S-A relation is a simple way of estimating the critical discharges needed to generate a critical shear stress that can incise a particular soil and initiate a gully. As such, the simple S-A threshold will vary if the rainfall-runoff behaviour of the soil changes or if the soil's erodibility changes. Over the past decades, important agronomic changes have produced significant changes in the soil use and soil management in SW Spain. It is the objective of this research to evaluate how S-A relations for gully initiation have changed over time and for two different land uses, cereal and olive. Data was collected for a gully network in the Cordoba Province, SW Spain. From photo-interpretation of historical air photos between 1956 and 2013, the gully network and initiation points were derived. In total 10 different time steps are available (1956; 1977; 1984; 1998; 2001; 2004; 2006; 2008; 2010; 2013). Topographical thresholds were extracted by combining the digitized gully network with the DEM. Due to small differences in the alignment of ortophotos and DEM, an optimization technique was developed in GIS to extract the correct S-A value for each point. With the S-A values for each year, their dynamics was evaluated as a function of land use (olive or cereal) and in function of the following variables in each of the periods considered: • soil management • soil cover by weeds, where weed growth was modeled from the daily soil water balance • rainfall intensity • root cohesion, , where root growth was modeled from the daily soil water balance We found important differences between cereal and olive and significant changes in the S-A relation over time.

  2. Are groundwater nitrate concentrations reaching a turning point in some chalk aquifers?

    PubMed

    Smith, J T; Clarke, R T; Bowes, M J

    2010-09-15

    In past decades, there has been much scientific effort dedicated to the development of models for simulation and prediction of nitrate concentrations in groundwaters, but producing truly predictive models remains a major challenge. A time-series model, based on long-term variations in nitrate fertiliser applications and average rainfall, was calibrated against measured concentrations from five boreholes in the River Frome catchment of Southern England for the period spanning from the mid-1970s to 2003. The model was then used to "blind" predict nitrate concentrations for the period 2003-2008. To our knowledge, this represents the first "blind" test of a model for predicting nitrate concentrations in aquifers. It was found that relatively simple time-series models could explain and predict a significant proportion of the variation in nitrate concentrations in these groundwater abstraction points (R(2)=0.6-0.9 and mean absolute prediction errors 4.2-8.0%). The study highlighted some important limitations and uncertainties in this, and other modelling approaches, in particular regarding long-term nitrate fertiliser application data. In three of the five groundwater abstraction points (Hooke, Empool and Eagle Lodge), once seasonal variations were accounted for, there was a recent change in the generally upward historical trend in nitrate concentrations. This may be an early indication of a response to levelling-off (and declining) fertiliser application rates since the 1980s. There was no clear indication of trend change at the Forston and Winterbourne Abbas sites nor in the trend of nitrate concentration in the River Frome itself from 1965 to 2008. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Time-varying Entry Heating Profile Replication with a Rotating Arc Jet Test Article

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay Henderson; Venkatapathy, Ethiraj; Noyes, Eric A.; Mach, Jeffrey J.; Empey, Daniel M.; White, Todd R.

    2014-01-01

    A new approach for arc jet testing of thermal protection materials at conditions approximating the time-varying conditions of atmospheric entry was developed and demonstrated. The approach relies upon the spatial variation of heat flux and pressure over a cylindrical test model. By slowly rotating a cylindrical arc jet test model during exposure to an arc jet stream, each point on the test model will experience constantly changing applied heat flux. The predicted temporal profile of heat flux at a point on a vehicle can be replicated by rotating the cylinder at a prescribed speed and direction. An electromechanical test model mechanism was designed, built, and operated during an arc jet test to demonstrate the technique.

  4. Support of Multidimensional Parallelism in the OpenMP Programming Model

    NASA Technical Reports Server (NTRS)

    Jin, Hao-Qiang; Jost, Gabriele

    2003-01-01

    OpenMP is the current standard for shared-memory programming. While providing ease of parallel programming, the OpenMP programming model also has limitations which often effect the scalability of applications. Examples for these limitations are work distribution and point-to-point synchronization among threads. We propose extensions to the OpenMP programming model which allow the user to easily distribute the work in multiple dimensions and synchronize the workflow among the threads. The proposed extensions include four new constructs and the associated runtime library. They do not require changes to the source code and can be implemented based on the existing OpenMP standard. We illustrate the concept in a prototype translator and test with benchmark codes and a cloud modeling code.

  5. Segmentation and clustering as complementary sources of information

    NASA Astrophysics Data System (ADS)

    Dale, Michael B.; Allison, Lloyd; Dale, Patricia E. R.

    2007-03-01

    This paper examines the effects of using a segmentation method to identify change-points or edges in vegetation. It identifies coherence (spatial or temporal) in place of unconstrained clustering. The segmentation method involves change-point detection along a sequence of observations so that each cluster formed is composed of adjacent samples; this is a form of constrained clustering. The protocol identifies one or more models, one for each section identified, and the quality of each is assessed using a minimum message length criterion, which provides a rational basis for selecting an appropriate model. Although the segmentation is less efficient than clustering, it does provide other information because it incorporates textural similarity as well as homogeneity. In addition it can be useful in determining various scales of variation that may apply to the data, providing a general method of small-scale pattern analysis.

  6. The effects of sleep deprivation on dissociable prototype learning systems.

    PubMed

    Maddox, W Todd; Glass, Brian D; Zeithamova, Dagmar; Savarie, Zachary R; Bowen, Christopher; Matthews, Michael D; Schnyer, David M

    2011-03-01

    The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance.

  7. Automatic 3d Building Model Generations with Airborne LiDAR Data

    NASA Astrophysics Data System (ADS)

    Yastikli, N.; Cetin, Z.

    2017-11-01

    LiDAR systems become more and more popular because of the potential use for obtaining the point clouds of vegetation and man-made objects on the earth surface in an accurate and quick way. Nowadays, these airborne systems have been frequently used in wide range of applications such as DEM/DSM generation, topographic mapping, object extraction, vegetation mapping, 3 dimensional (3D) modelling and simulation, change detection, engineering works, revision of maps, coastal management and bathymetry. The 3D building model generation is the one of the most prominent applications of LiDAR system, which has the major importance for urban planning, illegal construction monitoring, 3D city modelling, environmental simulation, tourism, security, telecommunication and mobile navigation etc. The manual or semi-automatic 3D building model generation is costly and very time-consuming process for these applications. Thus, an approach for automatic 3D building model generation is needed in a simple and quick way for many studies which includes building modelling. In this study, automatic 3D building models generation is aimed with airborne LiDAR data. An approach is proposed for automatic 3D building models generation including the automatic point based classification of raw LiDAR point cloud. The proposed point based classification includes the hierarchical rules, for the automatic production of 3D building models. The detailed analyses for the parameters which used in hierarchical rules have been performed to improve classification results using different test areas identified in the study area. The proposed approach have been tested in the study area which has partly open areas, forest areas and many types of the buildings, in Zekeriyakoy, Istanbul using the TerraScan module of TerraSolid. The 3D building model was generated automatically using the results of the automatic point based classification. The obtained results of this research on study area verified that automatic 3D building models can be generated successfully using raw LiDAR point cloud data.

  8. Examination of the relationship between theory-driven policies and allowed lost-time back claims in workers' compensation: a system dynamics model.

    PubMed

    Wong, Jessica J; McGregor, Marion; Mior, Silvano A; Loisel, Patrick

    2014-01-01

    The purpose of this study was to develop a model that evaluates the impact of policy changes on the number of workers' compensation lost-time back claims in Ontario, Canada, over a 30-year timeframe. The model was used to test the hypothesis that a theory- and policy-driven model would be sufficient in reproducing historical claims data in a robust manner and that policy changes would have a major impact on modeled data. The model was developed using system dynamics methods in the Vensim simulation program. The theoretical effects of policies for compensation benefit levels and experience rating fees were modeled. The model was built and validated using historical claims data from 1980 to 2009. Sensitivity analysis was used to evaluate the modeled data at extreme end points of variable input and timeframes. The degree of predictive value of the modeled data was measured by the coefficient of determination, root mean square error, and Theil's inequality coefficients. Correlation between modeled data and actual data was found to be meaningful (R(2) = 0.934), and the modeled data were stable at extreme end points. Among the effects explored, policy changes were found to be relatively minor drivers of back claims data, accounting for a 13% improvement in error. Simulation results suggested that unemployment, number of no-lost-time claims, number of injuries per worker, and recovery rate from back injuries outside of claims management to be sensitive drivers of back claims data. A robust systems-based model was developed and tested for use in future policy research in Ontario's workers' compensation. The study findings suggest that certain areas within and outside the workers' compensation system need to be considered when evaluating and changing policies around back claims. © 2014. Published by National University of Health Sciences All rights reserved.

  9. Bayesian Model Averaging with Change Points to Assess the Impact of Vaccination and Public Health Interventions

    PubMed Central

    Warren, Joshua L.; Schuck-Paim, Cynthia; Lustig, Roger; Lewnard, Joseph A.; Fuentes, Rodrigo; Bruhn, Christian A. W.; Taylor, Robert J.; Simonsen, Lone; Weinberger, Daniel M.

    2017-01-01

    Background: Pneumococcal conjugate vaccines (PCVs) prevent invasive pneumococcal disease and pneumonia. However, some low-and middle-income countries have yet to introduce PCV into their immunization programs due, in part, to lack of certainty about the potential impact. Assessing PCV benefits is challenging because specific data on pneumococcal disease are often lacking, and it can be difficult to separate the effects of factors other than the vaccine that could also affect pneumococcal disease rates. Methods: We assess PCV impact by combining Bayesian model averaging with change-point models to estimate the timing and magnitude of vaccine-associated changes, while controlling for seasonality and other covariates. We applied our approach to monthly time series of age-stratified hospitalizations related to pneumococcal infection in children younger 5 years of age in the United States, Brazil, and Chile. Results: Our method accurately detected changes in data in which we knew true and noteworthy changes occurred, i.e., in simulated data and for invasive pneumococcal disease. Moreover, 24 months after the vaccine introduction, we detected reductions of 14%, 9%, and 9% in the United States, Brazil, and Chile, respectively, in all-cause pneumonia (ACP) hospitalizations for age group 0 to <1 years of age. Conclusions: Our approach provides a flexible and sensitive method to detect changes in disease incidence that occur after the introduction of a vaccine or other intervention, while avoiding biases that exist in current approaches to time-trend analyses. PMID:28767518

  10. Gulf War agent exposure causes impairment of long-term memory formation and neuropathological changes in a mouse model of Gulf War Illness.

    PubMed

    Zakirova, Zuchra; Tweed, Miles; Crynen, Gogce; Reed, Jon; Abdullah, Laila; Nissanka, Nadee; Mullan, Myles; Mullan, Michael J; Mathura, Venkatarajan; Crawford, Fiona; Ait-Ghezala, Ghania

    2015-01-01

    Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component such as memory deficits, neurological, and musculoskeletal problems. There are ample data that demonstrate that exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and pesticides such as permethrin (PER), were key contributors to the etiology of GWI post deployment to the Persian GW. In the current study, we examined the consequences of acute (10 days) exposure to PB and PER in C57BL6 mice. Learning and memory tests were performed at 18 days and at 5 months post-exposure. We investigated the relationship between the cognitive phenotype and neuropathological changes at short and long-term time points post-exposure. No cognitive deficits were observed at the short-term time point, and only minor neuropathological changes were detected. However, cognitive deficits emerged at the later time point and were associated with increased astrogliosis and reduction of synaptophysin staining in the hippocampi and cerebral cortices of exposed mice, 5 months post exposure. In summary, our findings in this mouse model of GW agent exposure are consistent with some GWI symptom manifestations, including delayed onset of symptoms and CNS disturbances observed in GWI veterans.

  11. Gulf War Agent Exposure Causes Impairment of Long-Term Memory Formation and Neuropathological Changes in a Mouse Model of Gulf War Illness

    PubMed Central

    Zakirova, Zuchra; Tweed, Miles; Crynen, Gogce; Reed, Jon; Abdullah, Laila; Nissanka, Nadee; Mullan, Myles; Mullan, Michael J.; Mathura, Venkatarajan; Crawford, Fiona; Ait-Ghezala, Ghania

    2015-01-01

    Gulf War Illness (GWI) is a chronic multisymptom illness with a central nervous system component such as memory deficits, neurological, and musculoskeletal problems. There are ample data that demonstrate that exposure to Gulf War (GW) agents, such as pyridostigmine bromide (PB) and pesticides such as permethrin (PER), were key contributors to the etiology of GWI post deployment to the Persian GW. In the current study, we examined the consequences of acute (10 days) exposure to PB and PER in C57BL6 mice. Learning and memory tests were performed at 18 days and at 5 months post-exposure. We investigated the relationship between the cognitive phenotype and neuropathological changes at short and long-term time points post-exposure. No cognitive deficits were observed at the short-term time point, and only minor neuropathological changes were detected. However, cognitive deficits emerged at the later time point and were associated with increased astrogliosis and reduction of synaptophysin staining in the hippocampi and cerebral cortices of exposed mice, 5 months post exposure. In summary, our findings in this mouse model of GW agent exposure are consistent with some GWI symptom manifestations, including delayed onset of symptoms and CNS disturbances observed in GWI veterans. PMID:25785457

  12. Parsimonious model for blood glucose level monitoring in type 2 diabetes patients.

    PubMed

    Zhao, Fang; Ma, Yan Fen; Wen, Jing Xiao; DU, Yan Fang; Li, Chun Lin; Li, Guang Wei

    2014-07-01

    To establish the parsimonious model for blood glucose monitoring in patients with type 2 diabetes receiving oral hypoglycemic agent treatment. One hundred and fifty-nine adult Chinese type 2 diabetes patients were randomized to receive rapid-acting or sustained-release gliclazide therapy for 12 weeks. Their blood glucose levels were measured at 10 time points in a 24 h period before and after treatment, and the 24 h mean blood glucose levels were measured. Contribution of blood glucose levels to the mean blood glucose level and HbA1c was assessed by multiple regression analysis. The correlation coefficients of blood glucose level measured at 10 time points to the daily MBG were 0.58-0.74 and 0.59-0.79, respectively, before and after treatment (P<0.0001). The multiple stepwise regression analysis showed that the blood glucose levels measured at 6 of the 10 time points could explain 95% and 97% of the changes in MBG before and after treatment. The three blood glucose levels, which were measured at fasting, 2 h after breakfast and before dinner, of the 10 time points could explain 84% and 86% of the changes in MBG before and after treatment, but could only explain 36% and 26% of the changes in HbA1c before and after treatment, and they had a poorer correlation with the HbA1c than with the 24 h MBG. The blood glucose levels measured at fasting, 2 h after breakfast and before dinner truly reflected the change 24 h blood glucose level, suggesting that they are appropriate for the self-monitoring of blood glucose levels in diabetes patients receiving oral anti-diabetes therapy. Copyright © 2014 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  13. A Communication Intervention to Reduce Resistiveness in Dementia Care: A Cluster Randomized Controlled Trial.

    PubMed

    Williams, Kristine N; Perkhounkova, Yelena; Herman, Ruth; Bossen, Ann

    2017-08-01

    Nursing home (NH) residents with dementia exhibit challenging behaviors or resistiveness to care (RTC) that increase staff time, stress, and NH costs. RTC is linked to elderspeak communication. Communication training (Changing Talk [CHAT]) was provided to staff to reduce their use of elderspeak. We hypothesized that CHAT would improve staff communication and subsequently reduce RTC. Thirteen NHs were randomized to intervention and control groups. Dyads (n = 42) including 29 staff and 27 persons with dementia were videorecorded during care before and/or after the intervention and at a 3-month follow-up. Videos were behaviorally coded for (a) staff communication (normal, elderspeak, or silence) and (b) resident behaviors (cooperative or RTC). Linear mixed modeling was used to evaluate training effects. On average, elderspeak declined from 34.6% (SD = 18.7) at baseline by 13.6% points (SD = 20.00) post intervention and 12.2% points (SD = 22.0) at 3-month follow-up. RTC declined from 35.7% (SD = 23.2) by 15.3% points (SD = 32.4) post intervention and 13.4% points (SD = 33.7) at 3 months. Linear mixed modeling determined that change in elderspeak was predicted by the intervention (b = -12.20, p = .028) and baseline elderspeak (b = -0.65, p < .001), whereas RTC change was predicted by elderspeak change (b = 0.43, p < .001); baseline RTC (b = -0.58, p < .001); and covariates. A brief intervention can improve communication and reduce RTC, providing an effective nonpharmacological intervention to manage behavior and improve the quality of dementia care. No adverse events occurred. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Presenting a model for dynamic facial expression changes in detecting drivers’ drowsiness

    PubMed Central

    Karchani, Mohsen; Mazloumi, Adel; Saraji, Gebraeil Nasl; Gharagozlou, Faramarz; Nahvi, Ali; Haghighi, Khosro Sadeghniiat; Abadi, Bahador Makki; Foroshani, Abbas Rahimi

    2015-01-01

    Drowsiness while driving is a major cause of accidents. A driver fatigue detection system that is designed to sound an alarm, when appropriate, can prevent many accidents that sometime leads to the loss of life and property. In this paper, we classify drowsiness detection sensors and their strong and weak points. A compound model is proposed that uses image processing techniques to study the dynamic changes of the face to recognize drowsiness during driving. PMID:26120417

  15. Women's journey to safety - the Transtheoretical model in clinical practice when working with women experiencing Intimate Partner Violence: a scientific review and clinical guidance.

    PubMed

    Reisenhofer, Sonia; Taft, Angela

    2013-12-01

    Review the applicability of the Transtheoretical model and provide updated guidance for clinicians working with women experiencing intimate partner violence. Critical review of related primary research conducted from 1990 to March 2013. Women's experiences of creating change within abusive relationships can be located within a stages of change continuum by identifying dominant behavioral clusters. The processes of change and constructs of decisional-balance and turning-points are evident in women's decision-making when they engage in change. Clinicians can use the stages of change to provide a means of assessing women's movement toward their nominated outcomes, and the processes of change, decisional-balance and turning-points, to enhance understanding of, and promote women's movement across stages in their journey to safety. Clinicians should assess women individually for immediate and ongoing safety and well-being, and identify their overarching stage of change. Clinicians can support women in identifying and implementing their personal objectives to enhance self-efficacy and create positive change movement across stages. The three primary objectives identified for clinician support are: 1. Minimizing harm and promoting well-being within an abusive relationship, 2. Achieving safety and well-being within the relationship; halting the abuse, or 3. Achieving safety by ending/leaving intimate relationships. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Aflatoxin B1 contamination in maize in Europe increases due to climate change

    NASA Astrophysics Data System (ADS)

    Battilani, P.; Toscano, P.; van der Fels-Klerx, H. J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T.

    2016-04-01

    Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.

  17. High Resolution Seamless Dom Generation Over CHANG'E-5 Landing Area Using Lroc Nac Images

    NASA Astrophysics Data System (ADS)

    Di, K.; Jia, M.; Xin, X.; Liu, B.; Liu, Z.; Peng, M.; Yue, Z.

    2018-04-01

    Chang'e-5, China's first sample return lunar mission, will be launched in 2019, and the planned landing area is near Mons Rümker in Oceanus Procellarum. High-resolution and high-precision mapping of the landing area is of great importance for supporting scientific analysis and safe landing. This paper proposes a systematic method for large area seamless digital orthophoto map (DOM) generation, and presents the mapping result of Chang'e-5 landing area using over 700 LROC NAC images. The developed method mainly consists of two stages of data processing: stage 1 includes subarea block adjustment with rational function model (RFM) and seamless subarea DOM generation; stage 2 includes whole area adjustment through registration of the subarea DOMs with thin plate spline model and seamless DOM mosaicking. The resultant seamless DOM coves a large area (20° longitude × 4° latitude) and is tied to the widely used reference DEM - SLDEM2015. As a result, the RMS errors of the tie points are all around half pixel in image space, indicating a high internal precision; the RMS errors of the control points are about one grid cell size of SLDEM2015, indicating that the resultant DOM is tied to SLDEM2015 well.

  18. How Mathematics Describes Life

    NASA Astrophysics Data System (ADS)

    Teklu, Abraham

    2017-01-01

    The circle of life is something we have all heard of from somewhere, but we don't usually try to calculate it. For some time we have been working on analyzing a predator-prey model to better understand how mathematics can describe life, in particular the interaction between two different species. The model we are analyzing is called the Holling-Tanner model, and it cannot be solved analytically. The Holling-Tanner model is a very common model in population dynamics because it is a simple descriptor of how predators and prey interact. The model is a system of two differential equations. The model is not specific to any particular set of species and so it can describe predator-prey species ranging from lions and zebras to white blood cells and infections. One thing all these systems have in common are critical points. A critical point is a value for both populations that keeps both populations constant. It is important because at this point the differential equations are equal to zero. For this model there are two critical points, a predator free critical point and a coexistence critical point. Most of the analysis we did is on the coexistence critical point because the predator free critical point is always unstable and frankly less interesting than the coexistence critical point. What we did is consider two regimes for the differential equations, large B and small B. B, A, and C are parameters in the differential equations that control the system where B measures how responsive the predators are to change in the population, A represents predation of the prey, and C represents the satiation point of the prey population. For the large B case we were able to approximate the system of differential equations by a single scalar equation. For the small B case we were able to predict the limit cycle. The limit cycle is a process of the predator and prey populations growing and shrinking periodically. This model has a limit cycle in the regime of small B, that we solved for numerically. With some assumptions to reduce the differential equations we were able to create a system of equations and unknowns to predict the behavior of the limit cycle for small B.

  19. Mapping the Critical Gestational Age at Birth that Alters Brain Development in Preterm-born Infants using Multi-Modal MRI

    PubMed Central

    Wu, Dan; Chang, Linda; Akazawa, Kentaro; Oishi, Kumiko; Skranes, Jon; Ernst, Thomas; Oishi, Kenichi

    2017-01-01

    Preterm birth adversely affects postnatal brain development. In order to investigate the critical gestational age at birth (GAB) that alters the developmental trajectory of gray and white matter structures in the brain, we investigated diffusion tensor and quantitative T2 mapping data in 43 term-born and 43 preterm-born infants. A novel multivariate linear model—the change point model, was applied to detect change points in fractional anisotropy, mean diffusivity, and T2 relaxation time. Change points captured the “critical” GAB value associated with a change in the linear relation between GAB and MRI measures. The analysis was performed in 126 regions across the whole brain using an atlas-based image quantification approach to investigate the spatial pattern of the critical GAB. Our results demonstrate that the critical GABs are region- and modality-specific, generally following a central-to-peripheral and bottom-to-top order of structural development. This study may offer unique insights into the postnatal neurological development associated with differential degrees of preterm birth. PMID:28111189

  20. Neurodegenerative disease and cognitive retest learning.

    PubMed

    Wilson, Robert S; Capuano, Ana W; Yu, Lei; Yang, Jingyun; Kim, Namhee; Leurgans, Sue E; Lamar, Melissa; Schneider, Julie A; Bennett, David A; Boyle, Patricia A

    2018-06-01

    Retest learning impacts estimates of cognitive aging, but its bases are uncertain. Here, we test the hypothesis that dementia-related neurodegeneration impairs retest learning. Older persons without cognitive impairment at enrollment (n = 567) had annual cognitive testing for a mean of 11 years, died, and had a neuropathologic examination to quantify 5 neurodegenerative pathologies. Change point models were used to divide cognitive trajectories into an early retest sensitive component and a later component less sensitive to retest. Performance on a global cognitive measure (baseline mean = 0.227, standard deviation = 0.382) increased an estimated mean of 0.142-unit per year for a mean of 1.5 years and declined an estimated mean of 0.123-unit per year thereafter. No pathologic marker was related to cognitive change before the change point; each was related to cognitive decline after the change point. Results were comparable in analyses that used specific cognitive outcomes, included 220 individuals with mild cognitive impairment at enrollment, or allowed a longer retest learning period. The findings suggest that neurodegeneration does not impact cognitive retest learning. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. The Swedish Regional Climate Modelling Programme, SWECLIM: a review.

    PubMed

    Rummukainen, Markku; Bergström, Sten; Persson, Gunn; Rodhe, Johan; Tjernström, Michael

    2004-06-01

    The Swedish Regional Climate Modelling Programme, SWECLIM, was a 6.5-year national research network for regional climate modeling, regional climate change projections and hydrological impact assessment and information to a wide range of stakeholders. Most of the program activities focussed on the regional climate system of Northern Europe. This led to the establishment of an advanced, coupled atmosphere-ocean-hydrology regional climate model system, a suite of regional climate change projections and progress on relevant data and process studies. These were, in turn, used for information and educational purposes, as a starting point for impact analyses on different societal sectors and provided contributions also to international climate research.

  2. Mean-field approximation for the Sznajd model in complex networks

    NASA Astrophysics Data System (ADS)

    Araújo, Maycon S.; Vannucchi, Fabio S.; Timpanaro, André M.; Prado, Carmen P. C.

    2015-02-01

    This paper studies the Sznajd model for opinion formation in a population connected through a general network. A master equation describing the time evolution of opinions is presented and solved in a mean-field approximation. Although quite simple, this approximation allows us to capture the most important features regarding the steady states of the model. When spontaneous opinion changes are included, a discontinuous transition from consensus to polarization can be found as the rate of spontaneous change is increased. In this case we show that a hybrid mean-field approach including interactions between second nearest neighbors is necessary to estimate correctly the critical point of the transition. The analytical prediction of the critical point is also compared with numerical simulations in a wide variety of networks, in particular Barabási-Albert networks, finding reasonable agreement despite the strong approximations involved. The same hybrid approach that made it possible to deal with second-order neighbors could just as well be adapted to treat other problems such as epidemic spreading or predator-prey systems.

  3. Strategic reasoning and bargaining in catastrophic climate change games

    NASA Astrophysics Data System (ADS)

    Verendel, Vilhelm; Johansson, Daniel J. A.; Lindgren, Kristian

    2016-03-01

    Two decades of international negotiations show that agreeing on emission levels for climate change mitigation is a hard challenge. However, if early warning signals were to show an upcoming tipping point with catastrophic damage, theory and experiments suggest this could simplify collective action to reduce greenhouse gas emissions. At the actual threshold, no country would have a free-ride incentive to increase emissions over the tipping point, but it remains for countries to negotiate their emission levels to reach these agreements. We model agents bargaining for emission levels using strategic reasoning to predict emission bids by others and ask how this affects the possibility of reaching agreements that avoid catastrophic damage. It is known that policy elites often use a higher degree of strategic reasoning, and in our model this increases the risk for climate catastrophe. Moreover, some forms of higher strategic reasoning make agreements to reduce greenhouse gases unstable. We use empirically informed levels of strategic reasoning when simulating the model.

  4. Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models

    PubMed Central

    Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita

    2010-01-01

    Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720

  5. Major challenges for correlational ecological niche model projections to future climate conditions.

    PubMed

    Peterson, A Townsend; Cobos, Marlon E; Jiménez-García, Daniel

    2018-06-20

    Species-level forecasts of distributional potential and likely distributional shifts, in the face of changing climates, have become popular in the literature in the past 20 years. Many refinements have been made to the methodology over the years, and the result has been an approach that considers multiple sources of variation in geographic predictions, and how that variation translates into both specific predictions and uncertainty in those predictions. Although numerous previous reviews and overviews of this field have pointed out a series of assumptions and caveats associated with the methodology, three aspects of the methodology have important impacts but have not been treated previously in detail. Here, we assess those three aspects: (1) effects of niche truncation on model transfers to future climate conditions, (2) effects of model selection procedures on future-climate transfers of ecological niche models, and (3) relative contributions of several factors (replicate samples of point data, general circulation models, representative concentration pathways, and alternative model parameterizations) to overall variance in model outcomes. Overall, the view is one of caution: although resulting predictions are fascinating and attractive, this paradigm has pitfalls that may bias and limit confidence in niche model outputs as regards the implications of climate change for species' geographic distributions. © 2018 New York Academy of Sciences.

  6. Application of terrestrial laser scanning for coastal geomorphologic research questions in western Greece

    NASA Astrophysics Data System (ADS)

    Hoffmeister, Dirk; Curdt, Constanze; Tilly, Nora; Ntageretzis, Konstantin; Aasen, Helge; Vött, Andreas; Bareth, Georg

    2013-04-01

    Coasts are areas of permanent change, influenced by gradual changes and sudden impacts. In particular, western Greece is a tectonically active region, due to the nearby plate boundary of the Hellenic Arc. The region has suffered from numerous earthquakes and tsunamis during prehistoric and historic times and is thus characterized by a high seismic and tsunami hazard risk. Additionally, strong winter storms may reach considerable dimensions. In this study, terrestrial laser scanning was applied for (i) annual change detection at seven coastal areas of western Greece for three years (2009-2011) and (ii) accurate parameter detection of large boulders, dislocated by high-energy wave impacts. The Riegl LMS-Z420i laser scanner was used in combination with a precise DGPS system (Topcon HiPer Pro) for all surveys. Each scan position and a further target were recorded for georeferencing and merging of the point clouds. (i) For the annual detection of changes, reference points for the base station of the DGPS system were marked. High-resolution digital elevation models (HRDEM) were generated from each dataset of the different years and are compared to each other, resulting in mass balances. (ii) 3D-models of dislocated boulders were reconstructed and parameters (e.g. volume in combination with density measurements, distance and height above present sea-level) were derived for the solution of wave transport equations, which estimate the minimum wave height or velocity that is necessary for boulder movement. (i) Our results show that annual changes are detectable by multi-temporal terrestrial laser scanning. In general, volumetric changes and affected areas are quantifiable and maps of changes can be established. On exposed beach areas, bigger changes were detectable, where seagrass and sand is eroded and gravel accumulated. In opposite, only minor changes for elevated areas are derived. Dislocated boulders on several sites showed no movement. At coastal areas with a high surface roughness and along recent beaches, post-processing of point clouds turned out to be more difficult, due to noise effects by water and shadowing effects. A point to point comparison was used in addition to check the results. (ii) Furthermore, it is possible to obtain highly accurate volumetric data of dislocated boulders by 3D reconstruction. Further parameters, such as inclination, elevation above sea level or the distance of the boulder to the sea can be extracted from the 3D model of the study site. Accurate maps of the geomorphological settings are established. All parameters were incorporated into selected wave transport equations, which regard the variable "mass" as a direct input parameter for the calculation of wave heights and velocities needed for boulder dislocation. Our results were compared to data based on manual measurement of boulder axes and roughly estimated rock density values, which show a combined, general overestimation of ~40%.

  7. The Mobility of Universities

    ERIC Educational Resources Information Center

    Tanaka, Masahiro

    2009-01-01

    This paper notes that universities are mobile. That is, models of universities are transferred or borrowed or move around the world and in the process of moving or being moved they tend to change or be changed from the kind of university they were--either in practice or as ideals at the point of origin. To explore these themes the article…

  8. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical consistency between point clouds and stereo images. Finally, an over-segmentation based graph cut optimization is carried out, taking into account the color, depth and class information to compute the changed area in the image space. The proposed method is invariant to light changes, robust to small co-registration errors between images and point clouds, and can be applied straightforwardly to 3D polyhedral models. This method can be used for 3D street data updating, city infrastructure management and damage monitoring in complex urban scenes.

  9. Application of Water Quality Model of Jordan River to Evaluate Climate Change Effects on Eutrophication

    NASA Astrophysics Data System (ADS)

    Van Grouw, B.

    2016-12-01

    The Jordan River is a 51 mile long freshwater stream in Utah that provides drinking water to more than 50% of Utah's population. The various point and nonpoint sources introduce an excess of nutrients into the river. This excess induces eutrophication that results in an inhabitable environment for aquatic life is expected to be exacerbated due to climate change. Adaptive measures must be evaluated based on predictions of climate variation impacts on eutrophication and ecosystem processes in the Jordan River. A Water Quality Assessment Simulation Program (WASP) model was created to analyze the data results acquired from a Total Maximum Daily Load (TMDL) study conducted on the Jordan River. Eutrophication is modeled based on levels of phosphates and nitrates from point and nonpoint sources, temperature, and solar radiation. It will simulate the growth of phytoplankton and periphyton in the river. This model will be applied to assess how water quality in the Jordan River is affected by variations in timing and intensity of spring snowmelt and runoff during drought in the valley and the resulting effects on eutrophication in the river.

  10. Structural changes and out-of-sample prediction of realized range-based variance in the stock market

    NASA Astrophysics Data System (ADS)

    Gong, Xu; Lin, Boqiang

    2018-03-01

    This paper aims to examine the effects of structural changes on forecasting the realized range-based variance in the stock market. Considering structural changes in variance in the stock market, we develop the HAR-RRV-SC model on the basis of the HAR-RRV model. Subsequently, the HAR-RRV and HAR-RRV-SC models are used to forecast the realized range-based variance of S&P 500 Index. We find that there are many structural changes in variance in the U.S. stock market, and the period after the financial crisis contains more structural change points than the period before the financial crisis. The out-of-sample results show that the HAR-RRV-SC model significantly outperforms the HAR-BV model when they are employed to forecast the 1-day, 1-week, and 1-month realized range-based variances, which means that structural changes can improve out-of-sample prediction of realized range-based variance. The out-of-sample results remain robust across the alternative rolling fixed-window, the alternative threshold value in ICSS algorithm, and the alternative benchmark models. More importantly, we believe that considering structural changes can help improve the out-of-sample performances of most of other existing HAR-RRV-type models in addition to the models used in this paper.

  11. Effective organizational transformation in psychiatric rehabilitation and recovery.

    PubMed

    Clossey, Laurene; Rowlett, Al

    2008-01-01

    The recovery model represents a new paradigm in the treatment of psychiatric disability. Many states have mandated the model's adoption by their public mental health agencies. As organizational transformation toward this new approach is rapidly occurring, guidance to make successful change is necessary. The recovery model is readily misunderstood and may be resisted by professional occupational cultures that perceive it as a threat to their expertise. Successful change agents need to understand likely sources of resistance to agency transformation, and be knowledgeable and skilled in organizational development to facilitate service conversion to the recovery model. Change agents need to carefully consider how to transform agency structure and culture and how to develop committed leadership that empowers staff. Recovery values and principles must infuse the entire organization. Guidelines to assist change agents are discussed and distilled through the example of a successful northern California recovery model mental health agency called Turning Point Community Programs. The guidance provided seeks to help make the recovery model portable across many types of mental health settings.

  12. Human Health and Climate Change: Leverage Points for Adaptation in Urban Environments

    PubMed Central

    Proust, Katrina; Newell, Barry; Brown, Helen; Capon, Anthony; Browne, Chris; Burton, Anthony; Dixon, Jane; Mu, Lisa; Zarafu, Monica

    2012-01-01

    The design of adaptation strategies that promote urban health and well-being in the face of climate change requires an understanding of the feedback interactions that take place between the dynamical state of a city, the health of its people, and the state of the planet. Complexity, contingency and uncertainty combine to impede the growth of such systemic understandings. In this paper we suggest that the collaborative development of conceptual models can help a group to identify potential leverage points for effective adaptation. We describe a three-step procedure that leads from the development of a high-level system template, through the selection of a problem space that contains one or more of the group’s adaptive challenges, to a specific conceptual model of a sub-system of importance to the group. This procedure is illustrated by a case study of urban dwellers’ maladaptive dependence on private motor vehicles. We conclude that a system dynamics approach, revolving around the collaborative construction of a set of conceptual models, can help communities to improve their adaptive capacity, and so better meet the challenge of maintaining, and even improving, urban health in the face of climate change. PMID:22829795

  13. Identifying the turning point: using the transtheoretical model of change to map intimate partner violence disclosure in emergency department settings.

    PubMed

    Catallo, Cristina; Jack, Susan M; Ciliska, Donna; Macmillan, Harriet L

    2012-01-01

    Background. The transtheoretical model of change (TTM) was used as a framework to examine the steps that women took to disclose intimate partner violence (IPV) in urban emergency departments. Methods. Mapping methods portrayed the evolving nature of decisions that facilitated or inhibited disclosure. This paper is a secondary analysis of qualitative data from a mixed methods study that explored abused women's decision making process about IPV disclosure. Findings. Change maps were created for 19 participants with movement from the precontemplation to the maintenance stages of the model. Disclosure often occurred after a significant "turning point event" combined with a series of smaller events over a period of time. The significant life event often involved a weighing of options where participants considered the perceived risks against the potential benefits of disclosure. Conclusions. Abused women experienced intrusion from the chaotic nature of the emergency department. IPV disclosure was perceived as a positive experience when participants trusted the health care provider and felt control over their decisions to disclose IPV. Practice Implications. Nurses can use these findings to gauge the readiness of women to disclose IPV in the emergency department setting.

  14. Identifying the Turning Point: Using the Transtheoretical Model of Change to Map Intimate Partner Violence Disclosure in Emergency Department Settings

    PubMed Central

    Catallo, Cristina; Jack, Susan M.; Ciliska, Donna; MacMillan, Harriet L.

    2012-01-01

    Background. The transtheoretical model of change (TTM) was used as a framework to examine the steps that women took to disclose intimate partner violence (IPV) in urban emergency departments. Methods. Mapping methods portrayed the evolving nature of decisions that facilitated or inhibited disclosure. This paper is a secondary analysis of qualitative data from a mixed methods study that explored abused women's decision making process about IPV disclosure. Findings. Change maps were created for 19 participants with movement from the precontemplation to the maintenance stages of the model. Disclosure often occurred after a significant “turning point event” combined with a series of smaller events over a period of time. The significant life event often involved a weighing of options where participants considered the perceived risks against the potential benefits of disclosure. Conclusions. Abused women experienced intrusion from the chaotic nature of the emergency department. IPV disclosure was perceived as a positive experience when participants trusted the health care provider and felt control over their decisions to disclose IPV. Practice Implications. Nurses can use these findings to gauge the readiness of women to disclose IPV in the emergency department setting. PMID:22792480

  15. Electronic Structure and Properties of Deformed Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    Yang, Liu; Arnold, Jim (Technical Monitor)

    2001-01-01

    A theoretical framework based on Huckel tight-binding model has been formulated to analyze the electronic structure of carbon nanotubes under uniform deformation. The model successfully quantifies the dispersion relation, density of states and bandgap change of nanotubes under uniform stretching, compression, torsion and bending. Our analysis shows that the shifting of the Fermi point away from the Brillouin zone vertices is the key reason for these changes. As a result of this shifting, the electronic structure of deformed carbon nanotubes varies dramatically depending on their chirality and deformation mode. Treating the Fermi point as a function of strain and tube chirality, the analytical solution preserves the concise form of undeformed carbon nanotubes. It predicts the shifting, merging and splitting of the Van Hove singularities in the density of states and the zigzag pattern of bandgap change under strains. Four orbital tight-binding simulations of carbon nanotubes under uniform stretching, compression, torsion and bending have been performed to verify the analytical solution. Extension to more complex systems are being performed to relate this analytical solution to the spectroscopic characterization, device performance and proposed quantum structures induced by the deformation. The limitations of this model will also be discussed.

  16. Role of dimensionality in Axelrod's model for the dissemination of culture

    NASA Astrophysics Data System (ADS)

    Klemm, Konstantin; Eguíluz, Víctor M.; Toral, Raúl; Miguel, Maxi San

    2003-09-01

    We analyze a model of social interaction in one- and two-dimensional lattices for a moderate number of features. We introduce an order parameter as a function of the overlap between neighboring sites. In a one-dimensional chain, we observe that the dynamics is consistent with a second-order transition, where the order parameter changes continuously and the average domain diverges at the transition point. However, in a two-dimensional lattice the order parameter is discontinuous at the transition point characteristic of a first-order transition between an ordered and a disordered state.

  17. Geometry-dependent distributed polarizability models for the water molecule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loboda, Oleksandr; Ingrosso, Francesca; Ruiz-López, Manuel F.

    2016-01-21

    Geometry-dependent distributed polarizability models have been constructed by fits to ab initio calculations at the coupled cluster level of theory with up to noniterative triple excitations in an augmented triple-zeta quality basis set for the water molecule in the field of a point charge. The investigated models include (i) charge-flow polarizabilities between chemically bonded atoms, (ii) isotropic or anisotropic dipolar polarizabilities on oxygen atom or on all atoms, and (iii) combinations of models (i) and (ii). For each model, the polarizability parameters have been optimized to reproduce the induction energy of a water molecule polarized by a point charge successivelymore » occupying a grid of points surrounding the molecule. The quality of the models is ascertained by examining their ability to reproduce these induction energies as well as the molecular dipolar and quadrupolar polarizabilities. The geometry dependence of the distributed polarizability models has been explored by changing bond lengths and HOH angle to generate 125 molecular structures (reduced to 75 symmetry-unique ones). For each considered model, the distributed polarizability components have been fitted as a function of the geometry by a Taylor expansion in monomer coordinate displacements up to the sum of powers equal to 4.« less

  18. Uncertainty of tipping elements on risk analysis in hydrology under climate change

    NASA Astrophysics Data System (ADS)

    Kiguchi, M.; Iseri, Y.; Tawatari, R.; Kanae, S.; Oki, T.

    2015-12-01

    Risk analysis in this study characterizes the events that could be caused by climate change and estimates their effects on society. In order to characterize climate change risks, events that might be caused by climate change will be investigated focusing on critical geophysical phenomena such as changes in thermohaline circulation (THC) in oceans and the large-scale melting of the Greenland and other ice sheets. The results of numerical experiments with climate models and paleoclimate studies will be referenced in listing up these phenomena. The trigger mechanisms, tendency to occur and relationship of these phenomena to global climate will be clarified. To clarify that relationship between the RCP scenarios and tipping elements, we identified which year tipping elements in case of "Arctic summer sea ice" and "Greenland ice sheet" are appeared using the increase of global average temperature in 5 GCMs under RCP (2.6, 4.5, 6.0, and 8.5) from Zickfeld et al. (2013) and IPCC (2013), and tipping point of each tipping elements from IPCC (2013). In case of "Greenland ice sheet" (Tipping point takes a value within the range of 1.0oC and 4.0oC), we found that "Greenland ice sheet" may melt down when the tipping point is 1.0oC as lowest value. On the other hand, when tipping point sets as 4.0oC, it may not melt down except for RCP 8.5. As above, we show the uncertainty of tipping point itself. In future, it is necessary how to reflect such uncertainty in risk analysis in hydrology.

  19. New Security and Justice Sector Partnership Models: Implications of the Arab Uprisings

    DTIC Science & Technology

    2014-01-01

    clear boiling point that even before the Arab uprisings erupted, Clinton warned regional regimes that they needed to change or risk “sinking into the...but without any clear operational definition of security capac- ity, no consistent logic for allocating funds and determining appropriate expenditure...reference point for gauging performance and determining whether and how program implementation needs to be altered. While this approach is most

  20. Coseismic temporal changes of slip direction: the effect of absolute stress on dynamic rupture

    USGS Publications Warehouse

    Guatteri, Mariagiovanna; Spudich, P.

    1998-01-01

    We investigate the dynamics of rupture at low-stress level. We show that one main difference between the dynamics of high- and low-stress events is the amount of coseismic temporal rake rotation occurring at given points on the fault. Curved striations on exposed fault surfaces and earthquake dislocation models derived from ground-motion inversion indicate that the slip direction may change with time at a point on the fault during dynamic rupture. We use a 3D boundary integral method to model temporal rake variations during dynamic rupture propagation assuming a slip-weakening friction law and isotropic friction. The points at which the slip rotates most are characterized by an initial shear stress direction substantially different from the average stress direction over the fault plane. We show that for a given value of stress drop, the level of initial shear stress (i.e., the fractional stress drop) determines the amount of rotation in slip direction. We infer that seismic events that show evidence of temporal rake rotations are characterized by a low initial shear-stress level with spatially variable direction on the fault (possibly due to changes in fault surface geometry) and an almost complete stress drop.Our models motivate a new interpretation of curved and cross-cutting striations and put new constraints on their analysis. The initial rake is in general collinear with the initial stress at the hypocentral zone, supporting the assumptions made in stress-tensor inversion from first-motion analysis. At other points on the fault, especially away from the hypocenter, the initial slip rake may not be collinear with the initial shear stress, contradicting a common assumption of structural geology. On the other hand, the later part of slip in our models is systematically more aligned with the average stress direction than the early slip. Our modeling suggests that the length of the straight part of curved striations is usually an upper bound of the slip-weakening distance if this parameter is uniform over the fault plane, and the direction of the late part of slip of curved striations should have more weight in the estimate of initial stress direction.

  1. Evidence of early ultrastructural photoreceptor abnormalities in light-induced retinal degeneration using spectral domain optical coherence tomography.

    PubMed

    Aziz, Mehak K; Ni, Aiguo; Esserman, Denise A; Chavala, Sai H

    2014-07-01

    To study spatiotemporal in vivo changes in retinal morphology and quantify thickness of retinal layers in a mouse model of light-induced retinal degeneration using spectral domain optical coherence tomography (SD-OCT). BALB/c mice were exposed to 5000 lux of constant light for 3 h. SD-OCT images were taken 3 h, 24 h, 3 days, 1 week and 1 month after light exposure and were compared with histology at the same time points. SD-OCT images were also taken at 0, 1 and 2 h after light exposure in order to analyse retinal changes at the earliest time points. The thickness of retinal layers was measured using the Bioptigen software InVivoVue Diver. SD-OCT demonstrated progressive outer retinal thinning. 3 h after light exposure, the outer nuclear layer converted from hyporeflective to hyper-reflective. At 24 h, outer retinal bands and nuclear layer demonstrated similar levels of hyper-reflectivity. Significant variations in outer retinal thickness, vitreous opacities and retinal detachments occurred within days of injury. Thinning of the retina was observed at 1 month after injury. It was also determined that outer nuclear layer changes precede photoreceptor segment structure disintegration and the greatest change in segment structure occurs between 1 and 2 h after light exposure. Longitudinal SD-OCT reveals intraretinal changes that cannot be observed by histopathology at early time points in the light injury model. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. Automated Illustration of Molecular Flexibility.

    PubMed

    Bryden, A; Phillips, George N; Gleicher, M

    2012-01-01

    In this paper, we present an approach to creating illustrations of molecular flexibility using normal mode analysis (NMA). The output of NMA is a collection of points corresponding to the locations of atoms and associated motion vectors, where a vector for each point is known. Our approach abstracts the complex object and its motion by grouping the points, models the motion of each group as an affine velocity, and depicts the motion of each group by automatically choosing glyphs such as arrows. Affine exponentials allow the extrapolation of nonlinear effects such as near rotations and spirals from the linear velocities. Our approach automatically groups points by finding sets of neighboring points whose motions fit the motion model. The geometry and motion models for each group are used to determine glyphs that depict the motion, with various aspects of the motion mapped to each glyph. We evaluated the utility of our system in real work done by structural biologists both by utilizing it in our own structural biology work and quantitatively measuring its usefulness on a set of known protein conformation changes. Additionally, in order to allow ourselves and our collaborators to effectively use our techniques we integrated our system with commonly used tools for molecular visualization.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jung; Lu, Jian; Son, Seok-Woo

    This study examines future projections of sea level pressure change in the North Pacific and its impact on winter precipitation changes in California. The multi-model analysis, based on the Coupled Model Inter-comparison Project phase 5 (CMIP5) models under the Representative Concentration Pathway 8.5 (RCP8.5) scenario, shows a robust sea-level pressure change in the late 21st century over the western North Pacific in which both the Aleutian Low and North Pacific Subtropical High (NPSH) shift poleward in concert with a widening of the Hadley Cell. This change is partly explained by a systematic increase of static stability in the subtropics. However,more » over the eastern North Pacific, the projected NPSH changes exhibit a substantial inter-model spread, resulting in uncertain projections of precipitation changes in California. This inter-model spread in the eastern North Pacific is associated with a Pacific Decadal Oscillation-like surface temperature change in the western North Pacific and the resulting meridional temperature gradient change. This study points to a major source of uncertainty for the response of winter precipitation to global warming over the West Coast of North America: atmosphere-ocean coupling in the North Pacific.« less

  4. Price game and chaos control among three oligarchs with different rationalities in property insurance market.

    PubMed

    Ma, Junhai; Zhang, Junling

    2012-12-01

    Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.

  5. Price game and chaos control among three oligarchs with different rationalities in property insurance market

    NASA Astrophysics Data System (ADS)

    Ma, Junhai; Zhang, Junling

    2012-12-01

    Combining with the actual competition in Chinese property insurance market and assuming that the property insurance companies take the marginal utility maximization as the basis of decision-making when they play price games, we first established the price game model with three oligarchs who have different rationalities. Then, we discussed the existence and stability of equilibrium points. Third, we studied the theoretical value of Lyapunov exponent at Nash equilibrium point and its change process with the main parameters' changes though having numerical simulation for the system such as the bifurcation, chaos attractors, and so on. Finally, we analyzed the influences which the changes of different parameters have on the profits and utilities of oligarchs and their corresponding competition advantage. Based on this, we used the variable feedback control method to control the chaos of the system and stabilized the chaos state to Nash equilibrium point again. The results have significant theoretical and practical application value.

  6. Corneal changes induced by laser ablation: study of the visual-quality evolution by a customized eye model

    NASA Astrophysics Data System (ADS)

    Ortiz, D.; Anera, R. G.; Saiz, J. M.; Jiménez, J. R.; Moreno, F.; Jiménez Del Barco, L.; González, F.

    2006-11-01

    This study focuses on the changes induced in both the asphericity and homogeneity of the cornea for a group of myopic eyes undergoing LASIK surgery. Eyes were characterized by a Kooijman-based customized eye model in which changes were introduced in the form of Gaussian-distributed refractive-index variations of given correlation length for the inhomogeneities and in the form of an expression, based on the modified Munnerlyn's paraxial formula, for the post-LASIK asphericity. Visual quality was evaluated in terms of the Modulation Transfer Function and the Point-Spread Function. The results show that, on average, the evolution of visual acuity is consistent with the change in corneal asphericity, while the evolution of contrast sensitivity requires a loss in corneal homogeneity in order to be explained. By including both effects in the model, the overall model performance in predicting visual quality is improved.

  7. Comparison of the spatial patterns of schistosomiasis in Zimbabwe at two points in time, spaced twenty-nine years apart: is climate variability of importance?

    PubMed

    Pedersen, Ulrik B; Karagiannis-Voules, Dimitrios-Alexios; Midzi, Nicholas; Mduluza, Tkafira; Mukaratirwa, Samson; Fensholt, Rasmus; Vennervald, Birgitte J; Kristensen, Thomas K; Vounatsou, Penelope; Stensgaard, Anna-Sofie

    2017-05-08

    Temperature, precipitation and humidity are known to be important factors for the development of schistosome parasites as well as their intermediate snail hosts. Climate therefore plays an important role in determining the geographical distribution of schistosomiasis and it is expected that climate change will alter distribution and transmission patterns. Reliable predictions of distribution changes and likely transmission scenarios are key to efficient schistosomiasis intervention-planning. However, it is often difficult to assess the direction and magnitude of the impact on schistosomiasis induced by climate change, as well as the temporal transferability and predictive accuracy of the models, as prevalence data is often only available from one point in time. We evaluated potential climate-induced changes on the geographical distribution of schistosomiasis in Zimbabwe using prevalence data from two points in time, 29 years apart; to our knowledge, this is the first study investigating this over such a long time period. We applied historical weather data and matched prevalence data of two schistosome species (Schistosoma haematobium and S. mansoni). For each time period studied, a Bayesian geostatistical model was fitted to a range of climatic, environmental and other potential risk factors to identify significant predictors that could help us to obtain spatially explicit schistosomiasis risk estimates for Zimbabwe. The observed general downward trend in schistosomiasis prevalence for Zimbabwe from 1981 and the period preceding a survey and control campaign in 2010 parallels a shift towards a drier and warmer climate. However, a statistically significant relationship between climate change and the change in prevalence could not be established.

  8. Modeling glacial climates

    NASA Technical Reports Server (NTRS)

    North, G. R.; Crowley, T. J.

    1984-01-01

    Mathematical climate modelling has matured as a discipline to the point that it is useful in paleoclimatology. As an example a new two dimensional energy balance model is described and applied to several problems of current interest. The model includes the seasonal cycle and the detailed land-sea geographical distribution. By examining the changes in the seasonal cycle when external perturbations are forced upon the climate system it is possible to construct hypotheses about the origin of midlatitude ice sheets and polar ice caps. In particular the model predicts a rather sudden potential for glaciation over large areas when the Earth's orbital elements are only slightly altered. Similarly, the drift of continents or the change of atmospheric carbon dioxide over geological time induces radical changes in continental ice cover. With the advance of computer technology and improved understanding of the individual components of the climate system, these ideas will be tested in far more realistic models in the near future.

  9. Land surface evapotranspiration modelling at the regional scale

    NASA Astrophysics Data System (ADS)

    Raffelli, Giulia; Ferraris, Stefano; Canone, Davide; Previati, Maurizio; Gisolo, Davide; Provenzale, Antonello

    2017-04-01

    Climate change has relevant implications for the environment, water resources and human life in general. The observed increment of mean air temperature, in addition to a more frequent occurrence of extreme events such as droughts, may have a severe effect on the hydrological cycle. Besides climate change, land use changes are assumed to be another relevant component of global change in terms of impacts on terrestrial ecosystems: socio-economic changes have led to conversions between meadows and pastures and in most cases to a complete abandonment of grasslands. Water is subject to different physical processes among which evapotranspiration (ET) is one of the most significant. In fact, ET plays a key role in estimating crop growth, water demand and irrigation water management, so estimating values of ET can be crucial for water resource planning, irrigation requirement and agricultural production. Potential evapotranspiration (PET) is the amount of evaporation that occurs when a sufficient water source is available. It can be estimated just knowing temperatures (mean, maximum and minimum) and solar radiation. Actual evapotranspiration (AET) is instead the real quantity of water which is consumed by soil and vegetation; it is obtained as a fraction of PET. The aim of this work was to apply a simplified hydrological model to calculate AET for the province of Turin (Italy) in order to assess the water content and estimate the groundwater recharge at a regional scale. The soil is seen as a bucket (FAO56 model, Allen et al., 1998) made of different layers, which interact with water and vegetation. The water balance is given by precipitations (both rain and snow) and dew as positive inputs, while AET, runoff and drainage represent the rate of water escaping from soil. The difference between inputs and outputs is the water stock. Model data inputs are: soil characteristics (percentage of clay, silt, sand, rocks and organic matter); soil depth; the wilting point (i.e. the minimal point of soil moisture that plant requires not to wilt); the field capacity (i.e. the maximum amount of water content that a soil can held); the available water content (AWC), obtained as the difference between field capacity and wilting point. Furthermore, the model considers 15 different ID of land use, with a resolution of 250 m. The model was then tested by a direct comparison with experimental data. First, the modelled water content from the surface down to 65 cm of soil depth was compared to the measured one with a Time Domain Reflectometry (TDR) in Grugliasco (TO), a non-irrigated flat permanent meadow, for years 2006-2008. Here, the soil is sandy with a slope of about 1%. Then, considering three corn farms located in the Cuneo district, the goodness of modelled irrigations was verified. The soil texture of the three farms, analysed according to the USDA criteria, is loam or silty-loam. In particular, we compared the number of irrigations done by the farmers with the ones given by the model, which irrigates as soon as the plant reaches an imposed level of water stress. We also compared the irrigation turn given by the model with the farmers' one. Then we compared the modelled water content with the one measured before and after the irrigation. We observed that the modelled irrigation occurred when the measured water content was close to the modelled wilting point. In both test cases, the model seems to reflect quite well the real behaviour of water content.

  10. The endurance of the effects of the penalty point system in Spain three years after. Main influencing factors.

    PubMed

    Izquierdo, F Aparicio; Ramírez, B Arenas; McWilliams, J M Mira; Ayuso, J Páez

    2011-05-01

    In this work we have used ARIMA time series models to analyse the contribution of the penalty point system, the most important legislative measure for driving licences, in reducing the number of fatalities over 24h on the roads in Spain during the study period (January 1995 to June 2009). In addition, because of this long period of analysis, other control variables were introduced to model the enactment of the Reform of the Penal Code in December 2007, together with other more specific effects needed to fit the model correctly. The ARIMA intervention models methodology combines the basic features of specific times series models: it controls the trend and seasonal variation in data that is present when modelling the structure through autoregressive and moving average parameters and allows for inserting step or impulse input variables for checking and evaluating the effects of deterministic measures, such as legislative changes which are the object of study in this work. This paper analyses the surveillance and control measures introduced in the periods before and after the implementation of the penalty point system and helps to partly explain its apparent endurance over time. The results show that the introduction of the penalty point system in Spain had a very positive effect in reducing the number of fatalities (over 24h) on the road, and that this effect has endured up to the present time. This success may be due to the continuing increase in surveillance measures and fines as well the significantly growing interest shown by the news media in road safety since the measures were introduced. All this has led to positive changes in driver behaviour. It is, therefore, a combination of three factors: the penalty point system, the gradual stepping up of surveillance measures and sanctions, and the publicity given to road safety issues in the mass media would appear to be the key to success. The absence of any of these three factors would have predictably led to a far less positive evolution of the accident rate on Spanish roads. Copyright © 2010 Elsevier Ltd. All rights reserved.

  11. Nonlinear Dynamic Models in Advanced Life Support

    NASA Technical Reports Server (NTRS)

    Jones, Harry

    2002-01-01

    To facilitate analysis, ALS systems are often assumed to be linear and time invariant, but they usually have important nonlinear and dynamic aspects. Nonlinear dynamic behavior can be caused by time varying inputs, changes in system parameters, nonlinear system functions, closed loop feedback delays, and limits on buffer storage or processing rates. Dynamic models are usually cataloged according to the number of state variables. The simplest dynamic models are linear, using only integration, multiplication, addition, and subtraction of the state variables. A general linear model with only two state variables can produce all the possible dynamic behavior of linear systems with many state variables, including stability, oscillation, or exponential growth and decay. Linear systems can be described using mathematical analysis. Nonlinear dynamics can be fully explored only by computer simulations of models. Unexpected behavior is produced by simple models having only two or three state variables with simple mathematical relations between them. Closed loop feedback delays are a major source of system instability. Exceeding limits on buffer storage or processing rates forces systems to change operating mode. Different equilibrium points may be reached from different initial conditions. Instead of one stable equilibrium point, the system may have several equilibrium points, oscillate at different frequencies, or even behave chaotically, depending on the system inputs and initial conditions. The frequency spectrum of an output oscillation may contain harmonics and the sums and differences of input frequencies, but it may also contain a stable limit cycle oscillation not related to input frequencies. We must investigate the nonlinear dynamic aspects of advanced life support systems to understand and counter undesirable behavior.

  12. Wave constraints for Titan's Jingpo Lacus and Kraken Mare from VIMS specular reflection lightcurves

    USGS Publications Warehouse

    Barnes, J.W.; Soderblom, J.M.; Brown, R.H.; Soderblom, L.A.; Stephan, K.; Jaumann, R.; Le Mouélic, Stéphane; Rodriguez, S.; Sotin, Christophe; Buratti, B.J.; Baines, K.H.; Clark, R.N.; Nicholson, P.D.

    2011-01-01

    Stephan et al. (Stephan, K. et al. [2010]. Geophys. Res. Lett. 37, 7104-+.) first saw the glint of sunlight specularly reflected off of Titan's lakes. We develop a quantitative model for analyzing the photometric lightcurve generated during a flyby in which the specularly reflected light flux depends on the fraction of the solar specular footprint that is covered by liquid. We allow for surface waves that spread out the geographic specular intensity distribution. Applying the model to the VIMS T58 observations shows that the waves on Jingpo Lacus must have slopes of no greater than 0.15??, two orders of magnitude flatter than waves on Earth's oceans. Combining the model with theoretical estimates of the intensity of the specular reflection allows a tighter constraint on the waves: <0.05?? Residual specular signal while the specular point lies on land implies that either the land is wetted, the wave slope distribution is non-Gaussian, or that 5% of the land off the southwest edge of Jingpo Lacus is covered in puddles. Another specular sequence off of Kraken Mare acquired during Cassini's T59 flyby shows rapid flux changes that the static model cannot reproduce. Points just 1. min apart vary in flux by more than a factor of two. The present dataset does not uniquely determine the mechanism causing these rapid changes. We suggest that changing wind conditions, kilometer-wavelength waves, or moving clouds could account for the variability. Future specular observations should be designed with a fast cadence, at least 6 points per minute, in order to differentiate between these hypotheses. Such new data will further constrain the nature of Titan's lakes and their interactions with Titan's atmosphere. ?? 2010 Elsevier Inc.

  13. United States Air Force Graduate Student Research Program. 1989 Program Technical Report. Volume 1

    DTIC Science & Technology

    1989-12-01

    Analysis is required to supplement the experimental observations, which requires the formulation of a realistic model of the physical problem...RECOMMENDATION: a . From our point of view, the research team considere the NASTRAN model correct due to the vibrational frequencies, but we are still...structure of the program was understood, attempts were made to change the model from a thunderstorm simulation

  14. Application of Unmanned Aerial System-based Photogrammetry to Monitor Landforms Evolution of Mudstone Badlands

    NASA Astrophysics Data System (ADS)

    Chen, Yichin

    2017-04-01

    Mudstone badlands are the area characteristized by its rapid erosion and steep, fractured, and barren landforms. Monitoring the topography changes in badland help improve our knowledge of the hillslope and river processing on landforms and develop susceptibility model for surface erosion hazards. Recently, advances in unmanned aerial system (UAS) and close-range photogrammetry technology have opened up the possibility of effectively measuring topography changes with high spatiotemporal resolutions. In this study, we used the UAS and close-range photogrammetry technology to monitor the topography changes in a rapidly eroded badland, south-western Taiwan. A small mudstone hillslope with area of 0.2 ha approximately and with slope gradient of 37 degrees was selected as the study site. A widely used and commercial quadcopter equipped non-metric camera was used to take images with ground sampling distance (GSD) 5 mm approximately. The Pix4DMapper, a commercial close-range photogrammetry software, was used to perform stereo matching, extract point clouds, generate digital surface models (DSMs) and orthoimage. To control model accuracy, a set of ground control points was surveyed by using eGPS. The monitoring was carried out after every significant rainfall event that may induced observable erosion in the badland site. The results show that DSMs have the GSDs of 4.0 5.4 mm and vertical accuracy of 61 116 mm. The accuracy largely depends on the quality of ground control points. The spatial averaged erosion rate during six months of monitoring was 328 mm, which is higher in the gully sides than in the ridges. The erosion rate is positively correlated with the slope gradient and drainage contributing area that implies the important role of surface gully erosion in mudstone badland erosion. This study shows that UAS and close-range photogrammetry technology can be used to monitor the topography change in badland areas effectively and can provide high spatiotemporal resolutions of DSMs for developing distributed surface erosion models.

  15. [Application of Fourier amplitude sensitivity test in Chinese healthy volunteer population pharmacokinetic model of tacrolimus].

    PubMed

    Guan, Zheng; Zhang, Guan-min; Ma, Ping; Liu, Li-hong; Zhou, Tian-yan; Lu, Wei

    2010-07-01

    In this study, we evaluated the influence of different variance from each of the parameters on the output of tacrolimus population pharmacokinetic (PopPK) model in Chinese healthy volunteers, using Fourier amplitude sensitivity test (FAST). Besides, we estimated the index of sensitivity within whole course of blood sampling, designed different sampling times, and evaluated the quality of parameters' and the efficiency of prediction. It was observed that besides CL1/F, the index of sensitivity for all of the other four parameters (V1/F, V2/F, CL2/F and k(a)) in tacrolimus PopPK model showed relatively high level and changed fast with the time passing. With the increase of the variance of k(a), its indices of sensitivity increased obviously, associated with significant decrease in sensitivity index for the other parameters, and obvious change in peak time as well. According to the simulation of NONMEM and the comparison among different fitting results, we found that the sampling time points designed according to FAST surpassed the other time points. It suggests that FAST can access the sensitivities of model parameters effectively, and assist the design of clinical sampling times and the construction of PopPK model.

  16. Three-dimensional computer-assisted study model analysis of long-term oral-appliance wear. Part 1: Methodology.

    PubMed

    Chen, Hui; Lowe, Alan A; de Almeida, Fernanda Riberiro; Wong, Mary; Fleetham, John A; Wang, Bangkang

    2008-09-01

    The aim of this study was to test a 3-dimensional (3D) computer-assisted dental model analysis system that uses selected landmarks to describe tooth movement during treatment with an oral appliance. Dental casts of 70 patients diagnosed with obstructive sleep apnea and treated with oral appliances for a mean time of 7 years 4 months were evaluated with a 3D digitizer (MicroScribe-3DX, Immersion, San Jose, Calif) compatible with the Rhinoceros modeling program (version 3.0 SR3c, Robert McNeel & Associates, Seattle, Wash). A total of 86 landmarks on each model were digitized, and 156 variables were calculated as either the linear distance between points or the distance from points to reference planes. Four study models for each patient (maxillary baseline, mandibular baseline, maxillary follow-up, and mandibular follow-up) were superimposed on 2 sets of reference points: 3 points on the palatal rugae for maxillary model superimposition, and 3 occlusal contact points for the same set of maxillary and mandibular model superimpositions. The patients were divided into 3 evaluation groups by 5 orthodontists based on the changes between baseline and follow-up study models. Digital dental measurements could be analyzed, including arch width, arch length, curve of Spee, overbite, overjet, and the anteroposterior relationship between the maxillary and mandibular arches. A method error within 0.23 mm in 14 selected variables was found for the 3D system. The statistical differences in the 3 evaluation groups verified the division criteria determined by the orthodontists. The system provides a method to record 3D measurements of study models that permits computer visualization of tooth position and movement from various perspectives.

  17. A Framework to Assess the Impacts of Climate Change on ...

    EPA Pesticide Factsheets

    Climate change is projected to alter watershed hydrology and potentially amplify nonpoint source pollution transport. These changes have implications for fish and macroinvertebrates, which are often used as measures of aquatic ecosystem health. By quantifying the risk of adverse impacts to aquatic ecosystem health at the reach-scale, watershed climate change adaptation strategies can be developed and prioritized. The objective of this research was to quantify the impacts of climate change on stream health in seven Michigan watersheds. A process-based watershed model, the Soil and Water Assessment Tool (SWAT), was linked to adaptive neuro-fuzzy inferenced (ANFIS) stream health models. SWAT models were used to simulate reach-scale flow regime (magnitude, frequency, timing, duration, and rate of change) and water quality variables. The ANFIS models were developed based on relationships between the in-stream variables and sampling points of four stream health indicators: the fish index of biotic integrity (IBI), macroinvertebrate family index of biotic integrity (FIBI), Hilsenhoff biotic index (HBI), and number of Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa. The combined SWAT-ANFIS models extended stream health predictions to all watershed reaches. A climate model ensemble from the Coupled Model Intercomparison Project Phase 5 (CMIP5) was used to develop projections of changes to flow regime (using SWAT) and stream health indicators (using ANFIS) from a ba

  18. Linear ground-water flow, flood-wave response program for programmable calculators

    USGS Publications Warehouse

    Kernodle, John Michael

    1978-01-01

    Two programs are documented which solve a discretized analytical equation derived to determine head changes at a point in a one-dimensional ground-water flow system. The programs, written for programmable calculators, are in widely divergent but commonly encountered languages and serve to illustrate the adaptability of the linear model to use in situations where access to true computers is not possible or economical. The analytical method assumes a semi-infinite aquifer which is uniform in thickness and hydrologic characteristics, bounded on one side by an impermeable barrier and on the other parallel side by a fully penetrating stream in complete hydraulic connection with the aquifer. Ground-water heads may be calculated for points along a line which is perpendicular to the impermeable barrie and the fully penetrating stream. Head changes at the observation point are dependent on (1) the distance between that point and the impermeable barrier, (2) the distance between the line of stress (the stream) and the impermeable barrier, (3) aquifer diffusivity, (4) time, and (5) head changes along the line of stress. The primary application of the programs is to determine aquifer diffusivity by the flood-wave response technique. (Woodard-USGS)

  19. Sensitivity of collective action to uncertainty about climate tipping points

    NASA Astrophysics Data System (ADS)

    Barrett, Scott; Dannenberg, Astrid

    2014-01-01

    Despite more than two decades of diplomatic effort, concentrations of greenhouse gases continue to trend upwards, creating the risk that we may someday cross a threshold for `dangerous' climate change. Although climate thresholds are very uncertain, new research is trying to devise `early warning signals' of an approaching tipping point. This research offers a tantalizing promise: whereas collective action fails when threshold uncertainty is large, reductions in this uncertainty may bring about the behavioural change needed to avert a climate `catastrophe'. Here we present the results of an experiment, rooted in a game-theoretic model, showing that behaviour differs markedly either side of a dividing line for threshold uncertainty. On one side of the dividing line, where threshold uncertainty is relatively large, free riding proves irresistible and trust illusive, making it virtually inevitable that the tipping point will be crossed. On the other side, where threshold uncertainty is small, the incentive to coordinate is strong and trust more robust, often leading the players to avoid crossing the tipping point. Our results show that uncertainty must be reduced to this `good' side of the dividing line to stimulate the behavioural shift needed to avoid `dangerous' climate change.

  20. Evidence Accumulation and Change Rate Inference in Dynamic Environments.

    PubMed

    Radillo, Adrian E; Veliz-Cuba, Alan; Josić, Krešimir; Kilpatrick, Zachary P

    2017-06-01

    In a constantly changing world, animals must account for environmental volatility when making decisions. To appropriately discount older, irrelevant information, they need to learn the rate at which the environment changes. We develop an ideal observer model capable of inferring the present state of the environment along with its rate of change. Key to this computation is an update of the posterior probability of all possible change point counts. This computation can be challenging, as the number of possibilities grows rapidly with time. However, we show how the computations can be simplified in the continuum limit by a moment closure approximation. The resulting low-dimensional system can be used to infer the environmental state and change rate with accuracy comparable to the ideal observer. The approximate computations can be performed by a neural network model via a rate-correlation-based plasticity rule. We thus show how optimal observers accumulate evidence in changing environments and map this computation to reduced models that perform inference using plausible neural mechanisms.

  1. Complex networks: Effect of subtle changes in nature of randomness

    NASA Astrophysics Data System (ADS)

    Goswami, Sanchari; Biswas, Soham; Sen, Parongama

    2011-03-01

    In two different classes of network models, namely, the Watts Strogatz type and the Euclidean type, subtle changes have been introduced in the randomness. In the Watts Strogatz type network, rewiring has been done in different ways and although the qualitative results remain the same, finite differences in the exponents are observed. In the Euclidean type networks, where at least one finite phase transition occurs, two models differing in a similar way have been considered. The results show a possible shift in one of the phase transition points but no change in the values of the exponents. The WS and Euclidean type models are equivalent for extreme values of the parameters; we compare their behaviour for intermediate values.

  2. Performance Evaluation of 3d Modeling Software for Uav Photogrammetry

    NASA Astrophysics Data System (ADS)

    Yanagi, H.; Chikatsu, H.

    2016-06-01

    UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.

  3. Organizational models of emergency psychiatric intervention: state of the art.

    PubMed

    Barra, A; Daini, S; Tonioni, F; Bria, P

    2007-01-01

    Authors outline the differences between medical and psychiatric definition of emergency and analyze different organizational models of psychiatric intervention in Emergency Room. The historical evolution changed these models, and the relation with services for acute and subacute patients in hospital and community services. The Italian reform model is compared with the slow deinstitutionalization of psychiatry in other countries. Critical points in Italian emergency organization after the Psychiatric Reform are pointed out: low number of beds for acute patients, difficulties and delays in transfer from Emergency Room to GHPW (General Hospital Psychiatric Ward), waiting lists for voluntary treatments. To overcome some of these problems, the Authors propose that even in hospitals without psychiatric ward, a small unit of short psychiatric observation be implemented, for voluntary treatments, before transfer to other institutions.

  4. Distinguishing State Variability From Trait Change in Longitudinal Data: The Role of Measurement (Non)Invariance in Latent State-Trait Analyses

    PubMed Central

    Geiser, Christian; Keller, Brian T.; Lockhart, Ginger; Eid, Michael; Cole, David A.; Koch, Tobias

    2014-01-01

    Researchers analyzing longitudinal data often want to find out whether the process they study is characterized by (1) short-term state variability, (2) long-term trait change, or (3) a combination of state variability and trait change. Classical latent state-trait (LST) models are designed to measure reversible state variability around a fixed set-point or trait, whereas latent growth curve (LGC) models focus on long-lasting and often irreversible trait changes. In the present paper, we contrast LST and LGC models from the perspective of measurement invariance (MI) testing. We show that establishing a pure state-variability process requires (a) the inclusion of a mean structure and (b) establishing strong factorial invariance in LST analyses. Analytical derivations and simulations demonstrate that LST models with non-invariant parameters can mask the fact that a trait-change or hybrid process has generated the data. Furthermore, the inappropriate application of LST models to trait change or hybrid data can lead to bias in the estimates of consistency and occasion-specificity, which are typically of key interest in LST analyses. Four tips for the proper application of LST models are provided. PMID:24652650

  5. A Rigorous Temperature-Dependent Stochastic Modelling and Testing for MEMS-Based Inertial Sensor Errors.

    PubMed

    El-Diasty, Mohammed; Pagiatakis, Spiros

    2009-01-01

    In this paper, we examine the effect of changing the temperature points on MEMS-based inertial sensor random error. We collect static data under different temperature points using a MEMS-based inertial sensor mounted inside a thermal chamber. Rigorous stochastic models, namely Autoregressive-based Gauss-Markov (AR-based GM) models are developed to describe the random error behaviour. The proposed AR-based GM model is initially applied to short stationary inertial data to develop the stochastic model parameters (correlation times). It is shown that the stochastic model parameters of a MEMS-based inertial unit, namely the ADIS16364, are temperature dependent. In addition, field kinematic test data collected at about 17 °C are used to test the performance of the stochastic models at different temperature points in the filtering stage using Unscented Kalman Filter (UKF). It is shown that the stochastic model developed at 20 °C provides a more accurate inertial navigation solution than the ones obtained from the stochastic models developed at -40 °C, -20 °C, 0 °C, +40 °C, and +60 °C. The temperature dependence of the stochastic model is significant and should be considered at all times to obtain optimal navigation solution for MEMS-based INS/GPS integration.

  6. Can integrative catchment management mitigate future water quality issues caused by climate change and socio-economic development?

    NASA Astrophysics Data System (ADS)

    Honti, Mark; Schuwirth, Nele; Rieckermann, Jörg; Stamm, Christian

    2017-03-01

    The design and evaluation of solutions for integrated surface water quality management requires an integrated modelling approach. Integrated models have to be comprehensive enough to cover the aspects relevant for management decisions, allowing for mapping of larger-scale processes such as climate change to the regional and local contexts. Besides this, models have to be sufficiently simple and fast to apply proper methods of uncertainty analysis, covering model structure deficits and error propagation through the chain of sub-models. Here, we present a new integrated catchment model satisfying both conditions. The conceptual iWaQa model was developed to support the integrated management of small streams. It can be used to predict traditional water quality parameters, such as nutrients and a wide set of organic micropollutants (plant and material protection products), by considering all major pollutant pathways in urban and agricultural environments. Due to its simplicity, the model allows for a full, propagative analysis of predictive uncertainty, including certain structural and input errors. The usefulness of the model is demonstrated by predicting future surface water quality in a small catchment with mixed land use in the Swiss Plateau. We consider climate change, population growth or decline, socio-economic development, and the implementation of management strategies to tackle urban and agricultural point and non-point sources of pollution. Our results indicate that input and model structure uncertainties are the most influential factors for certain water quality parameters. In these cases model uncertainty is already high for present conditions. Nevertheless, accounting for today's uncertainty makes management fairly robust to the foreseen range of potential changes in the next decades. The assessment of total predictive uncertainty allows for selecting management strategies that show small sensitivity to poorly known boundary conditions. The identification of important sources of uncertainty helps to guide future monitoring efforts and pinpoints key indicators, whose evolution should be closely followed to adapt management. The possible impact of climate change is clearly demonstrated by water quality substantially changing depending on single climate model chains. However, when all climate trajectories are combined, the human land use and management decisions have a larger influence on water quality against a time horizon of 2050 in the study.

  7. A New Method to Compare Statistical Tree Growth Curves: The PL-GMANOVA Model and Its Application with Dendrochronological Data

    PubMed Central

    Ricker, Martin; Peña Ramírez, Víctor M.; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A·T+E, where for and for , A =  initial relative growth to be estimated, , and E is an error term for each tree and time point. Furthermore, Ei[–b·r]  = , , with TPR being the turning point radius in a sigmoid curve, and at is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth . One site (at the Popocatépetl volcano) stood out, with being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time. PMID:25402427

  8. Analysis of trend changes in Northern African palaeo-climate by using Bayesian inference

    NASA Astrophysics Data System (ADS)

    Schütz, Nadine; Trauth, Martin H.; Holschneider, Matthias

    2010-05-01

    Climate variability of Northern Africa is of high interest due to climate-evolutionary linkages under study. The reconstruction of the palaeo-climate over long time scales, including the expected linkages (> 3 Ma), is mainly accessible by proxy data from deep sea drilling cores. By concentrating on published data sets, we try to decipher rhythms and trends to detect correlations between different proxy time series by advanced mathematical methods. Our preliminary data is dust concentration, as an indicator for climatic changes such as humidity, from the ODP sites 659, 721 and 967 situated around Northern Africa. Our interest is in challenging the available time series with advanced statistical methods to detect significant trend changes and to compare different model assumptions. For that purpose, we want to avoid the rescaling of the time axis to obtain equidistant time steps for filtering methods. Additionally we demand an plausible description of the errors for the estimated parameters, in terms of confidence intervals. Finally, depending on what model we restrict on, we also want an insight in the parameter structure of the assumed models. To gain this information, we focus on Bayesian inference by formulating the problem as a linear mixed model, so that the expectation and deviation are of linear structure. By using the Bayesian method we can formulate the posteriori density as a function of the model parameters and calculate this probability density in the parameter space. Depending which parameters are of interest, we analytically and numerically marginalize the posteriori with respect to the remaining parameters of less interest. We apply a simple linear mixed model to calculate the posteriori densities of the ODP sites 659 and 721 concerning the last 5 Ma at maximum. From preliminary calculations on these data sets, we can confirm results gained by the method of breakfit regression combined with block bootstrapping ([1]). We obtain a significant change point around (1.63 - 1.82) Ma, which correlates with a global climate transition due to the establishment of the Walker circulation ([2]). Furthermore we detect another significant change point around (2.7 - 3.2) Ma, which correlates with the end of the Pliocene warm period (permanent El Niño-like conditions) and the onset of a colder global climate ([3], [4]). The discussion on the algorithm, the results of calculated confidence intervals, the available information about the applied model in the parameter space and the comparison of multiple change point models will be presented. [1] Trauth, M.H., et al., Quaternary Science Reviews, 28, 2009 [2] Wara, M.W., et al., Science, Vol. 309, 2005 [3] Chiang, J.C.H., Annual Review of Earth and Planetary Sciences, Vol. 37, 2009 [4] deMenocal, P., Earth and Planetary Science Letters, 220, 2004

  9. Changes in mitochondrial DNA alter expression of nuclear encoded genes associated with tumorigenesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jandova, Jana; Janda, Jaroslav; Sligh, James E, E-mail: jsligh@azcc.arizona.edu

    We previously reported the presence of a mtDNA mutation hotspot in UV-induced premalignant and malignant skin tumors in hairless mice. We have modeled this change (9821insA) in murine cybrid cells and demonstrated that this alteration in mtDNA associated with mtBALB haplotype can alter the biochemical characteristics of cybrids and subsequently can contribute to significant changes in their behavioral capabilities. This study shows that changes in mtDNA can produce differences in expression levels of specific nuclear-encoded genes, which are capable of triggering the phenotypes such as seen in malignant cells. From a potential list of differentially expressed genes discovered by microarraymore » analysis, we selected MMP-9 and Col1a1 for further studies. Real-time PCR confirmed up-regulation of MMP-9 and down-regulation of Col1a1 in cybrids harboring the mtDNA associated with the skin tumors. These cybrids also showed significantly increased migration and invasion abilities compared to wild type. The non-specific MMP inhibitor, GM6001, was able to inhibit migratory and invasive abilities of the 9821insA cybrids confirming a critical role of MMPs in cellular motility. Nuclear factor-{kappa}B (NF-{kappa}B) is a key transcription factor for production of MMPs. An inhibitor of NF-{kappa}B activation, Bay 11-7082, was able to inhibit the expression of MMP-9 and ultimately decrease migration and invasion of mutant cybrids containing 9821insA. These studies confirm a role of NF-{kappa}B in the regulation of MMP-9 expression and through this regulation modulates the migratory and invasive capabilities of cybrids with mutant mtDNA. Enhanced migration and invasion abilities caused by up-regulated MMP-9 may contribute to the tumorigenic phenotypic characteristics of mutant cybrids. -- Highlights: Black-Right-Pointing-Pointer Cybrids are useful models to study the role of mtDNA changes in cancer development. Black-Right-Pointing-Pointer mtDNA changes affect the expression of nuclear genes associated with tumorigenesis. Black-Right-Pointing-Pointer MMP-9 is up-regulated and Col1a1 is down-regulated in mutant cybrids. Black-Right-Pointing-Pointer GM6001 reduced the enhanced motility of mutant cybrids caused by up-regulated MMP-9. Black-Right-Pointing-Pointer The MMP-9 expression and invasiveness of mutant cybrids were reduced by Bay 11-7802.« less

  10. Changing practice to support self-management and recovery in mental illness: application of an implementation model.

    PubMed

    Harris, Melanie; Jones, Phil; Heartfield, Marie; Allstrom, Mary; Hancock, Janette; Lawn, Sharon; Battersby, Malcolm

    2015-01-01

    Health services introducing practice changes need effective implementation methods. Within the setting of a community mental health service offering recovery-oriented psychosocial support for people with mental illness, we aimed to: (i) identify a well-founded implementation model; and (ii) assess its practical usefulness in introducing a new programme for recovery-oriented self-management support. We reviewed the literature to identify implementation models applicable to community mental health organisations, and that also had corresponding measurement tools. We used one of these models to inform organisational change strategies. The literature review showed few models with corresponding tools. The Promoting Action on Research Implementation in Health Services (PARIHS) model and the related Organisational Readiness to Change Assessment (ORCA) tool were used. The PARIHS proposes prerequisites for health service change and the ORCA measures the extent to which these prerequisites are present. Application of the ORCA at two time points during implementation of the new programme showed strategy-related gains for some prerequisites but not for others, reflecting observed implementation progress. Additional strategies to address target prerequisites could be drawn from the PARIHS model. The PARIHS model and ORCA tool have potential in designing and monitoring practice change strategies in community mental health organisations. Further practical use and testing of implementation models appears justified in overcoming barriers to change.

  11. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China.

    PubMed

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  12. Non-Point Source Pollutant Load Variation in Rapid Urbanization Areas by Remote Sensing, Gis and the L-THIA Model: A Case in Bao'an District, Shenzhen, China

    NASA Astrophysics Data System (ADS)

    Li, Tianhong; Bai, Fengjiao; Han, Peng; Zhang, Yuanyan

    2016-11-01

    Urban sprawl is a major driving force that alters local and regional hydrology and increases non-point source pollution. Using the Bao'an District in Shenzhen, China, a typical rapid urbanization area, as the study area and land-use change maps from 1988 to 2014 that were obtained by remote sensing, the contributions of different land-use types to NPS pollutant production were assessed with a localized long-term hydrologic impact assessment (L-THIA) model. The results show that the non-point source pollution load changed significantly both in terms of magnitude and spatial distribution. The loads of chemical oxygen demand, total suspended substances, total nitrogen and total phosphorus were affected by the interactions between event mean concentration and the magnitude of changes in land-use acreages and the spatial distribution. From 1988 to 2014, the loads of chemical oxygen demand, suspended substances and total phosphorus showed clearly increasing trends with rates of 132.48 %, 32.52 % and 38.76 %, respectively, while the load of total nitrogen decreased by 71.52 %. The immigrant population ratio was selected as an indicator to represent the level of rapid urbanization and industrialization in the study area, and a comparison analysis of the indicator with the four non-point source loads demonstrated that the chemical oxygen demand, total phosphorus and total nitrogen loads are linearly related to the immigrant population ratio. The results provide useful information for environmental improvement and city management in the study area.

  13. Use of agricultural land evaluation and site assessment in Linn County, Oregon, USA

    NASA Astrophysics Data System (ADS)

    Huddleston, J. Herbert; Pease, James R.; Forrest, William G.; Hickerson, Hugh J.; Langridge, Russell W.

    1987-07-01

    Oregon state law requires each county in the state to identify agricultural land and enact policies and regulations to protect agricultural land use. State guidelines encourage the preservation of large parcels of agricultural land and discourage partitioning of agricultural land and construction of nonfarm dwellings in agricultural areas. A land evaluation and site assessment (LESA) system was developed in Linn County to aid in the identification of agricultural land and provide assistance to decision makers concerning the relative merits of requests to partition existing parcels of ricultural land and introduce nonagricultural uses. Land evaluation was determined by calculating soil potential ratings for each agricultural soil in the county based on the soil potentials for winter wheat, annual ryegrass, permanent pasture, and irrigated sweet corn. Soil potential ratings were expressed on a scale of 0 to 150 points. The land evaluation score for a parcel consists of the weighted average soil potential rating for all of the soils in the parcel, weighted by the percentage of each soil present in the parcel. Site assessment was based on the size of a parcel and on the amount of existing conflict between agricultural and nonagricultural uses, particularly rural residential uses, both adjacent to and in the vicinity of a parcel. Parcel size refers to both size in relation to a typical field and size in relation to a typical farm unit. Conflict takes into account the number of nonfarm dwellings within 1/4 mile (0.4 km) of a parcel, the amount of the perimeter that adjoins conflicting land uses, and the residential density adjacent to the parcel. Empirical scales were derived for assigning points to each of the site assessment factors. Both parcel size and conflict were worth 75 points in the model. For parcel size, 45 points were allocated to field size and 30 points to farm-unit size. For conflict, 30 points were allocated to nonfarm dwellings within 1/4 mile and 45 points to perimeter conflicts. The LESA model was validated by testing on 23 parcels in Linn County for which requests to partition and/or convert to nonagricultural uses had been received by the County Planning Department. This testing was an essential part of the development process, as it pointed out inconsistencies and errors in the model and allowed continuous adjustment of factors and point scales. The results of application of the final model to three of the case studies are presented to illustrate the concepts. Three possible uses of the information generated by the LESA system include determining the relative agricultural value of a parcel, determining grades of agricultural land suitability, and determining the impacts of changing land use on other parcels in the vicinity. Relative agricultural value is a direct outcome of application of the evaluation criteria in the LESA model. Good, marginal, and nonagricultural grades of agricultural suitability were determined by examining the data from all 23 test cases and establishing threshold point values for soil quality, conflict, parcel size, and total LESA score. Impact analyses were not done in this study, but could be achieved by calculating LESA scores for all parcels possibly affected by a land-use change both before and after a proposed change. All three applications fall short of making a specific land-use decision, but they do provide information that should be of value to the local jurisdiction charged with making such decisions.

  14. Item Response Modeling: An Evaluation of the Children's Fruit and Vegetable Self-Efficacy Questionnaire

    ERIC Educational Resources Information Center

    Watson, Kathy; Baranowski, Tom; Thompson, Debbe

    2006-01-01

    Perceived self-efficacy (SE) for eating fruit and vegetables (FV) is a key variable mediating FV change in interventions. This study applies item response modeling (IRM) to a fruit, juice and vegetable self-efficacy questionnaire (FVSEQ) previously validated with classical test theory (CTT) procedures. The 24-item (five-point Likert scale) FVSEQ…

  15. Animal Models of Fetal Alcohol Spectrum Disorders: Impact of the Social Environment

    ERIC Educational Resources Information Center

    Kelly, Sandra J.; Goodlett, Charles R.; Hannigan, John H.

    2009-01-01

    Animal models of fetal alcohol spectrum disorder (FASD) have been used to demonstrate the specificity of alcohol's teratogenic effects and some of the underlying changes in the central nervous system (CNS) and, more recently, to explore ways to ameliorate the effects of alcohol. The main point of this review is to highlight research findings from…

  16. A microangiographic study of the effect of hyperthermia on the rabbit bladder

    NASA Technical Reports Server (NTRS)

    Hietala, S. O.; Howells, R.; Hazra, I. A.

    1978-01-01

    A model was used to study the effect of hyperthermia on a normal tissue. The model selected was the rabbit bladder and the end point measured was the changes in the micro-vasculature of the bladder wall. It was already demonstrated clinically that hot water bladder infusions produce regression in bladder tumors.

  17. Development of Writing: Key Components of Written Language

    ERIC Educational Resources Information Center

    Kantor, Patricia Thatcher

    2012-01-01

    This study utilized confirmatory factor analyses and latent change score analyses to model individual and developmental differences in a longitudinal study of children's writing. Participants were 158 children who completed a writing sample each year from 1st through 4th grade. At all four time points, a four-factor model of writing provided…

  18. Coastal single-beam bathymetry data collected in 2015 from Raccoon Point to Point Au Fer Island, Louisiana

    USGS Publications Warehouse

    Stalk, Chelsea A.; DeWitt, Nancy T.; Kindinger, Jack L.; Flocks, James G.; Reynolds, Billy J.; Kelso, Kyle W.; Fredericks, Joseph J.; Tuten, Thomas M.

    2017-03-10

    As part of the Barrier Island Comprehensive Monitoring Program (BICM), scientists from the U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted a nearshore single-beam bathymetry survey along the south-central coast of Louisiana, from Raccoon Point to Point Au Fer Island, in July 2015. The goal of the BICM program is to provide long-term data on Louisiana’s coastline and use this data to plan, design, evaluate, and maintain current and future barrier island restoration projects. The data described in this report will provide baseline bathymetric information for future research investigating island evolution, sediment transport, and recent and long-term geomorphic change, and will support modeling of future changes in response to restoration and storm impacts. The survey area encompasses more than 300 square kilometers of nearshore environment from Raccoon Point to Point Au Fer Island. This data series serves as an archive of processed single-beam bathymetry data, collected from July 22–29, 2015, under USGS Field Activity Number 2015-320-FA. Geographic information system data products include a 200-meter-cell-size interpolated bathymetry grid, trackline maps, and point data files. Additional files include error analysis maps, Field Activity Collection System logs, and formal Federal Geographic Data Committee metadata.

  19. Topographic lidar survey of the Chandeleur Islands, Louisiana, February 6, 2012

    USGS Publications Warehouse

    Guy, Kristy K.; Plant, Nathaniel G.; Bonisteel-Cormier, Jamie M.

    2014-01-01

    This Data Series Report contains lidar elevation data collected February 6, 2012, for Chandeleur Islands, Louisiana. Point cloud data in lidar data exchange format (LAS) and bare earth digital elevation models (DEMs) in ERDAS Imagine raster format (IMG) are available as downloadable files. The point cloud data—data points described in three dimensions—were processed to extract bare earth data; therefore, the point cloud data are organized into the following classes: 1– and 17–unclassified, 2–ground, 9–water, and 10–breakline proximity. Digital Aerial Solutions, LLC, (DAS) was contracted by the U.S. Geological Survey (USGS) to collect and process these data. The lidar data were acquired at a horizontal spacing (or nominal pulse spacing) of 0.5 meters (m) or less. The USGS conducted two ground surveys in small areas on the Chandeleur Islands on February 5, 2012. DAS calculated a root mean square error (RMSEz) of 0.034 m by comparing the USGS ground survey point data to triangulated irregular network (TIN) models built from the lidar elevation data. This lidar survey was conducted to document the topography and topographic change of the Chandeleur Islands. The survey supports detailed studies of Louisiana, Mississippi and Alabama barrier islands that resolve annual and episodic changes in beaches, berms and dunes associated with processes driven by storms, sea-level rise, and even human restoration activities. These lidar data are available to Federal, State and local governments, emergency-response officials, resource managers, and the general public.

  20. Material point method modeling in oil and gas reservoirs

    DOEpatents

    Vanderheyden, William Brian; Zhang, Duan

    2016-06-28

    A computer system and method of simulating the behavior of an oil and gas reservoir including changes in the margins of frangible solids. A system of equations including state equations such as momentum, and conservation laws such as mass conservation and volume fraction continuity, are defined and discretized for at least two phases in a modeled volume, one of which corresponds to frangible material. A material point model technique for numerically solving the system of discretized equations, to derive fluid flow at each of a plurality of mesh nodes in the modeled volume, and the velocity of at each of a plurality of particles representing the frangible material in the modeled volume. A time-splitting technique improves the computational efficiency of the simulation while maintaining accuracy on the deformation scale. The method can be applied to derive accurate upscaled model equations for larger volume scale simulations.

  1. Water Vapor Winds and Their Application to Climate Change Studies

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Lerner, Jeffrey A.

    2000-01-01

    The retrieval of satellite-derived winds and moisture from geostationary water vapor imagery has matured to the point where it may be applied to better understanding longer term climate changes that were previously not possible using conventional measurements or model analysis in data-sparse regions. In this paper, upper-tropospheric circulation features and moisture transport covering ENSO periods are presented and discussed. Precursors and other detectable interannual climate change signals are analyzed and compared to model diagnosed features. Estimates of winds and humidity over data-rich regions are used to show the robustness of the data and its value over regions that have previously eluded measurement.

  2. The Predictive Value of Preoperative Health-Related Quality-of-Life Scores on Postoperative Patient-Reported Outcome Scores in Lumbar Spine Surgery

    PubMed Central

    Hey, Hwee Weng Dennis; Luo, Nan; Chin, Sze Yung; Lau, Eugene Tze Chun; Wang, Pei; Kumar, Naresh; Lau, Leok-Lim; Ruiz, John Nathaniel; Thambiah, Joseph Shanthakumar; Liu, Ka-Po Gabriel; Wong, Hee-Kit

    2017-01-01

    Study Design: A single-center, retrospective cohort study. Objective: To predict patient-reported outcomes (PROs) using preoperative health-related quality-of-life (HRQoL) scores by quantifying the correlation between them, so as to aid selection of surgical candidates and preoperative counselling. Methods: All patients who underwent single-level elective lumbar spine surgery over a 2-year period were divided into 3 diagnosis groups: spondylolisthesis, spinal stenosis, and disc herniation. Patient characteristics and health scores (Oswestry Low Back Pain and Disability Index [ODI], EQ-5D, and Short Form-36 version 2 [SF-36v2]) were collected at 6 and 24 months and compared between the 3 diagnosis groups. Multivariate modelling was performed to investigate the predictive value of each parameter, particularly preoperative ODI and EQ-5D, on postoperative ODI and EQ-5D scores for all the patients. Results: ODI and EQ-5D at 6 and 24 months improved significantly for all patients, especially in the disc herniation group, compared to the baseline. The magnitude of improvement in ODI and EQ-5D was predictable using preoperative ODI, EQ-5D, and SF-36v2 Mental Component Score. At 6 months, 1-point baseline ODI predicts for 0.7-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.01-point decrease in changed EQ-5D score. At 24 months, 1-point baseline ODI predicts for 1-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.009-point decrease in changed EQ-5D. A younger age is shown to be a positive predictor of ODI at 24 months. Conclusions: Poorer baseline health scores predict greater improvement in postoperative PROs at 6 and 24 months after the surgery. HRQoL scores can be used to decide on surgery and in preoperative counselling. PMID:29662746

  3. The Predictive Value of Preoperative Health-Related Quality-of-Life Scores on Postoperative Patient-Reported Outcome Scores in Lumbar Spine Surgery.

    PubMed

    Hey, Hwee Weng Dennis; Luo, Nan; Chin, Sze Yung; Lau, Eugene Tze Chun; Wang, Pei; Kumar, Naresh; Lau, Leok-Lim; Ruiz, John Nathaniel; Thambiah, Joseph Shanthakumar; Liu, Ka-Po Gabriel; Wong, Hee-Kit

    2018-04-01

    A single-center, retrospective cohort study. To predict patient-reported outcomes (PROs) using preoperative health-related quality-of-life (HRQoL) scores by quantifying the correlation between them, so as to aid selection of surgical candidates and preoperative counselling. All patients who underwent single-level elective lumbar spine surgery over a 2-year period were divided into 3 diagnosis groups: spondylolisthesis, spinal stenosis, and disc herniation. Patient characteristics and health scores (Oswestry Low Back Pain and Disability Index [ODI], EQ-5D, and Short Form-36 version 2 [SF-36v2]) were collected at 6 and 24 months and compared between the 3 diagnosis groups. Multivariate modelling was performed to investigate the predictive value of each parameter, particularly preoperative ODI and EQ-5D, on postoperative ODI and EQ-5D scores for all the patients. ODI and EQ-5D at 6 and 24 months improved significantly for all patients, especially in the disc herniation group, compared to the baseline. The magnitude of improvement in ODI and EQ-5D was predictable using preoperative ODI, EQ-5D, and SF-36v2 Mental Component Score. At 6 months, 1-point baseline ODI predicts for 0.7-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.01-point decrease in changed EQ-5D score. At 24 months, 1-point baseline ODI predicts for 1-point increase in changed ODI, and a 0.01-point increase in baseline EQ-5D predicts for 0.009-point decrease in changed EQ-5D. A younger age is shown to be a positive predictor of ODI at 24 months. Poorer baseline health scores predict greater improvement in postoperative PROs at 6 and 24 months after the surgery. HRQoL scores can be used to decide on surgery and in preoperative counselling.

  4. Relationships Between Changes in Patient-Reported Health Status and Functional Capacity in Outpatients With Heart Failure

    PubMed Central

    Flynn, Kathryn E.; Lin, Li; Moe, Gordon W.; Howlett, Jonathan G.; Fine, Lawrence J.; Spertus, John A.; McConnell, Timothy R.; Piña, Ileana L.; Weinfurt, Kevin P.

    2011-01-01

    Background Heart failure trials use a variety of measures of functional capacity and quality of life. Lack of formal assessments of the relationships between changes in multiple aspects of patient-reported health status and measures of functional capacity over time limit the ability to compare results across studies. Methods Using data from HF-ACTION (N = 2331), we used Pearson correlation coefficients and predicted change scores from linear mixed-effects modeling to demonstrate associations between changes in patient-reported health status measured with the EQ-5D visual analog scale (VAS) and the Kansas City Cardiomyopathy Questionnaire (KCCQ) and changes in peak VO2 and 6-minute walk distance at 3 and 12 months. We examined a 5-point change in KCCQ within individuals to provide a framework for interpreting changes in these measures. Results After adjustment for baseline characteristics, correlations between changes in the VAS and changes in peak VO2 and 6-minute walk distance ranged from 0.13 to 0.28, and correlations between changes in the KCCQ overall and subscale scores and changes in peak VO2 and 6-minute walk distance ranged from 0.18 to 0.34. A 5-point change in KCCQ was associated with a 2.50 ml/kg/min change in peak VO2 (95% confidence interval, 2.21–2.86) and a 112-meter change in 6-minute walk distance (95% confidence interval, 96–134). Conclusions Changes in patient-reported health status are not highly correlated with changes in functional capacity. Our findings generally support the current practice of considering a 5-point change in the KCCQ within individuals to be clinically meaningful. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:22172441

  5. Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation

    NASA Astrophysics Data System (ADS)

    Bonciolini, Giacomo; Ebi, Dominik; Boujo, Edouard; Noiray, Nicolas

    2018-03-01

    Complex systems exhibiting critical transitions when one of their governing parameters varies are ubiquitous in nature and in engineering applications. Despite a vast literature focusing on this topic, there are few studies dealing with the effect of the rate of change of the bifurcation parameter on the tipping points. In this work, we consider a subcritical stochastic Hopf bifurcation under two scenarios: the bifurcation parameter is first changed in a quasi-steady manner and then, with a finite ramping rate. In the latter case, a rate-dependent bifurcation delay is observed and exemplified experimentally using a thermoacoustic instability in a combustion chamber. This delay increases with the rate of change. This leads to a state transition of larger amplitude compared with the one that would be experienced by the system with a quasi-steady change of the parameter. We also bring experimental evidence of a dynamic hysteresis caused by the bifurcation delay when the parameter is ramped back. A surrogate model is derived in order to predict the statistic of these delays and to scrutinize the underlying stochastic dynamics. Our study highlights the dramatic influence of a finite rate of change of bifurcation parameters upon tipping points, and it pinpoints the crucial need of considering this effect when investigating critical transitions.

  6. Experiments and modelling of rate-dependent transition delay in a stochastic subcritical bifurcation

    PubMed Central

    Noiray, Nicolas

    2018-01-01

    Complex systems exhibiting critical transitions when one of their governing parameters varies are ubiquitous in nature and in engineering applications. Despite a vast literature focusing on this topic, there are few studies dealing with the effect of the rate of change of the bifurcation parameter on the tipping points. In this work, we consider a subcritical stochastic Hopf bifurcation under two scenarios: the bifurcation parameter is first changed in a quasi-steady manner and then, with a finite ramping rate. In the latter case, a rate-dependent bifurcation delay is observed and exemplified experimentally using a thermoacoustic instability in a combustion chamber. This delay increases with the rate of change. This leads to a state transition of larger amplitude compared with the one that would be experienced by the system with a quasi-steady change of the parameter. We also bring experimental evidence of a dynamic hysteresis caused by the bifurcation delay when the parameter is ramped back. A surrogate model is derived in order to predict the statistic of these delays and to scrutinize the underlying stochastic dynamics. Our study highlights the dramatic influence of a finite rate of change of bifurcation parameters upon tipping points, and it pinpoints the crucial need of considering this effect when investigating critical transitions. PMID:29657803

  7. North American water availability under stress and duress: building understanding from simulations, observations and data products

    NASA Astrophysics Data System (ADS)

    Maxwell, R. M.; Condon, L. E.; Atchley, A. L.; Hector, B.

    2017-12-01

    Quantifying the available freshwater for human use and ecological function depends on fluxes and stores that are hard to observe. Evapotranspiration (ET) is the largest terrestrial flux of water behind precipitation but is observed with low spatial density. Likewise, groundwater is the largest freshwater store, yet is equally uncertain. The ability to upscale observations of these variables is an additional complication; point measurements are made at scales orders of magnitude smaller than remote sensing data products. Integrated hydrologic models that simulate continental extents at fine spatial resolution are now becoming an additional tool to constrain fluxes and address interconnections. For example, recent work has shown connections between water table depth and transpiration partitioning, and demonstrated the ability to reconcile point observations and large-scale inferences. Here we explore the dynamics of large hydrologic systems experiencing change and stress across continental North America using integrated model simulations, observations and data products. Simulations of aquifer depletion due to pervasive groundwater pumping diagnose both stream depletion and changes in ET. Simulations of systematic increases in temperature are used to understand the relationship between snowpack dynamics, surface and groundwater flow, ET and a changing climate. Remotely sensed products including the GRACE estimates of total storage change are downscaled using model simulations to better understand human impacts to the hydrologic cycle. These example applications motivate a path forward to better use simulations to understand water availability.

  8. Understanding the impacts of climate change and human activities on streamflow: a case study of the Soan River basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Shahid, Muhammad; Cong, Zhentao; Zhang, Danwu

    2017-09-01

    Climate change and land use change are the two main factors that can alter the catchment hydrological process. The objective of this study is to evaluate the relative contribution of climate change and land use change to runoff change of the Soan River basin. The Mann-Kendal and the Pettit tests are used to find out the trends and change point in hydroclimatic variables during the period 1983-2012. Two different approaches including the abcd hydrological model and the Budyko framework are then used to quantify the impact of climate change and land use change on streamflow. The results from both methods are consistent and show that annual runoff has significantly decreased with a change point around 1997. The decrease in precipitation and increases in potential evapotranspiration contribute 68% of the detected change while the rest of the detected change is due to land use change. The land use change acquired from Landsat shows that during post-change period, the agriculture has increased in the Soan basin, which is in line with the positive contribution of land use change to runoff decrease. This study concludes that aforementioned methods performed well in quantifying the relative contribution of land use change and climate change to runoff change.

  9. Changes in the dielectric properties of medaka fish embryos during development, studied by electrorotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirakashi, Ryo, E-mail: aa21150@iis.u-tokyo.ac.jp; Mischke, Miriam; Fischer, Peter

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Electrorotation offers a non-invasive tool for dielectric analysis of fish embryos. Black-Right-Pointing-Pointer The three-shell dielectric model matches the rotation spectra of medaka eggs. Black-Right-Pointing-Pointer The capacitance value suggests a double-membrane structure of yolk envelope. -- Abstract: The Japanese medaka fish, Oryzias latipes, has become a powerful vertebrate model organism in developmental biology and genetics. The present study explores the dielectric properties of medaka embryos during pre-hatching development by means of the electrorotation (ROT) technique. Due to their layered structure, medaka eggs exhibited up to three ROT peaks in the kHz-MHz frequency range. During development from blastula to earlymore » somite stage, ROT spectra varied only slightly. But as the embryo progressed to the late-somite stage, the ROT peaks underwent significant changes in frequency and amplitude. Using morphological data obtained by light and electron microscopy, we analyzed the ROT spectra with a three-shell dielectric model that accounted for the major embryonic compartments. The analysis yielded a very high value for the ionic conductivity of the egg shell (chorion), which was confirmed by independent osmotic experiments. A relatively low capacitance of the yolk envelope was consistent with its double-membrane structure revealed by transmission electron microscopy. Yolk-free dead eggs exhibited only one co-field ROT peak, shifted markedly to lower frequencies with respect to the corresponding peak of live embryos. The dielectric data may be useful for monitoring the development and changes in fish embryos' viability/conditions in basic research and industrial aquaculture.« less

  10. Reasons for cannabis use in first-episode psychosis: does strength of endorsement change over 12 months?

    PubMed

    Kolliakou, A; Castle, D; Sallis, H; Joseph, C; O'Connor, J; Wiffen, B; Gayer-Anderson, C; McQueen, G; Taylor, H; Bonaccorso, S; Gaughran, F; Smith, S; Greenwood, K; Murray, R M; Di Forti, M; Atakan, Z; Ismail, K

    2015-01-01

    Why patients with psychosis use cannabis remains debated. The self-medication hypothesis has received some support but other evidence points towards an alleviation of dysphoria model. This study investigated the reasons for cannabis use in first-episode psychosis (FEP) and whether strength in their endorsement changed over time. FEP inpatients and outpatients at the South London and Maudsley, Oxleas and Sussex NHS Trusts UK, who used cannabis, rated their motives at baseline (n=69), 3 months (n=29) and 12 months (n=36). A random intercept model was used to test the change in strength of endorsement over the 12 months. Paired-sample t-tests assessed the differences in mean scores between the five subscales on the Reasons for Use Scale (enhancement, social motive, coping with unpleasant affect, conformity and acceptance and relief of positive symptoms and side effects), at each time-point. Time had a significant effect on scores when controlling for reason; average scores on each subscale were higher at baseline than at 3 months and 12 months. At each time-point, patients endorsed 'enhancement' followed by 'coping with unpleasant affect' and 'social motive' more highly for their cannabis use than any other reason. 'Conformity and acceptance' followed closely. 'Relief of positive symptoms and side effects' was the least endorsed motive. Patients endorsed their reasons for use at 3 months and 12 months less strongly than at baseline. Little support for the self-medication or alleviation of dysphoria models was found. Rather, patients rated 'enhancement' most highly for their cannabis use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  11. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to thatmore » of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.« less

  12. Modeling human mobility responses to the large-scale spreading of infectious diseases.

    PubMed

    Meloni, Sandro; Perra, Nicola; Arenas, Alex; Gómez, Sergio; Moreno, Yamir; Vespignani, Alessandro

    2011-01-01

    Current modeling of infectious diseases allows for the study of realistic scenarios that include population heterogeneity, social structures, and mobility processes down to the individual level. The advances in the realism of epidemic description call for the explicit modeling of individual behavioral responses to the presence of disease within modeling frameworks. Here we formulate and analyze a metapopulation model that incorporates several scenarios of self-initiated behavioral changes into the mobility patterns of individuals. We find that prevalence-based travel limitations do not alter the epidemic invasion threshold. Strikingly, we observe in both synthetic and data-driven numerical simulations that when travelers decide to avoid locations with high levels of prevalence, this self-initiated behavioral change may enhance disease spreading. Our results point out that the real-time availability of information on the disease and the ensuing behavioral changes in the population may produce a negative impact on disease containment and mitigation.

  13. Attributing runoff changes to climate variability and human activities: uncertainty analysis using four monthly water balance models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shuai; Xiong, Lihua; Li, Hong-Yi

    2015-05-26

    Hydrological simulations to delineate the impacts of climate variability and human activities are subjected to uncertainties related to both parameter and structure of the hydrological models. To analyze the impact of these uncertainties on the model performance and to yield more reliable simulation results, a global calibration and multimodel combination method that integrates the Shuffled Complex Evolution Metropolis (SCEM) and Bayesian Model Averaging (BMA) of four monthly water balance models was proposed. The method was applied to the Weihe River Basin (WRB), the largest tributary of the Yellow River, to determine the contribution of climate variability and human activities tomore » runoff changes. The change point, which was used to determine the baseline period (1956-1990) and human-impacted period (1991-2009), was derived using both cumulative curve and Pettitt’s test. Results show that the combination method from SCEM provides more skillful deterministic predictions than the best calibrated individual model, resulting in the smallest uncertainty interval of runoff changes attributed to climate variability and human activities. This combination methodology provides a practical and flexible tool for attribution of runoff changes to climate variability and human activities by hydrological models.« less

  14. Investigation of Climate Change Impact on Water Resources for an Alpine Basin in Northern Italy: Implications for Evapotranspiration Modeling Complexity

    PubMed Central

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required beacause of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied. PMID:25285917

  15. Investigation of climate change impact on water resources for an Alpine basin in northern Italy: implications for evapotranspiration modeling complexity.

    PubMed

    Ravazzani, Giovanni; Ghilardi, Matteo; Mendlik, Thomas; Gobiet, Andreas; Corbari, Chiara; Mancini, Marco

    2014-01-01

    Assessing the future effects of climate change on water availability requires an understanding of how precipitation and evapotranspiration rates will respond to changes in atmospheric forcing. Use of simplified hydrological models is required because of lack of meteorological forcings with the high space and time resolutions required to model hydrological processes in mountains river basins, and the necessity of reducing the computational costs. The main objective of this study was to quantify the differences between a simplified hydrological model, which uses only precipitation and temperature to compute the hydrological balance when simulating the impact of climate change, and an enhanced version of the model, which solves the energy balance to compute the actual evapotranspiration. For the meteorological forcing of future scenario, at-site bias-corrected time series based on two regional climate models were used. A quantile-based error-correction approach was used to downscale the regional climate model simulations to a point scale and to reduce its error characteristics. The study shows that a simple temperature-based approach for computing the evapotranspiration is sufficiently accurate for performing hydrological impact investigations of climate change for the Alpine river basin which was studied.

  16. New techniques to measure cliff change from historical oblique aerial photographs and structure-from-motion photogrammetry

    USGS Publications Warehouse

    Warrick, Jonathan; Ritchie, Andy; Adelman, Gabrielle; Adelman, Ken; Limber, Patrick W.

    2017-01-01

    Oblique aerial photograph surveys are commonly used to document coastal landscapes. Here it is shown that adequate overlap may exist in these photographic records to develop topographic models with Structure-from-Motion (SfM) photogrammetric techniques. Using photographs of Fort Funston, California, from the California Coastal Records Project, imagery were combined with ground control points in a four-dimensional analysis that produced topographic point clouds of the study area’s cliffs for 5 years spanning 2002 to 2010. Uncertainty was assessed by comparing point clouds with airborne LIDAR data, and these uncertainties were related to the number and spatial distribution of ground control points used in the SfM analyses. With six or more ground control points, the root mean squared errors between the SfM and LIDAR data were less than 0.30 m (minimum 1⁄4 0.18 m), and the mean systematic error was less than 0.10 m. The SfM results had several benefits over traditional airborne LIDAR in that they included point coverage on vertical- to-overhanging sections of the cliff and resulted in 10–100 times greater point densities. Time series of the SfM results revealed topographic changes, including landslides, rock falls, and the erosion of landslide talus along the Fort Funston beach. Thus, it was concluded that SfM photogrammetric techniques with historical oblique photographs allow for the extraction of useful quantitative information for mapping coastal topography and measuring coastal change. The new techniques presented here are likely applicable to many photograph collections and problems in the earth sciences.

  17. The transparency, reliability and utility of tropical rainforest land-use and land-cover change models.

    PubMed

    Rosa, Isabel M D; Ahmed, Sadia E; Ewers, Robert M

    2014-06-01

    Land-use and land-cover (LULC) change is one of the largest drivers of biodiversity loss and carbon emissions globally. We use the tropical rainforests of the Amazon, the Congo basin and South-East Asia as a case study to investigate spatial predictive models of LULC change. Current predictions differ in their modelling approaches, are highly variable and often poorly validated. We carried out a quantitative review of 48 modelling methodologies, considering model spatio-temporal scales, inputs, calibration and validation methods. In addition, we requested model outputs from each of the models reviewed and carried out a quantitative assessment of model performance for tropical LULC predictions in the Brazilian Amazon. We highlight existing shortfalls in the discipline and uncover three key points that need addressing to improve the transparency, reliability and utility of tropical LULC change models: (1) a lack of openness with regard to describing and making available the model inputs and model code; (2) the difficulties of conducting appropriate model validations; and (3) the difficulty that users of tropical LULC models face in obtaining the model predictions to help inform their own analyses and policy decisions. We further draw comparisons between tropical LULC change models in the tropics and the modelling approaches and paradigms in other disciplines, and suggest that recent changes in the climate change and species distribution modelling communities may provide a pathway that tropical LULC change modellers may emulate to further improve the discipline. Climate change models have exerted considerable influence over public perceptions of climate change and now impact policy decisions at all political levels. We suggest that tropical LULC change models have an equally high potential to influence public opinion and impact the development of land-use policies based on plausible future scenarios, but, to do that reliably may require further improvements in the discipline. © 2014 John Wiley & Sons Ltd.

  18. Optimization of Focusing by Strip and Pixel Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, G J; White, D A; Thompson, C A

    Professor Kevin Webb and students at Purdue University have demonstrated the design of conducting strip and pixel arrays for focusing electromagnetic waves [1, 2]. Their key point was to design structures to focus waves in the near field using full wave modeling and optimization methods for design. Their designs included arrays of conducting strips optimized with a downhill search algorithm and arrays of conducting and dielectric pixels optimized with the iterative direct binary search method. They used a finite element code for modeling. This report documents our attempts to duplicate and verify their results. We have modeled 2D conducting stripsmore » and both conducting and dielectric pixel arrays with moment method and FDTD codes to compare with Webb's results. New designs for strip arrays were developed with optimization by the downhill simplex method with simulated annealing. Strip arrays were optimized to focus an incident plane wave at a point or at two separated points and to switch between focusing points with a change in frequency. We also tried putting a line current source at the focus point for the plane wave to see how it would work as a directive antenna. We have not tried optimizing the conducting or dielectric pixel arrays, but modeled the structures designed by Webb with the moment method and FDTD to compare with the Purdue results.« less

  19. Adaptation, Learning, and the Art of War: A Cybernetic Perspective

    DTIC Science & Technology

    2014-05-14

    William Ross Ashby and contemporary cybernetic thought, the study modeled the adaptive systems as control loops and the processes of adaptive systems...as a Markov process . Using this model , the study concluded that systems would return to the same relative equilibrium point, expressed in terms of...uncertain and ever-changing environment. Drawing from the works of William Ross Ashby and contemporary cybernetic thought, the study modeled the adaptive

  20. Quantifying geomorphic controls on riparian forest dynamics using a linked physical-biological model: implications for river corridor conservation

    NASA Astrophysics Data System (ADS)

    Stella, J. C.; Harper, E. B.; Fremier, A. K.; Hayden, M. K.; Battles, J. J.

    2009-12-01

    In high-order alluvial river systems, physical factors of flooding and channel migration are particularly important drivers of riparian forest dynamics because they regulate habitat creation, resource fluxes of water, nutrients and light that are critical for growth, and mortality from fluvial disturbance. Predicting vegetation composition and dynamics at individual sites in this setting is challenging, both because of the stochastic nature of the flood regime and the spatial variability of flood events. Ecological models that correlate environmental factors with species’ occurrence and abundance (e.g., ’niche models’) often work well in infrequently-disturbed upland habitats, but are less useful in river corridors and other dynamic zones where environmental conditions fluctuate greatly and selection pressures on disturbance-adapted organisms are complex. In an effort to help conserve critical riparian forest habitat along the middle Sacramento River, CA, we are taking a mechanistic approach to quantify linkages between fluvial and biotic processes for Fremont cottonwood (Populus fremontii), a keystone pioneer tree in dryland rivers ecosystems of the U.S. Southwest. To predict the corridor-wide population effects of projected changes to the disturbance regime from flow regulation, climate change, and landscape modifications, we have coupled a physical model of channel meandering with a patch-based population model that incorporates the climatic, hydrologic, and topographic factors critical for tree recruitment and survival. We employed these linked simulations to study the relative influence of the two most critical habitat types--point bars and abandoned channels--in sustaining the corridor-wide cottonwood population over a 175-year period. The physical model uses discharge data and channel planform to predict the spatial distribution of new habitat patches; the population model runs on top of this physical template to track tree colonization and survival on each patch. Model parameters of tree life-history traits (e.g., dispersal timing) and hydrogeomorphic processes (e.g., sedimentation rate) were determined by field and experimental studies, and aerial LIDAR, with separate range of values for point bar versus floodplain habitats. In most runs, abandoned channels were colonized one third as frequently as point bars, but supported much larger forest patches when colonization was successful (from 15-99% of forest area, depending on point bar success). Independent evaluation of aerial photos confirm that cottonwood forest stands associated with abandoned channels were less frequent (38% of all stands) but more extensive (53% of all forest area) relative to those caused by migrating point bars. Results indicate that changes to the rate and scale of river migration, and particularly channel abandonment, from human and climatic alterations to the flow regime will likely influence riparian corridor-wide tree population structure and forest dynamics, with consequences for the community of organisms that depend on this habitat.

  1. Solar luminosity variations and the climate of Mars

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Gierasch, P. J.; Sagan, C.

    1975-01-01

    A simple climatological model of Mars indicates that its climate may be more sensitive to luminosity changes than earth's because of strong positive feedback mechanisms at work on Mars. Mariner 9 photographs of Mars show an abundance of large sinuous channels that point to an epoch of higher atmospheric pressures and abundant liquid water. Such an epoch could have been the result of large-scale solar luminosity variations. The climatological model suggests that other less controversial mechanisms, such as obliquity or polar albedo changes, also could have led to such an epoch.

  2. Holocene relative sea-level changes from North America and the Caribbean

    NASA Astrophysics Data System (ADS)

    Horton, Benjamin; Engelhart, Simon; Vacchi, Matteo; Khan, Nicole; Peltier, Dick; Roy, Keven

    2014-05-01

    Reconstructions of Holocene relative sea level (RSL) are important for identifying the ice equivalent meltwater contribution to sea-level change during deglaciation. Holocene RSL reconstructions from near, intermediate and far field regions enable the assessment of earth and ice parameters of Glacial Isostatic Adjustment (GIA) models. RSL reconstructions provide data for estimating rates of spatially variable and ongoing vertical land motion; a requirement for understanding the variation in modern and late Holocene sea level as recorded by instrumental and proxy records. Here we explain the methodology employed to reconstruct former sea levels, which follows the practice of the International Geoscience Programme (IGCP). We produce sea level index points from the Pacific and Atlantic coasts of North America and the Caribbean. Index points are defined as the most reliable observations of former sea levels. They consist of an estimate of X (age) and Y (the position of former RSL). Where a suite of index points are developed for a locality or region, they describe changes in RSL through time and estimate rates of change. A valid index point must meet the following four criteria; (1) location of the sample is known; (2) the altitude of the sample (and the error associated with measuring that altitude) is known; (3) the indicative meaning (the relationship between the sample and a tide level) is estimated; and (4) the age of the sample, which is commonly radiocarbon dated is calibrated to sidereal years using the latest calibration curves. In total databases have over 2000 sea-level index points from formerly ice covered, uplifting regions of Canada, to the region of forebulge collapse along the subsiding mid-Atlantic and mid-Pacific coastlines of the United States, to the tropical regions of the Caribbean. Recent analyses of these new published databases have led to a further refinement of the most recent of the ICE-NG (VMX) series of global models of GIA. The records from the region of forebulge collapse turn out to be especially sensitive to the mantle viscosity profile in the upper mantle, transition zone and uppermost lower mantle. Relatively minor adjustments to the depth dependence of viscosity characteristic of the VM5a profile employed to construct the newest ICE-6G model of deglaciation history lead to the definition of the refined viscosity structure VM6. This new viscosity model suffices to eliminate the majority of the misfits to the new U.S. Atlantic coast database. The west coast data were held back in the iterative procedure employed to define VM6; but this model is nevertheless found to be equally successful in fitting data from the U.S. Pacific coast. The ICE-6G (VM6) global model continues to provide good fits to all of the North American data from the ice-covered portion of the continent.

  3. Determining Hypocentral Parameters for Local Earthquakes in 1-D Using a Genetic Algorithm and Two-point ray tracing

    NASA Astrophysics Data System (ADS)

    Kim, W.; Hahm, I.; Ahn, S. J.; Lim, D. H.

    2005-12-01

    This paper introduces a powerful method for determining hypocentral parameters for local earthquakes in 1-D using a genetic algorithm (GA) and two-point ray tracing. Using existing algorithms to determine hypocentral parameters is difficult, because these parameters can vary based on initial velocity models. We developed a new method to solve this problem by applying a GA to an existing algorithm, HYPO-71 (Lee and Larh, 1975). The original HYPO-71 algorithm was modified by applying two-point ray tracing and a weighting factor with respect to the takeoff angle at the source to reduce errors from the ray path and hypocenter depth. Artificial data, without error, were generated by computer using two-point ray tracing in a true model, in which velocity structure and hypocentral parameters were known. The accuracy of the calculated results was easily determined by comparing calculated and actual values. We examined the accuracy of this method for several cases by changing the true and modeled layer numbers and thicknesses. The computational results show that this method determines nearly exact hypocentral parameters without depending on initial velocity models. Furthermore, accurate and nearly unique hypocentral parameters were obtained, although the number of modeled layers and thicknesses differed from those in the true model. Therefore, this method can be a useful tool for determining hypocentral parameters in regions where reliable local velocity values are unknown. This method also provides the basic a priori information for 3-D studies. KEY -WORDS: hypocentral parameters, genetic algorithm (GA), two-point ray tracing

  4. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE PAGES

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    2016-03-22

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  5. Investigation of uncertainty in CO 2 reservoir models: A sensitivity analysis of relative permeability parameter values

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Nozomu; Levine, Jonathan S.; Stauffer, Philip H.

    Numerical reservoir models of CO 2 injection in saline formations rely on parameterization of laboratory-measured pore-scale processes. Here, we have performed a parameter sensitivity study and Monte Carlo simulations to determine the normalized change in total CO 2 injected using the finite element heat and mass-transfer code (FEHM) numerical reservoir simulator. Experimentally measured relative permeability parameter values were used to generate distribution functions for parameter sampling. The parameter sensitivity study analyzed five different levels for each of the relative permeability model parameters. All but one of the parameters changed the CO 2 injectivity by <10%, less than the geostatistical uncertainty that applies to all large subsurface systems due to natural geophysical variability and inherently small sample sizes. The exception was the end-point CO 2 relative permeability, kmore » $$0\\atop{r}$$ CO2, the maximum attainable effective CO 2 permeability during CO 2 invasion, which changed CO2 injectivity by as much as 80%. Similarly, Monte Carlo simulation using 1000 realizations of relative permeability parameters showed no relationship between CO 2 injectivity and any of the parameters but k$$0\\atop{r}$$ CO2, which had a very strong (R 2 = 0.9685) power law relationship with total CO 2 injected. Model sensitivity to k$$0\\atop{r}$$ CO2 points to the importance of accurate core flood and wettability measurements.« less

  6. Lensing-induced morphology changes in CMB temperature maps in modified gravity theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munshi, D.; Coles, P.; Hu, B.

    2016-04-01

    Lensing of the Cosmic Microwave Background (CMB) changes the morphology of pattern of temperature fluctuations, so topological descriptors such as Minkowski Functionals can probe the gravity model responsible for the lensing. We show how the recently introduced two-to-two and three-to-one kurt-spectra (and their associated correlation functions), which depend on the power spectrum of the lensing potential, can be used to probe modified gravity theories such as f ( R ) theories of gravity and quintessence models. We also investigate models based on effective field theory, which include the constant-Ω model, and low-energy Hořava theories. Estimates of the cumulative signal-to-noise formore » detection of lensing-induced morphology changes, reaches O(10{sup 3}) for the future planned CMB polarization mission COrE{sup +}. Assuming foreground removal is possible to ℓ{sub max}=3000, we show that many modified gravity theories can be rejected with a high level of significance, making this technique comparable in power to galaxy weak lensing or redshift surveys. These topological estimators are also useful in distinguishing lensing from other scattering secondaries at the level of the four-point function or trispectrum. Examples include the kinetic Sunyaev-Zel'dovich (kSZ) effect which shares, with lensing, a lack of spectral distortion. We also discuss the complication of foreground contamination from unsubtracted point sources.« less

  7. Economic incentives and diagnostic coding in a public health care system.

    PubMed

    Anthun, Kjartan Sarheim; Bjørngaard, Johan Håkon; Magnussen, Jon

    2017-03-01

    We analysed the association between economic incentives and diagnostic coding practice in the Norwegian public health care system. Data included 3,180,578 hospital discharges in Norway covering the period 1999-2008. For reimbursement purposes, all discharges are grouped in diagnosis-related groups (DRGs). We examined pairs of DRGs where the addition of one or more specific diagnoses places the patient in a complicated rather than an uncomplicated group, yielding higher reimbursement. The economic incentive was measured as the potential gain in income by coding a patient as complicated, and we analysed the association between this gain and the share of complicated discharges within the DRG pairs. Using multilevel linear regression modelling, we estimated both differences between hospitals for each DRG pair and changes within hospitals for each DRG pair over time. Over the whole period, a one-DRG-point difference in price was associated with an increased share of complicated discharges of 14.2 (95 % confidence interval [CI] 11.2-17.2) percentage points. However, a one-DRG-point change in prices between years was only associated with a 0.4 (95 % CI [Formula: see text] to 1.8) percentage point change of discharges into the most complicated diagnostic category. Although there was a strong increase in complicated discharges over time, this was not as closely related to price changes as expected.

  8. Longitudinal Study of the Transition From Healthy Aging to Alzheimer Disease

    PubMed Central

    Johnson, David K.; Storandt, Martha; Morris, John C.; Galvin, James E.

    2009-01-01

    Background Detection of the earliest cognitive changes signifying Alzheimer disease is difficult. Objective To model the cognitive decline in preclinical Alzheimer disease. Design Longitudinal archival study comparing individuals who became demented during follow-up and people who remained nondemented on each of 4 cognitive factors: global, verbal memory, visuospatial, and working memory. Setting Alzheimer Disease Research Center, Washington University School of Medicine, St Louis, Missouri. Participants One hundred thirty-four individuals who became demented during follow-up and 310 who remained nondemented. Main Outcome Measures Inflection point in longitudinal cognitive performance. Results The best-fitting model for each of the 4 factors in the stable group was linear, with a very slight downward trend on all but the Visuospatial factor. In contrast, a piecewise model with accelerated slope after a sharp inflection point provided the best fit for the group that progressed. The optimal inflection point for all 4 factors was prior to diagnosis of dementia: Global, 2 years; Verbal and Working Memory, 1 year; and Visuospatial, 3 years. These results were also obtained when data were limited to the subset (n=44) with autopsy-confirmed Alzheimer disease. Conclusions There is a sharp inflection point followed by accelerating decline in multiple domains of cognition, not just memory, in the preclinical period in Alzheimer disease when there is insufficient cognitive decline to warrant clinical diagnosis using conventional criteria. Early change was seen in tests of visuospatial ability, most of which were speeded. Research into early detection of cognitive disorders using only episodic memory tasks may not be sensitive to all of the early manifestations of disease. PMID:19822781

  9. Ecohydrology and tipping points in semiarid australian rangelands

    NASA Astrophysics Data System (ADS)

    Saco, P. M.; Azadi, S.; Moreno de las Heras, M.; Willgoose, G. R.

    2017-12-01

    Semiarid landscapes are often characterised by a spatially heterogeneous vegetation cover forming mosaics of patches with dense vegetation within bare soil. This patchy vegetation cover, which is linked to the healthy function of these ecosystems, is sensitive to human disturbances that can lead to degradation. Previous work suggests that vegetation loss below a critical value can lead to a sudden decrease in landscape functionality following threshold behaviour. The decrease in vegetation cover is linked to erosion and substantial water losses by increasing landscape hydrological connectivity. We study these interactions and the possible existence of tipping points in the Mulga land bioregion, by combining remote sensing observations and results from an eco-geomorphologic model to investigate changes in ecosystem connectivity and the existence of threshold behaviour. More than 30 sites were selected along a precipitation gradient spanning a range from approximately 250 to 500 mm annual rainfall. The analysis of vegetation patterns is derived from high resolution remote sensing images (IKONOS, QuickBird, Pleiades) and MODIS NDVI, which combined with local precipitation data is used to compute rainfall use efficiency to assess the ecosystem function. A critical tipping point associated to loss of vegetation cover appears in the sites with lower annual precipitation. We found that this tipping point behaviour decreases for sites with higher rainfall. We use the model to investigate the relation between structural and functional connectivity and the emergence of threshold behaviour for selected plots along this precipitation gradient. Both observations and modelling results suggest that sites with higher rainfall are more resilient to changes in surface connectivity. The implications for ecosystem resilience and land management are discussed

  10. Reply to Comment by Laprise on 'the Added Value to Global Model Projections of Climate Change by Dynamical Downscaling: a Case Study over the Continental U.S. Using the GISS-ModelE2 and WRF Models'

    NASA Technical Reports Server (NTRS)

    Shindell, Drew Todd; Racherla, Pavan; Milly, George Peter

    2014-01-01

    In his comment, Laprise raises several points that we agree merit consideration. His primary critique is that our study [Racherla et al., 2012] tested the ability of the WRF regional climate model to reproduce historical temperature and precipitation change relative to the driving global climate model (GCM) using only a single simulation rather than an ensemble. He asserts that the observed changes are smaller than the internal variability in the climate system (i.e., not statistically significant) and that thus a single simulation should not necessarily be able to capture the observations. Laprise points out that the statistical signal is reduced for a multi-decadal trend such as the one we analyzed in comparison with mean climatology and cites two studies showing that for particular climate parameters it can take any years for a signal to be discerned over internal variability. He states that The results of theexperiment as designed were strongly influenced by the presence of internal variability and sampling errors,which masked the rather small climate changes that may have occurred as a consequence of changes inforcing during the period considered. While Laprise discusses statistics in general terms at some length, for the actual climate trends examined in our study, he offers no evidence that the forced signal was smallcompared with internal variability. The two studies he cites [de Ela et al., 2013; Maraun, 2013] do not provide convincing evidence as they concern climate variables averaged over different times and areas. One in fact examines extreme precipitation events, which by definition are rare and thus have a lower significance level. We accept the general point that it is important to consider internal variability, and as noted in our paper we agree that an ensemble of simulations is in principle an optimal, though computationally expensive, approach. While we did not present the statistical significance of the observations in our original paper, we have now evaluated those for the regional temperature trends used in our study to evaluate the added value of WRF and thus can analyze data as to the magnitude of the trends with respect to internal variability.

  11. Calculation of the temporal gravity variation from spatially variable water storage change in soils and aquifers

    NASA Astrophysics Data System (ADS)

    Leirião, Sílvia; He, Xin; Christiansen, Lars; Andersen, Ole B.; Bauer-Gottwein, Peter

    2009-02-01

    SummaryTotal water storage change in the subsurface is a key component of the global, regional and local water balances. It is partly responsible for temporal variations of the earth's gravity field in the micro-Gal (1 μGal = 10 -8 m s -2) range. Measurements of temporal gravity variations can thus be used to determine the water storage change in the hydrological system. A numerical method for the calculation of temporal gravity changes from the output of hydrological models is developed. Gravity changes due to incremental prismatic mass storage in the hydrological model cells are determined to give an accurate 3D gravity effect. The method is implemented in MATLAB and can be used jointly with any hydrological simulation tool. The method is composed of three components: the prism formula, the MacMillan formula and the point-mass approximation. With increasing normalized distance between the storage prism and the measurement location the algorithm switches first from the prism equation to the MacMillan formula and finally to the simple point-mass approximation. The method was used to calculate the gravity signal produced by an aquifer pump test. Results are in excellent agreement with the direct numerical integration of the Theis well solution and the semi-analytical results presented in [Damiata, B.N., and Lee, T.-C., 2006. Simulated gravitational response to hydraulic testing of unconfined aquifers. Journal of Hydrology 318, 348-359]. However, the presented method can be used to forward calculate hydrology-induced temporal variations in gravity from any hydrological model, provided earth curvature effects can be neglected. The method allows for the routine assimilation of ground-based gravity data into hydrological models.

  12. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2006-01-01

    The Spalart-Allmaras and the Menter SST kappa-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause nonuniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation kappa-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the kappa-omega model itself, and is not easily remedied.

  13. Dynamic Gate Product and Artifact Generation from System Models

    NASA Technical Reports Server (NTRS)

    Jackson, Maddalena; Delp, Christopher; Bindschadler, Duane; Sarrel, Marc; Wollaeger, Ryan; Lam, Doris

    2011-01-01

    Model Based Systems Engineering (MBSE) is gaining acceptance as a way to formalize systems engineering practice through the use of models. The traditional method of producing and managing a plethora of disjointed documents and presentations ("Power-Point Engineering") has proven both costly and limiting as a means to manage the complex and sophisticated specifications of modern space systems. We have developed a tool and method to produce sophisticated artifacts as views and by-products of integrated models, allowing us to minimize the practice of "Power-Point Engineering" from model-based projects and demonstrate the ability of MBSE to work within and supersede traditional engineering practices. This paper describes how we have created and successfully used model-based document generation techniques to extract paper artifacts from complex SysML and UML models in support of successful project reviews. Use of formal SysML and UML models for architecture and system design enables production of review documents, textual artifacts, and analyses that are consistent with one-another and require virtually no labor-intensive maintenance across small-scale design changes and multiple authors. This effort thus enables approaches that focus more on rigorous engineering work and less on "PowerPoint engineering" and production of paper-based documents or their "office-productivity" file equivalents.

  14. Apparent Transition Behavior of Widely-Used Turbulence Models

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.

    2007-01-01

    The Spalart-Allmaras and the Menter SST k-omega turbulence models are shown to have the undesirable characteristic that, for fully turbulent computations, a transition region can occur whose extent varies with grid density. Extremely fine two-dimensional grids over the front portion of an airfoil are used to demonstrate the effect. As the grid density is increased, the laminar region near the nose becomes larger. In the Spalart-Allmaras model this behavior is due to convergence to a laminar-behavior fixed point that occurs in practice when freestream turbulence is below some threshold. It is the result of a feature purposefully added to the original model in conjunction with a special trip function. This degenerate fixed point can also cause non-uniqueness regarding where transition initiates on a given grid. Consistent fully turbulent results can easily be achieved by either using a higher freestream turbulence level or by making a simple change to one of the model constants. Two-equation k-omega models, including the SST model, exhibit strong sensitivity to numerical resolution near the area where turbulence initiates. Thus, inconsistent apparent transition behavior with grid refinement in this case does not appear to stem from the presence of a degenerate fixed point. Rather, it is a fundamental property of the k-omega model itself, and is not easily remedied.

  15. How market structure drives commodity prices

    NASA Astrophysics Data System (ADS)

    Li, Bin; Wong, K. Y. Michael; Chan, Amos H. M.; So, Tsz Yan; Heimonen, Hermanni; Wei, Junyi; Saad, David

    2017-11-01

    We introduce an agent-based model, in which agents set their prices to maximize profit. At steady state the market self-organizes into three groups: excess producers, consumers and balanced agents, with prices determined by their own resource level and a couple of macroscopic parameters that emerge naturally from the analysis, akin to mean-field parameters in statistical mechanics. When resources are scarce prices rise sharply below a turning point that marks the disappearance of excess producers. To compare the model with real empirical data, we study the relationship between commodity prices and stock-to-use ratios in a range of commodities such as agricultural products and metals. By introducing an elasticity parameter to mitigate noise and long-term changes in commodities data, we confirm the trend of rising prices, provide evidence for turning points, and indicate yield points for less essential commodities.

  16. Transitions between refrigeration regions in extremely short quantum cycles

    NASA Astrophysics Data System (ADS)

    Feldmann, Tova; Kosloff, Ronnie

    2016-05-01

    The relation between the geometry of refrigeration cycles and their performance is explored. The model studied is based on a coupled spin system. Small cycle times, termed sudden refrigerators, develop coherence and inner friction. We explore the interplay between coherence and energy of the working medium employing a family of sudden cycles with decreasing cycle times. At the point of maximum coherence the cycle changes geometry. This region of cycle times is characterized by a dissipative resonance where heat is dissipated both to the hot and cold baths. We rationalize the change of geometry of the cycle as a result of a half-integer quantization which maximizes coherence. From this point on, increasing or decreasing the cycle time, eventually leads to refrigeration cycles. The transition point between refrigerators and short circuit cycles is characterized by a transition from finite to singular dynamical temperature. Extremely short cycle times reach a universal limit where all cycles types are equivalent.

  17. Complete analysis of ensemble inequivalence in the Blume-Emery-Griffiths model

    NASA Astrophysics Data System (ADS)

    Hovhannisyan, V. V.; Ananikian, N. S.; Campa, A.; Ruffo, S.

    2017-12-01

    We study inequivalence of canonical and microcanonical ensembles in the mean-field Blume-Emery-Griffiths model. This generalizes previous results obtained for the Blume-Capel model. The phase diagram strongly depends on the value of the biquadratic exchange interaction K , the additional feature present in the Blume-Emery-Griffiths model. At small values of K , as for the Blume-Capel model, lines of first- and second-order phase transitions between a ferromagnetic and a paramagnetic phase are present, separated by a tricritical point whose location is different in the two ensembles. At higher values of K the phase diagram changes substantially, with the appearance of a triple point in the canonical ensemble, which does not find any correspondence in the microcanonical ensemble. Moreover, one of the first-order lines that starts from the triple point ends in a critical point, whose position in the phase diagram is different in the two ensembles. This line separates two paramagnetic phases characterized by a different value of the quadrupole moment. These features were not previously studied for other models and substantially enrich the landscape of ensemble inequivalence, identifying new aspects that had been discussed in a classification of phase transitions based on singularity theory. Finally, we discuss ergodicity breaking, which is highlighted by the presence of gaps in the accessible values of magnetization at low energies: it also displays new interesting patterns that are not present in the Blume-Capel model.

  18. Using physiologically based pharmacokinetic modeling and benchmark dose methods to derive an occupational exposure limit for N-methylpyrrolidone.

    PubMed

    Poet, T S; Schlosser, P M; Rodriguez, C E; Parod, R J; Rodwell, D E; Kirman, C R

    2016-04-01

    The developmental effects of NMP are well studied in Sprague-Dawley rats following oral, inhalation, and dermal routes of exposure. Short-term and chronic occupational exposure limit (OEL) values were derived using an updated physiologically based pharmacokinetic (PBPK) model for NMP, along with benchmark dose modeling. Two suitable developmental endpoints were evaluated for human health risk assessment: (1) for acute exposures, the increased incidence of skeletal malformations, an effect noted only at oral doses that were toxic to the dam and fetus; and (2) for repeated exposures to NMP, changes in fetal/pup body weight. Where possible, data from multiple studies were pooled to increase the predictive power of the dose-response data sets. For the purposes of internal dose estimation, the window of susceptibility was estimated for each endpoint, and was used in the dose-response modeling. A point of departure value of 390 mg/L (in terms of peak NMP in blood) was calculated for skeletal malformations based on pooled data from oral and inhalation studies. Acceptable dose-response model fits were not obtained using the pooled data for fetal/pup body weight changes. These data sets were also assessed individually, from which the geometric mean value obtained from the inhalation studies (470 mg*hr/L), was used to derive the chronic OEL. A PBPK model for NMP in humans was used to calculate human equivalent concentrations corresponding to the internal dose point of departure values. Application of a net uncertainty factor of 20-21, which incorporates data-derived extrapolation factors, to the point of departure values yields short-term and chronic occupational exposure limit values of 86 and 24 ppm, respectively. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Understanding Data Needs for Vulnerability Assessment and Decision Making to Manage Vulnerability of Department of Defense Installations to Climate Change

    DTIC Science & Technology

    2016-02-01

    frequency...................................................................... 81 Figure 46. Return period analysis at Sewell’s Point (across the mouth ...Return period analysis at Sewell’s Point (across the mouth of the James River from both Langley AFB and Fort Eustis with sea level rise projections...a digital elevation model as an input and calculates the water level necessary to fill each grid cell. In other words , the fill tool takes into

  20. Uncertainty issues in forest monitoring: All you wanted to know about uncertainties and never dared to ask

    Treesearch

    Michael Köhl; Charles Scott; Daniel Plugge

    2013-01-01

    Uncertainties are a composite of errors arising from observations and the appropriateness of models. An error budget approach can be used to identify and accumulate the sources of errors to estimate change in emissions between two points in time. Various forest monitoring approaches can be used to estimate the changes in emissions due to deforestation and forest...

  1. Global Warming, Africa and National Security

    DTIC Science & Technology

    2008-01-15

    African populations. This includes awareness from a global perspective in line with The Army Strategy for the Environment, the UN’s Intergovernmental...2 attention. At the time, computer models did not indicate a significant issue with global warming suggesting only a modest increase of 2°C9...projected climate changes. Current Science The science surrounding climate change and global warming was, until recently, a point of

  2. Study of the composition, structure, and optical properties of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket films erbium doped from the Er(pd){sub 3} complex compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kudoyarova, V. Kh., E-mail: kudoyarova@mail.ioffe.ru; Tolmachev, V. A.; Gushchina, E. V.

    2013-03-15

    Rutherford backscattering, IR spectroscopy, ellipsometry, and atomic-force microscopy are used to perform an integrated study of the composition, structure and optical properties of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films. The technique employed to obtain the a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films includes the high-frequency decomposition of a mixture of gases, (SiH{sub 4}){sub a} + (CH{sub 4}){sub b}, and the simultaneous thermal evaporation of a complex compound, Er(pd){sub 3}. It is demonstrated that raising the amount of CH{sub 4} in the gas mixture results in an increase in the carbon content of the films under study andmore » an increase in the optical gap E{sub g}{sup opt} from 1.75 to 2.2 eV. Changes in the composition of a-Si{sub 1-x}C{sub x}:H Left-Pointing-Angle-Bracket Er Right-Pointing-Angle-Bracket amorphous films, accompanied, in turn, by changes in the optical constants, are observed in the IR spectra. The ellipsometric spectra obtained are analyzed in terms of multiple-parameter models. The conclusion is made on the basis of this analysis that the experimental and calculated spectra coincide well when variation in the composition of the amorphous films with that of the gas mixture is taken into account. The existence of a thin (6-8 nm) silicon-oxide layer on the surface of the films under study and the validity of using the double-layer model in ellipsometric calculations is confirmed by the results of structural analyses by atomic-force microscopy.« less

  3. Some unexamined aspects of analysis of covariance in pretest-posttest studies.

    PubMed

    Ganju, Jitendra

    2004-09-01

    The use of an analysis of covariance (ANCOVA) model in a pretest-posttest setting deserves to be studied separately from its use in other (non-pretest-posttest) settings. For pretest-posttest studies, the following points are made in this article: (a) If the familiar change from baseline model accurately describes the data-generating mechanism for a randomized study then it is impossible for unequal slopes to exist. Conversely, if unequal slopes exist, then it implies that the change from baseline model as a data-generating mechanism is inappropriate. An alternative data-generating model should be identified and the validity of the ANCOVA model should be demonstrated. (b) Under the usual assumptions of equal pretest and posttest within-subject error variances, the ratio of the standard error of a treatment contrast from a change from baseline analysis to that from ANCOVA is less than 2(1)/(2). (c) For an observational study it is possible for unequal slopes to exist even if the change from baseline model describes the data-generating mechanism. (d) Adjusting for the pretest variable in observational studies may actually introduce bias where none previously existed.

  4. The eHealth Behavior Management Model: a stage-based approach to behavior change and management.

    PubMed

    Bensley, Robert J; Mercer, Nelda; Brusk, John J; Underhile, Ric; Rivas, Jason; Anderson, Judith; Kelleher, Deanne; Lupella, Melissa; de Jager, André C

    2004-10-01

    Although the Internet has become an important avenue for disseminating health information, theory-driven strategies for aiding individuals in changing or managing health behaviors are lacking. The eHealth Behavior Management Model combines the Transtheoretical Model, the behavioral intent aspect of the Theory of Planned Behavior, and persuasive communication to assist individuals in negotiating the Web toward stage-specific information. It is here - at the point of stage-specific information - that behavioral intent in moving toward more active stages of change occurs. The eHealth Behavior Management Model is applied in three demonstration projects that focus on behavior management issues: parent-child nutrition education among participants in the U.S. Department of Agriculture Special Supplemental Nutrition Program for Women, Infants and Children; asthma management among university staff and students; and human immunodeficiency virus prevention among South African women. Preliminary results have found the eHealth Behavior Management Model to be promising as a model for Internet-based behavior change programming. Further application and evaluation among other behavior and disease management issues are needed.

  5. Quantification of soil losses from tourist trails - use of Digital Elevation Models

    NASA Astrophysics Data System (ADS)

    Tomczyk, Aleksandra

    2010-05-01

    Tourism impacts in protected mountain areas are one of the main concerns for land managers. Impact to environment is most visible at locations of highly concentrated activities like tourist trails, campsites etc. The main indicators of the tourist trail degradation are: vegetation loss (trampling of vegetation cover), change of vegetation type and composition, widening of the trails, muddiness and soil erosion. The last one is especially significant, since it can cause serious transformation of the land surface. Such undesirable changes cannot be repaired without high-cost management activities, and, in some cases they can made the trails difficult and unsafe to use. Scientific understanding of soil erosion related to human impact can be useful for more effective management of the natural protected areas. The aim of this study was to use of digital elevation models (DEMs) to precisely quantify of soil losses from tourist trails. In the study precise elevation data were gathered in several test fields of 4 by 5 m spatial dimension. Measurements were taken in 13 test fields, located in two protected natural areas in south Poland: Gorce National Park and Popradzki Landscape Park. The measuring places were located on trails characterized by different slope, type of vegetation and type of use. Each test field was established by four special marks, firmly dug into the ground. Elevation data were measured with the electronic total station. Irregular elevation points were surveying with essential elements of surrounding terrain surface being included. Moreover, surveys in fixed profile lines were done. For each test field a set of 30 measurements in control points has been collected and these data provide the base for verification of digital elevation models. Average density of the surveying was 70 points per square meter (1000 - 1500 elevation points per each test fields). Surveys in each test field were carried out in August and September of 2008, June 2009 and August 2009. Based on the gathered elevation data, several digital elevation models with spatial resolution 5 x 5 cm and 1 x 1 cm were generated. Subtraction of the DEMs from subsequent time periods gives the amount of material which was transported within the test fields and shows the spatial distribution of earth-surface changes. Spatial and temporal analysis of transformations of trail surfaces revealed that the changes are not evenly distributed neither in time nor space. In most of the test fields only the small portion of trail were subjected to distinct (more than 1 cm per year) erosion or accumulation. Moreover, degree of changes between June 2009 and August 2009 (3 months) was similar to the degree of changes between August - September 2008 and June 2009 (9 months). Main factors influence patterns of erosion are slope and type of use.

  6. Terrain modeling for real-time simulation

    NASA Astrophysics Data System (ADS)

    Devarajan, Venkat; McArthur, Donald E.

    1993-10-01

    There are many applications, such as pilot training, mission rehearsal, and hardware-in-the- loop simulation, which require the generation of realistic images of terrain and man-made objects in real-time. One approach to meeting this requirement is to drape photo-texture over a planar polygon model of the terrain. The real time system then computes, for each pixel of the output image, the address in a texture map based on the intersection of the line-of-sight vector with the terrain model. High quality image generation requires that the terrain be modeled with a fine mesh of polygons while hardware costs limit the number of polygons which may be displayed for each scene. The trade-off between these conflicting requirements must be made in real-time because it depends on the changing position and orientation of the pilot's eye point or simulated sensor. The traditional approach is to develop a data base consisting of multiple levels of detail (LOD), and then selecting for display LODs as a function of range. This approach could lead to both anomalies in the displayed scene and inefficient use of resources. An approach has been developed in which the terrain is modeled with a set of nested polygons and organized as a tree with each node corresponding to a polygon. This tree is pruned to select the optimum set of nodes for each eye-point position. As the point of view moves, the visibility of some nodes drops below the limit of perception and may be deleted while new points must be added in regions near the eye point. An analytical model has been developed to determine the number of polygons required for display. This model leads to quantitative performance measures of the triangulation algorithm which is useful for optimizing system performance with a limited display capability.

  7. [Relaunching primary healthcaree].

    PubMed

    Marcolongo, Adriano; Talarico, Francesco

    2014-01-01

    The health environment today is characterized by diffuse inequalities, the emergence of chronic diseases, and the introduction of new technologies, all of which, together with other factors are leading to a healthcare system that is becoming increasingly less sustainable from a financial point of view. Primary healthcare, public health and hospitals should work together to define a comprehensive healthcare delivery model characterized by continuity of care, information and management. The proposed model of disease management, in particular of chronic diseases, must reorganize health services around the needs of citizens and the community and involve patients and their families in the disease management process, by promoting self-help groups and patient organizations that cooperate with health services. In order to put this change into effect, evidence-based medicine and evidence-based practice need to be adopted. From an organizational point of view, it will be important to change wage rules, so as to implement a new payment system based upon performance. In this new contest, physicians specialized in hygiene and public health can play an important role that includes leadership, governance and coordination. By integrating the concepts of accountability, community intervention and training, we can acquire the tools to change the current hospital-based system to a new model of primary healthcare that works together with the community to move the focus from healthcare provider to patient.

  8. Temporally-Constrained Group Sparse Learning for Longitudinal Data Analysis in Alzheimer’s Disease

    PubMed Central

    Jie, Biao; Liu, Mingxia; Liu, Jun

    2016-01-01

    Sparse learning has been widely investigated for analysis of brain images to assist the diagnosis of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, most existing sparse learning-based studies only adopt cross-sectional analysis methods, where the sparse model is learned using data from a single time-point. Actually, multiple time-points of data are often available in brain imaging applications, which can be used in some longitudinal analysis methods to better uncover the disease progression patterns. Accordingly, in this paper we propose a novel temporally-constrained group sparse learning method aiming for longitudinal analysis with multiple time-points of data. Specifically, we learn a sparse linear regression model by using the imaging data from multiple time-points, where a group regularization term is first employed to group the weights for the same brain region across different time-points together. Furthermore, to reflect the smooth changes between data derived from adjacent time-points, we incorporate two smoothness regularization terms into the objective function, i.e., one fused smoothness term which requires that the differences between two successive weight vectors from adjacent time-points should be small, and another output smoothness term which requires the differences between outputs of two successive models from adjacent time-points should also be small. We develop an efficient optimization algorithm to solve the proposed objective function. Experimental results on ADNI database demonstrate that, compared with conventional sparse learning-based methods, our proposed method can achieve improved regression performance and also help in discovering disease-related biomarkers. PMID:27093313

  9. Comparison of the effects of firocoxib, carprofen and vedaprofen in a sodium urate crystal induced synovitis model of arthritis in dogs.

    PubMed

    Hazewinkel, Herman A W; van den Brom, Walter E; Theyse, Lars F H; Pollmeier, Matthias; Hanson, Peter D

    2008-02-01

    A randomized, placebo-controlled, four-period cross-over laboratory study involving eight dogs was conducted to confirm the effective analgesic dose of firocoxib, a selective COX-2 inhibitor, in a synovitis model of arthritis. Firocoxib was compared to vedaprofen and carprofen, and the effect, defined as a change in weight bearing measured via peak ground reaction, was evaluated at treatment dose levels. A lameness score on a five point scale was also assigned to the affected limb. Peak vertical ground reaction force was considered to be the most relevant measurement in this study. The firocoxib treatment group performed significantly better than placebo at the 3 h post-treatment time point and significantly better than placebo and carprofen at the 7 h post-treatment time point. Improvement in lameness score was also significantly better in the dogs treated with firocoxib than placebo and carprofen at both the 3 and 7 h post-treatment time points.

  10. Progression of MDS-UPDRS Scores Over Five Years in De Novo Parkinson Disease from the Parkinson's Progression Markers Initiative Cohort.

    PubMed

    Holden, Samantha K; Finseth, Taylor; Sillau, Stefan H; Berman, Brian D

    2018-01-01

    The Movement Disorder Society Unified Parkinson Disease Rating Scale (MDS-UDPRS) is a commonly used tool to measure Parkinson disease (PD) progression. Longitudinal changes in MDS-UPDRS scores in de novo PD have not been established. Determine progression rates of MDS-UPDRS scores in de novo PD. 362 participants from the Parkinson's Progression Markers Initiative, a multicenter longitudinal cohort study of de novo PD, were included. Longitudinal progression of MDS-UPDRS total and subscale scores were modeled using mixed model regression. MDS-UPDRS scores increased in a linear fashion over five years in de novo PD. MDS-UPDRS total score increased an estimated 4.0 points/year, Part I 0.25 points/year, Part II 1.0 points/year, and Part III 2.4 points/year. The expected average progression of MDS-UPDRS scores in de novo PD from this study can assist in clinical monitoring and provide comparative data for detection of disease modification in treatment trials.

  11. Relations of Transtheoretical Model Stage, Self-Efficacy, and Voluntary Physical Activity in African American Preadolescents

    ERIC Educational Resources Information Center

    Annesi, James J.; Faigenbaum, Avery D.; Westcott, Wayne L.

    2010-01-01

    The transtheoretical model (TTM; Prochaska, DiClemente, & Norcross, 1992) suggests that, at any point, an individual is in one of five stages-of-change related to adopting a behavior. People sequentially advance in stage but may also maintain or even regress, based on personal and environmental factors (Nigg, 2005). A classic study published in…

  12. Volatility spillover between crude oil and exchange rate: A copula-CARR approach

    NASA Astrophysics Data System (ADS)

    Pu, Y. J.; Guo, M. Y.

    2017-11-01

    Oil provides a powerful impetus for modern society's production and life. The influences of oil price fluctuations on socio-economic development are obvious, and it draws more attention from scholars. However, the distribution of oil is highly centralized, which leads to the vast majority of oil trading through foreign trade. As a result, exchange rate plays an important role in the oil business. Study on the relationship between exchange rate and crude oil gradually becomes a hot research topic in recent years. In this paper, we use copula and CARR model to study correlation structure and relationship between crude oil price and exchange rate. We establish CARR models as marginal models and use five copulas which are Gaussian Copula, Student-t Copula, Gumbel Copula, Clayton Copula and Frank Copula to study the correlation structure between NYMEX crude oil price range and U. S. Dollar Index range. Furthermore, we use Copula-CARR model with structural breaks to detect the change points in the correlation structure between NYMEX crude oil price range and U. S. Dollar Index range. Empirical results show that the change points are closely related to the actual economic events.

  13. An energy- and depth-dependent model for x-ray imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallas, Brandon D.; Boswell, Jonathan S.; Badano, Aldo

    In this paper, we model an x-ray imaging system, paying special attention to the energy- and depth-dependent characteristics of the inputs and interactions: x rays are polychromatic, interaction depth and conversion to optical photons is energy-dependent, optical scattering and the collection efficiency depend on the depth of interaction. The model we construct is a random function of the point process that begins with the distribution of x rays incident on the phosphor and ends with optical photons being detected by the active area of detector pixels to form an image. We show how the point-process representation can be used tomore » calculate the characteristic statistics of the model. We then simulate a Gd{sub 2}O{sub 2}S:Tb phosphor, estimate its characteristic statistics, and proceed with a signal-detection experiment to investigate the impact of the pixel fill factor on detecting spherical calcifications (the signal). The two extremes possible from this experiment are that SNR{sup 2} does not change with fill factor or changes in proportion to fill factor. In our results, the impact of fill factor is between these extremes, and depends on the diameter of the signal.« less

  14. AI and simulation: What can they learn from each other

    NASA Technical Reports Server (NTRS)

    Colombano, Silvano P.

    1988-01-01

    Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.

  15. Bifurcations: Focal Points of Particle Adhesion in Microvascular Networks

    PubMed Central

    Prabhakarpandian, Balabhaskar; Wang, Yi; Rea-Ramsey, Angela; Sundaram, Shivshankar; Kiani, Mohammad F.; Pant, Kapil

    2011-01-01

    Objective Particle adhesion in vivo is dependent on microcirculation environment which features unique anatomical (bifurcations, tortuosity, cross-sectional changes) and physiological (complex hemodynamics) characteristics. The mechanisms behind these complex phenomena are not well understood. In this study, we used a recently developed in vitro model of microvascular networks, called Synthetic Microvascular Network, for characterizing particle adhesion patterns in the microcirculation. Methods Synthetic microvascular networks were fabricated using soft lithography processes followed by particle adhesion studies using avidin and biotin-conjugated microspheres. Particle adhesion patterns were subsequently analyzed using CFD based modeling. Results Experimental and modeling studies highlighted the complex and heterogeneous fluid flow patterns encountered by particles in microvascular networks resulting in significantly higher propensity of adhesion (>1.5X) near bifurcations compared to the branches of the microvascular networks. Conclusion Bifurcations are the focal points of particle adhesion in microvascular networks. Changing flow patterns and morphology near bifurcations are the primary factors controlling the preferential adhesion of functionalized particles in microvascular networks. Synthetic microvascular networks provide an in vitro framework for understanding particle adhesion. PMID:21418388

  16. Evaluating the Role of Subacromial Impingement in Rotator Cuff tendinopathy: Development and Analysis of a Novel Murine Model.

    PubMed

    Cong, Guang-Ting; Lebaschi, Amir H; Camp, Christopher L; Carballo, Camila B; Nakagawa, Yusuke; Wada, Susumu; Deng, Xiang-Hua; Rodeo, Scott A

    2018-04-23

    Subacromial impingement of the rotator cuff is understood as a contributing factor in the development of rotator cuff tendinopathy. However, changes that occur in the impinged tendon are poorly understood and warrant further study. To enable further study of rotator cuff tendinopathy, we performed a controlled laboratory study to determine feasibility and baseline characteristics of a new murine model for subacromial impingement. This model involves surgically inserting a microvascular clip into the subacromial space in adult C57Bl/6 mice. Along with a sham surgery arm, 90 study animals were distributed among time point groups for sacrifice up to 6 weeks. All animals underwent bilateral surgery (total N = 180). Biomechanical, histologic, and molecular analyses were performed to identify and quantify the progression of changes in the supraspinatus tendon. Decreases in failure force and stiffness were found in impinged tendon specimens compared to sham and no-surgery controls at all study time points. Semi-quantitative scoring of histologic specimens demonstrated significant, persistent tendinopathic changes over 6 weeks. Quantitative real-time polymerase chain reaction analysis of impinged tendon specimens demonstrated persistently increased expression of genes related to matrix remodeling, inflammation, and tendon development. Overall, this novel murine subacromial impingement model creates changes consistent with acute tendonitis, which may mimic the early stages of rotator cuff tendinopathy. This article is protected by copyright. All rights reserved Clinical Significance: A robust, simple, and reproducible animal model of rotator cuff tendinopathy is a valuable research tool to allow further studies of cellular and molecular mechanisms and evaluation of therapeutic interventions in rotator cuff tendinopathy. This article is protected by copyright. All rights reserved.

  17. Using the Community Readiness Model to Examine the Built and Social Environment: A Case Study of the High Point Neighborhood, Seattle, Washington, 2000–2010

    PubMed Central

    Sharify, Denise Tung; Blake, Bonita; Phillips, Tom; Whitten, Kathleen

    2014-01-01

    Background Residents of many cities lack affordable, quality housing. Economically disadvantaged neighborhoods often have high rates of poverty and crime, few institutions that enhance the quality of its residents’ lives, and unsafe environments for walking and other physical activity. Deteriorating housing contributes to asthma-related illness. We describe the redevelopment of High Point, a West Seattle neighborhood, to improve its built environment, increase neighborhood physical activity, and reduce indoor asthma triggers. Community Context High Point is one of Seattle’s most demographically diverse neighborhoods. Prior to redevelopment, it had a distressed infrastructure, rising crime rates, and indoor environments that increased asthma-related illness in children and adolescents. High Point residents and partners developed and implemented a comprehensive redevelopment plan to create a sustainable built environment to increase outdoor physical activity and improve indoor environments. Methods We conducted a retrospective analysis of the High Point redevelopment, organized by the different stages of change in the Community Readiness Model. We also examined the multisector partnerships among government and community groups that contributed to the success of the High Point project. Outcome Overall quality of life for residents improved as a result of neighborhood redevelopment. Physical activity increased, residents reported fewer days of poor physical or mental health, and social connectedness between neighbors grew. Asthma-friendly homes significantly decreased asthma-related illness among children and adolescents. Interpretation Providing affordable, quality housing to low-income families improved individual and neighborhood quality of life. Efforts to create social change and improve the health outcomes for entire populations are more effective when multiple organizations work together to improve neighborhood health. PMID:25376016

  18. Using the community readiness model to examine the built and social environment: a case study of the High Point neighborhood, Seattle, Washington, 2000-2010.

    PubMed

    Buckner-Brown, Joyce; Sharify, Denise Tung; Blake, Bonita; Phillips, Tom; Whitten, Kathleen

    2014-11-06

    Residents of many cities lack affordable, quality housing. Economically disadvantaged neighborhoods often have high rates of poverty and crime, few institutions that enhance the quality of its residents' lives, and unsafe environments for walking and other physical activity. Deteriorating housing contributes to asthma-related illness. We describe the redevelopment of High Point, a West Seattle neighborhood, to improve its built environment, increase neighborhood physical activity, and reduce indoor asthma triggers. High Point is one of Seattle's most demographically diverse neighborhoods. Prior to redevelopment, it had a distressed infrastructure, rising crime rates, and indoor environments that increased asthma-related illness in children and adolescents. High Point residents and partners developed and implemented a comprehensive redevelopment plan to create a sustainable built environment to increase outdoor physical activity and improve indoor environments. We conducted a retrospective analysis of the High Point redevelopment, organized by the different stages of change in the Community Readiness Model. We also examined the multisector partnerships among government and community groups that contributed to the success of the High Point project. Overall quality of life for residents improved as a result of neighborhood redevelopment. Physical activity increased, residents reported fewer days of poor physical or mental health, and social connectedness between neighbors grew. Asthma-friendly homes significantly decreased asthma-related illness among children and adolescents. Providing affordable, quality housing to low-income families improved individual and neighborhood quality of life. Efforts to create social change and improve the health outcomes for entire populations are more effective when multiple organizations work together to improve neighborhood health.

  19. Department of Defense Human Factors Engineering Technical Advisory Group Minutes of the Meeting, (15th), Held at San Diego, California, on 5-7 November 1985

    DTIC Science & Technology

    1985-11-01

    the group to be alert to changes in goals, noting that if the model is not sensitive to goal changes , it will lack validity. Mr. Hartzell announced...This increased emphasis on the soldier-machine interface has not been a sudden change . Instead it has been a gradual one coincident with and...point alone in affecting both design changes and operational doctrine for the system. Analysis of these data should first compare achieved

  20. 46 CFR 401.428 - Basic rates and charges for carrying a U.S. pilot beyond normal change point or for boarding at...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... normal change point or for boarding at other than the normal boarding point. 401.428 Section 401.428... carrying a U.S. pilot beyond normal change point or for boarding at other than the normal boarding point. If a U.S. pilot is carried beyond the normal change point or is unable to board at the normal...

  1. TH-AB-202-08: A Robust Real-Time Surface Reconstruction Method On Point Clouds Captured From a 3D Surface Photogrammetry System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, W; Sawant, A; Ruan, D

    2016-06-15

    Purpose: Surface photogrammetry (e.g. VisionRT, C-Rad) provides a noninvasive way to obtain high-frequency measurement for patient motion monitoring in radiotherapy. This work aims to develop a real-time surface reconstruction method on the acquired point clouds, whose acquisitions are subject to noise and missing measurements. In contrast to existing surface reconstruction methods that are usually computationally expensive, the proposed method reconstructs continuous surfaces with comparable accuracy in real-time. Methods: The key idea in our method is to solve and propagate a sparse linear relationship from the point cloud (measurement) manifold to the surface (reconstruction) manifold, taking advantage of the similarity inmore » local geometric topology in both manifolds. With consistent point cloud acquisition, we propose a sparse regression (SR) model to directly approximate the target point cloud as a sparse linear combination from the training set, building the point correspondences by the iterative closest point (ICP) method. To accommodate changing noise levels and/or presence of inconsistent occlusions, we further propose a modified sparse regression (MSR) model to account for the large and sparse error built by ICP, with a Laplacian prior. We evaluated our method on both clinical acquired point clouds under consistent conditions and simulated point clouds with inconsistent occlusions. The reconstruction accuracy was evaluated w.r.t. root-mean-squared-error, by comparing the reconstructed surfaces against those from the variational reconstruction method. Results: On clinical point clouds, both the SR and MSR models achieved sub-millimeter accuracy, with mean reconstruction time reduced from 82.23 seconds to 0.52 seconds and 0.94 seconds, respectively. On simulated point cloud with inconsistent occlusions, the MSR model has demonstrated its advantage in achieving consistent performance despite the introduced occlusions. Conclusion: We have developed a real-time and robust surface reconstruction method on point clouds acquired by photogrammetry systems. It serves an important enabling step for real-time motion tracking in radiotherapy. This work is supported in part by NIH grant R01 CA169102-02.« less

  2. Common dolphins in the Alboran Sea: Facing a reduction in their suitable habitat due to an increase in Sea surface temperature

    NASA Astrophysics Data System (ADS)

    Cañadas, A.; Vázquez, J. A.

    2017-07-01

    The short-beaked common dolphin Mediterranean subpopulation appears to have suffered a steep decline over recent decades and was listed in 2003 as 'Endangered' in the IUCN Red List of Threatened Species. The Alboran Sea is the last region in the Mediterranean where it is still abundant. In this study, we relate features of this species' ecology to climate change, focusing on distribution and density. This work used a two decades-long dataset on the common dolphin in the Alboran Sea and a time series of environmental changes. Once established, these relationships were used in conjunction with some simulated scenarios of environmental change to predict the potential effects of further change on these species over the next 100 years. Two approaches were used: 1) projection from a regression line from local variation, and 2) a HadCM3 climate model with time-varying anthropogenic effects. Generalized Additive Models were used to model the relationship between density of the animals with SST and other environmental covariates. Results from both approaches were very similar. The predictions of density from the regression line fell within the ranges from the HadCM3 climate model, the first being based on local and locally, point to point, differentiated information, which lead us to consider the first approach as the best for this area. At the small spatial scale of the Alboran Sea and Gulf of Vera, an increase in SST will potentially yield a reduction in suitable habitat for common dolphins, with a progressive reduction in density from east to west.

  3. On the reliability of the holographic method for measurement of soft tissue modifications during periodontal therapy

    NASA Astrophysics Data System (ADS)

    Stratul, Stefan-Ioan; Sinescu, Cosmin; Negrutiu, Meda; de Sabata, Aldo; Rominu, Mihai; Ogodescu, Alexandru; Rusu, Darian

    2014-01-01

    Holographic evaluations count among recent measurement tools in orthodontics and prosthodontics. This research introduces holography as an assessment method of 3D variations of gingival retractions. The retraction of gingiva on frontal regions of 5 patients with periodontitis was measured in six points and was evaluated by holographic methods using a He-Ne laser device (1mV, Superlum, Carrigtwohill, Ireland) inside a holographic bank of 200 x 100cm. Impressions were taken during first visit and cast models were manufactured. Six months after the end of periodontal treatment, clinical measurements were repeated and the hologram of the first model was superimposed on a final model cast, by using reference points, while maintaining the optical geometric perimeters. The retractions were evaluated 3D in every point using a dedicated software (Sigma Scan Pro,Systat Software, SanJose, CA, USA). The Wilcoxon test was used to compare the mean recession changes between baseline and six months after treatment, and between values in vivo and the values on hologram. No statistically significant differences between values in vivo and on the hologram were found. In conclusion, holography provides a valuable tool for assessing gingival retractions on virtual models. The data can be stored, reproduced, transmitted and compared at a later time point with accuracy.

  4. Is Linear Displacement Information Or Angular Displacement Information Used During The Adaptation of Pointing Responses To An Optically Shifted Image?

    NASA Technical Reports Server (NTRS)

    Bautista, Abigail B.

    1994-01-01

    Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).

  5. Longitudinal validity and responsiveness of the Food Allergy Quality of Life Questionnaire - Parent Form in children 0-12 years following positive and negative food challenges.

    PubMed

    DunnGalvin, A; Cullinane, C; Daly, D A; Flokstra-de Blok, B M J; Dubois, A E J; Hourihane, J O'B

    2010-03-01

    There are no published studies of longitudinal health-related quality of life (HRQL) assessments of food-allergic children using a disease-specific measure. This study assessed the longitudinal measurement properties of the Food Allergy Quality of Life Questionnaire - Parent Form (FAQLQ-PF) in a sample of children undergoing food challenge. Parents of children 0-12 years completed the FAQLQ-PF and the Food Allergy Independent Measure (FAIM) pre-challenge and at 2 and 6 months post food challenge. In order to evaluate longitudinal validity, differences between Group A (positive challenge) and Group B (negative challenge) were expected over time. We computed correlation coefficients between change scores in the FAQLQ-PF and change scores in the FAIM. To determine the minimally important difference (MID), we used distributional criterion and effect size approaches. A logistic regression model profiled those children falling below this point. Eighty-two children underwent a challenge (42 positive; 40 negative). Domains and total score improved significantly at pos-challenge time-points for both groups (all P<0.05). Sensitivity was demonstrated by significant differences between positive and negative groups at 6 months [F(2, 59)=6.221, P<0.003] and by differing improvement on relevant subscales (P<0.05). MID was 0.45 on a seven-point response scale. Poorer quality of life at baseline increased the odds by over 2.0 of no improvement in HRQL scores 6-month time-point. General maternal health (OR 1.252), number of foods avoided (OR 1.369) and children >9 years (OR 1.173) were also predictors. The model correctly identified 84% of cases below MID. The FAQLQ-PF is sensitive to change, and has excellent longitudinal reliability and validity in a food-allergic patient population. The standard error of measurement value of 0.5 points as a threshold for meaningful change in HRQL questionnaires was confirmed. The FAQLQ-PF may be used to identify problems in children, to assess the effectiveness of clinical trials or interventions, and to guide the development of regulatory policies.

  6. Temperature threshold models for benthic macroinvertebrates in Idaho wadeable streams and neighboring ecoregions.

    PubMed

    Richards, David C; Lester, Gary; Pfeiffer, John; Pappani, Jason

    2018-02-07

    Water temperatures are warming throughout the world including the Pacific Northwest, USA. Benthic macroinvertebrates are one of the most important and widely used indicators of freshwater impairment; however, their response to increased water temperatures and their use for monitoring water temperature impairment has been hindered by lack of knowledge of temperature occurrences, threshold change points, or indicator taxa. We present new analysis of a large macroinvertebrate database provided by Idaho Department of Environmental Quality from wadeable streams in Idaho that is to be used in conjunction with our previous analyses. This new analysis provides threshold change points for over 400 taxa along an increasing temperature gradient and provides a list of statistically important indicator taxa. The macroinvertebrate assemblage temperature change point for the taxa that decreased with increased temperatures was determined to be about 20.5 °C and for the taxa assemblage that increased with increased temperatures was about 11.5 °C. Results of this new analysis combined with our previous analysis will also be useful for others in neighboring regions where these taxa occur.

  7. Estimating minimally important difference (MID) in PROMIS pediatric measures using the scale-judgment method.

    PubMed

    Thissen, David; Liu, Yang; Magnus, Brooke; Quinn, Hally; Gipson, Debbie S; Dampier, Carlton; Huang, I-Chan; Hinds, Pamela S; Selewski, David T; Reeve, Bryce B; Gross, Heather E; DeWalt, Darren A

    2016-01-01

    To assess minimally important differences (MIDs) for several pediatric self-report item banks from the National Institutes of Health Patient-Reported Outcomes Measurement Information System(®) (PROMIS(®)). We presented vignettes comprising sets of two completed PROMIS questionnaires and asked judges to declare whether the individual completing those questionnaires had an important change or not. We enrolled judges (including adolescents, parents, and clinicians) who responded to 24 vignettes (six for each domain of depression, pain interference, fatigue, and mobility). We used item response theory to model responses to the vignettes across different judges and estimated MID as the point at which 50 % of the judges would declare an important change. We enrolled 246 judges (78 adolescents, 85 parents, and 83 clinicians). The MID estimated with clinician data was about 2 points on the PROMIS T-score scale, and the MID estimated with adolescent and parent data was about 3 points on that same scale. The MIDs enhance the value of PROMIS pediatric measures in clinical research studies to identify meaningful changes in health status over time.

  8. Predicting Condom Use Using the Information-Motivation-Behavioral Skills (IMB) Model: A Multivariate Latent Growth Curve Analysis

    PubMed Central

    Senn, Theresa E.; Scott-Sheldon, Lori A. J.; Vanable, Peter A.; Carey, Michael P.

    2011-01-01

    Background The Information-Motivation-Behavioral Skills (IMB) model often guides sexual risk reduction programs even though no studies have examined covariation in the theory’s constructs in a dynamic fashion with longitudinal data. Purpose Using new developments in latent growth modeling, we explore how changes in information, motivation, and behavioral skills over 9 months relate to changes in condom use among STD clinic patients. Methods Participants (N = 1281, 50% female, 66% African American) completed measures of IMB constructs at three time points. We used parallel process latent growth modeling to examine associations among intercepts and slopes of IMB constructs. Results Initial levels of motivation, behavioral skills, and condom use were all positively associated, with behavioral skills partially mediating associations between motivation and condom use. Changes over time in behavioral skills positively related to changes in condom use. Conclusions Results support the key role of behavioral skills in sexual risk reduction, suggesting these skills should be targeted in HIV prevention interventions. PMID:21638196

  9. Analysis of the 918th Contracting Battalion and 410th Contracting Support Brigade Utilizing the Contract Management Maturity Model

    DTIC Science & Technology

    2015-12-01

    organizational structure of Army contracting and the changes to that organization under the MICC 2025 plan. We then describe the organizations where we... organizational change . Portal: Libraries and the Academy, 4(3), 345–361. McFall, T. (2015). 918th CBN/MICC-FC organizational overview [PowerPoint slides...Installation Contracting Command (MICC) are undergoing a significant change in structure known as MICC 2025. In order to gauge the effectiveness of this

  10. Perception of biological motion from size-invariant body representations.

    PubMed

    Lappe, Markus; Wittinghofer, Karin; de Lussanet, Marc H E

    2015-01-01

    The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  11. Dynamical Galam model

    NASA Astrophysics Data System (ADS)

    Cheon, Taksu; Galam, Serge

    2018-06-01

    We introduce a model of temporal evolution of political opinions which amounts to a dynamical extension of Galam model in which the proportions of inflexibles are treated as dynamical variables. We find that the critical value of inflexibles in the original Galam model now turns into a fixed point of the system whose stability controls the phase trajectory of the political opinions. The appearance of two phases is found, in which majority-preserving and regime-changing limit cycles are respectively dominant, and the phase transition between them is observed.

  12. Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael

    2016-01-01

    It has been well documented that decisions made in the early stages of Conceptual and Pre-Conceptual design commit up to 80% of total Life-Cycle Cost (LCC) while engineers know the least about the product they are designing [1]. Once within Preliminary and Detailed design however, making changes to the design becomes far more difficult to enact in both cost and schedule. Primarily this has been due to a lack of detailed data usually uncovered later during the Preliminary and Detailed design phases. In our current budget-constrained environment, making decisions within Conceptual and Pre-Conceptual design which minimize LCC while meeting requirements is paramount to a program's success. Within the arena of launch vehicle design, optimizing the ascent trajectory is critical for minimizing the costs present within such concerns as propellant, aerodynamic, aeroheating, and acceleration loads while meeting requirements such as payload delivered to a desired orbit. In order to optimize the vehicle design its constraints and requirements must be known, however as the design cycle proceeds it is all but inevitable that the conditions will change. Upon that change, the previously optimized trajectory may no longer be optimal, or meet design requirements. The current paradigm for adjusting to these updates is generating point solutions for every change in the design's requirements [2]. This can be a tedious, time-consuming task as changes in virtually any piece of a launch vehicle's design can have a disproportionately large effect on the ascent trajectory, as the solution space of the trajectory optimization problem is both non-linear and multimodal [3]. In addition, an industry standard tool, Program to Optimize Simulated Trajectories (POST), requires an expert analyst to produce simulated trajectories that are feasible and optimal [4]. In a previous publication the authors presented a method for combatting these challenges [5]. In order to bring more detailed information into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.

  13. Mean-field thalamocortical modeling of longitudinal EEG acquired during intensive meditation training.

    PubMed

    Saggar, Manish; Zanesco, Anthony P; King, Brandon G; Bridwell, David A; MacLean, Katherine A; Aichele, Stephen R; Jacobs, Tonya L; Wallace, B Alan; Saron, Clifford D; Miikkulainen, Risto

    2015-07-01

    Meditation training has been shown to enhance attention and improve emotion regulation. However, the brain processes associated with such training are poorly understood and a computational modeling framework is lacking. Modeling approaches that can realistically simulate neurophysiological data while conforming to basic anatomical and physiological constraints can provide a unique opportunity to generate concrete and testable hypotheses about the mechanisms supporting complex cognitive tasks such as meditation. Here we applied the mean-field computational modeling approach using the scalp-recorded electroencephalogram (EEG) collected at three assessment points from meditating participants during two separate 3-month-long shamatha meditation retreats. We modeled cortical, corticothalamic, and intrathalamic interactions to generate a simulation of EEG signals recorded across the scalp. We also present two novel extensions to the mean-field approach that allow for: (a) non-parametric analysis of changes in model parameter values across all channels and assessments; and (b) examination of variation in modeled thalamic reticular nucleus (TRN) connectivity over the retreat period. After successfully fitting whole-brain EEG data across three assessment points within each retreat, two model parameters were found to replicably change across both meditation retreats. First, after training, we observed an increased temporal delay between modeled cortical and thalamic cells. This increase provides a putative neural mechanism for a previously observed reduction in individual alpha frequency in these same participants. Second, we found decreased inhibitory connection strength between the TRN and secondary relay nuclei (SRN) of the modeled thalamus after training. This reduction in inhibitory strength was found to be associated with increased dynamical stability of the model. Altogether, this paper presents the first computational approach, taking core aspects of physiology and anatomy into account, to formally model brain processes associated with intensive meditation training. The observed changes in model parameters inform theoretical accounts of attention training through meditation, and may motivate future study on the use of meditation in a variety of clinical populations. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. A Knowledge Discovery from POS Data using State Space Models

    NASA Astrophysics Data System (ADS)

    Sato, Tadahiko; Higuchi, Tomoyuki

    The number of competing-brands changes by new product's entry. The new product introduction is endemic among consumer packaged goods firm and is an integral component of their marketing strategy. As a new product's entry affects markets, there is a pressing need to develop market response model that can adapt to such changes. In this paper, we develop a dynamic model that capture the underlying evolution of the buying behavior associated with the new product. This extends an application of a dynamic linear model, which is used by a number of time series analyses, by allowing the observed dimension to change at some point in time. Our model copes with a problem that dynamic environments entail: changes in parameter over time and changes in the observed dimension. We formulate the model with framework of a state space model. We realize an estimation of the model using modified Kalman filter/fixed interval smoother. We find that new product's entry (1) decreases brand differentiation for existing brands, as indicated by decreasing difference between cross-price elasticities; (2) decreases commodity power for existing brands, as indicated by decreasing trend; and (3) decreases the effect of discount for existing brands, as indicated by a decrease in the magnitude of own-brand price elasticities. The proposed framework is directly applicable to other fields in which the observed dimension might be change, such as economic, bioinformatics, and so forth.

  15. Sacred changes: Spiritual conversion and transformation.

    PubMed

    Mahoney, Annette; Pargament, Kenneth I

    2004-05-01

    We use Pargament's (1997) definition of religion-"the search for significance in ways related to the sacred"-as a framework to understand spiritual conversion. Like other life-changing transformations, spiritual conversion alters the destinations that clients perceive to be of greatest importance in life (significance) and the pathways by which clients discover what is most significant in life (search). Unlike other transformative experiences, however, spiritual conversion incorporates the third element of religion, "the sacred," into the content of change. To illustrate these points, we discuss two theological models of spiritual conversion rooted in Christianity: a traditional model based on classic western theology and an alternative model based on feminist theology. We then compare processes of spiritual conversion to nonreligious models of transformation. We also highlight the importance for clinical work of the fit between the context of a client's life and the type of spiritual conversion experienced. Copyright 2004 Wiley Periodicals, Inc.

  16. Comparison of costs and outcomes of dapagliflozin with other glucose-lowering therapy classes added to metformin using a short-term cost-effectiveness model in the US setting.

    PubMed

    Chakravarty, Abhiroop; Rastogi, Mohini; Dhankhar, Praveen; Bell, Kelly F

    2018-05-01

    To compare 1-year costs and benefits of dapagliflozin (DAPA), a sodium-glucose cotransporter-2 (SGLT-2) inhibitor, with those of other treatments for type 2 diabetes (T2D), such as glucagon-like peptide-1 receptor agonists (GLP-1RAs), sulfonylureas (SUs), thiazolidinediones (TZDs), and dipeptidyl peptidase-4 inhibitors (DPP-4i), all combined with metformin. A short-term decision-analytic model with a 1-year time horizon was developed from a payer's perspective in the United States setting. Costs and benefits associated with four clinical end-points (glycated hemoglobin [A1C], body weight, systolic blood pressure [SBP], and risk of hypoglycemia) were evaluated in the analysis. The impact of DAPA and other glucose-lowering therapy classes on these clinical end-points was estimated from a network meta-analysis (NMA). Data for costs and quality-adjusted life-years (QALYs) associated with a per-unit change in these clinical end-points were taken from published literature. Drug prices were taken from an annual wholesale price list. All costs were inflation-adjusted to December 2016 costs using the medical care component of the consumer price index. Total costs (both medical and drug costs), total QALYs, and incremental cost-effectiveness ratios (ICERs) were estimated. Sensitivity analyses (SA) were performed to explore uncertainty in the inputs. To assess face validity, results from the short-term model were compared with long-term models published for these drugs. The total annual medical cost for DAPA was less than that for GLP-1RA ($186 less), DPP-4i ($1,142 less), SU ($2,474 less), and TZD ($1,640 less). Treatment with DAPA resulted in an average QALY gain of 0.0107, 0.0587, 0.1137, and 0.0715 per treated patient when compared with GLP-1RA, DPP-4i, SU, and TZD, respectively. ICERs for DAPA vs SU and TZD were $19,005 and $25,835, respectively. DAPA was a cost-saving option when compared with GLP-1RAs and DPP-4is. Among all four clinical end-points, change in weight had the greatest impact on total annual costs and ICERS. Sensitivity analysis showed that results were robust, and results from the short-term model were found to be similar to those of published long-term models. This analysis showed that DAPA was cost-saving compared with GLP-1RA and DPP-4i, and cost-effective compared with SU and TZD in the US setting over 1 year. Furthermore, the results suggest that, among the four composite clinical end-points, change in weight and SBP had an impact on cost-effectiveness results.

  17. Chronic Ethanol Exposure Produces Time- and Brain Region-Dependent Changes in Gene Coexpression Networks

    PubMed Central

    Osterndorff-Kahanek, Elizabeth A.; Becker, Howard C.; Lopez, Marcelo F.; Farris, Sean P.; Tiwari, Gayatri R.; Nunez, Yury O.; Harris, R. Adron; Mayfield, R. Dayne

    2015-01-01

    Repeated ethanol exposure and withdrawal in mice increases voluntary drinking and represents an animal model of physical dependence. We examined time- and brain region-dependent changes in gene coexpression networks in amygdala (AMY), nucleus accumbens (NAC), prefrontal cortex (PFC), and liver after four weekly cycles of chronic intermittent ethanol (CIE) vapor exposure in C57BL/6J mice. Microarrays were used to compare gene expression profiles at 0-, 8-, and 120-hours following the last ethanol exposure. Each brain region exhibited a large number of differentially expressed genes (2,000-3,000) at the 0- and 8-hour time points, but fewer changes were detected at the 120-hour time point (400-600). Within each region, there was little gene overlap across time (~20%). All brain regions were significantly enriched with differentially expressed immune-related genes at the 8-hour time point. Weighted gene correlation network analysis identified modules that were highly enriched with differentially expressed genes at the 0- and 8-hour time points with virtually no enrichment at 120 hours. Modules enriched for both ethanol-responsive and cell-specific genes were identified in each brain region. These results indicate that chronic alcohol exposure causes global ‘rewiring‘ of coexpression systems involving glial and immune signaling as well as neuronal genes. PMID:25803291

  18. Reliable landmarks for precise topographical analyses of pathological structural changes of the ovine tibial plateau in 2-D and 3-D subspaces.

    PubMed

    Oláh, Tamás; Reinhard, Jan; Gao, Liang; Goebel, Lars K H; Madry, Henning

    2018-01-08

    Selecting identical topographical locations to analyse pathological structural changes of the osteochondral unit in translational models remains difficult. The specific aim of the study was to provide objectively defined reference points on the ovine tibial plateau based on 2-D sections of micro-CT images useful for reproducible sample harvesting and as standardized landmarks for landmark-based 3-D image registration. We propose 5 reference points, 11 reference lines and 12 subregions that are detectable macroscopically and on 2-D micro-CT sections. Their value was confirmed applying landmark-based rigid and affine 3-D registration methods. Intra- and interobserver comparison showed high reliabilities, and constant positions (standard errors < 1%). Spatial patterns of the thicknesses of the articular cartilage and subchondral bone plate were revealed by measurements in 96 individual points of the tibial plateau. As a case study, pathological phenomena 6 months following OA induction in vivo such as osteophytes and areas of OA development were mapped to the individual subregions. These new reference points and subregions are directly identifiable on tibial plateau specimens or macroscopic images, enabling a precise topographical location of pathological structural changes of the osteochondral unit in both 2-D and 3-D subspaces in a region-appropriate fashion relevant for translational investigations.

  19. Effects of Maximal Sodium and Potassium Conductance on the Stability of Hodgkin-Huxley Model

    PubMed Central

    Wang, Kuanquan; Yuan, Yongfeng; Zhang, Henggui

    2014-01-01

    Hodgkin-Huxley (HH) equation is the first cell computing model in the world and pioneered the use of model to study electrophysiological problems. The model consists of four differential equations which are based on the experimental data of ion channels. Maximal conductance is an important characteristic of different channels. In this study, mathematical method is used to investigate the importance of maximal sodium conductance g-Na and maximal potassium conductance g-K. Applying stability theory, and taking g-Na and g-K as variables, we analyze the stability and bifurcations of the model. Bifurcations are found when the variables change, and bifurcation points and boundary are also calculated. There is only one bifurcation point when g-Na is the variable, while there are two points when g-K is variable. The (g-Na,  g-K) plane is partitioned into two regions and the upper bifurcation boundary is similar to a line when both g-Na and g-K are variables. Numerical simulations illustrate the validity of the analysis. The results obtained could be helpful in studying relevant diseases caused by maximal conductance anomaly. PMID:25104970

  20. A dose assessment method for arbitrary geometries with virtual reality in the nuclear facilities decommissioning

    NASA Astrophysics Data System (ADS)

    Chao, Nan; Liu, Yong-kuo; Xia, Hong; Ayodeji, Abiodun; Bai, Lu

    2018-03-01

    During the decommissioning of nuclear facilities, a large number of cutting and demolition activities are performed, which results in a frequent change in the structure and produce many irregular objects. In order to assess dose rates during the cutting and demolition process, a flexible dose assessment method for arbitrary geometries and radiation sources was proposed based on virtual reality technology and Point-Kernel method. The initial geometry is designed with the three-dimensional computer-aided design tools. An approximate model is built automatically in the process of geometric modeling via three procedures namely: space division, rough modeling of the body and fine modeling of the surface, all in combination with collision detection of virtual reality technology. Then point kernels are generated by sampling within the approximate model, and when the material and radiometric attributes are inputted, dose rates can be calculated with the Point-Kernel method. To account for radiation scattering effects, buildup factors are calculated with the Geometric-Progression formula in the fitting function. The effectiveness and accuracy of the proposed method was verified by means of simulations using different geometries and the dose rate results were compared with that derived from CIDEC code, MCNP code and experimental measurements.

  1. Point spread function and depth-invariant focal sweep point spread function for plenoptic camera 2.0.

    PubMed

    Jin, Xin; Liu, Li; Chen, Yanqin; Dai, Qionghai

    2017-05-01

    This paper derives a mathematical point spread function (PSF) and a depth-invariant focal sweep point spread function (FSPSF) for plenoptic camera 2.0. Derivation of PSF is based on the Fresnel diffraction equation and image formation analysis of a self-built imaging system which is divided into two sub-systems to reflect the relay imaging properties of plenoptic camera 2.0. The variations in PSF, which are caused by changes of object's depth and sensor position variation, are analyzed. A mathematical model of FSPSF is further derived, which is verified to be depth-invariant. Experiments on the real imaging systems demonstrate the consistency between the proposed PSF and the actual imaging results.

  2. Paradigms of School Change

    ERIC Educational Resources Information Center

    Wrigley, Terry

    2011-01-01

    This short paper points to some paradigm issues in the field of school development (leadership, effectiveness, improvement) and their relationship to social justice. It contextualises the dominant School Effectiveness and School Improvement models within neo-liberal marketisation, paying attention to their transformation through a "marriage of…

  3. Nonparametric change point estimation for survival distributions with a partially constant hazard rate.

    PubMed

    Brazzale, Alessandra R; Küchenhoff, Helmut; Krügel, Stefanie; Schiergens, Tobias S; Trentzsch, Heiko; Hartl, Wolfgang

    2018-04-05

    We present a new method for estimating a change point in the hazard function of a survival distribution assuming a constant hazard rate after the change point and a decreasing hazard rate before the change point. Our method is based on fitting a stump regression to p values for testing hazard rates in small time intervals. We present three real data examples describing survival patterns of severely ill patients, whose excess mortality rates are known to persist far beyond hospital discharge. For designing survival studies in these patients and for the definition of hospital performance metrics (e.g. mortality), it is essential to define adequate and objective end points. The reliable estimation of a change point will help researchers to identify such end points. By precisely knowing this change point, clinicians can distinguish between the acute phase with high hazard (time elapsed after admission and before the change point was reached), and the chronic phase (time elapsed after the change point) in which hazard is fairly constant. We show in an extensive simulation study that maximum likelihood estimation is not robust in this setting, and we evaluate our new estimation strategy including bootstrap confidence intervals and finite sample bias correction.

  4. Online control of reaching and pointing to visual, auditory, and multimodal targets: Effects of target modality and method of determining correction latency.

    PubMed

    Holmes, Nicholas P; Dakwar, Azar R

    2015-12-01

    Movements aimed towards objects occasionally have to be adjusted when the object moves. These online adjustments can be very rapid, occurring in as little as 100ms. More is known about the latency and neural basis of online control of movements to visual than to auditory target objects. We examined the latency of online corrections in reaching-to-point movements to visual and auditory targets that could change side and/or modality at movement onset. Visual or auditory targets were presented on the left or right sides, and participants were instructed to reach and point to them as quickly and as accurately as possible. On half of the trials, the targets changed side at movement onset, and participants had to correct their movements to point to the new target location as quickly as possible. Given different published approaches to measuring the latency for initiating movement corrections, we examined several different methods systematically. What we describe here as the optimal methods involved fitting a straight-line model to the velocity of the correction movement, rather than using a statistical criterion to determine correction onset. In the multimodal experiment, these model-fitting methods produced significantly lower latencies for correcting movements away from the auditory targets than away from the visual targets. Our results confirm that rapid online correction is possible for auditory targets, but further work is required to determine whether the underlying control system for reaching and pointing movements is the same for auditory and visual targets. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Design of Video Games for Children's Diet and Physical Activity Behavior Change.

    PubMed

    Baranowski, Tom; Thompson, Debbe; Buday, Richard; Lu, Amy Shirong; Baranowski, Janice

    2010-01-01

    Serious video games (VG) offer new opportunities for promoting health related diet and physical activity change among children. Games can be designed to use storylines, characters, and behavior change procedures, including modeling (e.g., engaging characters make changes themselves, and face and overcome challenges related to fruit and vegetable (FV) and physical activity (PA) goal attainment and/or consumption), skill development (e.g., asking behaviors; virtual recipe preparation), self regulatory behaviors (problem solving, goal setting, goal review, decision making), rewards (e.g., points and positive statements generated by the program), immediate feedback (e.g., through characters and/or statements that appear on the computer screen at critical decision points), and personalization (e.g., tailored choices offered at critical junctures, based on responses to baselines questions related to preferences, outcome expectancies, etc). We are in the earliest stages of learning how to optimally design effective behavior change procedures for use in VG, and yet they have been demonstrated to change behavior. As we learn, VG offer more and better opportunities for obesity prevention that can adjust to individual needs and preferences.

  6. Design of Video Games for Children’s Diet and Physical Activity Behavior Change

    PubMed Central

    Baranowski, Tom; Thompson, Debbe; Buday, Richard; Lu, Amy Shirong; Baranowski, Janice

    2012-01-01

    Serious video games (VG) offer new opportunities for promoting health related diet and physical activity change among children. Games can be designed to use storylines, characters, and behavior change procedures, including modeling (e.g., engaging characters make changes themselves, and face and overcome challenges related to fruit and vegetable (FV) and physical activity (PA) goal attainment and/or consumption), skill development (e.g., asking behaviors; virtual recipe preparation), self regulatory behaviors (problem solving, goal setting, goal review, decision making), rewards (e.g., points and positive statements generated by the program), immediate feedback (e.g., through characters and/or statements that appear on the computer screen at critical decision points), and personalization (e.g., tailored choices offered at critical junctures, based on responses to baselines questions related to preferences, outcome expectancies, etc). We are in the earliest stages of learning how to optimally design effective behavior change procedures for use in VG, and yet they have been demonstrated to change behavior. As we learn, VG offer more and better opportunities for obesity prevention that can adjust to individual needs and preferences. PMID:25364331

  7. A nonlinear model for myogenic regulation of blood flow to bone: equilibrium states and stability characteristics.

    PubMed

    Harrigan, T P

    1996-01-01

    A simple compartmental model for myogenic regulation of interstitial pressure in bone is developed, and the interaction between changes in interstitial pressure and changes in arterial and venous resistance is studied. The arterial resistance is modeled by a myogenic model that depends on transmural pressure, and the venous resistance is modeled by using a vascular waterfall. Two series capacitances model blood storage in the vascular system and interstitial fluid storage in the extravascular space. The static results mimic the observed effect that vasodilators work less well in bone than do vasoconstrictors. The static results also show that the model gives constant flow rates over a limited range of arterial pressure. The dynamic model shows unstable behavior at small values of bony capacitance and at high enough myogenic gain. At low myogenic gain, only a single equilibrium state is present, but a high enough myogenic gain, two new equilibrium states appear. At additional increases in gain, one of the two new states merges with and then separates from the original state, and the original state becomes a saddle point. The appearance of the new states and the transition of the original state to a saddle point do not depend on the bony capacitance, and these results are relevant to general fluid compartments. Numerical integration of the rate equations confirms the stability calculations and shows limit cycling behavior in several situations. The relevance of this model to circulation in bone and to other compartments is discussed.

  8. Detection of spatio-temporal change of ocean acoustic velocity for observing seafloor crustal deformation applying seismological methods

    NASA Astrophysics Data System (ADS)

    Eto, S.; Nagai, S.; Tadokoro, K.

    2011-12-01

    Our group has developed a system for observing seafloor crustal deformation with a combination of acoustic ranging and kinematic GPS positioning techniques. One of the effective factors to reduce estimation error of submarine benchmark in our system is modeling variation of ocean acoustic velocity. We estimated various 1-dimensional velocity models with depth under some constraints, because it is difficult to estimate 3-dimensional acoustic velocity structure including temporal change due to our simple acquisition procedure of acoustic ranging data. We, then, applied the joint hypocenter determination method in seismology [Kissling et al., 1994] to acoustic ranging data. We assume two conditions as constraints in inversion procedure as follows: 1) fixed acoustic velocity in deeper part because it is usually stable both in space and time, 2) each inverted velocity model should be decreased with depth. The following two remarkable spatio-temporal changes of acoustic velocity 1) variations of travel-time residuals at the same points within short time and 2) larger differences between residuals at the neighboring points, which are one's of travel-time from different benchmarks. The First results cannot be explained only by the effect of atmospheric condition change including heating by sunlight. To verify the residual variations mentioned as the second result, we have performed forward modeling of acoustic ranging data with velocity models added velocity anomalies. We calculate travel time by a pseudo-bending ray tracing method [Um and Thurber, 1987] to examine effects of velocity anomaly on the travel-time differences. Comparison between these residuals and travel-time difference in forward modeling, velocity anomaly bodies in shallower depth can make these anomalous residuals, which may indicate moving water bodies. We need to apply an acoustic velocity structure model with velocity anomaly(s) in acoustic ranging data analysis and/or to develop a new system with a large number of sea surface stations to detect them, which may be able to reduce error of seafloor benchmarker position.

  9. Job strain and changes in the body mass index among working women: A prospective study

    PubMed Central

    Fujishiro, Kaori; Lawson, Christina C.; Hibert, Eileen Lividoti; Chavarro, Jorge E.; Rich-Edwards, Janet W.

    2015-01-01

    Objectives The relationship between job strain and weight gain has been unclear, especially for women. Using data from over 52 000 working women, we compare the association between change in job strain and change in BMI across different levels of baseline BMI. Subjects/Methods We used data from participants in the Nurses’ Health Study II (n=52 656, mean age = 38.4), an ongoing prospective cohort study. Using linear regression, we modeled the change in BMI over 4 years as a function of the change in job strain, baseline BMI, and the interaction between the two. Change in job strain was characterized in four categories combining baseline and follow-up levels: consistently low strain [low at both points], decreased strain [high strain at baseline only], increased strain [high strain at follow-up only], and consistently high strain [high at both points]. Age, race/ethnicity, pregnancy history, job types, and health behaviors at baseline were controlled for in the model. Results In adjusted models, women who reported high job strain at least once during the four-year period had a greater increase in BMI (ΔBMI=0.06–0.12, p<0.05) than those who never reported high job strain. The association between the change in job strain exposure and the change in BMI depended on the baseline BMI level (p=0.015 for the interaction): the greater the baseline BMI, the greater the BMI gain associated with consistently high job strain. The BMI gain associated with increased or decreased job strain was uniform across the range of baseline BMI. Conclusions Women with higher BMI may be more vulnerable to BMI gain when exposed to constant work stress. Future research focusing on mediating mechanisms between job strain and BMI change should explore the possibility of differential responses to job strain by initial BMI. PMID:25986779

  10. Impact of Land Use Land Cover Change on East Asian monsoon

    NASA Astrophysics Data System (ADS)

    Chilukoti, N.; Xue, Y.; Liu, Y.; Lee, J.

    2017-12-01

    Humans modify the Earth's terrestrial surface on a continental scale by removing natural vegetation for crops/grazing. The current rates, extents and intensities of Land Use and Land Cover Change (LULCC) are greater than ever in history. The earlier studies of Land-atmosphere interactions used specified land surface conditions without interannual variations. In this study using NCEP CFSv2 coupled with Simplified Simple Biosphere (SSiB) model, biogeophysical impacts of LULCC on climate variability, anomaly, and changes are investigated by using the LULCC map from the Hurtt et al. (2006, 2011), which covered 66 years from 1950-2015 with annual variability. We combined the changes in crop and pasture fractions and consider as LULCC. A methodology had been developed to convert the Hurtt LULCC change map with 1° resolution to the GCM grid points. Since the GCM has only one dominant type, when the crop and pasture frction value at one point was larger than the critical value, that grid was assigned as degraded. Comprehensive evaluation was conducted to ensure the consistence of the trend of land degradation in the Hurtt's map and in the GCM LULCC map. In the degraded point, trees were changed to low vegetation or grasses, and low vegetation to bare soil. A set of surface parameters such as leaf area index, vegetation height, roughness length, and soil parameters, associated with vegetation are changed to show the degradation effects. We integrated the model with the potential vegetation map and the map with LULCC from 1950 to 2015, and the results indicate the LULCC causes precipitation reduction globally, with the strongest signals over monsoon regions. For instance, the degradation in Mexico, West Africa, south and East Asia and South America produced significant precipitation anomalies, some of which are consistent with observed regional precipitation anomalies. Meanwhile, it has also found that the LULCC enhances the surface warming during the summer in monsoon regions. The LULCC caused reduction in water released into the atmosphere from the surface through a reduction in transpiration and canopy evaporation, and changes in magnitude and pattern of moisture flux convergence, resulting in precipitation changes, and reduced evaporation lead to warm surface temperature during the summer season.

  11. A Study of Acute and Chronic Tissue Changes in Surgical and Traumatically-Induced Experimental Models of Knee Joint Injury Using Magnetic Resonance Imaging and Micro-Computed Tomography

    PubMed Central

    Fischenich, Kristine M.; Pauly, Hannah M.; Button, Keith D.; Fajardo, Ryan S.; DeCamp, Charles E.; Haut, Roger C.; Haut Donahue, Tammy L.

    2016-01-01

    Objective The objective of this study was to monitor the progression of joint damage in two animal models of knee joint trauma using two non-invasive, clinically available imaging modalities. Methods A 3-T clinical magnet and micro-computed tomography (mCT) was used to document changes immediately following injury (acute) and post-injury (chronic) at time points of 4, 8, or 12 weeks. Joint damage was recorded at dissection and compared to the chronic magnetic resonance imaging (MRI) record. Fifteen Flemish Giant rabbits were subjected to a single tibiofemoral compressive impact (ACLF), and 18 underwent a combination of anterior cruciate ligament (ACL) and meniscal transection (mACLT). Results All ACLF animals experienced ACL rupture, and 13 also experienced acute meniscal damage. All ACLF and mACLT animals showed meniscal and articular cartilage damages at dissection. Meniscal damage was documented as early as 4 weeks and worsened in 87% of the ACLF animals and 71% of the mACLT animals. Acute cartilage damage also developed further and increased in occurrence with time in both models. A progressive decrease in bone quantity and quality was documented in both models. The MRI data closely aligned with dissection notes suggesting this clinical tool may be a non-invasive method for documenting joint damage in lapine models of knee joint trauma. Conclusions The study investigates the acute to chronic progression of meniscal and cartilage damage at various time points, and chronic changes to the underlying bone in two models of posttraumatic osteoarthritis (PTOA), and highlights the dependency of the model on the location, type, and progression of damage over time. PMID:27756698

  12. Using theories of behaviour change to inform interventions for addictive behaviours.

    PubMed

    Webb, Thomas L; Sniehotta, Falko F; Michie, Susan

    2010-11-01

    This paper reviews a set of theories of behaviour change that are used outside the field of addiction and considers their relevance for this field. Ten theories are reviewed in terms of (i) the main tenets of each theory, (ii) the implications of the theory for promoting change in addictive behaviours and (iii) studies in the field of addiction that have used the theory. An augmented feedback loop model based on Control Theory is used to organize the theories and to show how different interventions might achieve behaviour change. Briefly, each theory provided the following recommendations for intervention: Control Theory: prompt behavioural monitoring, Goal-Setting Theory: set specific and challenging goals, Model of Action Phases: form 'implementation intentions', Strength Model of Self-Control: bolster self-control resources, Social Cognition Models (Protection Motivation Theory, Theory of Planned Behaviour, Health Belief Model): modify relevant cognitions, Elaboration Likelihood Model: consider targets' motivation and ability to process information, Prototype Willingness Model: change perceptions of the prototypical person who engages in behaviour and Social Cognitive Theory: modify self-efficacy. There are a range of theories in the field of behaviour change that can be applied usefully to addiction, each one pointing to a different set of modifiable determinants and/or behaviour change techniques. Studies reporting interventions should describe theoretical basis, behaviour change techniques and mode of delivery accurately so that effective interventions can be understood and replicated. © 2010 The Authors. Journal compilation © 2010 Society for the Study of Addiction.

  13. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses.

    PubMed

    Jansen, Jeroen J; van Dam, Nicole M; Hoefsloot, Huub C J; Smilde, Age K

    2009-12-16

    Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples.

  14. Crossfit analysis: a novel method to characterize the dynamics of induced plant responses

    PubMed Central

    2009-01-01

    Background Many plant species show induced responses that protect them against exogenous attacks. These responses involve the production of many different bioactive compounds. Plant species belonging to the Brassicaceae family produce defensive glucosinolates, which may greatly influence their favorable nutritional properties for humans. Each responding compound may have its own dynamic profile and metabolic relationships with other compounds. The chemical background of the induced response is therefore highly complex and may therefore not reveal all the properties of the response in any single model. Results This study therefore aims to describe the dynamics of the glucosinolate response, measured at three time points after induction in a feral Brassica, by a three-faceted approach, based on Principal Component Analysis. First the large-scale aspects of the response are described in a 'global model' and then each time-point in the experiment is individually described in 'local models' that focus on phenomena that occur at specific moments in time. Although each local model describes the variation among the plants at one time-point as well as possible, the response dynamics are lost. Therefore a novel method called the 'Crossfit' is described that links the local models of different time-points to each other. Conclusions Each element of the described analysis approach reveals different aspects of the response. The crossfit shows that smaller dynamic changes may occur in the response that are overlooked by global models, as illustrated by the analysis of a metabolic profiling dataset of the same samples. PMID:20015363

  15. Euclidean scalar field theory in the bilocal approximation

    NASA Astrophysics Data System (ADS)

    Nagy, S.; Polonyi, J.; Steib, I.

    2018-04-01

    The blocking step of the renormalization group method is usually carried out by restricting it to fluctuations and to local blocked action. The tree-level, bilocal saddle point contribution to the blocking, defined by the infinitesimal decrease of the sharp cutoff in momentum space, is followed within the three dimensional Euclidean ϕ6 model in this work. The phase structure is changed, new phases and relevant operators are found, and certain universality classes are restricted by the bilocal saddle point.

  16. The Social Cost of Stochastic and Irreversible Climate Change

    NASA Astrophysics Data System (ADS)

    Cai, Y.; Judd, K. L.; Lontzek, T.

    2013-12-01

    Many scientists are worried about climate change triggering abrupt and irreversible events leading to significant and long-lasting damages. For example, a rapid release of methane from permafrost may lead to amplified global warming, and global warming may increase the frequency and severity of heavy rainfall or typhoon, destroying large cities and killing numerous people. Some elements of the climate system which might exhibit such a triggering effect are called tipping elements. There is great uncertainty about the impact of anthropogenic carbon and tipping elements on future economic wellbeing. Any rational policy choice must consider the great uncertainty about the magnitude and timing of global warming's impact on economic productivity. While the likelihood of tipping points may be a function of contemporaneous temperature, their effects are long lasting and might be independent of future temperatures. It is assumed that some of these tipping points might occur even in this century, but also that their duration and post-tipping impact are uncertain. A faithful representation of the possibility of tipping points for the calculation of social cost of carbon would require a fully stochastic formulation of irreversibility, and accounting for the deep layer of uncertainties regarding the duration of the tipping process and also its economic impact. We use DSICE, a DSGE extension of the DICE2007 model of William Nordhaus, which incorporates beliefs about the uncertain economic impact of possible climate tipping events and uses empirically plausible parameterizations of Epstein-Zin preferences to represent attitudes towards risk. We find that the uncertainty associated with anthropogenic climate change imply carbon taxes much higher than implied by deterministic models. This analysis indicates that the absence of uncertainty in DICE2007 and similar IAM models may result in substantial understatement of the potential benefits of policies to reduce GHG emissions.

  17. The Effects of Sleep Deprivation on Dissociable Prototype Learning Systems

    PubMed Central

    Maddox, W. Todd; Glass, Brian D.; Zeithamova, Dagmar; Savarie, Zachary R.; Bowen, Christopher; Matthews, Michael D.; Schnyer, David M.

    2011-01-01

    Background: The cognitive neural underpinnings of prototype learning are becoming clear. Evidence points to 2 different neural systems, depending on the learning parameters. A/not-A (AN) prototype learning is mediated by posterior brain regions that are involved in early perceptual learning, whereas A/B (AB) is mediated by frontal and medial temporal lobe regions. Study Objectives: To investigate the effects of sleep deprivation on AN and AB prototype learning and to use established prototype models to provide insights into the cognitive-processing locus of sleep-deprivation deficits. Design: Participants performed an AN and an AB prototype learning task twice, separated by a 24-hour period, with or without sleep between testing sessions. Participants: Eighteen West Point cadets participated in the sleep-deprivation group, and 17 West Point cadets participated in a control group. Measurements and Results: Sleep deprivation led to an AN, but not an AB, performance deficit. Prototype model analyses indicated that the AN deficit was due to changes in attentional focus and a decrease in confidence that is reflected in an increased bias to respond non-A. Conclusions: The findings suggest that AN, but not AB, prototype learning is affected by sleep deprivation. Prototype model analyses support the notion that the effect of sleep deprivation on AN is consistent with lapses in attentional focus that are more detrimental to AN than to AB. This finding adds to a growing body of work that suggests that different performance changes associated with sleep deprivation can be attributed to a common mechanism of changes in simple attention and vigilance. Citation: Maddox WT; Glass BD; Zeithamova D; Savarie ZR; Bowen C; Matthews MD; Schnyer DM. The effects of sleep deprivation on dissociable prototype learning systems. SLEEP 2011;34(3):253-260. PMID:21358842

  18. Structural capabilities in small and medium-sized patient-centered medical homes.

    PubMed

    Alidina, Shehnaz; Schneider, Eric C; Singer, Sara J; Rosenthal, Meredith B

    2014-07-01

    1) Evaluate structural capabilities associated with the patient-centered medical home (PCMH) model in PCMH pilots in Colorado, Ohio, and Rhode Island; 2) evaluate changes in capabilities over 2 years in the Rhode Island pilot; and 3) evaluate facilitators and barriers to the adoption of capabilities. We assessed structural capabilities in the 30 pilot practices using a cross-sectional study design and examined changes over 2 years in 5 Rhode Island practices using a pre/post design. We used National Committee for Quality Assurance's Physician Practice Connections-Patient-Centered Medical Home (PPC/PCMH) accreditation survey data to measure capabilities. We stratified by high and low performance based on total score and by practice size. We analyzed change from baseline to 24 months for the Rhode Island practices. We analyzed qualitative data from interviews with practice leaders to identify facilitators and barriers to building capabilities. On average, practices scored 73 points (out of 100 points) for structural capabilities. High and low performers differed most on electronic prescribing, patient self-management, and care-management standards. Rhode Island practices averaged 42 points at baseline, and reached 90 points by the end of year 2. Some of the key facilitators that emerged were payment incentives, "transformation coaches," learning collaboratives, and data availability supporting performance management and quality improvement. Barriers to improvement included the extent of transformation required, technology shortcomings, slow cultural change, change fatigue, and lack of broader payment reform. For these early adopters, prevalence of structural capabilities was high, and performance was substantially improved for practices with initially lower capabilities. We conclude that building capabilities requires payment reform, attention to implementation, and cultural change.

  19. Sample size and power calculations for detecting changes in malaria transmission using antibody seroconversion rate.

    PubMed

    Sepúlveda, Nuno; Paulino, Carlos Daniel; Drakeley, Chris

    2015-12-30

    Several studies have highlighted the use of serological data in detecting a reduction in malaria transmission intensity. These studies have typically used serology as an adjunct measure and no formal examination of sample size calculations for this approach has been conducted. A sample size calculator is proposed for cross-sectional surveys using data simulation from a reverse catalytic model assuming a reduction in seroconversion rate (SCR) at a given change point before sampling. This calculator is based on logistic approximations for the underlying power curves to detect a reduction in SCR in relation to the hypothesis of a stable SCR for the same data. Sample sizes are illustrated for a hypothetical cross-sectional survey from an African population assuming a known or unknown change point. Overall, data simulation demonstrates that power is strongly affected by assuming a known or unknown change point. Small sample sizes are sufficient to detect strong reductions in SCR, but invariantly lead to poor precision of estimates for current SCR. In this situation, sample size is better determined by controlling the precision of SCR estimates. Conversely larger sample sizes are required for detecting more subtle reductions in malaria transmission but those invariantly increase precision whilst reducing putative estimation bias. The proposed sample size calculator, although based on data simulation, shows promise of being easily applicable to a range of populations and survey types. Since the change point is a major source of uncertainty, obtaining or assuming prior information about this parameter might reduce both the sample size and the chance of generating biased SCR estimates.

  20. Last millennium Northern Hemisphere summer temperatures from tree rings: Part II, spatially resolved reconstructions

    NASA Astrophysics Data System (ADS)

    Anchukaitis, Kevin J.; Wilson, Rob; Briffa, Keith R.; Büntgen, Ulf; Cook, Edward R.; D'Arrigo, Rosanne; Davi, Nicole; Esper, Jan; Frank, David; Gunnarson, Björn E.; Hegerl, Gabi; Helama, Samuli; Klesse, Stefan; Krusic, Paul J.; Linderholm, Hans W.; Myglan, Vladimir; Osborn, Timothy J.; Zhang, Peng; Rydval, Milos; Schneider, Lea; Schurer, Andrew; Wiles, Greg; Zorita, Eduardo

    2017-05-01

    Climate field reconstructions from networks of tree-ring proxy data can be used to characterize regional-scale climate changes, reveal spatial anomaly patterns associated with atmospheric circulation changes, radiative forcing, and large-scale modes of ocean-atmosphere variability, and provide spatiotemporal targets for climate model comparison and evaluation. Here we use a multiproxy network of tree-ring chronologies to reconstruct spatially resolved warm season (May-August) mean temperatures across the extratropical Northern Hemisphere (40-90°N) using Point-by-Point Regression (PPR). The resulting annual maps of temperature anomalies (750-1988 CE) reveal a consistent imprint of volcanism, with 96% of reconstructed grid points experiencing colder conditions following eruptions. Solar influences are detected at the bicentennial (de Vries) frequency, although at other time scales the influence of insolation variability is weak. Approximately 90% of reconstructed grid points show warmer temperatures during the Medieval Climate Anomaly when compared to the Little Ice Age, although the magnitude varies spatially across the hemisphere. Estimates of field reconstruction skill through time and over space can guide future temporal extension and spatial expansion of the proxy network.

  1. [Protective effect of emodin pretreatment in young rats with intrahepatic cholestasis].

    PubMed

    Xiong, Xiao-Li; Yan, Su-Qi; Qin, Huan; Zhou, Li-Shan; Zhang, Ling-Ling; Jiang, Zhi-Xia; Ding, Yan

    2016-02-01

    To investigate the protective effect of emodin in young rats with intrahepatic cholestasis. A total of 120 young Sprague-Dawley rats were randomly divided into control, model, and high-, medium-, and low-dose emodin groups, with 24 rats in each group. The rats in the control and model groups were given sodium carboxymethyl cellulose solution by gavage, while the other groups were given different doses of emodin solution by gavage. On the 5th day of experiment, alpha-naphthylisothiocyanate (ANIT, 50 mg/kg) was applied by gavage to establish the model of intrahepatic cholestasis in all groups except the control group. At 24, 48, and 72 hours after gavage, 8 rats in each group were sacrificed. Colorimetry was used to measure the serum levels of total bilirubin (TBIL), direct bilirubin (DBIL), total bile acid (TBA), alkaline phosphatase (ALP), gamma glutamyl transpeptidase (GGT), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) in each group, and hematoxylin-eosin staining was applied to observe the morphological changes of the liver under a light microscope at different time points. Compared with the control group, the model group had significantly increased serum levels of TBIL, DBIL, TBA, ALP, GGT, ALT, and AST at the 24-hour, 48-hour, and 72-hour time points (P<0.01). In the model group, the serum levels of TBIL, DBIL, TBA, ALT, and AST showed varying degrees of increase at 48 hours after establishment of model, compared with the values at 24 and 72 hours (P<0.05). At 24, 48, and 72 hours, the high-, medium-, and low-dose emodin groups had varying degrees of reductions in the serum levels of TBIL and TBA compared with the model group (P<0.05); the high- and low-dose emodin groups had significantly increased serum levels of TBA compared with the medium-dose emodin group (P<0.05). The model group had the most severe pathological changes at 48 hours. Compared with the model group, the high-, medium-, and low-dose emodin groups showed certain improvement in pathological changes of the liver at each time point, and the medium-dose emodin group had better improvement compared with the high- and low-dose emodin groups. Emodin can effectively improve ANIT-induced intrahepatic cholestasis in young rats, and medium-dose emodin shows the best effect.

  2. Do dam constructions in a Vietnamese river basin result in change points in hydrologic regime and how reliable are different methods?

    NASA Astrophysics Data System (ADS)

    Vu, Tinh Thi; Kiesel, Jens; Guse, Bjoern; Fohrer, Nicola

    2017-04-01

    The damming of rivers causes one of the most considerable impacts of our society on the riverine environment. More than 50% of the world's streams and rivers are currently impounded by dams before reaching the oceans. The construction of dams is of high importance in developing and emerging countries, i.e. for power generation and water storage. In the Vietnamese Vu Gia - Thu Bon Catchment (10,350 km2), about 23 dams were built during the last decades and store approximately 2,156 billion m3 of water. The water impoundment in 10 dams in upstream regions amounts to 17 % of the annual discharge volume. It is expected that impacts from these dams have altered the natural flow regime. However, up to now it is unclear how the flow regime was altered. For this, it needs to be investigated at what point in time these changes became significant and detectable. Many approaches exist to detect changes in stationary or consistency of hydrological records using statistical analysis of time series for the pre- and post-dam period. The objective of this study is to reliably detect and assess hydrologic shifts occurring in the discharge regime of an anthropogenically influenced river basin, mainly affected by the construction of dams. To achieve this, we applied nine available change-point tests to detect change in mean, variance and median on the daily and annual discharge records at two main gauges of the basin. The tests yield conflicting results: The majority of tests found abrupt changes that coincide with the damming-period, while others did not. To interpret how significant the changes in discharge regime are, and to which different properties of the time series each test responded, we calculated Indicators of Hydrologic Alteration (IHAs) for the time period before and after the detected change points. From the results, we can deduce, that the change point tests are influenced in different levels by different indicator groups (magnitude, duration, frequency, etc) and that within the indicator groups, some indicators are more sensitive than others. For instance, extreme low-flow, especially 7- and, 30-day minima and mean minimum low flow, as well as the variability of monthly flow are highly-sensitive to most detected change points. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts. Our study clearly shows that, the detected change points depend on which test is chosen. For an objective assessment of change points, it is therefore necessary to explain the change points by calculating differences in IHAs. This analysis can be used to assess which change point method reacts to which type of hydrological change and, more importantly, it can be used to rank the change points according to their overall impact on the discharge regime. This leads to an improved evaluation of hydrologic change-points caused by anthropogenic impacts.

  3. Mesoscale Modeling of the Atmosphere

    DTIC Science & Technology

    1993-03-31

    using a nudging procedure. Operational evaluation is planned in 3-6 months. The main points arising from the discussion concerned the use of nudging ...adaption when it became available. However, there was one crucial condition to be met before this change of strategy could be finally adopted. The NORAPS...weather prediction with scientists such as Dr. Madala, Dr. Chang , and Dr. Sashegyi at NRL Washington, and Dr. Hovermale and Dr. Hodur at NRL Monterey

  4. Homeostasis, singularities, and networks.

    PubMed

    Golubitsky, Martin; Stewart, Ian

    2017-01-01

    Homeostasis occurs in a biological or chemical system when some output variable remains approximately constant as an input parameter [Formula: see text] varies over some interval. We discuss two main aspects of homeostasis, both related to the effect of coordinate changes on the input-output map. The first is a reformulation of homeostasis in the context of singularity theory, achieved by replacing 'approximately constant over an interval' by 'zero derivative of the output with respect to the input at a point'. Unfolding theory then classifies all small perturbations of the input-output function. In particular, the 'chair' singularity, which is especially important in applications, is discussed in detail. Its normal form and universal unfolding [Formula: see text] is derived and the region of approximate homeostasis is deduced. The results are motivated by data on thermoregulation in two species of opossum and the spiny rat. We give a formula for finding chair points in mathematical models by implicit differentiation and apply it to a model of lateral inhibition. The second asks when homeostasis is invariant under appropriate coordinate changes. This is false in general, but for network dynamics there is a natural class of coordinate changes: those that preserve the network structure. We characterize those nodes of a given network for which homeostasis is invariant under such changes. This characterization is determined combinatorially by the network topology.

  5. The influence of maturation, body size and physical self-perceptions on longitudinal changes in physical activity in adolescent girls.

    PubMed

    Fawkner, Samantha; Henretty, Joan; Knowles, Ann-Marie; Nevill, Alan; Niven, Ailsa

    2014-01-01

    The aim of this study was to adopt a longitudinal design to explore the direct effects of both absolute and relative maturation and changes in body size on physical activity, and explore if, and how, physical self-perceptions might mediate this effect. We recruited 208 girls (11.8 ± 0.4 years) at baseline. Data were collected at three subsequent time points, each 6 months apart. At 18 months, 119 girls remained in the study. At each time point, girls completed the Physical Activity Questionnaire for Children, the Pubertal Development Scale (from which, both a measure of relative and absolute maturation were defined) and the Physical Self-Perception Profile, and had physical size characteristics assessed. Multilevel modelling for physical activity indicated a significant negative effect of age, positive effect for physical condition and sport competence and positive association for relatively early maturers. Absolute maturation, body mass, waist circumference and sum of skinfolds did not significantly contribute to the model. Contrary to common hypotheses, relatively more mature girls may, in fact, be more active than their less mature peers. However, neither changes in absolute maturation nor physical size appear to directly influence changes in physical activity in adolescent girls.

  6. Distinguishing 6 Population Subgroups by Timing and Characteristics of the Menopausal Transition

    PubMed Central

    Huang, Xiaobi; Harlow, Siobán D.; Elliott, Michael R.

    2012-01-01

    Changes in women’s menstrual bleeding patterns precede the onset of menopause. In this paper, the authors identify population subgroups based on menstrual characteristics of the menopausal transition experience. Using the TREMIN data set (1943–1979), the authors apply a Bayesian change-point model with 8 parameters for each woman that summarize change in menstrual bleeding patterns during the menopausal transition. The authors then use estimates from this model to classify menstrual patterns into subgroups using a K-medoids algorithm. They identify 6 subgroups of women whose transition experience can be distinguished by age at onset, variability of the menstrual cycle, and duration of the early transition. These results suggest that for most women, mean and variance change points are well aligned with proposed bleeding markers of the menopausal transition, but for some women they are not clearly associated. Increasing understanding of population differences in the transition experience may lead to new insights into ovarian aging. Because of age inclusion criteria, most longitudinal studies of the menopausal transition probably include only a subset of the 6 subgroups of women identified in this paper, suggesting a potential bias in the understanding of both the menopausal transition and the linkage between the transition and chronic disease. PMID:22138039

  7. Mathematical modeling of transformation process of structurally unstable magnetic configurations into structurally stable ones in two-dimensional and three-dimensional geometry

    NASA Astrophysics Data System (ADS)

    Inovenkov, Igor; Echkina, Eugenia; Ponomarenko, Loubov

    Magnetic reconnection is a fundamental process in astrophysical, space and laboratory plasma. In essence, it represents a change of topology of the magnetic field caused by readjustment of the structure of the magnetic field lines. This change leads to release of energy accumulated in the field. We consider transformation process of structurally unstable magnetic configurations into the structurally steady ones from the point of view of the Catastrophe theory. Special attention is paid to modeling of evolution of the structurally unstable three-dimensional magnetic fields.

  8. A Comparison of Three IRT Approaches to Examinee Ability Change Modeling in a Single-Group Anchor Test Design

    ERIC Educational Resources Information Center

    Paek, Insu; Park, Hyun-Jeong; Cai, Li; Chi, Eunlim

    2014-01-01

    Typically a longitudinal growth modeling based on item response theory (IRT) requires repeated measures data from a single group with the same test design. If operational or item exposure problems are present, the same test may not be employed to collect data for longitudinal analyses and tests at multiple time points are constructed with unique…

  9. Sensitivity of burned area in Europe to climate change, atmospheric CO2 levels, and demography: A comparison of two fire-vegetation models

    NASA Astrophysics Data System (ADS)

    Wu, Minchao; Knorr, Wolfgang; Thonicke, Kirsten; Schurgers, Guy; Camia, Andrea; Arneth, Almut

    2015-11-01

    Global environmental changes and human activity influence wildland fires worldwide, but the relative importance of the individual factors varies regionally and their interplay can be difficult to disentangle. Here we evaluate projected future changes in burned area at the European and sub-European scale, and we investigate uncertainties in the relative importance of the determining factors. We simulated future burned area with LPJ-GUESS-SIMFIRE, a patch-dynamic global vegetation model with a semiempirical fire model, and LPJmL-SPITFIRE, a dynamic global vegetation model with a process-based fire model. Applying a range of future projections that combine different scenarios for climate changes, enhanced CO2 concentrations, and population growth, we investigated the individual and combined effects of these drivers on the total area and regions affected by fire in the 21st century. The two models differed notably with respect to the dominating drivers and underlying processes. Fire-vegetation interactions and socioeconomic effects emerged as important uncertainties for future burned area in some European regions. Burned area of eastern Europe increased in both models, pointing at an emerging new fire-prone region that should gain further attention for future fire management.

  10. Postglacial Terrestrial Carbon Dynamics and Atmospheric CO2

    NASA Astrophysics Data System (ADS)

    Prentice, C. I.; Harrison, S. P.; Kaplan, J. O.

    2002-12-01

    Combining PMIP climate model results from the last glacial maximum (LGM) with biome modelling indicates the involvement of both cold, dry climate and physiological effects of low atmospheric CO2 in reducing tree cover on the continents. Further results with the LPJ dynamic vegetation model agree with independent evidence for greatly reduced terrestrial carbon storage at LGM, and suggest that terrestrial carbon storage continued to increase during the Holocene. These results point to predominantly oceanic explanations for preindustrial changes in atmospheric CO2, although land changes after the LGM may have contributed indirectly by reducing the aeolian marine Fe source and (on a longer time scale) by triggering CaCO3 compensation in the ocean.

  11. Early Design Choices: Capture, Model, Integrate, Analyze, Simulate

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2004-01-01

    I. Designs are constructed incrementally to meet requirements and solve problems: a) Requirements types: objectives, scenarios, constraints, ilities. etc. b) Problem/issue types: risk/safety, cost/difficulty, interaction, conflict, etc. II. Capture requirements, problems and solutions: a) Collect design and analysis products and make them accessible for integration and analysis; b) Link changes in design requirements, problems and solutions; and c) Harvest design data for design models and choice structures. III. System designs are constructed by multiple groups designing interacting subsystems a) Diverse problems, choice criteria, analysis methods and point solutions. IV. Support integration and global analysis of repercussions: a) System implications of point solutions; b) Broad analysis of interactions beyond totals of mass, cost, etc.

  12. Using the NASTRAN Thermal Analyzer to simulate a flight scientific instrument package

    NASA Technical Reports Server (NTRS)

    Lee, H.-P.; Jackson, C. E., Jr.

    1974-01-01

    The NASTRAN Thermal Analyzer has proven to be a unique and useful tool for thermal analyses involving large and complex structures where small, thermally induced deformations are critical. Among its major advantages are direct grid point-to-grid point compatibility with large structural models; plots of the model that may be generated for both conduction and boundary elements; versatility of applying transient thermal loads especially to repeat orbital cycles; on-line printer plotting of temperatures and rate of temperature changes as a function of time; and direct matrix input to solve linear differential equations on-line. These features provide a flexibility far beyond that available in most finite-difference thermal analysis computer programs.

  13. Criticality of the random field Ising model in and out of equilibrium: A nonperturbative functional renormalization group description

    NASA Astrophysics Data System (ADS)

    Balog, Ivan; Tarjus, Gilles; Tissier, Matthieu

    2018-03-01

    We show that, contrary to previous suggestions based on computer simulations or erroneous theoretical treatments, the critical points of the random-field Ising model out of equilibrium, when quasistatically changing the applied source at zero temperature, and in equilibrium are not in the same universality class below some critical dimension dD R≈5.1 . We demonstrate this by implementing a nonperturbative functional renormalization group for the associated dynamical field theory. Above dD R, the avalanches, which characterize the evolution of the system at zero temperature, become irrelevant at large distance, and hysteresis and equilibrium critical points are then controlled by the same fixed point. We explain how to use computer simulation and finite-size scaling to check the correspondence between in and out of equilibrium criticality in a far less ambiguous way than done so far.

  14. The Relationship between OCT-measured Central Retinal Thickness and Visual Acuity in Diabetic Macular Edema

    PubMed Central

    2008-01-01

    Objective To compare optical coherence tomography (OCT)-measured retinal thickness and visual acuity in eyes with diabetic macular edema (DME) both before and after macular laser photocoagulation. Design Cross-sectional and longitudinal study. Participants 210 subjects (251 eyes) with DME enrolled in a randomized clinical trial of laser techniques. Methods Retinal thickness was measured with OCT and visual acuity was measured with the electronic-ETDRS procedure. Main Outcome Measures OCT-measured center point thickness and visual acuity Results The correlation coefficients for visual acuity versus OCT center point thickness were 0.52 at baseline and 0.49, 0.36, and 0.38 at 3.5, 8, and 12 months post-laser photocoagulation. The slope of the best fit line to the baseline data was approximately 4.4 letters (95% C.I.: 3.5, 5.3) better visual acuity for every 100 microns decrease in center point thickness at baseline with no important difference at follow-up visits. Approximately one-third of the variation in visual acuity could be predicted by a linear regression model that incorporated OCT center point thickness, age, hemoglobin A1C, and severity of fluorescein leakage in the center and inner subfields. The correlation between change in visual acuity and change in OCT center point thickening 3.5 months after laser treatment was 0.44 with no important difference at the other follow-up times. A subset of eyes showed paradoxical improvements in visual acuity with increased center point thickening (7–17% at the three time points) or paradoxical worsening of visual acuity with a decrease in center point thickening (18%–26% at the three time points). Conclusions There is modest correlation between OCT-measured center point thickness and visual acuity, and modest correlation of changes in retinal thickening and visual acuity following focal laser treatment for DME. However, a wide range of visual acuity may be observed for a given degree of retinal edema and paradoxical increases in center point thickening with increases in visual acuity as well as paradoxical decreases in center point thickening with decreases in visual acuity were not uncommon. Thus, although OCT measurements of retinal thickness represent an important tool in clinical evaluation, they cannot reliably substitute as a surrogate for visual acuity at a given point in time. This study does not address whether short-term changes on OCT are predictive of long-term effects on visual acuity. PMID:17123615

  15. Registration algorithm of point clouds based on multiscale normal features

    NASA Astrophysics Data System (ADS)

    Lu, Jun; Peng, Zhongtao; Su, Hang; Xia, GuiHua

    2015-01-01

    The point cloud registration technology for obtaining a three-dimensional digital model is widely applied in many areas. To improve the accuracy and speed of point cloud registration, a registration method based on multiscale normal vectors is proposed. The proposed registration method mainly includes three parts: the selection of key points, the calculation of feature descriptors, and the determining and optimization of correspondences. First, key points are selected from the point cloud based on the changes of magnitude of multiscale curvatures obtained by using principal components analysis. Then the feature descriptor of each key point is proposed, which consists of 21 elements based on multiscale normal vectors and curvatures. The correspondences in a pair of two point clouds are determined according to the descriptor's similarity of key points in the source point cloud and target point cloud. Correspondences are optimized by using a random sampling consistency algorithm and clustering technology. Finally, singular value decomposition is applied to optimized correspondences so that the rigid transformation matrix between two point clouds is obtained. Experimental results show that the proposed point cloud registration algorithm has a faster calculation speed, higher registration accuracy, and better antinoise performance.

  16. Differential renormalization-group generators for static and dynamic critical phenomena

    NASA Astrophysics Data System (ADS)

    Chang, T. S.; Vvedensky, D. D.; Nicoll, J. F.

    1992-09-01

    The derivation of differential renormalization-group (DRG) equations for applications to static and dynamic critical phenomena is reviewed. The DRG approach provides a self-contained closed-form representation of the Wilson renormalization group (RG) and should be viewed as complementary to the Callan-Symanzik equations used in field-theoretic approaches to the RG. The various forms of DRG equations are derived to illustrate the general mathematical structure of each approach and to point out the advantages and disadvantages for performing practical calculations. Otherwise, the review focuses upon the one-particle-irreducible DRG equations derived by Nicoll and Chang and by Chang, Nicoll, and Young; no attempt is made to provide a general treatise of critical phenomena. A few specific examples are included to illustrate the utility of the DRG approach: the large- n limit of the classical n-vector model (the spherical model), multi- or higher-order critical phenomena, and crit ical dynamics far from equilibrium. The large- n limit of the n-vector model is used to introduce the application of DRG equations to a well-known example, with exact solution obtained for the nonlinear trajectories, generating functions for nonlinear scaling fields, and the equation of state. Trajectory integrals and nonlinear scaling fields within the framework of ɛ-expansions are then discussed for tricritical crossover, and briefly for certain aspects of multi- or higher-order critical points, including the derivation of the Helmholtz free energy and the equation of state. The discussion then turns to critical dynamics with a development of the path integral formulation for general dynamic processes. This is followed by an application to a model far-from-equilibrium system that undergoes a phase transformation analogous to a second-order critical point, the Schlögl model for a chemical instability.

  17. Movies of Finite Deformation within Western North American Plate Boundary Zone

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Birkes, B.; Richard, G. A.

    2004-12-01

    Animations of finite strain within deforming continental zones can be an important tool for both education and research. We present finite strain models for western North America. We have found that these moving images, which portray plate motions, landform uplift, and subsidence, are highly useful for enabling students to conceptualize the dramatic changes that can occur within plate boundary zones over geologic time. These models use instantaneous rates of strain inferred from both space geodetic observations and Quaternary fault slip rates. Geodetic velocities and Quaternary strain rates are interpolated to define a continuous, instantaneous velocity field for western North America. This velocity field is then used to track topography points and fault locations through time (both backward and forward in time), using small time steps, to produce a 6 million year image. The strain rate solution is updated at each time step, accounting for changes in boundary conditions of plate motion, and changes in fault orientation. Assuming zero volume change, Airy isostasy, and a ratio of erosion rate to tectonic uplift rate, the topography is also calculated as a function of time. The animations provide interesting moving images of the transform boundary, highlighting ongoing extension and subsidence, convergence and uplift, and large translations taking place within the strike-slip regime. Moving images of the strain components, uplift volume through time, and inferred erosion volume through time, have also been produced. These animations are an excellent demonstration for education purposes and also hold potential as an important tool for research enabling the quantification of finite rotations of fault blocks, potential erosion volume, uplift volume, and the influence of climate on these parameters. The models, however, point to numerous shortcomings of taking constraints from instantaneous calculations to provide insight into time evolution and reconstruction models. More rigorous calculations are needed to account for changes in dynamics (body forces) through time and resultant changes in fault behavior and crustal rheology.

  18. Near Real Time Change-Point detection in Optical and Thermal Infrared Time Series Using Bayesian Inference over the Dry Chaco Forest

    NASA Astrophysics Data System (ADS)

    Barraza Bernadas, V.; Grings, F.; Roitberg, E.; Perna, P.; Karszenbaum, H.

    2017-12-01

    The Dry Chaco region (DCF) has the highest absolute deforestation rates of all Argentinian forests. The most recent report indicates a current deforestation rate of 200,000 Ha year-1. In order to better monitor this process, DCF was chosen to implement an early warning program for illegal deforestation. Although the area is intensively studied using medium resolution imagery (Landsat), the products obtained have a yearly pace and therefore unsuited for an early warning program. In this paper, we evaluated the performance of an online Bayesian change-point detection algorithm for MODIS Enhanced Vegetation Index (EVI) and Land Surface Temperature (LST) datasets. The goal was to to monitor the abrupt changes in vegetation dynamics associated with deforestation events. We tested this model by simulating 16-day EVI and 8-day LST time series with varying amounts of seasonality, noise, length of the time series and by adding abrupt changes with different magnitudes. This model was then tested on real satellite time series available through the Google Earth Engine, over a pilot area in DCF, where deforestation was common in the 2004-2016 period. A comparison with yearly benchmark products based on Landsat images is also presented (REDAF dataset). The results shows the advantages of using an automatic model to detect a changepoint in the time series than using only visual inspection techniques. Simulating time series with varying amounts of seasonality and noise, and by adding abrupt changes at different times and magnitudes, revealed that this model is robust against noise, and is not influenced by changes in amplitude of the seasonal component. Furthermore, the results compared favorably with REDAF dataset (near 65% of agreement). These results show the potential to combine LST and EVI to identify deforestation events. This work is being developed within the frame of the national Forest Law for the protection and sustainable development of Native Forest in Argentina in agreement with international legislation (REDD+).

  19. Geometric effects on bilayer convection in cylindrical containers

    NASA Astrophysics Data System (ADS)

    Johnson, Duane Thomas

    The study of convection in two immiscible fluid layers is of interest for reasons both theoretical as well as applied. Recently, bilayer convection has been used as a model of convection in the earth's mantle. It is also an interesting system to use in the study of pattern formation. Bilayer convection also occurs in a process known as liquid encapsulated crystal growth, which is used to grow compound semiconductors. It is the last application which motivates this study. To analyze bilayer convection, theoretical models, numerical calculations and experiments were used. One theoretical model involves the derivation of the Navier- Stokes and energy equation for two immiscible fluid layers, using the Boussinesq approximation. A weakly nonlinear analysis was also performed to study the behavior of the system slightly beyond the onset of convection. Numerical calculations were necessary to solve both models. The experiments involved a single liquid layer of silicone oil, superposed by a layer of air. The radius and height of each fluid layer were changed to observe different flow patterns at the onset of convection. From the experiments and theory, two major discoveries were made as well as several interesting observations. The first discovery is the existence of codimension-two points-particular aspect ratios where two flow patterns coexist-in cylindrical containers. At these points, dynamic switching between different flow patterns was observed. The second discovery was the effect of air convection on the flow pattern in silicone oil. Historically, air has been considered a passive medium that has no effect on the lower fluid. However, experiments were done to show that for large air heights, convection in the air can cause radial temperature gradients at the liquid interface. These temperature gradients then cause surface tension gradient-driven flows. It was also shown that changing the radius of the container can change the driving force of convection from a surface tension gradient-driven to buoyancy-driven and back again. Finally, the weakly nonlinear analysis was able to give a qualitative description of codimension-two points as well as the change in flow patterns due to the convecting air layer.

  20. Analyzing post-wildfire erosional processes and topographic change using hydrologic monitoring and Structure-from-Motion photogrammetry at the storm event scale

    NASA Astrophysics Data System (ADS)

    Leeper, R. J.; Barth, N. C.; Gray, A. B.

    2017-12-01

    Hydro-geomorphic response in recently burned watersheds is highly dependent on the timing and magnitude of subsequent rainstorms. Recent advancements in surveying and monitoring techniques using Unmanned Aerial Vehicles (UAV) and Structure-from-Motion (SfM) photogrammetry can support the rapid estimation of near cm-scale topographic response of headwater catchments (ha to km2). However, surface change due to shallow erosional processes such as sheetwash and rilling remain challenging to measure at this spatial extent and the storm event scale. To address this issue, we combined repeat UAV-SfM surveys with hydrologic monitoring techniques and field investigations to characterize post-wildfire erosional processes and topographic change on a storm-by-storm basis. The Las Lomas watershed ( 15 ha) burned in the 2016 San Gabriel Complex Fire along the front range of the San Gabriel Mountains, southern California. Surveys were conducted with a consumer grade UAV; twenty-six SfM control markers; two rain gages, and two pressure transducers were installed in the watershed. The initial SfM-derived point cloud generated from 422 photos contains 258 million points; the DEM has a resolution of 2.42 cm/pixel and a point density of 17.1 pts/cm2. Rills began forming on hillslopes and minor erosion occurred within the channel network during the first low intensity storms of the rainy season. Later more intense storms resulted in substantial geomorphic change. Hydrologic data indicate that during one of the intense storms total cumulative rainfall was 58.20 mm and peak 5-min intensity was 38.4 mm/hr. Poststorm field surveys revealed evidence of debris flows, flash flooding, erosion, and fluvial aggradation in the channel network, and rill growth and gully formation on hillslopes. Analyses of the SfM models indicate erosion dominated topographic change in steep channels and on hillslopes; aggradation dominated change in low gradient channels. A contrast of 5 cm exists between field measurements and change detected by differencing the SfM models. The quantitative and qualitative data sets obtained indicate that low-cost hydrologic monitoring techniques can be combined with SfM-derived high-resolution models to rapidly characterize post-wildfire hydrologic response and erosional processes on a storm event basis.

  1. Modeling Yeast Cell Polarization Induced by Pheromone Gradients

    NASA Astrophysics Data System (ADS)

    Yi, Tau-Mu; Chen, Shanqin; Chou, Ching-Shan; Nie, Qing

    2007-07-01

    Yeast cells respond to spatial gradients of mating pheromones by polarizing and projecting up the gradient toward the source. It is thought that they employ a spatial sensing mechanism in which the cell compares the concentration of pheromone at different points on the cell surface and determines the maximum point, where the projection forms. Here we constructed the first spatial mathematical model of the yeast pheromone response that describes the dynamics of the heterotrimeric and Cdc42p G-protein cycles, which are linked in a cascade. Two key performance objectives of this system are (1) amplification—converting a shallow external gradient of ligand to a steep internal gradient of protein components and (2) tracking—following changes in gradient direction. We used simulations to investigate amplification mechanisms that allow tracking. We identified specific strategies for regulating the spatial dynamics of the protein components (i.e. their changing location in the cell) that would enable the cell to achieve both objectives.

  2. Occupancy estimation and the closure assumption

    USGS Publications Warehouse

    Rota, Christopher T.; Fletcher, Robert J.; Dorazio, Robert M.; Betts, Matthew G.

    2009-01-01

    1. Recent advances in occupancy estimation that adjust for imperfect detection have provided substantial improvements over traditional approaches and are receiving considerable use in applied ecology. To estimate and adjust for detectability, occupancy modelling requires multiple surveys at a site and requires the assumption of 'closure' between surveys, i.e. no changes in occupancy between surveys. Violations of this assumption could bias parameter estimates; however, little work has assessed model sensitivity to violations of this assumption or how commonly such violations occur in nature. 2. We apply a modelling procedure that can test for closure to two avian point-count data sets in Montana and New Hampshire, USA, that exemplify time-scales at which closure is often assumed. These data sets illustrate different sampling designs that allow testing for closure but are currently rarely employed in field investigations. Using a simulation study, we then evaluate the sensitivity of parameter estimates to changes in site occupancy and evaluate a power analysis developed for sampling designs that is aimed at limiting the likelihood of closure. 3. Application of our approach to point-count data indicates that habitats may frequently be open to changes in site occupancy at time-scales typical of many occupancy investigations, with 71% and 100% of species investigated in Montana and New Hampshire respectively, showing violation of closure across time periods of 3 weeks and 8 days respectively. 4. Simulations suggest that models assuming closure are sensitive to changes in occupancy. Power analyses further suggest that the modelling procedure we apply can effectively test for closure. 5. Synthesis and applications. Our demonstration that sites may be open to changes in site occupancy over time-scales typical of many occupancy investigations, combined with the sensitivity of models to violations of the closure assumption, highlights the importance of properly addressing the closure assumption in both sampling designs and analysis. Furthermore, inappropriately applying closed models could have negative consequences when monitoring rare or declining species for conservation and management decisions, because violations of closure typically lead to overestimates of the probability of occurrence.

  3. Loss of Arctic sea ice causing punctuated change in sightings of killer whales (Orcinus orca) over the past century.

    PubMed

    Higdon, Jeff W; Ferguson, Steven H

    2009-07-01

    Killer whales (Orcinus orca) are major predators that may reshape marine ecosystems via top-down forcing. Climate change models predict major reductions in sea ice with the subsequent expectation for readjustments of species' distribution and abundance. Here, we measure changes in killer whale distribution in the Hudson Bay region with decreasing sea ice as an example of global readjustments occurring with climate change. We summarize records of killer whales in Hudson Bay, Hudson Strait, and Foxe Basin in the eastern Canadian Arctic and relate them to an historical sea ice data set while accounting for spatial and temporal autocorrelation in the data. We find evidence for "choke points," where sea ice inhibits killer whale movement, thereby creating restrictions to their Arctic distribution. We hypothesize that a threshold exists in seasonal sea ice concentration within these choke points that results in pulses in advancements in distribution of an ice-avoiding predator. Hudson Strait appears to have been a significant sea ice choke point that opened up .approximately 50 years ago allowing for an initial punctuated appearance of killer whales followed by a gradual advancing distribution within the entire Hudson Bay region. Killer whale sightings have increased exponentially and are now reported in the Hudson Bay region every summer. We predict that other choke points will soon open up with continued sea ice melt producing punctuated predator-prey trophic cascades across the Arctic.

  4. OCD: The offshore and coastal dispersion model. Volume 1. User's guide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DiCristofaro, D.C.; Hanna, S.R.

    1989-11-01

    The Offshore and Coastal Dispersion (OCD) Model has been developed to simulate the effect of offshore emissions from point, area, or line sources on the air quality of coastal regions. The OCD model was adapted from the EPA guideline model MPTER (EPA, 1980). Modifications were made to incorporate overwater plume transport and dispersion as well as changes that occur as the plume crosses the shoreline. This is a revised OCD model, the fourth version to date. The volume is the User's Guide which includes a Model overview, technical description, user's instructions, and notes on model evaluation and results.

  5. CPD and KT: Models Used and Opportunities for Synergy.

    PubMed

    Sargeant, Joan; Borduas, Francine; Sales, Anne; Klein, Doug; Lynn, Brenna; Stenerson, Heather

    2017-01-01

    The two fields of continuing professional development (CPD) and knowledge translation (KT) within the health care sector, and their related research have developed as somewhat parallel paths with limited points of overlap or intersection. This is slowly beginning to change. The purpose of this paper is to describe and compare the dominant conceptual models informing each field with the view of increasing understanding and appreciation of the two fields, how they are similar and where they differ, and the current and potential points of intersection. The models include the "knowledge-to-action" (KTA) cycle informing KT, models informing CPD curriculum design and individual self-directed learning, and the Kirkpatrick model for evaluating educational outcomes. When compared through the perspectives of conceptual designs, processes, and outcomes, the models overlap. We also identify shared gaps in both fields (eg, the need to explore the influence of the context in which CPD and KT interventions take place) and suggest opportunities for synergies and for moving forward.

  6. [Effects of Electroacupuncture and Moxibustion Pretreatment on Expressions of HSP 27, HSP 70, HSP 90 at Different Time-points in Rabbits with Myocardial Ischemia-reperfusion Injury].

    PubMed

    Tan, Cheng-Fu; Yan, Jie; Wang, Chao; Chang, Xiao-Rong; Xie, Wen-Juan; Yang, Jing-Jing; Liu, Mi; Lin, Hai-Bo; He, Xiang-Chang

    2017-02-25

    To observe the effect of electroacupuncture (EA) and moxibustion (Moxi) pretreatment on expression of myocardial heat shock protein (HSP) in acute myocardial ischemia-reperfusion injury (MIRI) rabbits. A total of 72 New Zealand rabbits were randomly divided into 4 groups:sham operation, MIRI model, EA pretreatment and Moxi pretreatment ( n =18 rabbits in each group) which were further divided into 0, 24 and 48 h (time-point) subgroups ( n =6 in each). The MIRI model was established by occlusion of the anterior descending branch (ADB) of the left coronary artery for 40 min and reperfusion for 60 min. EA and Moxi stimulation was respectively applied to bilateral "Neiguan"(PC 6) for 20 min, once daily for 5 days before ADB occlusion. The expressions of myocardial HSP 27, HSP 70 and HSP 90 were detected by immunohistochemistry. The pathological and ultrastructural changes of left ventricular ischemia tissue were observed under light and transmission electronic microscope (TEM), respectively. Outcomes of H.E. staining and ultrastructure showed that MIRI-induced changes of disordered arrangement of cardiomyocytes, vague myocardial transverse striation, inflammatory infiltration, cardiac myofibre necrosis and fibrolysis (light microscope), and myofiber atrophy, vague and disorder in the arrangement of myofiber, myofilament necrosis, interstitial edema, mitochondrial swelling, microvessel expansion, etc. (TEM) were relatively milder in both EA and Moxi pretreatment groups (48 h). In comparison with the sham group, the expression levels of myocardial HSP 27, HSP 70 and HSP 90 had no significant changes after MIRI at the 3 time-points ( P >0.05). In the pretreatment groups, the expression levels of HSP 27 at 24 and 48 h in both EA and Moxi groups, HSP 70 at 48 h in both groups, HSP 70 at 0 and 24 h in the Moxi group were significantly up-regulated compared with the model group ( P <0.05, P <0.01). No significant changes were found in the expression of HSP 90 at the 3 time-points in the EA and Moxi pretreatment groups ( P >0.05). No significant differences were found between EA and Moxi in up-regulating expressions of myocardial HSP 27, HSP 70 and HSP 90 proteins at the 3 time-points ( P >0.05) except HSP 70 at 24 h (Moxi being stronger relative to EA, P <0.05). EA and Moxi pretreatment has a protective effect on ischemic myocardium in MIRI rabbits, which Feb be associated with their actions in up-regulating myocardial HSP 27 and HSP 70 expression.

  7. Knowledge-Based Object Detection in Laser Scanning Point Clouds

    NASA Astrophysics Data System (ADS)

    Boochs, F.; Karmacharya, A.; Marbs, A.

    2012-07-01

    Object identification and object processing in 3D point clouds have always posed challenges in terms of effectiveness and efficiency. In practice, this process is highly dependent on human interpretation of the scene represented by the point cloud data, as well as the set of modeling tools available for use. Such modeling algorithms are data-driven and concentrate on specific features of the objects, being accessible to numerical models. We present an approach that brings the human expert knowledge about the scene, the objects inside, and their representation by the data and the behavior of algorithms to the machine. This "understanding" enables the machine to assist human interpretation of the scene inside the point cloud. Furthermore, it allows the machine to understand possibilities and limitations of algorithms and to take this into account within the processing chain. This not only assists the researchers in defining optimal processing steps, but also provides suggestions when certain changes or new details emerge from the point cloud. Our approach benefits from the advancement in knowledge technologies within the Semantic Web framework. This advancement has provided a strong base for applications based on knowledge management. In the article we will present and describe the knowledge technologies used for our approach such as Web Ontology Language (OWL), used for formulating the knowledge base and the Semantic Web Rule Language (SWRL) with 3D processing and topologic built-ins, aiming to combine geometrical analysis of 3D point clouds, and specialists' knowledge of the scene and algorithmic processing.

  8. Modeling cooking of chicken meat in industrial tunnel ovens with the Flory-Rehner theory.

    PubMed

    van der Sman, R G M

    2013-12-01

    In this paper we present a numerical model describing the heat and mass transport during the cooking of chicken meat in industrial tunnels. The mass transport is driven by gradients in the swelling pressure, which is described by the Flory-Rehner theory, which relates to the water holding capacity (WHC). For cooking temperatures up to boiling point and practical relevant cooking times, the model renders good prediction of heat and mass transport and the total loss of moisture. We have shown that for cooking temperatures above boiling point, the model has to be extended with the dynamic growth of capillary water (drip) channels. Furthermore, we discuss that the Flory-Rehner theory provides the proper physical basis for describing the change of the WHC by a wide variety of factors like salt and pH. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The Developing Infant Creates a Curriculum for Statistical Learning.

    PubMed

    Smith, Linda B; Jayaraman, Swapnaa; Clerkin, Elizabeth; Yu, Chen

    2018-04-01

    New efforts are using head cameras and eye-trackers worn by infants to capture everyday visual environments from the point of view of the infant learner. From this vantage point, the training sets for statistical learning develop as the sensorimotor abilities of the infant develop, yielding a series of ordered datasets for visual learning that differ in content and structure between timepoints but are highly selective at each timepoint. These changing environments may constitute a developmentally ordered curriculum that optimizes learning across many domains. Future advances in computational models will be necessary to connect the developmentally changing content and statistics of infant experience to the internal machinery that does the learning. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  11. Analyzing Seasonal Variations in Suicide With Fourier Poisson Time-Series Regression: A Registry-Based Study From Norway, 1969-2007.

    PubMed

    Bramness, Jørgen G; Walby, Fredrik A; Morken, Gunnar; Røislien, Jo

    2015-08-01

    Seasonal variation in the number of suicides has long been acknowledged. It has been suggested that this seasonality has declined in recent years, but studies have generally used statistical methods incapable of confirming this. We examined all suicides occurring in Norway during 1969-2007 (more than 20,000 suicides in total) to establish whether seasonality decreased over time. Fitting of additive Fourier Poisson time-series regression models allowed for formal testing of a possible linear decrease in seasonality, or a reduction at a specific point in time, while adjusting for a possible smooth nonlinear long-term change without having to categorize time into discrete yearly units. The models were compared using Akaike's Information Criterion and analysis of variance. A model with a seasonal pattern was significantly superior to a model without one. There was a reduction in seasonality during the period. Both the model assuming a linear decrease in seasonality and the model assuming a change at a specific point in time were both superior to a model assuming constant seasonality, thus confirming by formal statistical testing that the magnitude of the seasonality in suicides has diminished. The additive Fourier Poisson time-series regression model would also be useful for studying other temporal phenomena with seasonal components. © The Author 2015. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Experimental Robot Model Adjustments Based on Force–Torque Sensor Information

    PubMed Central

    2018-01-01

    The computational complexity of humanoid robot balance control is reduced through the application of simplified kinematics and dynamics models. However, these simplifications lead to the introduction of errors that add to other inherent electro-mechanic inaccuracies and affect the robotic system. Linear control systems deal with these inaccuracies if they operate around a specific working point but are less precise if they do not. This work presents a model improvement based on the Linear Inverted Pendulum Model (LIPM) to be applied in a non-linear control system. The aim is to minimize the control error and reduce robot oscillations for multiple working points. The new model, named the Dynamic LIPM (DLIPM), is used to plan the robot behavior with respect to changes in the balance status denoted by the zero moment point (ZMP). Thanks to the use of information from force–torque sensors, an experimental procedure has been applied to characterize the inaccuracies and introduce them into the new model. The experiments consist of balance perturbations similar to those of push-recovery trials, in which step-shaped ZMP variations are produced. The results show that the responses of the robot with respect to balance perturbations are more precise and the mechanical oscillations are reduced without comprising robot dynamics. PMID:29534477

  13. Quantifying Uncertainties from Presence Data Sampling Methods for Species Distribution Modeling: Focused on Vegetation.

    NASA Astrophysics Data System (ADS)

    Sung, S.; Kim, H. G.; Lee, D. K.; Park, J. H.; Mo, Y.; Kil, S.; Park, C.

    2016-12-01

    The impact of climate change has been observed throughout the globe. The ecosystem experiences rapid changes such as vegetation shift, species extinction. In these context, Species Distribution Model (SDM) is one of the popular method to project impact of climate change on the ecosystem. SDM basically based on the niche of certain species with means to run SDM present point data is essential to find biological niche of species. To run SDM for plants, there are certain considerations on the characteristics of vegetation. Normally, to make vegetation data in large area, remote sensing techniques are used. In other words, the exact point of presence data has high uncertainties as we select presence data set from polygons and raster dataset. Thus, sampling methods for modeling vegetation presence data should be carefully selected. In this study, we used three different sampling methods for selection of presence data of vegetation: Random sampling, Stratified sampling and Site index based sampling. We used one of the R package BIOMOD2 to access uncertainty from modeling. At the same time, we included BioCLIM variables and other environmental variables as input data. As a result of this study, despite of differences among the 10 SDMs, the sampling methods showed differences in ROC values, random sampling methods showed the lowest ROC value while site index based sampling methods showed the highest ROC value. As a result of this study the uncertainties from presence data sampling methods and SDM can be quantified.

  14. An Electrostatic Charge Partitioning Model for the Dissociation of Protein Complexes in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sciuto, Stephen V.; Liu, Jiangjiang; Konermann, Lars

    2011-10-01

    Electrosprayed multi-protein complexes can be dissociated by collisional activation in the gas phase. Typically, these processes follow a mechanism whereby a single subunit gets ejected with a disproportionately high amount of charge relative to its mass. This asymmetric behavior suggests that the departing subunit undergoes some degree of unfolding prior to being separated from the residual complex. These structural changes occur concomitantly with charge (proton) transfer towards the subunit that is being unraveled. Charge accumulation takes place up to the point where the subunit loses physical contact with the residual complex. This work develops a simple electrostatic model for studying the relationship between conformational changes and charge enrichment during collisional activation. Folded subunits are described as spheres that carry continuum surface charge. The unfolded chain is envisioned as random coil bead string. Simulations are guided by the principle that the system will adopt the charge configuration with the lowest potential energy for any backbone conformation. A finite-difference gradient algorithm is used to determine the charge on each subunit throughout the dissociation process. Both dimeric and tetrameric protein complexes are investigated. The model reproduces the occurrence of asymmetric charge partitioning for dissociation events that are preceded by subunit unfolding. Quantitative comparisons of experimental MS/MS data with model predictions yield estimates of the structural changes that occur during collisional activation. Our findings suggest that subunit separation can occur over a wide range of scission point structures that correspond to different degrees of unfolding.

  15. Photogrammetric Accuracy and Modeling of Rolling Shutter Cameras

    NASA Astrophysics Data System (ADS)

    Ye, W.; Qiao, G.; Kong, F.; Guo, S.; Ma, X.; Tong, X.; Li, R.

    2016-06-01

    Global climate change is one of the major challenges that all nations are commonly facing. Long-term observations of the Antarctic ice sheet have been playing a critical role in quantitatively estimating and predicting effects resulting from the global changes. The film-based ARGON reconnaissance imagery provides a remarkable data source for studying the Antarctic ice-sheet in 1960s, thus greatly extending the time period of Antarctica surface observations. To deal with the low-quality images and the unavailability of camera poses, a systematic photogrammetric approach is proposed to reconstruct the interior and exterior orientation information for further glacial mapping applications, including ice flow velocity mapping and mass balance estimation. Some noteworthy details while performing geometric modelling using the ARGON images were introduced, including methods and results for handling specific effects of film deformation, damaged or missing fiducial marks and calibration report, automatic fiducial mark detection, control point selection through Antarctic shadow and ice surface terrain analysis, and others. Several sites in East Antarctica were tested. As an example, four images in the Byrd glacier region were used to assess the accuracy of the geometric modelling. A digital elevation model (DEM) and an orthophoto map of Byrd glacier were generated. The accuracy of the ground positions estimated by using independent check points is within one nominal pixel of 140 m of ARGON imagery. Furthermore, a number of significant features, such as ice flow velocity and regional change patterns, will be extracted and analysed.

  16. A detached eddy simulation model for the study of lateral separation zones along a large canyon-bound river

    NASA Astrophysics Data System (ADS)

    Alvarez, Laura V.; Schmeeckle, Mark W.; Grams, Paul E.

    2017-01-01

    Lateral flow separation occurs in rivers where banks exhibit strong curvature. In canyon-bound rivers, lateral recirculation zones are the principal storage of fine-sediment deposits. A parallelized, three-dimensional, turbulence-resolving model was developed to study the flow structures along lateral separation zones located in two pools along the Colorado River in Marble Canyon. The model employs the detached eddy simulation (DES) technique, which resolves turbulence structures larger than the grid spacing in the interior of the flow. The DES-3D model is validated using Acoustic Doppler Current Profiler flow measurements taken during the 2008 controlled flood release from Glen Canyon Dam. A point-to-point validation using a number of skill metrics, often employed in hydrological research, is proposed here for fluvial modeling. The validation results show predictive capabilities of the DES model. The model reproduces the pattern and magnitude of the velocity in the lateral recirculation zone, including the size and position of the primary and secondary eddy cells, and return current. The lateral recirculation zone is open, having continuous import of fluid upstream of the point of reattachment and export by the recirculation return current downstream of the point of separation. Differences in magnitude and direction of near-bed and near-surface velocity vectors are found, resulting in an inward vertical spiral. Interaction between the recirculation return current and the main flow is dynamic, with large temporal changes in flow direction and magnitude. Turbulence structures with a predominately vertical axis of vorticity are observed in the shear layer becoming three-dimensional without preferred orientation downstream.

  17. Gravity-height correlations for unrest at calderas

    NASA Astrophysics Data System (ADS)

    Berrino, G.; Rymer, H.; Brown, G. C.; Corrado, G.

    1992-11-01

    Calderas represent the sites of the world's most serious volcanic hazards. Although eruptions are not frequent at such structures on the scale of human lifetimes, there are nevertheless often physical changes at calderas that are measurable over periods of years or decades. Such calderas are said to be in a state of unrest, and it is by studying the nature of this unrest that we may begin to understand the dynamics of eruption precursors. Here we review combined gravity and elevation data from several restless calderas, and present new data on their characteristic signatures during periods of inflation and deflation. We find that unless the Bouguer gravity anomaly at a caldera is extremely small, the free-air gradient used to correct gravity data for observed elevation changes must be the measured or calculated gradient, and not the theoretical gradient, use of which may introduce significant errors. In general, there are two models that fit most of the available data. The first involves a Mogi-type point source, and the second is a Bouguer-type infinite horizontal plane source. The density of the deforming material (usually a magma chamber) is calculated from the gravity and ground deformation data, and the best fitting model is, to a first approximation, the one producing the most realistic density. No realistic density is obtained where there are real density changes, or where the data do not fit the point source or slab model. We find that a point source model fits most of the available data, and that most data are for periods of caldera inflation. The limited examples of deflation from large silicic calderas indicate that the amount of mass loss, or magma drainage, is usually much less than the mass gain during the preceding magma intrusion. In contrast, deflationary events at basaltic calderas formed in extensional tectonic environments are associated with more significant mass loss as magma is injected into the associated fissure swarms.

  18. Automatic control of cryogenic wind tunnels

    NASA Technical Reports Server (NTRS)

    Balakrishna, S.

    1989-01-01

    Inadequate Reynolds number similarity in testing of scaled models affects the quality of aerodynamic data from wind tunnels. This is due to scale effects of boundary-layer shock wave interaction which is likely to be severe at transonic speeds. The idea of operation of wind tunnels using test gas cooled to cryogenic temperatures has yielded a quantrum jump in the ability to realize full scale Reynolds number flow similarity in small transonic tunnels. In such tunnels, the basic flow control problem consists of obtaining and maintaining the desired test section flow parameters. Mach number, Reynolds number, and dynamic pressure are the three flow parameters that are usually required to be kept constant during the period of model aerodynamic data acquisition. The series of activity involved in modeling, control law development, mechanization of the control laws on a microcomputer, and the performance of a globally stable automatic control system for the 0.3-m Transonic Cryogenic Tunnel (TCT) are discussed. A lumped multi-variable nonlinear dynamic model of the cryogenic tunnel, generation of a set of linear control laws for small perturbation, and nonlinear control strategy for large set point changes including tunnel trajectory control are described. The details of mechanization of the control laws on a 16 bit microcomputer system, the software features, operator interface, the display and safety are discussed. The controller is shown to provide globally stable and reliable temperature control to + or - 0.2 K, pressure to + or - 0.07 psi and Mach number to + or - 0.002 of the set point value. This performance is obtained both during large set point commands as for a tunnel cooldown, and during aerodynamic data acquisition with intrusive activity like geometrical changes in the test section such as angle of attack changes, drag rake movements, wall adaptation and sidewall boundary-layer removal. Feasibility of the use of an automatic Reynolds number control mode with fixed Mach number control is demonstrated.

  19. Investigating the effects of methodological expertise and data randomness on the robustness of crowd-sourced SfM terrain models

    NASA Astrophysics Data System (ADS)

    Ratner, Jacqueline; Pyle, David; Mather, Tamsin

    2015-04-01

    Structure-from-motion (SfM) techniques are now widely available to quickly and cheaply generate digital terrain models (DTMs) from optical imagery. Topography can change rapidly during disaster scenarios and change the nature of local hazards, making ground-based SfM a particularly useful tool in hazard studies due to its low cost, accessibility, and potential for immediate deployment. Our study is designed to serve as an analogue to potential real-world use of the SfM method if employed for disaster risk reduction purposes. Experiments at a volcanic crater in Santorini, Greece, used crowd-sourced data collection to demonstrate the impact of user expertise and randomization of SfM data on the resultant DTM. Three groups of participants representing variable expertise levels utilized 16 different camera models, including four camera phones, to collect 1001 total photos in one hour of data collection. Datasets collected by each group were processed using the free and open source software VisualSFM. The point densities and overall quality of the resultant SfM point clouds were compared against each other and also against a LiDAR dataset for reference to the industry standard. Our results show that the point clouds are resilient to changes in user expertise and collection method and are comparable or even preferable in data density to LiDAR. We find that 'crowd-sourced' data collected by a moderately informed general public yields topography results comparable to those produced with data collected by experts. This means that in a real-world scenario involving participants with a diverse range of expertise levels, topography models could be produced from crowd-sourced data quite rapidly and to a very high standard. This could be beneficial to disaster risk reduction as a relatively quick, simple, and low-cost method to attain a rapidly updated knowledge of terrain attributes, useful for the prediction and mitigation of many natural hazards.

  20. A new method to compare statistical tree growth curves: the PL-GMANOVA model and its application with dendrochronological data.

    PubMed

    Ricker, Martin; Peña Ramírez, Víctor M; von Rosen, Dietrich

    2014-01-01

    Growth curves are monotonically increasing functions that measure repeatedly the same subjects over time. The classical growth curve model in the statistical literature is the Generalized Multivariate Analysis of Variance (GMANOVA) model. In order to model the tree trunk radius (r) over time (t) of trees on different sites, GMANOVA is combined here with the adapted PL regression model Q = A · T+E, where for b ≠ 0 : Q = Ei[-b · r]-Ei[-b · r1] and for b = 0 : Q  = Ln[r/r1], A =  initial relative growth to be estimated, T = t-t1, and E is an error term for each tree and time point. Furthermore, Ei[-b · r]  = ∫(Exp[-b · r]/r)dr, b = -1/TPR, with TPR being the turning point radius in a sigmoid curve, and r1 at t1 is an estimated calibrating time-radius point. Advantages of the approach are that growth rates can be compared among growth curves with different turning point radiuses and different starting points, hidden outliers are easily detectable, the method is statistically robust, and heteroscedasticity of the residuals among time points is allowed. The model was implemented with dendrochronological data of 235 Pinus montezumae trees on ten Mexican volcano sites to calculate comparison intervals for the estimated initial relative growth A. One site (at the Popocatépetl volcano) stood out, with A being 3.9 times the value of the site with the slowest-growing trees. Calculating variance components for the initial relative growth, 34% of the growth variation was found among sites, 31% among trees, and 35% over time. Without the Popocatépetl site, the numbers changed to 7%, 42%, and 51%. Further explanation of differences in growth would need to focus on factors that vary within sites and over time.

  1. A Nonlinear Elasticity Model of Macromolecular Conformational Change Induced by Electrostatic Forces

    PubMed Central

    Zhou, Y. C.; Holst, Michael; McCammon, J. Andrew

    2008-01-01

    In this paper we propose a nonlinear elasticity model of macromolecular conformational change (deformation) induced by electrostatic forces generated by an implicit solvation model. The Poisson-Boltzmann equation for the electrostatic potential is analyzed in a domain varying with the elastic deformation of molecules, and a new continuous model of the electrostatic forces is developed to ensure solvability of the nonlinear elasticity equations. We derive the estimates of electrostatic forces corresponding to four types of perturbations to an electrostatic potential field, and establish the existance of an equilibrium configuration using a fixed-point argument, under the assumption that the change in the ionic strength and charges due to the additional molecules causing the deformation are sufficiently small. The results are valid for elastic models with arbitrarily complex dielectric interfaces and cavities, and can be generalized to large elastic deformation caused by high ionic strength, large charges, and strong external fields by using continuation methods. PMID:19461946

  2. Surface Deformation and Gravity Changes from Surface and Internal Loads

    NASA Technical Reports Server (NTRS)

    Hager, Bradford H.; Fang, Ming

    2002-01-01

    Air and space borne remote sensing have made it possible to monitor the mass and energy transport at various scales within the cryosphere-hydrosphere-atmosphere system. The recent surface mass balance (the rate of net gain of snow and ice at a geographic point) map for the Antarctic ice sheet is constructed by interpolating sparse in situ observations (about 1,800 points) with empirically calibrated satellite data of passive back emission of microwaves. The digital elevation model obtained from satellite radar altimetry is used to improve the delineation of the ice flow drainage basins. As important as these results are, the uncertainty remains up to about 2 mm/yr of eustatic sea level change with the net imbalance. In other words, we are still unable to determine even the sign of the contribution of the Antarctic ice sheet to contemporary sea level change. The problem is more likely with the discharge rather than accumulation.

  3. Shifts in the architecture of the Nationwide Health Information Network.

    PubMed

    Lenert, Leslie; Sundwall, David; Lenert, Michael Edward

    2012-01-01

    In the midst of a US $30 billion USD investment in the Nationwide Health Information Network (NwHIN) and electronic health records systems, a significant change in the architecture of the NwHIN is taking place. Prior to 2010, the focus of information exchange in the NwHIN was the Regional Health Information Organization (RHIO). Since 2010, the Office of the National Coordinator (ONC) has been sponsoring policies that promote an internet-like architecture that encourages point to-point information exchange and private health information exchange networks. The net effect of these activities is to undercut the limited business model for RHIOs, decreasing the likelihood of their success, while making the NwHIN dependent on nascent technologies for community level functions such as record locator services. These changes may impact the health of patients and communities. Independent, scientifically focused debate is needed on the wisdom of ONC's proposed changes in its strategy for the NwHIN.

  4. Multicritical points in the mixed ferromagnetic-ferrimagnetic ternary alloy with a single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Bobák, A.; Abubrig, F. O.; Balcerzak, T.

    2003-12-01

    The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.

  5. Implementation of a mezzo-level HOV carpool model for Texas. Final report, September 1986-April 1990

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benson, J.D.; Mullins, J.A.; Stokes, R.W.

    1989-11-01

    The report presents the results of an evaluation and adaptation of three existing high-occupancy vehicle (HOV) lane carpool demand estimation models for possible use in Houston and other large Texas cities. These models use trip tables, networks and zone structures that are consistent with the regional travel demand modeling process currently in use in Texas. By implementing the HOV carpool models in a structure that is consistent with the regional travel demand modeling process, it is possible to estimate the carpool demand for an HOV facility and to evaluate the effects of the following changes in HOV lane configuration andmore » operating strategies: (1) Effects of additional and/or alternative access points; (2) Effects of extending and HOV lane; and (3) Effects of changing the definition of eligible HOV carpools. The models have produced promising results in test applications in Houston.« less

  6. Performance indicators related to points scoring and winning in international rugby sevens.

    PubMed

    Higham, Dean G; Hopkins, Will G; Pyne, David B; Anson, Judith M

    2014-05-01

    Identification of performance indicators related to scoring points and winning is needed to inform tactical approaches to international rugby sevens competition. The aim of this study was to characterize team performance indicators in international rugby sevens and quantify their relationship with a team's points scored and probability of winning. Performance indicators of each team during 196 matches of the 2011/2012 International Rugby Board Sevens World Series were modeled for their linear relationships with points scored and likelihood of winning within (changes in team values from match to match) and between (differences between team values averaged over all matches) teams. Relationships were evaluated as the change and difference in points and probability of winning associated with a two within- and between-team standard deviations increase in performance indicator values. Inferences about relationships were assessed using a smallest meaningful difference of one point and a 10% probability of a team changing the outcome of a close match. All indicators exhibited high within-team match-to-match variability (intraclass correlation coefficients ranged from 0.00 to 0.23). Excluding indicators representing points-scoring actions or events occurring on average less than once per match, 13 of 17 indicators had substantial clear within-team relationships with points scored and/or likelihood of victory. Relationships between teams were generally similar in magnitude but unclear. Tactics that increase points scoring and likelihood of winning should be based on greater ball possession, fewer rucks, mauls, turnovers, penalties and free kicks, and limited passing. Key pointsSuccessful international rugby sevens teams tend to maintain ball possession; more frequently avoid taking the ball into contact; concede fewer turnovers, penalties and free kicks; retain possession in scrums, rucks and mauls; and limit passing the ball.Selected performance indicators may be used to evaluate team performances and plan more effective tactical approaches to competition.There is greater match-to-match variability in performance indicator values within than between international rugby sevens teams.The priorities for a rugby sevens team's technical and tactical preparation should reflect the magnitudes of the relationships between performance indicators, points scoring and the likelihood of winning.

  7. Performance Indicators Related to Points Scoring and Winning in International Rugby Sevens

    PubMed Central

    Higham, Dean G.; Hopkins, Will G.; Pyne, David B.; Anson, Judith M.

    2014-01-01

    Identification of performance indicators related to scoring points and winning is needed to inform tactical approaches to international rugby sevens competition. The aim of this study was to characterize team performance indicators in international rugby sevens and quantify their relationship with a team’s points scored and probability of winning. Performance indicators of each team during 196 matches of the 2011/2012 International Rugby Board Sevens World Series were modeled for their linear relationships with points scored and likelihood of winning within (changes in team values from match to match) and between (differences between team values averaged over all matches) teams. Relationships were evaluated as the change and difference in points and probability of winning associated with a two within- and between-team standard deviations increase in performance indicator values. Inferences about relationships were assessed using a smallest meaningful difference of one point and a 10% probability of a team changing the outcome of a close match. All indicators exhibited high within-team match-to-match variability (intraclass correlation coefficients ranged from 0.00 to 0.23). Excluding indicators representing points-scoring actions or events occurring on average less than once per match, 13 of 17 indicators had substantial clear within-team relationships with points scored and/or likelihood of victory. Relationships between teams were generally similar in magnitude but unclear. Tactics that increase points scoring and likelihood of winning should be based on greater ball possession, fewer rucks, mauls, turnovers, penalties and free kicks, and limited passing. Key points Successful international rugby sevens teams tend to maintain ball possession; more frequently avoid taking the ball into contact; concede fewer turnovers, penalties and free kicks; retain possession in scrums, rucks and mauls; and limit passing the ball. Selected performance indicators may be used to evaluate team performances and plan more effective tactical approaches to competition. There is greater match-to-match variability in performance indicator values within than between international rugby sevens teams. The priorities for a rugby sevens team’s technical and tactical preparation should reflect the magnitudes of the relationships between performance indicators, points scoring and the likelihood of winning. PMID:24790490

  8. Explosion-induced stress changes estimated from vibrating-wire stressmeter measurements near the Mighty Epic event, Nevada Test Site

    USGS Publications Warehouse

    Ellis, William L.; Kibler, J.D.

    1983-01-01

    Explosion-induced compressive stress increases near an underground nuclear explosion are believed to contribute significantly to the containment of high-pressure gases within the explosion-produced cavity. These induced compressive stresses are predicted by computer calculations, but have never been adequately confirmed by field measurements, owing primarily to the unique difficulties of obtaining such field data. Vibrating-wire stressmeter measurements made near the Mighty Epic nuclear detonation, however, qualitatively indicate that within 150 meters of the working point, permanent compressive stress increases of several megapascals were present 15 weeks after the event. Additionally, stress-change magnitudes interpreted from the stressmeter data between the 75- and 260-meter range from the working point compare favorably with calculational predictions of the stress changes believed to be present shortly after detonation of the event. The measurements and calculations differ, however, with regard to the pattern of stress change radial and transverse to the explosion source. For the range of the field measurements from the working point, computer models predict the largest compressive-stress increase to be radial to the explosion source, while the field data indicate the transverse component of. stress change to be the most compressive. The significance of time-dependent modification of the initial explosion-induced stress distribution is, however, uncertain with regard to the comparison of the field measurements and theoretical predictions.

  9. “Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  10. Monitoring changes of optical attenuation coefficients of acupuncture points during laser acupuncture by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Huang, Yimei; Yang, Hongqin; Wang, Yuhua; Zheng, Liqin; Xie, Shusen

    2010-11-01

    The physical properties of acupuncture point were important to discover the mechanism of acupuncture meridian. In this paper, we used an optical coherence tomography to monitor in vivo the changes of optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point during laser irradiation on Yangxi acupuncture point. The optical attenuation coefficients of Hegu acupuncture point and non-acupuncture point were obtained by fitting the raw data according to the Beer-Lambert's law. The experimental results showed that the optical attenuation coefficient of Hegu acupuncture point decreased during the laser acupuncture, in contrast to a barely changed result in that of non-acupuncture point. The significant change of optical attenuation coefficient of Hegu acupuncture point indicated that there was a correlation between Hegu and Yangxi acupuncture points to some extent.

  11. Simulating water-quality trends in public-supply wells in transient flow systems

    USGS Publications Warehouse

    Starn, J. Jeffrey; Green, Christopher T.; Hinkle, Stephen R.; Bagtzoglou, Amvrossios C.; Stolp, Bernard J.

    2014-01-01

    Models need not be complex to be useful. An existing groundwater-flow model of Salt Lake Valley, Utah, was adapted for use with convolution-based advective particle tracking to explain broad spatial trends in dissolved solids. This model supports the hypothesis that water produced from wells is increasingly younger with higher proportions of surface sources as pumping changes in the basin over time. At individual wells, however, predicting specific water-quality changes remains challenging. The influence of pumping-induced transient groundwater flow on changes in mean age and source areas is significant. Mean age and source areas were mapped across the model domain to extend the results from observation wells to the entire aquifer to see where changes in concentrations of dissolved solids are expected to occur. The timing of these changes depends on accurate estimates of groundwater velocity. Calibration to tritium concentrations was used to estimate effective porosity and improve correlation between source area changes, age changes, and measured dissolved solids trends. Uncertainty in the model is due in part to spatial and temporal variations in tracer inputs, estimated tracer transport parameters, and in pumping stresses at sampling points. For tracers such as tritium, the presence of two-limbed input curves can be problematic because a single concentration can be associated with multiple disparate travel times. These shortcomings can be ameliorated by adding hydrologic and geologic detail to the model and by adding additional calibration data. However, the Salt Lake Valley model is useful even without such small-scale detail.

  12. Effects of vegetation types on soil moisture estimation from the normalized land surface temperature versus vegetation index space

    NASA Astrophysics Data System (ADS)

    Zhang, Dianjun; Zhou, Guoqing

    2015-12-01

    Soil moisture (SM) is a key variable that has been widely used in many environmental studies. Land surface temperature versus vegetation index (LST-VI) space becomes a common way to estimate SM in optical remote sensing applications. Normalized LST-VI space is established by the normalized LST and VI to obtain the comparable SM in Zhang et al. (Validation of a practical normalized soil moisture model with in situ measurements in humid and semiarid regions [J]. International Journal of Remote Sensing, DOI: 10.1080/01431161.2015.1055610). The boundary conditions in the study were set to limit the point A (the driest bare soil) and B (the wettest bare soil) for surface energy closure. However, no limitation was installed for point D (the full vegetation cover). In this paper, many vegetation types are simulated by the land surface model - Noah LSM 3.2 to analyze the effects on soil moisture estimation, such as crop, grass and mixed forest. The locations of point D are changed with vegetation types. The normalized LST of point D for forest is much lower than crop and grass. The location of point D is basically unchanged for crop and grass.

  13. Association Between Changes in Caregiver Depressive Symptoms and Child Attention-Deficit/Hyperactivity Disorder Symptoms.

    PubMed

    Walls, Morgan; Cabral, Howard; Feinberg, Emily; Silverstein, Michael

    2018-06-01

    Depression is highly prevalent among caregivers of children with attention-deficit/hyperactivity disorder (ADHD). We examined the association between caregiver depressive symptom trajectories and changes in child ADHD symptoms. We analyzed data from a randomized trial of 2 ADHD care management systems for children aged 6 to 12 years and their caregivers (n = 156 dyads). Child ADHD symptoms were measured using the Swanson, Nolan, and Pelham rating scale (SNAP-IV). Caregiver depressive symptoms were measured using the Quick Inventory of Depressive Symptomatology (QIDS). Measures were assessed at baseline, 6 months, and 12 months. We used multivariable models to examine associations between changes in caregiver depressive symptoms and changes in child ADHD symptoms. From baseline to 12 months, children of caregivers with improved depressive symptoms had significantly greater reductions in SNAP-IV scores (change score: -1.43) compared with those whose depressive symptoms did not change (change score: -0.97) or worsened (change score: -0.23, p = 0.003). In adjusted models, improved caregiver depressive symptoms were associated with greater reductions in SNAP-IV scores over the 12-month period. Compared with those with worsening caregiver depressive symptoms, children whose caregivers showed no significant changes in depressive symptoms had a -0.78 point (95% confidence interval [CI]: -1.40 to -0.17) greater reduction in the SNAP-IV score, and those children whose caregiver depressive symptoms improved had a -1.31 point greater reduction in the SNAP-IV score (95% CI: -1.97 to -0.66). Given the longitudinal association between caregiver depressive symptom and child ADHD symptom trajectories, interventions that address the behavioral health needs of the family unit may offer promise for urban children with ADHD.

  14. Using propensity scores in difference-in-differences models to estimate the effects of a policy change

    PubMed Central

    Stuart, Elizabeth A.; Huskamp, Haiden A.; Duckworth, Kenneth; Simmons, Jeffrey; Song, Zirui; Chernew, Michael; Barry, Colleen L.

    2014-01-01

    Difference-in-difference (DD) methods are a common strategy for evaluating the effects of policies or programs that are instituted at a particular point in time, such as the implementation of a new law. The DD method compares changes over time in a group unaffected by the policy intervention to the changes over time in a group affected by the policy intervention, and attributes the “difference-in-differences” to the effect of the policy. DD methods provide unbiased effect estimates if the trend over time would have been the same between the intervention and comparison groups in the absence of the intervention. However, a concern with DD models is that the program and intervention groups may differ in ways that would affect their trends over time, or their compositions may change over time. Propensity score methods are commonly used to handle this type of confounding in other non-experimental studies, but the particular considerations when using them in the context of a DD model have not been well investigated. In this paper, we describe the use of propensity scores in conjunction with DD models, in particular investigating a propensity score weighting strategy that weights the four groups (defined by time and intervention status) to be balanced on a set of characteristics. We discuss the conceptual issues associated with this approach, including the need for caution when selecting variables to include in the propensity score model, particularly given the multiple time point nature of the analysis. We illustrate the ideas and method with an application estimating the effects of a new payment and delivery system innovation (an accountable care organization model called the “Alternative Quality Contract” (AQC) implemented by Blue Cross Blue Shield of Massachusetts) on health plan enrollee out-of-pocket mental health service expenditures. We find no evidence that the AQC affected out-of-pocket mental health service expenditures of enrollees. PMID:25530705

  15. Evaluating the implementation of confusion assessment method-intensive care unit using a quality improvement approach.

    PubMed

    Stewart, C; Bench, S

    2018-05-15

    Quality improvement (QI) is a way through which health care delivery can be made safer and more effective. Various models of quality improvement methods exist in health care today. These models can help guide and manage the process of introducing changes into clinical practice. The aim of this project was to implement the use of a delirium assessment tool into three adult critical care units within the same hospital using a QI approach. The objective was to improve the identification and management of delirium. Using the Model for Improvement framework, a multidisciplinary working group was established. A delirium assessment tool was introduced via a series of educational initiatives. New local guidelines regarding the use of delirium assessment and management for the multidisciplinary team were also produced. Audit data were collected at 6 weeks and 5 months post-implementation to evaluate compliance with the use of the tool across three critical care units within a single hospital in London. At 6 weeks, in 134 assessment points out of a possible 202, the tool was deemed to be used appropriately, meaning that 60% of patients received timely assessment; 18% of patients were identified as delirious in audit one. Five months later, only 95 assessment points out of a possible 199 were being appropriately assessed (47%); however, a greater number (32%) were identified as delirious. This project emphasizes the complexity of changing practice in a large busy critical care centre. Despite an initial increase in delirium assessment, this was not sustained over time. The use of a QI model highlights the continuous process of embedding changes into clinical practice and the need to use a QI method that can address the challenging nature of modern health care. QI models guide changes in practice. Consideration should be given to the type of QI model used. © 2018 British Association of Critical Care Nurses.

  16. Do students learn to be more conscientious at medical school?

    PubMed

    Chaytor, Andrew T; Spence, Jacqueline; Armstrong, Ann; McLachlan, John C

    2012-07-11

    Professionalism in medical students is not only difficult to define but difficult to teach and measure. As negative behaviour in medical students is associated with post-graduate disciplinary action it would be useful to have a model whereby unprofessional behaviour at the undergraduate level can easily be identified to permit appropriate intervention. We have previously developed a scalar measure of conscientiousness, the Conscientiousness Index (CI), which positively correlates to estimates of professional behaviour in undergraduate medical students. By comparing CI points awarded in year 1 and year 2 of study we were able to use the CI model to determine whether teaching and clinical exposure had any effect on students' conscientiousness. CI points were collected by administrative staff from 3 successive cohorts of students in years 1 and 2 of study. Points were awarded to students for activities such as submission of immunisation status and criminal record checks, submission of summative assignments by a specified date and attendance at compulsory teaching sessions. CI points were then converted to a percentage of maximal possible scores (CI %) to permit direct comparison between years 1 and 2 of study. CI % scores were generally high with each year of study for each cohort showing negatively skewed normal distributions with peaks > 89%. There was a high degree of correlation of CI % scores between year 1 and year 2 of study for each cohort alone and when cohort data was combined. When the change in CI % from year 1 to year 2 for all students was compared there was no significant difference in conscientiousness observed. We have provided evidence that use of a CI model in undergraduate medical students provides a reliable measure of conscientiousness that is easy to implement. Importantly this study shows that measurement of conscientiousness by the CI model in medical students does not change between years 1 and 2 study suggesting that it is a stable characteristic and not modified by teaching and clinical exposure.

  17. Identifying developmental toxicity pathways for a subset of ToxCast chemicals using human embryonic stem cells and metabolomics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleinstreuer, N.C., E-mail: kleinstreuer.nicole@epa.gov; Smith, A.M.; West, P.R.

    2011-11-15

    Metabolomics analysis was performed on the supernatant of human embryonic stem (hES) cell cultures exposed to a blinded subset of 11 chemicals selected from the chemical library of EPA's ToxCast Trade-Mark-Sign chemical screening and prioritization research project. Metabolites from hES cultures were evaluated for known and novel signatures that may be indicative of developmental toxicity. Significant fold changes in endogenous metabolites were detected for 83 putatively annotated mass features in response to the subset of ToxCast chemicals. The annotations were mapped to specific human metabolic pathways. This revealed strong effects on pathways for nicotinate and nicotinamide metabolism, pantothenate and CoAmore » biosynthesis, glutathione metabolism, and arginine and proline metabolism pathways. Predictivity for adverse outcomes in mammalian prenatal developmental toxicity studies used ToxRefDB and other sources of information, including Stemina Biomarker Discovery's predictive DevTox Registered-Sign model trained on 23 pharmaceutical agents of known developmental toxicity and differing potency. The model initially predicted developmental toxicity from the blinded ToxCast compounds in concordance with animal data with 73% accuracy. Retraining the model with data from the unblinded test compounds at one concentration level increased the predictive accuracy for the remaining concentrations to 83%. These preliminary results on a 11-chemical subset of the ToxCast chemical library indicate that metabolomics analysis of the hES secretome provides information valuable for predictive modeling and mechanistic understanding of mammalian developmental toxicity. -- Highlights: Black-Right-Pointing-Pointer We tested 11 environmental compounds in a hESC metabolomics platform. Black-Right-Pointing-Pointer Significant changes in secreted small molecule metabolites were observed. Black-Right-Pointing-Pointer Perturbed mass features map to pathways critical for normal development and pregnancy. Black-Right-Pointing-Pointer Arginine, proline, nicotinate, nicotinamide and glutathione pathways were affected.« less

  18. BMDExpress Data Viewer - A visualization Tool to Analyze BMDExpress Datasets (Health Canada Science Forum)

    EPA Science Inventory

    Benchmark Dose (BMD) modelling is a mathematical approach used to determine where a dose-response change begins to take place relative to controls following chemical exposure. BMDs are being increasingly applied in regulatory toxicology to determine points of departure. BMDExpres...

  19. Transitions and Turning Points: Navigating the Passage from Childhood through Adolescence.

    ERIC Educational Resources Information Center

    Graber, Julia A.; Brooks-Gunn, Jeanne

    1996-01-01

    Comments on this special theme issue examining the roles of socialization, biology, and culture as they affect adaptive and maladaptive developmental outcomes. Presents models for predicting and understanding behavioral and affective change at transitions occurring especially from middle childhood through adolescence. Provides examples…

  20. Use of the AGNPS model to assess impacts of development and best management practices in an urban watershed

    NASA Astrophysics Data System (ADS)

    Cross, J. A.

    2006-12-01

    A Geographical Information System (GIS) is an invaluable tool in the estimation of land use changes and spatial variability in urban areas. (Non-Point Source (NPS) models provide hypothetical opportunities to assess impacts which storm water management strategies and land use changes have on watersheds by predicting loadings on a watershed scale. This study establishes a methodology for analyzing land use changes and management associated with them by utilizing a GIS analysis of impervious surfaces and AGricultural Non- Point Source (AGNPS) modeling. The GIS analysis of Total Impervious Area (TIA) was used to quantify increases in development and provided land use data for use in AGNPS modeling in a small artificially- delineated urban watershed. AGNPS modeling was executed in several different scenarios to predict changes in NPS loadings associated with increases in TIA and its subsequent management in a small artificially- delineated urban watershed. Data editing, creation and extracting was completed using ArcView (3.2) GeoMedia (6) GIS systems. The GIS analysis quantified the increase in urbanization via TIA within the Bluebonnet Swamp Watershed (BSW) in East Baton Rouge Parish (EBRP), Louisiana. The BSW had significant increases in urbanization in the 8 year time span of 1996 2004 causing and increase in quantity and decrease in quality of subsequent runoff. Datasets made available from the GIS analysis included TIA and the change in percentage from 1996 to 2004. This information is fundamental for the AGNPS model because it was used to calculate TIA percentages within each AGNPS cell. A 30 year daily climate file was used to execute AGNPS in different land use and storm water management scenarios within the 1100 acre BSW. Runoff qualities and quantities were then compared for different periods of 1996 and 2004. Predictions of sediment, erosion and runoff were compared according by scenario year. Management practices were also simulated by changing the Runoff Curve Number (RCN) within AGNPS and their results were also compared. This study provides an aid to planners and managers in estimating increases in urbanization by artificially- delineated watershed. It also in illustrates how to use AGNPS to predict NPS pollution and the influence that change in TIA, land use and storm water management strategies have on sediment loadings, erosion and runoff in a watershed.

Top